WorldWideScience

Sample records for nuclear dna markers

  1. Supplementary data: Development of nuclear DNA markers for ...

    Indian Academy of Sciences (India)

    Supplementary data: Development of nuclear DNA markers for evolutionary studies in Plasmodium falciparum. Celia Thomas, Sneh Shalini, N. Raghavendra, Meenakshi Choudhary, Anju Verma, Hema Joshi,. A. P. Dash and Aparup Das. J. Genet. 86, 65–68. Primer sequences for amplification of putatively neutral ...

  2. Elucidating polyploidization of bermudagrasses as assessed by organelle and nuclear DNA markers.

    Science.gov (United States)

    Gulsen, Osman; Ceylan, Ahmet

    2011-12-01

    Clarification of relationships among ploidy series of Cynodon accessions could be beneficial to bermudagrass breeding programs, and would enhance our understanding of the evolutionary biology of this warm season grass species. This study was initiated to elucidate polyploidization among Cynodon accessions with different ploidy series collected from Turkey based on chloroplast and nuclear DNA. Forty Cynodon accessions including 7 diploids, 3 triploids, 10 tetraploids, 11 pentaploids, and 9 hexaploids were analyzed using chloroplast DNA restriction fragment-length polymorphism (cpDNA RFLP), chloroplast DNA simple sequence repeat (cpDNA SSR), and nuclear DNA markers based on neighbor-joining (NJ) and principle component analyses (PCA). All three-marker systems with two statistical algorithms clustered the diploids apart from the other ploidy levels. Assuming autopolyploidy, spontaneous polyploidization followed by rapid diversification among the higher ploidy levels than the diploids is likely in Cynodon's evolution. Few tetraploid and hexaploid accessions were clustered with or closely to the group of diploids, supporting the hypothesis above. Eleven haplotypes as estimated by cpDNA RFLP and SSR markers were detected. This study indicated that the diploids had different organelle genome from the rest of the ploidy series and provided valuable insight into relationships among ploidy series of Cynodon accessions based on cp and nuclear DNAs.

  3. Cytoplasmic and nuclear DNA markers as powerful tools in ...

    African Journals Online (AJOL)

    Plants are distinguished among eukaryotes in possessing two DNA-containing organelles, the mitochondrion and the plastid, whereas, most eucaryotes contain only the mitochondrial genome. Recently, both organelles are used efficiently in population studies as plant geneticists developed molecular techniques that ...

  4. Taxonomic confirmation of mud crab species (genus Scylla) in Bangladesh by nuclear and mitochondrial DNA markers.

    Science.gov (United States)

    Sarower, Mohammed Golam; Shahriar, Sheik Istiak Md; Nakamura, Hiromasa; Rouf, Muhammad Abdur; Okada, Shigeru

    2017-11-01

    Taxonomy of mud crabs genus Scylla has been misidentified for several years due to their high morphological plasticity. Several reports concerning mud crab have been published with misleading identification in Bangladesh. In this study, partial fragments of nuclear and mitochondrial DNA of Scylla species obtained from four locations along the Bangladesh coast were used to resolve taxonomical ambiguity of mud crab species. A single PCR product from the nuclear first internal transcribed spacer (ITS-1) marker and phylogenetic trees constructed based on 16S rDNA sequences indicated that all Scylla species obtained in this study were S. olivacea. Both molecular data and morphological characters revealed that S. olivacea is the only major species in Bangladesh coastal waters. Further, the 16S rDNA haplotypes significantly differed with known S. serrata by 33%. From this study it is clear that 'S. serrata' commonly reported from Bangladesh should be S. olivacea.

  5. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

    Science.gov (United States)

    Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen

    2012-04-17

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

  6. Introgression evidence and phylogenetic relationships among three (ParaMisgurnus species as revealed by mitochondrial and nuclear DNA markers

    Directory of Open Access Journals (Sweden)

    Jakovlić I.

    2013-01-01

    Full Text Available The taxonomy of (ParaMisgurnus genera is still debated. We therefore used mitochondrial and nuclear DNA markers to analyze the phylogenetic relationships among Misgurnus anguillicaudatus, Paramisgurnus dabryanus and Misgurnus fossilis. Differing phylogenetic signals from mitochondrial and nuclear marker data suggest an introgression event in the history of M. anguillicaudatus and M. mohoity. No substantial genetic evidence was found that Paramisgurnus dabryanus should be classified as a separate genus.

  7. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio.

    Science.gov (United States)

    Minamoto, Toshifumi; Uchii, Kimiko; Takahara, Teruhiko; Kitayoshi, Takumi; Tsuji, Satsuki; Yamanaka, Hiroki; Doi, Hideyuki

    2017-03-01

    The recently developed environmental DNA (eDNA) analysis has been used to estimate the distribution of aquatic vertebrates by using mitochondrial DNA (mtDNA) as a genetic marker. However, mtDNA markers have certain drawbacks such as variable copy number and maternal inheritance. In this study, we investigated the potential of using nuclear DNA (ncDNA) as a more reliable genetic marker for eDNA analysis by using common carp (Cyprinus carpio). We measured the copy numbers of cytochrome b (CytB) gene region of mtDNA and internal transcribed spacer 1 (ITS1) region of ribosomal DNA of ncDNA in various carp tissues and then compared the detectability of these markers in eDNA samples. In the DNA extracted from the brain and gill tissues and intestinal contents, CytB was detected at 95.1 ± 10.7 (mean ± 1 standard error), 29.7 ± 1.59 and 24.0 ± 4.33 copies per cell, respectively, and ITS1 was detected at 1760 ± 343, 2880 ± 503 and 1910 ± 352 copies per cell, respectively. In the eDNA samples from mesocosm, pond and lake water, the copy numbers of ITS1 were about 160, 300 and 150 times higher than those of CytB, respectively. The minimum volume of pond water required for quantification was 33 and 100 mL for ITS1 and CytB, respectively. These results suggested that ITS1 is a more sensitive genetic marker for eDNA studies of C. carpio. © 2016 John Wiley & Sons Ltd.

  8. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    Science.gov (United States)

    Six DNA regions were evaluated in a multi-national, multi-laboratory consortium as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it...

  9. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    NARCIS (Netherlands)

    Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Crous, P.W.; Boekhout, T.; Damm, U.; Hoog, de G.S.; Eberhardt, U.; Groenewald, J.Z.; Groenewald, M.; Hagen, F.; Houbraken, J.; Quaedvlieg, W.; Stielow, B.; Vu, T.D.; Walther, G.

    2012-01-01

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it

  10. Hybrid Origins of Citrus Varieties Inferred from DNA Marker Analysis of Nuclear and Organelle Genomes

    Science.gov (United States)

    Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu

    2016-01-01

    Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy–Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies. PMID:27902727

  11. GEOGRAPHIC DISTRIBUTION OF MOLECULAR VARIANCE WITHIN THE BLUE MARLIN (MAKAIRA NIGRICANS): A HIERARCHICAL ANALYSIS OF ALLOZYME, SINGLE-COPY NUCLEAR DNA, AND MITOCHONDRIAL DNA MARKERS.

    Science.gov (United States)

    Buonaccorsi, Vincent P; Reece, Kimberly S; Morgan, Lee W; Graves, John E

    1999-04-01

    This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θ O ) ranged from 0.00 to 0.15, with a mean of 0.08. The θ O values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θ O = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04-0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates. © 1999 The Society for the Study of Evolution.

  12. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    Czech Academy of Sciences Publication Activity Database

    Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; Miller, A.N.; Wingfield, M. J.; Aime, M.C.; An, K.D.; Bai, F.Y.; Barreto, R.W.; Bergeron, M.J.; Blackwell, M.; Boekhout, T.; Bogale, M.; Boonyuen, N.; Burgaz, A.R.; Buyck, B.; Cai, L.; Cai, Q.; Cardinali, G.; Chaverri, P.; Coppins, B.J.; Crespo, A.; Cubas, P.; Cummings, C.; Damm, U.; de Beer, Z.W.; de Hoog, G.S.; Del-Prado, R.; Dentinger, B.; Dieguez-Uribeondo, J.; Divakar, P.K.; Douglas, B.; Duenas, M.; Duong, T.A.; Eberhardt, U.; Edwards, J.E.; Elshahed, M.S.; Fliegerová, Kateřina; Furtado, M.; Garcia, M.A.; Ge, Z.W.; Griffith, G.W.; Griffiths, K.; Groenewald, J.Z.; Groenewald, M.; Grube, M.; Gryzenhout, M.; Guo, L.D.; Hagen, F.; Hambleton, S.; Hamelin, R.C.; Hansen, K.; Harrold, P.; Heller, G.; Herrera, C.; Hirayama, K.; Hirooka, Y.; Ho, H.M.; Hoffmann, K.; Hofstetter, V.; Hognabba, F.; Hollingsworth, P.M.; Hong, S.B.; Hosaka, K.; Houbraken, J.; Hughes, K.; Huhtinen, S.; Hyde, K.D.; James, T.; Johnson, E.M.; Johnson, J.E.; Johnston, P.R.; Jones, E.B.; Kelly, L.J.; Kirk, P.M.; Knapp, D.G.; Koljalg, U.; Kovacs, G.M.; Kurtzman, C.P.; Landvik, S.; Leavitt, S.D.; Liggenstoffer, A.S.; Liimatainen, K.; Lombard, L.; Luangsa-Ard, J.J.; Lumbsch, H.T.; Maganti, H.; Maharachchikumbura, S.S.; Martin, M.P.; May, T.W.; McTaggart, A.R.; Methven, A.S.; Meyer, W.; Moncalvo, J.M.; Mongkolsamrit, S.; Nagy, L.G.; Nilsson, R.H.; Niskanen, T.; Nyilasi, I.; Okada, G.; Okane, I.; Olariaga, I.; Otte, J.; Papp, T.; Park, D.; Petkovits, T.; Pino-Bodas, R.; Quaedvlieg, W.; Raja, H.A.; Redecker, D.; Rintoul, T.; Ruibal, C.; Sarmiento-Ramirez, J.M.; Schmitt, I.; Schussler, A.; Shearer, C.; Sotome, K.; Stefani, F.O.; Stenroos, S.; Stielow, B.; Stockinger, H.; Suetrong, S.; Suh, S.O.; Sung, G.H.; Suzuki, M.; Tanaka, K.; Tedersoo, L.; Telleria, M.T.; Tretter, E.; Untereiner, W.A.; Urbina, H.; Vagvolgyi, C.; Vialle, A.; Vu, T.D.; Walther, G.; Wang, Q.M.; Wang, Y.; Weir, B.S.; Weiss, M.; White, M.M.; Xu, J.; Yahr, R.; Yang, Z.L.; Yurkov, A.; Zamora, J.C.; Zhang, N.; Zhuang, W.Y.; Schindel, D.

    2012-01-01

    Roč. 109, č. 16 (2012), s. 6241-6246 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50450515 Keywords : DNA barcoding * fungal biodiversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.737, year: 2012

  13. Characterization of Fasciola spp. in Myanmar on the basis of spermatogenesis status and nuclear and mitochondrial DNA markers.

    Science.gov (United States)

    Ichikawa, Madoka; Bawn, Saw; Maw, Ni Ni; Htun, Lat Lat; Thein, Myint; Gyi, Aung; Sunn, Kyaw; Katakura, Ken; Itagaki, Tadashi

    2011-12-01

    Fasciola spp. in Myanmar were characterized on the basis of spermatogenesis status and DNA markers of nuclear internal transcribed spacer 1 (ITS1) and mitochondrial NADH dehydrogenase subunit 1 (nad1). We collected 88 adult flukes from Yangon, Lashio, and Myitkyina. Spermatogenesis status was analyzed by the presence of sperm in the seminal vesicles, and 8 aspermic and 80 spermic flukes were detected. The flukes were identified on the basis of spermatogenesis status and ITS1 types which were analyzed by a PCR-RFLP method, and 80 spermic flukes were identified as F. gigantica. A very low detection rate of aspermic Fasciola sp. indicated that they are not established in Myanmar. In phylogenetic analyses, the 7 aspermic Fasciola sp. from Myitkyina displayed a haplotype in nad1 sequence, which was identical to that of aspermic Fasciola sp. from other Asian countries including China. Therefore, they were probably introduced from China through an infected domestic ruminant. On the other hand, 17 nad1 haplotypes detected in F. gigantica belonged to 2 clades unique to Myanmar, each with a distinct founder haplotype in a network analysis. This indicated a unique history of F. gigantica introduction into Myanmar involving ancient artificial movements of domestic ruminants. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Dine marker har DNA

    DEFF Research Database (Denmark)

    Eckholdt, Annette; Winding, Anne; Krogh, Paul Henning

    2017-01-01

    Ordet "biodiversitet" og at det er noget, vi skal have mere af, nævnes hyppigt. Men hvad er biodiversitet, og hvordan måles det? Agrologisk har bedt et par eksperter fra Aarhus Universitet forklare, hvordan et DNA-aftryk af jord og vand kan erstatte optællinger i felten og sige noget om biodivers......Ordet "biodiversitet" og at det er noget, vi skal have mere af, nævnes hyppigt. Men hvad er biodiversitet, og hvordan måles det? Agrologisk har bedt et par eksperter fra Aarhus Universitet forklare, hvordan et DNA-aftryk af jord og vand kan erstatte optællinger i felten og sige noget om...

  15. Nuclear and mitochondrial DNA markers in traceability of retail beef samples Marcadores de DNA nuclear e mitocondrial para rastreabilidade da carne bovina comercializada

    Directory of Open Access Journals (Sweden)

    Aline S.M. Cesar

    2010-09-01

    Full Text Available Several characteristics are important in a traceability system of animal products, such as age at slaughter, breed composition, besides information of the productive chain. In general, the certification agent records information about the animals and the system which it came from, although cannot guarantee that the slaughtering, meat processing and distribution are error proof. Besides, there is a differential price, at least at the international market, based on sex and breed composition of the animals. Genetic markers allow identification of characteristics controlled in the beef cattle traceability program, as sex and breed composition, in order to correctly identify and appraise the final product for the consumer. The hypothesis of this study was that the majority beef samples retailed in the local market originate from female with a great participation of zebu breeds. Therefore, the objective of this work was to characterize retail beef samples with DNA markers that identify cattle sex and breed composition. Within 10 beef shops localized in Pirassununga, SP, Brazil, 61 samples were collected, all were genotyped as harboring Bos taurus mitochondrial DNA and 18 were positive for the Y chromosome amplification (male. For the marker sat1711b-Msp I the frequency of the allele A was 0.278 and for the marker Lhr-Hha I the frequency of the allele T was 0.417. The results of sat1711b-Msp I and Lhr-Hha I allelic frequencies are suggestive that the proportion of indicus genome compared with the taurine genome in the market meat is smaller than the observed in the Nellore breed. The procedure described in this study identified sex and subspecies characteristics of beef meat samples, with potential application in meat products certification in special as an auxiliary tool in beef cattle traceability programs.Várias características são importantes no sistema de rastreabilidade, como o sexo, a idade, a raça e/ou a composição racial dos animais, al

  16. Phylogeography of the common vampire bat (Desmodus rotundus: Marked population structure, Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers

    Directory of Open Access Journals (Sweden)

    Morgante João S

    2009-12-01

    Full Text Available Abstract Background The common vampire bat Desmodus rotundus is an excellent model organism for studying ecological vicariance in the Neotropics due to its broad geographic range and its preference for forested areas as roosting sites. With the objective of testing for Pleistocene ecological vicariance, we sequenced a mitocondrial DNA (mtDNA marker and two nuclear markers (RAG2 and DRB to try to understand how Pleistocene glaciations affected the distribution of intraspecific lineages in this bat. Results Five reciprocally monophyletic clades were evident in the mitochondrial gene tree, and in most cases with high bootstrap support: Central America (CA, Amazon and Cerrado (AMC, Pantanal (PAN, Northern Atlantic Forest (NAF and Southern Atlantic Forest (SAF. The Atlantic forest clades formed a monophyletic clade with high bootstrap support, creating an east/west division for this species in South America. On the one hand, all coalescent and non-coalescent estimates point to a Pleistocene time of divergence between the clades. On the other hand, the nuclear markers showed extensive sharing of haplotypes between distant localities, a result compatible with male-biased gene flow. In order to test if the disparity between the mitochondrial and nuclear markers was due to the difference in mutation rate and effective size, we performed a coalescent simulation to examine the feasibility that, given the time of separation between the observed lineages, even with a gene flow rate close to zero, there would not be reciprocal monophyly for a neutral nuclear marker. We used the observed values of theta and an estimated mutation rate for the nuclear marker gene to perform 1000 iterations of the simulation. The results of this simulation were inconclusive: the number of iterations with and without reciprocal monophyly of one or more clades are similar. Conclusions We therefore conclude that the pattern exhibited by the common vampire bat, with marked

  17. Identification of Paramecium bursaria syngens through molecular markers--comparative analysis of three loci in the nuclear and mitochondrial DNA.

    Science.gov (United States)

    Greczek-Stachura, Magdalena; Potekhin, Alexey; Przyboś, Ewa; Rautian, Maria; Skoblo, Inna; Tarcz, Sebastian

    2012-09-01

    This is the first attempt to resolve the phylogenetic relationship between different syngens of Paramecium bursaria and to investigate at a molecular level the intraspecific differentiation of strains originating from very distant geographical locations. Herein we introduce a new collection of five P. bursaria syngens maintained at St Petersburg State University, as the international collection of syngens was lost in the 1960s. To analyze the degree of speciation within Paramecium bursaria, we examined 26 strains belonging to five different syngens from distant and geographically isolated localities using rDNA (ITS1-5.8S-ITS2-5'LSU) fragments, mitochondrial cytochrome c oxidase subunit I (COI), and H4 gene fragments. It was shown that P. bursaria strains of the same syngens cluster together in all three inferred molecular phylogenies. The genetic diversity among the studied P. bursaria strains based on rDNA sequences was rather low. The COI divergence of Paramecium bursaria was also definitely lower than that observed in the Paramecium aurelia complex. The nucleotide sequences of the H4 gene analyzed in the present study indicate the extent of genetic differences between the syngens of Paramecium bursaria. Our study demonstrates the diagnostic value of molecular markers, which are important tools in the identification of Paramecium bursaria syngens. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers

    Directory of Open Access Journals (Sweden)

    Mariën J

    2008-03-01

    Full Text Available Abstract Background In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an unusual positioning of Collembola, suggested that the hexapod body plan evolved at least twice. Here, we re-evaluate the position of Collembola using ribosomal protein gene sequences. Results In total 48 ribosomal proteins were obtained for the collembolan Folsomia candida. These 48 sequences were aligned with sequence data on 35 other ecdysozoans. Each ribosomal protein gene was available for 25% to 86% of the taxa. However, the total sequence information was unequally distributed over the taxa and ranged between 4% and 100%. A concatenated dataset was constructed (5034 inferred amino acids in length, of which ~66% of the positions were filled. Phylogenetic tree reconstructions, using Maximum Likelihood, Maximum Parsimony, and Bayesian methods, resulted in a topology that supports monophyly of Hexapoda. Conclusion Although ribosomal proteins in general may not evolve independently, they once more appear highly valuable for phylogenetic reconstruction. Our analyses clearly suggest that Hexapoda is monophyletic. This underpins the inconsistency between nuclear and mitochondrial datasets when analyzing pancrustacean relationships. Caution is needed when applying mitochondrial markers in deep phylogeny.

  19. Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers.

    Science.gov (United States)

    Timmermans, M J T N; Roelofs, D; Mariën, J; van Straalen, N M

    2008-03-12

    In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an unusual positioning of Collembola, suggested that the hexapod body plan evolved at least twice. Here, we re-evaluate the position of Collembola using ribosomal protein gene sequences. In total 48 ribosomal proteins were obtained for the collembolan Folsomia candida. These 48 sequences were aligned with sequence data on 35 other ecdysozoans. Each ribosomal protein gene was available for 25% to 86% of the taxa. However, the total sequence information was unequally distributed over the taxa and ranged between 4% and 100%. A concatenated dataset was constructed (5034 inferred amino acids in length), of which ~66% of the positions were filled. Phylogenetic tree reconstructions, using Maximum Likelihood, Maximum Parsimony, and Bayesian methods, resulted in a topology that supports monophyly of Hexapoda. Although ribosomal proteins in general may not evolve independently, they once more appear highly valuable for phylogenetic reconstruction. Our analyses clearly suggest that Hexapoda is monophyletic. This underpins the inconsistency between nuclear and mitochondrial datasets when analyzing pancrustacean relationships. Caution is needed when applying mitochondrial markers in deep phylogeny.

  20. Use of DNA markers in forest tree improvement research

    Science.gov (United States)

    D.B. Neale; M.E. Devey; K.D. Jermstad; M.R. Ahuja; M.C. Alosi; K.A. Marshall

    1992-01-01

    DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating...

  1. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    Science.gov (United States)

    Boerkamp, Kim M.; Rutteman, Gerard R.; Kik, Marja J. L.; Kirpensteijn, Jolle; Schulze, Christoph; Grinwis, Guy C. M.

    2012-01-01

    DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development. PMID:24213507

  2. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    Energy Technology Data Exchange (ETDEWEB)

    Boerkamp, Kim M., E-mail: K.M.Boerkamp@uu.nl; Rutteman, Gerard R. [Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Kik, Marja J. L. [Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht (Netherlands); Kirpensteijn, Jolle [Department of Clinical Science of Companion Animals, Faculty of Veterinary Medicine, UU, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Schulze, Christoph; Grinwis, Guy C. M. [Department of Pathobiology, Faculty of Veterinary Medicine, UU, Yalelaan 1, 3508 TD, Utrecht (Netherlands)

    2012-12-03

    DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development.

  3. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    Directory of Open Access Journals (Sweden)

    Christoph Schulze

    2012-12-01

    Full Text Available DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development.

  4. Nuclear DNA-Content in Mesenchymal Lesions in Dogs: Its Value as Marker of Malignancy and Extent of Genomic Instability

    International Nuclear Information System (INIS)

    Boerkamp, Kim M.; Rutteman, Gerard R.; Kik, Marja J. L.; Kirpensteijn, Jolle; Schulze, Christoph; Grinwis, Guy C. M.

    2012-01-01

    DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development

  5. Genetic Diversity and Population Structure of a Threatened African Tree Species, Milicia excelsa, Using Nuclear Micro satellites DNA Markers

    International Nuclear Information System (INIS)

    Ouinsavi, Ch.; Sokpon, N.; Ouinsavi, Ch.; Khasa, D.P.

    2009-01-01

    To accurately estimate the genetic diversity and population structure for improved conservation planning of Milicia excelsa tree, 212 individuals from twelve population samples covering the species' range in Benin were surveyed at seven specific micro satellite DNA loci. All loci were variable, with the mean number of alleles per locus ranging from 5.86 to 7.69. Considerable genetic variability was detected for all populations at the seven loci (AR=4.60; HE=0.811). Moderate but statistically significant genetic differentiation was found among populations considering both FST (0.112) and RST (0.342). All of the populations showed heterozygosity deficits in test of Hardy-Weinberg Equilibrium and significantly positive FIS values due to inbreeding occurring in the species. Pairwise FST values were positively and significantly correlated with geographical distances (r=0.432; P=.007, Mantel's test) indicating that populations are differentiated by isolation by distance. Bayesian analysis of population structure showed division of the genetic variation into four clusters revealing the existence of heterogeneity in population genetic structure. Altogether, these results indicate that genetic variation in Milicia excelsa is geographically structured. Information gained from this study also emphasized the need for in situ conservation of the relict populations and establishment of gene flow corridors through agroforestry systems for interconnecting these remnant populations.

  6. Prognostic DNA Methylation Markers for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Siri H. Strand

    2014-09-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed neoplasm and the third most common cause of cancer-related death amongst men in the Western world. PC is a clinically highly heterogeneous disease, and distinction between aggressive and indolent disease is a major challenge for the management of PC. Currently, no biomarkers or prognostic tools are able to accurately predict tumor progression at the time of diagnosis. Thus, improved biomarkers for PC prognosis are urgently needed. This review focuses on the prognostic potential of DNA methylation biomarkers for PC. Epigenetic changes are hallmarks of PC and associated with malignant initiation as well as tumor progression. Moreover, DNA methylation is the most frequently studied epigenetic alteration in PC, and the prognostic potential of DNA methylation markers for PC has been demonstrated in multiple studies. The most promising methylation marker candidates identified so far include PITX2, C1orf114 (CCDC181 and the GABRE~miR-452~miR-224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3. Several other biomarker candidates have also been investigated, but with less stringent clinical validation and/or conflicting evidence regarding their possible prognostic value available at this time. Here, we review the current evidence for the prognostic potential of DNA methylation markers in PC.

  7. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    The efficiency of mitochondrial DNA markers in constructing genetic relationship among Oryx species. ... These data were used to provide the genetic kinship among different Oryx species. The complete cytochrome b gene ... Key words: Conservation, endangered species, Oryx, mitochondrial DNA (mtDNA) markers.

  8. Evidence of Natural Hybridization and Introgression between Vasconcellea Species (Caricaceae) from Southern Ecuador Revealed by Chloroplast, Mitochondrial and Nuclear DNA Markers

    Science.gov (United States)

    VAN DROOGENBROECK, B.; KYNDT, T.; ROMEIJN-PEETERS, E.; VAN THUYNE, W.; GOETGHEBEUR, P.; ROMERO-MOTOCHI, J. P.; GHEYSEN, G.

    2006-01-01

    • Background and Aims Vasconcellea × heilbornii is believed to be of natural hybrid origin between V. cundinamarcensis and V. stipulata, and is often difficult to discriminate from V. stipulata on morphological grounds. The aim of this paper is to examine individuals of these three taxa and of individuals from the closely related species V. parviflora and V. weberbaueri, which all inhabit a hybrid zone in southern Ecuador. • Methods Molecular data from mitochondrial, chloroplast and nuclear DNA from 61 individuals were analysed. • Key Results Molecular analysis confirmed occasional contemporary hybridization between V. stipulata, V. cundinamarcensis and V. × heilbornii and suggested the possible involvement of V. weberbaueri in the origin of V. × heilbornii. In addition, the molecular data indicated unidirectional introgression of the V. cundinamarcensis nuclear genome into that of V. stipulata. Several of the individuals examined with morphology similar to that of V. stipulata had genetic traces of hybridization with V. cundinamarcensis, which only seems to act as pollen donor in interspecific hybridization events. Molecular analyses also strongly suggested that most of the V. × heilbornii individuals are not F1 hybrids but instead are progeny of repeated backcrosses with V. stipulata. • Conclusions The results of the present study point to the need for re-evaluation of natural populations of V. stipulata and V. × heilbornii. In general, this analysis demonstrates the complex patterns of genetic and morphological diversity found in natural plant hybrid zones. PMID:16500954

  9. Utility of γH2AX as a molecular marker of DNA double-strand breaks in nuclear medicine: applications to radionuclide therapy employing auger electron-emitting isotopes.

    Science.gov (United States)

    Mah, Li-Jeen; Orlowski, Christian; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-01-01

    There is an intense interest in the development of radiopharmaceuticals for cancer therapy. In particular, radiopharmaceuticals which involve targeting radionuclides specifically to cancer cells with the use of monoclonal antibodies (radioimmunotherapy) or peptides (targeted radiotherapy) are being widely investigated. For example, the ultra-short range Auger electron-emitting isotopes, which are discussed in this review, are being considered in the context of DNAtargeted radiotherapy. The efficient quantitative evaluation of the levels of damage caused by such potential radiopharmaceuticals is required for assessment of therapeutic efficacy and determination of relevant doses for successful treatment. The DNA double-strand break surrogate marker, γH2AX, has emerged as a useful biomonitor of damage and thus effectiveness of treatment, offering a highly specific and sensitive means of assessment. This review will cover the potential applications of γH2AX in nuclear medicine, in particular radionuclide therapy.

  10. Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers.

    NARCIS (Netherlands)

    Timmermans, M.J.T.N.; Roelofs, D.; Mariën, A.G.H.; van Straalen, N.M.

    2008-01-01

    Background. In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an

  11. Revealing pancrustacean relationships : phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers

    NARCIS (Netherlands)

    Timmermans, M J T N; Roelofs, D; Mariën, J; van Straalen, N M

    2008-01-01

    BACKGROUND: In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an

  12. Prenatal exclusion of Norrie disease with flanking DNA markers.

    Science.gov (United States)

    Gal, A; Uhlhaas, S; Glaser, D; Grimm, T

    1988-10-01

    Three polymorphic DNA markers linked to the locus of Norrie disease were used for indirect genotype analysis in a ten-wk-old fetus at risk for the disease. When haplotypes of the family members and the estimated recombination frequency between Norrie gene and each of the DNA marker loci DXS7, DXS84, and DXS146 were taken into account, the risk that the fetus had inherited the mutation was about 1%.

  13. Influence of DNA isolation from historical otoliths on nuclear-mitochondrial marker amplification and age determination in an overexploited fish, the common sole (Solea solea L.)

    NARCIS (Netherlands)

    Cuveliers, E.L.; Bolle, L.J.; Volckaert, F.A.M.; Maes, G.E.

    2009-01-01

    Historical otolith collections are crucial in assessing the evolutionary consequences of natural and anthropogenic changes on the demography and connectivity of commercially important fish species. Hence, it is important to define optimal protocols for purifying DNA from such valuable information

  14. Application of random amplified polymorphic DNA (RAPD) markers ...

    African Journals Online (AJOL)

    The random amplified polymorphic DNA (RAPD) technique has been widely applied to identify different varieties of plants for molecular breeding. However, application of RAPD markers to identify parthenogenesis in plants has not been reported. In this investigation, we used pedigree and RAPD markers to differentiate ...

  15. Random amplified polymorphic DNA (RAPD) markers reveal genetic ...

    African Journals Online (AJOL)

    The present study evaluated genetic variability of superior bael genotypes collected from different parts of Andaman Islands, India using fruit characters and random amplified polymorphic DNA (RAPD) markers. Genomic DNA extracted from leaf material using cetyl trimethyl ammonium bromide (CTAB) method was ...

  16. Hybridization between three crested newt species (Triturus cristatus superspecies) in the Czech Republic and Slovakia: comparison of nuclear markers and mitochondrial DNA

    Czech Academy of Sciences Publication Activity Database

    Mikulíček, Peter; Horák, Aleš; Zavadil, V.; Kautman, J.; Piálek, Jaroslav

    2012-01-01

    Roč. 61, 3-4 (2012), s. 202-218 ISSN 0139-7893 R&D Projects: GA ČR GA206/01/0695 Institutional support: RVO:68081766 ; RVO:60077344 Keywords : hybrid zone * introgression * mtDNA * microsatellites * RAPD * Salamandridae Subject RIV: EG - Zoology Impact factor: 0.494, year: 2012

  17. Development of stable marker-free nuclear transformation strategy ...

    African Journals Online (AJOL)

    Development of stable marker-free nuclear transformation strategy in the green microalga Chlorella vulgaris. ... into Chlorella by electroporation has very low stability and it is hard to screen the transformants without antibiotic marker genes.

  18. Molecular analysis of aspermic Fasciola flukes from Korea on the basis of the nuclear ITS1 region and mitochondrial DNA markers and comparison with Japanese aspermic Fasciola flukes.

    Science.gov (United States)

    Ichikawa, Madoka; Itagaki, Tadashi

    2012-07-01

    It has been speculated that populations of aspermic Fasciola flukes in Korea and Japan have a close phylogenetic relationship. To evaluate this, we analyzed 33 Korean aspermic Fasciola flukes on the basis of nuclear ribosomal internal transcribed spacer 1 (ITS1) and mitochondrial NADH dehydrogenase subunit 1 (nad1) and cytochrome c oxidase 1 (cox1) sequences. Fh, Fg, and Fh/Fg types were detected in the ITS1 region and displayed the fragment patterns of F. hepatica, F. gigantica, and both species, respectively by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Additionally, three concatenated haplotypes of nad1 and cox1(nad1/cox1) were detected, and 2 of these, Kor1/Kor1 (Fsp1/Fsp1) haplotype and Kor2a/Kor2 (Fsp2/Fsp2) haplotype, were shared by Korean and Japanese aspermic flukes. The Fst value (0.019), calculated using the concatenated sequences, indicated that Korean and Japanese aspermic Fasciola populations were genetically undifferentiated. Interestingly, a combination of the Fh/Fg type and Kor1/Kor1 haplotype was found at the highest frequency in Korean aspermic flukes, whereas the Fg type and Fsp2/Fsp2 haplotype combination was found at a conspicuously high frequency in Japanese aspermic flukes. This indicates that a founder effect caused by the introduction of infected hosts may have played a key role in the introduction of aspermic Fasciola flukes from Korea into Japan.

  19. DNA marker mining of ILSTS035 microsatellite locus on ...

    Indian Academy of Sciences (India)

    Unknown

    We describe tests for detecting and locating quantitative trait loci (QTL) for traits in Hanwoo cattle. From results of a permutation test to detect QTL for marbling, we selected the microsatellite locus ILSTS035 on chromosome 6 for further analysis. K-means clustering analysis applied to five traits and nine DNA markers in ...

  20. Selection Of Drought Resistant Mutants In Rice Using DNA Markers

    International Nuclear Information System (INIS)

    Nguyen Duc Thanh; Le Thi Bich Thuy; Dang Thi Minh Lua

    2008-01-01

    In recent years, the marker - assisted selection (MAS) strategy have been used for selection of traits that are difficult and costly performed measurement and score. Selection for a well-developed root system could improve the drought resistance of rice as the plant would avoid water stress by absorbing water from the soil. There were several reports on map construction and identification of the markers tightly linked to morphological and physiological traits related to drought resistance in rice, in particular, root traits in upland and lowland rice (Champoux et al., 1995; Ray et al., 1996; Price et al., 1997, 2000; Yadav et al., 1997). In this report, we present the results on selection of drought resistance mutants in rice using the DNA markers tightly linked to root traits favorable for drought resistance. The mutant rice lines were obtained from irradiated seeds and calluses by gamma ray. The selection was performed at M2 mutants using the DNA markers linked to maximum root length (MRL), root weight to shoot weight ratio (RW/SR), and weight of deep root to shoot weight ratio (DRW/SR). The obtained results showed that there were many lines possessed drought resistant markers. In addition, there is a number of lines have altered genome. Several lines having drought markers proved to be more resistant to drought in green-house test. These lines could be useful for further test and development of drought resistant varieties. (author)

  1. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae using nuclear rDNA expansion segments and DNA barcodes

    Directory of Open Access Journals (Sweden)

    Raupach Michael J

    2010-09-01

    Full Text Available Abstract Background The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. Results We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97% of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95% of the studied Carabidae. Conclusion Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  2. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes.

    Science.gov (United States)

    Raupach, Michael J; Astrin, Jonas J; Hannig, Karsten; Peters, Marcell K; Stoeckle, Mark Y; Wägele, Johann-Wolfgang

    2010-09-13

    The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae. Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  3. Diagnostic markers of urothelial cancer based on DNA methylation analysis

    International Nuclear Information System (INIS)

    Chihara, Yoshitomo; Hirao, Yoshihiko; Kanai, Yae; Fujimoto, Hiroyuki; Sugano, Kokichi; Kawashima, Kiyotaka; Liang, Gangning; Jones, Peter A; Fujimoto, Kiyohide; Kuniyasu, Hiroki

    2013-01-01

    Early detection and risk assessment are crucial for treating urothelial cancer (UC), which is characterized by a high recurrence rate, and necessitates frequent and invasive monitoring. We aimed to establish diagnostic markers for UC based on DNA methylation. In this multi-center study, three independent sample sets were prepared. First, DNA methylation levels at CpG loci were measured in the training sets (tumor samples from 91 UC patients, corresponding normal-appearing tissue from these patients, and 12 normal tissues from age-matched bladder cancer-free patients) using the Illumina Golden Gate methylation assay to identify differentially methylated loci. Next, these methylated loci were validated by quantitative DNA methylation by pyrosequencing, using another cohort of tissue samples (Tissue validation set). Lastly, methylation of these markers was analyzed in the independent urine samples (Urine validation set). ROC analysis was performed to evaluate the diagnostic accuracy of these 12 selected markers. Of the 1303 CpG sites, 158 were hyper ethylated and 356 were hypo ethylated in tumor tissues compared to normal tissues. In the panel analysis, 12 loci showed remarkable alterations between tumor and normal samples, with 94.3% sensitivity and 97.8% specificity. Similarly, corresponding normal tissue could be distinguished from normal tissues with 76.0% sensitivity and 100% specificity. Furthermore, the diagnostic accuracy for UC of these markers determined in urine samples was high, with 100% sensitivity and 100% specificity. Based on these preliminary findings, diagnostic markers based on differential DNA methylation at specific loci can be useful for non-invasive and reliable detection of UC and epigenetic field defect

  4. Statistics of DNA Markers - RGP gmap | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us RGP gmap Statistics of DNA Markers Data detail Data name Statistics of DNA Markers DOI 10.18...908/lsdba.nbdc00318-01-001 Description of data contents Statistics of DNA markers that were used to create t...iption Download License Update History of This Database Site Policy | Contact Us Statistics of DNA Markers - RGP gmap | LSDB Archive ...

  5. DNA Fingerprinting of Olive Varieties by Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Dunja Bandelj

    2002-01-01

    Full Text Available Microsatellites combine several features of an ultimate molecular marker and they are used increasingly in various plant genetic studies and applications. In this work we report on the utilisation of fourteen previously developed olive microsatellite markers for the identification and differentiation of a set of nineteen olive varieties. All analysed microsatellite markers revealed a high level of polymorphism that allowed unique genotyping of the examined varieties. Ninety-six alleles were detected at all 14 loci, which multiplied into a large number of observed genotypes, giving high discrimination value for varietal identification. A minimum number of three microsatellite markers was chosen for the rapid and unambiguous varietal identification of nineteen olive varieties and only two markers were sufficient for differentiation of five local varieties. DNA fingerprints of olive cultivars by means of microsatellites provided meaningful data, which can be extended by additional olive varieties or new microsatellites and used for accurate inter-laboratory comparison. The data obtained can be used for the varietal survey and construction of a database of all olive varieties grown in Slovenia providing also additional genetic information on the agronomic and quality characteristics of the olive varieties.

  6. Image cytometry: nuclear and chromosomal DNA quantification.

    Science.gov (United States)

    Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo; Abreu, Isabella Santiago

    2011-01-01

    Image cytometry (ICM) associates microscopy, digital image and software technologies, and has been particularly useful in spatial and densitometric cytological analyses, such as DNA ploidy and DNA content measurements. Basically, ICM integrates methodologies of optical microscopy calibration, standard density filters, digital CCD camera, and image analysis softwares for quantitative applications. Apart from all system calibration and setup, cytological protocols must provide good slide preparations for efficient and reliable ICM analysis. In this chapter, procedures for ICM applications employed in our laboratory are described. Protocols shown here for human DNA ploidy determination and quantification of nuclear and chromosomal DNA content in plants could be used as described, or adapted for other studies.

  7. Development, distribution and application of DNA markers for cereal research

    International Nuclear Information System (INIS)

    Qi, X.; Stephenson, P.; Devos, K.M.; Gale, M.D.

    2001-01-01

    DNA probes and primers are important resources for molecular genetic research and molecular breeding. Presently, more than 2500 wheat probes, 400 barley probes, 800 foxtail, pearl millet and finger millet probes, and approximately 150 wheat microsatellite (SSR) primer pairs have been developed and maintained in our DNA Resource Centre at the John Innes Centre (JIC). To accelerate probe and primer distribution, an 'anchor set' and a 'supplementary anchor set', containing 73 and 31 wheat RFLP probes, respectively, and a standard set of 42 primer pairs for wheat SSR markers were selected. Similarly, a set of 52 pearl millet probes has been selected for distribution. More than 8000 wheat RFLP probes, 2000 wheat SSR primer pairs, 700 millet probes and 200 barley probes have been distributed to more than 250 research groups in 40 countries. Our wheat and millet probes and other grass cDNA probes have been used for comparative genetic studies. The revealed conservation of gene content and gene order has been used to construct maps of many grass species and to predict the locations of key genes from one crop species to another. Developed SSR and AFLP markers in wheat, barley and millet are particularly suited for genetic diversity analyses and map construction. (author)

  8. Application of DNA markers against illegal logging as a new tool for the Forest Guard Service

    OpenAIRE

    Nowakowska, Justyna A.

    2011-01-01

    DNA markers are currently the most precise tool for forest tree species identification and can be used for comparative analyses of plant material. Molecular diagnosis of evidence and reference material is based on comparing the structure of DNA markers duplicated in the PCR reaction and estimation of the DNA profiles obtained in studied wood samples. For this purpose, the microsatellite DNA markers are the most suitable tool because of their high polymorphism and accurate detection of structu...

  9. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas

    KAUST Repository

    Díaz-Arce, Natalia

    2016-06-07

    Although species from the genus Thunnus include some of the most commercially important and most severely overexploited fishes, the phylogeny of this genus is still unresolved, hampering evolutionary and traceability studies that could help improve conservation and management strategies for these species. Previous attempts based on mitochondrial and nuclear markers were unsuccessful in inferring a congruent and reliable phylogeny, probably due to mitochondrial introgression events and lack of enough phylogenetically informative markers. Here we infer the first genome-wide nuclear marker-based phylogeny of tunas using restriction site associated DNA sequencing (RAD-seq) data. Our results, derived from phylogenomic inferences obtained from 128 nucleotide matrices constructed using alternative data assembly procedures, support a single Thunnus evolutionary history that challenges previous assumptions based on morphological and molecular data.

  10. DNA markers provide insight about common lime in historicalplantings

    DEFF Research Database (Denmark)

    Hansen, Ole Kim; Thomsen, Pernille; Rasmussen, Christine Waage

    2014-01-01

    As part of the restoration process of an avenue of common lime (Tilia × europaea) from 1760 in the Royal Danish Gardens, all remaining trees were genotyped with DNA markers before they were felled. As such, information about the nature of the plant material (clonal versus non-clonal) and mode...... of propagation was obtained, revealing that a single clone constituted 92% of the remaining trees (106 out of 115). Five trees were of another clone, while the remaining four trees had unique genotypes. Mode of clonal propagation was most likely layering since the genotype of the crown and the roots...... of a subsample of the trees had the same genotype. Trees from four other locations with historical avenues/plantings from the 17th century were also genotyped. The two clones registered in the first location were also found at the other four locations. Of 76 trees from the other historical avenues...

  11. IMPLEMENTATION OF DNA MARKERS TO IMPROVE BREEDING OF FORAGE LEGUMES

    Directory of Open Access Journals (Sweden)

    S. Grljušić

    2008-09-01

    Full Text Available The low rates of estimated genetic gains in forage legumes breeding have emphasized the need for new breeding methods that would increase efficiency in forage selection and provide reliable improvement. Information on application of molecular methodologies and tools for the enhancement of the current empirical phenotype-based selection moved us toward implementation of DNA markers to our breeding activities. Firstly, attention was given to identification of genetic variability within the forage species involved in program and comparison of conventional and molecular marker efficiency in variability evaluation. RAPDs were used (i to estimate availability of alfalfa (Medicago sativa L. and Medicago falcata L. genetic variation and (ii to identify changes of red clover (Trifolium pratense L. variability after natural selection. SSRs were applied to evaluate diversity within and among field pea (Pisum sativum L. var. arvense and sativum groups/varieties. A total of 90 (alfalfa or 92 (red clover polymorphic bands was found by RAPDs. Total number of SSR alleles recorded was 118. The average Roger's distance per species/genus estimated was 0.29 (red clover, 0.33 (alfalfa and 0.51 (field pea. 2D PCo analysis of each species/genus separated materials into respective groups. A high degree of genetic variation within populations/varieties of each investigated species was found by AMOVA. The correspondence between pairs of matrices based on the morphological and molecular data was significant (p=0.95 only for red clover. RAPD and SSR data have given valuable information on genetic structure of materials and provided a description that determines heterogeneity. Further studies will be focused on identifying quantitative trait loci and marker assisted selection.

  12. Mitochondrial and Nuclear DNA in Patients with Severe Polytrauma

    Directory of Open Access Journals (Sweden)

    M. Sh Khubutia

    2013-01-01

    Full Text Available The components of mitochondria from the cells damaged by injury are a key component for the development of systemic inflammatory response syndrome (SIRS under aseptic conditions. At the same time, there is a significant increase in the plasma level of mitochondrial DNA (mtDNA, which may be a prognostic marker for infectious complications in patients with severe polytrauma. Objective: to study the time course of changes in the serum levels of mtDNA and nuclear DNA (nDNA in healthy individuals and patients with polytrauma and to reveal its possible association with the development of infectious pulmonary complications and with mortality. Subjects and methods. Seven healthy volunteers and 25 polytrauma with polytrauma of a mean injury severity score (ISS of 40.2±9.2. Sixteen (64% patients developed purulent tracheobronchitis and pneumonia; 5 (20% patients died. The amount of mtDNA and nDNA was determined within the first at 12 and 24 hours, then on days 3 and 5—7 after injury by the authors’ modified procedure using as the exogenous control of a circular DNA molecule. The content of mtDNA and nDNA was expressed as absolute values, by taking the arithmetic mean values as 100% for the volunteers. Results. There was a more than 2.5-fold increase in mtDNA levels in dead patients as compared to survivors (p<0.05; the differences in nDMA levels were insignificant (p=0.1. Within the first 12 hours, the mean mtDNA level in patients with pneumonia was 34 times greater than the reference values and continued to rise in the following 12 hours whereas in those without pneumonia, it was only 17 times higher with its further decrease in the comparable time periods. In the first 12 hours, nDNA was increased in both groups, but 24 hours after injury it was 2555 times more than the reference value only in patients with pneumonia whereas it was decreased 3-fold in those without this condition. Conclusion. This paper is the first to describe the time course of

  13. Development of novel low-copy nuclear markers for Hieraciinae (Asteraceae) and their perspective for other tribes.

    Science.gov (United States)

    Krak, Karol; Alvarez, Inés; Caklová, Petra; Costa, Andrea; Chrtek, Jindrich; Fehrer, Judith

    2012-02-01

    The development of three low-copy nuclear markers for low taxonomic level phylogenies in Asteraceae with emphasis on the subtribe Hieraciinae is reported. Marker candidates were selected by comparing a Lactuca complementary DNA (cDNA) library with public DNA sequence databases. Interspecific variation and phylogenetic signal of the selected genes were investigated for diploid taxa from the subtribe Hieraciinae and compared to a reference phylogeny. Their ability to cross-amplify was assessed for other Asteraceae tribes. All three markers had higher variation (2.1-4.5 times) than the internal transcribed spacer (ITS) in Hieraciinae. Cross-amplification was successful in at least seven other tribes of the Asteraceae. Only three cases indicating the presence of paralogs or pseudogenes were detected. The results demonstrate the potential of these markers for phylogeny reconstruction in the Hieraciinae as well as in other Asteraceae tribes, especially for very closely related species.

  14. Interspecific introgression in cetaceans: DNA markers reveal post-F1 status of a pilot whale.

    Directory of Open Access Journals (Sweden)

    Laura Miralles

    Full Text Available Visual species identification of cetacean strandings is difficult, especially when dead specimens are degraded and/or species are morphologically similar. The two recognised pilot whale species (Globicephala melas and Globicephala macrorhynchus are sympatric in the North Atlantic Ocean. These species are very similar in external appearance and their morphometric characteristics partially overlap; thus visual identification is not always reliable. Genetic species identification ensures correct identification of specimens. Here we have employed one mitochondrial (D-Loop region and eight nuclear loci (microsatellites as genetic markers to identify six stranded pilot whales found in Galicia (Northwest Spain, one of them of ambiguous phenotype. DNA analyses yielded positive amplification of all loci and enabled species identification. Nuclear microsatellite DNA genotypes revealed mixed ancestry for one individual, identified as a post-F1 interspecific hybrid employing two different Bayesian methods. From the mitochondrial sequence the maternal species was Globicephala melas. This is the first hybrid documented between Globicephala melas and G. macrorhynchus, and the first post-F1 hybrid genetically identified between cetaceans, revealing interspecific genetic introgression in marine mammals. We propose to add nuclear loci to genetic databases for cetacean species identification in order to detect hybrid individuals.

  15. Nuclear medicine markers of tumor oxygenation and radioresistance

    International Nuclear Information System (INIS)

    Chapman, J. Donald; Schneider, R.H.; Stobbe, C.C.; Kim, E.; Engelhardt, E.L.; Coia, L.

    1996-01-01

    Purpose/Objective: The objective of this research project was to synthesize, purify, radiolabel and characterize second-generation nuclear medicine markers of tissue oxygenation with properties superior to iodoazomycin arabinoside (IAZA) and to validate the hypoxia-marking activity of optimal compounds by independent measurements of tumor oxygenation and tumor radioresistance. Materials and Methods: Six hypoxic markers of the iodoazomycin nucleoside class with water solubilities greater than IAZA were synthesized by published procedures. The markers were purified, chemically characterized and labeled with Iodine-125 or Iodine-131. Absolute rates of marker ligation to the macromolecules of hypoxic EMT-6 tumor cells in vitro were determined as a function of marker concentration and used to establish relative marker effectiveness. Hypoxic marking activity in tumors was determined from tumor/blood (T/B) and tumor/muscle (T/M) ratios of radiolabelled marker in EMT-6 tumor-bearing C.B17/Icr scid mice. The optimal marker was administered to R3327-H and R3327-AT tumor-bearing Fischer X Copenhagen rats for estimates of tumor oxygenation by T/B and T/M ratios. Oxygen distributions in the same tumors were obtained with the Eppendorf pO 2 Histograph. The radioresistance of individual tumors was determined from in vitro plating efficiencies of cells released from tumors which had been irradiated in vivo with 20 Gy Cs-137 γ-rays. Results: Of the six iodinated azomycin nucleosides investigated, five were novel markers and all had water solubilities higher than IAZA. Iodinated azomycin xylopyranoside (β-D-IAZXP) was selected as the optimal marker of this class since it 1) exhibited the highest absolute rate of ligation to hypoxic tumor cells in vitro, 2) had the fastest plasma clearance rate in tumor-bearing mice and 3) yielded high T/B ratios in both the mouse and rat tumor models employed in this study. Planar nuclear medicine images of (I-131) β-D-IAZXP in tumor-bearing rats

  16. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  17. Development of cost-effective Hordeum chilense DNA markers: molecular aids for marker-assisted cereal breeding.

    Science.gov (United States)

    Hernández, P; Dorado, G; Ramírez, M C; Laurie, D A; Snape, J W; Martín, A

    2003-01-01

    Hordeum chilense is a potential source of useful genes for wheat breeding. The use of this wild species to increase genetic variation in wheat will be greatly facilitated by marker-assisted introgression. In recent years, the search for the most suitable DNA marker system for tagging H. chilense genomic regions in a wheat background has lead to the development of RAPD and SCAR markers for this species. RAPDs represent an easy way of quickly generating suitable introgression markers, but their use is limited in heterogeneous wheat genetic backgrounds. SCARs are more specific assays, suitable for automatation or multiplexing. Direct sequencing of RAPD products is a cost-effective approach that reduces labour and costs for SCAR development. The use of SSR and STS primers originally developed for wheat and barley are additional sources of genetic markers. Practical applications of the different marker approaches for obtaining derived introgression products are described.

  18. Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers

    Directory of Open Access Journals (Sweden)

    MEMEN SURAHMAN

    2010-07-01

    Full Text Available Abbas B, Renwarin Y, Bintoro MH, Sudarsono, Surahman M, Ehara H (2010 Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA markers. Biodiversitas 11: 112-117. Sago palm (Metroxylon sagu Rottb. was believed capable to accumulate high carbohydrate content in its trunk. The capability of sago palm producing high carbohydrate should be an appropriate criterion for defining alternative crops in anticipating food crisis. The objective of this research was to study genetic diversity of sago palm in Indonesia based on cpDNA markers. Total genome extraction was done following the Qiagen DNA isolation protocols 2003. Single Nucleotide Fragments (SNF analyses were performed by using ABI Prism GeneScanR 3.7. SNF analyses detected polymorphism revealing eleven alleles and ten haplotypes from total 97 individual samples of sago palm. Specific haplotypes were found in the population from Papua, Sulawesi, and Kalimantan. Therefore, the three islands will be considered as origin of sago palm diversities in Indonesia. The highest haplotype numbers and the highest specific haplotypes were found in the population from Papua suggesting this islands as the centre and the origin of sago palm diversities in Indonesia. The research had however no sufficient data yet to conclude the Papua origin of sago palm. Genetic hierarchies and differentiations of sago palm samples were observed significantly different within populations (P=0.04574, among populations (P=0.04772, and among populations within the island (P=0.03366, but among islands no significant differentiations were observed (P= 0.63069.

  19. DNA damage-induced inflammation and nuclear architecture.

    Science.gov (United States)

    Stratigi, Kalliopi; Chatzidoukaki, Ourania; Garinis, George A

    2017-07-01

    Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Tagging of blast resistance gene(s) to DNA markers and marker-assisted selection (MAS) in rice improvement

    International Nuclear Information System (INIS)

    Zhuang, J.Y.; Lu, J.; Qian, H.R.; Lin, H.X.; Zheng, K.L.

    1998-01-01

    This paper reports progress made on the tagging of blast resistance gene(s) to DNA markers and on the initiation of marker-assisted selection (MAS) for blast resistance in rice improvement. A pair of near isogenic lines, K8OR and K79S, were developed using a Chinese landrace Hong-jiao-zhan as the resistance donor. Ten putatively positive markers were identified by screening 177 mapped DNA markers. Using the F 2 population of 143 plants and the derived F 3 lines, three Restriction Fragment Length Polymorphism (RFLP) markers (RG81, RG869 and RZ397) on chromosome 12 of rice were identified to be closely linked to the blast resistance gene Pi-12(t). The genetic distance between Pi-12(t) and the closest marker RG869 was 5.1 cM. By employing the bulk segregant analysis (BSA) procedure, six of 199 arbitrary primers were found to produce positive Randomly Amplified Polymorphic DNA (RAPD) bands. Tight linkage between Pi-12(t) and three RAPD bands, each from a different primer, was confirmed after amplification of DNA of all F 2 individuals. Two fragments were cloned and sequenced, and two sequence characterised amplified re-ion (SCAR) markers were established. In two other F 3 populations, Xian-feng I/Tetep and Xian-feng, 1/Hong-jiao-zhan, the blast resistance was found to be controlled by interactions of two or more genes. One resistance gene was located in the vicinity of RG81 in both populations. Work to identify other gene(s) is currently under way. Marker assisted selection for blast resistance was initiated. Crosses were made between elite varieties and blast resistance donors to develop populations for DNA marker-assisted selection of blast resistance. In addition, 48 varieties widely used in current rice breeding programs were provided by rice breeders. DNA marker-based polymorphism among, these varieties and resistance donors were analysed to produce a database for future MAS program. (author)

  1. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina).

    Science.gov (United States)

    Dentinger, Bryn T M; Didukh, Maryna Y; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.

  2. Circulating, cell-free DNA as a marker for exercise load in intermittent sports

    OpenAIRE

    Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles

    2018-01-01

    Background Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of ...

