WorldWideScience

Sample records for nuclear dismantling operations

  1. Remote tool development for nuclear dismantling operations

    International Nuclear Information System (INIS)

    Craig, G.; Ferlay, J.C.; Ieracitano, F.

    2003-01-01

    Remote tool systems to undertake nuclear dismantling operations require careful design and development not only to perform their given duty but to perform it safely within the constraints imposed by harsh environmental conditions. Framatome ANP NUCLEAR SERVICES has for a long time developed and qualified equipment to undertake specific maintenance operations of nuclear reactors. The tool development methodology from this activity has since been adapted to resolve some very challenging reactor dismantling operations which are demonstrated in this paper. Each nuclear decommissioning project is a unique case, technical characterisation data is generally incomplete. The development of the dismantling methodology and associated equipment is by and large an iterative process combining design and simulation with feasibility and validation testing. The first stage of the development process involves feasibility testing of industrial tools and examining adaptations necessary to control and deploy the tool remotely with respect to the chosen methodology and environmental constraints. This results in a prototype tool and deployment system to validate the basic process. The second stage involves detailed design which integrates any remaining technical and environmental constraints. At the end of this stage, tools and deployment systems, operators and operating procedures are qualified on full scale mock ups. (authors)

  2. Nuclear cleanup and decontamination for dismantling operations

    International Nuclear Information System (INIS)

    Bargues, S.; Solignac, Y.; Lapierre, Y.

    2003-01-01

    In the May 2003 issue of the review 'Controle', the French Nuclear Safety Authority (Autorite de Surete Nucleaire or ASN) reviewed the radiation protection and waste management principles applicable to dismantling operations carried out on nuclear installations, i.e. reactors, research laboratories, fuel cycle installations and nuclear power reactors. Estelle Chapelain, of the DGSNR (French General Directorate for Nuclear Safety and Radiation Protection), pointed out that dismantling work does not involve the same radioactive risks as operating an installation. For instance, 'the risk of disseminating radioactive material is generally greater because the dismantling process supposes the removal of one or more containment barriers'. In addition to this risk of internal exposure, the possibility of external irradiation of personnel must be taken into account due to the nature of the work carried out by the operators. The probability of conventional hazards is also accentuated, these hazards varying as work progresses (fire hazards during cutting operations, hazards associated with handling tasks, etc). Other risks must also be considered: hazards due to the ageing of installations, to loss of traceability, and finally the risks associated with waste management. Waste management falls within a strict regulatory framework specified by the decree dated December 31, 1999, which makes it compulsory to carry out a 'waste survey' with the aim of producing an inventory of waste and improving waste management. These surveys include 'waste zoning' to identify those areas liable to have been contaminated. These requirements lead operators to adapt their cleanup methodology in order to distinguish suspect rooms or equipment from those that can be deemed with certainty to be conventional. In its conclusion, the safety authority recalls the importance of 'the safety and radiation protection of dismantling operations being effectively managed and optimised, without imposing

  3. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  4. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  5. The dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Duthe, M.; Mignon, H.; Lambert, F.; Pradel, Ph.; Hillewaere, J.P.; Dupre la Tour, St.; Mandil, C.; Weil, L.; Eickelpasch, N.; Finsterwalder, L.

    1997-01-01

    for nuclear installations, the dismantling is an important part of their exploitation. The technology of dismantling is existing and to get a benefit from the radioactive decay, it seems more easy for operating company such E.D.F. to wait for fifty years before dismantling. But in order to get the knowledge of this operation, the Safety Authority wanted to devote this issue of 'Controle'to the dismantling method. This issue includes: the legal aspects, the risks assessment, the dismantling policy at E.D.F., the site of Brennilis (first French experience of dismantling), the dismantling techniques, the first dismantling of a fuel reprocessing plant, comparison with classical installations, economic aspect, some German experiences, the cleansing of the american site of Handford. (N.C.)