  3. A set of 14 DIP-SNP markers to detect unbalanced DNA mixtures.

    Science.gov (United States)

    Liu, Zhizhen; Liu, Jinding; Wang, Jiaqi; Chen, Deqing; Liu, Zidong; Shi, Jie; Li, Zeqin; Li, Wenyan; Zhang, Gengqian; Du, Bing

    2018-03-04

    Unbalanced DNA mixture is still a difficult problem for forensic practice. DIP-STRs are useful markers for detection of minor DNA but they are not widespread in the human genome and having long amplicons. In this study, we proposed a novel type of genetic marker, termed DIP-SNP. DIP-SNP refers to the combination of INDEL and SNP in less than 300bp length of human genome. The multiplex PCR and SNaPshot assay were established for 14 DIP-SNP markers in a Chinese Han population from Shanxi, China. This novel compound marker allows detection of the minor DNA contributor with sensitivity from 1:50 to 1:1000 in a DNA mixture of any gender with 1 ng-10 ng DNA template. Most of the DIP-SNP markers had a relatively high probability of informative alleles with an average I value of 0.33. In all, we proposed DIP-SNP as a novel kind of genetic marker for detection of minor contributor from unbalanced DNA mixture and established the detection method by associating the multiplex PCR and SNaPshot assay. DIP-SNP polymorphisms are promising markers for forensic or clinical mixture examination because they are shorter, widespread and higher sensitive. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Impact of deep coalescence on the reliability of species tree inference from different types of DNA markers in mammals.

    Directory of Open Access Journals (Sweden)

    Alejandro Sánchez-Gracia

    Full Text Available An important challenge for phylogenetic studies of closely related species is the existence of deep coalescence and gene tree heterogeneity. However, their effects can vary between species and they are often neglected in phylogenetic analyses. In addition, a practical problem in the reconstruction of shallow phylogenies is to determine the most efficient set of DNA markers for a reliable estimation. To address these questions, we conducted a multilocus simulation study using empirical values of nucleotide diversity and substitution rates obtained from a wide range of mammals and evaluated the performance of both gene tree and species tree approaches to recover the known speciation times and topological relationships. We first show that deep coalescence can be a serious problem, more than usually assumed, for the estimation of speciation times in mammals using traditional gene trees. Furthermore, we tested the performance of different sets of DNA markers in the determination of species trees using a coalescent approach. Although the best estimates of speciation times were obtained, as expected, with the use of an increasing number of nuclear loci, our results show that similar estimations can be obtained with a much lower number of genes and the incorporation of a mitochondrial marker, with its high information content. Thus, the use of the combined information of both nuclear and mitochondrial markers in a species tree framework is the most efficient option to estimate recent speciation times and, consequently, the underlying species tree.

  5. Validation and use of DNA markers for sex determination in papaya (Carica papaya)

    International Nuclear Information System (INIS)

    Ejaz, M.; Iqbal, M.; Ahmed, I.

    2015-01-01

    Profitable papaya production requires female and hermaphrodite plants in higher number than male plants. This is only possible if sex of plants is determined at an early growth stage. The present study was conducted to validate sex-linked DNA markers using plants from two Pakistani papaya varieties and subsequently utilize them for determination of sex in juvenile papaya plants. One hundred and five plants (including 49 male and 56 female) of two Pakistani Papaya varieties at flowering stage were screened with six DNA markers viz., W-11, T12, SDP, Napf-76Napf-76, PKBT4 and PKBT5. All male plants exhibited amplification of sex-linked alleles with markers T12 and W11, whereas, 96% and 95% of female plants showed the absence of sex-linked allele with these markers, respectively. Markers SDP, PKBT5 and Napf-76 showed the presence of sex-linked alleles in 98%, 96% and 93% of male plants, respectively, whereas the same markers showed the absence of sex-linked alleles in 100%, 96% and 94% of female plants. One marker, PKBT4 could not produce expected PCR amplification reported previously. The five DNA markers were further used to screen 171 papaya seedlings. These markers clearly differentiated male and female sex types in the studied papaya plants. Results of our study are likely to facilitate Pakistani papaya breeders and growers to incorporate DNA based screening at juvenile stage to determine sex at early stage and to ensure profitable papaya production. (author)

  6. Development and characterization of 79 nuclear markers amplifying in viviparous and oviparous clades of the European common lizard.

    Science.gov (United States)

    Horreo, J L; Peláez, M L; Suárez, T; Fitze, P S

    2018-02-01

    The European common lizard (Zootoca vivipara) is a widely distributed species across Europe and Asia exhibiting two reproductive modes (oviparity/viviparity), six major lineages and several sublineages. It has been used to tackle a large variety of research questions, nevertheless, few nuclear DNA sequence markers have been developed for this species. Here we developed 79 new nuclear DNA sequence markers using a clonation protocol. These markers were amplified in several oviparous and viviparous specimens including samples of all extant clades, to test the amplification success and their diversity. 49.4% of the markers were polymorphic and of those, 51.3% amplified in all and 94.9% amplified in 5-7 of the extant Z. vivipara clades. These new markers will be very useful for the study of the population structure, population dynamics, and micro/macro evolution of Z. vivipara. Cross-species amplification in four lizard species (Psammodromus edwardsianus, Podarcis muralis, Lacerta bilineata, and Takydromus sexlineatus) was positive in several of the markers, and six makers amplified in all five species. The large genetic distance between P. edwardsianus and Z. vivipara further suggests that these markers may as well be employed in many other species.

  7. Molecular Identification of Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) Markers.

    Science.gov (United States)

    Al-Khalifah, Nasser S; Shanavaskhan, A E

    2017-01-01

    Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.

  8. DNA Fingerprinting Eastern Redbud Cultivars (Cercis canadensis) Using SSR Markers

    Science.gov (United States)

    In this study we present data for a subset of SSR loci, 76 out of the 130 high-quality loci, which were selected out of hundreds of SSR loci identified from a SSR-enriched library. SSR markers are abundant in eukaryotic genomes and are highly reproducible. Previously, we have used SSR markers to e...

  9. An environmental DNA marker for detecting nonnative brown trout (Salmo trutta)

    Science.gov (United States)

    K. J. Carim; T. M. Wilcox; M. Anderson; D. Lawrence; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    Brown trout (Salmo trutta) are widely introduced in western North America where their presence has led to declines of several native species. To assist conservation efforts aimed at early detection and eradication of this species, we developed a quantitative PCR marker to detect the presence of brown trout DNA in environmental samples. The marker strongly...

  10. The use of DNA markers for rapid improvement of crops in Africa ...

    African Journals Online (AJOL)

    Genetic engineering and biotechnology are providing new tools for genetic improvement of food crops. Molecular DNA markers are some of these tools which can be used in various fields of plant breeding and germplasm management. For example, molecular markers have been used to confirm the identity of hybrids in ...

  11. Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples.

    Science.gov (United States)

    Westen, Antoinette A; Matai, Anuska S; Laros, Jeroen F J; Meiland, Hugo C; Jasper, Mandy; de Leeuw, Wiljo J F; de Knijff, Peter; Sijen, Titia

    2009-09-01

    For the analysis of degraded DNA in disaster victim identification (DVI) and criminal investigations, single nucleotide polymorphisms (SNPs) have been recognized as promising markers mainly because they can be analyzed in short sized amplicons. Most SNPs are bi-allelic and are thereby ineffective to detect mixtures, which may lead to incorrect genotyping. We developed an algorithm to find non-binary (i.e. tri-allelic or tetra-allelic) SNPs in the NCBI dbSNP database. We selected 31 potential tri-allelic SNPs with a minor allele frequency of at least 10%. The tri-allelic nature was confirmed for 15 SNPs residing on 14 different chromosomes. Multiplex SNaPshot assays were developed, and the allele frequencies of 16 SNPs were determined among 153 Dutch and 111 Netherlands Antilles reference samples. Using these multiplex SNP assays, the presence of a mixture of two DNA samples in a ratio up to 1:8 could be recognized reliably. Furthermore, we compared the genotyping efficiency of the tri-allelic SNP markers and short tandem repeat (STR) markers by analyzing artificially degraded DNA and DNA from 30 approximately 500-year-old bone and molar samples. In both types of degraded DNA samples, the larger sized STR amplicons failed to amplify whereas the tri-allelic SNP markers still provided valuable information. In conclusion, tri-allelic SNP markers are suited for the analysis of degraded DNA and enable the detection of a second DNA source in a sample.

  12. Identification of body fluid-specific DNA methylation markers for use in forensic science.

    Science.gov (United States)

    Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung

    2014-11-01

    DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Epigenetic markers in circulating cell-free DNA as prognostic markers for survival of castration-resistant prostate cancer patients.

    Science.gov (United States)

    Hendriks, Rianne J; Dijkstra, Siebren; Smit, Frank P; Vandersmissen, Johan; Van de Voorde, Hendrik; Mulders, Peter F A; van Oort, Inge M; Van Criekinge, Wim; Schalken, Jack A

    2018-04-01

    Noninvasive biomarkers to guide personalized treatment for castration-resistant prostate cancer (CRPC) are needed. In this study, we analyzed hypermethylation patterns of two genes (GSTP1 and APC) in plasma cell-free DNA (cfDNA) of CRPC patients. The aim of this study was to analyze the cfDNA concentrations and levels of the epigenetic markers and to assess the value of these biomarkers for prognosis. In this prospective study, patients were included before starting new treatment after developing CRPC. The blood samples were collected prior to start of the treatment and at three time points thereafter. cfDNA was extracted from 1.5 mL of plasma and before performing a methylation-specific PCR, bisulfate modification was carried out. The median levels of cfDNA, GSTP1, and APC copies in the baseline samples of CRPC patients (n = 47) were higher than in controls (n = 30). In the survival analysis, the group with baseline marker levels below median had significant less PCa-related deaths (P-values Prostate Published by Wiley Periodicals, Inc.

  14. DNA methylome profiling of maternal peripheral blood and placentas reveal potential fetal DNA markers for non-invasive prenatal testing.

    Science.gov (United States)

    Xiang, Yuqian; Zhang, Junyu; Li, Qiaoli; Zhou, Xinyao; Wang, Teng; Xu, Mingqing; Xia, Shihui; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi

    2014-09-01

    Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Microsatellite DNA as shared genetic markers among conifer species

    Science.gov (United States)

    Craig S. Echt; G.G. Vendramin; C.D. Nelson; P. Marquardt

    1999-01-01

    Polymerase chain reaction (PCR) primer pairs for 21 simple sequence repeat (SSR) loci in Pinus strobus L. and 6 in Pinus radiata D. Don. were evaluated to determine whether SSR marker amplification could be achieved in 10 other conifer species. Eighty percent of SSR primer pairs for (AC)n loci that were polymorphic in P. ...

  16. Development of DNA marker for Fusarium resistance in Pisang Berangan

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Mohd Nazir Basiran; Rosmawati Shaharuddin

    2000-01-01

    Fusarium wilt (Panama disease), a disease caused by a soil-bome fungus Fusarium oxysporum f. sp. cubense, is regarded as one of the most significant threats to banana (Musa spp.) production worldwide. In Malaysia, it is affecting the Cavendish as well as Pisang Berangan which are widely planted for export as well as for local consumption. Pisang Berangan mutant line (MB96) which was obtained through induced mutation by gamma irradiation has showed certain degree of tolerance towards the disease. Attempts were made to utilise Polymerase Chain Reaction (PCR) based techniques i.e. RAPD (Random Amplified Polymorphic DNA) to screen for unique DNA sequences that are associated or closely linked to these tolerance characteristics. Four single 1 Obp primers and five duplex 1 Obp primers combinations were used to detect polymorphism between the DNA of control and 4 mutant lines micropropagated from MB96. As further control, DNA of Pisang Mas was included. Duplex arbitrary primer combinations 11-89 and single primer OPA-3 have produced DNA fragments that are polymorphic between cultivar, Pisang Berangan and Pisang Mas. However the RAPD analysis failed to show any polymorphism between the control and the mutant lines or in between the mutant lines

  17. DNA-nuclear matrix interactions and ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Vaughan, A.T.M.

    1993-01-01

    The association between inherent ionizing radiation sensitivity and DNA supercoil unwinding in mammalian cells suggests that the organization of the DNA in chromosomes plays an important role in radiation responses. In this paper, a model is proposed which suggests that these DNA unwinding alterations reflect differences in the attachment of DNA to the nuclear matrix. In radioresistant cells, the MAR structure might exist in a more stable, open configuration, limiting DNA unwinding following strand break induction and influencing the rate and nature of DNA double-strand break rejoining

  18. A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.

    Science.gov (United States)

    Bucci, John P; Shattuck, Michelle D; Aytur, Semra A; Carey, Richard; McDowell, William H

    2017-08-01

    Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.

  19. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA......, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M...

  20. Development of identification process for insect group using radiation marker DNA

    International Nuclear Information System (INIS)

    Muraji, M.; Tamura, T.

    2004-01-01

    Detection of a band pattern for insect groups was tried by using radiation marked DNA clone. A rapid segregation process for poly-type DNA segment was investigated. A band pattern of silkworm was detected by analysis using DNA type transposon, K1.4. The exon regions on genes of hemiptera insect were segregated by in vitro cloning. Band patterns of the silkworm and the other insects were detected by identification process of DNA clone and radiation marker. Family singularity mutation existed in the inserted position of transposon. The family of insect was identified easily by the difference of the detection band patterns. Effective band pattern for family discrimination were obtained by analysis for a part of mitochondria DNA and ribosomal DNA. DNA segregation process was investigated by using the enriched library, also. (M. Suetake)

  1. Genetic variation and DNA markers in forensic analysis

    African Journals Online (AJOL)

    SAM

    2014-07-30

    Jul 30, 2014 ... Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License. 4.0 International ... (mtDNA) is today a routine method of analysis of biological ... A promising approach in this context seems to be .... 1985; Armour et al., 1996). ...... management.

  2. DNA marker characterization for allele mining of blast and bacterial ...

    African Journals Online (AJOL)

    admiistrator

    2013-05-01

    May 1, 2013 ... very useful for the analysis and detection of QTLs (Sabouri et al., 2011). ... Rice blast disease caused by the fungus Magnaporthae grisea (Ou ... The DNA was quantified at 260 nm wavelength using a UV spectro- photometer ...

  3. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    Administrator

    2011-05-30

    May 30, 2011 ... To date, only parts of mitochondrial DNA from cytochrome b, 12S rRNA, 16S rRNA and non-coding D- loop had been sequenced for different species of Oryx. Discrepancy in the genetic relationship among. Oryx species was previously revealed when combinations of these sequences were analyzed. In the.

  4. SSR marker based DNA fingerprinting and diversity study in rice ...

    African Journals Online (AJOL)

    The genetic diversity and DNA fingerprinting of 15 elite rice genotypes using 30 SSR primers on chromosome numbers 7-12 was investigated. The results revealed that all the primers showed distinct polymorphism among the cultivars studied indicating the robust nature of microsatellites in revealing polymorphism. Cluster ...

  5. Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells

    International Nuclear Information System (INIS)

    Akimoto, Miho; Niikura, Mamoru; Ichikawa, Masami; Yonekawa, Hiromichi; Nakada, Kazuto; Honma, Yoshio; Hayashi, Jun-Ichi

    2005-01-01

    Recent studies showed high frequencies of homoplasmic mtDNA mutations in various human tumor types, suggesting that the mutated mtDNA haplotypes somehow contribute to expression of tumor phenotypes. We directly addressed this issue by isolating mouse mtDNA-less (ρ 0 ) cells for complete mtDNA replacement between normal cells and their carcinogen-induced transformants, and examined the effect of the mtDNA replacement on expression of tumorigenicity, a phenotype forming tumors in nude mice. The results showed that genome chimera cells carrying nuclear DNA from tumor cells and mtDNA from normal cells expressed tumorigenicity, whereas those carrying nuclear DNA from normal cells and mtDNA from tumor cells did not. These observations provided direct evidence that nuclear DNA, but not mtDNA, is responsible for carcinogen-induced malignant transformation, although it remains possible that mtDNA mutations and resultant respiration defects may influence the degree of malignancy, such as invasive or metastatic properties

  6. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J

    2016-01-01

    The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership...... markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age...

  7. Salivary DNA and markers of oxidative stress in patients with chronic periodontitis.

    Science.gov (United States)

    Baňasová, Lenka; Kamodyová, Natália; Janšáková, Katarína; Tóthová, Ľubomíra; Stanko, Peter; Turňa, Ján; Celec, Peter

    2015-03-01

    Previous observational studies have shown that periodontal status is associated with salivary markers of oxidative damage. A direct comparison of periodontitis patients and controls using a wide palette of salivary markers of oxidative stress is lacking. Characteristics of salivary DNA in periodontitis are unknown. The aim of this study was to compare the salivary markers of oxidative stress and characteristics of salivary DNA between patients with chronic periodontitis and periodontitis-free controls. Saliva was collected from 23 patients with chronic periodontitis and 19 periodontitis-free controls. All participants underwent a clinical periodontal examination. Markers of oxidative and carbonyl stress were measured in saliva. Human and bacterial DNA was quantified, and human DNA integrity was assessed. Salivary thiobarbituric acid-reacting substances were higher in patients than in controls; at least in men, the difference was significant (p periodontitis patients. The results confirmed the association of salivary thiobarbituric acid-reacting substances with periodontitis. Lipid peroxidation in periodontitis seems to be caused by increased production of reactive oxygen species in men and by decreased antioxidant status in women. Whether lower salivary DNA integrity is involved in the pathogenesis of periodontitis remains to be elucidated. Salivary thiobarbituric acid-reacting substances are associated with periodontitis at least on a population level. Sex-specific causes of lipid peroxidation might point towards different pathogenic mechanisms.

  8. Inferring Genetic Variation and Demographic History of Michelia yunnanensis Franch. (Magnoliaceae from Chloroplast DNA Sequences and Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Shikang Shen

    2017-04-01

    Full Text Available Michelia yunnanensis Franch., is a traditional ornamental, aromatic, and medicinal shrub that endemic to Yunnan Province in southwest China. Although the species has a large distribution pattern and is abundant in Yunnan Province, the populations are dramatically declining because of overexploitation and habitat destruction. Studies on the genetic variation and demography of endemic species are necessary to develop effective conservation and management strategies. To generate such knowledge, we used 3 pairs of universal cpDNA markers and 10 pairs of microsatellite markers to assess the genetic diversity, genetic structure, and demographic history of 7 M. yunnanensis populations. We calculated a total of 88 alleles for 10 polymorphic loci and 10 haplotypes for a combined 2,089 bp of cpDNA. M. yunnanensis populations showed high genetic diversity (Ho = 0.551 for nuclear markers and Hd = 0.471 for cpDNA markers and low genetic differentiation (FST = 0.058. Geographical structure was not found among M. yunnanensis populations. Genetic distance and geographic distance were not correlated (P > 0.05, which indicated that geographic isolation is not the primary cause of the low genetic differentiation of M. yunnanensis. Additionally, M. yunnanensis populations contracted ~20,000–30,000 years ago, and no recent expansion occurred in current populations. Results indicated that the high genetic diversity of the species and within its populations holds promise for effective genetic resource management and sustainable utilization. Thus, we suggest that the conservation and management of M. yunnanensis should address exotic overexploitation and habitat destruction.

  9. Nuclear osteopontin-c is a prognostic breast cancer marker.

    Science.gov (United States)

    Zduniak, K; Ziolkowski, P; Ahlin, C; Agrawal, A; Agrawal, S; Blomqvist, C; Fjällskog, M-L; Weber, G F

    2015-02-17

    Although Osteopontin has been known as a marker for cancer progression, the elevated production of this cytokine is not specific for cancer. We have identified the splice variant Osteopontin-c as being absent from healthy tissue but associated with about 75% of breast cancer cases. However, in previous studies of Osteopontin-c, follow-up information was not available. Here we have analysed 671 patients, comprising a cohort of 291 paraffin blocks plus a population-based case-control study of 380 arrayed breast tumor tissues. We find that high staining intensity of nuclear Osteopontin-c is strongly associated with mortality in patients with early breast cancer. Cytosolic staining for exon 4, reflective of Osteopontin-a and -b also predicts poor outcome. By contrast, total Osteopontin does not correlate with prognosis. These diverse assessments of Osteopontin also do not correlate with each other, suggesting distinct expression patterns for the variant forms. Consistent with its role in tumor progression, not tumor initiation, Osteopontin-c is not correlated with proliferation markers (Ki-67, cyclin A, cyclin B, cyclin E and cyclin D), neither is it correlated with ER, PR or HER2. The addition of Osteopontin-c immunohistochemistry to standard pathology work-ups may have prognostic benefit in early breast cancer diagnosis.

  10. Nuclear and mitochondrial DNA quantification of various forensic materials.

    Science.gov (United States)

    Andréasson, H; Nilsson, M; Budowle, B; Lundberg, H; Allen, M

    2006-12-01

    Due to the different types and quality of forensic evidence materials, their DNA content can vary substantially, and particularly low quantities can impact the results in an identification analysis. In this study, the quantity of mitochondrial and nuclear DNA was determined in a variety of materials using a previously described real-time PCR method. DNA quantification in the roots and distal sections of plucked and shed head hairs revealed large variations in DNA content particularly between the root and the shaft of plucked hairs. Also large intra- and inter-individual variations were found among hairs. In addition, DNA content was estimated in samples collected from fingerprints and accessories. The quantification of DNA on various items also displayed large variations, with some materials containing large amounts of nuclear DNA while no detectable nuclear DNA and only limited amounts of mitochondrial DNA were seen in others. Using this sensitive real-time PCR quantification assay, a better understanding was obtained regarding DNA content and variation in commonly analysed forensic evidence materials and this may guide the forensic scientist as to the best molecular biology approach for analysing various forensic evidence materials.

  11. DNA-nuclear matrix interactions and ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Chicago Univ., IL; Vaughan, A.T.M.

    1993-01-01

    The association between inherent ionizing radiation sensitivity and DNA supercoil unwinding in mammalian cells suggests that the DNA-nuclear matrix attachment region (MAR) plays an important role in radiation response. In radioresistant cells, the MAR structure may exist in a more stable, open configuration, limiting DNA unwinding following strand break induction and maintaining DNA ends in close proximity for more rapid and accurate rejoining. In addition, the open configuration at these matrix attachment sites may serve to facilitate rapid DNA processing of breaks by providing (1) sites for repair proteins to collect and (2) energy to drive enzymatic reactions

  12. Divergent evolutionary histories of DNA markers in a Hawaiian population of the coral Montipora capitata

    OpenAIRE

    Hollie M. Putnam; Diane K. Adams; Ehud Zelzion; Nicole E. Wagner; Huan Qiu; Tali Mass; Paul G. Falkowski; Ruth D. Gates; Debashish Bhattacharya

    2017-01-01

    We investigated intra- and inter-colony sequence variation in a population of the dominant Hawaiian coral Montipora capitata by analyzing marker gene and genomic data. Ribosomal ITS1 regions showed evidence of a reticulate history among the colonies, suggesting incomplete rDNA repeat homogenization. Analysis of the mitochondrial genome identified a major (M. capitata) and a minor (M. flabellata) haplotype in single polyp-derived sperm bundle DNA with some colonies containing 2?3 different mtD...

  13. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers.

    Science.gov (United States)

    Sharma, Rekha; Kishore, Amit; Mukesh, Manishi; Ahlawat, Sonika; Maitra, Avishek; Pandey, Ashwni Kumar; Tantia, Madhu Sudan

    2015-06-30

    Indian agriculture is an economic symbiosis of crop and livestock production with cattle as the foundation. Sadly, the population of indigenous cattle (Bos indicus) is declining (8.94% in last decade) and needs immediate scientific management. Genetic characterization is the first step in the development of proper management strategies for preserving genetic diversity and preventing undesirable loss of alleles. Thus, in this study we investigated genetic diversity and relationship among eleven Indian cattle breeds using 21 microsatellite markers and mitochondrial D loop sequence. The analysis of autosomal DNA was performed on 508 cattle which exhibited sufficient genetic diversity across all the breeds. Estimates of mean allele number and observed heterozygosity across all loci and population were 8.784 ± 0.25 and 0.653 ± 0.014, respectively. Differences among breeds accounted for 13.3% of total genetic variability. Despite high genetic diversity, significant inbreeding was also observed within eight populations. Genetic distances and cluster analysis showed a close relationship between breeds according to proximity in geographic distribution. The genetic distance, STRUCTURE and Principal Coordinate Analysis concluded that the Southern Indian Ongole cattle are the most distinct among the investigated cattle populations. Sequencing of hypervariable mitochondrial DNA region on a subset of 170 cattle revealed sixty haplotypes with haplotypic diversity of 0.90240, nucleotide diversity of 0.02688 and average number of nucleotide differences as 6.07407. Two major star clusters for haplotypes indicated population expansion for Indian cattle. Nuclear and mitochondrial genomes show a similar pattern of genetic variability and genetic differentiation. Various analyses concluded that the Southern breed 'Ongole' was distinct from breeds of Northern/ Central India. Overall these results provide basic information about genetic diversity and structure of Indian cattle which

  14. Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes.

    Science.gov (United States)

    Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin

    2017-06-01

    Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

  15. Tagging genes for drought resistance by DNA markers in wheat (abstract)

    International Nuclear Information System (INIS)

    Malik, T.A.; Rahman, S.; Zafar, Y.

    2005-01-01

    Wheat families (F/sub 3) raised from the seed of drought resistant and susceptible F/sub 2/ plants developed from the cross of drought resistant and susceptible parents were grown under greenhouse conditions in polyethylene tubes filled with soil and sand mixture. Drought stress was imposed and monitored at the seedling stage. The relative water content and net photosynthesis was recorded with increasing drought stress until a significant part of the seedling population had zero or negative net photosynthesis. The seedling with zero or negative net photosynthesis were named as drought susceptible and the seedlings at the same drought stress showing net photosynthesis were named as drought resistance. Twenty each of the most susceptible and resistant seedlings were selected for DNA extraction. Random Amplified Polymorphic DNA (RAPD) technique using bulked segregant analysis was used to identify DNA markers linked to drought resistance. The primers OPJ-05, OPJ-14, OPI-20 and OPA-19 produced polymorphic DNA fragments between the contrasting bulks. The polymorphic DNA fragment of 1.55kb produced by the primer OPA-19 was found linked to drought resistance. This DNA marker can be used in markers-assisted selection for drought resistance or to clone drought resistance gene. (author)

  16. Alu repeats as markers for forensic DNA analyses

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Kass, D.H. [Louisiana State Univ., New Orleans, LA (United States)] [and others

    1994-01-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 98.9% nucleotide identity with the HS subfamily consensus sequence, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 inch and 3 inch unique flanking DNA sequences from each HS Alu that allow the locus to be assayed for the presence or absence of the Alu repeat. The dimorphic HS Alu sequences probably inserted in the human genome after the radiation of modem humans (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project. HS Alu family member insertions differ from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) in that polymorphisms due to Alu insertions arise as a result of a unique event which has occurred only one time in the human population and spread through the population from that point. Therefore, individuals that share HS Alu repeats inherited these elements from a common ancestor. Most VNTR and RFLP polymorphisms may arise multiple times in parallel within a population.

  17. Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers.

    Science.gov (United States)

    Siew, Ging Yang; Ng, Wei Lun; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Tan, Soon Guan; Yeap, Swee Keong

    2018-01-01

    Durian ( Durio zibethinus ) is one of the most popular tropical fruits in Asia. To date, 126 durian types have been registered with the Department of Agriculture in Malaysia based on phenotypic characteristics. Classification based on morphology is convenient, easy, and fast but it suffers from phenotypic plasticity as a direct result of environmental factors and age. To overcome the limitation of morphological classification, there is a need to carry out genetic characterization of the various durian types. Such data is important for the evaluation and management of durian genetic resources in producing countries. In this study, simple sequence repeat (SSR) markers were used to study the genetic variation in 27 durian types from the germplasm collection of Universiti Putra Malaysia. Based on DNA sequences deposited in Genbank, seven pairs of primers were successfully designed to amplify SSR regions in the durian DNA samples. High levels of variation among the 27 durian types were observed (expected heterozygosity, H E  = 0.35). The DNA fingerprinting power of SSR markers revealed by the combined probability of identity (PI) of all loci was 2.3×10 -3 . Unique DNA fingerprints were generated for 21 out of 27 durian types using five polymorphic SSR markers (the other two SSR markers were monomorphic). We further tested the utility of these markers by evaluating the clonal status of shared durian types from different germplasm collection sites, and found that some were not clones. The findings in this preliminary study not only shows the feasibility of using SSR markers for DNA fingerprinting of durian types, but also challenges the current classification of durian types, e.g., on whether the different types should be called "clones", "varieties", or "cultivars". Such matters have a direct impact on the regulation and management of durian genetic resources in the region.

  18. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.

    Directory of Open Access Journals (Sweden)

    Nils Haller

    Full Text Available Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game.Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute or "long" pauses (5 minutes. Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline and in all 17 enrolled players following a season game.Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016 and cfDNA correlated significantly with lactate (r = 0.69; p<0.001. Incremental exercise testing increased cfDNA 7.0-fold (p<0.001. The season game increased cfDNA 22.7-fold (p<0.0001, while lactate showed a 2.0-fold (p = 0.09 increase compared to baseline. Fold-changes in cfDNA correlated with distance covered during game (spearman's r = 0.87, p = 0.0012, while no correlation between lactate and the tracking data could be found.We show for the first time that cfDNA could be an objective marker for distance covered in elite intermittent sports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a

  19. A robust and well-resolved phylogeny of Bactridinae (Arecaceae) based on plastid and nuclear DNA sequences

    DEFF Research Database (Denmark)

    Eiserhardt, Wolf L.; Pintaud, Jean-Christophe; Asmussen-Lange, Conny

    as well as most of the currently accepted infrageneric taxa and recently proposed informal groups. Analyses are based on five plastid DNA regions (matK, trnQ-rps16, rps16 intron, trnD-trnT, trnL-trnF) and three nuclear markers (PRK, RPB2, ITS). A combined dataset was analysed with likelihood and parsimony...

  20. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Directory of Open Access Journals (Sweden)

    Wimalanathan Kokulapalan

    2011-01-01

    Full Text Available Abstract Background Previous loblolly pine (Pinus taeda L. genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats, also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety of sources and published cDNA markers into a composite P. taeda genetic map constructed from two reference mapping pedigrees. A dense genetic map that incorporates SSR loci will benefit complete pine genome sequencing, pine population genetics studies, and pine breeding programs. Careful marker annotation using a variety of references further enhances the utility of the integrated SSR map. Results The updated P. taeda genetic map, with an estimated genome coverage of 1,515 cM(Kosambi across 12 linkage groups, incorporated 170 new SSR markers and 290 previously reported SSR, RFLP, and ESTP markers. The average marker interval was 3.1 cM. Of 233 mapped SSR loci, 84 were from cDNA-derived sequences (EST-SSRs and 149 were from non-transcribed genomic sequences (genomic-SSRs. Of all 311 mapped cDNA-derived markers, 77% were associated with NCBI Pta UniGene clusters, 67% with RefSeq proteins, and 62% with functional Gene Ontology (GO terms. Duplicate (i.e., redundant accessory and paralogous markers were tentatively identified by evaluating marker sequences by their UniGene cluster IDs, clone IDs, and relative map positions. The average gene diversity, He, among polymorphic SSR loci, including those that were not mapped, was 0.43 for 94 EST-SSRs and 0.72 for 83 genomic-SSRs. The genetic map can be viewed and queried at http://www.conifergdb.org/pinemap. Conclusions Many polymorphic and genetically mapped SSR markers are now available for use in P. taeda population genetics, studies of adaptive traits, and various germplasm management applications. Annotating mapped

  1. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.

    Science.gov (United States)

    Haller, Nils; Helmig, Susanne; Taenny, Pascal; Petry, Julian; Schmidt, Sebastian; Simon, Perikles

    2018-01-01

    Attempts to establish a biomarker reflecting individual player load in intermittent sports such as football have failed so far. Increases in circulating DNA (cfDNA) have been demonstrated in various endurance sports settings. While it has been proposed that cfDNA could be a suitable marker for player load in intermittent sports, the effects on cfDNA of repeated sprinting as an essential feature in intermittent sports are unknown. For the first time, we assessed both alterations of cfDNA due to repeated maximal sprints and due to a professional football game. Nine participants were subjected to a standardised sprint training session with cross-over design of five maximal sprints of 40 meters with either "short" (1 minute) or "long" pauses (5 minutes). Capillary cfDNA and lactate were measured after every sprint and venous cfDNA before and after each series of sprints. Moreover, capillary cfDNA and lactate values were taken in 23 professional football players before and after incremental exercise testing, during the course of a training week at rest (baseline) and in all 17 enrolled players following a season game. Lactate and venous cfDNA increased more pronounced during "short" compared to "long" (1.4-fold, p = 0.032 and 1.7-fold, p = 0.016) and cfDNA correlated significantly with lactate (r = 0.69; psports. In contrast to the potential of more established blood-based markers like IL-6, CK, or CRP, cfDNA shows by far the strongest fold-change and a high correlation with a particular load related aspect in professional football.

  2. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Craig S. Echt; Surya Saha; Konstantin V. Krutovsky; Kokulapalan Wimalanathan; John E. Erpelding; Chun Liang; C Dana Nelson

    2011-01-01

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety...

  3. DNA markers for forensic identification of non-human biological traces

    NARCIS (Netherlands)

    Wesselink, M.

    2018-01-01

    In this thesis, DNA markers are described that enable forensically relevant classification of three groups of non-human biological traces: fungi (Chapter 1), domestic cats (Chapters 2, 3 an d 4) and birch trees (Chapters 5 and 6). Because the forensic questions associated with these traces require

  4. Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers.

    Science.gov (United States)

    Salimath, S S; de Oliveira, A C; Godwin, I D; Bennetzen, J L

    1995-08-01

    Finger millet (Eleusine coracana), an allotetraploid cereal, is widely cultivated in the arid and semiarid regions of the world. Three DNA marker techniques, restriction fragment length polymorphism (RFLP), randomly amplified polymorphic DNA (RAPD), and inter simple sequence repeat amplification (ISSR), were employed to analyze 22 accessions belonging to 5 species of Eleusine. An 8 probe--3 enzyme RFLP combination, 18 RAPD primers, and 6 ISSR primers, respectively, revealed 14, 10, and 26% polymorphism in 17 accessions of E. coracana from Africa and Asia. These results indicated a very low level of DNA sequence variability in the finger millets but did allow each line to be distinguished. The different Eleusine species could be easily identified by DNA marker technology and the 16% intraspecific polymorphism exhibited by the two analyzed accessions of E. floccifolia suggested a much higher level of diversity in this species than in E. coracana. Between species, E. coracana and E. indica shared the most markers, while E. indica and E. tristachya shared a considerable number of markers, indicating that these three species form a close genetic assemblage within the Eleusine. Eleusine floccifolia and E. compressa were found to be the most divergent among the species examined. Comparison of RFLP, RAPD, and ISSR technologies, in terms of the quantity and quality of data output, indicated that ISSRs are particularly promising for the analysis of plant genome diversity.

  5. Natural hybridization in tropical spikerushes of Eleocharis subgenus Limnochloa (Cyperaceae): Evidence from morphology and DNA markers

    Czech Academy of Sciences Publication Activity Database

    Košnar, J.; Košnar, Ji.; Macek, Petr; Herbstová, Miroslava; Rejmánková, E.; Stech, M.

    2010-01-01

    Roč. 97, č. 7 (2010), s. 1229-1240 ISSN 0002-9122 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50510513 Keywords : Belize * Cyperaceae * DNA markers * hybridization Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (BU-J) Impact factor: 3.052, year: 2010

  6. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects

    Directory of Open Access Journals (Sweden)

    Vasco Elbrecht

    2016-04-01

    Full Text Available Cytochrome c oxidase I (COI is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate.

  7. cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications.

    Science.gov (United States)

    Wani, Gowher A; Shah, Manzoor A; Reshi, Zafar A; Atangana, Alain R; Khasa, Damase P

    2014-07-01

    A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation.

  8. cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications1

    Science.gov (United States)

    Wani, Gowher A.; Shah, Manzoor A.; Reshi, Zafar A.; Atangana, Alain R.; Khasa, Damase P.

    2014-01-01

    • Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation. PMID:25202636

  9. cpDNA Microsatellite Markers for Lemna minor (Araceae: Phylogeographic Implications

    Directory of Open Access Journals (Sweden)

    Gowher A. Wani

    2014-07-01

    Full Text Available Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation.

  10. DNA fingerprinting of some pakistani date palm (phoenix dactylifera L.) cultive ARS using issr markers

    International Nuclear Information System (INIS)

    Mirbahar, A.; Khan, S.; Markhand, G.S.

    2016-01-01

    Date palm is one of the oldest cultivated and economically important fruit trees. First time Inter Simple Sequence Repeats (ISSR) markers were used with twenty five economically important date palm cultivars of Pakistan for DNA fingerprinting analysis. Samples were collected from four provinces of Pakistan i.e., Sindh, Punjab, Khyber Pakhtoonkhwa and Balochistan. The study was carried out using seven ISSR markers. The twenty five date palm cultivars showed variation at the DNA level. The ISSR primers showed high polymorphism (84%) in the studied date palm cultivars. Dice similarity index was in range from 0.608 to 0.980 and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) divided twenty five date palm cultivars into two main clusters and sub-clusters. However ISSR markers efficiently discriminated for assessing genetic diversity among commercial Pakistani date palm cultivars. (author)

  11. Preferential binding of DNA primase to the nuclear matrix

    International Nuclear Information System (INIS)

    Wood, S.H.; Collins, J.M.

    1986-01-01

    Several lines of research have stimulated interest in the nuclear matrix as the subcellular site of DNA replication. The authors have recently reported a relationship between rates of DNA synthesis and the differential binding of polymerase α to the nuclear matrix. They now report the detection of DNA primase bound to the HeLa nuclear matrix. Matrix-bound primase can be measured either indirectly, by the incorporation of [ 32 P] dAMP into an unprimed single-stranded template, or directly, by the incorporation of [ 3 H] AMP into matrix DNA. Characteristics of this system include a requirement for ATP, inhibition by adenosine-5'-0-(3'-thiotriphosphate), a primase inhibitor, and insensitivity to aphidicolin and α-amanitine, inhibitors of polymerase α and RNA polymerase, respectively. Subcellular quantification of primase and polymerase α activity revealed that while a majority of primase activity is bound to the matrix (72%), only 32% of polymerase α activity is matrix-bound. Treatment of the nuclear matrix with β-D-Octylglucoside allowed the solubilization of 54% of primase activity and 39% of polymerase α activity. This data provides further evidence of a structural and functional role for the nuclear matrix in DNA replication. The ability to solubilize matrix-bound replicative enzymes may prove to be an important tool in the elucidation of the spatial organization of DNA replication

  12. Characterization of local goat breeds using RAP-DNA markers

    Science.gov (United States)

    Al-Barzinji, Yousif M. S.; Hamad, Aram O.

    2017-09-01

    The present study was conducted on different colors of local goat breeds. A number of 216 does were sampled from the seven groups. Genomic DNA was extracted from the blood samples. From the twenty used RAPD primers 12 of them were amplified, and presence of bands. The total fragment number of 12 primers over all the goat breed samples was 485 fragments. Out of the 485 fragments, 90 of them were Polymorphic fragments numbers (PFN). From all bands obtained, 20 of them possessed unique bands. The highest unique band was found in locus RAP 6 which has 4 unique bands, three of them in the Maraz Brown and one in the local Koor. Nei's gene diversity and Shanon's information index in this study were averaged 0.38 and 0.60, respectively. The genetic distance among several goat breeds ranged from 9.11 to 43.33%. The highest genetic distance 43.33% recorded between Maraz goat and other goat breeds and between local Koor and other goat (except Maraz goats) breeds (37.79%). However, the lowest genetic distance recorded between local white and Pnok. The distance between (local Black and Pnok) and (local Black and local white) was 22.75%. In conclusions, the high distance among these goat breeds, polymorphism and high numbers of unique bands found in present study indicates that these goat breeds have the required amount of genetic variation to made genetic improvement. This study helps us to clarify the image of the genetic diversity of the local goat breeds and the breeders can used it for mating system when need to make the crossing among these goat breeds.

  13. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma

    Science.gov (United States)

    Xu, Rui-Hua; Wei, Wei; Krawczyk, Michal; Wang, Wenqiu; Luo, Huiyan; Flagg, Ken; Yi, Shaohua; Shi, William; Quan, Qingli; Li, Kang; Zheng, Lianghong; Zhang, Heng; Caughey, Bennett A.; Zhao, Qi; Hou, Jiayi; Zhang, Runze; Xu, Yanxin; Cai, Huimin; Li, Gen; Hou, Rui; Zhong, Zheng; Lin, Danni; Fu, Xin; Zhu, Jie; Duan, Yaou; Yu, Meixing; Ying, Binwu; Zhang, Wengeng; Wang, Juan; Zhang, Edward; Zhang, Charlotte; Li, Oulan; Guo, Rongping; Carter, Hannah; Zhu, Jian-Kang; Hao, Xiaoke; Zhang, Kang

    2017-11-01

    An effective blood-based method for the diagnosis and prognosis of hepatocellular carcinoma (HCC) has not yet been developed. Circulating tumour DNA (ctDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive `liquid biopsy' for diagnosis and monitoring of cancer. Here, we identified an HCC-specific methylation marker panel by comparing HCC tissue and normal blood leukocytes and showed that methylation profiles of HCC tumour DNA and matched plasma ctDNA are highly correlated. Using cfDNA samples from a large cohort of 1,098 HCC patients and 835 normal controls, we constructed a diagnostic prediction model that showed high diagnostic specificity and sensitivity (P < 0.001) and was highly correlated with tumour burden, treatment response, and stage. Additionally, we constructed a prognostic prediction model that effectively predicted prognosis and survival (P < 0.001). Together, these findings demonstrate in a large clinical cohort the utility of ctDNA methylation markers in the diagnosis, surveillance, and prognosis of HCC.

  14. Differential utility of the Bacteroidales DNA and RNA markers in the tiered approach for microbial source tracking in subtropical seawater.

    Science.gov (United States)

    Liu, Rulong; Cheng, Ken H F; Wong, Klaine; Cheng, Samuel C S; Lau, Stanley C K

    2015-07-01

    Source tracking of fecal pollution is an emerging component in water quality monitoring. It may be implemented in a tiered approach involving Escherichia coli and/or Enterococcus spp. as the standard fecal indicator bacteria (FIB) and the 16S rRNA gene markers of Bacteroidales as source identifiers. The relative population dynamics of the source identifiers and the FIB may strongly influence the implementation of such approach. Currently, the relative performance of DNA and RNA as detection targets of Bacteroidales markers in the tiered approach is not known. We compared the decay of the DNA and RNA of the total (AllBac) and ruminant specific (CF128) Bacteroidales markers with those of the FIB in seawater spiked with cattle feces. Four treatments of light and oxygen availability simulating the subtropical seawater of Hong Kong were tested. All Bacteroidales markers decayed significantly slower than the FIB in all treatments. Nonetheless, the concentrations of the DNA and RNA markers and E. coli correlated significantly in normoxic seawater independent of light availability, and in hypoxic seawater only under light. In hypoxic seawater without light, the concentrations of RNA but not DNA markers correlated with that of E. coli. Generally, the correlations between Enterococcus spp. and Bacteroidales were insignificant. These results suggest that either DNA or RNA markers may complement E. coli in the tiered approach for normoxic or hypoxic seawater under light. When light is absent, either DNA or RNA markers may serve for normoxic seawater, but only the RNA markers are suitable for hypoxic seawater.

  15. Cytoplasmic and nuclear DNA markers as powerful tools in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-07-19

    Jul 19, 2010 ... make conclusions about the history and status of forest. Abbreviations: LSC, Large ..... sequences which facilitated the design of the consensus primers and ... graphic structure based on the real genetic diversity as well as ...

  16. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis

  17. X linked neonatal centronuclear/myotubular myopathy: evidence for linkage to Xq28 DNA marker loci.

    OpenAIRE

    Thomas, N S; Williams, H; Cole, G; Roberts, K; Clarke, A; Liechti-Gallati, S; Braga, S; Gerber, A; Meier, C; Moser, H

    1990-01-01

    We have studied the inheritance of several polymorphic Xq27/28 DNA marker loci in two three generation families with the X linked neonatal lethal form of centronuclear/myotubular myopathy (XL MTM). We found complete linkage of XLMTM to all four informative Xq28 markers analysed, with GCP/RCP (Z = 3.876, theta = 0.00), with DXS15 (Z = 3.737, theta = 0.00), with DXS52 (Z = 2.709, theta = 0.00), and with F8C (Z = 1.020, theta = 0.00). In the absence of any observable recombination, we are unable...

  18. [Genomic DNA fingerprints of Legionella pneumophila serogroup 2 strains as an epidemiologic marker].

    Science.gov (United States)

    Bender-Beck, L; Mühlenberg, W; Lück, P C; Ott, M; Horbach, I; Fehrenbach, F J; Wewalka, G; Hacker, J

    1995-08-01

    Using pulsed-field gel electrophoresis, DNA fingerprints of eleven Legionella pneumophila isolates of serogroup 2 were generated. It was shown that two strains from a patient suffering from pneumonia as well as three environmental strains isolated from the shower in the hotel where the patient stayed 5 days before his illness were identical. Six strains of the same serogroup isolated from other sources were clearly separated. Thus, DNA fingerprints by pulsed-field gel electrophoresis are excellent epidemiological markers for the rarely occurring serogroup 2 of Legionella pneumophila.

  19. A nuclear DNA-based species determination and DNA quantification assay for common poultry species.

    Science.gov (United States)

    Ng, J; Satkoski, J; Premasuthan, A; Kanthaswamy, S

    2014-12-01

    DNA testing for food authentication and quality control requires sensitive species-specific quantification of nuclear DNA from complex and unknown biological sources. We have developed a multiplex assay based on TaqMan® real-time quantitative PCR (qPCR) for species-specific detection and quantification of chicken (Gallus gallus), duck (Anas platyrhynchos), and turkey (Meleagris gallopavo) nuclear DNA. The multiplex assay is able to accurately detect very low quantities of species-specific DNA from single or multispecies sample mixtures; its minimum effective quantification range is 5 to 50 pg of starting DNA material. In addition to its use in food fraudulence cases, we have validated the assay using simulated forensic sample conditions to demonstrate its utility in forensic investigations. Despite treatment with potent inhibitors such as hematin and humic acid, and degradation of template DNA by DNase, the assay was still able to robustly detect and quantify DNA from each of the three poultry species in mixed samples. The efficient species determination and accurate DNA quantification will help reduce fraudulent food labeling and facilitate downstream DNA analysis for genetic identification and traceability.

  20. DNA moves sequentially towards the nuclear matrix during DNA replication in vivo

    Directory of Open Access Journals (Sweden)

    Aranda-Anzaldo Armando

    2011-01-01

    Full Text Available Abstract Background In the interphase nucleus of metazoan cells DNA is organized in supercoiled loops anchored to a nuclear matrix (NM. There is varied evidence indicating that DNA replication occurs in replication factories organized upon the NM and that DNA loops may correspond to the actual replicons in vivo. In normal rat liver the hepatocytes are arrested in G0 but they synchronously re-enter the cell cycle after partial-hepatectomy leading to liver regeneration in vivo. We have previously determined in quiescent rat hepatocytes that a 162 kbp genomic region containing members of the albumin gene family is organized into five structural DNA loops. Results In the present work we tracked down the movement relative to the NM of DNA sequences located at different points within such five structural DNA loops during the S phase and after the return to cellular quiescence during liver regeneration. Our results indicate that looped DNA moves sequentially towards the NM during replication and then returns to its original position in newly quiescent cells, once the liver regeneration has been achieved. Conclusions Looped DNA moves in a sequential fashion, as if reeled in, towards the NM during DNA replication in vivo thus supporting the notion that the DNA template is pulled progressively towards the replication factories on the NM so as to be replicated. These results provide further evidence that the structural DNA loops correspond to the actual replicons in vivo.

  1. Elevated levels of urinary markers of oxidatively generated DNA and RNA damage in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Poulsen, Henrik Enghusen; Kessing, Lars Vedel

    2015-01-01

    OBJECTIVES: The pathophysiological mechanisms underlying bipolar disorder and its multi-system nature are unclear. Oxidatively generated damage to nucleosides has been demonstrated in metabolic disorders; however, the extent to which this occurs in bipolar disorder in vivo is unknown. We...... investigated oxidatively generated damage to DNA and RNA in patients with bipolar disorder and its relationship with the affective phase compared with healthy control subjects. METHODS: Urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), markers...... of oxidatively generated DNA and RNA damage, respectively, was measured in 37 rapid cycling patients with bipolar disorder and in 40 age- and gender-matched healthy control subjects. Employing a longitudinal design, repeated measurements of both markers were evaluated in various affective phases in patients...

  2. Association between Urinary Excretion of Cortisol and Markers of Oxidatively Damaged DNA and RNA in Humans

    DEFF Research Database (Denmark)

    Joergensen, Anders; Broedbaek, Kasper; Weimann, Allan

    2011-01-01

    Chronic psychological stress is associated with accelerated aging, but the underlying biological mechanisms are not known. Prolonged elevations of the stress hormone cortisol is suspected to play a critical role. Through its actions, cortisol may potentially induce oxidatively generated damage...... to cellular constituents such as DNA and RNA, a phenomenon which has been implicated in aging processes. We investigated the relationship between 24 h excretion of urinary cortisol and markers of oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine......, in a sample of 220 elderly men and women (age 65 - 83 years). We found a robust association between the excretion of cortisol and the oxidation markers (R(2)¿=¿0.15, P...

  3. DNA Profiles of MTG (Moderat Tahan Gano) Oil Palm Variety Based on SSR Marker

    Science.gov (United States)

    Putri, L. A. P.; Setiado, H.; Hardianti, R.

    2017-03-01

    The oil palm, an economically important tree in Indonesia, has been one of the world’s major sources of edible oil and a significant precursor of biodiesel fuel. The objectives of this study were to know DNA profile of commercial MTG (Moderat Tahan Gano) oil palm variety collections. A total of 10 trees MTG oil palm variety were used for analysis. In this experiment, the DNA profile diversity was assessed using mEgCIR0174 and SSR-1 loci of oil palm’s specific SSR markers. The results of the experiment indicated out of 3 alleles of pcr product of mEgCIR0174 (198, 203 and 208 bp) and SSR-1 (201, 217 and 232 bp). These preliminary results demonstrated SSR marker can be used to evaluate genetic relatedness among trees of MTG (Moderat Tahan Gano) oil palm variety derived from different crossing or difference to desease resistance trait or misslabeled.

  4. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  5. Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas?

    Science.gov (United States)

    Alasaad, S; Soglia, D; Spalenza, V; Maione, S; Soriguer, R C; Pérez, J M; Rasero, R; Degiorgis, M P Ryser; Nimmervoll, H; Zhu, X Q; Rossi, L

    2009-02-05

    The present study examined the relationship among individual Sarcoptes scabiei mites from 13 wild mammalian populations belonging to nine species in four European countries using the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) as genetic marker. The ITS-2 plus primer flanking 5.8S and 28S rDNA (ITS-2+) was amplified from individual mites by polymerase chain reaction (PCR) and the amplicons were sequenced directly. A total of 148 ITS-2+ sequences of 404bp in length were obtained and 67 variable sites were identified (16.59%). UPGMA analyses did not show any geographical or host-specific clustering, and a similar outcome was obtained using population pairwise Fst statistics. These results demonstrated that ITS-2 rDNA does not appear to be suitable for examining genetic diversity among mite populations.

  6. Classification of plant associated bacteria using RIF, a computationally derived DNA marker.

    Directory of Open Access Journals (Sweden)

    Kevin L Schneider

    Full Text Available A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF. Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS. Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF

  7. Sensitive voltammetric detection of DNA damage at carbon electrodes using DNA repair enzymes and an electroactive osmium marker

    Czech Academy of Sciences Publication Activity Database

    Havran, Luděk; Vacek, Jan; Cahová, Kateřina; Fojta, Miroslav

    2008-01-01

    Roč. 391, č. 5 (2008), s. 1751-1758 ISSN 1618-2642 R&D Projects: GA AV ČR(CZ) IAA4004402; GA AV ČR(CZ) IAA400040611; GA ČR(CZ) GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA damage * electroactive marker * carbon electrodes Subject RIV: BO - Biophysics Impact factor: 3.328, year: 2008

  8. Optimization Of ISSR Markers For DNA Fingerprinting In Stevia Rebaudiana Bertoni

    International Nuclear Information System (INIS)

    Lyena Watty Zuraine Ahmad; Lyena Watty Zuraine Ahmad; Azhar Mohamad; Mohamad Osman; Zarina Zainuddin; Fatin Izzati Mohd Khari

    2014-01-01

    ISSR or inter-simple sequence repeat is PCR based markers which required no prior DNA sequence knowledge of the studied organism. It has been proved to overcome limitations in other genetic marker techniques. In this study, 100 ISSR primers which comprised of 80 specific primers and 20 degenerate primers were used. All of the primers were tested on gradient temperatures from 45-55 degree Celsius. For positive amplification, 62 specific primers (77.5 %) and 18 degenerate primers (90.0 %) were recorded as working primers. The most efficient temperature for 25 primers was 55 degree Celsius. Marker derived from ISSR profiling is a powerful approach for identification and molecular classification of Stevia rebaudiana bertoni. (author)

  9. Development of swine-specific DNA markers for biosensor-based halal authentication.

    Science.gov (United States)

    Ali, M E; Hashim, U; Kashif, M; Mustafa, S; Che Man, Y B; Abd Hamid, S B

    2012-06-29

    The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.

  10. Genetic diversity and DNA fingerprinting in jute(Corchorus spp.) based on SSR markers

    Institute of Scientific and Technical Information of China (English)

    Liwu; Zhang; Rongrong; Cai; Minhang; Yuan; Aifen; Tao; Jiantang; Xu; Lihui; Lin; Pingping; Fang; Jianmin; Qi

    2015-01-01

    Genetic diversity analysis and DNA finger printing are very useful in breeding programs,seed conservation and management. Jute(Corchorus spp.) is the second most important natural fiber crop after cotton. DNA fingerprinting studies in jute using SSR markers are limited. In this study, 58 jute accessions, including two control varieties(Huangma 179 and Kuanyechangguo) from the official variety registry in China were evaluated with 28 pairs of SSR primers. A total of 184 polymorphic loci were identified. Each primer detected 3 to 15 polymorphic loci, with an average of 6.6. The 58 jute accessions were DNA-fingerprinted with 67 SSR markers from the 28 primer pairs. These markers differentiated the 58 jute accessions from one another, with Co SSR305-120 and Co SSR174-195 differentiating Huangma 179 and Kuanyechangguo, respectively. NTSYS-pc2.10 software was used to analyze the genetic diversity in the 58 jute accessions. Their genetic similarity coefficients ranged from 0.520 to 0.910 with an average of 0.749, indicating relatively great genetic diversity among them. The 58 jute accessions were divided into four groups with the coefficient 0.710 used as a value for classification, consistent with their species and pedigrees. All these results may be useful both for protection of intellectual property rights of jute accessions and for jute improvement.

  11. Genetic diversity and DNA fingerprinting in jute (Corchorus spp. based on SSR markers

    Directory of Open Access Journals (Sweden)

    Liwu Zhang

    2015-10-01

    Full Text Available Genetic diversity analysis and DNA finger printing are very useful in breeding programs, seed conservation and management. Jute (Corchorus spp. is the second most important natural fiber crop after cotton. DNA fingerprinting studies in jute using SSR markers are limited. In this study, 58 jute accessions, including two control varieties (Huangma 179 and Kuanyechangguo from the official variety registry in China were evaluated with 28 pairs of SSR primers. A total of 184 polymorphic loci were identified. Each primer detected 3 to 15 polymorphic loci, with an average of 6.6. The 58 jute accessions were DNA-fingerprinted with 67 SSR markers from the 28 primer pairs. These markers differentiated the 58 jute accessions from one another, with CoSSR305-120 and CoSSR174-195 differentiating Huangma 179 and Kuanyechangguo, respectively. NTSYS-pc2.10 software was used to analyze the genetic diversity in the 58 jute accessions. Their genetic similarity coefficients ranged from 0.520 to 0.910 with an average of 0.749, indicating relatively great genetic diversity among them. The 58 jute accessions were divided into four groups with the coefficient 0.710 used as a value for classification, consistent with their species and pedigrees. All these results may be useful both for protection of intellectual property rights of jute accessions and for jute improvement.

  12. Rust resistance evaluation of advanced wheat (triticum aestivum l.) genotypes using pcr-based dna markers

    International Nuclear Information System (INIS)

    Rahman, S.U.; Younis, M.; Iqbal, M.Z.; Nawaz, M.

    2014-01-01

    The most effective and environmental friendly approach for the control of wheat rust disease is the use of resistant genotypes. The present study was conducted to explore rust resistance potential of 85 elite wheat genotypes (36 varieties and 49 advanced lines) using various types of DNA markers like STS, SCAR and SSR. DNA markers linked with different genes conferring resistance to rusts (Leaf rust=Lr, Yellow rust=Yr and Stem rust=Sr) were employed in this study. A total of 18 genes, consisting of eleven Lr (lr1, lr10, lr19, lr21, lr28, lr34, lr39, lr46, lr47, lr51 and lr52), four Yr (yr5, yr18, yr26 and yr29) and three Sr genes (sr2, sr29, and sr36) were studied through linked DNA markers. Maximum number of Lr genes was found in 17 advanced lines and 9 varieties, Yr genes in 26 advanced lines and 20 wheat varieties, and Sr genes in 43 advanced lines and 27 varieties. Minimum number of Lr genes was found in advanced line D-97 and variety Kohinoor-83, Yr genes in wheat variety Bwp-97 and Sr genes in 6 advanced lines and 8 varieties. Molecular data revealed that genotypes having same origin, from a specified area showed resistance for similar type of genes. In this study, an average similarity of 84% was recorded among wheat genotypes. Out of 18 loci, 15 were found to be polymorphic. (author)

  13. Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius)

    Science.gov (United States)

    Tanner, Susanne E.; Pérez, Montse; Presa, Pablo; Thorrold, Simon R.; Cabral, Henrique N.

    2014-04-01

    Population structure and natal origins of European hake were investigated using microsatellite DNA markers and otolith geochemistry data. Five microsatellites were sequenced and otolith core geochemical composition was determined from age-1 hake collected in the northeast Atlantic Ocean and the Mediterranean Sea. Microsatellites provided evidence of a major genetic split in the vicinity of the Strait of Gibraltar, separating the Atlantic and the Mediterranean populations, with the exception of the Gulf of Cádiz. Based on classification models using otolith core geochemical values, individual natal origins were identified, although with an increased error rate. Coupling genotype and otolith data increased the classification accuracy of individuals to their potential natal origins while providing evidence of movement between the northern and southern stock units in the Atlantic Ocean. Information obtained by the two natural markers on population structure of European hake was complementary as the two markers act at different spatio-temporal scales. Otolith geochemistry provides information over an ecological time frame and on a fine spatial scale, while microsatellite DNA markers report on gene flow over evolutionary time scales and therefore act on a broader spatio-temporal resolution. Thus, this study confirmed the value of otolith geochemistry to complement the assessment of early life stage dispersal in populations with high gene flow and low genetic divergence.

  14. Optimization of ISSR Markers for Molecular DNA Fingerprinting in Aquilaria sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hanif Azhari; Siti Norhayati Ismail; Parween, K.S.A.S.

    2013-01-01

    Aquilaria sp. belongs to the Thymelaeaceae family and well distributed to Asia region. The species is a multipurpose use from root to shoot and becoming an economic important crop, which generates wide interest in understanding the genetic diversity of the species. Understanding of the effectiveness in differentiating DNA-based markers is an important step towards plant germplasm characterization and evaluation. It is becoming a prerequisite for more effective application of molecular marker techniques in breeding and mapping programs. Polymerase Chain Reaction (PCR)-based approaches are in demanding as its simplicity and requirement for only small quantities of sample genomic DNA. Inter-simple sequence repeats (ISRR) requires no prior genomic information as anchor template in producing multi-loci markers of tandem repeats for polymorphic patterns by PCR amplification which becoming a key of advantageous of ISSR primers. ISSR markers have shown rapid, simple, reproducible and inexpensive means in molecular taxonomy, conservation breeding and genetic diversity analysis. The ISSR for marker applications are essential to facilitate management, conservation and genetic improvement programs towards improvement of standard resin quality for perfume and or pharmaceutical industries. In this paper, a total of 100 ISSR primers were optimized by using Aquilaria malaccensis. Primers optimization resulted, 38 ISSR primers affirmative for the polymorphism evaluation study, which encountered both from specific and degenerate ISSR primers. Marker derived from ISSR profiling is a powerful method for identification and molecular classification of Aquilaria sp from species to accessions and further will useful in identifying any mutant lines derived from nature and/or mutagenesis activities. (author)

  15. Genetic variations and relationships of cultivated and weedy types of perilla species in Korea and Japan using multi DNA markers

    International Nuclear Information System (INIS)

    Sun, Y.; Zheng, S.; Lee, J.; Hong, S.

    2017-01-01

    The genus Perilla, known as an oil crop or a Chinese medicine, vegetable crop, is widely cultivated in East Asia. It occurs in two distinct varieties, var. frutescens and var. crispa, and their genetic relationship is still obscure. To understand the genetic diversity and relationships of the cultivated and weedy types of Perilla crops in Korea, Japan and China, we evaluated the genetic variation of 20 accessions by 3 rDNA markers. Among these three markers, the nuclear ribosomal DNA (nrDNA) internal transcribed spacers (ITS) region of Perilla crops showed less sequence variations than the 5S and 18S genes. There were abundant variable nucleotide sites appearing in the 5S and 18S genes. Especially in the 18S gene, the variable nucleotide sites showed specificity between some Perilla type and other varieties. JPN1 showed 6 special variable nucleotide sites differing from other varieties, resulting in the farthest phylogenetic relationship in the 18S tree. CHI15 shared 8 special variable sites, also showing far phylogenetic relationship with other varieties. According to the sequence analysis result, the cultivated types of Korean var. frutescens showed relatively more genetic diversity than those of Japanese var. frutescens, while Korean var. crispa showed lower genetic diversity than those of Japanese var. crispa. However, the intra- or inter-variety genetic distance did not have significant difference. This work provided more sequence resources of Perilla crops and evidences to evaluate the genetic variation and relationships. Our result would help molecular type identification, functional plant breeding and trait improvement of Perilla crops. (author)

  16. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas

    KAUST Repository

    Dí az-Arce, Natalia; Arrizabalaga, Haritz; Murua, Hilario; Irigoien, Xabier; Rodrí guez-Ezpeleta, Naiara

    2016-01-01

    conservation and management strategies for these species. Previous attempts based on mitochondrial and nuclear markers were unsuccessful in inferring a congruent and reliable phylogeny, probably due to mitochondrial introgression events and lack of enough

  17. Nuclear DNA content variation among central European Koeleria taxa

    Czech Academy of Sciences Publication Activity Database

    Pečinka, A.; Suchánková, Pavla; Lysák, Martin; Trávníček, B.; Doležel, Jaroslav

    2006-01-01

    Roč. 98, - (2006), s. 117-122 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chromosome number * nuclear DNA content * flow cytometry Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.448, year: 2006

  18. (Brassicaceae) based on nuclear ribosomal ITS DNA sequences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 2. Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Yan Li Yan Kong Zhe Zhang Yanqiang Yin Bin Liu Guanghui Lv Xiyong Wang. Research Article Volume 93 Issue 2 August 2014 pp 313-323 ...

  19. Role of nuclear hexokinase II in DNA repair

    International Nuclear Information System (INIS)

    Khanna, S.; Bhatt, A.N.; Dwarakanath, B.S.; Kalaiarasan, P.; Brahmachari, V.

    2012-01-01

    A common signature of many cancer cells is a high glucose catabolic rate primarily due to the over expression of Type II hexokinase (HKII; responsible for the phosphorylation of glucose), generally known as cytosolic and mitochondrial bound enzyme that also suppresses cell death. Although, nuclear localization and transcriptional regulation of HKII has been reported in yeast; we and few others have recently demonstrated its nuclear localization in malignant cell lines. Interestingly, modification of a human glioma cell line (BMG-1) for enhancing glycolysis through mitochondrial respiration (OPMBMG cells) resulted in a higher nuclear localization of HKII as compared to the parental cells with concomitant increase in DNA repair and radio-resistance. Further, the glucose phosphorylation activity of the nuclear HKII was nearly 2 folds higher in the relatively more radioresistant HeLa cells (human cervical cancer cell line) as compared to MRC-5 cells (human normal lung fibroblast cell line). Therefore, we hypothesize that nuclear HKII facilitates DNA repair, in a hither to unknown mechanism, that may partly contribute to the enhanced resistance of highly glycolytic cells to radiation. Sequence alignment studies suggest that the isoenzymes, HKI and HKII share strong homology in the kinase active site, which is also found in few protein kinases. Interestingly HKI has been shown to phosphorylate H2A in-vitro. Further, in-silico protein-protein interaction data suggest that HKII can interact with several DNA repair proteins including ATM. Taken together; available experimental evidences as well as in-silico predictions strongly suggest that HKII may play a role in DNA repair by phosphorylation of certain DNA repair proteins. (author)

  20. Forensic botany II, DNA barcode for land plants: Which markers after the international agreement?

    Science.gov (United States)

    Ferri, G; Corradini, B; Ferrari, F; Santunione, A L; Palazzoli, F; Alu', M

    2015-03-01

    The ambitious idea of using a short piece of DNA for large-scale species identification (DNA barcoding) is already a powerful tool for scientists and the application of this standard technique seems promising in a range of fields including forensic genetics. While DNA barcoding enjoyed a remarkable success for animal identification through cytochrome c oxidase I (COI) analysis, the attempts to identify a single barcode for plants remained a vain hope for a longtime. From the beginning, the Consortium for the Barcode of Life (CBOL) showed a lack of agreement on a core plant barcode, reflecting the diversity of viewpoints. Different research groups advocated various markers with divergent set of criteria until the recent publication by the CBOL-Plant Working Group. After a four-year effort, in 2009 the International Team concluded to agree on standard markers promoting a multilocus solution (rbcL and matK), with 70-75% of discrimination to the species level. In 2009 our group firstly proposed the broad application of DNA barcoding principles as a tool for identification of trace botanical evidence through the analysis of two chloroplast loci (trnH-psbA and trnL-trnF) in plant species belonging to local flora. Difficulties and drawbacks that were encountered included a poor coverage of species in specific databases and the lack of authenticated reference sequences for the selected markers. Successful preliminary results were obtained providing an approach to progressively identify unknown plant specimens to a given taxonomic rank, usable by any non-specialist botanist or in case of a shortage of taxonomic expertise. Now we considered mandatory to update and to compare our previous findings with the new selected plastid markers (matK+rbcL), taking into account forensic requirements. Features of all the four loci (the two previously analyzed trnH-psbA+trnL-trnF and matK+rbcL) were compared singly and in multilocus solutions to assess the most suitable combination for

  1. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    Science.gov (United States)

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  2. Molecular characterization of Anthurium genotypes by using DNA fingerprinting and SPAR markers.

    Science.gov (United States)

    Souza Neto, J D; Soares, T C B; Motta, L B; Cabral, P D S; Silva, J A

    2014-07-02

    We characterized single primer amplification reaction (SPAR) molecular markers from 20 genotypes of Anthurium andraeanum Lind., including 3 from commercial varieties and 17 from 2 communities in the State of Espírito Santo, Brazil. Twenty-four SPAR, consisting of 7 random amplified polymorphic DNA and 17 inter-simple sequence repeat markers were used to estimate the genetic diversity of 20 Anthurium accessions. The set of SPAR markers generated 288 bands and showed an average polymorphism percentage of 93.39%, ranging from 71.43 to 100%. The polymorphism information content (PIC) of the random amplified polymorphic DNA primers averaged 0.364 and ranged from 0.258 to 0.490. Primer OPF 06 showed the lowest PIC, while OPAM 14 was the highest. The average PIC of the inter-simple sequence repeat primers was 0.299, with values ranging from 0.196 to 0.401. Primer UBC 845 had the lowest PIC (0.196), while primer UCB 810 had the highest (0.401). By using the complement of Jaccard's similarity index and unweighted pair group method with arithmetic mean clustering, 5 clusters were formed with a cophenetic correlation coefficient of 0.8093, indicating an acceptable clustering consistency. However, no genotype clustering patterns agreed with the morphological data. The Anthurium genotypes investigated in this study are a germplasm source for conservational research and may be used in improvement programs for this species.

  3. Polymorphic microsatellite DNA markers for the Florida manatee (Trichechus manatus latirostris)

    Science.gov (United States)

    Pause, K.C.; Nourisson, C.; Clark, A.; Kellogg, M.E.; Bonde, R.K.; McGuire, P.M.

    2007-01-01

    Florida manatees (Trichechus manatus latirostris) are marine mammals that inhabit the coastal waters and rivers of the southeastern USA, primarily Florida. Previous studies have shown that Florida manatees have low mitochondrial DNA variability, suggesting that nuclear DNA loci are necessary for discriminatory analyses. Here we report 10 polymorphic microsatellite loci with an average of 4.2 alleles per locus, and average heterozygosity of 50.1%. These loci have been developed for use in population studies, parentage assignment, and individual identification. ?? 2007 Blackwell Publishing Ltd.

  4. Markers

    Science.gov (United States)

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  5. Mitochondrial DNA Marker EST00083 Is Not Associated with High vs. Average IQ in a German Sample.

    Science.gov (United States)

    Moises, Hans W.; Yang, Liu; Kohnke, Michael; Vetter, Peter; Neppert, Jurgen; Petrill, Stephen A.; Plomin, Robert

    1998-01-01

    Tested the association of a mitochondrial DNA marker (EST00083) with high IQ in a sample of 47 German adults with high IQ scores and 77 adults with IQs estimated at lower than 110. Results do not support the hypothesis that high IQ is associated with this marker. (SLD)

  6. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.).

    Science.gov (United States)

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-06-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.

  7. Microsatellite DNA markers for delineating population structure and kinship among the endangered Kirtland’s warbler (Dendroica kirtlandii)

    Science.gov (United States)

    TIM L. KING; MICHAEL S. EACKLES; ANNE P. HENDERSON; CAROL I. BOCETTI; DAVE CURRIE; JR WUNDERLE

    2005-01-01

    We document the isolation and characterization of 23 microsatellite DNA markers for the endangered Kirtland’s warbler (Dendroica kirtlandii), a Nearctic/Neotropical migrant passerine. This suite of markers revealed moderate to high levels of allelic diversity (averaging 7.7 alleles per locus) and heterozygosity (averaging 72%). Genotypic frequencies at 22 of 23 (95%)...

  8. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Hagen Jeffrey A

    2007-10-01

    Full Text Available Abstract Background Lung cancer is the number one cancer killer of both men and women in the United States. Three quarters of lung cancer patients are diagnosed with regionally or distantly disseminated disease; their 5-year survival is only 15%. DNA hypermethylation at promoter CpG islands shows great promise as a cancer-specific marker that would complement visual lung cancer screening tools such as spiral CT, improving early detection. In lung cancer patients, such hypermethylation is detectable in a variety of samples ranging from tumor material to blood and sputum. To date the penetrance of DNA methylation at any single locus has been too low to provide great clinical sensitivity. We used the real-time PCR-based method MethyLight to examine DNA methylation quantitatively at twenty-eight loci in 51 primary human lung adenocarcinomas, 38 adjacent non-tumor lung samples, and 11 lung samples from non-lung cancer patients. Results We identified thirteen loci showing significant differential DNA methylation levels between tumor and non-tumor lung; eight of these show highly significant hypermethylation in adenocarcinoma: CDH13, CDKN2A EX2, CDX2, HOXA1, OPCML, RASSF1, SFPR1, and TWIST1 (p-value Conclusion The identification of eight CpG island loci showing highly significant hypermethylation in lung adenocarcinoma provides strong candidates for evaluation in patient remote media such as plasma and sputum. The four most highly ranked loci, CDKN2A EX2, CDX2, HOXA1 and OPCML, which show significant DNA methylation even in stage IA tumor samples, merit further investigation as some of the most promising lung adenocarcinoma markers identified to date.

  9. Identification of mitochondrial DNA sequence variation and development of single nucleotide polymorphic markers for CMS-D8 in cotton.

    Science.gov (United States)

    Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa

    2013-06-01

    Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and

  10. The value of using DNA markers for beef bull selection in the seedstock sector.

    Science.gov (United States)

    Van Eenennaam, A L; van der Werf, J H J; Goddard, M E

    2011-02-01

    The objective of this study was to estimate the value derived from using DNA information to increase the accuracy of beef sire selection in a closed seedstock herd. Breeding objectives for commercial production systems targeting 2 diverse markets were examined using multiple-trait selection indexes developed for the Australian cattle industry. Indexes included those for both maternal (self-replacing) and terminal herds targeting either a domestic market, where steers are finished on pasture, or the export market, where steers are finished on concentrate rations in feedlots and marbling has a large value. Selection index theory was used to predict the response to conventional selection based on phenotypic performance records, and this was compared with including information from 2 hypothetical marker panels. In 1 case the marker panel explained a percentage of additive genetic variance equal to the heritability for all traits in the breeding objective and selection criteria, and in the other case to one-half of this amount. Discounted gene flow methodology was used to calculate the value derived from the use of superior bulls selected using DNA test information and performance recording over that derived from conventional selection using performance recording alone. Results were ultimately calculated as discounted returns per DNA test purchased by the seedstock operator. The DNA testing using these hypothetical marker panels increased the selection response between 29 to 158%. The value of this improvement above that obtained using traditional performance recording ranged from $89 to 565 per commercial bull, and $5,332 to 27,910 per stud bull. Assuming that the entire bull calf crop was tested to achieve these gains, the value of the genetic gain derived from DNA testing ranged from $204 to 1,119 per test. All values assumed that the benefits derived from using superior bulls were efficiently transferred along the production chain to the seedstock producer incurring

  11. Quantification of Circulating Free DNA as a Diagnostic Marker in Gall Bladder Cancer.

    Science.gov (United States)

    Kumari, Swati; Tewari, Shikha; Husain, Nuzhat; Agarwal, Akash; Pandey, Anshuman; Singhal, Ashish; Lohani, Mohtashim

    2017-01-01

    Gall bladder Carcinoma (GBC) is the fifth most common cancer of the digestive tract and frequently diagnosed in late stage of disease. Estimation of circulating free DNA (cfDNA) in serum has been applied as a "liquid biopsy" in several deep seated malignancies. Its value in diagnosis of gall bladder carcinoma has not been studied. The present study was designed to assess the role of cfDNA in the diagnosis of GBC and correlate levels with the TNM stage. Serum was collected from 34 patients with GBC and 39 age and sex matched controls including 22 cholecystitis and 17 healthy individuals. Serum cfDNA levels were measured through quantitative polymerase chain reaction (qPCR) by amplification of β-globin gene. Performance of the assay was calculated through the receiver operating characteristic (ROC) curve. The cfDNA level was significantly lower in healthy controls and cholecystitis (89.32 ± 59.76 ng/ml, 174.21 ± 99.93 ng/ml) compared to GBC (1245.91 ± 892.46 ng/ml, p = <0.001). The cfDNA level was significantly associated with TNM stage, lymph node involvement and jaundice (0.002, 0.027, and 0.041, respectively). Area under curve of ROC analysis for cancer group versus healthy and cholecystitis group was 1.00 and 0.983 with sensitivity of 100 %, 88.24 % and specificity of 100 % respectively. Quantitative analysis of cfDNA may distinguish cholecystitis and gall bladder carcinoma and may serve as new diagnostic, noninvasive marker adjunct to imaging for the diagnosis of GBC.

  12. X linked neonatal centronuclear/myotubular myopathy: evidence for linkage to Xq28 DNA marker loci.

    Science.gov (United States)

    Thomas, N S; Williams, H; Cole, G; Roberts, K; Clarke, A; Liechti-Gallati, S; Braga, S; Gerber, A; Meier, C; Moser, H

    1990-05-01

    We have studied the inheritance of several polymorphic Xq27/28 DNA marker loci in two three generation families with the X linked neonatal lethal form of centronuclear/myotubular myopathy (XL MTM). We found complete linkage of XLMTM to all four informative Xq28 markers analysed, with GCP/RCP (Z = 3.876, theta = 0.00), with DXS15 (Z = 3.737, theta = 0.00), with DXS52 (Z = 2.709, theta = 0.00), and with F8C (Z = 1.020, theta = 0.00). In the absence of any observable recombination, we are unable to sublocalise the XLMTM locus further within the Xq28 region. This evidence for an Xq28 localisation may allow us to carry out useful genetic counselling within such families.

  13. The dual challenges of generality and specificity when developing environmental DNA markers for species and subspecies of Oncorhynchus

    Science.gov (United States)

    Taylor M. Wilcox; Kellie J. Carim; Kevin S. McKelvey; Michael Young; Michael K. Schwartz

    2015-01-01

    Environmental DNA (eDNA) sampling is a powerful tool for detecting invasive and native aquatic species. Often, species of conservation interest co-occur with other, closely related taxa. Here, we developed qPCR (quantitative PCR) markers which distinguish westslope cutthroat trout (Oncorhynchus clarkii lewsi), Yellowstone cutthroat trout (O. clarkii bouvieri...

  14. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Laurent Chatre

    Full Text Available The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.

  15. Genetic Variability of Beauveria bassiana and a DNA Marker for Environmental Monitoring of a Highly Virulent Isolate Against Cosmopolites sordidus.

    Science.gov (United States)

    Ferri, D V; Munhoz, C F; Neves, P M O; Ferracin, L M; Sartori, D; Vieira, M L C; Fungaro, M H P

    2012-12-01

    The banana weevil Cosmopolites sordidus (Germar) is one of a number of pests that attack banana crops. The use of the entomopathogenic fungus Beauveria bassiana as a biological control agent for this pest may contribute towards reducing the application of chemical insecticides on banana crops. In this study, the genetic variability of a collection of Brazilian isolates of B. bassiana was evaluated. Samples were obtained from various geographic regions of Brazil, and from different hosts of the Curculionidae family. Based on the DNA fingerprints generated by RAPD and AFLP, we found that 92 and 88 % of the loci were polymorphic, respectively. The B. bassiana isolates were attributed to two genotypic clusters based on the RAPD data, and to three genotypic clusters, when analyzed with AFLP. The nucleotide sequences of nuclear ribosomal DNA intergenic spacers confirmed that all isolates are in fact B. bassiana. Analysis of molecular variance showed that variability among the isolates was not correlated with geographic origin or hosts. A RAPD-specific marker for isolate CG 1024, which is highly virulent to C. sordidus, was cloned and sequenced. Based on the sequences obtained, specific PCR primers BbasCG1024F (5'-TGC GGC TGA GGA GGA CT-3') and BbasCG1024R (5'-TGC GGC TGA GTG TAG AAC-3') were designed for detecting and monitoring this isolate in the field.

  16. DNA-based molecular markers as tools for the discovery of γ-induced mutants in cereals and soybean

    International Nuclear Information System (INIS)

    Bondarenco, E.; Bondarenco, V.; Barbacar, N.; Coretchi, L.

    2009-01-01

    γ-induced mutagenesis is one of the present techniques effective in producing crops with enhanced quality and novel properties. The fast detection of mutants can be nowadays assured by the employment of DNA-based molecular markers. Different kinds of molecular markers are being widely used all over the world to monitor DNA sequence variation and identification of desired traits. In the given paper we present a short overview of the types of molecular markers and the first steps of the attempt of their use for mutants' characterization in the Republic of Moldova (authors)

  17. Comparative polymorphism of sterlet fertilizers (Acipenser Ruthenus for microsatellite DNA markers

    Directory of Open Access Journals (Sweden)

    Ольга Олексіївна Малишева

    2015-11-01

    Full Text Available Based on microsatellite DNA markers in three (LG-19, LS-68 and LS-39 it is examined intraspecific genetic structure of sterlet fertilizers. As a result of this work it was found that this group of fish is in a balanced state in terms of the genetic polymorphism. On the basis of certain individual differences in allelic variants have been selected and combined the parental pairs for alternative genotypes. The results of the research allow optimize further work on the reproduction of sturgeon under artificial cultivation

  18. DNA landmarks for genetic relatedness and diversity assessment in Pakistani wheat genotypes using RAPD markers

    International Nuclear Information System (INIS)

    Siddiqui, M.F.; Iqbal, S.; Naz, N.; Khan, S.; Erum, S.

    2010-01-01

    DNA profiles from 10 Pakistani wheat genotypes were evaluated for diversity assessment based on RAPD markers. A total of 79 DNA fragments were generated by 10 RAPD primers, with an average of 7.9 bands primer-1. Of these, 64 fragments (81%) were polymorphic among 10 genotypes. Genetic diversity was evaluated via UPGMA cluster analysis by constructing dendrogram, which were used for the calculation of similarity coefficients between these genotypes. The greatest similarity (95%) was observed between PR-94 and PR-95, whereas PR-96 with PR-90 showed the lowest similarity (60%). Adoption of this technology would be useful to the plant protection regulatory systems, especially for plant variety identification and registration of new plant varieties, breeding programs and protection purposes. (author)

  19. DNA landmarks for genetic relatedness and diversity assessment in Pakistani wheat genotypes using RAPD markers

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, M F; Iqbal, S; Naz, N; Khan, S [Federal Seed Certification and Registration Dept., Islamabad (Pakistan); Erum, S [National Agricultural Research Centre, Islamabad (Pakistan). Plant Genetic Resources Inst.

    2010-04-15

    DNA profiles from 10 Pakistani wheat genotypes were evaluated for diversity assessment based on RAPD markers. A total of 79 DNA fragments were generated by 10 RAPD primers, with an average of 7.9 bands primer-1. Of these, 64 fragments (81%) were polymorphic among 10 genotypes. Genetic diversity was evaluated via UPGMA cluster analysis by constructing dendrogram, which were used for the calculation of similarity coefficients between these genotypes. The greatest similarity (95%) was observed between PR-94 and PR-95, whereas PR-96 with PR-90 showed the lowest similarity (60%). Adoption of this technology would be useful to the plant protection regulatory systems, especially for plant variety identification and registration of new plant varieties, breeding programs and protection purposes. (author)

  20. Toward a DNA taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae using a mixed Yule-coalescent analysis of mitochondrial and nuclear DNA.

    Directory of Open Access Journals (Sweden)

    Laurent Vuataz

    Full Text Available Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1 marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe.

  1. Analysis of relationship between tumor markers and quantification of free DNA in serum of lung cancer patients

    International Nuclear Information System (INIS)

    Yang Shunfang; Zhang Peiling; Cao Jie; Zeng Jun; Dong Qianggang

    2006-01-01

    To evaluate the diagnostic value and relationship between five tumor markers (CA19- 9,CA125,CYFRA21-1 ,CEA,NSE) and free DNA in serum for lung cancer detection and try to find a new and more efficient tumor marker, the amounts of CA19-9, CA125, CYFRA21-1, CEA, NSE were determined by RIA and free DNA was determined by the use of quantitative real time PCR amplification of the human epidermal growth factor receptor (EGFR) in 52 lung cancer patients and 8 cases of benign pulmonary disease and 10 healthy controls. The resulls showed that average concentration of free DNA in serum of lung cancer patients, benign pulmo- nary disease and healthy controls was 107.6ng/mL, 76.86ng/mL and 18.8ng/mL, respective- ly. The diagnostic sensitivity, specificity and accuracy of free DNA for lung cancer were 71. 2%, 50% and 68.3%, same as the diagnostic value of combined detection of five tumor markers. The sensitivity, specificity and accuracy of the five tumor markers and free DNA combinend detection for lung cancer were 94.2%, 25% and 85%, respectively. The free DNA in the serum of lung cancer patients may be a new and better tumor marker. (authors)

  2. DNA-based genetic markers for Rapid Cycling Brassica rapa (Fast Plants type designed for the teaching laboratory.

    Directory of Open Access Journals (Sweden)

    Eryn E. Slankster

    2012-06-01

    Full Text Available We have developed DNA-based genetic markers for rapid-cycling Brassica rapa (RCBr, also known as Fast Plants. Although markers for Brassica rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP based markers and 14 variable number tandem repeat (VNTR-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a nongenic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  3. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa

    Science.gov (United States)

    Bertola, Laura D.; Tensen, Laura; van Hooft, Pim; White, Paula A.; Driscoll, Carlos A.; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, Etotépé A.; Tumenta, Pricelia N.; Jirmo, Tuqa H.; de Snoo, Geert R.

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted. PMID:26466139

  4. DNA markers linked to the major salinity tolerance locus of traditional rice, Pokkali (abstract)

    International Nuclear Information System (INIS)

    Rehman, S.; Seraj, Z.I.; Das, D.K.; Salam, M.A.

    2005-01-01

    The major QTL for salinity tolerance traits, of the traditional rice salt tolerant benchmark Pokkali, referred to as 'Saltol' was located within a large 16cM loci of rice chromosome 1 by previous workers at IRRI. This was done by using a recombinant inbred population between Pokkali and sensitive IR29 (Total RILs=275). These workers had identified the flanking markers, RM23 and RM9, as the limits of 'Saltol'. By designing primers between these two markers, and using a subset of the same RILs, we were able to identify a 5cM region, which was completely linked to the tolerance of seedlings. Further work with a subset of another NIL population raised at IRRI between Pokkali and recurring IR29 at the BC/sub 3/F/sub 2/ stage has narrowed down the linked region to about 0.3cM, each at 4 different locations within the 5cM loc. This was done by scoring the tolerance of the seedlings and determining the percent of progeny that showed the tolerant allele at the specified maker locus. Thirty seedlings from each of 10 BC/sub 3/F/sub 2/ progeny were scored. Only the most tolerant and sensitive seedlings were used for DNA isolation and amplification. The work was derived from complex crosses involving Pokkali as the tolerance donor. Three common loci linked to salinity tolerance were found to be the same in the NILs and the breeding population. DNA markers homologous to these 3 loci will be confirmed for their ability to identify tolerant progeny in breeding populations. (author)

  5. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa.

    Science.gov (United States)

    Bertola, Laura D; Tensen, Laura; van Hooft, Pim; White, Paula A; Driscoll, Carlos A; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, Etotépé A; Tumenta, Pricelia N; Jirmo, Tuqa H; de Snoo, Geert R; de Iongh, Hans H; Vrieling, Klaas

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.

  6. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa.

    Directory of Open Access Journals (Sweden)

    Laura D Bertola

    Full Text Available The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1 West/Central Africa, 2 East Africa, 3 Southern Africa and 4 India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.

  7. Variations in the Phytophthora infestans Population in Nepal as Revealed by Nuclear and Mitochondrial DNA Polymorphisms.

    Science.gov (United States)

    Ghimire, S R; Hyde, K D; Hodgkiss, I J; Shaw, D S; Liew, E C Y

    2003-02-01

    ABSTRACT Phytophthora infestans isolates collected from potato and tomato crops from various parts of Nepal during the 1999 and 2000 crop seasons were characterized for nuclear and mitochondrial DNA polymorphisms using restriction fragment length polymorphism markers. The nuclear DNA probe RG57 detected 11 multilocus genotypes among 280 isolates. Three genotypes were detected 21 times or more, constituting 94% of the total population, whereas frequencies of other genotypes ranged from 0.004 to 0.014. The overall genotypic diversity as estimated by the Gleason index was 1.78. Most of the overall diversity was present at the highest level (i.e., interregional, 46%), indicating limited gene flow among regions. Cluster analysis of multilocus genotypes derived from RG57 and mating type data for Nepalese isolates and representative isolates worldwide showed Nepalese isolates grouping into four clusters. Characterization of 67 isolates for mitochondrial DNA polymorphisms revealed the presence of two mt-haplotypes, Ia and Ib with the proportions of 0.88 and 0.12, respectively. Polymorphisms in nuclear and mitochondrial DNA revealed a moderate level of diversity in this population. Genotype NP3 had an identical RG57 fingerprint to US1 and had mt-haplotype Ib, confirming the presence of an old population in Nepal. Most of the genotypes had a different RG57 fingerprint than that of US1 and mt-haplotype Ia, the common characteristics of new populations. The presence of a new population at high proportions in Nepal was consistent with the global trend of mt-haplotype distribution, and suggests the displacement of old populations. This study indicates at least three possible introductions of P. infestans to Nepal.

  8. Use of a D17Z1 oligonucleotide probe for human DNA quantitation prior to PCR analysis of polymorphic DNA markers

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S.; Alavaren, M.; Varlaro, J. [Roche Molecular Systems, Alameda, CA (United States)] [and others

    1994-09-01

    The alpha-satellite DNA locus D17Z1 contains primate-specific sequences which are repeated several hundred times per chromosome 17. A probe that was designed to hybridize to a subset of the D17Z1 sequence can be used for very sensitive and specific quantitation of human DNA. Sample human genomic DNA is immobilized on nylon membrane using a slot blot apparatus, and then hybridized with a biotinylated D17Z1 oligonucleotide probe. The subsequent binding of streptavidin-horseradish peroxidase to the bound probe allows for either calorimetric (TMB) or chemiluminescent (ECL) detection. Signals obtained for sample DNAs are then compared to the signals obtained for a series of human DNA standards. For either detection method, forty samples can be quantitated in less than two hours, with a sensitivity of 150 pg. As little as 20 pg of DNA can be quantitated when using chemiluminescent detection with longer film exposures. PCR analysis of several VNTR and STR markers has indicated that optimal typing results are generally obtained within a relatively narrow range of input DNA quantities. Too much input DNA can lead to PCR artifacts such as preferential amplification of smaller alleles, non-specific amplification products, and exaggeration of the DNA synthesis slippage products that are seen with STR markers. Careful quantitation of human genomic DNA prior to PCR can avoid or minimize these problems and ultimately give cleaner, more unambiguous PCR results.

  9. Filipino DNA variation at 12 X-chromosome short tandem repeat markers.

    Science.gov (United States)

    Salvador, Jazelyn M; Apaga, Dame Loveliness T; Delfin, Frederick C; Calacal, Gayvelline C; Dennis, Sheila Estacio; De Ungria, Maria Corazon A

    2018-06-08

    Demands for solving complex kinship scenarios where only distant relatives are available for testing have risen in the past years. In these instances, other genetic markers such as X-chromosome short tandem repeat (X-STR) markers are employed to supplement autosomal and Y-chromosomal STR DNA typing. However, prior to use, the degree of STR polymorphism in the population requires evaluation through generation of an allele or haplotype frequency population database. This population database is also used for statistical evaluation of DNA typing results. Here, we report X-STR data from 143 unrelated Filipino male individuals who were genotyped via conventional polymerase chain reaction-capillary electrophoresis (PCR-CE) using the 12 X-STR loci included in the Investigator ® Argus X-12 kit (Qiagen) and via massively parallel sequencing (MPS) of seven X-STR loci included in the ForenSeq ™ DNA Signature Prep kit of the MiSeq ® FGx ™ Forensic Genomics System (Illumina). Allele calls between PCR-CE and MPS systems were consistent (100% concordance) across seven overlapping X-STRs. Allele and haplotype frequencies and other parameters of forensic interest were calculated based on length (PCR-CE, 12 X-STRs) and sequence (MPS, seven X-STRs) variations observed in the population. Results of our study indicate that the 12 X-STRs in the PCR-CE system are highly informative for the Filipino population. MPS of seven X-STR loci identified 73 X-STR alleles compared with 55 X-STR alleles that were identified solely by length via PCR-CE. Of the 73 sequence-based alleles observed, six alleles have not been reported in the literature. The population data presented here may serve as a reference Philippine frequency database of X-STRs for forensic casework applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nuclear and original DNA application in Oryza taxonomy and phylogeny

    International Nuclear Information System (INIS)

    Romero, Gabriel O.

    1998-01-01

    Conventional taxonomy and phylogeny of germplasm are based on the tedious characterization of morphological variation. The ability to assay DNA variation that underlies morphological variation offers great promise as a convenient alternative for the genetic characterization of germplasm. Restriction fragment length polymorphism (RFLP) was used to survey DNA variation in 22 species of the genus Oryza. At the ribosomal DNA (rDNA) multigene family, 15 rDNA spacer length (sl) variants were identified using restriction enzyme Sst1 and wheatrDNA unit as probe. Particular sl variants predominated in certain isozyme groups of O. sativa, indicating a potential of sl ploymorphism in varietal classification. The distribution of sl variants supports the origin of O. sativa and O. nivara from O. rufipogon, and that O. spontanea arose from introgressions among O. sativa, O. nivara, and O. rufipogon. The distribution also suggests that the CCgenome, of all the genomes in the Officinalis complex, may be closest to the Sativa complex genomes, and it affirms the genetic position of the Officinalis complex intermediate between the Sativa and Ridleyi complexes. Variation at the Oryza organelle genomes was probed with a maize mitochondrial gene, atpA, a wheat chloroplast inverted repeat segment, p6. Results indicated that the complexes can be differentiated by their mitochondrial genome, but not their chloroplast genome when digested by Sst1 or BamH1. Therefore, the natural DNA variation in the nuclear and mitochondrial genomes has demonstrated great potential in complementing the conventional basis of taxa classification and phylogeny in the genus Oryza. (Author)

  11. Multi-locus DNA barcoding identifies matK as a suitable marker for species identification in Hibiscus L.

    Science.gov (United States)

    Poovitha, Sundar; Stalin, Nithaniyal; Balaji, Raju; Parani, Madasamy

    2016-12-01

    The genus Hibiscus L. includes several taxa of medicinal value and species used for the extraction of natural dyes. These applications require the use of authentic plant materials. DNA barcoding is a molecular method for species identification, which helps in reliable authentication by using one or more DNA barcode marker. In this study, we have collected 44 accessions, representing 16 species of Hibiscus, distributed in the southern peninsular India, to evaluate the discriminatory power of the two core barcodes rbcLa and matK together with the suggested additional regions trnH-psbA and ITS2. No intraspecies divergence was observed among the accessions studied. Interspecies divergence was 0%-9.6% with individual markers, which increased to 0%-12.5% and 0.8%-20.3% when using two- and three-marker combinations, respectively. Differentiation of all the species of Hibiscus was possible with the matK DNA barcode marker. Also, in two-marker combinations, only those combinations with matK differentiated all the species. Though all the three-marker combinations showed 100% species differentiation, species resolution was consistently better when the matK marker formed part of the combination. These results clearly showed that matK is more suitable when compared to rbcLa, trnH-psbA, and ITS2 for species identification in Hibiscus.

  12. Instability of plastid DNA in the nuclear genome.

    Directory of Open Access Journals (Sweden)

    Anna E Sheppard

    2009-01-01

    Full Text Available Functional gene transfer from the plastid (chloroplast and mitochondrial genomes to the nucleus has been an important driving force in eukaryotic evolution. Non-functional DNA transfer is far more frequent, and the frequency of such transfers from the plastid to the nucleus has been determined experimentally in tobacco using transplastomic lines containing, in their plastid genome, a kanamycin resistance gene (neo readymade for nuclear expression. Contrary to expectations, non-Mendelian segregation of the kanamycin resistance phenotype is seen in progeny of some lines in which neo has been transferred to the nuclear genome. Here, we provide a detailed analysis of the instability of kanamycin resistance in nine of these lines, and we show that it is due to deletion of neo. Four lines showed instability with variation between progeny derived from different areas of the same plant, suggesting a loss of neo during somatic cell division. One line showed a consistent reduction in the proportion of kanamycin-resistant progeny, suggesting a loss of neo during meiosis, and the remaining four lines were relatively stable. To avoid genomic enlargement, the high frequency of plastid DNA integration into the nuclear genome necessitates a counterbalancing removal process. This is the first demonstration of such loss involving a high proportion of recent nuclear integrants. We propose that insertion, deletion, and rearrangement of plastid sequences in the nuclear genome are important evolutionary processes in the generation of novel nuclear genes. This work is also relevant in the context of transgenic plant research and crop production, because similar processes to those described here may be involved in the loss of plant transgenes.

  13. Extraction of Total DNA and RNA from Marine Filter Samples and Generation of a cDNA as Universal Template for Marker Gene Studies.

    Science.gov (United States)

    Schneider, Dominik; Wemheuer, Franziska; Pfeiffer, Birgit; Wemheuer, Bernd

    2017-01-01

    Microbial communities play an important role in marine ecosystem processes. Although the number of studies targeting marker genes such as the 16S rRNA gene has been increased in the last few years, the vast majority of marine diversity is rather unexplored. Moreover, most studies focused on the entire bacterial community and thus disregarded active microbial community players. Here, we describe a detailed protocol for the simultaneous extraction of DNA and RNA from marine water samples and for the generation of cDNA from the isolated RNA which can be used as a universal template in various marker gene studies.

  14. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    Science.gov (United States)

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  15. DNA Length Modulates the Affinity of Fragments of Genomic DNA for the Nuclear Matrix In Vitro.

    Science.gov (United States)

    García-Vilchis, David; Aranda-Anzaldo, Armando

    2017-12-01

    Classical observations have shown that during the interphase the chromosomal DNA of metazoans is organized in supercoiled loops attached to a compartment known as the nuclear matrix (NM). Fragments of chromosomal DNA able to bind the isolated NM in vitro are known as matrix associated/attachment/addressed regions or MARs. No specific consensus sequence or motif has been found that may constitute a universal, defining feature of MARs. On the other hand, high-salt resistant DNA-NM interactions in situ define true DNA loop anchorage regions or LARs, that might correspond to a subset of the potential MARs but are not necessarily identical to MARs characterized in vitro, since there are several examples of MARs able to bind the NM in vitro but which are not actually bound to the NM in situ. In the present work we assayed the capacity of two LARs, as well as of shorter fragments within such LARs, for binding to the NM in vitro. Paradoxically the isolated (≈2 kb) LARs cannot bind to the NM in vitro while their shorter (≈300 pb) sub-fragments and other non-related but equally short DNA fragments, bind to the NM in a high-salt resistant fashion. Our results suggest that the ability of a given DNA fragment for binding to the NM in vitro primarily depends on the length of the fragment, suggesting that binding to the NM is modulated by the local topology of the DNA fragment in suspension that it is known to depend on the DNA length. J. Cell. Biochem. 118: 4487-4497, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Fascioliasis transmission by Lymnaea neotropica confirmed by nuclear rDNA and mtDNA sequencing in Argentina.

    Science.gov (United States)

    Mera y Sierra, Roberto; Artigas, Patricio; Cuervo, Pablo; Deis, Erika; Sidoti, Laura; Mas-Coma, Santiago; Bargues, Maria Dolores

    2009-12-03

    Fascioliasis is widespread in livestock in Argentina. Among activities included in a long-term initiative to ascertain which are the fascioliasis areas of most concern, studies were performed in a recreational farm, including liver fluke infection in different domestic animal species, classification of the lymnaeid vector and verification of natural transmission of fascioliasis by identification of the intramolluscan trematode larval stages found in naturally infected snails. The high prevalences in the domestic animals appeared related to only one lymnaeid species present. Lymnaeid and trematode classification was verified by means of nuclear ribosomal DNA and mitochondrial DNA marker sequencing. Complete sequences of 18S rRNA gene and rDNA ITS-2 and ITS-1, and a fragment of the mtDNA cox1 gene demonstrate that the Argentinian lymnaeid belongs to the species Lymnaea neotropica. Redial larval stages found in a L. neotropica specimen were ascribed to Fasciola hepatica after analysis of the complete ITS-1 sequence. The finding of L. neotropica is the first of this lymnaeid species not only in Argentina but also in Southern Cone countries. The total absence of nucleotide differences between the sequences of specimens from Argentina and the specimens from the Peruvian type locality at the levels of rDNA 18S, ITS-2 and ITS-1, and the only one mutation at the mtDNA cox1 gene suggest a very recent spread. The ecological characteristics of this lymnaeid, living in small, superficial water collections frequented by livestock, suggest that it may be carried from one place to another by remaining in dried mud stuck to the feet of transported animals. The presence of L. neotropica adds pronounced complexity to the transmission and epidemiology of fascioliasis in Argentina, due to the great difficulties in distinguishing, by traditional malacological methods, between the three similar lymnaeid species of the controversial Galba/Fossaria group present in this country: L. viatrix

  17. Development of Insertion and Deletion Markers for Bottle Gourd Based on Restriction Site-associated DNA Sequencing Data

    Directory of Open Access Journals (Sweden)

    Xinyi WU

    2017-01-01

    Full Text Available Bottle gourd is an important cucurbit crop worldwide. To provide more available molecular markers for this crop, a bioinformatic approach was employed to develop insertion–deletions (InDels markers in bottle gourd based on restriction site-associated DNA sequencing (RAD-Seq data. A total of 892 Indels were predicted, with the length varying from 1 bp to 167 bp. Single-nucleotide InDels were the predominant types of InDels. To validate these InDels, PCR primers were designed from 162 loci where InDels longer than 2 bp were predicated. A total of 112 InDels were found to be polymorphic among 9 bottle gourd accessions under investigation. The rate of prediction accuracy was thus at a high level of 72.7%. DNA fingerprinting for 4 cultivars were performed using 8 selected Indels markers, demonstrating the usefulness of these markers.

  18. Nuclear transfer to prevent mitochondrial DNA disorders : revisiting the debate on reproductive cloning

    NARCIS (Netherlands)

    Bredenoord, A. L.; Dondorp, W.; Pennings, G.; De Wert, G.

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount

  19. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-Rich DNA, and nuclear DNA analyses

    Science.gov (United States)

    Freeman, S.; Pham, M.; Rodriguez, R.J.

    1993-01-01

    Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.

  20. Nuclear DNA contents of Echinchloa crus-galli and its Gaussian relationships with environments

    Science.gov (United States)

    Li, Dan-Dan; Lu, Yong-Liang; Guo, Shui-Liang; Yin, Li-Ping; Zhou, Ping; Lou, Yu-Xia

    2017-02-01

    Previous studies on plant nuclear DNA content variation and its relationships with environmental gradients produced conflicting results. We speculated that the relationships between nuclear DNA content of a widely-distributed species and its environmental gradients might be non-linear if it was sampled in a large geographical gradient. Echinochloa crus-galli (L.) P. Beauv. is a worldwide species, but without documents on its intraspecific variation of nuclear DNA content. Our objectives are: 1) to detect intraspecific variation scope of E. crus-galli in its nuclear DNA content, and 2) to testify whether nuclear DNA content of the species changes with environmental gradients following Gaussian models if its populations were sampled in a large geographical gradient. We collected seeds of 36 Chinese populations of E. crus-galli across a wide geographical gradient, and sowed them in a homogeneous field to get their offspring to determine their nuclear DNA content. We analyzed the relationships of nuclear DNA content of these populations with latitude, longitude, and nineteen bioclimatic variables by using Gaussian and linear models. (1) Nuclear DNA content varied from 2.113 to 2.410 pg among 36 Chinese populations of E. crus-galli, with a mean value of 2.256 pg. (2) Gaussian correlations of nuclear DNA content (y) with geographical gradients were detected, with latitude (x) following y = 2.2923*e -(x - 24.9360)2/2*63.79452 (r = 0.546, P correlations of its Nuclear DNA content with geographical and most bioclimatic gradients.

  1. Recombinant DNA in Cambridge: lessons for nuclear energy

    International Nuclear Information System (INIS)

    Federow, H.

    1977-09-01

    The 1976 experience of Cambridge, Massachusetts, in settling the recombinant DNA research issue is unique in recent history as the first instance of essentially lay panels judging the conduct of scientific research. Furthermore, because the panel was composed of citizens who would be affected by the research, the experience suggests a model for conflict resolution in other areas of public controversy. With one of these, nuclear energy, the controversy has two important points in common: although the primary burden of any accident would be borne by the local community, benefits of the DNA research or reactor operation accrue to a much broader range of people; and in both issues there is a need to resolve the question, ''How safe is safe enough.'' It is therefore proposed that a panel similar to the Cambridge one could be established to deal with the controversy surrounding a proposed nuclear plant. In any community where there was such controversy, a panel could be convened to assess whether the plant was acceptable to that community. Such a panel would be composed of members of the community who were not affected directly by the plant. It would also have to have a restricted range of inquiry, oriented toward the specifics of the proposed plant. Such a plant review panel, under properly designed procedures, could change the licensing process to one concerned solely with safety and provide an appropriate forum for issues concerning the acceptability of nuclear power

  2. Analysis of the distribution of DNA repair patches in the DNA-nuclear matrix complex from human cells

    International Nuclear Information System (INIS)

    Mullenders, L.H.F.

    1983-01-01

    The distribution of ultraviolet-induced repair patches along DNA loops attached to the nuclear matrix, was investigated by digestion with DNA-degrading enzymes and neutral sucrose gradient centrifugation. When DNA was gradually removed by DNAase 1, pulse label incorporated by ultraviolet-irradiated cells during 10 min in the presence of hydroxyurea or hydroxyurea/arabinosylcytosine showed similar degradation kinetics as prelabelled DNA. No preferential association of pulse label with the nuclear matrix was observed, neither within 30 min nor 13 h after iiradiation. When the pulse label was incorporated by replicative synthesis under the same conditions, a preferential association of newly-synthesized DNA with the nuclear matrix was observed. Single-strand specific digestion with nuclease S 1 of nuclear lysates from ultraviolet-irradiated cells, pulse labelled in the presence of hydroxyurea/arabinosylcytosine, caused a release of about 70% of the prelabelled DNA and 90% of the pulse-labelled DNA from the rapidly sedimenting material in sucrose gradients. The results suggest no specific involvement of the nuclear matrix in repair synthesis, a random distribution of repair patches along the DNA loops, and simultaneously multiple incision events per DNA loop. (Auth.)

  3. Analysis of the distribution of DNA repair patches in the DNA-nuclear matrix complex from human cells

    Energy Technology Data Exchange (ETDEWEB)

    Mullenders, L.H.F. (Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica en Chemische Mutagenese); Zeeland, A.A. van; Natarajan, A.T. (Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1983-09-09

    The distribution of ultraviolet-induced repair patches along DNA loops attached to the nuclear matrix, was investigated by digestion with DNA-degrading enzymes and neutral sucrose gradient centrifugation. When DNA was gradually removed by DNAase 1, pulse label incorporated by ultraviolet-irradiated cells during 10 min in the presence of hydroxyurea or hydroxyurea/arabinosylcytosine showed similar degradation kinetics as prelabelled DNA. No preferential association of pulse label with the nuclear matrix was observed, neither within 30 min nor 13 h after irradiation. When the pulse label was incorporated by replicative synthesis under the same conditions, a preferential association of newly-synthesized DNA with the nuclear matrix was observed. Single-strand specific digestion with nuclease S/sub 1/ of nuclear lysates from ultraviolet-irradiated cells, pulse labelled in the presence of hydroxyurea/arabinosylcytosine, caused a release of about 70% of the prelabelled DNA and 90% of the pulse-labelled DNA from the rapidly sedimenting material in sucrose gradients. The results suggest no specific involvement of the nuclear matrix in repair synthesis, a random distribution of repair patches along the DNA loops, and simultaneously multiple incision events per DNA loop.

  4. [Norrie syndrome: identification of carriers by segregation analysis with flanking DNA markers].

    Science.gov (United States)

    Körner, J; Uhlhaas, S; Neugebauer, M; Gal, A

    1989-01-01

    Norrie disease is an X-linked recessive disorder. Affected males present with congenital blindness. Additionally, hearing loss and psychotic behavior may occur at any time. Since carriers are clinically healthy, they can only be identified by genetic means. Daughters of carriers or sisters of affected males have an à priori 50% risk of being carriers themselves. Close linkage has been found between the Norrie disease locus (NDP) and the DNA locus DXS7 mapped to Xp11.3. For genetic counselling, this linkage relationship allows carriers of the disease to be identified in informative families. We describe a large pedigree with Norrie disease. Segregation analysis was carried out with DXS7 and a second flanking marker, DXS255, both linked to NDP. In this way, three females at risk were identified who had a high probability of being carriers for Norrie disease.

  5. Karyotype and nuclear DNA content of Trichomycterus areolatus (Siluriformes, Trichomycteridae

    Directory of Open Access Journals (Sweden)

    Nelson Colihueque

    2006-01-01

    Full Text Available Cytogenetic analysis of Trichomycterus areolatus, collected from the Tijeral and Huilma Rivers in southern Chile has shown a diploid chromosome number of 2n = 54, a fundamental number of FN = 106, and a karyotypic formula of 44m + 8sm + 2st. Intra-individual polymorphism of chromosome number (2n = 54, 55 and 56 in specimens from the Huilma River has also been documented, providing further evidence of the occurrence of this phenomenon in Trichomycterus. The karyotype exhibited large chromosome pairs: metacentric pairs 1 (relative length 7.54%, 2 (5.75% and 3 (5.09%, submetacentric pair 23 (5.25%, and subtelocentic pair 27 (5.28%. Nuclear DNA content analysis showed an average value of 5.04 ± 1.09 pg/nucleus. This DNA content is higher than the mean value described for other species in this genus.

  6. Species delineation and hybrid identification using diagnostic nuclear markers for Plectropomus leopardus and Plectropomus maculatus

    KAUST Repository

    He, Song

    2018-06-01

    Diagnostic molecular markers are an essential tool in the study of species’ ecology and evolution, particularly in closely related and sympatric species. Furthermore, the increasing awareness of wild-hybrids has led to a renewed interest in rapid diagnostic assays. Here, we test the ability of two mitochondrial (Cytb and COI) and two nuclear markers (ETS2 and TMO-4c4) to confidently discriminate purebred P. leopardus and P. maculatus and their first-generation hybrids. A sample of 48 purebred individuals and 91 interspecific hybrids were used in this study and their delineation confirmed using a set of microsatellite markers. Our results indicate mitochondrial markers could not distinguish even between species but both nuclear markers confidently identified species and first-generation hybrids. However, later-generation hybrids could not always be confidently identified due to on-going introgression between species. Our findings provide a robust tool to distinguish purebred individuals and interspecific hybrids in a pair of species with an unexpectedly high incidence of hybridization. The quick species discrimination abilities provided by these diagnostic markers are important for stock assessment and recruitment studies of these important fishery species.

  7. Species delineation and hybrid identification using diagnostic nuclear markers for Plectropomus leopardus and Plectropomus maculatus

    KAUST Repository

    He, Song; Harrison, Hugo B.; Berumen, Michael L.

    2018-01-01

    Diagnostic molecular markers are an essential tool in the study of species’ ecology and evolution, particularly in closely related and sympatric species. Furthermore, the increasing awareness of wild-hybrids has led to a renewed interest in rapid diagnostic assays. Here, we test the ability of two mitochondrial (Cytb and COI) and two nuclear markers (ETS2 and TMO-4c4) to confidently discriminate purebred P. leopardus and P. maculatus and their first-generation hybrids. A sample of 48 purebred individuals and 91 interspecific hybrids were used in this study and their delineation confirmed using a set of microsatellite markers. Our results indicate mitochondrial markers could not distinguish even between species but both nuclear markers confidently identified species and first-generation hybrids. However, later-generation hybrids could not always be confidently identified due to on-going introgression between species. Our findings provide a robust tool to distinguish purebred individuals and interspecific hybrids in a pair of species with an unexpectedly high incidence of hybridization. The quick species discrimination abilities provided by these diagnostic markers are important for stock assessment and recruitment studies of these important fishery species.

  8. The alkaline comet assay as a biomarker of primary DNA damage in peripheral blood leukocytes of nuclear medicine personnel

    International Nuclear Information System (INIS)

    Kopjar, N.; Garaj-Vrhovac, V.

    2003-01-01

    The aim of this study was to assess whether occupational exposure to chronic low doses of ionizing radiation in nuclear medicine departments may lead to genotoxicity. The alkaline comet assay was selected as a bio-marker of exposure to evaluate the levels of primary DNA damage in peripheral blood leukocytes of exposed and corresponding control subjects. Statistically significant differences were found between comet tail length and tail moment values measured in leukocytes from the exposed and control groups. Within exposed group significant inter-individual differences in DNA damage were assessed, indicating different genome sensitivity. In majority of exposed subjects the levels of DNA damage were in positive correlation with the duration of occupational exposure, while the influences of age and dosimeter readings could be excluded. However, the levels of primary DNA damage detected both in control and exposed subjects were significantly influenced by smoking. The present study indicates the possibility of genotoxic risks related to occupational exposure in nuclear medicine departments. Therefore, the exposed personnel should carefully apply the radiation protection procedures to minimize, as low as possible, radiation exposure to avoid possible genotoxic effects. According to results obtained, the alkaline comet assay could be usefully applied as a sensitive additional bio-marker in the regular health screening of workers occupationally exposed to low doses of ionizing radiation. (authors)

  9. Establishment of dna fingerprinting in clonal tea improved cultivars from yunnan of china using issr markers

    International Nuclear Information System (INIS)

    Liu, B.Y.; Zhao, C.M.; Sun, X.M.; Jiang, H.B.

    2015-01-01

    In this study, DNA fingerprints were constructed by using ISSR markers for 20 clonal improved varieties developed by two breeding institutes in Yunnan province. Seven core ISSR primers were selected from 15 primers. A total of 110 bands were generated by PAGE with seven core primers, 93 of which were polymorphic bands, the percentage of polymorphic band (PPB) was 84.54%, and the mean value of polymorphism information content (PIC) reached 0.417; the genetic similarity coefficient of the cultivars was 0.574-0.854. The two primers, UBC835 and ISSR2, had high PIC values, and could be used to distinguish all cultivars, presenting the most efficient single primers. Among the all of primer combinations from the seven core primers, the three combinations, UBC835/UBC811, UBC835/ISSR2, and UBC835/ISSR3 showed lower similar coefficients, and more efficient in identifying the 20 improved varieties than the other primer combinations. Then these three primer combinations were further scored in 15 traditional cultivars. The results showed that UBC835/ISSR2 was the optimal primer combination, which could be used to distinguish each material among the 20 clonal improved varieties and 15 traditional cultivals. Finally, the DNA fingerprints of the 20 clonal improved varieties were constructed based on country and region code, breeding institute, core primer name and ISSR marker data. The established fingerprints could provide reliable scientific base for the protection of intellectual property right for these clonal improved varieties, and the important molecular information contained in these fingerprints would be useful for the authenticity identification and genetic relationship analysis of tea varieties. (author)

  10. Assessment of four molecular markers as potential DNA barcodes for red algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta).

    Science.gov (United States)

    Tan, Ji; Lim, Phaik-Eem; Phang, Siew-Moi; Hong, Dang Diem; Sunarpi, H; Hurtado, Anicia Q

    2012-01-01

    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.

  11. DNA fingerprinting and diversity analysis in Aus genotypes using microsatellite markers

    Directory of Open Access Journals (Sweden)

    MD. MONIRUL ISLAM

    2015-08-01

    Full Text Available DNA fingerprinting and genetic diversity of 94 Aus (6 BRRI released Aus variety and 88 local Aus landraces genotypes were carried out to protect the Aus landraces from biopiracy. A total of 91 microsatellite markers were tested for screening the genotypes. Among 91 amplified products, 56% have polymorphic bands giving 195 alleles. The number of alleles per locus ranged from four (RM25 and RM147 to twenty seven (RM519, where average allele number was 9.76. The Polymorphism Information Contents (PIC lied between 0.455 (RM5 to 0.934 (RM519. Most robust marker was found RM519 since it provided the highest PIC value (0.934. Pair-wise genetic dissimilarity co-efficient showed the lowest genetic dissimilarity was found BRRI dhan42 and BRRI dhan43 and the highest genetic dissimilarity was found local landraces each other. Here it is shown that most Aus landraces is recognized to have broad genetic base. Thus it is recommended to use these landraces for future breeding program or include new and untouched local landraces to incorporate new genes and broaden genetic base.

  12. Investigation of the somaclonal and mutagen induced variability in barley by the application of protein and DNA markers

    International Nuclear Information System (INIS)

    Atanassov, A.; Todorovska, E.; Trifonova, A.; Petrova, M.; Marinova, E.; Gramatikova, M.; Valcheva, D.; Zaprianov, S.; Mersinkov, N.

    1998-01-01

    Barley, Hordeum vulgare L., is one of the most important crop species for Bulgaria. The characterisation of the genetic pool is of great necessity for the Bulgarian barley breeding programme which is directed toward improving quantitative and qualitative traits. Molecular markers [protein, restriction fragment length polymorphisms (RFLP) and randomly amplified polymorphic DNA (RAPD)] have been applied to characterise the Bulgarian barley cultivars and their regenerants. The changes in DNA loci coding for 26S, 5.8S and 18S rRNA repeats, C hordein locus and mitochondrial DNA organisation have been investigated. The potential for ribosomal DNA length polymorphism in Bulgarian barley cultivars appear to be limited to three different repeat lengths (10.2, 9.5 and 9.0kb) and three plant rDNA phenotypes. Polymorphism was not observed in ribosomal DNA repeat units in somaclonal variants. Variation concerning C hordein electrophoretic pattern was observed in one line from cultivar Jubiley. Analysis of the HorI locus reveals RFLPs in sequences coding for C hordeins in this line. Mitochondrial molecular markers are convenient for detection of DNA polymorphisms in the variant germplasm as well as for the somaclonal variants derived from it. Two lines from Ruen revealed polymorphic bands after hybridisation with mitochondrial DNA probe. RAPD assays have been carried out by using 20 different 10-mer primers. Heritable polymorphism in several tissue culture derived (TCD) lines was observed. RAPD assay is a sensitive and representative approach to distinguish the variability created by tissue culture and mutagenesis

  13. Consequences of low birthweight on urinary excretion of DNA markers of oxidative stress in young men

    DEFF Research Database (Denmark)

    Hillestrøm, P R; Weimann, A; Jensen, C B

    2006-01-01

    OBJECTIVE: Low birthweight (LBW) has been associated with an increased risk of development of type 2 diabetes in adult life. Both type 1 and type 2 diabetes mellitus are characterized by increased oxidative stress. The purpose of this study was to investigate whether young healthy adults born...... with LBW showed differences in oxidative stress under normal conditions and during the added challenge of a physiological Intralipid infusion. MATERIAL AND METHODS: Urinary excretion of DNA markers of oxidative stress were analyzed by LC-MS/MS in 19 men (aged 19 years) with LBW and in 19 age matched...... with LBW and NBW (66.9 versus 73.9 nmol/15 h, 17.8 versus 18.5 nmol/15 h, 11.9 versus 14.4 nmol/15 h and 44.0 versus 43.2 pmol/15 h, respectively). Furthermore, Intralipid infusion did not affect excretion of DNA adducts in LBW or NBW subjects. Statistically significant correlations were found between body...

  14. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    Science.gov (United States)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-09-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  15. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers.

    Science.gov (United States)

    Pavan-Kumar, A; Gireesh-Babu, P; Babu, P P Suresh; Jaiswar, A K; Hari Krishna, V; Prasasd, K Pani; Chaudhari, Aparna; Raje, S G; Chakraborty, S K; Krishna, Gopal; Lakra, W S

    2014-01-01

    The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.

  16. Development of polymorphic genic-SSR markers by cDNA library sequencing in boxwood, Buxus spp. (Buxaceae)

    Science.gov (United States)

    Genic microsatellites or simple sequence repeat (genic-SSR) markers were developed in boxwood (Buxus taxa) for genetic diversity analysis, identification of taxa, and to facilitate breeding. cDNA libraries were developed from mRNA extracted from leaves of Buxus sempervirens ‘Vardar Valley’ and seque...

  17. Serum ALT levels as a surrogate marker for serum HBV DNA levels in HBeAg-negative pregnant women.

    Science.gov (United States)

    Sangfelt, Per; Von Sydow, Madeleine; Uhnoo, Ingrid; Weiland, Ola; Lindh, Gudrun; Fischler, Björn; Lindgren, Susanne; Reichard, Olle

    2004-01-01

    In Stockholm, Sweden, the majority of pregnant women positive for hepatitis B surface antigen (HBsAg) are hepatitis Be antigen (HBeAg) negative. Newborns to HBeAg positive mothers receive vaccination and hepatitis B immunoglobulin (HBIg). Newborns to HBeAg negative mothers receive vaccine and HBIg only if the mothers have elevated ALT levels. The aim of this study was to retrospectively evaluate ALT levels as a surrogate marker for HBV DNA levels in HBeAg negative carrier mothers. Altogether 8947 pregnant women were screened for HBV markers from 1999 to 2001 at the Virology Department, Karolinska Hospital. Among mothers screened 192 tested positive for HBsAg (2.2%). 13 of these samples could not be retrieved. Of the remaining 179 sera, 8 (4%) tested positive for HBeAg and 171 (95.5%) were HBeAg negative. Among the HBeAg negative mothers, 9 had HBV DNA levels > 10(5) copies/ml, and of these 7 had normal ALT levels indicating low sensitivity of an elevated ALT level as a surrogate marker for high HBV DNA level. Furthermore, no correlation was found between ALT and HBV DNA levels. Hence, it is concluded that the use of ALT as a surrogate marker for high viral replication in HBeAg negative mothers could be questioned.

  18. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer.

    Science.gov (United States)

    Srirattana, Kanokwan; St John, Justin C

    2018-05-08

    We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.

  19. Development and small-scale validation of a novel pigeon-associated mitochondrial DNA source tracking marker for the detection of fecal contamination in harvested rainwater.

    Science.gov (United States)

    Waso, M; Khan, S; Khan, W

    2018-02-15

    The current study was aimed at designing and validating (on a small-scale) a novel pigeon mitochondrial DNA (mtDNA) microbial source tracking (MST) marker for the detection of pigeon fecal matter in harvested rainwater. The pigeon mtDNA MST marker was designed to target the mtDNA Cytochrome b gene by employing mismatch amplification mutation assay kinetics. The pigeon marker was validated by screening 69 non-pigeon and 9 pigeon fecal samples. The host-sensitivity of the assay was determined as 1.00 while the host-specificity of the assay was 0.96. Harvested rainwater samples (n=60) were screened for the prevalence of the marker with the mtDNA Cytochrome b marker detected in 78% of the samples. Bayes' theorem was applied to calculate the conditional probability of the marker detecting true pigeon contamination and the marker subsequently displayed a 99% probability of detecting true pigeon contamination in the harvested rainwater samples. In addition, the mtDNA Cytochrome b marker displayed high concurrence frequencies versus heterotrophic bacteria (78.3%), E. coli (73.3%), total coliforms (71.1%) and fecal coliforms (66.7%). This study thus validates that targeting mtDNA for the design of source tracking markers may be a valuable tool to detect avian fecal contamination in environmental waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A suite of microsatellite markers optimized for amplification of DNA from Addax (Addax nasomaculatus) blood preserved on FTA cards.

    Science.gov (United States)

    Heim, Brett C; Ivy, Jamie A; Latch, Emily K

    2012-01-01

    The addax (Addax nasomaculatus) is a critically endangered antelope that is currently maintained in zoos through regional, conservation breeding programs. As for many captive species, incomplete pedigree data currently impedes the ability of addax breeding programs to confidently manage the genetics of captive populations and to select appropriate animals for reintroduction. Molecular markers are often used to improve pedigree resolution, thereby improving the long-term effectiveness of genetic management. When developing a suite of molecular markers, it is important to consider the source of DNA, as the utility of markers may vary across DNA sources. In this study, we optimized a suite of microsatellite markers for use in genotyping captive addax blood samples collected on FTA cards. We amplified 66 microsatellite loci previously described in other Artiodactyls. Sixteen markers amplified a single product in addax, but only 5 of these were found to be polymorphic in a sample of 37 addax sampled from a captive herd at Fossil Rim Wildlife Center in the US. The suite of microsatellite markers developed in this study provides a new tool for the genetic management of captive addax, and demonstrates that FTA cards can be a useful means of sample storage, provided appropriate loci are used in downstream analyses. © 2011 Wiley Periodicals, Inc.

  1. Use of RAPD marker for identification of DNA polymorphism in gamma rays treated Jatropha Curcas L

    International Nuclear Information System (INIS)

    Dhakshanamoorthy, Dharman; Selvaraj, Radhakrishnan

    2010-01-01

    The aim of this study is to examine the discriminatory power of random amplified polymorphic DNA (RAPD) marker in Jatropha curcas, and to determine the effect of various dose exposures (0, 5, 10, f, 20 and 25 Kr) of gamma rays on J. curcas, at molecular level. All the ten random primers used produced reproducible polymorphic bands. PCR products of mutant genome revealed a total of 40 bands, out of which 27 were polymorphic. Polymorphism information content (PIC) values were ranged from 0.00 to 0.40 and the highest PIC value of 0.40 was observed in primer OPU-13 followed by primers OPAL-II and OPT-18 (0.30) while no PIC value were reported in primers OPH-18 and OPM-13. Jaccard's coefficient of similarity varied from 0.476 to 0.723, indicative of high level of genetic variation among the mutants studied. UPGMA cluster analysis indicated three distinct clusters, one comprising control while the second included four mutants viz., 10, 15, 25 and 20 Kr. The mutant 5 Kr remained distinct and formed third cluster indicating its higher genetic diversity from the rest of the mutants and control. The primer OPU-13 produced maximum number of bands (8) showed highest discriminatory power and PIC (0.40) by showing maximum number of polymorphic bands (5) when compared to other primers used. The study reveals that RAPD molecular markers can be used to assess polymorphism among the mutants and can be a useful tool to supplement the distinctness, uniformity and stability analysis for plant varietal identification and protection. (author)

  2. Use of RAPD marker for identification of DNA polymorphism in gamma rays treated Jatropha Curcas L

    Energy Technology Data Exchange (ETDEWEB)

    Dhakshanamoorthy, Dharman; Selvaraj, Radhakrishnan [Department of Botany, Annamalai University, Annamalainagar (India)

    2010-07-15

    The aim of this study is to examine the discriminatory power of random amplified polymorphic DNA (RAPD) marker in Jatropha curcas, and to determine the effect of various dose exposures (0, 5, 10, f, 20 and 25 Kr) of gamma rays on J. curcas, at molecular level. All the ten random primers used produced reproducible polymorphic bands. PCR products of mutant genome revealed a total of 40 bands, out of which 27 were polymorphic. Polymorphism information content (PIC) values were ranged from 0.00 to 0.40 and the highest PIC value of 0.40 was observed in primer OPU-13 followed by primers OPAL-II and OPT-18 (0.30) while no PIC value were reported in primers OPH-18 and OPM-13. Jaccard's coefficient of similarity varied from 0.476 to 0.723, indicative of high level of genetic variation among the mutants studied. UPGMA cluster analysis indicated three distinct clusters, one comprising control while the second included four mutants viz., 10, 15, 25 and 20 Kr. The mutant 5 Kr remained distinct and formed third cluster indicating its higher genetic diversity from the rest of the mutants and control. The primer OPU-13 produced maximum number of bands (8) showed highest discriminatory power and PIC (0.40) by showing maximum number of polymorphic bands (5) when compared to other primers used. The study reveals that RAPD molecular markers can be used to assess polymorphism among the mutants and can be a useful tool to supplement the distinctness, uniformity and stability analysis for plant varietal identification and protection. (author)

  3. Nuclear routing networks span between nuclear pore complexes and genomic DNA to guide nucleoplasmic trafficking of biomolecules

    Science.gov (United States)

    Malecki, Marek; Malecki, Bianca

    2012-01-01

    In health and disease, biomolecules, which are involved in gene expression, recombination, or reprogramming have to traffic through the nucleoplasm, between nuclear pore complexes (NPCs) and genomic DNA (gDNA). This trafficking is guided by the recently revealed nuclear routing networks (NRNs). In this study, we aimed to investigate, if the NRNs have established associations with the genomic DNA in situ and if the NRNs have capabilities to bind the DNA de novo. Moreover, we aimed to study further, if nucleoplasmic trafficking of the histones, rRNA, and transgenes’ vectors, between the NPCs and gDNA, is guided by the NRNs. We used Xenopus laevis oocytes as the model system. We engineered the transgenes’ DNA vectors equipped with the SV40 LTA nuclear localization signals (NLS) and/or HIV Rev nuclear export signals (NES). We purified histones, 5S rRNA, and gDNA. We rendered all these molecules superparamagnetic and fluorescent for detection with nuclear magnetic resonance (NMR), total reflection x-ray fluorescence (TXRF), energy dispersive x-ray spectroscopy (EDXS), and electron energy loss spectroscopy (EELS). The NRNs span between the NPCs and genomic DNA. They form firm bonds with the gDNA in situ. After complete digestion of the nucleic acids with the RNases and DNases, the newly added DNA - modified with the dNTP analogs, bonds firmly to the NRNs. Moreover, the NRNs guide the trafficking of the DNA transgenes’ vectors - modified with the SV40 LTA NLS, following their import into the nuclei through the NPCs. The pathway is identical to that of histones. The NRNs also guide the trafficking of the DNA transgenes’ vectors, modified with the HIV Rev NES, to the NPCs, followed by their export out of the nuclei. Ribosomal RNAs follow the same pathway. To summarize, the NRNs are the structures connecting the NPCs and the gDNA. They guide the trafficking of the biomolecules between the NPCs and the gDNA. PMID:23275893

  4. γH2AX foci as a marker for DNA double-strand breaks

    International Nuclear Information System (INIS)

    Deckbar, Dorothee

    2009-01-01

    Full text: The DNA double-strand break (DSB) is the most deleterious lesion of all DNA damages. Left unrepaired or being mis-rejoined it can lead to chromosome aberrations which compromise the genomic stability and carry the potential to initiate carcinogenesis. So DSB repair mechanisms are under intensive investigation for many years. As older techniques had to utilize non-physiological doses to monitor DSB repair, they did not allow repair studies on the cellular level or after in vivo irradiation. But during the last years, an upcoming method allows the detection of a single DSB after physiologically relevant doses. To maintain the genomic integrity after the occurrence of a DSB, cellular mechanisms have evolved that detect and repair DSBs and even halt cell cycle progression to provide time for repair. In these processes, one of the first steps is the phosphorylation of the histone H2AX at serine 139 (γH2AX). Within minutes after DSB induction, large numbers of H2AX molecules are phosphorylated around the break site leading to the accumulation of proteins involved in chromatin remodelling, to damage signal amplification, and eventually to checkpoint activation and DSB repair. The finding that DSB-surrounding proteins can be visualized as foci in immunofluorescence microscopy opened up new opportunities in cancer biology and radiation biology. It was now for the first time possible to measure DSB repair after physiologically relevant doses of ionizing radiation, i.e. after doses used for therapeutic as well as for diagnostic purposes. First reports even describe the measurement of DSB repair after in vivo irradiation in mice and humans. This did not only improve the basic research investigating the mechanisms of DSB repair but also the research on low-dose effects and radiation protection. So the potential of γH2AX foci analysis as a predictive marker for radiosensitivity or radiation induced side effects is actually discussed. (author)

  5. [Genetic variability and differentiation of three Russian populations of yellow potato cyst nematode Globodera rostochiensis as revealed by nuclear markers].

    Science.gov (United States)

    Khrisanfova, G G; Kharchevnikov, D A; Popov, I O; Zinov'eva, S V; Semenova, S K

    2008-05-01

    Genetic variability of yellow potato cyst nematode G. rostochiensis from three Russian populations (Karelia, Vladimir oblast, and Moscow oblast) was investigated using two types of nuclear markers. Using RAPD markers identified with the help of six random primers (P-29, OPA-10, OPT-14, OPA-11, OPB-11, and OPH-20), it was possible to distinguish Karelian population from the group consisting of the populations from two adjacent regions (Moscow oblast and Vladimir oblast). Based on the combined matrix, containing 294 RAPD fragments, dendrogram of genetic differences was constructed, and the indices of genetic divergence and partition (P, H, and G(st)), as well as the gene flow indices N(m) between the nematode samples examined, were calculated. The dendrogram structure, genetic diversity indices, and variations of genetic distances between single individuals in each population from Karelia and Central Russia pointed to genetic isolation and higher genetic diversity of the nematodes from Karelia. Based on polymorphism of rDNA first intergenic spacer ITS1, attribution of all populations examined to the species G. rostochiensis was proved. Small variations of the ITS1 sequence in different geographic populations of nematodes from different regions of the species world range did not allow isolation of separate groups within the species. Possible factors (including interregional transportations of seed potato) affecting nematode population structure in Russia are discussed.

  6. Nuclear and plastid markers reveal the persistence of genetic identity: a new perspective on the evolutionary history of Petunia exserta.

    Science.gov (United States)

    Segatto, Ana Lúcia Anversa; Cazé, Ana Luíza Ramos; Turchetto, Caroline; Klahre, Ulrich; Kuhlemeier, Cris; Bonatto, Sandro Luis; Freitas, Loreta Brandão

    2014-01-01

    Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Molecular characterization of Fasciola gigantica from Mauritania based on mitochondrial and nuclear ribosomal DNA sequences.

    Science.gov (United States)

    Amor, Nabil; Farjallah, Sarra; Salem, Mohamed; Lamine, Dia Mamadou; Merella, Paolo; Said, Khaled; Ben Slimane, Badreddine

    2011-10-01

    Fasciolosis caused by Fasciola hepatica and Fasciola gigantica (Platyhelminthes: Trematoda: Digenea) is considered the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. From Africa, F. gigantica has been previously characterized from Burkina Faso, Senegal, Kenya, Zambia and Mali, while F. hepatica has been reported from Morocco and Tunisia, and both species have been observed from Ethiopia and Egypt on the basis of morphometric differences, while the use of molecular markers is necessary to distinguish exactly between species. Samples identified morphologically as F. gigantica (n=60) from sheep and cattle from different geographical localities of Mauritania were genetically characterized by sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes and the mitochondrial Cytochrome c Oxidase I (COI) gene. Comparison of the sequences of the Mauritanian samples with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. gigantica. The nucleotide sequencing of ITS rDNA of F. gigantica showed no nucleotide variation in the ITS-1, 5.8S, and ITS-2 rDNA sequences among all samples examined and those from Burkina Faso, Kenya, Egypt and Iran. The phylogenetic trees based on the ITS-1 and ITS-2 sequences showed a close relationship of the Mauritanian samples with isolates of F. gigantica from different localities of Africa and Asia. The COI genotypes of the Mauritanian specimens of F. gigantica had a high level of diversity, and they belonged to the F. gigantica phylogenically distinguishable clade. The present study is the first molecular characterization of F. gigantica in sheep and cattle from Mauritania, allowing a reliable approach for the genetic differentiation of Fasciola spp. and providing basis for further studies on liver flukes in the African countries. Copyright © 2011 Elsevier Inc. All

  8. Efficiency of nuclear and mitochondrial markers recovering and supporting known amniote groups.

    Science.gov (United States)

    Lambret-Frotté, Julia; Perini, Fernando Araújo; de Moraes Russo, Claudia Augusta

    2012-01-01

    We have analysed the efficiency of all mitochondrial protein coding genes and six nuclear markers (Adora3, Adrb2, Bdnf, Irbp, Rag2 and Vwf) in reconstructing and statistically supporting known amniote groups (murines, rodents, primates, eutherians, metatherians, therians). The efficiencies of maximum likelihood, Bayesian inference, maximum parsimony, neighbor-joining and UPGMA were also evaluated, by assessing the number of correct and incorrect recovered groupings. In addition, we have compared support values using the conservative bootstrap test and the Bayesian posterior probabilities. First, no correlation was observed between gene size and marker efficiency in recovering or supporting correct nodes. As expected, tree-building methods performed similarly, even UPGMA that, in some cases, outperformed other most extensively used methods. Bayesian posterior probabilities tend to show much higher support values than the conservative bootstrap test, for correct and incorrect nodes. Our results also suggest that nuclear markers do not necessarily show a better performance than mitochondrial genes. The so-called dependency among mitochondrial markers was not observed comparing genome performances. Finally, the amniote groups with lowest recovery rates were therians and rodents, despite the morphological support for their monophyletic status. We suggest that, regardless of the tree-building method, a few carefully selected genes are able to unfold a detailed and robust scenario of phylogenetic hypotheses, particularly if taxon sampling is increased.

  9. Use of radioisotopes in agriculture: DNA based molecular markers in crop improvement

    International Nuclear Information System (INIS)

    Sivaramakrishnan, S.; Seetharama, N.; Kannan, Seetha

    2001-01-01

    Agriculture has always benefited from the use of radioisotopes in many ways. In the beginning radioisotopes were mostly used for physiological studies to measure photosynthetic efficiency, nutrient uptake, and for mutation breeding. Radioisotopes have now become a part of the biotechnological tools that are being increasingly used in improving crops and production systems. The tools of biotechnology are being increasingly used to hasten breeding and address problems of biotic and abiotic stresses. Some of the non-radioactive methods have replaced radiotracer techniques and thus led to automation often at high cost. However, still there remain many applications where radioisotopes seem almost indispensable. For some of the applications like comparative genome mapping, the confirmation of transgenics, and establishment of gene copy number, use of RFLP with radioisotopes is essential. The following research areas at ICRISAT use radioisotopes: (1) physiological basis of adaptation to abiotic stresses (ii) development and use of appropriate DNA markers crop improvement; (iii) characterization of cytoplasmic male sterile systems and genetic diversity of breeding materials, land races and the wild relatives and (iv) molecular basis of disease resistance; (v) comparative genome mapping across cereals, (vi) isolation and characterization of genes of potential value to genetic improvement and (vii) verification of genetic transformation events. (author)

  10. Investigation of five polymorphic DNA markers associated with late onset Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Gharesouran Jalal

    2013-01-01

    Full Text Available Alzheimer's disease is a complex neurodegenerative disorder characterized by memory and cognitive impairment and is the leading cause of dementia in the elderly. The aim of our study was to examine the polymorphic DNA markers CCR2 (+190 G/A, CCR5Δ32, TNF-α (-308 G/A, TNF-α (-863 C/A and CALHM1 (+394 C/T to determine the relationship between these polymorphisms and the risk of late onset Alzheimer's disease in the population of Eastern Azerbaijan of Iran. A total of 160 patient samples and 163 healthy controls were genotyped by PCR-RFLP and the results confirmed using bidirectional sequencing. Statistical analysis of obtained data revealed non-significant difference between frequency of CCR5Δ32 in case and control groups. The same result was observed for TNF-α (-863 C/A genotype and allele frequencies. Contrary to above results, significant differences were detected in frequency of TNF-α (-308 G/A and CCR2-64I genotypes between the cases and healthy controls. A weak significant difference observed between allele and genotype frequencies of rs2986017 in CALHM1 (+394 C/T; P86L in patient and control samples. It can be concluded that the T allele of P86L variant in CALHM1 & +190 G/A allele of CCR2 have a protective role against abnormal clinical features of Alzheimer's disease.

  11. Genetic variation of Anastrepha suspensa (Diptera: Tephritidae) in Florida and the Caribbean using microsatellite DNA markers.

    Science.gov (United States)

    Boykin, Laura M; Shatters, Robert G; Hall, David G; Dean, David; Beerli, Peter

    2010-12-01

    Anastrepha suspensa (Loew) (Diptera: Tephritidae), the Caribbean fruit fly, is indigenous to Florida and the Greater Antilles where it causes economic losses in fruit crops, including citrus. Because of the geographic separation of many of its native locations and anecdotal descriptions of regional differences in host preferences, there have been questions about the population structure of A. suspensa. Seven DNA microsatellite markers were used to characterize the population genetic structure of A. suspensa, in Florida and the Caribbean from a variety of hosts, including citrus. We genotyped 729 A. suspensa individuals from Florida, Puerto Rico, Cayman Island, Dominican Republic, and Jamaica. The investigated seven loci displayed from 5 to 19 alleles, with expected heterozygosities ranging from 0.05 to 0.83. There were five unique alleles in Florida and three unique alleles in the Caribbean samples; however, no microsatellite alleles were specific to a single host plant. Genetic diversity was analyzed using F(ST) and analysis of molecular variance and revealed low genetic diversity between Florida and Caribbean samples and also between citrus and noncitrus samples. Analyses using migrate revealed there is continuous gene flow between sampling sites in Florida and the Caribbean and among different hosts. These results support previous comparisons based on the mitochondrial cytochrome oxidase I locus indicating there is no genetic differentiation among locations in Florida and the Caribbean and that there is no separation into host races.

  12. Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches.

    Science.gov (United States)

    Gholave, Avinash R; Pawar, Kiran D; Yadav, Shrirang R; Bapat, Vishwas A; Jadhav, Jyoti P

    2017-01-01

    Plastid DNA markers sequencing and DNA fingerprinting approaches were used and compared for resolving molecular phylogeny of closely related, previously unexplored Amorphophallus species of India. The utility of individual plastid markers namely rbcL , matK , trnH - psbA , trnLC - trnLD , their combined dataset and two fingerprinting techniques viz. RAPD and ISSR were tested for their efficacy to resolves Amorphophallus species into three sections specific clades namely Rhaphiophallus , Conophallus and Amorphophallus . In the present study, sequences of these four plastid DNA regions as well as RAPD and ISSR profiles of 16 Amorphophallus species together with six varieties of two species were generated and analyzed. Maximum likelihood and Bayesian Inference based construction of phylogenetic trees indicated that among the four plastid DNA regions tested individually and their combined dataset, rbcL was found best suited for resolving closely related Amorphophallus species into section specific clades. When analyzed individually, rbcL exhibited better discrimination ability than matK , trnH - psbA , trnLC - trnLD and combination of all four tested plastid markers. Among two fingerprinting techniques used, the resolution of Amorphophallus species using RAPD was better than ISSR and combination of RAPD +ISSR and in congruence with resolution based on rbcL .

  13. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae

    Directory of Open Access Journals (Sweden)

    Catherine Jan

    2016-09-01

    Full Text Available The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni. From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.

  14. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae).

    Science.gov (United States)

    Jan, Catherine; Fumagalli, Luca

    2016-01-01

    The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.

  15. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi).

    Science.gov (United States)

    Badotti, Fernanda; de Oliveira, Francislon Silva; Garcia, Cleverson Fernando; Vaz, Aline Bruna Martins; Fonseca, Paula Luize Camargos; Nahum, Laila Alves; Oliveira, Guilherme; Góes-Neto, Aristóteles

    2017-02-23

    Fungi are among the most abundant and diverse organisms on Earth. However, a substantial amount of the species diversity, relationships, habitats, and life strategies of these microorganisms remain to be discovered and characterized. One important factor hindering progress is the difficulty in correctly identifying fungi. Morphological and molecular characteristics have been applied in such tasks. Later, DNA barcoding has emerged as a new method for the rapid and reliable identification of species. The nrITS region is considered the universal barcode of Fungi, and the ITS1 and ITS2 sub-regions have been applied as metabarcoding markers. In this study, we performed a large-scale analysis of all the available Basidiomycota sequences from GenBank. We carried out a rigorous trimming of the initial dataset based in methodological principals of DNA Barcoding. Two different approaches (PCI and barcode gap) were used to determine the performance of the complete ITS region and sub-regions. For most of the Basidiomycota genera, the three genomic markers performed similarly, i.e., when one was considered a good marker for the identification of a genus, the others were also; the same results were observed when the performance was insufficient. However, based on barcode gap analyses, we identified genomic markers that had a superior identification performance than the others and genomic markers that were not indicated for the identification of some genera. Notably, neither the complete ITS nor the sub-regions were useful in identifying 11 of the 113 Basidiomycota genera. The complex phylogenetic relationships and the presence of cryptic species in some genera are possible explanations of this limitation and are discussed. Knowledge regarding the efficiency and limitations of the barcode markers that are currently used for the identification of organisms is crucial because it benefits research in many areas. Our study provides information that may guide researchers in choosing

  16. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    Science.gov (United States)

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks. Copyright © 2013. Published by Elsevier Ltd.

  17. Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera).

    Science.gov (United States)

    Dool, Serena E; Puechmaille, Sebastien J; Foley, Nicole M; Allegrini, Benjamin; Bastian, Anna; Mutumi, Gregory L; Maluleke, Tinyiko G; Odendaal, Lizelle J; Teeling, Emma C; Jacobs, David S

    2016-04-01

    Despite many studies illustrating the perils of utilising mitochondrial DNA in phylogenetic studies, it remains one of the most widely used genetic markers for this purpose. Over the last decade, nuclear introns have been proposed as alternative markers for phylogenetic reconstruction. However, the resolution capabilities of mtDNA and nuclear introns have rarely been quantified and compared. In the current study we generated a novel ∼5kb dataset comprising six nuclear introns and a mtDNA fragment. We assessed the relative resolution capabilities of the six intronic fragments with respect to each other, when used in various combinations together, and when compared to the traditionally used mtDNA. We focused on a major clade in the horseshoe bat family (Afro-Palaearctic clade; Rhinolophidae) as our case study. This old, widely distributed and speciose group contains a high level of conserved morphology. This morphological stasis renders the reconstruction of the phylogeny of this group with traditional morphological characters complex. We sampled multiple individuals per species to represent their geographic distributions as best as possible (122 individuals, 24 species, 68 localities). We reconstructed the species phylogeny using several complementary methods (partitioned Maximum Likelihood and Bayesian and Bayesian multispecies-coalescent) and made inferences based on consensus across these methods. We computed pairwise comparisons based on Robinson-Foulds tree distance metric between all Bayesian topologies generated (27,000) for every gene(s) and visualised the tree space using multidimensional scaling (MDS) plots. Using our supported species phylogeny we estimated the ancestral state of key traits of interest within this group, e.g. echolocation peak frequency which has been implicated in speciation. Our results revealed many potential cryptic species within this group, even in taxa where this was not suspected a priori and also found evidence for mtDNA

  18. De novo and salvage pathway precursor incorporation during DNA replication at the nuclear matrix

    International Nuclear Information System (INIS)

    Panzeter, P.L.

    1988-01-01

    Total nuclear DNA can be empirically subdivided into low salt-soluble (LS) DNA (75-80%), high salt-soluble (HS) DNA (18-23%), and nuclear matrix-associated (NM) DNA which remains tightly bound to the nuclear matrix (∼2%). The most-newly replicated DNA is that associated with the nuclear matrix in regenerating rat liver. Analyses of the DNA fractions after various pulse times revealed that the salvage and de novo pathway DNA precursors investigated were incorporated preferentially into NM-DNA at early pulse times, after which the radioactivity became progressively incorporated into HS- and LS-DNA, respectively. These results support two models of nuclear matrix-associated DNA replication, proposed previously, and a third model presented in this dissertation. In addition, the incorporation of de novo pathway precursors lagged significantly (> 10 minutes) behind the incorporation of precursors entering through the salvage pathway. Channeling of salvage pathway precursors to DNA replication sites would explain the more rapid uptake of salvage precursors into NM-DNA than de novo precursors. To investigate the possibility of this heretofore in vitro phenomenon, the incorporation of the salvage precursor, ( 3 H)deoxythymidine, and the de novo precursor, ( 14 C)orotic acid, into NM-DNA and dTTP was examined in regenerating rat liver. There was no significant difference between the incorporation pattern of ( 14 C)orotic acid into NM-DNA thymine and that of ( 14 C)orotic acid into soluble dTTP. Contrastingly, the salvage pathway precursor, ( 3 H)deoxythymidine, labeled NM-DNA before labeling the dTTP pool

  19. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified.

    Science.gov (United States)

    Hammond, Elizabeth R; McGillivray, Brent C; Wicker, Sophie M; Peek, John C; Shelling, Andrew N; Stone, Peter; Chamley, Larry W; Cree, Lynsey M

    2017-01-01

    To characterize nuclear and mitochondrial DNA (mtDNA) in spent culture media from normally developing blastocysts to determine whether it could be used for noninvasive genetic assessment. Prospective embryo cohort study. Academic center and private in vitro fertilization (IVF) clinic. Seventy patients undergoing intracytoplasmic sperm injection (ICSI) and 227 blastocysts. Culture media assessment, artificial blastocoele fluid collapse and DNA analysis using digital polymerase chain reaction (dPCR), long-range PCR, quantitative PCR (qPCR), and DNA fingerprinting. Presence of nuclear and mtDNA in three different commercial culture media from Vitrolife and Irvine Scientific, spent embryo media assessment at the cleavage and blastocyst stages of development, and analysis of the internal media controls for each patient that had been exposed to identical conditions as embryo media but did not come into contact with embryos. Higher levels of nuclear and mtDNA were observed in the culture media that had been exposed to embryos compared with the internal media controls. Nuclear DNA (∼4 copies) and mtDNA (∼600 copies) could be detected in spent media, and the levels increased at the blastocyst stage. No increase in DNA was detected after artificial blastocoele fluid collapse. Mixed sex chromosome DNA was detected. This originated from contamination in the culture media and from maternal (cumulus) cells. Due to the limited amount of template, the presence of embryonic nuclear DNA could not be confirmed by DNA fingerprinting analysis. Currently DNA from culture media cannot be used for genetic assessment because embryo-associated structures release DNA into the culture medium and the DNA is of mixed origin. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.).

    Science.gov (United States)

    Patzak, Josef; Vrba, Lukás; Matousek, Jaroslav

    2007-01-01

    Molecular markers have been increasingly used in genetic studies of crop species for their applicability in breeding programs. In this work, we report on the development of new sequence-tagged site (STS) markers based on sequence information from several identified hop (Humulus lupulus L.) genes. We demonstrate the usefulness of these STS markers and compare them to SSRs for identifying hop genotypes and estimating genetic diversity in a collection of 68 hop cultivars from around the world. We found 3 individual gene variants (A, B, C) of the chs_H1 gene in this collection. The most frequent gene variant, B (AJ304877), was not detected in Mt. Hood, Glacier, and Horizon (US) cultivars. Gene variant A came from an American germplasm through wild hops. We found length polymorphism in intron 1 of the chs2 gene, and 4 different amplified markers were detected in PCRs. The chs3 gene was found in only one third of the cultivars. None of the variants of the studied CHS genes were found in Humulus japonicus. We detected 5 major gene variants of DNA-binding protein in the collection of H. lupulus cultivars and 2 others in H. japonicus. We also found 3 individual gene variants of an endochitinase gene. The distribution of gene variants did not correlate with any resistance. We proved that developed STS markers can be successfully used for the analysis of genetic diversity and can substitute and supplement SSR markers in hop.

  1. Genome- and transcriptome-assisted development of nuclear insertion/deletion markers for Calanus species (Copepoda: Calanoida) identification

    DEFF Research Database (Denmark)

    Smolina, I.; Kollias, S.; Poortvliet, M.

    2014-01-01

    Copepods of the genus Calanus are key zooplankton species in temperate to arctic marine ecosystems. Despite their ecological importance, species identification remains challenging. Furthermore, the recent report of hybrids among Calanus species highlights the need for diagnostic nuclear markers t...

  2. Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences ✩

    Science.gov (United States)

    Nakao, Minoru; Li, Tiaoying; Han, Xiumin; Ma, Xiumin; Xiao, Ning; Qiu, Jiamin; Wang, Hu; Yanagida, Tetsuya; Mamuti, Wulamu; Wen, Hao; Moro, Pedro L.; Giraudoux, Patrick; Craig, Philip S.; Ito, Akira

    2009-01-01

    The genetic polymorphisms of Echinococcus spp. in the eastern Tibetan Plateau and the Xinjiang Uyghur Autonomous Region were evaluated by DNA sequencing analyses of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor-1 alpha (ef1a). We collected 68 isolates of Echinococcus granulosus sensu stricto (s.s.) from Xinjiang and 113 isolates of E. granulosus s. s., 49 isolates of Echinococcus multilocularis and 34 isolates of Echinococcus shiquicus from the Tibetan Plateau. The results of molecular identification by mitochondrial and nuclear markers were identical, suggesting the infrequency of introgressive hybridization. A considerable intraspecific variation was detected in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features in E. granulosus s. s. and E. multilocularis, but a divergent feature in E. shiquicus. The cox1 neutrality indexes computed by Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s. and E. multilocularis, indicating significant deviations from neutrality. In contrast, the low positive values of both tests were obtained in E. shiquicus. These results suggest the following hypotheses: (i) recent founder effects arose in E. granulosus and E. multilocularis after introducing particular individuals into the endemic areas by anthropogenic movement or natural migration of host mammals, and (ii) the ancestor of E. shiquicus was segregated into the Tibetan Plateau by colonizing alpine mammals and its mitochondrial locus has evolved without bottleneck effects. PMID:19800346

  3. Further evidence for population specific differences in the effect of DNA markers and gender on eye colour prediction in forensics

    OpenAIRE

    Po?piech, Ewelina; Kar?owska-Pik, Joanna; Ziemkiewicz, Bartosz; Kukla, Magdalena; Skowron, Ma?gorzata; Wojas-Pelc, Anna; Branicki, Wojciech

    2016-01-01

    The genetics of eye colour has been extensively studied over the past few years, and the identified polymorphisms have been applied with marked success in the field of Forensic DNA Phenotyping. A picture that arises from evaluation of the currently available eye colour prediction markers shows that only the analysis of HERC2-OCA2 complex has similar effectiveness in different populations, while the predictive potential of other loci may vary significantly. Moreover, the role of gender in the ...

  4. Y-chromosomal DNA markers for discrimination of chemical substance and effluent effects on sexual differentiation in salmon.

    OpenAIRE

    Afonso, Luis O B; Smith, Jack L; Ikonomou, Michael G; Devlin, Robert H

    2002-01-01

    Chinook salmon alevins were exposed during their labile period for sex differentiation to different concentrations of bleached kraft mill effluent (BKME), primary sewage effluent, secondary sewage effluent (SE), 17ss-estradiol, testosterone, and nonylphenol. After exposure for 29 days post hatching (DPH), fish were allowed to grow until 103 and 179 DPH, at which time their genetic sex was determined using Y-chromosomal DNA markers and their gonadal sex was determined by histology. Independent...

  5. Characterization of 35 novel microsatellite DNA markers from the duck (Anas platyrhynchos genome and cross-amplification in other birds

    Directory of Open Access Journals (Sweden)

    Xu Ke

    2005-07-01

    Full Text Available Abstract In order to study duck microsatellites, we constructed a library enriched for (CAn, (CAGn, (GCCn and (TTTCn. A total of 35 pairs of primers from these microsatellites were developed and used to detect polymorphisms in 31 unrelated Peking ducks. Twenty-eight loci were polymorphic and seven loci were monomorphic. A total of 117 alleles were observed from these polymorphic microsatellite markers, which ranged from 2 to 14 with an average of 4.18 per locus. The frequencies of the 117 alleles ranged from 0.02 to 0.98. The highest heterozygosity (0.97 was observed at the CAUD019 microsatellite locus and the lowest heterozygosity (0.04 at the CAUD008 locus, and 11 loci had heterozygosities greater than 0.50 (46.43%. The polymorphism information content (PIC of 28 loci ranged from 0.04 to 0.88 with an average of 0.42. All the above markers were used to screen the polymorphism in other bird species. Two markers produced specific monomorphic products with the chicken DNA. Fourteen markers generated specific fragments with the goose DNA: 5 were polymorphic and 9 were monomorphic. But no specific product was detected with the peacock DNA. Based on sequence comparisons of the flanking sequence and repeat, we conclude that 2 chicken loci and 14 goose loci were true homologous loci of the duck loci. The microsatellite markers identified and characterized in the present study will contribute to the genetic map, quantitative traits mapping, and phylogenetic analysis in the duck and goose.

  6. Viral-Cellular DNA Junctions as Molecular Markers for Assessing Intra-Tumor Heterogeneity in Cervical Cancer and for the Detection of Circulating Tumor DNA

    Directory of Open Access Journals (Sweden)

    Katrin Carow

    2017-09-01

    Full Text Available The development of cervical cancer is frequently accompanied by the integration of human papillomaviruses (HPV DNA into the host genome. Viral-cellular junction sequences, which arise in consequence, are highly tumor specific. By using these fragments as markers for tumor cell origin, we examined cervical cancer clonality in the context of intra-tumor heterogeneity. Moreover, we assessed the potential of these fragments as molecular tumor markers and analyzed their suitability for the detection of circulating tumor DNA in sera of cervical cancer patients. For intra-tumor heterogeneity analyses tumors of 8 patients with up to 5 integration sites per tumor were included. Tumor islands were micro-dissected from cryosections of several tissue blocks representing different regions of the tumor. Each micro-dissected tumor area served as template for a single junction-specific PCR. For the detection of circulating tumor-DNA (ctDNA junction-specific PCR-assays were applied to sera of 21 patients. Samples were collected preoperatively and during the course of disease. In 7 of 8 tumors the integration site(s were shown to be homogenously distributed throughout different tumor regions. Only one tumor displayed intra-tumor heterogeneity. In 5 of 21 analyzed preoperative serum samples we specifically detected junction fragments. Junction-based detection of ctDNA was significantly associated with reduced recurrence-free survival. Our study provides evidence that HPV-DNA integration is as an early step in cervical carcinogenesis. Clonality with respect to HPV integration opens new perspectives for the application of viral-cellular junction sites as molecular biomarkers in a clinical setting such as disease monitoring.

  7. Highly polymorphic DNA markers in an Africanized honey bee population in Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Arturo Lobo Segura

    2000-06-01

    Full Text Available Two genetic markers (the mtDNA COI-COII intergenic region and the microsatellite A7 with high levels of variability in South African and European honey bees were analyzed in wild swarms of Africanized honey bees (Apis mellifera from Costa Rica. Allelic or haplotypic frequencies revealed high levels of genetic variability at these loci in this population. Most of the alleles were African alleles, although some European-derived alleles were also present. Differences in the frequencies of African alleles between African and Africanized samples were minor, which could be explained by founder effects occurring during the introduction of African honey bee populations into South America.Dois marcadores genéticos (a região intergénica mitocondrial COI-COII e o microsatélite A7, com altos níveis de variabilidade em populações de abelhas melíferas da África do Sul e Europa, foram analisados em uma amostra de enxames naturais da Costa Rica. As freqüências alélicas e haplotípicas na amostra africanizada mostraram altos níveis de diversidade nestes loci. A maioria dos alelos são de origem africana, embora alguns alelos de origem européia foram observados. As mudanças nas freqüências dos alelos de origem africana entre as abelhas da África do Sul e as abelhas da população africanizada são de baixa magnitude e podem ter sido causadas pelo efeito fundador que ocorreu na introdução da abelha africana na América do Sul.

  8. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    We investigated the seasonal variability of 8-oxodeoxyguanosine (8-oxodG), a marker of oxidative damage to DNA, in urine of 50 bus drivers and 50 controls in Prague, Czech Republic, in three seasons with different levels of air pollution: winter 2005, summer 2006 and winter 2006. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter (PM), and volatile organic compounds (VOC)) was monitored by personal and/or stationary monitors. For the analysis of 8-oxodG levels, the ELISA technique was used. Bus drivers were exposed to significantly higher levels of c-PAHs in winter 2006, while in the other two seasons the exposure of controls was unexpectedly higher than that of bus drivers. We did not see any difference in VOC exposure between both groups in summer 2006 and in winter 2006; VOC were not monitored in winter 2005. 8-OxodG levels were higher in bus drivers than in controls in all seasons. The median levels of 8-oxodG (nmol/mmol creatinine) in bus drivers vs. controls were as follows: winter 2005: 7.79 vs. 6.12 (p=0.01); summer 2006: 6.91 vs. 5.11 (p<0.01); winter 2006: 5.73 vs. 3.94 (p<0.001). Multivariate logistic regression analysis identified PM2.5 and PM10 levels, measured by stationary monitors during a 3-day period before urine collection, as the only factors significantly affecting 8-oxodG levels, while the levels of c-PAHs had no significant influence.

  9. Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: implications for forensic investigations.

    Science.gov (United States)

    Gilmore, Simon; Peakall, Rod; Robertson, James

    2003-01-09

    Short tandem repeat (STR) markers are the DNA marker of choice in forensic analysis of human DNA. Here we extend the application of STR markers to Cannabis sativa and demonstrate their potential for forensic investigations. Ninety-three individual cannabis plants, representing drug and fibre accessions of widespread origin were profiled with five STR makers. A total of 79 alleles were detected across the five loci. All but four individuals from a single drug-type accession had a unique multilocus genotype. An analysis of molecular variance (AMOVA) revealed significant genetic variation among accessions, with an average of 25% genetic differentiation. By contrast, only 6% genetic difference was detected between drug and fibre crop accessions and it was not possible to unequivocally assign plants as either drug or fibre type. However, our results suggest that drug strains may typically possess lower genetic diversity than fibre strains, which may ultimately provide a means of genetic delineation. Our findings demonstrate the promise of cannabis STR markers to provide information on: (1) agronomic type, (2) the geographical origin of drug seizures, and (3) evidence of conspiracy in production of clonally propagated drug crops.

  10. Preferential repair of nuclear matrix associated DNA in xeroderma pigmentosum complementation group C

    International Nuclear Information System (INIS)

    Mullenders, L.H.F.; Kesteren, A.C. van; Bussmann, C.J.M.; Zeeland, A.A. van; Natarajan, A.T.

    1984-01-01

    The distribution of ultraviolet-induced DNA repair patches in the genome of xeroderma pigmentosum cells of complementation group C was investigated by determining the molecular weight distribution of repair labeled DNA and prelabeled DNA in alkaline sucrose gradients after treatment with the dimer-specific endonuclease V of bacteriophage T 4 . The results suggest that DNA-repair synthesis in xeroderma pigmentosum cells of complementation group C occurs in localized regions of the genome. Analysis of the spatial distribution of ultraviolet-induced repair patches in DNA loops attached to the nuclear matrix revealed that in xeroderma pigmentosum cells of complementation group C repair patches are preferentially situated near the attachment sites of DNA loops at the nuclear matrix. In normal human fibroblasts the authors observed no enrichment of repair-labeled DNA at the nuclear matrix and repair patches appeared to be distributed randomly along the DNA loops. The enrichment of repair-labeled DNA at the nuclear matrix in xeroderma pigmentosum cells of complementation group C may indicate that the residual DNA-repair synthesis in these cells occurs preferentially in regions of the genome. (Auth.)

  11. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Science.gov (United States)

    M.N. lslam-Faridi; C.D. Nelson; S.P. DiFazio; L.E. Gunter; G.A. Tuskan

    2009-01-01

    The 185-285 rDNA and 55 rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 185-285 rDNA sites and one 55 rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones...

  12. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  13. Identification of pork contamination in meatball using genetic marker mitochondrial DNA cytochrome b gene by duplex-PCR

    Science.gov (United States)

    Novianty, E.; Kartikasari, L. R.; Lee, J. H.; Cahyadi, M.

    2017-04-01

    Meat based food products have a big opportunity to mix and adulterated with other meats. Muslim communities are prohibited to consume pork-containing product or other pig derivatives in food. Therefore, the high sensitivity, fast, cheap and accurate approach is needed to detect pig contamination in raw meat and meat-processed product such as meatball. The aim of this study was to identify pork contamination in meatball using genetic marker of mitochondrial DNA cytochrome b gene by duplex-PCR. Samples were prepared and designed by following the proportions 0, 1, 5, 10, 25% of pork in meatballs, respectively. The DNA genome was extracted from meatballs and polymerase chain reaction (PCR) was performed using species specific primer to isolate mt-DNA cytochrome b gene. The results showed that the DNA genome was successfully isolated from pork, beef, and contaminated meatballs. Furthermore, 2% agarose gels was able to visualize of duplex-PCR to identify pork contamination in meatballs up to very small proportion (1%). It can be concluded that duplex-PCR of mt-DNA cytochrome b gene was very sensitive to identify pork contamination in meatball with the presence of specific 398 bp DNA band.

  14. Molecular phylogeny of Gavilea (Chloraeinae: Orchidaceae) using plastid and nuclear markers.

    Science.gov (United States)

    Chemisquy, M Amelia; Morrone, Osvaldo

    2012-03-01

    A phylogenetic analysis is provided for 70% of the representatives of genus Gavilea, as well as for several species of the remaining genera of subtribe Chloraeinae: Bipinnula, Chloraea and Geoblasta. Sequences from the plastid markers rpoC1, matK-trnK and atpB-rbcL and the nuclear marker ITS, were analyzed using Maximum Parsimony and Bayesian Inference. Monophyly of subtribe Chloraeinae was confirmed, as well as its position inside tribe Cranichideae. Neither Chloraea nor Bipinnula were recovered as monophyletic. Gavilea turned out polyphyletic, with Chloraeachica embedded in the genus while Gavilea supralabellata was related to Chloraea and might be a hybrid between both genera. None of the two sections of Gavilea were monophyletic, and the topologies obtained do not suggest a new division of the genus. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Use of DNA Markers for Investigating Sources of Bacteria in Contaminated Ground Water: Wooster Township, Wayne County, Ohio

    Science.gov (United States)

    Dumouchelle, Denise H.

    2006-01-01

    In 2004, a public-health nuisance was declared by the Wayne County Board of Health in the Scenic Heights Drive-Batdorf Road area of Wooster Township, Wayne County, Ohio, because of concerns about the safety of water from local wells. Repeated sampling had detected the presence of fecal-indicator bacteria and elevated nitrate concentrations. In June 2006, the U.S. Geological Survey (USGS), in cooperation with the Ohio Environmental Protection Agency (Ohio EPA), collected and analyzed samples from some of the affected wells to help investigate the possibility of human-origin bacterial contamination. Water samples from 12 wells and 5 home sewage-treatment systems (HSTS) were collected. Bromide concentrations were determined in samples from the 12 wells. Samples from 5 of the 12 wells were analyzed for wastewater compounds. Total coliform, enterococci and Escherichia coli (E. coli) bacteria concentrations were determined for samples from 8 of the 12 wells. In addition, two microbial source-tracking tools that employ DNA markers were used on samples from several wells and a composite sample of water from five septic tanks. The DNA markers from the Enterococcus faecium species and the order Bacteroidales are associated with specific sources, either human or ruminant sources. Bromide concentrations ranged from 0.04 to 0.18 milligrams per liter (mg/L). No wastewater compounds were detected at concentrations above the reporting limits. Samples from the 12 wells also were collected by Ohio EPA and analyzed for chloride and nitrate. Chloride concentrations ranged from 12.6 to 61.6 mg/L and nitrate concentrations ranged from 2.34 to 11.9 mg/L (as N). Total coliforms and enterococci were detected in samples from 8 wells, at concentrations from 2 to 200 colony-forming units per 100 milliliters (CFU/100 mL) and 0.5 to 17 CFU/100 mL, respectively. E. coli were detected in samples from three of the eight wells, at concentrations of 1 or 2 CFU/100 mL. Tests for the human

  16. Diagnostic value of stool DNA testing for multiple markers of colorectal cancer and advanced adenoma: a meta-analysis.

    Science.gov (United States)

    Yang, Hua; Xia, Bing-Qing; Jiang, Bo; Wang, Guozhen; Yang, Yi-Peng; Chen, Hao; Li, Bing-Sheng; Xu, An-Gao; Huang, Yun-Bo; Wang, Xin-Ying

    2013-08-01

    The diagnostic value of stool DNA (sDNA) testing for colorectal neoplasms remains controversial. To compensate for the lack of large-scale unbiased population studies, a meta-analysis was performed to evaluate the diagnostic value of sDNA testing for multiple markers of colorectal cancer (CRC) and advanced adenoma. The PubMed, Science Direct, Biosis Review, Cochrane Library and Embase databases were systematically searched in January 2012 without time restriction. Meta-analysis was performed using a random-effects model using sensitivity, specificity, diagnostic OR (DOR), summary ROC curves, area under the curve (AUC), and 95% CIs as effect measures. Heterogeneity was measured using the χ(2) test and Q statistic; subgroup analysis was also conducted. A total of 20 studies comprising 5876 individuals were eligible. There was no heterogeneity for CRC, but adenoma and advanced adenoma harboured considerable heterogeneity influenced by risk classification and various detection markers. Stratification analysis according to risk classification showed that multiple markers had a high DOR for the high-risk subgroups of both CRC (sensitivity 0.759 [95% CI 0.711 to 0.804]; specificity 0.883 [95% CI 0.846 to 0.913]; AUC 0.906) and advanced adenoma (sensitivity 0.683 [95% CI 0.584 to 0.771]; specificity 0.918 [95% CI 0.866 to 0.954]; AUC 0.946) but not for the average-risk subgroups of either. In the methylation subgroup, sDNA testing had significantly higher DOR for CRC (sensitivity 0.753 [95% CI 0.685 to 0.812]; specificity 0.913 [95% CI 0.860 to 0.950]; AUC 0.918) and advanced adenoma (sensitivity 0.623 [95% CI 0.527 to 0.712]; specificity 0.926 [95% CI 0.882 to 0.958]; AUC 0.910) compared with the mutation subgroup. There was no significant heterogeneity among studies for subgroup analysis. sDNA testing for multiple markers had strong diagnostic significance for CRC and advanced adenoma in high-risk subjects. Methylation makers had more diagnostic value than mutation

  17. Application of plant DNA markers in forensic botany: genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites.

    Science.gov (United States)

    Craft, Kathleen J; Owens, Jeffrey D; Ashley, Mary V

    2007-01-05

    As highly polymorphic DNA markers become increasingly available for a wide range of plant and animal species, there will be increasing opportunities for applications to forensic investigations. To date, however, relatively few studies have reported using DNA profiles of non-human species to place suspects at or near crime scenes. Here we describe an investigation of a double homicide of a female and her near-term fetus. Leaf material taken from a suspect's vehicle was identified to be that of sand live oak, Quercus geminata, the same tree species that occurred near a shallow grave where the victims were found. Quercus-specific DNA microsatellites were used to genotype both dried and fresh material from trees located near the burial site and from the material taken from the suspect's car. Samples from the local population of Q. geminata were also collected and genotyped in order to demonstrate that genetic variation at four microsatellite loci was sufficient to assign leaves to an individual tree with high statistical certainty. The cumulative average probability of identity for these four loci was 2.06x10(-6). DNA was successfully obtained from the dried leaf material although PCR amplification was more difficult than amplification of DNA from fresh leaves. The DNA profiles of the dried leaves from the suspect's car did not match those of the trees near the crime scene. Although this investigation did not provide evidence that could be used against the suspect, it does demonstrate the potential for plant microsatellite markers providing physical evidence that links plant materials to live plants at or near crime scenes.

  18. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers

    OpenAIRE

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H.; Cai, Wanzhi

    2015-01-01

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populatio...

  19. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability

    OpenAIRE

    Lambert, Muriel W

    2016-01-01

    Non-erythroid alpha spectrin (?IISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. ?IISp?s interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear ?IISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in ma...

  20. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    Science.gov (United States)

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  1. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells.

    Science.gov (United States)

    Sun, Xin; Johnson, Jacqueline; St John, Justin C

    2018-05-02

    Replication of mitochondrial DNA is strictly regulated during differentiation and development allowing each cell type to acquire its required mtDNA copy number to meet its specific needs for energy. Undifferentiated cells establish the mtDNA set point, which provides low numbers of mtDNA copy but sufficient template for replication once cells commit to specific lineages. However, cancer cells, such as those from the human glioblastoma multiforme cell line, HSR-GBM1, cannot complete differentiation as they fail to enforce the mtDNA set point and are trapped in a 'pseudo-differentiated' state. Global DNA methylation is likely to be a major contributing factor, as DNA demethylation treatments promote differentiation of HSR-GBM1 cells. To determine the relationship between DNA methylation and mtDNA copy number in cancer cells, we applied whole genome MeDIP-Seq and RNA-Seq to HSR-GBM1 cells and following their treatment with the DNA demethylation agents 5-azacytidine and vitamin C. We identified key methylated regions modulated by the DNA demethylation agents that also induced synchronous changes to mtDNA copy number and nuclear gene expression. Our findings highlight the control exerted by DNA methylation on the expression of key genes, the regulation of mtDNA copy number and establishment of the mtDNA set point, which collectively contribute to tumorigenesis.

  2. The chloroplast DNA locus psbZ-trnfM as a potential barcode marker in Phoenix L. (Arecaceae

    Directory of Open Access Journals (Sweden)

    Marco Ballardini

    2013-12-01

    Full Text Available The genus Phoenix (Arecaceae comprises 14 species distributed from Cape Verde Islands to SE Asia. It includes the economically important species Phoenix dactylifera. The paucity of differential morphological and anatomical useful characters, and interspecific hybridization, make identification of Phoenix species difficult. In this context, the development of reliable DNA markers for species and hybrid identification would be of great utility. Previous studies identified a 12 bp polymorphic chloroplast minisatellite in the trnG(GCC-trnfM(CAU spacer, and showed its potential for species identification in Phoenix. In this work, in order to develop an efficient DNA barcode marker for Phoenix, a longer cpDNA region (700 bp comprising the mentioned minisatellite, and located between the psbZ and trnfM(CAU genes, was sequenced. One hundred and thirty-six individuals, representing all Phoenix species except P. andamanensis, were analysed. The minisatellite showed 2-7 repetitions of the 12 bp motif, with 1-3 out of seven haplotypes per species. Phoenix reclinata and P. canariensis had species-specific haplotypes. Additional polymorphisms were found in the flanking regions of the minisatellite, including substitutions, indels and homopolymers. All this information allowed us to identify unambiguously eight out of the 13 species, and overall 80% of the individuals sampled. Phoenix rupicola and P. theophrasti had the same haplotype, and so had P. atlantica, P. dactylifera, and P. sylvestris (the “date palm complex” sensu Pintaud et al. 2013. For these species, additional molecular markers will be required for their unambiguous identification. The psbZ-trnfM(CAU region therefore could be considered as a good basis for the establishment of a DNA barcoding system in Phoenix, and is potentially useful for the identification of the female parent in Phoenix hybrids.

  3. Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yuan; Pan Shirong; Feng Min; Wen Yuting; Deng Jingjing; Luo Xin; Wu Chuanbin [School of Pharmaceutical Sciences, Sun Yat-sen University, Zhongshan II Road 74, Guangzhou 510080 (China); Peng Hui, E-mail: fengmin@mail.sysu.edu.cn [School of Zhongshan Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080 (China)

    2010-01-29

    Nuclear transport of exogenous DNA is a major barrier to nonviral gene delivery that needs to be addressed in the design of new vectors. In this study, we prepared pDNA/HMGB1/PEG-PEI terplexes to promote nuclear import. HMGB1 in the terplexes was used to assist the transportation of pDNA into the nucleus of cells, since it contained nuclear localization signal (NLS); PEG chains were introduced to stabilize pDNA/vector terplexes and reduce the cytotoxicity. HMGB1/PEG-PEI combined vectors have been investigated specifically for their structure interaction by atomic force microscopy and circular dichroic spectroscopy. The results demonstrated that the HMGB1 molecule could bind with the pDNA chains, but not condense pDNA well. The PEG-PEI further compacted pDNA/HMGB1 complexes into nanosized spherical terplexes. The pDNA delivered by HMGB1/PEG-PEI combined vectors was significantly accumulated in the nucleus of cells, as observed by confocal laser scanning microscopy. The percentage of GFP-transfected cells and VEGF protein expression level induced by HMGB1/PEG-PEI were 2.6-4.9-fold and 1.4-2.8-fold higher, respectively, than that of a common cationic polymer PEI 25 kDa. Therefore, the HMGB1/PEG-PEI combined vector could be used as a versatile vector for promoting exogenous DNA nuclear localization, thereby enhancing its expression.

  4. Mitochondrial and Nuclear DNA Damage and Repair in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2013-01-01

    Full Text Available Aging and oxidative stress seem to be the most important factors in the pathogenesis of age-related macular degeneration (AMD, a condition affecting many elderly people in the developed world. However, aging is associated with the accumulation of oxidative damage in many biomolecules, including DNA. Furthermore, mitochondria may be especially important in this process because the reactive oxygen species produced in their electron transport chain can damage cellular components. Therefore, the cellular response to DNA damage, expressed mainly through DNA repair, may play an important role in AMD etiology. In several studies the increase in mitochondrial DNA (mtDNA damage and mutations, and the decrease in the efficacy of DNA repair have been correlated with the occurrence and the stage of AMD. It has also been shown that mitochondrial DNA accumulates more DNA lesions than nuclear DNA in AMD. However, the DNA damage response in mitochondria is executed by nucleus-encoded proteins, and thus mutagenesis in nuclear DNA (nDNA may affect the ability to respond to mutagenesis in its mitochondrial counterpart. We reported that lymphocytes from AMD patients displayed a higher amount of total endogenous basal and oxidative DNA damage, exhibited a higher sensitivity to hydrogen peroxide and UV radiation, and repaired the lesions induced by these factors less effectively than did cells from control individuals. We postulate that poor efficacy of DNA repair (i.e., is impaired above average for a particular age when combined with the enhanced sensitivity of retinal pigment epithelium cells to environmental stress factors, contributes to the pathogenesis of AMD. Collectively, these data suggest that the cellular response to both mitochondrial and nuclear DNA damage may play an important role in AMD pathogenesis.

  5. Evaluation of assays for quantification of DNA in canine plasma as an indirect marker of NETosis.

    Science.gov (United States)

    Smith, Stephanie A; Lawson, Corinne M; McMichael, Maureen A; Jung, Katrina; O'Brien, Mauria; Achiel, Ron

    2017-06-01

    Neutrophil extracellular traps (NET), consisting of a filamentous DNA/chromatin-histone scaffold originating from neutrophils are part of the innate immune response, may be released under a variety of inflammatory conditions and are associated with an increased risk for thrombosis. The purpose of this study was to evaluate a SYTOX green fluorescence assay and a histone-DNA complex (hisDNA) ELISA for quantification of NET-related DNA in canine plasma. The influence of variations in blood sample handling on assay results was tested. Accuracy of the SYTOX green fluorescence and the hisDNA ELISA was evaluated with dilutional linearity using serial dilutions. Interference was assessed by addition of purified bilirubin or hemoglobin. Precision was determined by calculating the intra- and inter-assay CV. Preanalytic sample handling did not influence DNA measurements by either assay. Citrate and EDTA plasma samples were equivalent. For the DNA fluorescence assay, dilutional linearity was poor due to autofluorescence, which was corrected by addition of canine plasma to the diluent. The presence of bilirubin and hemoglobin also increased autofluorescence, and resulted in falsely low concentrations of DNA. On the hisDNA ELISA, pigmentemia had no effect. Both assays as modified in this study are suitable for measuring DNA in canine EDTA or citrate plasma. However, performance of the fluorescence assay was impacted by pigmentemia, and it was less sensitive than the ELISA in detecting the presence of nucleosome material in the plasma. © 2017 American Society for Veterinary Clinical Pathology.

  6. Evaluation of Genetic Variations in Maize Seedlings Exposed to Electric Field Based on Protein and DNA Markers

    Directory of Open Access Journals (Sweden)

    Asma A. AL-Huqail

    2015-01-01

    Full Text Available The current study analyzed proteins and nuclear DNA of electric fields (ELF exposed and nonexposed maize seedlings for different exposure periods using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, isozymes, random amplified polymorphic DNA (RAPD, and comet assay, respectively. SDS-PAGE analysis revealed total of 46 polypeptides bands with different molecular weights ranging from 186.20 to 36.00 KDa. It generated distinctive polymorphism value of 84.62%. Leucine-aminopeptidase, peroxidase, and catalase isozymes showed the highest values of polymorphism (100% based on zymograms number, relative front (Rf, and optical intensity while esterase isozyme generated polymorphism value of 83.33%. Amino acids were analyzed using high-performance liquid chromatography, which revealed the presence of 17 amino acids of variable contents ranging from 22.65% to 28.09%. RAPD revealed that 78 amplified DNA products had highly polymorphism value (95.08% based on band numbers, with variable sizes ranging from 120 to 992 base pairs and band intensity. Comet assay recorded the highest extent of nuclear DNA damage as percentage of tailed DNA (2.38% and tail moment unit (5.36 at ELF exposure of maize nuclei for 5 days. The current study concluded that the longer ELF exposing periods had genotoxic stress on macromolecules of maize cells and biomarkers used should be augmented for reliable estimates of genotoxicity after exposure of economic plants to ELF stressors.

  7. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2006-03-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin, by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea. Results The mtDNA surveyed (630 bp of cytochrome oxidase subunit I was invariant among individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high levels of variation and population subdivision for allozymes over these same populations. The synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years is similar to that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from these corals does not. Conclusion Slow rates of mitochondrial nucleotide substitution result in low levels of intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few mitochondrion-specific DNA repair or replication genes.

  8. Identification of three randomly amplified polymorphic DNA-polymerase chain reaction markers for distinguishing Asian and North American Gypsy Moths (Lepidoptera: Lymantriidae)

    Science.gov (United States)

    David E. Schreiber; Karen J. Garner; James M. Slavicek

    1997-01-01

    Gypsy moths originating in Asia have recently been introduced into North America, making it necessary to develop markers for distinguishing the Asian strain from the established North American population. We have identified 3 randomly amplified polymorphic DNA-polymerase chain reaction generated (RAPD-PCR) markers which are specific for either Asian or North American...

  9. Use of Simple Sequence Repeat (SSR) markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp.) cultivars resistant and susceptible to red rot

    Science.gov (United States)

    In recent years SSR markers have been used widely for the genetic analysis. The objective of present research was to use SSR markers to develop DNA-based genetic identification and analyze genetic relationship of sugarcane cultivars grown in Pakistan either resistant or susceptible to red rot. Twent...

  10. Interaction of Proliferating Cell Nuclear Antigen With DNA at the Single Molecule Level

    KAUST Repository

    Raducanu, Vlad-Stefan

    2016-01-01

    Proliferating cell nuclear antigen (PCNA) is a key factor involved in Eukaryotic DNA replication and repair, as well as other cellular pathways. Its importance comes mainly from two aspects: the large numbers of interacting partners

  11. Evolution and perspectives of cultivar identification and traceability from tree to oil and table olives by means of DNA markers.

    Science.gov (United States)

    Pasqualone, Antonella; Montemurro, Cinzia; di Rienzo, Valentina; Summo, Carmine; Paradiso, Vito Michele; Caponio, Francesco

    2016-08-01

    In recent years, an increasing number of typicality marks has been awarded to high-quality olive oils produced from local cultivars. In this case, quality control requires effective varietal checks of the starting materials. Moreover, accurate cultivar identification is essential in vegetative-propagated plants distributed by nurseries and is a pre-requisite to register new cultivars. Food genomics provides many tools for cultivar identification and traceability from tree to oil and table olives. The results of the application of different classes of DNA markers to olive with the purpose of checking cultivar identity and variability of plant material are extensively discussed in this review, with special regard to repeatability issues and polymorphism degree. The characterization of olive germplasm from all countries of the Mediterranean basin and from less studied geographical areas is described and innovative high-throughput molecular tools to manage reference collections are reviewed. Then the transferability of DNA markers to processed products - virgin olive oils and table olives - is overviewed to point out strengths and weaknesses, with special regard to (i) the influence of processing steps and storage time on the quantity and quality of residual DNA, (ii) recent advances to overcome the bottleneck of DNA extraction from processed products, (iii) factors affecting whole comparability of DNA profiles between fresh plant materials and end-products, (iv) drawbacks in the analysis of multi-cultivar versus single-cultivar end-products and (v) the potential of quantitative polymerase chain reaction (PCR)-based techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region.

    Science.gov (United States)

    Ma, Xin-Ye; Xie, Cai-Xiang; Liu, Chang; Song, Jing-Yuan; Yao, Hui; Luo, Kun; Zhu, Ying-Jie; Gao, Ting; Pang, Xiao-Hui; Qian, Jun; Chen, Shi-Lin

    2010-01-01

    Medicinal pteridophytes are an important group used in traditional Chinese medicine; however, there is no simple and universal way to differentiate various species of this group by morphological traits. A novel technology termed "DNA barcoding" could discriminate species by a standard DNA sequence with universal primers and sufficient variation. To determine whether DNA barcoding would be effective for differentiating pteridophyte species, we first analyzed five DNA sequence markers (psbA-trnH intergenic region, rbcL, rpoB, rpoC1, and matK) using six chloroplast genomic sequences from GeneBank and found psbA-trnH intergenic region the best candidate for availability of universal primers. Next, we amplified the psbA-trnH region from 79 samples of medicinal pteridophyte plants. These samples represented 51 species from 24 families, including all the authentic pteridophyte species listed in the Chinese pharmacopoeia (2005 version) and some commonly used adulterants. We found that the sequence of the psbA-trnH intergenic region can be determined with both high polymerase chain reaction (PCR) amplification efficiency (94.1%) and high direct sequencing success rate (81.3%). Combined with GeneBank data (54 species cross 12 pteridophyte families), species discriminative power analysis showed that 90.2% of species could be separated/identified successfully by the TaxonGap method in conjunction with the Basic Local Alignment Search Tool 1 (BLAST1) method. The TaxonGap method results further showed that, for 37 out of 39 separable species with at least two samples each, between-species variation was higher than the relevant within-species variation. Thus, the psbA-trnH intergenic region is a suitable DNA marker for species identification in medicinal pteridophytes.

  13. Assessing the fidelity of ancient DNA sequences amplified from nuclear genes

    DEFF Research Database (Denmark)

    Binladen, Jonas; Wiuf, Carsten Henrik; Gilbert, M. Thomas P.

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved...... in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from...... adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nu...

  14. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?

    Czech Academy of Sciences Publication Activity Database

    Voříšková, A.; Jansa, J.; Püschel, D.; Krüger, Manuela; Cajthaml, T.; Vosátka, M.; Janoušková, M.

    2017-01-01

    Roč. 27, č. 6 (2017), s. 577-585 ISSN 0940-6360 Institutional support: RVO:61389030 Keywords : Arbuscular mycorrhizal fungi * Isolate discrimination * Microsymbiont screening * Mitochondrial DNA * Molecular genetic quantification * Nuclear ribosomal DNA * plfa * Real-time PCR Subject RIV: EA - Cell Biology OBOR OECD: Cell biology Impact factor: 3.047, year: 2016

  15. Cytogenetic Markers, DNA Single-Strand Breaks, Urinary Metabolites, and DNA Repair Rates in Styrene-Exposed Lamination Workers

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Tuimala, J.; Štětina, R.; Kumar, R.; Manini, P.; Naccarati, Alessio; Maestri, L.; Vodičková, L.; Kuricová, Miroslava; Jarventaus, H.; Majvalková, Z.; Hirvonen, A.; Imbriani, M.; Mutti, A.; Norppa, H.; Hemminki, K.

    2004-01-01

    Roč. 112, č. 8 (2004), s. 867-871 ISSN 0091-6765 R&D Projects: GA ČR GA310/03/0437; GA ČR GA310/01/0802 Institutional research plan: CEZ:AV0Z5039906 Keywords : DNA repair rates * genotoxicity Subject RIV: FM - Hygiene Impact factor: 3.929, year: 2004

  16. Genetic diversity and differentiation in Prunus species (Rosaceae) using chloroplast and mitochondrial DNA CAPS markers.

    Science.gov (United States)

    Ben Mustapha, S; Ben Tamarzizt, H; Baraket, G; Abdallah, D; Salhi Hannachi, A

    2015-04-27

    Chloroplast (cpDNA) and mitochondrial DNA (mtDNA) were analyzed to establish genetic relationships among Tunisian plum cultivars using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. Two mtDNA regions (nad 1 b/c and nad 4 1/2) and a cpDNA region (trnL-trnF) were amplified and digested using restriction enzymes. Seventy and six polymorphic sites were revealed in cpDNA and mtDNA, respectively. As a consequence, cpDNA appears to be more polymorphic than mtDNA. The unweighted pair group method with arithmetic mean (UPGMA) dendrogram showed that accessions were distributed independently of their geographical origin, and introduced and local cultivars appear to be closely related. Both UPGMA and principal component analysis grouped Tunisian plum accessions into similar clusters. The analysis of the pooled sequences allowed the detection of 17 chlorotypes and 12 mitotypes. The unique haplotypes detected for cultivars are valuable for management and preservation of the plum local resources. From this study, PCR-RFLP analysis appears to be a useful approach to detect and identify cytoplasmic variation in plum trees. Our results also provide useful information for the management of genetic resources and to establish a program to improve the genetic resources available for plums.

  17. The comparison of nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) with Ki67 proliferation marker expression in common skin tumors.

    Science.gov (United States)

    Zduniak, Krzysztof; Agrawal, Siddarth; Symonowicz, Krzysztof; Jurczyszyn, Kamil; Ziółkowski, Piotr

    2014-03-01

    Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) is a chromosomal protein of unknown function. Its amino acid composition and structure of its DNA binding domain resemble those of high mobility group A (HMGA) proteins which are associated with various malignancies. Since changes in expression of HMGA are considered as a marker of tumor progression, it is possible that similar changes in expression of NUCKS could be a useful tool in diagnosis of malignant skin tumors. To investigate this assumption we used specific antibodies against NUCKS for immunohistochemistry of squamous (SCC) and basal cell carcinoma (BCC) as well as keratoacanthoma (KA). We found high expression of NUCKS in nuclei of SCC and BCC cells which exceeded expression of the well-known proliferation marker Ki67. Expression of NUCKS in benign KA was much below that of malignant tumors. With the present study and based on our previous experience we would like to suggest the NUCKS protein as a novel proliferation marker for immunohistochemical evaluation of formalin-fixed and paraffin-embedded skin tumor specimens. We would like to emphasize that NUCKS abundance in malignant skin tumors is higher than that of the well-known proliferation marker Ki67, thus allowing more precise assessment of tumor proliferation potential.

  18. Inhibitory effect of benzene metabolites on nuclear DNA synthesis in bone marrow cells

    International Nuclear Information System (INIS)

    Lee, E.W.; Johnson, J.T.; Garner, C.D.

    1989-01-01

    Effects of endogenously produced and exogenously added benzene metabolites on the nuclear DNA synthetic activity were investigated using a culture system of mouse bone marrow cells. Effects of the metabolites were evaluated by a 30-min incorporation of [ 3 H]thymidine into DNA following a 30-min interaction with the cells in McCoy's 5a medium with 10% fetal calf serum. Phenol and muconic acid did not inhibit nuclear DNA synthesis. However, catechol, 1,2,4-benzenetriol, hydroquinone, and p-benzoquinone were able to inhibit 52, 64, 79, and 98% of the nuclear DNA synthetic activity, respectively, at 24 μM. In a cell-free DNA synthetic system, catechol and hydroquinone did not inhibit the incorporation of [ 3 H]thymidine triphosphate into DNA up to 24 μM but 1,2,4-benzenetriol and p-benzoquinone did. The effect of the latter two benzene metabolites was completely blocked in the presence of 1,4-dithiothreitol (1 mM) in the cell-free assay system. Furthermore, when DNA polymerase α, which requires a sulfhydryl (SH) group as an active site, was replaced by DNA polymerase 1, which does not require an SH group for its catalytic activity, p-benzoquinone and 1,2,4-benzenetriol were unable to inhibit DNA synthesis. Thus, the data imply the p-benzoquinone and 1,2,4-benzenetriol inhibited DNA polymerase α, consequently resulting in inhibition of DNA synthesis in both cellular and cell-free DNA synthetic systems. The present study identifies catechol, hydroquinone, p-benzoquinone, and 1,2,4-benzenetriol as toxic benzene metabolites in bone marrow cells and also suggests that their inhibitory action on DNA synthesis is mediated by mechanism(s) other than that involving DNA damage as a primary cause

  19. Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest

    International Nuclear Information System (INIS)

    Leseleuc, Louis de; Denis, Francois

    2006-01-01

    The orphan nuclear receptor Nur77 has been implicated in both growth and apoptosis, and its function and activity can be modulated by cellular redistribution. Green fluorescent protein-tagged Nur77 was used to evaluate the role of Nur77 intracellular redistribution in response to genotoxic stress. Selected DNA damaging agents and transcription inhibition lead to rapid redistribution of Nur77 into nuclear structures distinct from conventional nuclear bodies. These nuclear bodies formed transiently were tightly bound to the nuclear matrix and conditions that lead to their appearance were associated with Nur77 transcriptional inhibition. The formation of Nur77 nuclear bodies might be involved in programmed cell death modulation upon exposure to DNA damaging agents that inhibit transcription by sequestrating this proapoptotic factor in dense nuclear structures

  20. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  1. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    LaRiviere, Frederick J. [Department of Chemistry, Washington and Lee University, Lexington, VA 24450 (United States); Newman, Adam G.; Watts, Megan L.; Bradley, Sharonda Q.; Juskewitch, Justin E. [Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, ME 04901 (United States); Greenwood, Paul G. [Department of Biology, Colby College, Waterville, ME 04901 (United States); Millard, Julie T., E-mail: jtmillar@colby.edu [Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, ME 04901 (United States)

    2009-05-12

    The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.

  2. Quantitative PCR analysis of diepoxybutane and epihalohydrin damage to nuclear versus mitochondrial DNA

    International Nuclear Information System (INIS)

    LaRiviere, Frederick J.; Newman, Adam G.; Watts, Megan L.; Bradley, Sharonda Q.; Juskewitch, Justin E.; Greenwood, Paul G.; Millard, Julie T.

    2009-01-01

    The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in vivo, we assayed for damage within chicken erythro-progenitor cells at three different sites: one within mitochondrial DNA, one within expressed nuclear DNA, and one within unexpressed nuclear DNA. We determined the degree of damage at each site via a quantitative polymerase chain reaction, which compares amplification of control, untreated DNA to that from cells exposed to the agent in question. We found that ECH and the related compound epibromohydrin preferentially target nuclear DNA relative to mitochondrial DNA, whereas DEB reacts similarly with the two genomes. Decreased reactivity of the mitochondrial genome could contribute to the reduced apoptotic potential of ECH relative to DEB. Additionally, formation of lesions by all agents occurred at comparable levels for unexpressed and expressed nuclear loci, suggesting that alkylation is unaffected by the degree of chromatin condensation.

  3. Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents.

    Science.gov (United States)

    Cabo, Sandra; Ferreira, Luciana; Carvalho, Ana; Martins-Lopes, Paula; Martín, António; Lima-Brito, José Eduardo

    2014-08-01

    Hexaploid tritordeum (H(ch)H(ch)AABB; 2n = 42) results from the cross between Hordeum chilense (H(ch)H(ch); 2n = 14) and cultivated durum wheat (Triticum turgidum ssp. durum (AABB; 2n = 28). Morphologically, tritordeum resembles the wheat parent, showing promise for agriculture and wheat breeding. Start Codon Targeted (SCoT) polymorphism is a recently developed technique that generates gene-targeted markers. Thus, we considered it interesting to evaluate its potential for the DNA fingerprinting of newly synthesized hexaploid tritordeums and their respective parents. In this study, 60 SCoT primers were tested, and 18 and 19 of them revealed SCoT polymorphisms in the newly synthesized tritordeum lines HT27 and HT22, respectively, and their parents. An analysis of the presence/absence of bands among tritordeums and their parents revealed three types of polymorphic markers: (i) shared by tritordeums and one of their parents, (ii) exclusively amplified in tritordeums, and (iii) exclusively amplified in the parents. No polymorphism was detected among individuals of each parental species. Three SCoT markers were exclusively amplified in tritordeums of lines HT22 and HT27, being considered as polyploidization-induced rearrangements. About 70% of the SCoT markers of H. chilense origin were not transmitted to the allopolyploids of both lines, and most of the SCoTs scored in the newly synthesized allopolyploids originated from wheat, reinforcing the potential use of tritordeum as an alternative crop.

  4. Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley

    DEFF Research Database (Denmark)

    Pedersen, C.; Linde-Laursen, I.

    1994-01-01

    is located about 54% out on the short arm of chromosome 4 and it has not previously been reported in barley. We have designated the new locus Nor-I6. rDNA loci on homoeologous group 4 chromosomes have not yet been reported in other Triticeae species. The origin of these 4 minor rDNA loci is discussed...

  5. Staining Against Phospho-H2AX (gamma-H2AX) as a Marker for DNA Damage and Genomic Instability in Cancer Tissues and Cells

    NARCIS (Netherlands)

    Nagelkerke, A.P.; Span, P.N.

    2016-01-01

    Phospho-H2AX or gamma-H2AX- is a marker of DNA double-stranded breaks and can therefore be used to monitor DNA repair after, for example, irradiation. In addition, positive staining for phospho-H2AX may indicate genomic instability and telomere dysfunction in tumour cells and tissues. Here, we

  6. Combined Analyses of Chloroplast DNA Haplotypes and Microsatellite Markers Reveal New Insights Into the Origin and Dissemination Route of Cultivated Pears Native to East Asia

    Directory of Open Access Journals (Sweden)

    Xiaoyan Yue

    2018-05-01

    Full Text Available Asian pear plays an important role in the world pear industry, accounting for over 70% of world total production volume. Commercial Asian pear production relies on four major pear cultivar groups, Japanese pear (JP, Chinese white pear (CWP, Chinese sand pear (CSP, and Ussurian pear (UP, but their origins remain controversial. We estimated the genetic diversity levels and structures in a large sample of existing local cultivars to investigate the origins of Asian pears using twenty-five genome-covering nuclear microsatellite (simple sequence repeats, nSSR markers and two non-coding chloroplast DNA (cpDNA regions (trnL-trnF and accD-psaI. High levels of genetic diversity were detected for both nSSRs (HE = 0.744 and cpDNAs (Hd = 0.792. The major variation was found within geographic populations of cultivated pear groups, demonstrating a close relationship among cultivar groups. CSPs showed a greater genetic diversity than CWPs and JPs, and lowest levels of genetic differentiation were detected among them. Phylogeographical analyses indicated that the CSP, CWP, and JP were derived from the same progenitor of Pyrus pyrifolia in China. A dissemination route of cultivated P. pyrifolia estimated by approximate Bayesian computation suggested that cultivated P. pyrifolia from the Middle Yangtze River Valley area contributed the major genetic resources to the cultivars, excluding those of southwestern China. Three major genetic groups of cultivated Pyrus pyrifolia were revealed using nSSRs and a Bayesian statistical inference: (a JPs; (b cultivars from South-Central China northward to northeastern China, covering the main pear production area in China; (c cultivars from southwestern China to southeastern China, including Yunnan, Guizhou, Guangdong, Guangxi, and Fujian Provinces. This reflected the synergistic effects of ecogeographical factors and human selection during cultivar spread and improvement. The analyses indicated that UP cultivars might be

  7. Are both sympatric species Ilex perado and Ilex canariensis secretly hybridizing? Indication from nuclear markers collected in Tenerife

    Directory of Open Access Journals (Sweden)

    Manen Jean-François

    2004-11-01

    Full Text Available Abstract Background Intra-specific and intra-individual polymorphism is frequently observed in nuclear markers of Ilex (Aquifoliaceae and discrepancy between plastid and nuclear phylogenies is the rule in this genus. These observations suggest that inter-specific plastid or/and nuclear introgression played an important role in the process of evolution of Ilex. With the aim of a precise understanding of the evolution of this genus, two distantly related sympatric species collected in Tenerife (Canary Islands, I. perado and I. canariensis, were studied in detail. Introgression between these two species was previously never reported. One plastid marker (the atpB-rbcL spacer and two nuclear markers, the ribosomal internal transcribed spacer (ITS and the nuclear encoded plastid glutamine synthetase (nepGS were analyzed for 13 and 27 individuals of I. perado and I. canariensis, respectively. Results The plastid marker is intra-specifically constant and correlated with species identity. On the other hand, whereas the nuclear markers are conserved in I. perado, they are highly polymorphic in I. canariensis. The presence of pseudogenes and recombination in ITS sequences of I. canariensis explain this polymorphism. Ancestral sequence polymorphism with incomplete lineage sorting, or past or recent hybridization with an unknown species could explain this polymorphism, not resolved by concerted evolution. However, as already reported for many other plants, past or recent introgression of an alien genotype seem the most probable explanation for such a tremendous polymorphism. Conclusions Data do not allow the determination with certitude of the putative species introgressing I. canariensis, but I. perado is suspected. The introgression would be unilateral, with I. perado as the male donor, and the paternal sequences would be rapidly converted in highly divergent and consequently unidentifiable pseudogenes. At least, this study allows the establishment of

  8. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs...... with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies...... evidence for aging-associated accumulation of oxidatively damaged DNA in organs with limited cell proliferation....

  9. A Fluorescent Tile DNA Diagnocode System for In Situ Rapid and Selective Diagnosis of Cytosolic RNA Cancer Markers

    Science.gov (United States)

    Park, Kyung Soo; Shin, Seung Won; Jang, Min Su; Shin, Woojung; Yang, Kisuk; Min, Junhong; Cho, Seung-Woo; Oh, Byung-Keun; Bae, Jong Wook; Jung, Sunghwan; Choi, Jeong-Woo; Um, Soong Ho

    2015-01-01

    Accurate cancer diagnosis often requires extraction and purification of genetic materials from cells, and sophisticated instrumentations that follow. Otherwise in order to directly treat the diagnostic materials to cells, multiple steps to optimize dose concentration and treatment time are necessary due to diversity in cellular behaviors. These processes may offer high precision but hinder fast analysis of cancer, especially in clinical situations that need rapid detection and characterization of cancer. Here we present a novel fluorescent tile DNA nanostructure delivered to cancer cytosol by employing nanoparticle technology. Its structural anisotropicity offers easy manipulation for multifunctionalities, enabling the novel DNA nanostructure to detect intracellular cancer RNA markers with high specificity within 30 minutes post treatment, while the nanoparticle property bypasses the requirement of treatment optimization, effectively reducing the complexity of applying the system for cancer diagnosis. Altogether, the system offers a precise and rapid detection of cancer, suggesting the future use in the clinical fields. PMID:26678430

  10. Comparative analysis of chromosomal localization of ribosomal and telomeric DNA markers in three species of Pyrgomorphidae grasshoppers

    Directory of Open Access Journals (Sweden)

    Olesya G. Buleu

    2017-09-01

    Full Text Available The karyotypes of three species of Pyrgomorphidae grasshoppers were studied: Zonocerus elegans (Thunberg, 1815, Pyrgomorpha guentheri (Burr, 1899 and Atractomorpha lata (Mochulsky, 1866. Data on karyotypes of P. guentheri and Z. elegans are reported here for the first time. All species have karyotypes consisting of 19 acrocentric chromosomes in males and 20 acrocentric chromosomes in females (2n♂=19, NF=19; 2n♀=20, NF=20 and X0/XX sex determination system. A comparative analysis of the localization of C-heterochromatin, clusters of ribosomal DNA, and telomere repeats revealed inter-species diversity in these cytogenetic markers. These differences indicate that the karyotype divergence in the species studied is not associated with structural chromosome rearrangements, but with the evolution of repeated DNA sequences.

  11. Heterogeneous nuclear ribonucleoprotein B1 protein impairs DNA repair mediated through the inhibition of DNA-dependent protein kinase activity

    International Nuclear Information System (INIS)

    Iwanaga, Kentaro; Sueoka, Naoko; Sato, Akemi; Hayashi, Shinichiro; Sueoka, Eisaburo

    2005-01-01

    Heterogeneous nuclear ribonucleoprotein B1, an RNA binding protein, is overexpressed from the early stage of lung cancers; it is evident even in bronchial dysplasia, a premalignant lesion. We evaluated the proteins bound with hnRNP B1 and found that hnRNP B1 interacted with DNA-dependent protein kinase (DNA-PK) complex, and recombinant hnRNP B1 protein dose-dependently inhibited DNA-PK activity in vitro. To test the effect of hnRNP B1 on DNA repair, we performed comet assay after irradiation, using normal human bronchial epithelial (HBE) cells treated with siRNA for hnRNP A2/B1: reduction of hnRNP B1 treated with siRNA for hnRNP A2/B1 induced faster DNA repair in normal HBE cells. Considering these results, we assume that overexpression of hnRNP B1 occurring in the early stage of carcinogenesis inhibits DNA-PK activity, resulting in subsequent accumulation of erroneous rejoining of DNA double-strand breaks, causing tumor progression

  12. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence.

    Science.gov (United States)

    Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W; Samuel, Rosabelle

    2016-06-01

    Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree

  13. Evidence for nuclear internalization of exogenous DNA into mammalian sperm cells

    International Nuclear Information System (INIS)

    Francolini, M.; Lavitrano, M.; Lamia, C.L.; French, D.; Frati, L.; Cotelli, F.; Spadafora, C.

    1993-01-01

    Mature sperm cells have the spontaneous capacity to take up exogenous DNA. Such DNA specifically interacts with the subacrosomal segment of the sperm head corresponding to the nuclear area. Part of the sperm-bound foreign DNA is further internalized into nuclei. Using end-labelled plasmid DNA we have found that 15-22% of the total sperm bound DNA is associated with nuclei as determined on isolated nuclei. On the basis of autoradiographic analysis, nuclear permeability to exogenous DNA seems to be a wide phenomenon involving the majority of the sperm nuclei. In fact, the foreign DNA, incubated with sperm cells for different lengths of time, is found in 45% (10 min) to 65% (2 hr) of the sperm nuclei. Ultrastructural autoradiography on thin sections of mammalian spermatozoa, preincubated with end-labelled plasmid DNA, shows that the exogenous DNA is internalized into the nucleus. This conclusion is further supported by ultrastructural autoradiographic analysis on thin sections of nuclei isolated from spermatozoa preincubated with end-labelled DNA

  14. Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses.

    Science.gov (United States)

    Fay, Nikta; Panté, Nelly

    2015-06-01

    The nuclear import of viral genomes is an important step of the infectious cycle for viruses that replicate in the nucleus of their host cells. Although most viruses use the cellular nuclear import machinery or some components of this machinery, others have developed sophisticated ways to reach the nucleus. Some of these have been known for some time; however, recent studies have changed our understanding of how some non-enveloped DNA viruses access the nucleus. For example, parvoviruses enter the nucleus through small disruptions of the nuclear membranes and nuclear lamina, and adenovirus tugs at the nuclear pore complex, using kinesin-1, to disassemble their capsids and deliver viral proteins and genomes into the nucleus. Here we review recent findings of the nuclear import strategies of three small non-enveloped DNA viruses, including adenovirus, parvovirus, and the polyomavirus simian virus 40. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN HUMAN FECAL MICROBIAL COMMUNITIES

    Science.gov (United States)

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...

  16. dna profiling of capsicum annuum with the help of molecular markers

    African Journals Online (AJOL)

    isha

    2013-07-24

    Jul 24, 2013 ... Since the commercial value of chilli pepper is based on pungency level, ... Randomly Amplified Polymorphic DNA, Dendrogram, Polymerase Chain ..... the Amazon department in Columbia, characterization by AFLPs of.

  17. Validation of eDNA markers for New Zealand mudsnail surveillance and initial eDNA monitoring at Mississippi River Basin sites

    Science.gov (United States)

    Merkes, Christopher; Turnquist, Keith N.; Rees, Christopher B.; Amberg, Jon J.

    2015-01-01

    The performance of newly developed New Zealand mudsnail (Potamopyrgus antipodarum; NZMS) genetic markers for environmental (eDNA) analysis of water were compared across two laboratories. The genetic markers were tested in four quantitative polymerase chain reaction assays targeting two regions of the NZMS mitochondrial genome, specifically the cytochrome c oxidase subunit 1 (coi) and cytochrome b (cytb) genes. In a blind study, analysts tested each sample eight times with each assay. There were 10 expected-negative samples from the Black River in La Crosse, Wisconsin, 10 expected-positive samples from the Black Earth Creek in Black Earth, Wisconsin, and 10 known-positive samples from the Black River spiked with NZMS DNA. Previously extracted samples, kept at the Upper Midwest Environmental Sciences Center, were pooled by sample location and then equal quantities were distributed between the Upper Midwest Environmental Sciences Center and the Molecular Conservation Genetics Laboratory at the University of Wisconsin-Stevens Point for analysis. The assays tested were (1) the assay targeting cytb with a minor groove binder probe described by Goldberg and others (2013), (2) the cytb assay with a modified double-quenched probe, (3) an assay targeting coi with a double-quenched probe, and (4) a duplex reaction combining the modified cytb assay and the coi assay. Samples were considered positive for the presence of NZMS DNA when quantitative polymerase chain reaction amplification and probe signal was higher than the normalized threshold value above baseline fluorescence. For the duplex assay, samples were considered positive only when both probe signals were higher than the normalized threshold value above baseline fluorescence. Positive results were then confirmed by sequencing the products.

  18. Nuclear and chromatin structures and their influence on the radiosensitivity of DNA

    International Nuclear Information System (INIS)

    Oleinick, N.L.; Chiu, S.-M.

    1994-01-01

    Among the factors contributing to the distribution of DNA damage within irradiated mammalian cell nuclei are the interactions of DNA with nuclear proteins and the formation of multi-molecular chromatin structures. Studies on the manipulation of chromatin structures of isolated nuclei are summarised. The majority of chromatin within the nucleus of living cells is tightly compacted into nucleosomal superhelices and other higher order structures which have a limited ability to be damaged by radiation. The treatment of isolated nuclei with hypotonic buffers causes a decondensation of these structures and markedly sensitises the DNA to radiation, while retaining the majority of the chromosomal proteins. On the other hand, treatment of nuclei with hypertonic buffers strips the DNA of specific classes of nuclear proteins, destroying chromatin structure, and this procedure also enhances the sensitivity of the DNA to radiation. The various expanded chromatin structures are models for the structure of the minor fraction of DNA which is decondensed in preparation for transcription or replication. The combined results indicate that the majority of nuclear DNA is protected by histones and other nuclear proteins from radiation damage, partially as a result of the limited accessibility of the condensed structures to hydroxyl radical and partially as a result of the scavenging of radicals by the proteins. (Author)

  19. Nuclear Lipid Microdomain as Place of Interaction between Sphingomyelin and DNA during Liver Regeneration

    Directory of Open Access Journals (Sweden)

    Samuela Cataldi

    2013-03-01

    Full Text Available Nuclear sphingomyelin is a key molecule for cell proliferation. This molecule is organized with cholesterol and proteins to form specific lipid microdomains bound to the inner nuclear membrane where RNA is synthesized. Here, we have reported the ability of the sphingomyelin present in the nuclear microdomain to bind DNA and regulate its synthesis, and to highlight its role in cell proliferation induced by partial hepatectomy. During G1/S transition of the cell cycle, sphingomyelin and DNA content is very high and it is strongly reduced after exogenous sphingomyelinase treatment. During the S-phase of the cell cycle, the stimulation of sphingomyelinase and inhibition of sphingomyelin–synthase are accompanied by the DNA synthesis start. To assess the specificity of the results, experiments were repeated with trifluoperazine, a drug known to affect the synthesis of lipids and DNA and to stimulate sphingomyelinase activity. The activity of sphingomyelinase is stimulated in the first hour after hepatectomy and sphingomyelin–DNA synthesis is strongly attenuated. It may be hypothesized that the nuclear microdomain represents a specific area of the inner nuclear membrane that acts as an active site of chromatin anchorage thanks to the stabilizing action of sphingomyelin. Thus, sphingomyelin metabolism in nuclear lipid microdomains is suggested to regulate cell proliferation.

  20. The genetic profiles of two salmonid populations from Romania obtained through nuclear markers analysis

    Directory of Open Access Journals (Sweden)

    Ramona Nechifor

    2017-05-01

    Full Text Available The Salmonidae fish family is well represented in Romanian fauna, with a total of six species in the wild and reared in fish farms. Among them, the brown trout (Salmo trutta fario can be found in all major Romanian river basins. However, anthropogenic activities might disrupt salmonids’ habitats, so that inbreeding and genetic isolation might easily occur in the wild populations. We analyzed two wild brown trout populations from rivers targeted by anthropogenic activities, by using nuclear markers and genotyping in order to observe their genetic structure. We analyzed nine microsatellites and we observed their alleles frequencies, number of private alleles, observed and expected heterozygosity, as well as their population structure. The two populations are not in Hardy-Weinberg equilibrium for most of the loci and the inbreeding coefficient for both populations suggests a heterozygote deficit. Further sequencing data are needed in order to have a better view upon their complete genetic structure.

  1. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex

    DEFF Research Database (Denmark)

    Géli, Vincent; Lisby, Michael

    2015-01-01

    and colleagues shows that also physiological threats to genome integrity such as DNA secondary structure-forming triplet repeat sequences relocalize to the NPC during DNA replication. Mutants that fail to reposition the triplet repeat locus to the NPC cause repeat instability. Here, we review the types of DNA...... lesions that relocalize to the NPC, the putative mechanisms of relocalization, and the types of recombinational repair that are stimulated by the NPC, and present a model for NPC-facilitated repair....

  2. Autosomal and mtDNA markers affirm the distinctiveness of lions in West and Central Africa

    NARCIS (Netherlands)

    Bertola, L.D.; Tensen, Laura; Hooft, Van Pim; White, P.A.; Driscoll, C.A.; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, E.A.; Tumenta, Pricelia N.; Jirmo, T.H.; Snoo, De G.R.; Iongh, De H.H.; Vrieling, Klaas

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers.

  3. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa

    NARCIS (Netherlands)

    Bertola L.D., Tensen, L., Hooft P. van, White P.A., Driscoll C.A., Henschel P., Caragiulo A., Dias-Freedman I., Sogbohossou E.A., Tumenta P.M., Jirmo T.H., Snoo G.R. de, Iongh H.H. de, Vrieling K.

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion ( Panthera leo ) in West/Central Africa is largely based on mitochondrial markers.

  4. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC MICROBIAL GENETIC MARKERS IN COW FECAL SAMPLES

    Science.gov (United States)

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...

  5. DNA profiling of pineapple cultivars in Japan discriminated by SSR markers

    Science.gov (United States)

    Shoda, Moriyuki; Urasaki, Naoya; Sakiyama, Sumisu; Terakami, Shingo; Hosaka, Fumiko; Shigeta, Narumi; Nishitani, Chikako; Yamamoto, Toshiya

    2012-01-01

    We developed 18 polymorphic simple sequence repeat (SSR) markers in pineapple (Ananas comosus) by using genomic libraries enriched for GA and CA motifs. The markers were used to genotype 31 pineapple accessions, including seven cultivars and 11 breeding lines from Okinawa Prefecture, 12 foreign accessions and one from a related species. These SSR loci were highly polymorphic: the 31 accessions contained three to seven alleles per locus, with an average of 4.1. The values of expected heterozygosity ranged from 0.09 to 0.76, with an average of 0.52. All 31 accessions could be successfully differentiated by the 18 SSR markers, with the exception of ‘N67-10’ and ‘Hawaiian Smooth Cayenne’. A single combination of three markers TsuAC004, TsuAC010 and TsuAC041, was enough to distinguish all accessions with one exception. A phenogram based on the SSR genotypes did not show any distinct groups, but it suggested that pineapples bred in Japan are genetically diversed. We reconfirmed the parentage of 14 pineapple accessions by comparing the SSR alleles at 17 SSR loci in each accession and its reported parents. The obtained information will contribute substantially to protecting plant breeders’ rights. PMID:23341750

  6. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  7. 16S partial gene mitochondrial DNA and internal transcribed spacers ribosomal DNA as differential markers of Trichuris discolor populations.

    Science.gov (United States)

    Callejón, R; Halajian, A; de Rojas, M; Marrugal, A; Guevara, D; Cutillas, C

    2012-05-25

    Comparative morphological, biometrical and molecular studies of Trichuris discolor isolated from Bos taurus from Spain and Iran was carried out. Furthermore, Trichuris ovis isolated from B. taurus and Capra hircus from Spain has been, molecularly, analyzed. Morphological studies revealed clear differences between T. ovis and T. discolor isolated from B. taurus but differences were not observed between populations of T. discolor isolated from different geographical regions. Nevertheless, the molecular studies based on the amplification and sequencing of the internal transcribed spacers 1 and 2 ribosomal DNA and 16S partial gene mitochondrial DNA showed clear differences between both populations of T. discolor from Spain and Iran suggesting two cryptic species. Phylogenetic studies corroborated these data. Thus, phylogenetic trees based on ITS1, ITS2 and 16S partial gene sequences showed that individuals of T. discolor from B. taurus from Iran clustered together and separated, with high bootstrap values, of T. discolor isolated from B. taurus from Spain, while populations of T. ovis from B. taurus and C. hircus from Spain clustered together but separated with high bootstrap values of both populations of T. discolor. Furthermore, a comparative phylogenetic study has been carried out with the ITS1and ITS2 sequences of Trichuris species from different hosts. Three clades were observed: the first clustered all the species of Trichuris parasitizing herbivores (T. discolor, T. ovis, Trichuris leporis and Trichuris skrjabini), the second clustered all the species of Trichuris parasitizing omnivores (Trichuris trichiura and Trichuris suis) and finally, the third clustered species of Trichuris parasitizing carnivores (Trichuris muris, Trichuris arvicolae and Trichuris vulpis). Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP).

    Science.gov (United States)

    Hajibarat, Zahra; Saidi, Abbas; Hajibarat, Zohreh; Talebi, Reza

    2015-07-01

    To evaluate the genetic diversity among 48 genotypes of chickpea comprising cultivars, landraces and internationally developed improved lines genetic distances were evaluated using three different molecular marker techniques: Simple Sequence Repeat (SSR); Start Codon Targeted (SCoT) and Conserved DNA-derived Polymorphism (CDDP). Average polymorphism information content (PIC) for SSR, SCoT and CDDP markers was 0.47, 0.45 and 0.45, respectively, and this revealed that three different marker types were equal for the assessment of diversity amongst genotypes. Cluster analysis for SSR and SCoT divided the genotypes in to three distinct clusters and using CDDP markers data, genotypes grouped in to five clusters. There were positive significant correlation (r = 0.43, P SSR markers. These results suggest that efficiency of SSR, SCOT and CDDP markers was relatively the same in fingerprinting of chickpea genotypes. To our knowledge, this is the first detailed report of using targeted DNA region molecular marker (CDDP) for genetic diversity analysis in chickpea in comparison with SCoT and SSR markers. Overall, our results are able to prove the suitability of SCoT and CDDP markers for genetic diversity analysis in chickpea for their high rates of polymorphism and their potential for genome diversity and germplasm conservation.

  9. Epizoanthus spp. associations revealed using DNA markers: a case study from Kochi, Japan.

    Science.gov (United States)

    Reimer, James Davis; Hirose, Mamiko; Nishisaka, Taiki; Sinniger, Frederic; Itani, Gyo

    2010-09-01

    Zoanthids (Cnidaria, Hexacorallia) of the genus Epizoanthus are often found in association with other marine invertebrates, including gastropods and hermit crabs. However, little information exists on the specificity and nature of these associations due to a lack of investigation into Epizoanthus species diversity, and the taxonomy of Epizoanthus is therefore confused. In this study, analyses of morphological data (tentacle number, polyp size, etc) and molecular data (mitochondrial cytochrome oxidase subunit 1 = COI, 16S ribosomal DNA = 16S rDNA) were used to examine Epizoanthus specimens from Tosa Bay, Kochi, Japan. The Epizoanthus specimens were found on both live gastropods (Gemmula unedo) and hermit crabs (Paguristes palythophilus) inhabiting G. unedo and G. cosmoi shells. While morphological analyses did not show clear differences between examined specimens, both COI and mt 16S rDNA clearly divided the specimens into two groups, one associated only with hermit crabs (= Epizoanthus sp. C), and another associated only with living gastropods (= Epizoanthus sp. S). Unexpectedly, DNA sequences from both groups did not match with two previously reported Epizoanthus species from Japan (E. indicus, E. ramosus), indicating they both may be undescribed species. These results highlight the utility of DNA "barcoding" of unknown zoanthids, and will provide a foundation for re-examinations of Epizoanthus species diversity and specificity, which will be critical in understanding the evolution of these unique marine invertebrates.

  10. Insights into population ecology and sexual selection in snakes through the application of DNA-based genetic markers.

    Science.gov (United States)

    Gibbs, H L; Weatherhead, P J

    2001-01-01

    Hypervariable genetic markers have revolutionized studies of kinship, behavioral ecology, and population biology in vertebrate groups such as birds, but their use in snakes remains limited. To illustrate the value of such markers in snakes, we review studies that have used microsatellite DNA loci to analyze local population differentiation and parentage in snakes. Four ecologically distinct species of snakes all show evidence for differentiation at small spatial scales (2-15 km), but with substantial differences among species. This result highlights how genetic analysis can reveal hidden aspects of the natural history of difficult-to-observe taxa, and it raises important questions about the ecological factors that may contribute to restricted gene flow. A 3-year study of genetic parentage in marked populations of the northern water snake showed that (1) participation in mating aggregations was a poor predictor of genetic-based measures of reproductive success; (2) multiple paternity was high, yet there was no detectable fitness advantage to multiple mating by females; and (3) the opportunity for selection was far higher in males than in females due to a larger variance in male reproductive success, and yet this resulted in no detectable selection on morphological variation in males. Thus genetic markers have provided accurate measures of individual reproductive success in this species, an important step toward resolving the adaptive significance of key features including multiple paternity and reversed sexual size dimorphism. Overall these studies illustrate how genetic analyses of snakes provide previously unobtainable information of long-standing interest to behavioral ecologists.

  11. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome.

    Directory of Open Access Journals (Sweden)

    Maribel Forero-Castro

    Full Text Available Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL is still a challenge.To characterize the presence of additional DNA copy number alterations (CNAs in children and adults with ALL by whole-genome oligonucleotide array (aCGH analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults. The NimbleGen CGH 12x135K array (Roche was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q. CNAs were associated with age, phenotype, genetic subtype and overall survival (OS. In the whole cohort of children, the losses on 14q32.33 (p = 0.019 and 15q13.2 (p = 0.04 were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001 and Xp21.1 (p = 0.029, and the loss of 17p (p = 0.014 were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.

  12. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  13. Concordance of Hypermethylated DNA and the Tumor Markers CA 15-3, CEA, and TPA in Serum during Monitoring of Patients with Advanced Breast Cancer.

    Science.gov (United States)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Hansen, Morten Høgh; Nielsen, Dorte; Sölétormos, György

    2015-01-01

    The serological protein tumor markers CA 15-3, CEA, and TPA are frequently used to monitor tumor burden among metastatic breast cancer patients. Breast cancer is associated with global DNA hypomethylation and hypermethylation of some promoter regions. No monitoring study has yet investigated the interrelationship between protein tumor markers, the global DNA hypomethylation, and hypermethylated genes in serum from patients with advanced disease. Twenty-nine patients with histologically proven advanced breast cancer received first-line chemotherapy with epirubicin. Samples were collected prior to each treatment and prospectively analyzed for CA 15-3, CEA, and TPA. The same samples were retrospectively analyzed for the concentration of hypermethylated RASSF1A and for global DNA hypomethylation using LINE-1. Among patients with elevated concentrations of the protein markers, concordance could be observed between serial changes of the hypermethylated RASSF1A gene and the protein markers. Among patients with lower concentrations, RASSF1A could only be detected periodically. There was discordance between changes of the hypomethylated LINE-1 as compared to the protein markers. Circulating hypermethylated RASSF1A and protein markers may have similar kinetics during monitoring of tumor burden. Further investigations are needed to determine whether any of the hypermethylated DNA genes may provide predictive information during monitoring.

  14. Concordance of Hypermethylated DNA and the Tumor Markers CA 15-3, CEA, and TPA in Serum during Monitoring of Patients with Advanced Breast Cancer

    Directory of Open Access Journals (Sweden)

    Søren Kristiansen

    2015-01-01

    Full Text Available The serological protein tumor markers CA 15-3, CEA, and TPA are frequently used to monitor tumor burden among metastatic breast cancer patients. Breast cancer is associated with global DNA hypomethylation and hypermethylation of some promoter regions. No monitoring study has yet investigated the interrelationship between protein tumor markers, the global DNA hypomethylation, and hypermethylated genes in serum from patients with advanced disease. Twenty-nine patients with histologically proven advanced breast cancer received first-line chemotherapy with epirubicin. Samples were collected prior to each treatment and prospectively analyzed for CA 15-3, CEA, and TPA. The same samples were retrospectively analyzed for the concentration of hypermethylated RASSF1A and for global DNA hypomethylation using LINE-1. Among patients with elevated concentrations of the protein markers, concordance could be observed between serial changes of the hypermethylated RASSF1A gene and the protein markers. Among patients with lower concentrations, RASSF1A could only be detected periodically. There was discordance between changes of the hypomethylated LINE-1 as compared to the protein markers. Circulating hypermethylated RASSF1A and protein markers may have similar kinetics during monitoring of tumor burden. Further investigations are needed to determine whether any of the hypermethylated DNA genes may provide predictive information during monitoring.

  15. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona

    2016-01-01

    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...

  16. Periodic expression of nuclear and mitochondrial DNA replication genes during the trypanosomatid cell cycle.

    Science.gov (United States)

    Pasion, S G; Brown, G W; Brown, L M; Ray, D S

    1994-12-01

    In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.

  17. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective o...

  18. Discovery of potential DNA methylation markers for forensic tissue identification using bisulphite pyrosequencing

    NARCIS (Netherlands)

    A. Vidaki (Athina); F. Giangasparo (Federica); D. Syndercombe-Court (Denise)

    2016-01-01

    textabstractThe presence of specific body fluids at crime scenes could be linked with particular types of crime, therefore attributing a DNA profile to a specific tissue could increase the evidential significance of a match with a suspect. Current methodologies such as tissue-specific mRNA profiling

  19. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae and evaluation of potential DNA barcoding markers

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2017-08-01

    Full Text Available The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum, Adelphocoris suturalis, Ade. fasciaticollis and Ade. lineolatus. We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage were well conserved among these mirids. Four protein-coding genes (PCGs (cox1, cox3, nad1 and nad3 had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs (nad4 and nad5 showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (<0.59, but the Ka/Ks values of cox1-barcode sequences were always larger than 1 (1.34 –15.20, indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + (Trigonotylus + (Adelphocoris + (Apolygus + Lygus, as revealed by nad4, nad5, rrnL and the combined 22 transfer RNA genes (tRNAs, respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes (nad4, nad5 and rrnL and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification

  20. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers.

    Science.gov (United States)

    Wang, Juan; Zhang, Li; Zhang, Qi-Lin; Zhou, Min-Qiang; Wang, Xiao-Tong; Yang, Xing-Zhuo; Yuan, Ming-Long

    2017-01-01

    The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum , Adelphocoris suturalis , Ade. fasciaticollis and Ade. lineolatus ). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) ( cox1 , cox3 , nad1 and nad3 ) had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs ( nad4 and nad5 ) showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (barcode sequences were always larger than 1 (1.34 -15.20), indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + ( Trigonotylus + ( Adelphocoris + ( Apolygus + Lygus ))), as revealed by nad4 , nad5 , rrnL and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes ( nad4 , nad5 and rrnL ) and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification studies.

  1. Development, applications and distribution of DNA markers for genetic information for sorghum and maize improvement

    International Nuclear Information System (INIS)

    Lee, M.

    2001-01-01

    This final report summarizes the progress made towards the enhancement and distribution of genetic resources (e.g. genetic stocks, seed and DNA clones) used for basic and applied aspects of the genetic improvement of maize and sorghum. The genetic maps of maize and sorghum were improved through comparative mapping of RFLP loci detected by 124 maize cDNA clones and through the development of a new mapping population of maize. Comparative mapping between maize and sorghum and maize and rice, using the set of 124 maize cDNA clones (and other clones) in each study, substantiated previous observations of extensive conservation of locus order but it also provided strong evidence of numerous large-scale chromosomal rearrangements. The new mapping population for maize (intermated B73xMo17, 'IBM') was created by random intermating during the first segregating generation. Intermating for four generations prior to the derivation of recombinant inbred lines (RILs) increased the frequency of recombinants at many regions of the maize genome and provided better genetic resolution of locus order. Expansion of the maize genetic map was not uniform along the length of a linkage group and was less than the theoretical expectation. The 350 IBM RILs were genotyped at 512 loci detected by DNA clones, including 76 of the 124 supported by this contract. The production of the sorghum mapping population of RILs from the cross CK60xPI229828 has been delayed by weather conditions that were not conducive to plant growth and seed development. Seed of the IBM RILs have been distributed (approximately 5000 RILs in total) to 16 research organizations in the public and private sector. The DNA clones have been distributed (1,206 in total) to nine research labs. Further distribution of the seed and clones will be managed by curators at stock centers in the public domain. (author)

  2. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management

    Directory of Open Access Journals (Sweden)

    Sarika Jaiswal

    2017-11-01

    Full Text Available Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169 from complex, hexaploid wheat genome (~17 GB along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb and lowest (74.57 SSRs/Mb SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability testing, EDV (Essentially Derived Variety/IV (Initial Variety disputes, seed

  3. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions

    DEFF Research Database (Denmark)

    Sun, Wei; Cornwell, Adam; Li, Jiashu

    2017-01-01

    transporter 1 (GLT1), aquaporin-4, aldehyde dehydrogenase 1 family member L1, and other proteins. However, these proteins may all be regulated both developmentally and functionally, restricting their utility. To identify a nuclear marker pathognomonic of astrocytic phenotype, we assessed differential RNA...

  4. A complete plastid phylogeny of Daucus – concordance to nuclear results, and markers necessary for phylogenetic resolution

    Science.gov (United States)

    Premise of study: Our purposes were to (1) obtain a well-resolved plastid counterpart to the 94 gene nuclear ortholog gene phylogeny of Arbizu et al. (2014, Amer. J. Bot. 101:1666-1685; and Syst. Bot., in press), and (2) to investigate various classes and numbers of plastid markers necessary for a c...

  5. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    Science.gov (United States)

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Ubiquitination of HTLV-I Tax in response to DNA damage regulates nuclear complex formation and nuclear export

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2007-12-01

    Full Text Available Abstract Background The HTLV-I oncoprotein, Tax, is a pleiotropic protein whose activity is partially regulated by its ability to interact with, and perturb the functions of, numerous cellular proteins. Tax is predominantly a nuclear protein that localizes to nuclear foci known as Tax Speckled Structures (TSS. We recently reported that the localization of Tax and its interactions with cellular proteins are altered in response to various forms of genotoxic and cellular stress. The level of cytoplasmic Tax increases in response to stress and this relocalization depends upon the interaction of Tax with CRM1. Cellular pathways and signals that regulate the subcellular localization of Tax remain to be determined. However, post-translational modifications including sumoylation and ubiquitination are known to influence the subcellular localization of Tax and its interactions with cellular proteins. The sumoylated form of Tax exists predominantly in the nucleus while ubiquitinated Tax exists predominantly in the cytoplasm. Therefore, we hypothesized that post-translational modifications of Tax that occur in response to DNA damage regulate the localization of Tax and its interactions with cellular proteins. Results We found a significant increase in mono-ubiquitination of Tax in response to UV irradiation. Mutation of specific lysine residues (K280 and K284 within Tax inhibited DNA damage-induced ubiquitination. In contrast to wild-type Tax, which undergoes transient nucleocytoplasmic shuttling in response to DNA damage, the K280 and K284 mutants were retained in nuclear foci following UV irradiation and remained co-localized with the cellular TSS protein, sc35. Conclusion This study demonstrates that the localization of Tax, and its interactions with cellular proteins, are dynamic following DNA damage and depend on the post-translational modification status of Tax. Specifically, DNA damage induces the ubiquitination of Tax at K280 and K284

  7. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Morales, Albert; Miranda, Merce; Sanchez-Reyes, Alberto; Biete, Alberto; Fernandez-Checa, Jose C.

    1998-01-01

    Purpose: Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. Methods and Materials: GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. Results: Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). Conclusion: GSH plays a critical protective role in maintaining nuclear and mtDNA functional

  8. Induction of unscheduled DNA synthesis on the nuclear matrix of rat hepatocytes after whole-body γ-irradiation

    International Nuclear Information System (INIS)

    Bezlepkin, V.G.; Malinovskij, Yu.Yu.; Kuznetsova, E.A.; Namvar, R.A.; Gaziev, A.I.

    1986-01-01

    DNA synthesis in hepatocytes was studied by incorporation of [ 3 H]thymidine administered of portal vein of γ-irradiated (80 Gy) rats. It was shown that the rate of replicative DNA synthesis decreased in hepatocytes of the regenerating liver and unscheduled DNA synthesis was induced at the nuclear matrix of resting cells of the intact liver. In addition to repair synthesis, DNA synthesis resembling replicative one (''aberrant'' DNA synthesis) accounts for a considerable fraction of γ-radiation-induced synthesis of DNA at the nuclear matrix

  9. Phylogeny and species delineation in European species of the genus Steganacarus (Acari, Oribatida) using mitochondrial and nuclear markers.

    Science.gov (United States)

    Kreipe, Victoria; Corral-Hernández, Elena; Scheu, Stefan; Schaefer, Ina; Maraun, Mark

    2015-06-01

    Species of the genus Steganacarus are soil-living oribatid mites (Acari, Phthiracaridae) with a ptychoid body. The phylogeny and species status of the species of Steganacarus are not resolved, some authors group all ten German species of Steganacarus within the genus Steganacarus whereas others split them into three subgenera, Steganacarus, Tropacarus and Atropacarus. Additionally, two species, S. magnus and T. carinatus, comprise morphotypes of questionable species status. We investigated the phylogeny and species status of ten European Steganacarus species, i.e. S. applicatus, S. herculeanus, S. magnus forma magna, S. magnus forma anomala, S. spinosus, Tropacarus brevipilus, T. carinatus forma carinata, T. carinatus forma pulcherrima, Atropacarus striculus and Rhacaplacarus ortizi. We used two molecular markers, a 251 bp fragment of the nuclear gene 28S rDNA (D3) and a 477 bp fragment of the mitochondrial COI region. The phylogeny based on a combined analysis of D3 and COI separated four subgenera (Steganacarus, Tropacarus and Atropacarus, Rhacaplacarus) indicating that they form monophyletic groups. The COI region separated all ten species of the genus Steganacarus and showed variation within some species often correlating with the geographic origin of the species. Resolution of the more conserved D3 region was limited, indicating that radiation events are rather recent. Overall, our results indicate that both genes alone cannot be used for phylogeny and barcoding since variation is too low in D3 and too high in COI. However, when used in combination these genes provide reliable insight into the phylogeny, radiation and species status of taxa of the genus Steganacarus.

  10. Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells

    DEFF Research Database (Denmark)

    Machado, Ana Manuel Dantas; Figueiredo, Ceu; Touati, Eliette

    2009-01-01

    of genetic instabilities in the nuclear and mitochondrial DNA (mtDNA) were examined. EXPERIMENTAL DESIGN: We observed the effects of H. pylori infection on a gastric cell line (AGS), on C57BL/6 mice, and on individuals with chronic gastritis. In AGS cells, the effect of H. pylori infection on base excision...... cells and chronic gastritis tissue were determined by PCR, single-stranded conformation polymorphism, and sequencing. H. pylori vacA and cagA genotyping was determined by multiplex PCR and reverse hybridization. RESULTS: Following H. pylori infection, the activity and expression of base excision repair...... and MMR are down-regulated both in vitro and in vivo. Moreover, H. pylori induces genomic instability in nuclear CA repeats in mice and in mtDNA of AGS cells and chronic gastritis tissue, and this effect in mtDNA is associated with bacterial virulence. CONCLUSIONS: Our results suggest that H. pylori...

  11. Nuclear DNA content of the pigeon orchid (Dendrobium crumenatum Sw. with the analysis of flow cytometry

    Directory of Open Access Journals (Sweden)

    Upatham Meesawat

    2008-05-01

    Full Text Available Nuclear DNA content for the adult plants grown in a greenhouse and in vitro young plantlets of the pigeon orchid (Dendrobium crumenatum Sw. was analyzed using flow cytometry. The resulting 2C DNA values ranged from 2.30±0.14 pgto 2.43±0.06 pg. However, nuclear DNA ploidy levels of long-term in vitro plantlets were found to be triploid and tetraploid.These ploidy levels were confirmed by chromosome counting. Tetraploid individuals (2n = 4x = 76 had approximately two times DNA content than diploid (2n = 2x = 38 individuals. This variation may be due to prolonged cultivation and thepresence of exogenous plant growth regulators.

  12. Function of the UVR marker in dark repair of DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sedliakova, M; Brozmanova, J; Slezarikova, V; Masek, F; Fandlova, E [Slovenska Akademia Vied, Bratislava (Czechoslovakia). Vyskumny Ustav Onkologicky

    1975-01-01

    It was found earlier that the excision repair mechanism in Escherichia coli B/r Hcr/sup +/ could be depressed by pre-irradiation, amino acid and thymine starvation; such interference proved to have no appreciable influence on survival after ultraviolet irradiation. A comparison between Hcr/sup +/ and Hcr/sup -/ cells revealed that the former were capable of tolerating a greater amount of unexcised dimers than the latter. It is demonstrated in this paper that the above-mentioned pretreatment will depress excision activity also in cultures of E. coli K12 and E. coli 15T, both strains of the uvr/sup +/ rec/sup +/ genotype. A comparison of two E. coli K12 strains of the uvr/sup +/ and uvr/sup -/ genotype shows that uvr/sup +/ cells also have a greater capacity to tolerate unexcised dimers. To throw light on the nature of the increased capacity to tolerate unexcised dimers the restoration of DNA daughter chains in cells of the uvr/sup +/ and uvr/sup -/ genotype was compared and it was found that the integrity of uvr loci is a conditio sine qua non for an effective restoration of daughter chains, but that depression of excision activity by the mentioned pretreatment does not influence the restoration of DNA daughter chains. This suggests that uvr loci are involved not only in excision but also in the post-replication mechanism of DNA repair.

  13. Clinical differences in patients with mitochondriocytopathies due to nuclear versus mitochondrial DNA mutations.

    Science.gov (United States)

    Rubio-Gozalbo, M E; Dijkman, K P; van den Heuvel, L P; Sengers, R C; Wendel, U; Smeitink, J A

    2000-01-01

    Defects in oxidative phosphorylation (OXPHOS) are genetically unique because the different components involved in this process, respiratory chain enzyme complexes (I, III, and IV) and complex V, are encoded by nuclear and mitochondrial genome. The objective of the study was to assess whether there are clinical differences in patients suffering from OXPHOS defects caused by nuclear or mitochondrial DNA (mtDNA) mutations. We studied 16 families with > or = two siblings with a genetically established OXPHOS deficiency, four due to a nuclear gene mutation and 12 due to a mtDNA mutation. Siblings with a nuclear gene mutation showed very similar clinical pictures that became manifest in the first years (ranging from first months to early childhood). There was a severe progressive course. Seven of the eight children died in their first decade. Conversely, siblings with a mtDNA mutation had clinical pictures that varied from almost alike to very distinct. They became symptomatic at an older age (ranging from childhood to adulthood), with the exception of defects associated with Leigh or Leigh-like phenotype. The clinical course was more gradual and relatively less severe; four of the 26 patients died, one in his second year, another in her second decade and two in their sixth decade. There are differences in age at onset, severity of clinical course, outcome, and intrafamilial variability in patients affected of an OXPHOS defect due to nuclear or mtDNA mutations. Patients with nuclear mutations become symptomatic at a young age, and have a severe clinical course. Patients with mtDNA mutations show a wider clinical spectrum of age at onset and severity. These differences may be of importance regarding the choice of which genome to study in affected patients as well as with respect to genetic counseling. Copyright 2000 Wiley-Liss, Inc.

  14. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering.

    Science.gov (United States)

    Niu, Zhixia; Klindworth, Daryl L; Friesen, Timothy L; Chao, Shiaoman; Jin, Yue; Cai, Xiwen; Xu, Steven S

    2011-04-01

    Chromosome engineering is a useful strategy for transfer of alien genes from wild relatives into modern crops. However, this strategy has not been extensively used for alien gene introgression in most crops due to low efficiency of conventional cytogenetic techniques. Here, we report an improved scheme of chromosome engineering for efficient elimination of a large amount of goatgrass (Aegilops speltoides) chromatin surrounding Sr39, a gene that provides resistance to multiple stem rust races, including Ug99 (TTKSK) in wheat. The wheat ph1b mutation, which promotes meiotic pairing between homoeologous chromosomes, was employed to induce recombination between wheat chromosome 2B and goatgrass 2S chromatin using a backcross scheme favorable for inducing and detecting the homoeologous recombinants with small goatgrass chromosome segments. Forty recombinants with Sr39 with reduced surrounding goatgrass chromatin were quickly identified from 1048 backcross progenies through disease screening and molecular marker analysis. Four of the recombinants carrying Sr39 with a minimal amount of goatgrass chromatin (2.87-9.15% of the translocated chromosomes) were verified using genomic in situ hybridization. Approximately 97% of the goatgrass chromatin was eliminated in one of the recombinants, in which a tiny goatgrass chromosome segment containing Sr39 was retained in the wheat genome. Localization of the goatgrass chromatin in the recombinants led to rapid development of three molecular markers tightly linked to Sr39. The new wheat lines and markers provide useful resources for the ongoing global effort to combat Ug99. This study has demonstrated great potential of chromosome engineering in genome manipulation for plant improvement.

  15. Nuclear DNA content of the hybrid plant pathogen Phytophthora andina determined by flow cytometry.

    Science.gov (United States)

    Wang, Jianan; Presser, Jackson W; Goss, Erica M

    2016-09-01

    Phytophthora andina is a heterothallic plant pathogen of Andean solanaceous hosts and is an interspecific hybrid of P. infestans and an unknown Phytophthora species. The objective of this study was to estimate the nuclear DNA content of isolates in three clonal lineages of P. andina relative to P. infestans Twelve isolates of P. andina and six isolates of P. infestans were measured for nuclear DNA content by propidium iodide-stained flow cytometry. We found that the DNA content of P. andina was similar but slightly smaller, on average, than that of our sample of P. infestans isolates. This is consistent with P. andina being a homoploid hybrid rather than allopolyploid hybrid. Nuclear DNA content was more variable among a smaller sample of P. infestans isolates, including a putative triploid isolate from Mexico, but small differences in nuclear DNA content were also observed among P. andina isolates. Both species appear to be able to tolerate significant variation in genome size. © 2016 by The Mycological Society of America.

  16. Anti-sense expression of a metallopeptidase gene enhances nuclear entry of HBV-DNA

    International Nuclear Information System (INIS)

    Yeh, C.-T.; Lai, H.-Y.; Chu, S.-P.; Tseng, I-Chu

    2004-01-01

    Although several putative hepatitis B virus (HBV) receptors have been identified, none of them is capable of initiating HBV replication in a non-permissive human cell line. Using an Epstein-Barr virus-based extrachromosomal replication system, we have screened through a human liver cDNA library and successfully identified a clone capable of facilitating nuclear transport of HBV-DNA during the early phase of HBV infection. This clone contained a cDNA encoding a metallopeptidase-like protein in anti-sense orientation. Pretreatment of naive HepG2 cells with 1,10-phenanthroline, an inhibitor for liver metallopeptidases, led to nuclear entry of HBV-DNA after HBV infection. However, cccDNA was still undetectable in the nuclei, indicating other cellular factors required to complete the replication cycle were still missing. Our present data suggest that in the initial stage of HBV infection, liver metallopeptidase constitutes a barrier for effective nuclear entry of HBV genomic DNA. Attenuation of metallopeptidase activity may facilitate HBV infection

  17. Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: indigenous trout persist in introgressed populations

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    2009-01-01

    , but resolution is low if genetic differentiation is weak. Here, we analyse stocked brown trout populations represented by historical (1943-1956) and contemporary (2000s) samples, where genetic differentiation between wild populations and stocked trout is weak (pair-wise F-ST of 0.047 and 0.053). By analysing...... a high number of microsatellite DNA markers (50) and making use of linkage map information, we achieve clear identification of admixed and non-admixed trout. Moreover, despite strong population-level admixture by hatchery strain trout in one of the populations (70.8%), non-admixed individuals...... nevertheless persist (7 out of 53 individuals). These remnants of the indigenous population are characterized by later spawning time than the majority of the admixed individuals. We hypothesize that isolation by time mediated by spawning time differences between wild and hatchery strain trout is a major factor...

  18. Image-Based Modeling Reveals Dynamic Redistribution of DNA Damageinto Nuclear Sub-Domains

    Energy Technology Data Exchange (ETDEWEB)

    Costes Sylvain V., Ponomarev Artem, Chen James L.; Nguyen, David; Cucinotta, Francis A.; Barcellos-Hoff, Mary Helen

    2007-08-03

    Several proteins involved in the response to DNA doublestrand breaks (DSB) f orm microscopically visible nuclear domains, orfoci, after exposure to ionizing radiation. Radiation-induced foci (RIF)are believed to be located where DNA damage occurs. To test thisassumption, we analyzed the spatial distribution of 53BP1, phosphorylatedATM, and gammaH2AX RIF in cells irradiated with high linear energytransfer (LET) radiation and low LET. Since energy is randomly depositedalong high-LET particle paths, RIF along these paths should also berandomly distributed. The probability to induce DSB can be derived fromDNA fragment data measured experimentally by pulsed-field gelelectrophoresis. We used this probability in Monte Carlo simulations topredict DSB locations in synthetic nuclei geometrically described by acomplete set of human chromosomes, taking into account microscope opticsfrom real experiments. As expected, simulations produced DNA-weightedrandom (Poisson) distributions. In contrast, the distributions of RIFobtained as early as 5 min after exposure to high LET (1 GeV/amu Fe) werenon-random. This deviation from the expected DNA-weighted random patterncan be further characterized by "relative DNA image measurements." Thisnovel imaging approach shows that RIF were located preferentially at theinterface between high and low DNA density regions, and were morefrequent than predicted in regions with lower DNA density. The samepreferential nuclear location was also measured for RIF induced by 1 Gyof low-LET radiation. This deviation from random behavior was evidentonly 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AXand 53BP1 RIF showed pronounced deviations up to 30 min after exposure.These data suggest that DNA damage induced foci are restricted to certainregions of the nucleus of human epithelial cells. It is possible that DNAlesions are collected in these nuclear sub-domains for more efficientrepair.

  19. ATM Protein Physically and Functionally Interacts with Proliferating Cell Nuclear Antigen to Regulate DNA Synthesis*

    Science.gov (United States)

    Gamper, Armin M.; Choi, Serah; Matsumoto, Yoshihiro; Banerjee, Dibyendu; Tomkinson, Alan E.; Bakkenist, Christopher J.

    2012-01-01

    Ataxia telangiectasia (A-T) is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation that is caused by biallelic mutations in A-T mutated (ATM), a gene encoding a protein kinase critical for the induction of cellular responses to DNA damage, particularly to DNA double strand breaks. A long known characteristic of A-T cells is their ability to synthesize DNA even in the presence of ionizing radiation-induced DNA damage, a phenomenon termed radioresistant DNA synthesis. We previously reported that ATM kinase inhibition, but not ATM protein disruption, blocks sister chromatid exchange following DNA damage. We now show that ATM kinase inhibition, but not ATM protein disruption, also inhibits DNA synthesis. Investigating a potential physical interaction of ATM with the DNA replication machinery, we found that ATM co-precipitates with proliferating cell nuclear antigen (PCNA) from cellular extracts. Using bacterially purified ATM truncation mutants and in vitro translated PCNA, we showed that the interaction is direct and mediated by the C terminus of ATM. Indeed, a 20-amino acid region close to the kinase domain is sufficient for strong binding to PCNA. This binding is specific to ATM, because the homologous regions of other PIKK members, including the closely related kinase A-T and Rad3-related (ATR), did not bind PCNA. ATM was found to bind two regions in PCNA. To examine the functional significance of the interaction between ATM and PCNA, we tested the ability of ATM to stimulate DNA synthesis by DNA polymerase δ, which is implicated in both DNA replication and DNA repair processes. ATM was observed to stimulate DNA polymerase activity in a PCNA-dependent manner. PMID:22362778

  20. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    Science.gov (United States)

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2016-02-01

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and

  1. Demarcation of informative chromosomes in tropical sweet corn inbred lines using microsatellite DNA markers

    Directory of Open Access Journals (Sweden)

    Pedram Kashiani

    2012-01-01

    Full Text Available A study of genetic variation among 10 pairs of chromosomes extracted from 13 tropical sweet corn inbred lines, using 99 microsatellite markers, revealed a wide range of genetic diversity. Allelic richness and the number of effective alleles per chromosome ranged from 2.78 to 4.33 and 1.96 to 3.47, respectively, with respective mean values of 3.62 and 2.73. According to the Shannon's information index (I and Nei's gene diversity coefficient (Nei, Chromosome 10 was the most informative chromosome (I = 1.311 and Nei = 0.703, while Chromosome 2 possessed the least (I = 0.762 and Nei = 0.456. Based on linkage disequilibrium (LD measurements for loci less than 50 cM apart on the same chromosome, all loci on Chromosomes 1, 6 and 7 were in equilibrium. Even so, there was a high proportion of genetic variation in Chromosomes 4, 5, 8, 9 and 10, thereby revealing their appropriateness for use in the genetic diversity investigations among tropical sweet corn lines. Chromosome 4, with the highest number of loci in linkage disequilibrium, was considered the best for marker-phenotype association and QTL mapping, followed by Chromosomes 5, 8, 9 and 10.

  2. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    Science.gov (United States)

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers.

    Science.gov (United States)

    Curk, Franck; Ollitrault, Frédérique; Garcia-Lor, Andres; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2016-04-01

    The origin of limes and lemons has been a source of conflicting taxonomic opinions. Biochemical studies, numerical taxonomy and recent molecular studies suggested that cultivated Citrus species result from interspecific hybridization between four basic taxa (C. reticulata,C. maxima,C. medica and C. micrantha). However, the origin of most lemons and limes remains controversial or unknown. The aim of this study was to perform extended analyses of the diversity, genetic structure and origin of limes and lemons. The study was based on 133 Citrus accessions. It combined maternal phylogeny studies based on mitochondrial and chloroplastic markers, and nuclear structure analysis based on the evaluation of ploidy level and the use of 123 markers, including 73 basic taxa diagnostic single nucleotide polymorphism (SNP) and indel markers. The lime and lemon horticultural group appears to be highly polymorphic, with diploid, triploid and tetraploid varieties, and to result from many independent reticulation events which defined the sub-groups. Maternal phylogeny involves four cytoplasmic types out of the six encountered in the Citrus genus. All lime and lemon accessions were highly heterozygous, with interspecific admixture of two, three and even the four ancestral taxa genomes. Molecular polymorphism between varieties of the same sub-group was very low. Citrus medica contributed to all limes and lemons and was the direct male parent for the main sub-groups in combination with C. micrantha or close papeda species (for C. aurata, C. excelsa, C. macrophylla and C. aurantifolia--'Mexican' lime types of Tanaka's taxa), C. reticulata(for C. limonia, C. karna and C. jambhiri varieties of Tanaka's taxa, including popular citrus rootstocks such as 'Rangpur' lime, 'Volkamer' and 'Rough' lemons), C. aurantium (for C. limetta and C. limon--yellow lemon types--varieties of Tanaka's taxa) or the C. maxima × C. reticulate hybrid (for C. limettioides--'Palestine sweet' lime types--and C

  4. Study of DNA damage with a new system for irradiation of samples in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gual, Maritza R., E-mail: mrgual@instec.c [Instituto Superior de Tecnologias y Ciencias Aplicadas, InSTEC, Avenida Salvador Allende y Luaces, Quinta de Los Molinos, Plaza de la Revolucion, Havana, AP 6163 (Cuba); Milian, Felix M. [Universidade Estadual de Santa Cruz, UESC (Brazil); Deppman, Airton [Instituto de Fisica, Universidad de Sao Paulo, IF-USP, Rua do Matao, Travessa R, no. 187, Ciudade Universitaria, Butanta, CEP 05508-900, Sao Paulo (Brazil); Coelho, Paulo R.P. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP (Brazil)

    2011-02-15

    In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH3 of the IEA-R1 reactor at the Instituto de Pesquisas Energeticas e Nucleares (Brazil) without necessity of interrupting the reactor operation.

  5. Nuclear DNA content in 20 species of Siluriformes (Teleostei: Ostariophysi from the Neotropical region

    Directory of Open Access Journals (Sweden)

    Paulo César Fenerich

    2004-01-01

    Full Text Available In the present study, 20 species of Siluriformes fish were analyzed in order to determine their nuclear DNA content and compare these data with their diploid number. In addition, the extension and importance of the changes that occurred during the process of diversification in the group of Neotropical freshwater catfish were investigated. The only species studied of the family Doradidae, Rhinodoras d'orbignyi (2n = 58, presented 3.46 ± 0.13 pg of DNA. Among the species of the family Heptapteridae, the values of nuclear DNA content and the diploid numbers ranged from 1.13 ± 0.09 pg of DNA in Pimelodella sp. (2n = 46 to 2.38 ± 0.07 pg of DNA in Imparfinis mirini (2n = 58. The family Loricariidae showed the widest variation in diploid number and nuclear DNA content values, ranging from 2n = 52 and 3.96 ± 0.22 pg of DNA in Liposarcus anisitsi to 2n = 76 and 4.90 ± 0.12 pg of DNA in Hypostomus sp. 4. In this group, two local samples of Pimelodus maculatus (Pimelodidae were analyzed, and both exhibited 2n = 56, but different nuclear DNA content values (2.68 ± 0.22 pg and 2.82 ± 0.20 pg, respectively. Among the Pseudopimelodidae species analyzed, Pseudopimelodus mangurus (2n = 54 showed 2.23 ± 0.15 pg and Microglanis cottoides (2n = 54 exhibited 2.50 ± 0.18 pg of DNA. Two species of Trichomycterus (Trichomycteridae also presented the same diploid number, 2n = 54 chromosomes, but, while the species from the Quinta stream presented a DNA content of 2.62 ± 0.19 pg, in the sample from the Capivara river this value was 2.30 ± 0.23 pg. In the analyzed species, the results showed that the changes in DNA content were frequently not followed by changes in the diploid number. This fact permits to suggest that, in addition to structural chromosome rearrangements, other mechanisms, including deletions, duplications and polyploidy, could be involved in the process of species differentiation in the representatives of the fish order Siluriformes.

  6. Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan.

    Directory of Open Access Journals (Sweden)

    Erhan Bilal

    Full Text Available We report results from the analysis of complete mitochondrial DNA (mtDNA sequences from 112 Japanese semi-supercentenarians (aged above 105 years combined with previously published data from 96 patients in each of three non-disease phenotypes: centenarians (99-105 years of age, healthy non-obese males, obese young males and four disease phenotypes, diabetics with and without angiopathy, and Alzheimer's and Parkinson's disease patients. We analyze the correlation between mitochondrial polymorphisms and the longevity phenotype using two different methods. We first use an exhaustive algorithm to identify all maximal patterns of polymorphisms shared by at least five individuals and define a significance score for enrichment of the patterns in each phenotype relative to healthy normals. Our study confirms the correlations observed in a previous study showing enrichment of a hierarchy of haplogroups in the D clade for longevity. For the extreme longevity phenotype we see a single statistically significant signal: a progressive enrichment of certain "beneficial" patterns in centenarians and semi-supercentenarians in the D4a haplogroup. We then use Principal Component Spectral Analysis of the SNP-SNP Covariance Matrix to compare the measured eigenvalues to a Null distribution of eigenvalues on Gaussian datasets to determine whether the correlations in the data (due to longevity arises from some property of the mutations themselves or whether they are due to population structure. The conclusion is that the correlations are entirely due to population structure (phylogenetic tree. We find no signal for a functional mtDNA SNP correlated with longevity. The fact that the correlations are from the population structure suggests that hitch-hiking on autosomal events is a possible explanation for the observed correlations.

  7. Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis.

    Science.gov (United States)

    Bracci, T; Busconi, M; Fogher, C; Sebastiani, L

    2011-04-01

    Olive (Olea europaea L.) is one of the oldest agricultural tree crops worldwide and is an important source of oil with beneficial properties for human health. This emblematic tree crop of the Mediterranean Basin, which has conserved a very wide germplasm estimated in more than 1,200 cultivars, is a diploid species (2n = 2x = 46) that is present in two forms, namely wild (Olea europaea subsp. europaea var. sylvestris) and cultivated (Olea europaea subsp. europaea var. europaea). In spite of its economic and nutritional importance, there are few data about the genetic of olive if compared with other fruit crops. Available molecular data are especially related to the application of molecular markers to the analysis of genetic variability in Olea europaea complex and to develop efficient molecular tools for the olive oil origin traceability. With regard to genomic research, in the last years efforts are made for the identification of expressed sequence tag, with particular interest in those sequences expressed during fruit development and in pollen allergens. Very recently the sequencing of chloroplast genome provided new information on the olive nucleotide sequence, opening the olive genomic era. In this article, we provide an overview of the most relevant results in olive molecular studies. A particular attention was given to DNA markers and their application that constitute the most part of published researches. The first important results in genome analysis were reported.

  8. Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers.

    Science.gov (United States)

    Sijen, Titia

    2015-09-01

    Human biological traces have the potential to present strong evidence for placing a suspect at a crime scene. In cases, the activity that led to deposition of an individual's cellular material is increasingly disputed, for which the identification of cell types could be crucial. This review aims to give an overview of the possibilities of the employment of mRNA, miRNA, DNA methylation and microbial markers for tissue identification in a forensic context. The biological background that renders these markers tissue-specificity is considered, as this can affect data interpretation. Furthermore, the forensic relevance of inferring certain cell types is discussed, as are the various methodologies that can be applied. Forensic stains can carry minute amounts of cell material that may be degraded or polluted and most likely cell material of multiple sources will be present. The interpretational challenges that are imposed by this compromised state will be discussed as well. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Lack of genetic structure among ecologically adapted populations of an Australian rainforest Drosophila species as indicated by microsatellite markers and mitochondrial DNA sequences.

    Science.gov (United States)

    Schiffer, Michele; Kennington, W J; Hoffmann, A A; Blacket, M J

    2007-04-01

    Although fragmented rainforest environments represent hotspots for invertebrate biodiversity, few genetic studies have been conducted on rainforest invertebrates. Thus, it is not known if invertebrate species in rainforests are highly genetically fragmented, with the potential for populations to show divergent selection responses, or if there are low levels of gene flow sufficient to maintain genetic homogeneity among fragmented populations. Here we use microsatellite markers and DNA sequences from the mitochondrial ND5 locus to investigate genetic differences among Drosophila birchii populations from tropical rainforests in Queensland, Australia. As found in a previous study, mitochondrial DNA diversity was low with no evidence for population differentiation among rainforest fragments. The pattern of mitochondrial haplotype variation was consistent with D. birchii having undergone substantial past population growth. Levels of nuclear genetic variation were high in all populations while F(ST) values were very low, even for flies from geographically isolated areas of rainforest. No significant differentiation was observed between populations on either side of the Burdekin Gap (a long-term dry corridor), although there was evidence for higher gene diversity in low-latitude populations. Spatial autocorrelation coefficients were low and did not differ significantly from random, except for one locus which revealed a clinal-like pattern. Comparisons of microsatellite differentiation contrasted with previously established clinal patterns in quantitative traits in D. birchii, and indicate that the patterns in quantitative traits are likely to be due to selection. These results suggest moderate gene flow in D. birchii over large distances. Limited population structure in this species appears to be due to recent range expansions or cycles of local extinctions followed by recolonizations/expansions. Nevertheless, patterns of local adaptation have developed in D. birchii that

  10. Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR.

    Science.gov (United States)

    Duan, Chuanren; Cui, Yamin; Zhao, Yi; Zhai, Jun; Zhang, Baoyun; Zhang, Kun; Sun, Da; Chen, Hang

    2016-10-01

    A genetic marker within the 16S rRNA gene of Faecalibacterium was identified for use in a quantitative PCR (qPCR) assay to detect swine faecal contamination in water. A total of 146,038 bacterial sequences were obtained using 454 pyrosequencing. By comparative bioinformatics analysis of Faecalibacterium sequences with those of numerous swine and other animal species, swine-specific Faecalibacterium 16S rRNA gene sequences were identified and Polymerase Chain Okabe (PCR) primer sets designed and tested against faecal DNA samples from swine and non-swine sources. Two PCR primer sets, PFB-1 and PFB-2, showed the highest specificity to swine faecal waste and had no cross-reaction with other animal samples. PFB-1 and PFB-2 amplified 16S rRNA gene sequences from 50 samples of swine with positive ratios of 86 and 90%, respectively. We compared swine-specific Faecalibacterium qPCR assays for the purpose of quantifying the newly identified markers. The quantification limits (LOQs) of PFB-1 and PFB-2 markers in environmental water were 6.5 and 2.9 copies per 100 ml, respectively. Of the swine-associated assays tested, PFB-2 was more sensitive in detecting the swine faecal waste and quantifying the microbial load. Furthermore, the microbial abundance and diversity of the microbiomes of swine and other animal faeces were estimated using operational taxonomic units (OTUs). The species specificity was demonstrated for the microbial populations present in various animal faeces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Soil Fungal Community Associated with Peat in Sarawak Identified Using 18S rDNA Marker

    International Nuclear Information System (INIS)

    Siti Ramlah Ahmad Ali; Sakinah Safari; Mohd Shawal Thakib; Shamsilawani Ahamed Bakeri; Nur Aziemah Ab Ghani

    2016-01-01

    Fungi are principal decomposing microorganisms in acidic environment of peat lands. A useful tool for molecular screening of soil fungal communities using the 18S ribosomal DNA primer has been proven capable of identifying a broad range of fungi species within Ascomycota, Basidiomycota, Zygomycota and Chytridiomycota. Currently, very little information is available on fungal communities in deep peat of Sarawak, Malaysia. In this study, we have isolated the fungi from soil samples taken in deep peat forests and oil palm cultivated areas. The fungal identity was undertaken using 18S ribosomal DNA primer which is EF4-F/ fung5-R. The microscopic structures were conducted to confirm the identity of the isolates. Based on this study, the fungal division most commonly found in deep peat is the Ascomycota. Aspergillus fumigatus was the most common species and more dominant in oil palm cultivated areas and logged-over forest than in primary forest. In the primary forest, the dominant species was the A. flavus, while Hypocrea atroviridis was commonly associated with oil palm cultivated areas and logged-over forest. Other species of fungi isolated in peat primary forests were Penicillium chrysogenum, Trichoderma sp., Phanerochaete sp., Mortierella chlamydospora, A. niger, A. alliaceus, etc. The in-depth difference in the fungal communities for the different sites will be further investigated using the next generation sequencing technology. (author)

  12. Use of Moringa oleifera Flower Pod Extract as Natural Preservative and Development of SCAR Marker for Its DNA Based Identification.

    Science.gov (United States)

    Gull, Iram; Javed, Attia; Aslam, Muhammad Shahbaz; Mushtaq, Roohi; Athar, Muhammad Amin

    2016-01-01

    The use of Moringa oleifera as natural food preservative has been evaluated in the present study. In addition, for quality assurance, the study has also been focused on the shelf life of product to authenticate the identification of plant by development of DNA based marker. Among the different extracts prepared from flower pods of Moringa oleifera, methanol and aqueous extract exhibited high antibacterial and antioxidant activity, respectively. The high phenolic contents (53.5 ± 0.169 mg GAE/g) and flavonoid contents (10.9 ± 0.094 mg QE/g) were also recorded in methanol and aqueous extract, respectively. Due to instability of bioactive compounds in aqueous extract, methanol extract is considered as potent natural preservative. The shelf life of methanol extract was observed for two months at 4°C under dark conditions. The developed SCAR primers (MOF217/317/MOR317) specifically amplified a fragment of 317 bp from DNA of Moringa oleifera samples collected from different regions of Punjab province of Pakistan. The methanol extract of Moringa oleifera flower pods has great potential to be used as natural preservative and nutraceutical in food industry.

  13. Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model

    Science.gov (United States)

    Bista, Rajan K.; Uttam, Shikhar; Hartman, Douglas J.; Qiu, Wei; Yu, Jian; Zhang, Lin; Brand, Randall E.; Liu, Yang

    2012-06-01

    The development of accurate and clinically applicable tools to assess cancer risk is essential to define candidates to undergo screening for early-stage cancers at a curable stage or provide a novel method to monitor chemoprevention treatments. With the use of our recently developed optical technology--spatial-domain low-coherence quantitative phase microscopy (SL-QPM), we have derived a novel optical biomarker characterized by structure-derived optical path length (OPL) properties from the cell nucleus on the standard histology and cytology specimens, which quantifies the nano-structural alterations within the cell nucleus at the nanoscale sensitivity, referred to as nano-morphology marker. The aim of this study is to evaluate the feasibility of the nuclear nano-morphology marker from histologically normal cells, extracted directly from the standard histology specimens, to detect early-stage carcinogenesis, assess cancer risk, and monitor the effect of chemopreventive treatment. We used a well-established mouse model of spontaneous carcinogenesis--ApcMin mice, which develop multiple intestinal adenomas (Min) due to a germline mutation in the adenomatous polyposis coli (Apc) gene. We found that the nuclear nano-morphology marker quantified by OPL detects the development of carcinogenesis from histologically normal intestinal epithelial cells, even at an early pre-adenomatous stage (six weeks). It also exhibits a good temporal correlation with the small intestine that parallels the development of carcinogenesis and cancer risk. To further assess its ability to monitor the efficacy of chemopreventive agents, we used an established chemopreventive agent, sulindac. The nuclear nano-morphology marker is reversed toward normal after a prolonged treatment. Therefore, our proof-of-concept study establishes the feasibility of the SL-QPM derived nuclear nano-morphology marker OPL as a promising, simple and clinically applicable biomarker for cancer risk assessment and

  14. Nuclear ribosomal DNA diversity of a cotton pest ( Rotylenchulus ...

    African Journals Online (AJOL)

    The reniform nematode (Rotylenchulus reniformis) has emerged as a major cotton pest in the United States. A recent analysis of over 20 amphimictic populations of this pest from the US and three other countries has shown no sequence variation at the nuclear ribosomal internal transcribed spacer (ITS) despite the region's ...

  15. Nuclear DNA as Predictor of Acute Kidney Injury in Patients Undergoing Coronary Artery Bypass Graft: A Pilot Study.

    Science.gov (United States)

    Likhvantsev, Valery V; Landoni, Giovanni; Grebenchikov, Oleg A; Skripkin, Yuri V; Zabelina, Tatiana S; Zinovkina, Liudmila A; Prikhodko, Anastasia S; Lomivorotov, Vladimir V; Zinovkin, Roman A

    2017-12-01

    To measure the release of plasma nuclear deoxyribonucleic acid (DNA) and to assess the relationship between nuclear DNA level and acute kidney injury occurrence in patients undergoing cardiac surgery. Cardiovascular anesthesiology and intensive care unit of a large tertiary-care university hospital. Prospective observational study. Fifty adult patients undergoing cardiac surgery. Nuclear DNA concentration was measured in the plasma. The relationship between the level of nuclear DNA and the incidence of acute kidney injury after coronary artery bypass grafting was investigated. Cardiac surgery leads to significant increase in plasma nuclear DNA with peak levels 12 hours after surgery (median [interquartile range] 7.0 [9.6-22.5] µg/mL). No difference was observed between off-pump and on-pump surgical techniques. Nuclear DNA was the only predictor of acute kidney injury between baseline and early postoperative risk factors. The authors found an increase of nuclear DNA in the plasma of patients who had undergone coronary artery bypass grafting, with a peak after 12 hours and an association of nuclear DNA with postoperative acute kidney injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Variabilidade genética de etnovariedades de mandioca, avaliada por marcadores de DNA Genetic diversity of cassava folk varieties assessed by DNA markers

    Directory of Open Access Journals (Sweden)

    Gilda Santos Mühlen

    2000-06-01

    reference. Among these, 38 were bitter varieties and 17 sweet. Three different types of DNA markers were used: RAPD (randomly amplified polymorphic DNA, AFLP (amplified fragment length polymorphism and microsatellites. Analysis of the results consisted of a description of band patterns, a calculation of similarity indexes (Nei & Li and a principal coordinate analysis (PCoA for each marker type. Heterozygosity, diversity indexes (DI, Weir and genetic differentiation coefficients (G ST were calculated for the microsatellite loci.Genetic variability was more concentrated within regions, then among regions (G ST = 0.07. Mean heterozygosity was 56%. Mean similarity indexes were dependent on the marker used: S = 0.89 for RAPD, S = 0.85 for AFLP and S = 0.59 for microsatellites. PCoA analysis revealed groups, distinguishing bitter from sweet varieties.

  17. Genetic characterization of Moroccan and the exotic bread wheat cultivars using functional and random DNA markers linked to the agronomic traits for genomics-assisted improvement.

    Science.gov (United States)

    Henkrar, Fatima; El-Haddoury, Jamal; Ouabbou, Hassan; Bendaou, Najib; Udupa, Sripada M

    2016-06-01

    Genetic characterization, diversity analysis and estimate of the genetic relationship among varieties using functional and random DNA markers linked to agronomic traits can provide relevant guidelines in selecting parents and designing new breeding strategies for marker-assisted wheat cultivar improvement. Here, we characterize 20 Moroccan and 19 exotic bread wheat (Triticum aestivum L.) cultivars using 47 functional and 7 linked random DNA markers associated with 21 loci of the most important traits for wheat breeding. The functional marker analysis revealed that 35, 45, and 10 % of the Moroccan cultivars, respectively have the rust resistance genes (Lr34/Yr18/Pm38), dwarfing genes (Rht1b or Rht2b alleles) and the leaf rust resistance gene (Lr68). The marker alleles for genes Lr37/Yr17/Sr38, Sr24 and Yr36 were present only in the exotic cultivars and absent in Moroccan cultivars. 25 % of cultivars had 1BL.1RS translocation. 70 % of the wheat cultivars had Ppo-D1a and Ppo-A1b associated with low polyphenol oxidase activity. 10 % of cultivars showed presence of a random DNA marker allele (175 bp) linked to Hessian fly resistance gene H22. The majority of the Moroccan cultivars were carrying alleles that impart good bread making quality. Neighbor joining (NJ) and principal coordinate analysis based on the marker data revealed a clear differentiation between elite Moroccan and exotic wheat cultivars. The results of this study are useful for selecting suitable parents for making targeted crosses in marker-assisted wheat breeding and enhancing genetic diversity in the wheat cultivars.

  18. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance*

    Science.gov (United States)

    Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang

    2011-01-01

    DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits. PMID:22042659

  19. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance.

    Science.gov (United States)

    Zhao, Jie-hong; Zhang, Ji-shun; Wang, Yi; Wang, Ren-gang; Wu, Chun; Fan, Long-jiang; Ren, Xue-liang

    2011-11-01

    DNA methylation plays an important role in the epigenetic regulation of gene expression during plant growth, development, and polyploidization. However, there is still no distinct evidence in tobacco regarding the distribution of the methylation pattern and whether it contributes to qualitative characteristics. We studied the levels and patterns of methylation polymorphism at CCGG sites in 48 accessions of allotetraploid flue-cured tobacco, Nicotiana tabacum, using a methylation-sensitive amplified polymorphism (MSAP) technique. The results showed that methylation existed at a high level among tobacco accessions, among which 49.3% sites were methylated and 69.9% allelic sites were polymorphic. A cluster analysis revealed distinct patterns of geography-specific groups. In addition, three polymorphic sites significantly related to tobacco mosaic virus (TMV) resistance were explored. This suggests that tobacco breeders should pay more attention to epigenetic traits.

  20. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers.

    Directory of Open Access Journals (Sweden)

    Thomas E Bartlett

    Full Text Available We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221, which validates in two independent data sets from Mayo Clinic (n = 198 and TCGA (n = 358, with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.

  1. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers.

    Science.gov (United States)

    Bartlett, Thomas E; Jones, Allison; Goode, Ellen L; Fridley, Brooke L; Cunningham, Julie M; Berns, Els M J J; Wik, Elisabeth; Salvesen, Helga B; Davidson, Ben; Trope, Claes G; Lambrechts, Sandrina; Vergote, Ignace; Widschwendter, Martin

    2015-01-01

    We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.

  2. DNA markers as a tool for genetic traceability of primary product in agri-food chains

    Directory of Open Access Journals (Sweden)

    Daria Scarano

    2012-11-01

    Full Text Available The agri-food components of the Made in Italy are well known all over the world, therefore they may significantly contribute to the Italian economy. However, also owing to a large number of cases of improper labelling, the Italian agro-food industry faces an ever-increasing competition. For this reason, there is a decline of consumers’ confidence towards food production systems and safety controls. To prevent erroneous classification of products and to protect consumers from false instore information, it is important to develop and validate techniques that are able to detect mislabelling at any stage of the food-chain. This paper describes some examples of genetic traceability of primary products in some important plant food chains such as durum wheat, olive and tomato, based on DNA analysis both of raw material and of processed food (pasta, olive oil, and peeled tomato.

  3. Nuclear transfer to prevent mitochondrial DNA disorders: revisiting the debate on reproductive cloning.

    Science.gov (United States)

    Bredenoord, A L; Dondorp, W; Pennings, G; De Wert, G

    2011-02-01

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount to reproductive cloning, one theoretical variant, blastomere transfer does. This seems the most challenging both technically and ethically. It is prohibited by many jurisdictions and also the scientific community seems to avoid it. Nevertheless, this paper examines the moral acceptability of blastomere transfer as a method to prevent mtDNA disorders. The reason for doing so is that most objections against reproductive cloning refer to reproductive adult cloning, while blastomere transfer would amount to reproductive embryo cloning. After clarifying this conceptual difference, this paper examines whether the main non-safety objections brought forward against reproductive cloning also apply in the context of blastomere transfer. The conclusion is that if this variant were to become safe and effective, dismissing it because it would involve reproductive cloning is unjustified. Nevertheless, as it may lead to more complex ethical appraisals than the other variants, researchers should initially focus on the development of the other types of nuclear transfer to prevent mtDNA disorders. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Nuclear DNA content variation in life history phases of the Bonnemasoniaceae (Rhodophyta).

    Science.gov (United States)

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Ma Antonia; Kapraun, Donald F

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4', 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome.

  5. Nuclear DNA Content Variation in Life History Phases of the Bonnemasoniaceae (Rhodophyta)

    Science.gov (United States)

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Mª Antonia; Kapraun, Donald F.

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15–1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome. PMID:24465835

  6. Next generation DNA sequencing technology delivers valuable genetic markers for the genomic orphan legume species, Bituminaria bituminosa

    Directory of Open Access Journals (Sweden)

    Pazos-Navarro María

    2011-12-01

    Full Text Available Abstract Background Bituminaria bituminosa is a perennial legume species from the Canary Islands and Mediterranean region that has potential as a drought-tolerant pasture species and as a source of pharmaceutical compounds. Three botanical varieties have previously been identified in this species: albomarginata, bituminosa and crassiuscula. B. bituminosa can be considered a genomic 'orphan' species with very few genomic resources available. New DNA sequencing technologies provide an opportunity to develop high quality molecular markers for such orphan species. Results 432,306 mRNA molecules were sampled from a leaf transcriptome of a single B. bituminosa plant using Roche 454 pyrosequencing, resulting in an average read length of 345 bp (149.1 Mbp in total. Sequences were assembled into 3,838 isotigs/contigs representing putatively unique gene transcripts. Gene ontology descriptors were identified for 3,419 sequences. Raw sequence reads containing simple sequence repeat (SSR motifs were identified, and 240 primer pairs flanking these motifs were designed. Of 87 primer pairs developed this way, 75 (86.2% successfully amplified primarily single fragments by PCR. Fragment analysis using 20 primer pairs in 79 accessions of B. bituminosa detected 130 alleles at 21 SSR loci. Genetic diversity analyses confirmed that variation at these SSR loci accurately reflected known taxonomic relationships in original collections of B. bituminosa and provided additional evidence that a division of the botanical variety bituminosa into two according to geographical origin (Mediterranean region and Canary Islands may be appropriate. Evidence of cross-pollination was also found between botanical varieties within a B. bituminosa breeding programme. Conclusions B. bituminosa can no longer be considered a genomic orphan species, having now a large (albeit incomplete repertoire of expressed gene sequences that can serve as a resource for future genetic studies. This

  7. Determination of Ploidy Level and Nuclear DNA Content in the Droseraceae by Flow Cytometry

    Czech Academy of Sciences Publication Activity Database

    Hoshi, Y.; Azumatani, M.; Suyama, T.; Adamec, Lubomír

    2017-01-01

    Roč. 82, č. 3 (2017), s. 321-327 ISSN 0011-4545 Institutional support: RVO:67985939 Keywords : nuclear DNA content * genome size * Droseraceae Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 0.913, year: 2016

  8. Clinico-laboratory aspects of anti-nuclear and anti-native DNA antibody tests.

    Science.gov (United States)

    Webb, J

    1978-01-01

    Available techniques for detection of anti-nuclear antibodies are here briefly reviewed. The relatively insensitive LE cell test has been largely supplanted by the indirect immunofluorescent ANA test which should be reported in terms of titre and pattern. Specific measurement of nDNA antibodies is now a regular technique in SLE diagnosis and management.

  9. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    International Nuclear Information System (INIS)

    Sun, Zhen; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru

    2011-01-01

    Highlights: → LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. → LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. → LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  10. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhen [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China); Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Xiang, Wenqing; Guo, Yajuan [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Chen, Zhi [The State Key Laboratory for Infectious Disease, Institute of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Liu, Wei, E-mail: liuwei666@zju.edu.cn [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Lu, Daru, E-mail: drlu@fudan.edu.cn [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China)

    2011-06-10

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  11. Concordance of Hypermethylated DNA and the Tumor Markers CA 15-3, CEA, and TPA in Serum during Monitoring of Patients with Advanced Breast Cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Høgh Hansen, Morten

    2015-01-01

    The serological protein tumor markers CA 15-3, CEA, and TPA are frequently used to monitor tumor burden among metastatic breast cancer patients. Breast cancer is associated with global DNA hypomethylation and hypermethylation of some promoter regions. No monitoring study has yet investigated the ...

  12. Phylogeographic structure of cotton pest Adelphocoris suturalis (Hemiptera: Miridae): strong subdivision in China inferred from mtDNA and rDNA ITS markers.

    Science.gov (United States)

    Zhang, Lijuan; Li, Hu; Li, Shujuan; Zhang, Aibing; Kou, Fei; Xun, Huaizhu; Wang, Pei; Wang, Ying; Song, Fan; Cui, Jianxin; Cui, Jinjie; Gouge, Dawn H; Cai, Wanzhi

    2015-09-21

    Phylogeographic patterns of some extant plant and vertebrate species have been well studied; however, they are poorly understood in the majority of insects. The study documents analysis of mitochondrial (COI, CYTB and ND5) and nuclear (5.8S rDNA, ITS2 and 28S rDNA) data from 419 individuals of Adelphocoris suturalis, which is one of the main cotton pests found in the 31 locations in China and Japan involved in the study. Results show that the species is highly differentiated between populations from central China and peripheral China regions. Analysis of molecular variance showed a high level of geographical differentiation at different hierarchical levels. Isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among A. suturalis populations, which suggested gene flow is not restricted by distance. In seven peripheral populations, the high levels of genetic differentiation and the small Nem values implied that geographic barriers were more likely restrict gene flow. Neutrality tests and the Bayesian skyline plot suggested population expansion likely happened during the cooling transition between Last Interglacial and Last Glacial Maximum. All lines of evidence suggest that physical barriers, Pleistocene climatic oscillations and geographical heterogeneity have affected the population structure and distribution of this insect in China.

  13. Antimutators of mitochodrial and nuclear DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Bianchi, L.; Foury, F.

    1982-01-01

    In Saccharomyces cerevisiae ten antimutator mutants have been isolated. The spontaneous occurrence of mitochondrial mutants resistant to erythromycin, oligomycin, and diuron is decreased 2-60-fold in these strains. The rate of forward and reverse spontaneous mutations of the nuclear genome is also reduced. The meiotic progenies arising from the crosses of seven mutants (LB 1 , LB 2 , LB 4 , LB 5 , LB 6 , LB 7 , LB 10 ) with an isogenic parental strain exhibit 2:2 segregations and therefore are the result of mutations in a single nuclear gene. The six mutants LB 1 , LB 2 , LB 4 , LB 6 , LB 7 , LB 10 are semidominant and determine six complementation groups. The mutant LB 5 is dominant and therefore cannot be assigned to any complementation group. The mutants. LB 1 , LB 4 and LB 1 0 are gamma-ray sensitive and, by tetrad analysis, it has been shown that gamma-ray sensitivity and spontaneous antimutability are the result of a single nuclear gene mutation. The other three mutants LB 3 , LB 8 and LB 9 exhibit complex tetrad segregations, typical of cytoplasmic inheritance and do not complement each other. However, although the mutations are semidominant, it has not been possible to detect any antimutator cytoductant among some 500 cytoductants carrying the karl 1-1 nucleus. (orig./AJ)

  14. Serum hepatitis B core-related antigen is a satisfactory surrogate marker of intrahepatic covalently closed circular DNA in chronic hepatitis B.

    Science.gov (United States)

    Chen, En-Qiang; Feng, Shu; Wang, Meng-Lan; Liang, Ling-Bo; Zhou, Ling-Yun; Du, Ling-Yao; Yan, Li-Bo; Tao, Chuan-Min; Tang, Hong

    2017-03-14

    Recently, hepatitis B core-related antigen (HBcrAg) has been suggested as an additional marker of hepatitis B virus (HBV) infection. This study aimed to investigate whether serum quantitative HBcrAg (qHBcrAg) was a satisfactory surrogate marker of intrahepatic covalently closed circular DNA (cccDNA). A total of 139 patients with liver biopsy were enrolled, consisting of 59 patients in immune tolerance (IT) phase, 52 patients in immune clearance (IC) phase, 18 patients in low-replication (LR) phase, and 10 patients in reactivation phase. All patients in IC phase have received entecavir (ETV) therapy, and 32 of them undergone a second liver biopsy at 24 months. Among those patients, qHBcrAg was strongly correlated with intrahepatic cccDNA, which is superior to that of qHBsAg and HBV DNA. And similar findings were also observed in patients in IT, IC, LR and reactivation phases. Among the 32 ETV-treated patients with a second liver biopsy in IC phase, the decline of intrahepatic cccDNA was accompanied by changes in both qHBcrAg and qHBsAg. However, as compared to qHBsAg, the change of qHBcrAg was more strongly associated with intrahepatic cccDNA-decline. In summary, serum qHBcrAg should be a satisfactory surrogate of intrahepatic HBV cccDNA in CHB patients.

  15. Nuclear and mitochondrial DNA analysis reveals that hybridization between Fasciola hepatica and Fasciola gigantica occurred in China.

    Science.gov (United States)

    Ichikawa-Seki, Madoka; Peng, Mao; Hayashi, Kei; Shoriki, Takuya; Mohanta, Uday Kumar; Shibahara, Toshiyuki; Itagaki, Tadashi

    2017-02-01

    The well-known pathogens of fasciolosis, Fasciola hepatica (Fh) and Fasciola Gigantica (Fg), possess abundant mature sperms in their seminal vesicles, and thus, they reproduce bisexually. On the other hand, aspermic Fasciola flukes reported from Asian countries, which have no sperm in their seminal vesicles, probably reproduce parthenogenetically. The aim of this study was to reveal the origin of aspermic Fasciola flukes. The nuclear single copy markers, phosphoenolpyruvate carboxykinase and DNA polymerase delta, were employed for analysis of Fasciola species from China. The hybrid origin of aspermic Fasciola flukes was strongly suggested by the presence of the Fh/Fg type, which includes DNA fragments of both F. hepatica and F. gigantica. China can be regarded as the cradle of the interspecific hybridization because F. hepatica and F. gigantica were detected in the northern and southern parts of China, respectively, and hybrids flukes were distributed between the habitats of the two species. The Chinese origin was supported by the fact that a larger number of mitochondrial NADH dehydrogenase subunit 1 (nad1) haplotypes was detected in Chinese aspermic Fasciola populations than in aspermic populations from the neighbouring countries. Hereafter, 'aspermic' Fasciola flukes should be termed as 'hybrid' Fasciola flukes.

  16. MARs Wars: heterogeneity and clustering of DNA-binding domains in the nuclear matrix

    Directory of Open Access Journals (Sweden)

    Ioudinkova E. S.

    2009-12-01

    Full Text Available Aim. CO326 is a chicken nuclear scaffold/matrix attachment region (MAR associated with the nuclear matrix in several types of chicken cells. It contains a binding site for a sequence-specific DNA-binding protein, F326. We have studied its interaction with the nuclear matrix. Methods. We have used an in vitro MAR assay with isolated matrices from chicken HD3 cells. Results. We have found that an oligonucleotide binding site for the F326 inhibits binding of the CO326 to the nuclear matrix. At the same time, the binding of heterologous MARs is enhanced. Conclusions. Taken together, these data suggest that there exist several classes of MARs and MAR-binding domains and that the MAR-binding proteins may be clustered in the nuclear matrix.

  17. Identification of Nematodirus species (Nematoda: Molineidae) from wild ruminants in Italy using ribosomal DNA markers.

    Science.gov (United States)

    Gasser, R B; Rossi, L; Zhu, X

    1999-11-01

    The sequence of the second internal transcribed spacer of ribosomal DNA was determined for four species of Nematodirus (Nematodirus rupicaprae, Nematodirus oiratianus, Nematodirus davtiani alpinus and Nematodirus europaeus) from roe deer or alpine chamois. The second internal transcribed spacer of the four species varied in length from 228 to 236 bp, and the G + C contents ranged from 41 to 44%. While no intraspecific sequence variation was detected among multiple samples representing three of the taxa, sequence differences of 5.9-9.7% were detected among the four species, Nematodirus davtiani alpinus and N. rupicaprae were genetically most similar (94.1%), followed by N. oiratianus, N. europaeus and N. rupicaprae (91.1-91.5%), whereas N. oiratianus was genetically most different from N. davtiani alpinus. The interspecific sequence differences were exploited for the delineation of the four species by PCR-based restriction fragment length polymorphism (using two enzymes) and single-strand conformation polymorphism. The results have implications for diagnosis, epidemiology and for studying the systematics of the Nematodirinae.

  18. Genetic diversity and phylogenetic relationship of Indonesian Local goats using microsatellite DNA markers

    Directory of Open Access Journals (Sweden)

    M Syamsul Arifin Zein

    2012-03-01

    Full Text Available Genetic diversity is important information in the process of conservation and sustainable utilization of animal genetic resources. Thirteen microsatellite markers were used to estimate the degree of genetic diversity on five Indonesian local goats. Results showed the highest average allele diversity present in the locus MAF70 (5.6 ± 2.9, and the lowest was in the locus MAF035 (1.6 ± 0.6, the average number of alleles per locus was 6 ± 2.3. The lowest average alleles diversity present was in the Gembrong goat (2.2 ± 1.1 and the highest was in the Jawarandu goat (4.9 ± 2.2. There is a unique alleles at loci MCM527 and present in all Indonesian local goat with the highest allele frequency on Peranakan Etawa (37.2% and lowest in Gembrong goat (7.9%. H0 ranged from 0.372 ± 0.173 (Gembrong to 0.540 ± 0.204 (Peranakan Etawa, and HE ranging from 0.249 ± 0.196 (Gembrong to 0.540 ± 0.212 (Peranakan Etawa.The genetic differentiation for inbreeding among population (FIS, within population (FIT, and average genetic differention (FST were 0,0208 (2,08%, 0,1532 (15,32%, and 0,1352 (13,52%, respectively. Locus ILSTS029, BMS1494, MAF035 and INRA0132 had a low PIC value (PIC 0.5. Phylogenetic relationship was consistent with the history of its development based on Kacang goat except was for Gembrong Goat. This research information can be used for conservation strategies and breeding programs on each population of Indonesian local goat.

  19. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    Science.gov (United States)

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  20. Development of novel low-copy nuclear markers for Hieraciinae (Asteraceae) and their perspective for other tribes

    Czech Academy of Sciences Publication Activity Database

    Krak, Karol; Álvarez, I.; Caklová, Petra; Costa, A.; Chrtek, Jindřich; Fehrer, Judith

    2012-01-01

    Roč. 99, č. 2 (2012), s. 74-77 ISSN 0002-9122 R&D Projects: GA ČR GAP506/10/1363; GA ČR GA206/05/0657 Institutional research plan: CEZ:AV0Z60050516 Keywords : Asteraceae * Hieraciinae * low-copy nuclear markers Subject RIV: EF - Botanics Impact factor: 2.586, year: 2012

  1. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers

    Directory of Open Access Journals (Sweden)

    Allender Charlotte J

    2010-03-01

    Full Text Available Abstract Background The amphiploid species Brassica napus (oilseed rape, Canola is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types, 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. Results Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. Conclusions The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast

  2. Chapter 2: Genetic Variability in Nuclear Ribosomal and Chloroplast DNA in Utah (Juniperus Osteosperma) and Western (J. Occidentalis) Juniper (Cupressaceae): Evidence for Interspecific Gene Flow1

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Randall G.; Tausch, Robin J.; Nowak, Robert S.

    1998-02-14

    Early studies of evolutionary change in chloroplast DNA indicated limited variability within species. This finding has been attributed to relatively low rates of sequence evolution and has been maintained as justification for the lack of intraspecific sampling in studies examining, relationships at the species level and above. However, documentation of intraspecific variation in cpDNA has become increasingly common and has been attributed in many cases to ''chloroplast capture'' following genetic exchange across species boundaries. Rleseberg and Wendel (1993) list 37 cases of proposed hybridization in plants that include intraspecific variation in cpDNA, 24 (65%) of which they considered to be probable instances of introgression. Rieseberg (1995) suspected that a review of the literature at that time would reveal over 100 cases of intraspecific variation in CPDNA that could be attributed to hybridization and introgression. That intraspecific variation in cpDNA is potentially indicative of hybridization is founded on the expectation that slowly evolving loci or genomes will produce greater molecular variation between than within species. In cases where a species is polymorphic for CPDNA and at least one of the molecular variants is diagnostic for a second species, interspecific hybridization is a plausible explanation. Incongruence between relationships suggested by cpDNA variation and those supported by other types of data (e.g., morphology or molecular data from an additional locus) provides additional support for introgression. One aspect of hybridization in both animals and plants that has become increasingly evident is incongruence in the phylogenetic and geographic distribution of cytoplasmic and nuclear markers. In most cases cytoplasmic introgression appears to be more pervasive than nuclear exchange. This discordance appears attributable to several factors including differences in the mutation rate, number of effective alleles, and modes

  3. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers.

    Science.gov (United States)

    Wang, Xing-Ya; Yang, Xian-Ming; Lu, Bin; Zhou, Li-Hong; Wu, Kong-Ming

    2017-05-15

    Aphis gossypii, one of the most important agricultural pests in the world, can cause serious economic losses in the main crop-producing areas. To clarify issues such as the genetic differentiation, genetic structure, and demographic history of A. gossypii populations, we used 10 nuclear microsatellite loci (SSR) and two mitochondrial gene sequences (COI and Cytb) to investigate genetic diversity and population structure of A. gossypii populations that were collected from 33 sampling sites in China from different climatic zones. SSR and mtDNA data suggested low to moderate levels of genetic diversity. A star-shaped network of mtDNA haplotypes indicated that the maternal ancestor of China cotton aphids likely originated in Xinjiang. The POPTREE, STRUCTURE and principal coordinate analysis (PCoA) revealed two genetic clusters: an eastern and a western region group. Isolation by distance (IBD) results showed a positive correlation between geographic distance and genetic distance in the vast eastern region but not in the western region. Neutrality testing and mismatch distribution analysis provided strong evidence for a recent rapid expansion in most populations. Genetic bottleneck was not detected in A. gossypii populations of China. The present work can help us to develop strategies for managing this pest.

  4. Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia.

    Directory of Open Access Journals (Sweden)

    Daria Y Alakhova

    Full Text Available Pluronic block copolymers are potent sensitizers of multidrug resistant cancers. SP1049C, a Pluronic-based micellar formulation of doxorubicin (Dox has completed Phase II clinical trial and demonstrated safety and efficacy in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. This study elucidates the ability of SP1049C to deplete cancer stem cells (CSC and decrease tumorigenicity of cancer cells in vivo.P388 murine leukemia ascitic tumor was grown in BDF1 mice. The animals were treated with: (a saline, (b Pluronics alone, (c Dox or (d SP1049C. The ascitic cancer cells were isolated at different passages and examined for 1 in vitro colony formation potential, 2 in vivo tumorigenicity and aggressiveness, 3 development of drug resistance and Wnt signaling activation 4 global DNA methylation profiles, and 5 expression of CSC markers.SP1049C treatment reduced tumor aggressiveness, in vivo tumor formation frequency and in vitro clonogenic potential of the ascitic cells compared to drug, saline and polymer controls. SP1049C also prevented overexpression of BCRP and activation of Wnt-β-catenin signaling observed with Dox alone. Moreover, SP1049C significantly altered the DNA methylation profiles of the cells. Finally, SP1049C decreased CD133(+ P388 cells populations, which displayed CSC-like properties and were more tumorigenic compared to CD133(- cells.SP1049C therapy effectively suppresses the tumorigenicity and aggressiveness of P388 cells in a mouse model. This may be due to enhanced activity of SP1049C against CSC and/or altered epigenetic regulation restricting appearance of malignant cancer cell phenotype.

  5. TFIIIC bound DNA elements in nuclear organization and insulation.

    Science.gov (United States)

    Kirkland, Jacob G; Raab, Jesse R; Kamakaka, Rohinton T

    2013-01-01

    tRNA genes (tDNAs) have been known to have barrier insulator function in budding yeast, Saccharomyces cerevisiae, for over a decade. tDNAs also play a role in genome organization by clustering at sites in the nucleus and both of these functions are dependent on the transcription factor TFIIIC. More recently TFIIIC bound sites devoid of pol III, termed Extra-TFIIIC sites (ETC) have been identified in budding yeast and these sites also function as insulators and affect genome organization. Subsequent studies in Schizosaccharomyces pombe showed that TFIIIC bound sites were insulators and also functioned as Chromosome Organization Clamps (COC); tethering the sites to the nuclear periphery. Very recently studies have moved to mammalian systems where pol III genes and their associated factors have been investigated in both mouse and human cells. Short interspersed nuclear elements (SINEs) that bind TFIIIC, function as insulator elements and tDNAs can also function as both enhancer - blocking and barrier insulators in these organisms. It was also recently shown that tDNAs cluster with other tDNAs and with ETCs but not with pol II transcribed genes. Intriguingly, TFIIIC is often found near pol II transcription start sites and it remains unclear what the consequences of TFIIIC based genomic organization are and what influence pol III factors have on pol II transcribed genes and vice versa. In this review we provide a comprehensive overview of the known data on pol III factors in insulation and genome organization and identify the many open questions that require further investigation. This article is part of a Special Issue entitled: Transcription by Odd Pols. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage

    Directory of Open Access Journals (Sweden)

    Rolletschek Alexandra

    2009-06-01

    Full Text Available Abstract Background P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. Results In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. Conclusion In embryonic stem cells where (anti-proliferative p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  8. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    Science.gov (United States)

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  9. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes.

    Science.gov (United States)

    Jones, D A; Prior, S L; Barry, J D; Caplin, S; Baxter, J N; Stephens, J W

    2014-12-01

    In the past 30 years, prevalence of obesity has almost trebled resulting in an increased incidence of type 2 diabetes mellitus and other co-morbidities. Visceral adipose tissue is believed to play a vital role, but underlying mechanisms remain unclear. Our aim was to investigate changes in markers of oxidative damage in human visceral adipose tissue to determine levels of oxidative burden that may be attributed to obesity and/or diabetes. Visceral adipose tissue samples from 61 subjects undergoing abdominal surgery grouped as lean, obese and obese with type 2 diabetes mellitus, were examined using 3 different markers of oxidative stress. Malondialdehyde (MDA) concentration was measured as a marker of lipid peroxidation, telomere length and Comet assay as markers of oxidative DNA damage. No significant difference in MDA concentration, telomere length and DNA damage was observed between groups, although longer telomere lengths were seen in the obese with diabetes group compared to the obese group (Pstress and DNA damage was observed in samples from subjects with type 2 diabetes mellitus. Further work is required to investigate this further, however this phenomenon may be due to an up regulation of antioxidant defences in adipose tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Genetic variation among the Mapuche Indians from the Patagonian region of Argentina: mitochondrial DNA sequence variation and allele frequencies of several nuclear genes.

    Science.gov (United States)

    Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C

    1993-01-01

    DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Characterization of nuclear and chloroplast microsatellite markers for Falcaria vulgaris (Apiaceae)

    Science.gov (United States)

    Sarbottam Piya; Madhav P. Nepal

    2013-01-01

    Falcaria vulgaris (sickleweed) is native to Eurasia and a potential invasive plant of the United States. No molecular markers have been developed so far for sickleweed. Characterization of molecular markers for this plant would allow investigation into its population structure and biogeography thereby yielding insights into risk analysis and effective management...

  12. Genetic Evaluation of Natural Populations of the Endangered Conifer Thuja koraiensis Using Microsatellite Markers by Restriction-Associated DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Lu Hou

    2018-04-01

    Full Text Available Thuja koraiensis Nakai is an endangered conifer of high economic and ecological value in Jilin Province, China. However, studies on its population structure and conservation genetics have been limited by the lack of genomic data. Here, 37,761 microsatellites (simple sequence repeat, SSR were detected based on 875,792 de novo-assembled contigs using a restriction-associated DNA (RAD approach. Among these SSRs, 300 were randomly selected to test for polymorphisms and 96 obtained loci were able to amplify a fragment of expected size. Twelve polymorphic SSR markers were developed to analyze the genetic diversity and population structure of three natural populations. High genetic diversity (mean NA = 5.481, HE = 0.548 and moderate population differentiation (pairwise Fst = 0.048–0.078, Nm = 2.940–4.958 were found in this species. Molecular variance analysis suggested that most of the variation (83% existed within populations. Combining the results of STRUCTURE, principal coordinate, and neighbor-joining analysis, the 232 individuals were divided into three genetic clusters that generally correlated with their geographical distributions. Finally, appropriate conservation strategies were proposed to protect this species. This study provides genetic information for the natural resource conservation and utilization of T. koraiensis and will facilitate further studies of the evolution and phylogeography of the species.

  13. Biomarkers for exposure to ambient air pollution - Comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress

    DEFF Research Database (Denmark)

    Autrup, Herman; Daneshvar, Bahram; Dragsted, Lars Ove

    1999-01-01

    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adducts...... correlations were observed between bulky carcinogen-DNA adduct and PAM-albumin levels (p = 0.005), and between DNA adduct and gamma-glutamyl semialdehyde (GGS) in hemoglobin (p = 0.11). Highly significant correlations were found between PAM-albumin adducts and AAS in plasma (r = 0.001) and GGS in hemoglobin (p...... in the combined group. A significant negative correlation was only observed between bulky carcinogen-DNA adducts and PAM-albumin adducts (p = 0.02) and between DNA adduct and urinary mutagenic activity (p = 0.02) in the GSTM1 null group, bur not in the workers who were homozygotes or heterozygotes for GSTM1. Our...

  14. Preliminary evaluation of the use of soil bacterial 16S rDNA DNA markers in sediment fingerprinting in two small endorheic lagoons in southern Spain

    Science.gov (United States)

    Gomez, Jose Alfonso; Landa del Castillo, Blanca; Guzman, Gema; Petticrew, Ellen L.; Owens, Phillip N.

    2016-04-01

    Recently, several studies have shown the effect of soil management on the soil microbial community in olive orchards, how this might differ due to a combination of management and soil type, and how these can be identified using DNA markers (Landa et al., 2014). Using DNA markers of soil bacteria seems to have the potential to detect differences in soil properties between different areas (Joe-Strack and Petticrew, 2012), particularly in those that by their location and characteristics might not present differences in other chemical or geochemical soil properties. This presentation describes the preliminary results of an exploratory survey to evaluate the potential of soil bacteria community composition in determining the origin of the sediment in two small endorheic lagoons in southern Spain. Two lagoons (Zoñar and Dulce) in southern Spain with a small contributing area (877 and 263 ha respectively) were selected for this study. These lagoons were chosen because of their environmental relevance and increasing siltation problems. The dominant land use in most of their contributing catchments is rain-fed olive tree cultivation. In May 2015, two small subcatchments within each of the lagoon's contributing area were sampled. At each sampling point, a composite sample was collected of three subsamples taken within a 5 m radiusa. We differentiated between 0-20 and 20-40 cm soil depth. Additionally, in both lagoons samples were taken from the sedimentation of the stream draining the subcatchment into the lagoon shores, at 0-20 -cm depth. Prior to each sampling each of the the two subcatchments were explored for indications of different properties or management that could help divide it into different "homogeneous" units, including: soil management, visual indications of erosion symptoms (e.g. rills, soil mounds around olive trees), colour, and landscape position. As a result, the subcatchment in each lagoon was divided into three areas (referred to as 1, 2 and 3). The

  15. Application of DNA based marker mutations for improvement of cereals and other sexually reproduced crop plants. Proceedings of a final research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Co-ordinated Research Programme (CRP) on the Application of DNA Based Marker Mutations for Improvement of Cereals and Other Sexually Reproduced Crop Plants represents the first of three CRPs dealing with the application of molecular markers to mutations and plant breeding and was implemented between 1992 and 1996. A second companion CRP entitled Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops devoted to the application of molecular markers in vegetatively propagated crops species was implemented between 1993 and 1997. One positive consequence of these two CRPs has been the implementation of a third CRP entitled Radioactively Labeled DNA Probes for Crop Improvement, which began in 1995 and aims to provide enabling technologies, in the form of probes and primers, to laboratories in developing countries. The rapid development of molecular marker technologies has also resulted in a dramatic increase in request from developing Member States for technical co-operation projects utilizing molecular markers to improve local varieties for biotic and abiotic stresses and other traits of relevance. With the intensified use of induced mutations in genetic studies, it will be important to continue the important work of understanding induced mutations at the molecular level. Evidence of the progress made in implementing molecular marker technologies in laboratories around the world is presented in this publication, which contains the results presented by the participants at the fourth and final Research Co-ordination Meeting of the CRP held in Vienna, 4-8 November 1996. The FAO and IAEA wish to express their sincere appreciation to the participants of the meeting for their work during the project period resulting in the summary and scientific reports presented in this publication. Refs, figs, tabs.

  16. Application of DNA based marker mutations for improvement of cereals and other sexually reproduced crop plants. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-03-01

    The Co-ordinated Research Programme (CRP) on the Application of DNA Based Marker Mutations for Improvement of Cereals and Other Sexually Reproduced Crop Plants represents the first of three CRPs dealing with the application of molecular markers to mutations and plant breeding and was implemented between 1992 and 1996. A second companion CRP entitled Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops devoted to the application of molecular markers in vegetatively propagated crops species was implemented between 1993 and 1997. One positive consequence of these two CRPs has been the implementation of a third CRP entitled Radioactively Labeled DNA Probes for Crop Improvement, which began in 1995 and aims to provide enabling technologies, in the form of probes and primers, to laboratories in developing countries. The rapid development of molecular marker technologies has also resulted in a dramatic increase in request from developing Member States for technical co-operation projects utilizing molecular markers to improve local varieties for biotic and abiotic stresses and other traits of relevance. With the intensified use of induced mutations in genetic studies, it will be important to continue the important work of understanding induced mutations at the molecular level. Evidence of the progress made in implementing molecular marker technologies in laboratories around the world is presented in this publication, which contains the results presented by the participants at the fourth and final Research Co-ordination Meeting of the CRP held in Vienna, 4-8 November 1996. The FAO and IAEA wish to express their sincere appreciation to the participants of the meeting for their work during the project period resulting in the summary and scientific reports presented in this publication

  17. Assessment of phylogenetic relationship of rare plant species collected from Saudi Arabia using internal transcribed spacer sequences of nuclear ribosomal DNA.

    Science.gov (United States)

    Al-Qurainy, F; Khan, S; Nadeem, M; Tarroum, M; Alaklabi, A

    2013-03-11

    The rare and endangered plants of any country are important genetic resources that often require urgent conservation measures. Assessment of phylogenetic relationships and evaluation of genetic diversity is very important prior to implementation of conservation strategies for saving rare and endangered plant species. We used internal transcribed spacer sequences of nuclear ribosomal DNA for the evaluation of sequence identity from the available taxa in the GenBank database by using the Basic Local Alignment Search Tool (BLAST). Two rare plant species viz, Heliotropium strigosum claded with H. pilosum (98% branch support) and Pancratium tortuosum claded with P. tenuifolium (61% branch support) clearly. However, some species, viz Scadoxus multiflorus, Commiphora myrrha and Senecio hadiensis showed close relationships with more than one species. We conclude that nuclear ribosomal internal transcribed spacer sequences are useful markers for phylogenetic study of these rare plant species in Saudi Arabia.

  18. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins.

    Science.gov (United States)

    Meyer, Matthias; Arsuaga, Juan-Luis; de Filippo, Cesare; Nagel, Sarah; Aximu-Petri, Ayinuer; Nickel, Birgit; Martínez, Ignacio; Gracia, Ana; Bermúdez de Castro, José María; Carbonell, Eudald; Viola, Bence; Kelso, Janet; Prüfer, Kay; Pääbo, Svante

    2016-03-24

    A unique assemblage of 28 hominin individuals, found in Sima de los Huesos in the Sierra de Atapuerca in Spain, has recently been dated to approximately 430,000 years ago. An interesting question is how these Middle Pleistocene hominins were related to those who lived in the Late Pleistocene epoch, in particular to Neanderthals in western Eurasia and to Denisovans, a sister group of Neanderthals so far known only from southern Siberia. While the Sima de los Huesos hominins share some derived morphological features with Neanderthals, the mitochondrial genome retrieved from one individual from Sima de los Huesos is more closely related to the mitochondrial DNA of Denisovans than to that of Neanderthals. However, since the mitochondrial DNA does not reveal the full picture of relationships among populations, we have investigated DNA preservation in several individuals found at Sima de los Huesos. Here we recover nuclear DNA sequences from two specimens, which show that the Sima de los Huesos hominins were related to Neanderthals rather than to Denisovans, indicating that the population divergence between Neanderthals and Denisovans predates 430,000 years ago. A mitochondrial DNA recovered from one of the specimens shares the previously described relationship to Denisovan mitochondrial DNAs, suggesting, among other possibilities, that the mitochondrial DNA gene pool of Neanderthals turned over later in their history.

  19. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.).

    Science.gov (United States)

    Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel

    2004-06-01

    A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars.

  20. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin

    2011-01-01

    To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...... in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls....... In the result, we found that globally there was no significant difference of DNA methylation patterns between the two groups. Locus-specifically, some genes involved in embryonic development presented a generally increased level of methylation. Our findings suggest that in cloned pigs with normal phenotypes...

  1. Interaction of Proliferating Cell Nuclear Antigen With DNA at the Single Molecule Level

    KAUST Repository

    Raducanu, Vlad-Stefan

    2016-05-01

    Proliferating cell nuclear antigen (PCNA) is a key factor involved in Eukaryotic DNA replication and repair, as well as other cellular pathways. Its importance comes mainly from two aspects: the large numbers of interacting partners and the mechanism of facilitated diffusion along the DNA. The large numbers of interacting partners makes PCNA a necessary factor to consider when studying DNA replication, either in vitro or in vivo. The mechanism of facilitated diffusion along the DNA, i.e. sliding along the duplex, reduces the six degrees of freedom of the molecule, three degrees of freedom of translation and three degrees of freedom of rotation, to only two, translation along the duplex and rotational tracking of the helix. Through this mechanism PCNA can recruit its partner proteins and localize them to the right spot on the DNA, maybe in the right spatial orientation, more effectively and in coordination with other proteins. Passive loading of the closed PCNA ring on the DNA without free ends is a topologically forbidden process. Replication factor C (RFC) uses energy of ATP hydrolysis to mechanically open the PCNA ring and load it on the dsDNA. The first half of the introduction gives overview of PCNA and RFC and the loading mechanism of PCNA on dsDNA. The second half is dedicated to a diffusion model and to an algorithm for analyzing PCNA sliding. PCNA and RFC were successfully purified, simulations and a mean squared displacement analysis algorithm were run and showed good stability and experimental PCNA sliding data was analyzed and led to parameters similar to the ones in literature.

  2. Use of SSR markers for DNA fingerprinting and diversity analysis of Pakistani sugarcane (Saccharum spp. hybrids) cultivars

    Science.gov (United States)

    In recent years SSR markers have been used widely for genetic analysis. The objective of this study was to use an SSR-based marker system to develop the molecular fingerprints and analyze the genetic relationship of sugarcane cultivars grown in Pakistan. Twenty-one highly polymorphic SSR markers wer...

  3. Differentiation of the guinea pig eye: nuclear ultrastructure, template activity and DNA content

    International Nuclear Information System (INIS)

    Schmalenberger, B.

    1980-01-01

    Nuclei of various cell types in the eye of embryonal and adult Guinea pigs were studied by means of electron microscopy, cytophotometry and autoradiography. Striking differences in condensation and arrangement of chromatin were found between the different tissues and cells. Several nuclear types were analyzed quantitatively with regard to their content of condensed and decondensed chromatin by means of electron microscopic morphometry. Structural differences in chromatin organization coincided with different nuclear DNA contents in various cell types of the retina, such as bipolar cells, Mueller cells, rods and cones, and the pigmented epithelium. The differences between DNA-Feulgen means obtained by cytophotometric analysis were highly significant. Template activity as shown by 3 H-uridine incorporation made evident than the rate of RNA synthesis is positively correlated with the quantity of decondensed chromatin. It is speculated that differentiation of the Guinea pig eye involves differential DNA synthesis, and that the extra-DNA could have some ''trigger'' function for the pattern of chromatin condensation and thus the pattern of gene expression. (author)

  4. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers.

    Science.gov (United States)

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), "best close match" (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our

  5. Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus in China with multiple gene markers.

    Directory of Open Access Journals (Sweden)

    Qing-Yan Dai

    Full Text Available Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI gene and two alternative internal transcribed spacer (ITS genes (ITS1 and ITS2. Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML/Neighbor-joining (NJ, "best close match" (BCM, Minimum distance (MD, and BP-based method (BP, representing commonly used methodology (tree-based and non-tree based in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10-97.40%, while ITS1 and ITS2 obtained a success rate of 64.70-81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In

  6. [Sequence of the ITS region of nuclear ribosomal DNA(nrDNA) in Xinjiang wild Dianthus and its phylogenetic relationship].

    Science.gov (United States)

    Zhang, Lu; Cai, You-Ming; Zhuge, Qiang; Zou, Hui-Yu; Huang, Min-Ren

    2002-06-01

    Xinjiang is a center of distribution and differentiation of genus Dianthus in China, and has a great deal of species resources. The sequences of ITS region (including ITS-1, 5.8S rDNA and ITS-2) of nuclear ribosomal DNA from 8 species of genus Dianthus wildly distributed in Xinjiang were determined by direct sequencing of PCR products. The result showed that the size of the ITS of Dianthus is from 617 to 621 bp, and the length variation is only 4 bp. There are very high homogeneous (97.6%-99.8%) sequences between species, and about 80% homogeneous sequences between genus Dianthus and outgroup. The sequences of ITS in genus Dianthus are relatively conservative. In general, there are more conversion than transition in the variation sites among genus Dianthus. The conversion rates are relatively high, and the ratios of conversion/transition are 1.0-3.0. On the basis of phylogenetic analysis of nucleotide sequences the species of Dianthus in China would be divided into three sections. There is a distant relationship between sect. Barbulatum Williams and sect. Dianthus and between sect. Barbulatum Williams and sect. Fimbriatum Williams, and there is a close relationship between sect. Dianthus and sect. Fimbriatum Williams. From the phylogenetic tree of ITS it was found that the origin of sect. Dianthusis is earlier than that of sect. Fimbriatum Williams and sect. Barbulatum Williams.

  7. Evaluation of Urinary Nuclear Matrix Protein-22 as Tumor Marker Versus Tissue Polypeptide Specific Antigen in Bilharzial and Bladder Cancer

    International Nuclear Information System (INIS)

    Ahmed, W.A.; El-Kabany, H.

    2004-01-01

    Urinary nuclear matrix protein-22 (NMP-22) and tissue polypeptide specific antigen (TPS) were determined as potential marker for early detection of bladder tumors in patients with high risk (Bilharzial-patients), monitoring and follow up bladder cancer patients. The objective was to determine sensitivity and specificity of markers for bilharzial and cancer lesions. The levels of two parameters were determined pre and post operation. A total of 110 individuals, 20 healthy, 20 bilharzial patients and 70 bladder cancer patients with confirmed diagnosis were investigated. Urine samples were assayed for NMP-22 and TPS test kits. Some bladder cancer patients were selected to follow up. NMP-22 showed highly significant increase (P,0.001) more than TPS (P<0.01) in bladder cancer patients when compared with bilharzial and control group. Overall sensitivity is 7.8% for TPS and 98.5% for NMP-22

  8. Nuclear/Nucleolar morphometry and DNA image cytometry as a combined diagnostic tool in pathology of prostatic carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kavantzas, N.; Agapitos, E.; Lazaris, A. C.; Pavlopulos, P.M.; Sofikitis, N.; Davaris, P. [National University of Athens, Dept. of Pathology, Medical School, Athens (Greece)

    2001-12-01

    Paraffin tissue sections from 50 patients with prostate adenocarcinoma were used to study nuclear and nucleolar morphometric features by image analysis. The results were compared to DNA ploidy and Gleason grade. In the examined histological samples nuclear and nucleolar areas were positively interrelated. It was also noticed that the higher the percentage of nucleolated nuclei, the bigger the nuclear and nucleolar areas. The morphometric characteristics did not differ significantly among the four grades of the examined specimens. In well-differentiated carcinomas the DNA index was lower than in the rest at a statistically significant level. Hypodiploid carcinomas were found to possess significantly bigger nuclear areas than any other DNA index group. Morphonuclear evidence of anaplasia and DNA aneuploidy may be used as diagnostic tools in prostate cancer in addition to Gleason grade.

  9. Nuclear/Nucleolar morphometry and DNA image cytometry as a combined diagnostic tool in pathology of prostatic carcinoma

    International Nuclear Information System (INIS)

    Kavantzas, N.; Agapitos, E.; Lazaris, A. C.; Pavlopulos, P.M.; Sofikitis, N.; Davaris, P.

    2001-01-01

    Paraffin tissue sections from 50 patients with prostate adenocarcinoma were used to study nuclear and nucleolar morphometric features by image analysis. The results were compared to DNA ploidy and Gleason grade. In the examined histological samples nuclear and nucleolar areas were positively interrelated. It was also noticed that the higher the percentage of nucleolated nuclei, the bigger the nuclear and nucleolar areas. The morphometric characteristics did not differ significantly among the four grades of the examined specimens. In well-differentiated carcinomas the DNA index was lower than in the rest at a statistically significant level. Hypodiploid carcinomas were found to possess significantly bigger nuclear areas than any other DNA index group. Morphonuclear evidence of anaplasia and DNA aneuploidy may be used as diagnostic tools in prostate cancer in addition to Gleason grade

  10. Possible role(s) of nuclear matrix and DNA loop organization in fixation or repair of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Malyapa, R.S.; Wright, W.D.; Roti Roti, J.L.

    1995-01-01

    DNA double-strand breaks produced by ionizing radiation are considered to be a critical radiation-induced lesion responsible, in part, for cell killing. However, the manner in which structures within the nucleus involving DNA organization contribute to the balance between fixation or repair of these critical lesions remains largely obscure. The repair process requires both functional enzymes and substrate availability, i.e., access to and orientation of damage sites. Therefore, the ability to repair damaged DNA could be influenced not only by DNA integrity but also by the spatial organization of DNA. Therefore, the authors investigated the possibility that radiation-induced DNA damage differentially affects DNA supercoiling ability in cells of differing radiosensitivities using radioresistant and radiosensitive mutants of different origins. This study was also designed to determine if differences in the composition of the nuclear matrix exist between cell lines of each origin. Results from these studies indicate that differences in the composition of the nuclear matrix proteins and DNA stability might be related to intrinsic radiation resistance

  11. The results of the lipids peroxidation products on the DNA bases as biological markers of the oxidative stress

    International Nuclear Information System (INIS)

    Falletti, O.

    2007-10-01

    Different ways of DNA damages have been studied, among these ones the direct way of DNA damages formation by the reactive oxygen species (R.O.S.). This way leads to the formation of oxidative DNA damages. In 1990, works have suggested an indirect way of DNA damages formation, the lipids peroxidation. Instead of oxidizing directly DNA, the R.O.S. oxide the lipids present in the cells and their membranes; The products coming from this degradation are able to provoke DNA damages. This way has not been studied very much. The work of this thesis is axed on this DNA theme and lipids peroxidation. In the first chapter, we begin by presenting DNA and the direct way of oxidative damages formation by the R.O.S.Then, we speak about the cell lipids suffering oxidation reactions and the different ways of lipids oxidation. Then, we present how the lipid peroxidation is a source of damages for DNA. (N.C.)

  12. Further evidence for population specific differences in the effect of DNA markers and gender on eye colour prediction in forensics.

    Science.gov (United States)

    Pośpiech, Ewelina; Karłowska-Pik, Joanna; Ziemkiewicz, Bartosz; Kukla, Magdalena; Skowron, Małgorzata; Wojas-Pelc, Anna; Branicki, Wojciech

    2016-07-01

    The genetics of eye colour has been extensively studied over the past few years, and the identified polymorphisms have been applied with marked success in the field of Forensic DNA Phenotyping. A picture that arises from evaluation of the currently available eye colour prediction markers shows that only the analysis of HERC2-OCA2 complex has similar effectiveness in different populations, while the predictive potential of other loci may vary significantly. Moreover, the role of gender in the explanation of human eye colour variation should not be neglected in some populations. In the present study, we re-investigated the data for 1020 Polish individuals and using neural networks and logistic regression methods explored predictive capacity of IrisPlex SNPs and gender in this population sample. In general, neural networks provided higher prediction accuracy comparing to logistic regression (AUC increase by 0.02-0.06). Four out of six IrisPlex SNPs were associated with eye colour in the studied population. HERC2 rs12913832, OCA2 rs1800407 and SLC24A4 rs12896399 were found to be the most important eye colour predictors (p Gender was found to be significantly associated with eye colour with males having ~1.5 higher odds for blue eye colour comparing to females (p = 0.002) and was ranked as the third most important factor in blue/non-blue eye colour determination. However, the implementation of gender into the developed prediction models had marginal and ambiguous impact on the overall accuracy of prediction confirming that the effect of gender on eye colour in this population is small. Our study indicated the advantage of neural networks in prediction modeling in forensics and provided additional evidence for population specific differences in the predictive importance of the IrisPlex SNPs and gender.

  13. Development of New Microsatellite DNA Markers from Apostichopus japonicus and Their Cross-Species Application in Parastichopus parvimensis and Pathallus mollis

    Directory of Open Access Journals (Sweden)

    Guiping Chen

    2011-09-01

    Full Text Available Twenty microsatellite DNA markers were developed for sea cucumber and used to investigate polymorphisms of 60 wild Apostichopus japonicus individuals collected from China. It revealed that all the markers were polymorphic. A total of 164 alleles were detected at 20 loci. The number of alleles per locus varied from 3 to 17 with an average of 8.2, and the expected heterozygosities of each locus ranged from 0.03 to 0.89 with an average of 0.64. Cross-species amplification was also conducted in Parastichopus parvimensis collected from the United States and Pathallus mollis collected from Peru. The result showed that 17 loci amplified Parastichopus parvimensis DNAs while only 4 loci could amplify Pathallus mollis DNAs. All of the polymorphic markers would be useful for future genetic breeding and the assessment of genetic variation within sea cucumbers.

  14. Hormone-dependent nuclear export of estradiol receptor and DNA synthesis in breast cancer cells

    Science.gov (United States)

    Lombardi, Maria; Castoria, Gabriella; Migliaccio, Antimo; Barone, Maria Vittoria; Di Stasio, Rosina; Ciociola, Alessandra; Bottero, Daniela; Yamaguchi, Hiroshi; Appella, Ettore; Auricchio, Ferdinando

    2008-01-01

    In breast cancer cells, cytoplasmic localization of the estradiol receptor α (ERα) regulates estradiol-dependent S phase entry. We identified a nuclear export sequence (NES) in ERα and show that its export is dependent on both estradiol-mediated phosphatidylinositol-3-kinase (PI3K)/AKT activation and chromosome region maintenance 1 (CRM1). A Tat peptide containing the ERα NES disrupts ERα–CRM1 interaction and prevents nuclear export of ERα- and estradiol-induced DNA synthesis. NES-ERα mutants do not exit the nucleus and inhibit estradiol-induced S phase entry; ERα-dependent transcription is normal. ERα is associated with Forkhead proteins in the nucleus, and estradiol stimulates nuclear exit of both proteins. ERα knockdown or ERα NES mutations prevent ERα and Forkhead nuclear export. A mutant of forkhead in rhabdomyosarcoma (FKHR), which cannot be phosphorylated by estradiol-activated AKT, does not associate with ERα and is trapped in the nucleus, blocking S phase entry. In conclusion, estradiol-induced AKT-dependent phosphorylation of FKHR drives its association with ERα, thereby triggering complex export from the nucleus necessary for initiation of DNA synthesis and S phase entry. PMID:18644889

  15. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Science.gov (United States)

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  16. The involvement of nuclear nucleases in rat thymocyte DNA degradation after γ-irradiation

    International Nuclear Information System (INIS)

    Nikonova, L.V.; Nelipovich, P.A.; Umansky, S.R.

    1982-01-01

    Possible mechanisms of internucleosomal DNA fragmentation in thymocytes of irradiated rats were studied. It was shown that thymocyte nuclei contain at least two nucleases that cleave DNA between nucleosomes - a Ca 2+ /Mg 2+ -dependent nuclease and an acidic one which does not depend on bivalent ions. 2 and 3 h after irradiation at a dose of 10 Gy the initial rate of DNA cleavage by Ca 2+ /Mg 2+ -dependent nuclease in isolated nuclei increased three and seven times, respectively, but the kinetics of DNA digestion by acidic nuclease did not change. The experiments with cycloheximide indicated that Ca 2+ /Mg 2+ -dependent endonuclease turns over at a high rate. The activity of the cytoplasmic acidic and Mg 2+ -dependent nucleases was shown to increase (by 40 and 50%, respectively) 3h after irradiation. The effect is caused by the de novo synthesis of the nucleases. At the same time the activity of nuclear nucleases did not essentially change. The chromatin isolated from rat thymocytes 3 h after irradiation did not differ in its sensitivity to some exogenic nucleases (DNAase I, micrococcal nuclease and nuclease from Serratia marcescens) from the control. Thus, Ca 2+ /Mg 2+ -dependent endonuclease seems to be responsible for the postirradiation internucleosomal DNA fragmentation in dying thymocytes. (Auth.)

  17. Repair of pyrimidine dimers in nuclear and mitochondrial DNA of yeast irradiated with low doses of ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, L [Rochester Univ., N.Y. (USA). Dept. of Radiation Biology and Biophysics

    1975-01-01

    The repair of damage induced by ultraviolet light has been examined in both the nuclear and mitochondrial DNA of the yeast Saccharomyces cerevisiae. The sensitive assay used in this study is based on the capacity of the bacteriophage T4 u.v. endonuclease to produce single-strand breaks in DNA that contains pyrimidine dimers, thus permitting the use of low fluences (doses) of u.v. The results demonstrate that virtually all of the dimers induced in the nuclear DNA of a repair-proficient strain (RAD+) are removed following dark incubation for four hours in growth medium. In contrast, the dimers induced in mitochondrial DNA by the same u.v. fluence are retained under the same conditions. In the excision-deficient mutant, rad1-2, no evidence was obtained for removal of pyrimidine dimers from nuclear DNA. Photoreactivation of both RAD + and rad1-2 cultures resulted in decreases of dimers from both nuclear and mitochondrial DNA. It is concluded that an excision-repair mechanism operates on nuclear but not mitochondrial DNA in repair-proficient yeast, and that the rad1-2 mutant is defective in this process.

  18. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schönhals, E M; Ortega, F; Barandalla, L; Aragones, A; Ruiz de Galarreta, J I; Liao, J-C; Sanetomo, R; Walkemeier, B; Tacke, E; Ritter, E; Gebhardt, C

    2016-04-01

    SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.

  19. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response

    DEFF Research Database (Denmark)

    Blasius, Melanie; Wagner, Sebastian A; Choudhary, Chuna Ram

    2014-01-01

    RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome...

  20. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    Science.gov (United States)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  1. The nuclear higher-order structure defined by the set of topological relationships between DNA and the nuclear matrix is species-specific in hepatocytes.

    Science.gov (United States)

    Silva-Santiago, Evangelina; Pardo, Juan Pablo; Hernández-Muñoz, Rolando; Aranda-Anzaldo, Armando

    2017-01-15

    During the interphase the nuclear DNA of metazoan cells is organized in supercoiled loops anchored to constituents of a nuclear substructure or compartment known as the nuclear matrix. The stable interactions between DNA and the nuclear matrix (NM) correspond to a set of topological relationships that define a nuclear higher-order structure (NHOS). Current evidence suggests that the NHOS is cell-type-specific. Biophysical evidence and theoretical models suggest that thermodynamic and structural constraints drive the actualization of DNA-NM interactions. However, if the topological relationships between DNA and the NM were the subject of any biological constraint with functional significance then they must be adaptive and thus be positively selected by natural selection and they should be reasonably conserved, at least within closely related species. We carried out a coarse-grained, comparative evaluation of the DNA-NM topological relationships in primary hepatocytes from two closely related mammals: rat and mouse, by determining the relative position to the NM of a limited set of target sequences corresponding to highly-conserved genomic regions that also represent a sample of distinct chromosome territories within the interphase nucleus. Our results indicate that the pattern of topological relationships between DNA and the NM is not conserved between the hepatocytes of the two closely related species, suggesting that the NHOS, like the karyotype, is species-specific. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser

    Science.gov (United States)

    de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson

    2015-03-01

    Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.

  3. The DNA-instability test as a specific marker of malignancy and its application to detect cancer clones in borderline malignancy

    Directory of Open Access Journals (Sweden)

    M Fukuda

    2009-06-01

    Full Text Available Recent progress in cytogenetic and biochemical mutator assay technologies has enabled us to detect single gene alterations and gross chromosomal rearrangements, and it became clear that all cancer cells are genetically unstable. In order to detect the genome-wide instability of cancer cells, a new simple method, the DNA-instability test, was developed. The methods to detect genomic instability so far reported have only demonstrated the presence of qualitative and quantitative alterations in certain specific genomic loci. In contrast to these commonly used methods to reveal the genomic instability at certain specific DNA regions, the newly introduced DNA-instability test revealed the presence of physical DNA-instability in the entire DNA molecule of a cancer cell nucleus as revealed by increased liability to denature upon HCl hydrolysis or formamide exposure. When this test was applied to borderline malignancies, cancer clones were detected in all cases at an early-stage of cancer progression. We proposed a new concept of “procancer” clones to define those cancer clones with “functional atypia” showing positivities for various cancer markers, as well as DNA-instability testing, but showing no remarkable ordinary “morphological atypia” which is commonly used as the basis of histopathological diagnosis of malignancy.

  4. EpCAM nuclear localization identifies aggressive Thyroid Cancer and is a marker for poor prognosis

    Directory of Open Access Journals (Sweden)

    MacMillan Christina

    2010-06-01

    Full Text Available Abstract Background Proteolytic cleavage of the extracellular domain (EpEx of Epithelial cell adhesion molecule (EpCAM and nuclear signaling by its intracellular oncogenic domain Ep-ICD has recently been implicated in increased proliferation of cancer cells. The clinical significance of Ep-ICD in human tumors remains an enigma. Methods EpEx, Ep-ICD and β-catenin immunohistochemistry using specific antibodies was conducted on 58 archived thyroid cancer (TC tissue blocks from 34 patients and correlated with survival analysis of these patients for up to 17 years. Results The anaplastic (ATC and aggressive thyroid cancers showed loss of EpEx and increased nuclear and cytoplasmic accumulation of Ep-ICD. In contrast, the low grade papillary thyroid cancers (PTC showed membranous EpEx and no detectable nuclear Ep-ICD. The ATC also showed concomitant nuclear expression of Ep-ICD and β-catenin. Kaplan-Meier Survival analysis revealed reduced overall survival (OS for TC patients showing nuclear Ep-ICD expression or loss of membranous EpEx (p Conclusion We report reciprocal loss of membrane EpEx but increased nuclear and cytoplasmic accumulation of Ep-ICD in aggressive TC; nuclear Ep-ICD correlated with poor OS of TC patients. Thus nuclear Ep-ICD localization may serve as a useful biomarker for aggressive TC and may represent a novel diagnostic, prognostic and therapeutic target for aggressive TC.

  5. 8-oxo-7,8-dihydroguanine level - the DNA oxidative stress marker - recognized by fluorescence image analysis in sporadic uterine adenocarcinomas in women.

    Science.gov (United States)

    Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Piersiak, Tomasz

    2013-01-01

    In the case of carcinogenesis in human endometrium no information exists on tissue concentration of 8-oxo-7,8-dihydroguanine, the DNA oxidative stress marker This was the main reason to undertake the investigation of this DNA modification in human uterine estrogen-dependent tissue cancers. In order to estimate the level of oxidative damage, 8-oxo-7,8-dihydroguanine was determined directly in cells of tissue microscope slides using OxyDNA Assay Kit, Fluorometric. Cells were investigated under confocal microscope. Images of individual cells were captured by computer-interfaced digital photography and analyzed for fluorescence intensities (continuous inverted 8-bit gray-scale = 0 [black]-255 [white]). Fluorescence scores were calculated for each of 13 normal endometrial samples and 31 uterine adenocarcinoma specimens. Finally the level of the oxidative stress marker was also analyzed according to histological and clinical features of the neoplasms. The obtained data revealed that: 8-oxo-7,8-dihydroguanine levels were higher in uterine adenocarcinomas than in normal endometrial samples (48,32 vs. 38,64; p<0,001); in contrast to normal endometrium there was no correlation between age and DNA oxidative modification content in uterine cancer; highest mean fluorescence intensity was recognized in G2 endometrial adenocarcinomas; level of 8-oxo-7,8-dihydroguanine does not depend on Body Mass Index (BMI) and cancer uterine wall infiltration or tumor FIGO stage. Our study indicates that accumulation of the oxidized DNA base may contribute to the development of endometrial neoplasia, however oxidative DNA damage does not seem to increase with tumor progression.

  6. Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites.

    Science.gov (United States)

    Yao, Jia-Long; Tomes, Sumathi; Gleave, Andrew P

    2013-05-01

    Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 μg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 μg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 μg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.

  7. Evaluation of powdery mildew-resistance of grape germplasm and rapid amplified polymorphic DNA markers associated with the resistant trait in Chinese wild Vitis.

    Science.gov (United States)

    Zhang, J; Zhang, Y; Yu, H; Wang, Y

    2014-05-09

    The resistance of wild Vitis germplasm, including Chinese and American wild Vitis and Vitis vinifera cultivars, to powdery mildew (Uncinula necator Burr.) was evaluated for two consecutive years under natural conditions. Most of the Chinese and North American species displayed a resistant phenotype, whereas all of the European species were highly susceptible. The Alachua and Conquistador accessions of Vitis rotundifolia species, which originated in North America, were immune to the disease, while Baihe-35-1, one of the accessions of Vitis pseudoreticulata, showed the strongest resistance among all Chinese accessions evaluated. Three rapid amplified polymorphic DNA (RAPD) markers, OPW02-1756, OPO11-964, and OPY13-661, were obtained after screening 520 random primers among various germplasm, and these markers were found to be associated with powdery mildew resistance in Baihe-35-1 and in some Chinese species, but not in any European species. Analysis of F₁ and F₂ progenies of a cross between resistant Baihe-35-1 and susceptible Carignane (V. vinifera) revealed that the three RAPD markers were linked to the powdery resistant trait in Baihe-35-1 plants. Potential applications of the identified RAPD markers for gene mapping, marker-assisted selection, and breeding were investigated in 168 F₂ progenies of the same cross. Characterization of the resistant phenotype of the selected F₂ seedlings for breeding a new disease-resistant grape cultivar is in progress.

  8. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp

    Directory of Open Access Journals (Sweden)

    Seto Anita G

    2000-11-01

    Full Text Available Abstract Background NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. Results We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. Conclusions We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.

  9. TDP1 repairs nuclear and mitochondrial DNA damage induced by chain-terminating anticancer and antiviral nucleoside analogs

    Science.gov (United States)

    Huang, Shar-yin N.; Murai, Junko; Dalla Rosa, Ilaria; Dexheimer, Thomas S.; Naumova, Alena; Gmeiner, William H.; Pommier, Yves

    2013-01-01

    Chain-terminating nucleoside analogs (CTNAs) that cause stalling or premature termination of DNA replication forks are widely used as anticancer and antiviral drugs. However, it is not well understood how cells repair the DNA damage induced by these drugs. Here, we reveal the importance of tyrosyl–DNA phosphodiesterase 1 (TDP1) in the repair of nuclear and mitochondrial DNA damage induced by CTNAs. On investigating the effects of four CTNAs—acyclovir (ACV), cytarabine (Ara-C), zidovudine (AZT) and zalcitabine (ddC)—we show that TDP1 is capable of removing the covalently linked corresponding CTNAs from DNA 3′-ends. We also show that Tdp1−/− cells are hypersensitive and accumulate more DNA damage when treated with ACV and Ara-C, implicating TDP1 in repairing CTNA-induced DNA damage. As AZT and ddC are known to cause mitochondrial dysfunction, we examined whether TDP1 repairs the mitochondrial DNA damage they induced. We find that AZT and ddC treatment leads to greater depletion of mitochondrial DNA in Tdp1−/− cells. Thus, TDP1 seems to be critical for repairing nuclear and mitochondrial DNA damage caused by CTNAs. PMID:23775789

  10. Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage.

    Science.gov (United States)

    Padín-Irizarry, Vivian; Colón-Lorenzo, Emilee E; Vega-Rodríguez, Joel; Castro, María Del R; González-Méndez, Ricardo; Ayala-Peña, Sylvette; Serrano, Adelfa E

    2016-06-01

    Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Complementing nuclear techniques with DNA vaccine technologies for improving animal health

    International Nuclear Information System (INIS)

    Relucio, J.L.V.; Dacanay, M.E.K.; Maligalig, A.C.S.; Ramos, E.A.; Santos, A.D.; Torres-Villanueva, C.A.T.; Osorio, R.G.; Deocaris, C.C.

    2005-01-01

    The use of nuclear methods can enhance several features of DNA vaccines in protecting livestock against pathogens. While DNA vaccines already have several advantages over their traditional predecessors (e.g. cheap production, stability over a wide range of temperature, amenability to genetic manipulation, and no risk of reversion to pathogenicity), conventional gene delivery systems make immunization of livestock and aquaculture populations tedious. For this reason, we are developing radiation-synthesized intelligent delivery systems for DNA vaccines. We encapsulated a reporter construct pCMV·SPORT-β-gal in radiation-synthesized κ-carrageenan-polyvinylpyrrolidone microspheres IP20 (for stomach release) and IP18 (for intestinal release). The DNA-loaded polymers were orally administered to Oreochromis niloticus (black Nile tilapia), and whole organs were stained with X-gal to observe β-galactosidase activity. Intense staining was observed in the stomach regions with IP20, while minimal staining was observed with IP18. The gills, in contrast, did not express β-galactosidase activity. Our results show evidence of the successful gene delivery capabilities of radiation-synthesized microspheres. When monitoring the progress of an animal's immune response after DNA immunization, non-invasive and sensitive methods are preferred. We also evaluated chicken egg-yolk polyclonal antibody response (chIgY) after direct intramuscular inoculation of the Hepatitis B Surface antigen expression vector pRc/CMV-HBs(S). Radioimmunoassay (RIA) was done to maximize sensitivity for determining antibody levels. Polyclonal antibody titres were observed to have increased after six weeks. Results of the RIA using the chIgY were comparable to that of immunized sera. Our findings indicate that chIgY could offer a cheaper and more animal-friendly antibody source and could be derived with the advantage of epitope specificity through DNA vaccination. (author)

  12. A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture.

    Science.gov (United States)

    Saad, Hicham; Cobb, Jennifer A

    2016-10-01

    The nucleus is a hub for gene expression and is a highly organized entity. The nucleoplasm is heterogeneous, owing to the preferential localization of specific metabolic factors, which lead to the definition of nuclear compartments or bodies. The genome is organized into chromosome territories, as well as heterochromatin and euchromatin domains. Recent observations have indicated that nuclear organization is important for maintaining genomic stability. For example, nuclear organization has been implicated in stabilizing damaged DNA, repair-pathway choice, and in preventing chromosomal rearrangements. Over the past decade, several studies have revealed that dynamic changes in the nuclear architecture are important during double-strand break repair. Stemming from work in yeast, relocation of a damaged site prior to repair appears to be at least partially conserved in multicellular eukaryotes. In this review, we will discuss genome and nucleoplasm architecture, particularly the importance of the nuclear periphery in genome stability. We will also discuss how the site of relocation regulates repair-pathway choice.

  13. EpCAM nuclear localization identifies aggressive Thyroid Cancer and is a marker for poor prognosis

    International Nuclear Information System (INIS)

    Ralhan, Ranju; Cao, Jun; Lim, Terence; MacMillan, Christina; Freeman, Jeremy L; Walfish, Paul G

    2010-01-01

    Proteolytic cleavage of the extracellular domain (EpEx) of Epithelial cell adhesion molecule (EpCAM) and nuclear signaling by its intracellular oncogenic domain Ep-ICD has recently been implicated in increased proliferation of cancer cells. The clinical significance of Ep-ICD in human tumors remains an enigma. EpEx, Ep-ICD and β-catenin immunohistochemistry using specific antibodies was conducted on 58 archived thyroid cancer (TC) tissue blocks from 34 patients and correlated with survival analysis of these patients for up to 17 years. The anaplastic (ATC) and aggressive thyroid cancers showed loss of EpEx and increased nuclear and cytoplasmic accumulation of Ep-ICD. In contrast, the low grade papillary thyroid cancers (PTC) showed membranous EpEx and no detectable nuclear Ep-ICD. The ATC also showed concomitant nuclear expression of Ep-ICD and β-catenin. Kaplan-Meier Survival analysis revealed reduced overall survival (OS) for TC patients showing nuclear Ep-ICD expression or loss of membranous EpEx (p < 0.0004), median OS = 5 months as compared to 198 months for patients who did not show nuclear Ep-ICD or demonstrated only membranous EpE. We report reciprocal loss of membrane EpEx but increased nuclear and cytoplasmic accumulation of Ep-ICD in aggressive TC; nuclear Ep-ICD correlated with poor OS of TC patients. Thus nuclear Ep-ICD localization may serve as a useful biomarker for aggressive TC and may represent a novel diagnostic, prognostic and therapeutic target for aggressive TC

  14. Identification of the proteins responsible for SAR DNA binding in nuclear matrix of ''Cucurbita pepo''

    International Nuclear Information System (INIS)

    Rzepecki, R.; Markiewicz, E.; Szopa, J.

    1995-01-01

    The nuclear matrices from White bush (''Cucurbita pepo var. patisonina'') cell nuclei have been isolated using three methods: I, standard procedure involving extraction of cell nuclei with 2 M NaCl and 1% Triton X-100; II, the same with pre-treatment of cell nuclei with 0.5 mM CuSO 4 (stabilisation step); and III, method with extraction by lithium diiodosalicylate (LIS), and compared the polypeptide pattern. The isolated matrices specifically bind SAR DNA derived from human β-interferon gene in the exogenous SAR binding assay and in the gel mobility shift assay. Using IgG against the 32 kDa endonuclease we have found in the DNA-protein blot assay that this protein is one of the proteins binding SAR DNA. We have identified three proteins with molecular mass of 65 kDa, 60 kDa and 32 kDa which are responsible for SAR DNA binding in the gel mobility shift assay experiments. (author). 21 refs, 3 figs

  15. Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation

    Science.gov (United States)

    Taladriz, Soraya; Hanke, Tobias; Ramiro, María J.; García-Díaz, Miguel; Lacoba, Mario García de; Blanco, Luis; Larraga, Vicente

    2001-01-01

    We have identified a novel polymerase beta (Pol β)-like enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li Pol β, shows a nuclear localization that contrasts with the mitochondrial localization of Pol β from Crithidia fasciculata, a closely related parasite, the only polymerase β described so far in Trypanosomatidae. Li Pol β, that belongs to the DNA polymerase X family, displays an evolutionarily conserved Pol β-type DNA polymerase core, in which most of the key residues involved in DNA binding, nucleotide binding, dRPase and polymerization catalysis are conserved. In agreement with this, Li Pol β, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity. Cell synchronization experiments showed a correlation between both Li Pol β mRNA and protein levels along the parasite cell cycle. Analysis of these parameters at the different growth phases of the parasite, from the proliferative (non-infective) logarithmic phase to the non-dividing (highly infectious) stationary phase, showed high levels of Li Pol β at the infective phase of the parasite. The data suggest a role of Li Pol β in base excision repair in L.infantum, a parasite usually affected by oxygen stress environments into the macrophage host cells. PMID:11557814

  16. Nuclear DNA content and base composition in 28 taxa of Musa.

    Science.gov (United States)

    Kamaté, K; Brown, S; Durand, P; Bureau, J M; De Nay, D; Trinh, T H

    2001-08-01

    The nuclear DNA content of 28 taxa of Musa was assessed by flow cytometry, using line PxPC6 of Petunia hybrida as an internal standard. The 2C DNA value of Musa balbisiana (BB genome) was 1.16 pg, whereas Musa acuminata (AA genome) had an average 2C DNA value of 1.27 pg, with a difference of 11% between its subspecies. The two haploid (IC) genomes, A and B, comprising most of the edible bananas, are therefore of similar size, 0.63 pg (610 million bp) and 0.58 pg (560 million bp), respectively. The genome of diploid Musa is thus threefold that of Arabidopsis thaliana. The genome sizes in a set of triploid Musa cultivars or clones were quite different, with 2C DNA values ranging from 1.61 to 2.23 pg. Likewise, the genome sizes of tetraploid cultivars ranged from 1.94 to 2.37 pg (2C). Apparently, tetraploids (for instance, accession I.C.2) can have a genome size that falls within the range of triploid genome sizes, and vice versa (as in the case of accession Simili Radjah). The 2C values estimated for organs such as leaf, leaf sheath, rhizome, and flower were consistent, whereas root material gave atypical results, owing to browning. The genomic base composition of these Musa taxa had a median value of 40.8% GC (SD = 0.43%).

  17. Repetitive, Marker-Free, Site-Specific Integration as a Novel Tool for Multiple Chromosomal Integration of DNA

    DEFF Research Database (Denmark)

    Petersen, Kia Vest; Martinussen, Jan; Jensen, Peter Ruhdal

    2013-01-01

    of a minimal bacterial attachment site (attBmin), two mutated loxP sequences (lox66 and lox71) allowing for removal of undesirable vector elements (antibiotic resistance marker), and a counterselection marker (oroP) for selection of loxP recombination on the pKV6 vector. When transformed into L. lactis...

  18. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  19. Theoretical investigation of nuclear quadrupole interactions in DNA at first-principles level

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dip N. [State University of New York at Albany, Department of Physics (United States); Dubey, Archana [University of Central Florida, Department of Physics (United States); Pink, R. H. [State University of New York at Albany, Department of Physics (United States); Scheicher, R. H. [Uppsala University, Condensed Matter Theory Group, Department of Physics and Materials Science (Sweden); Badu, S. R. [State University of New York at Albany, Department of Physics (United States); Nagamine, K. [University of California at Riverside, Department of Physics (United States); Torikai, E. [Yamanashi University, Department of Electrical Engineering (Japan); Saha, H. P.; Chow, Lee [University of Central Florida, Department of Physics (United States); Huang, M. B. [State University of New York at Albany, College of Nanoscale Science and Engineering (United States); Das, T. P., E-mail: tpd56@albany.edu [State University of New York at Albany, Department of Physics (United States)

    2008-01-15

    We have studied the nuclear quadrupole interactions (NQI) of the {sup 14}N, {sup 17}O and {sup 2}H nuclei in the nucleobases cytosine, adenine, guanine and thymine in the free state as well as when they are bonded to the sugar ring in DNA, simulated through a CH{sub 3} group attached to the nucleobases. The nucleobase uracil, which replaces thymine in RNA, has also been studied. Our results show that there are substantial indirect effects of the bonding with the sugar group in the nucleic acids on the NQI parameters e{sup 2}qQ/h and {eta}. It is hoped that measurements of these NQI parameters in DNA will be available in the future to compare with our predictions. Our results provide the conclusion that for any property dependent on the electronic structures of the nucleic acids, the effects of the bonding between the nucleobases and the nucleic acid backbones have to be included.

  20. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress

    DEFF Research Database (Denmark)

    Lukas, Claudia; Savic, Velibor; Bekker-Jensen, Simon

    2011-01-01

    stress increases the frequency of chromosomal lesions that are transmitted to daughter cells. Throughout G1, these lesions are sequestered in nuclear compartments marked by p53-binding protein 1 (53BP1) and other chromatin-associated genome caretakers. We show that the number of such 53BP1 nuclear bodies...... increases after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies are partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. Finally, we provide evidence that 53BP1 nuclear...... bodies shield chromosomal fragile sites sequestered in these compartments against erosion. Together, these data indicate that restoration of DNA or chromatin integrity at loci prone to replication problems requires mitotic transmission to the next cell generations....

  1. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden); Glas, Rickard, E-mail: rickard.glas@ki.se [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden)

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  2. Mitochondrial genome sequencing and development of genetic markers for the detection of DNA of invasive bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix in environmental water samples from the United States.

    Directory of Open Access Journals (Sweden)

    Heather L Farrington

    Full Text Available Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA, genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR and quantitative (qPCR markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species.

  3. Characterization of 10 New Nuclear Microsatellite Markers in Acca sellowiana (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Gustavo H. F. Klabunde

    2014-06-01

    Full Text Available Premise of the study: Microsatellite primers were identified and characterized in Acca sellowiana in order to expand the limited number of pre-existing polymorphic markers for use in population genetic studies for conservation, phylogeography, breeding, and domestication. Methods and Results: A total of 10 polymorphic microsatellite primers were designed from clones obtained from a simple sequence repeat (SSR–enriched genomic library. The primers amplified di- and trinucleotide repeats with four to 27 alleles per locus. In all tested populations, the observed heterozygosity ranged from 0.269 to 1.0. Conclusions: These new polymorphic SSR markers will allow future genetic studies to be denser, either for genetic structure characterization of natural populations or for studies involving genetic breeding and domestication process in A. sellowiana.

  4. Characterization of 10 new nuclear microsatellite markers in Acca sellowiana (Myrtaceae)1

    Science.gov (United States)

    Klabunde, Gustavo H. F.; Olkoski, Denise; Vilperte, Vinicius; Zucchi, Maria I.; Nodari, Rubens O.

    2014-01-01

    • Premise of the study: Microsatellite primers were identified and characterized in Acca sellowiana in order to expand the limited number of pre-existing polymorphic markers for use in population genetic studies for conservation, phylogeography, breeding, and domestication. • Methods and Results: A total of 10 polymorphic microsatellite primers were designed from clones obtained from a simple sequence repeat (SSR)–enriched genomic library. The primers amplified di- and trinucleotide repeats with four to 27 alleles per locus. In all tested populations, the observed heterozygosity ranged from 0.269 to 1.0. • Conclusions: These new polymorphic SSR markers will allow future genetic studies to be denser, either for genetic structure characterization of natural populations or for studies involving genetic breeding and domestication process in A. sellowiana. PMID:25202632

  5. Characterization of 10 new nuclear microsatellite markers in Acca sellowiana (Myrtaceae).

    Science.gov (United States)

    Klabunde, Gustavo H F; Olkoski, Denise; Vilperte, Vinicius; Zucchi, Maria I; Nodari, Rubens O

    2014-06-01

    Microsatellite primers were identified and characterized in Acca sellowiana in order to expand the limited number of pre-existing polymorphic markers for use in population genetic studies for conservation, phylogeography, breeding, and domestication. • A total of 10 polymorphic microsatellite primers were designed from clones obtained from a simple sequence repeat (SSR)-enriched genomic library. The primers amplified di- and trinucleotide repeats with four to 27 alleles per locus. In all tested populations, the observed heterozygosity ranged from 0.269 to 1.0. • These new polymorphic SSR markers will allow future genetic studies to be denser, either for genetic structure characterization of natural populations or for studies involving genetic breeding and domestication process in A. sellowiana.

  6. Mitochondrial DNA markers of loggerhead marine turtles (Caretta caretta (Testudines: Cheloniidae nesting at Kyparissia Bay, Greece, confirm the western Greece unit and regional structuring

    Directory of Open Access Journals (Sweden)

    Carlos Carreras

    2014-03-01

    Full Text Available Genetic markers have been widely used in marine turtles to assess population structuring and origin of individuals in common feeding grounds, which are key elements for understanding their ecology and for developing conservation strategies. However, these analyses are very sensitive to missing information, especially from abundant nesting sites. Kyparissia Bay (western Greece hosts the second largest Mediterranean nesting aggregation of the loggerhead turtle (Caretta caretta, but the genetic profile of this nesting site has not, as yet, been described using the extended version of the historically used mitochondrial DNA (mtDNA marker. This marker was genotyped for 36 individuals nesting at Kyparissia Bay and haplotype frequencies obtained were compared with published data from other Mediterranean nesting sites. The results confirmed the connection between Kyparissia and other western Greek nesting sites and the isolation of this western Greek group from other Mediterranean nesting areas. As a consequence of this isolation, this abundant group of nesting aggregations (almost 30% of the Mediterranean stock is not likely to significantly contribute to the recovery of other declining Mediterranean units.

  7. Mycobacterium tuberculosis Ku can bind to nuclear DNA damage and sensitize mammalian cells to bleomycin sulfate.

    Science.gov (United States)

    Castore, Reneau; Hughes, Cameron; Debeaux, Austin; Sun, Jingxin; Zeng, Cailing; Wang, Shih-Ya; Tatchell, Kelly; Shi, Runhua; Lee, Kyung-Jong; Chen, David J; Harrison, Lynn

    2011-11-01

    Radiotherapy and chemotherapy are effective cancer treatments due to their ability to generate DNA damage. The major lethal lesion is the DNA double-strand break (DSB). Human cells predominantly repair DSBs by non-homologous end joining (NHEJ), which requires Ku70, Ku80, DNA-PKcs, DNA ligase IV and accessory proteins. Repair is initiated by the binding of the Ku heterodimer at the ends of the DSB and this recruits DNA-PKcs, which initiates damage signaling and functions in repair. NHEJ also exists in certain types of bacteria that have dormant phases in their life cycle. The Mycobacterium tuberculosis Ku (Mt-Ku) resembles the DNA-binding domain of human Ku but does not have the N- and C-terminal domains of Ku70/80 that have been implicated in binding mammalian NHEJ repair proteins. The aim of this work was to determine whether Mt-Ku could be used as a tool to bind DSBs in mammalian cells and sensitize cells to DNA damage. We generated a fusion protein (KuEnls) of Mt-Ku, EGFP and a nuclear localization signal that is able to perform bacterial NHEJ and hence bind DSBs. Using transient transfection, we demonstrated that KuEnls is able to bind laser damage in the nucleus of Ku80-deficient cells within 10 sec and remains bound for up to 2 h. The Mt-Ku fusion protein was over-expressed in U2OS cells and this increased the sensitivity of the cells to bleomycin sulfate. Hydrogen peroxide and UV radiation do not predominantly produce DSBs and there was little or no change in sensitivity to these agents. Since in vitro studies were unable to detect binding of Mt-Ku to DNA-PKcs or human Ku70/80, this work suggests that KuEnls sensitizes cells by binding DSBs, preventing human NHEJ. This study indicates that blocking or decreasing the binding of human Ku to DSBs could be a method for enhancing existing cancer treatments.

  8. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    Science.gov (United States)

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  9. Induction of DNA damage in γ-irradiated nuclei stripped of nuclear protein classes: differential modulation of double-strand break and DNA-protein crosslink formation

    International Nuclear Information System (INIS)

    Xue, L.-Y.; Friedman, L.R.; Oleinick, N.L.; Chiu, S.-M.

    1994-01-01

    The influence of chromatin proteins on the induction of DNA double-strand breaks (dsb) and DNA-protein crosslinks (dpc) by γ-radiation was investigated. Low molecular weight non-histone proteins and classes of histones were extracted with increasing concentrations of NaC1, whereas nuclear matrix proteins were not extractable even by 2.0 M NACl. The yield of dsb increased with progressive removal of proteins from chromatin. The data support our previous conclusion that nuclear matrix protein rather than the majority of the histones are the predominant substrates for dpc production, although the involvement of a subset of tightly bound histones (H3 and H4) has not been excluded. This finding demonstrates that chromatin proteins can differentially modify the yield of two types of radiation-induced DNA lesions. (author)

  10. Nuclear DNA content in Galaxias maculatus (Teleostei: Osmeriformes: Galaxiidae Contenido de ADN nuclear en Galaxias maculatus (Teleostei: Osmeriformes: Galaxiidae

    Directory of Open Access Journals (Sweden)

    Pedro Jara-Seguel

    2008-01-01

    Full Text Available The nuclear DNA content (2C value was determined in the commercial fish Galaxias maculatus (Galaxiidae was determined by microdensitometry of erythrocyte nuclei after Feulgen staining; rainbow trout erythrocytes with a known 2C value were used as a standard. The 2C value of G. maculatus was 2.21 ± 0.12 pg and its C value was equivalent to 1.105 pg (1,082.9 Mbp. This C value is within the range recorded for other osmeriform species (0.62-3.2 pg. The average sperm head diameter of G. maculatus is lower than the average sperm head diameter of rainbow trout (used as a standard, which coincides with the differences observed in the nuclear DNA content of both species. This information increases the genome data available for G. maculatus and might be useful in future programs dealing with its genetic manipulation.El contenido de ADN nuclear (valor 2C fue determinado en el pez comercial Galaxias maculatus (Galaxiidae usando microdensitometría de núcleos de eritrocitos sometidos a tinción de Feulgen, utilizando como estándar eritrocitos de trucha arco iris con un valor 2C conocido. El valor 2C de G. maculatus fue 2,21 ± 0,12 pg y su valor C es equivalente a 1,105 pg (1.082,9 pMb. Este valor C está dentro del rango registrado para otras especies de osmeriformes (0,62-3,2 pg. El diámetro promedio de la cabeza del espermatozoide de G. maculatus es menor al promedio descrito para la trucha arco iris utilizado como estándar, lo que coincide con las diferencias observadas en el contenido de ADN nuclear entre ambas especies. Estos datos contribuyen a ampliar los antecedentes genómicos disponibles para G. maculatus y podrían ser útiles en futuros programas tendientes a su manipulación genética.

  11. The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR

    Science.gov (United States)

    Zhang, Peng

    2012-01-01

    Background Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. Methodology/Principal Findings We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. Conclusions/Significance Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for

  12. Proliferating cell nuclear antigen binds DNA polymerase-β and mediates 1-methyl-4-phenylpyridinium-induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Zhentao Zhang

    Full Text Available The mechanisms leading to dopaminergic neuronal loss in the substantia nigra of patients with Parkinson disease (PD remain poorly understood. We recently reported that aberrant DNA replication mediated by DNA polymerase-β (DNA pol-β plays a causal role in the death of postmitotic neurons in an in vitro model of PD. In the present study, we show that both proliferating cell nuclear antigen (PCNA and DNA pol-β are required for MPP(+-induced neuronal death. PCNA binds to the catalytic domain of DNA pol-β in MPP(+-treated neurons and in post-mortem brain tissues of PD patients. The PCNA-DNA pol-β complex is loaded into DNA replication forks and mediates DNA replication in postmitotic neurons. The aberrant DNA replication mediated by the PCNA-DNA pol-β complex induces p53-dependent neuronal cell death. Our results indicate that the interaction of PCNA and DNA pol-β contributes to neuronal death in PD.

  13. Nucleosome–nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity

    Science.gov (United States)

    Shimamoto, Yuta; Tamura, Sachiko; Masumoto, Hiroshi; Maeshima, Kazuhiro

    2017-01-01

    Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers. PMID:28428255

  14. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  15. Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae): Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid.

    Science.gov (United States)

    Spooner, David M; Ruess, Holly; Iorizzo, Massimo; Senalik, Douglas; Simon, Philipp

    2017-02-01

    We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid ( Dc MP). Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus . Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named Dc MP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus , (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid. © 2017 Spooner et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).

  16. Brief communication: Ancient nuclear DNA and kinship analysis: the case of a medieval burial in San Esteban Church in Cuellar (Segovia, Central Spain).

    Science.gov (United States)

    Gamba, Cristina; Fernández, Eva; Tirado, Mirian; Pastor, Francisco; Arroyo-Pardo, Eduardo

    2011-03-01

    The aim of this work was to investigate a very common situation in the archaeological and anthropological context: the study of a burial site containing several individuals, probably related genetically, using ancient DNA techniques. We used available ancient DNA and forensic protocols to obtain reliable results on archaeological material. The results also enabled molecular sex determination to be compared with osteological data. Specifically, a modified ancient DNA extraction method combined with the amplification of nuclear markers with the AmpFlSTR®MiniFiler™ kit(Applied Biosystems) was used. Seven medieval individuals buried in four niches dated in the 15th Century at San Esteban Church in Cuellar (Segovia, Central Spain) were analyzed by the proposed method, and four of seven provided complete autosomal short tandem repeat (STRs) profiles. Kinship analyses comprising paternity and sibship relations were carried out with pedigree-specific software used in forensic casework. A 99.98% paternity probability was established between two individuals, although lower percentages (68%) were obtained in other cases, and some hypothetical kinship relations were excluded. The overall results could eventually provide evidence for reconstructing the historical record. Copyright © 2010 Wiley-Liss, Inc.

  17. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    OpenAIRE

    Lee Rita SF; Couldrey Christine

    2010-01-01

    Abstract Background Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appr...

  18. Evaluating droplet digital PCR for the quantification of human genomic DNA: converting copies per nanoliter to nanograms nuclear DNA per microliter.

    Science.gov (United States)

    Duewer, David L; Kline, Margaret C; Romsos, Erica L; Toman, Blaza

    2018-05-01

    The highly multiplexed polymerase chain reaction (PCR) assays used for forensic human identification perform best when used with an accurately determined quantity of input DNA. To help ensure the reliable performance of these assays, we are developing a certified reference material (CRM) for calibrating human genomic DNA working standards. To enable sharing information over time and place, CRMs must provide accurate and stable values that are metrologically traceable to a common reference. We have shown that droplet digital PCR (ddPCR) limiting dilution end-point measurements of the concentration of DNA copies per volume of sample can be traceably linked to the International System of Units (SI). Unlike values assigned using conventional relationships between ultraviolet absorbance and DNA mass concentration, entity-based ddPCR measurements are expected to be stable over time. However, the forensic community expects DNA quantity to be stated in terms of mass concentration rather than entity concentration. The transformation can be accomplished given SI-traceable values and uncertainties for the number of nucleotide bases per human haploid genome equivalent (HHGE) and the average molar mass of a nucleotide monomer in the DNA polymer. This report presents the considerations required to establish the metrological traceability of ddPCR-based mass concentration estimates of human nuclear DNA. Graphical abstract The roots of metrological traceability for human nuclear DNA mass concentration results. Values for the factors in blue must be established experimentally. Values for the factors in red have been established from authoritative source materials. HHGE stands for "haploid human genome equivalent"; there are two HHGE per diploid human genome.

  19. Biomarkers for Exposure to Ambient Air Pollution - Comparison of Carcinogen-DNA Adduct Levels with Other Exposure Markers and Markers for Oxidative Stress

    DEFF Research Database (Denmark)

    Autrup, Herman; Daneshvar, Bahram; Dragsted, Lars Ove

    1999-01-01

    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adducts....../10(8) nucleotides) and of 2-amino-apidic semialdehyde (AAS) in plasma proteins (56.7 pmol/mg protein) were observed in bus drivers working in the central part of Copenhagen, Denmark. In contrast, significantly higher levels of AAS in hemoglobin (55.8 pmol/mg protein), malondialdehyde in plasma (0. 96...... nmol/ml plasma), and polycyclic aromatic hydrocarbon (PAH)-albumin adduct (3.38 fmol/ microg albumin) were observed in the suburban group. The biomarker levels in postal workers were similar to the levels in suburban bus drivers. In the combined group of bus drivers and postal workers, negative...

  20. Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans

    Science.gov (United States)

    Slatkin, Montgomery

    2016-01-01

    When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965

  1. Impact of nuclear organization and chromatin structure on DNA repair and genome stability

    International Nuclear Information System (INIS)

    Batte, Amandine

    2016-01-01

    The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a broken chromosome. HR can be separated in two sub-pathways: Gene Conversion (GC) transfers genetic information from one molecule to its homologous and Break Induced Replication (BIR) establishes a replication fork than can proceed until the chromosome end. My doctorate work was focused on the contribution of the chromatin context and 3D genome organization on DSB repair. In S. cerevisiae, nuclear organization and heterochromatin spreading at sub-telomeres can be modified through the overexpression of the Sir3 or sir3A2Q mutant proteins. We demonstrated that reducing the physical distance between homologous sequences increased GC rates, reinforcing the notion that homology search is a limiting step for recombination. We also showed that hetero-chromatinization of DSB site fine-tunes DSB resection, limiting the loss of the DSB ends required to perform homology search and complete HR. Finally, we noticed that the presence of heterochromatin at the donor locus decreased both GC and BIR efficiencies, probably by affecting strand invasion. This work highlights new regulatory pathways of DNA repair. (author) [fr

  2. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  3. Asymmetric Arginine dimethylation of Epstein-Barr virus nuclear antigen 2 promotes DNA targeting

    International Nuclear Information System (INIS)

    Gross, Henrik; Barth, Stephanie; Palermo, Richard D.; Mamiani, Alfredo; Hennard, Christine; Zimber-Strobl, Ursula; West, Michelle J.; Kremmer, Elisabeth; Graesser, Friedrich A.

    2010-01-01

    The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJκ (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJκ in vitro and preferentially associates with the EBNA2-responsive EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJκ.

  4. Relationships between sperm DNA fragmentation, sperm apoptotic markers and serum levels of CB-153 and p,p'-DDE in European and Inuit populations

    DEFF Research Database (Denmark)

    Stronati, A; Manicardi, G C; Cecati, M

    2006-01-01

    Persistent organochlorine pollutants (POPs) are suspected to interfere with hormone activity and the normal homeostasis of spermatogenesis. We investigated the relationships between sperm DNA fragmentation, apoptotic markers identified on ejaculated spermatozoa and POP levels in the blood of 652...... adult males (200 Inuits from Greenland, 166 Swedish, 134 Polish and 152 Ukrainian). Serum levels of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (CB-153), as a proxy of the total POP burden, and of 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE), as a proxy of the total DDT exposure were determined...... neither sperm DNA fragmentation nor apoptotic sperm parameters and the large variations in POPs exposure was observed for the separate study groups. However, considering the European populations taken together, we showed that both %TUNEL positivity and Bcl-xL were related to CB-153 serum levels, whereas...

  5. Atrazine in sub-acute exposure results in sperm DNA disintegrity and nuclear immaturity in rats

    Directory of Open Access Journals (Sweden)

    Rajab-Ali Sadrkhanloo

    2012-03-01

    Full Text Available This study was designed to evaluate the detrimental effect of atrazine (ATR on germinal epitheliums (GE cytoplasmic carbohydrate (CH and unsaturated fatty acids (UFA ratio and to clarify the effect of ATR on serum levels of FSH, LH, testosterone and inhibin-B (INH-B. The impact of ATR exposure on total antioxidant capacity (TAC, sperm DNA packing and integrity were also investigated. Seventy two Wistar rats were used. The rats in control group received vehicle and the animals in test groups received 100, 200 and 300 mg kg-1 BW of ATR orally on daily bases for 12, 24 and 48 days. In ATR-received groups the spermatogenesis cell were presented with dense reactive sites for lipidophilic staining associated with faint cytoplasmic CH accumulation. Dissociated germinal epithelium, negative tubular and repopulation indexes were manifested. The serum levels of testosterone, FSH, LH and INH-B decreased by 85% after 48 days exposure to high dose of ATR. TAC was reduced in a time- and dose-dependent manner. The sperm DNA damage was marked in animals which exposed to high dose of ATR (72.50 ± 2.25% and the percentage of nuclear immature sperm increased up to 83.40 ± 0.89%. In conclusion, ATR not only induced its detrimental effect on the endocrine function of the testes and pituitary gland but also affected the cytoplasmic CH ratio and consequently leads to inadequate energy supplement in spermatogenesis cells. Therefore the imbalanced oxidative stress occurs in testicular tissue, which in turn enhances the sperm DNA disintegrity and nuclear immaturity.

  6. Sub-nuclear irradiation, in-vivo microscopy and single-molecule imaging to study a DNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Soria, G; Mansilla, S; Belluscio, L; Speroni, J; D' Alessio, C; Gottifredi, V [Fundacion Leloir, Buenos Aires (Argentina); Essers, J; Kanaar, R [Erasmus Medical Center, Rotterdam (Netherlands)

    2009-07-01

    When the DNA is damaged in cells progressing through S phase, replication blockage can be avoided by TLS (Translesion DNA synthesis). This is an auxiliary replication mechanism that relies on the function of specialized polymerases that accomplish DNA damage bypass. An example of a classical TLS polymerase is Pol {eta} ({eta}). The current model implies that Pol {eta} activity is circumscribed to S-phase. Here we perform a systematic characterization of Pol {eta} behaviour after DNA-damage. We show that Pol {eta} is recruited to UV-induced DNA lesions in cells outside S phase including cells permanently arrested in G1. This observation was confirmed by different sub-nuclear damage strategies including global UV irradiation, local UV irradiation and local multi-photon laser irradiation of single nuclei in living cells. By local UV irradiation and alpha particle irradiation we evaluated the potential connection between Pol h recruitment to DNA lesions outside S phase and Homologous recombination repair (HRR) or Nucleotide excision repair (NER). Finally, we employ a single-molecule imaging approach (known as DNA fiber-assay) to determine how Pol h influences the progression of the replication fork. Our data reveals that the re-localization of Pol {eta} to DNA lesions might be temporally and mechanistically uncoupled from replicative DNA synthesis and from DNA damage processing. (authors)

  7. Sub-nuclear irradiation, in-vivo microscopy and single-molecule imaging to study a DNA Polymerase

    International Nuclear Information System (INIS)

    Soria, G.; Mansilla, S.; Belluscio, L.; Speroni, J.; D'Alessio, C.; Gottifredi, V.; Essers, J.; Kanaar, R.

    2009-01-01

    When the DNA is damaged in cells progressing through S phase, replication blockage can be avoided by TLS (Translesion DNA synthesis). This is an auxiliary replication mechanism that relies on the function of specialized polymerases that accomplish DNA damage bypass. An example of a classical TLS polymerase is Pol η (eta). The current model implies that Pol η activity is circumscribed to S-phase. Here we perform a systematic characterization of Pol η behaviour after DNA-damage. We show that Pol η is recruited to UV-induced DNA lesions in cells outside S phase including cells permanently arrested in G1. This observation was confirmed by different sub-nuclear damage strategies including global UV irradiation, local UV irradiation and local multi-photon laser irradiation of single nuclei in living cells. By local UV irradiation and alpha particle irradiation we evaluated the potential connection between Pol h recruitment to DNA lesions outside S phase and Homologous recombination repair (HRR) or Nucleotide excision repair (NER). Finally, we employ a single-molecule imaging approach (known as DNA fiber-assay) to determine how Pol h influences the progression of the replication fork. Our data reveals that the re-localization of Pol η to DNA lesions might be temporally and mechanistically uncoupled from replicative DNA synthesis and from DNA damage processing. (authors)

  8. Phylogeny, historical biogeography and characters evolution of the drought resistant fern Pyrrosia Mirbel (Polypodiaceae) inferred from plastid and nuclear markers.

    Science.gov (United States)

    Wei, Xueping; Qi, Yaodong; Zhang, Xianchun; Luo, Li; Shang, Hui; Wei, Ran; Liu, Haitao; Zhang, Bengang

    2017-10-06

    Pyrrosia s.l. comprises ca. 60 species with a disjunct Africa/Asia and Australia distribution. The infrageneric classification of Pyrrosia s.l. is controversial based on the phylogenetic analyses of chloroplast markers and morphology. Based on the expanded taxon sampling of Pyrrosia s.l. (51 species), we investigated its phylogeny, biogeography, character evolution and environmental adaptation by employing five chloroplastid markers (rbcL, matK, psbA-trnH, and rps4 + rps4-trnS) and one single (low)-copy nuclear gene, LEAFY. Pyrrosia s.l. was divided into six major clades and eight subclades. Reticulate evolution was revealed both among clades and among species in Pyrrosia s.l. Ancestral character state optimization revealed high levels of homoplastic evolution of the diagnostic characters in Pyrrosia s.l., while the crassulacean acid metabolism pathway seems to have an independent origin. Molecular dating and biogeographic diversification analyses suggested that Pyrrosia s.l. originated no later than the Oligocene and the main clades diversified during the Oligocene and Miocene, with southern Asia, the Indo-China Peninsula and southwestern and southern China as the most likely ancestral areas. Transoceanic long-distance dispersal, rather than vicariance, contributed to the intercontinental disjunction. Diversification scenarios of Pyrrosia s.l. under geological movements and climate fluctuation are also discussed.

  9. The phylogeny of the family Lacertidae (Reptilia) based on nuclear DNA sequences: convergent adaptations to arid habitats within the subfamily Eremiainae.

    Science.gov (United States)

    Mayer, Werner; Pavlicev, Mihaela

    2007-09-01

    The family Lacertidae encompasses more than 250 species distributed in the Palearctis, Ethiopis and Orientalis. Lacertids have been subjected in the past to several morphological and molecular studies to establish their phylogeny. However, the problems of convergent adaptation in morphology and of excessively variable molecular markers have hampered the establishment of well supported deeper phylogenetic relationships. Particularly the adaptations to xeric environments have often been used to establish a scenario for the origin and radiation of major lineages within lacertids. Here we present a molecular phylogenetic study based on two nuclear marker genes and representatives of 37 lacertid genera and distinct species groups (as in the case of the collective genus Lacerta). Roughly 1600 bp of the nuclear rag1 and c-mos genes were sequenced and analyzed. While the results provide good support to the hitherto suggested main subfamilies of Gallotiinae (Gallotia and Psammodromus), Eremiainae and Lacertinae [Harris, D.J., Arnold, E.N., Thomas, R.H., 1998. Relationships of lacertid lizards (Reptilia: Lacertidae) estimated from mitochondrial DNA sequences and morphology. Proc. R. Soc. Lond. B 265, 1939-1948], they also suggest unexpected relationships. In particular, the oriental genus Takydromus, previously considered the sister-group to the three subfamilies, is nested within Lacertinae. Moreover, the genera within the Eremiainae are further divided into two groups, roughly corresponding to their respective geographical distributions in the Ethiopian and the Saharo-Eurasian ranges. The results support an independent origin of adaptations to xeric conditions in different subfamilies. The relationships within the subfamily Lacertinae could not be resolved with the markers used. The species groups of the collective genus Lacerta show a bush-like topology in the inferred Bayesian tree, suggesting rapid radiation. The composition of the subfamilies Eremiainae and Lacertinae

  10. Acetylation dynamics of human nuclear proteins during the ionizing radiation-induced DNA damage response

    DEFF Research Database (Denmark)

    Bennetzen, Martin; Andersen, J.S.; Lasen, D.H.

    2013-01-01

    Genotoxic insults, such as ionizing radiation (IR), cause DNA damage that evokes a multifaceted cellular DNA damage response (DDR). DNA damage signaling events that control protein activity, subcellular localization, DNA binding, protein-protein interactions, etc. rely heavily on time...

  11. DNA-histone complexes as ligands amplify cell penetration and nuclear targeting of anti-DNA antibodies via energy-independent mechanisms.

    Science.gov (United States)

    Zannikou, Markella; Bellou, Sofia; Eliades, Petros; Hatzioannou, Aikaterini; Mantzaris, Michael D; Carayanniotis, George; Avrameas, Stratis; Lymberi, Peggy

    2016-01-01

    We have generated three monoclonal cell-penetrating antibodies (CPAbs) from a non-immunized lupus-prone (NZB × NZW)F1 mouse that exhibited high anti-DNA serum titres. These CPAbs are polyreactive because they bind to DNA and other cellular components, and localize mainly in the nucleus of HeLa cells, albeit with a distinct nuclear labelling profile. Herein, we have examined whether DNA-histone complexes (DHC) binding to CPAbs, before cell entry, could modify the cell penetration of CPAbs or their nuclear staining properties. By applying confocal microscopy and image analysis, we found that extracellular binding of purified CPAbs to DHC significantly enhanced their subsequent cell-entry, both in terms of percentages of positively labelled cells and fluorescence intensity (internalized CPAb amount), whereas there was a variable effect on their nuclear staining profile. Internalization of CPAbs, either alone or bound to DHC, remained unaltered after the addition of endocytosis-specific inhibitors at 37° or assay performance at 4°, suggesting the involvement of energy-independent mechanisms in the internalization process. These findings assign to CPAbs a more complex pathogenetic role in systemic lupus erythematosus where both CPAbs and nuclear components are abundant. © 2015 John Wiley & Sons Ltd.

  12. Human Homolog of Drosophila Ariadne (HHARI) is a marker of cellular proliferation associated with nuclear bodies

    Energy Technology Data Exchange (ETDEWEB)

    Elmehdawi, Fatima; Wheway, Gabrielle; Szymanska, Katarzyna [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); Adams, Matthew [BioScreening Technology Group, Biomedical Health Research Center, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); High, Alec S. [Department of Histopathology, Bexley Wing, St. James' s University Hospital, Beckett Street, Leeds, LS9 7TF West Yorkshire (United Kingdom); Johnson, Colin A., E-mail: c.johnson@leeds.ac.uk [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom); Robinson, Philip A. [Division of Clinical Sciences, Leeds Institute of Molecular Medicine, Level 8, Wellcome Trust Brenner Building, University of Leeds, Leeds, LS9 7TF West Yorkshire (United Kingdom)

    2013-02-01

    HHARI (also known as ARIH1) is an ubiquitin-protein ligase and is the cognate of the E2, UbcH7 (UBE2L3). To establish a functional role for HHARI in cellular proliferation processes, we performed a reverse genetics screen that identified n=86/522 (16.5%) ubiquitin conjugation components that have a statistically significant effect on cell proliferation, which included HHARI as a strong hit. We then produced and validated a panel of specific antibodies that establish HHARI as both a nuclear and cytoplasmic protein that is expressed in all cell types studied. HHARI was expressed at higher levels in nuclei, and co-localized with nuclear bodies including Cajal bodies (p80 coilin, NOPP140), PML and SC35 bodies. We confirmed reduced cellular proliferation after ARIH1 knockdown with individual siRNA duplexes, in addition to significantly increased levels of apoptosis, an increased proportion of cells in G2 phase of the cell cycle, and significant reductions in total cellular RNA levels. In head and neck squamous cell carcinoma biopsies, there are higher levels of HHARI expression associated with increased levels of proliferation, compared to healthy control tissues. We demonstrate that HHARI is associated with cellular proliferation, which may be mediated through its interaction with UbcH7 and modification of proteins in nuclear bodies. -- Highlights: ► We produce and validate new antibody reagents for the ubiquitin-protein ligase HHARI. ► HHARI colocalizes with nuclear bodies including Cajal, PML and SC35 bodies. ► We establish new functions in cell proliferation regulation for HHARI. ► Increased HHARI expression associates with squamous cell carcinoma and proliferation.

  13. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation.

    OpenAIRE

    Kubben, F J; Peeters-Haesevoets, A; Engels, L G; Baeten, C G; Schutte, B; Arends, J W; Stockbrügger, R W; Blijham, G H

    1994-01-01

    Immunohistochemistry of the S phase related proliferating cell nuclear antigen (PCNA) was studied as an alternative to ex-vivo bromodeoxyuridine (BrdU) immunohistochemistry for assessment of human colonic cell proliferation. From 16 subjects without colonic disease biopsy specimens were collected from five different sites along the colorectum and processed for BrdU and PCNA immunohistochemistry. The mean proliferation index of PCNA was significantly higher at 133% of the value obtained with B...

  14. MtDNA and nuclear data reveal patterns of low genetic differentiation for the isopods Stenosoma lancifer and Stenosoma acuminatum, with low dispersal ability along the northeast Atlantic coast

    Directory of Open Access Journals (Sweden)

    Raquel Xavier

    2011-11-01

    Full Text Available Evidence for a general lack of genetic differentiation of intertidal invertebrate assemblages in the North Atlantic, based on mtDNA sequence variation, has been interpreted as resulting from recent colonization following the Last Glacial Maximum. In the present study, the phylogeographic patterns of one nuclear and one mtDNA gene fragments of two isopods, Stenosoma lancifer (Miers, 1881 and Stenosoma acuminatum Leach, 1814, from the northeast Atlantic were investigated. These organisms have direct development, which makes them poor dispersers, and are therefore expected to maintain signatures of past historical events in their genomes. Lack of genetic structure, significant deviations from neutrality and star-like haplotype networks have been observed for both mtDNA and nuclear markers of S. lancifer, as well as for the mtDNA of S. acuminatum. No sequence variation was observed for the nuclear gene fragment of S. acuminatum. These results suggest a scenario of recent colonization and demographic expansion and/or high population connectivity driven by ocean currents and sporadic long-distance dispersal through rafting.

  15. Analysis of GAA/TTC DNA triplexes using nuclear magnetic resonance and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mariappan, S V Santhana; Cheng, Xun; van Breemen, Richard B; Silks, Louis A; Gupta, Goutam

    2004-11-15

    The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.

  16. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data

    OpenAIRE

    Sturmbauer, Christian; Salzburger, Walter; Duftner, Nina; Schelly, Robert; Koblmueller, Stephan

    2010-01-01

    Lake Tanganyika comprises a cichlid species flock with substrate-breeding and mouthbrooding lineages. While sexual selection via mate choice on male mating color is thought to boost speciation rates in mouthbrooding cichlids, this is not the case in substrate-breeding lamprologines, which mostly form stable pairs and lack sexual dichromatism. We present a comprehensive reconstruction of the evolution of the cichlid tribe Lamprologini, based upon mtDNA sequences and multilocus nuclear DNA (AFL...

  17. Rules for resolving Mendelian inconsistencies in nuclear pedigrees typed for two-allele markers.

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad Khan

    Full Text Available Gene-mapping studies, regularly, rely on examination for Mendelian transmission of marker alleles in a pedigree as a way of screening for genotyping errors and mutations. For analysis of family data sets, it is, usually, necessary to resolve or remove the genotyping errors prior to consideration. At the Center of Inherited Disease Research (CIDR, to deal with their large-scale data flow, they formalized their data cleaning approach in a set of rules based on PedCheck output. We scrutinize via carefully designed simulations that how well CIDR's data cleaning rules work in practice. We found that genotype errors in siblings are detected more often than in parents for less polymorphic SNPs and vice versa for more polymorphic SNPs. Through computer simulations, we conclude that some of the CIDR's rules work poorly in some circumstances, and we suggest a set of modified data cleaning rules that may work better than CIDR's rules.

  18. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    Directory of Open Access Journals (Sweden)

    James M Fox

    2016-03-01

    Full Text Available Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1 infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1, HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC of asymptomatic carriers (ACs and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP or adult T cell leukaemia/lymphoma (ATLL. 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  19. DNA analysis of lineage markers from skeletons from a mass grave related to the Battle of Reichenberg in 1757

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Brzobohatá, Hana; Brestovanský, P.; Tomášek, P.; Vaněk, D.

    2017-01-01

    Roč. 6, December (2017), „e122”-„e124” ISSN 1875-1768 R&D Projects: GA ČR GB14-36938G Institutional support: RVO:67985912 Keywords : Y-chromosome * mtDNA * DNA identification * bone samples Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology http://www.fsigeneticssup.com/article/S1875-1768(17)30161-0/pdf

  20. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae).

    OpenAIRE

    Jan, C.; Fumagalli, L.

    2016-01-01

    The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable m...

  1. Genetic variability of the tokay gecko based on mitochondrial and nuclear DNA.

    Science.gov (United States)

    Wang, Gaochao; Gong, Shu; Jiang, Lichun; Peng, Rui; Shan, Xiang; Zou, Dandan; Yang, Chengzhong; Zou, Fangdong

    2013-10-01

    With largely allopatric distribution, the black tokay and the red tokay are two distinct morphs of the subspecies Gekko gecko gecko. In consideration of their different morphological characteristics, the taxonomic status of G. g. gecko is disputed. Through detailed morphological comparison, it has been proposed that the black tokay should be elevated to species ranking, but without strong genetic evidence. In order to further investigate the taxonomic status of the tokay gecko (G. gecko), we used one mitochondrial marker (ND2) and three nuclear markers (RAG1, c-mos, and ITS2) to explore the phylogenetic and taxonomic relationship of the tokay gecko. Our results revealed a deep phylogeographical divergence in tokay gecko and at the same time provided us with the evidence of possible introgressive hybridization or/and incomplete lineage sorting between the black tokay and the red tokay. The elevation of the black tokay to species level is also supported by our results. However, due to limited sampling and genetic data, this elevation should be further corroborated by more genetic evidence.

  2. Identification of a mammalian nuclear factor and human cDNA-encoded proteins that recognize DNA containing apurinic sites

    International Nuclear Information System (INIS)

    Lenz, J.; Okenquist, S.A.; LoSardo, J.E.; Hamilton, K.K.; Doetsch, P.W.

    1990-01-01

    Damage to DNA can have lethal or mutagenic consequences for cells unless it is detected and repaired by cellular proteins. Repair depends on the ability of cellular factors to distinguish the damaged sites. Electrophoretic binding assays were used to identify a factor from the nuclei of mammalian cells that bound to DNA containing apurinic sites. A binding assay based on the use of β-galactosidase fusion proteins was subsequently used to isolate recombinant clones of human cDNAs that encoded apurinic DNA-binding proteins. Two distinct human cDNAs were identified that encoded proteins that bound apurinic DNA preferentially over undamaged, methylated, or UV-irradiated DNA. These approaches may offer a general method for the detection of proteins that recognize various types of DNA damage and for the cloning of genes encoding such proteins

  3. Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array.

    Directory of Open Access Journals (Sweden)

    Songliu Hu

    Full Text Available To investigate the predictive role and association of nuclear survivin and the DNA double-strand breaks repair genes in non-small cell lung cancer (NSCLC: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, Ku heterodimeric regulatory complex 70-KD subunit (Ku70 and ataxia-telangiectasia mutated (ATM.The protein expression of nuclear survivin, DNA-PKcs, Ku70 and ATM were investigated using immunohistochemistry in tumors from 256 patients with surgically resected NSCLC. Furthermore, we analyzed the correlation between the expression of nuclear survivin, DNA-PKcs, Ku70 and ATM. Univariate and multivariate analyses were performed to determine the prognostic factors that inuenced the overall survival and disease-free survival of NSCLC.The expression of nuclear survivin, DNA-PKcs, Ku70 and ATM was significantly higher in tumor tissues than in normal tissues. By dichotomizing the specimens as expressing low or high levels of nuclear survivin, nuclear survivin correlated significantly with the pathologic stage (P = 0.009 and lymph node status (P = 0.004. The nuclear survivin levels were an independent prognostic factor for both the overall survival and the disease-free survival in univariate and multivariate analyses. Patients with low Ku70 and DNA-PKcs expression had a greater benefit from radiotherapy than patients with high expression of Ku70 (P = 0.012 and DNA-PKcs (P = 0.02. Nuclear survivin expression positively correlated with DNA-PKcs (P<0.001 and Ku70 expression (P<0.001.Nuclear survivin may be a prognostic factor for overall survival in patients with resected stage I-IIIA NSCLC. DNA-PKcs and Ku70 could predict the effect of radiotherapy in patients with NSCLC. Nuclear survivin may also stimulates DNA double-strand breaks repair by its interaction with DNA-PKcs and Ku70.

  4. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan.

    Science.gov (United States)

    Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji

    2012-06-01

    One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation.

  5. The U2 snDNA Is a Useful Marker for B Chromosome Detection and Frequency Estimation in the Grasshopper Abracris flavolineata.

    Science.gov (United States)

    Milani, Diogo; Palacios-Gimenez, Octavio M; Cabral-de-Mello, Diogo C

    2017-01-01

    In this study, we describe a strategy to determine the presence of B chromosomes in the living grasshopper Abracris flavolineata by FISH using U2 snDNA as a probe in interphase hemolymph nuclei. In individuals without B chromosomes, (0B) 2 dot signals were noticed, corresponding to A complement U2 snDNA clusters. In +1B and +2B individuals, 4 or 8 additional signals were noticed, respectively. In all cases, the absence or presence of 1 or 2 B chromosomes correlated in hemolymph and in somatic or germline tissues, validating the efficiency of the marker. Our data suggest that the B chromosome of A. flavolineata is present in all somatic tissues. B-carrying individuals showed the same number of B chromosomes in germ and somatic cells, suggesting that the B is mitotically stable. The marker was used to compare B chromosome frequency in the analyzed population with a sample collected previously, in order to test for B frequency changes and differences of B chromosome prevalence among sexes, but no statistically significant differences were noticed. The identification of living animals harboring B chromosomes will be very useful in future studies of B chromosome transmission, as well as in functional studies involving RNA analysis, thus contributing to the understanding of evolutionary history and the possible role of the B chromosome in A. flavolineata. © 2017 S. Karger AG, Basel.

  6. Integrated site-specific quantification of faecal bacteria and detection of DNA markers in faecal contamination source tracking as a microbial risk tracking tool in urban Lake ecosystems

    Science.gov (United States)

    Donde, Oscar Omondi; Tian, Cuicui; Xiao, Bangding

    2017-11-01

    The presence of feacal-derived pathogens in water is responsible for several infectious diseases and deaths worldwide. As a solution, sources of fecal pollution in waters must be accurately assessed, properly determined and strictly controlled. However, the exercise has remained challenging due to the existing overlapping characteristics by different members of faecal coliform bacteria and the inadequacy of information pertaining to the contribution of seasonality and weather condition on tracking the possible sources of pollution. There are continued efforts to improve the Faecal Contamination Source Tracking (FCST) techniques such as Microbial Source Tracking (MST). This study aimed to make contribution to MST by evaluating the efficacy of combining site specific quantification of faecal contamination indicator bacteria and detection of DNA markers while accounting for seasonality and weather conditions' effects in tracking the major sources of faecal contamination in a freshwater system (Donghu Lake, China). The results showed that the use of cyd gene in addition to lacZ and uidA genes differentiates E. coli from other closely related faecal bacteria. The use of selective media increases the pollution source tracking accuracy. BSA addition boosts PCR detection and increases FCST efficiency. Seasonality and weather variability also influence the detection limit for DNA markers.

  7. Insertion of a nuclear factor kappa B DNA nuclear-targeting sequence potentiates suicide gene therapy efficacy in lung cancer cell lines

    DEFF Research Database (Denmark)

    Cramer, F; Christensen, C L; Poulsen, T T

    2012-01-01

    Lung cancer currently causes the majority of cancer-related deaths worldwide and new treatments are in high demand. Gene therapy could be a promising treatment but currently lacks sufficient efficiency for clinical use, primarily due to limited cellular and nuclear DNA delivery. In the present...

  8. Evaluation of white spot syndrome virus variable DNA loci as molecular markers of virus spread at intermediate spatiotemporal scales

    NARCIS (Netherlands)

    Bui Thi Minh Dieu,; Marks, H.; Zwart, M.P.; Vlak, J.M.

    2010-01-01

    Variable genomic loci have been employed in a number of molecular epi