  6. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  7. The dismantling of CEA nuclear installations

    International Nuclear Information System (INIS)

    Piketty, Laurence

    2016-03-01

    After having indicated locations of French nuclear installations which are currently being dismantled (about 30 installations), and recalled the different categories of radioactive wastes with respect to their activity level and the associated storage options, this article gives an overview of various aspects of dismantling, more precisely in the case of installations owned and managed by the CEA. These operations comprise the dismantling itself, the recovery and packaging of wastes, old effluents and spent fuels. The organisation and responsible departments within the CEA are presented, and the author outlines some operational problematic issues met due to the age of installations (traceability of activities, regulation evolutions). The issue of financing is then discussed, and its uncertainties are outlined. The dismantling strategy within the CEA-DEN is described, with reference to legal and regulatory frameworks. The next parts of the article address the organisation and the economic impact of these decontamination and dismantling activities within the CEA-DEN, highlight how R and D and advanced technology are a support to this activities as R and D actions address all scientific and technical fields of nuclear decontamination and dismantling. An overview of three important dismantling works is proposed: Fontenay-aux-Roses, the Marcoule CEA centre (a reference centre in the field of nuclear dismantling and decontamination) and the Grenoble CEA centre (reconversion in R and D activities in the fields of technologies of information, of communication, technologies, for health, and in renewable energies). The last part addresses the participation to the Strategic Committee of the Nuclear Sector (CSFN)

  8. Towards the creation of an industrial sector dedicated to nuclear dismantling

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    In next decades the business of nuclear dismantling is expected to grow exponentially due to the decommissioning of nuclear facilities that will have reached the end of their operating life. Dismantling has 2 main features: dismantling operations on a same site can span decades and dismantling is a new activity in which innovations are likely to appear and may benefit other sectors. In France regional authorities have promoted public-private partnerships in order to make working together small enterprises very specialized in sectors like robotic, laser cutting, waste processing, remote operations... with public laboratories dedicated to nuclear research, and with graduate schools to include dismantling in curriculum and with major industrial operators of the nuclear industry. The aim is the creation of jobs and the building of an industrial sector able to win market shares in the worldwide business of nuclear dismantling. (A.C.)

  9. Clean-up and dismantling, Dismantling - legacy of the past, prospects for the future: CEA, a pioneer in the dismantling process, nuclear dismantling, research and innovation dedicated to dismantling

    International Nuclear Information System (INIS)

    Lorec, Amelie

    2016-01-01

    France - a world leader in the whole nuclear power cycle - is also responsible for the clean-up and dismantling of its end-of-life nuclear facilities. Here, the CEA is considered to be a pioneer both in the project ownership of work sites and in the R and D for optimising the timescales, costs and safety of those work sites. Its responsibilities range from defining the most appropriate scenario, characterising the radiological state of equipment and decontaminating premises, carrying out dismantling and optimising the resulting waste. With this wide range of skills and the diversity of its facilities, the CEA Nuclear Energy Division is developing innovative solutions which are already the subject of industrial transfers. Two-thirds of France's end-of-life nuclear facilities belong to the CEA - a situation connected with its history. This implies setting up clean-up and dismantling work sites which have unprecedented scientific, human and financial challenges. Every regulated nuclear installation (INB) (nuclear reactors, laboratories, etc.) has a limited operating life. When it stops being used, it is first cleaned up (removal of radioactive substances), then dismantled (disassembly of components) in accordance with the baseline safety requirements, and finally decommissioned so that it can be used for other purposes or be demolished. Cleanup and dismantling operations concern all the facility's components, such as hot (shielded) cells which can be found in some laboratories. As the owner of its clean-up and dismantling projects, the CEA also devotes a significant amount of R and D to reducing the timescales, costs and waste from current and future programmes, while improving their safety. The resulting innovations often lead to industrial transfers. (authors)

  10. Dismantling of nuclear facilities and related problems - Conference proceedings

    International Nuclear Information System (INIS)

    Tournebize, Frederic; Bordet, Didier; Charlety, Philippe; Gore, Thierry; Estrade, Jerome; Lemaire, Hermine; Ginet, Annick; Fabrier, Lionel; Evrard, Lydie; Furois, Timothee; Butez, Marc; Dutzer, Michel; Faure, Vincent; Billarand, Yann; Menuet, Lise; Lahaye, Thierry; Pin, Alain; Mougnard, Philippe; Charavy, Sylvain; Poncet, Philippe; Moggia, Fabrice; Dochy, Arnaud; Benjamin, Patrick; Poncet, Pierre-Emmanuel; Beneteau, Yannick; Richard, Jean-Baptiste; Pellenz, Gilles; Ollivier Dehaye, Catherine; Gerard, Stephane; Denissen, Luc; Davain, Henri; Duveau, Florent; Guyot, Jean-Luc; Ardellier, Luc

    2012-11-01

    The oldest French nuclear facilities, built for some of them in the 1950's for research or power generation purposes, have reached more or less the end of their life. More than 30 facilities have entered the shutdown or dismantling phase, among which 8 reactors of the very first generations of Electricite de France (EdF) reactors. The aim of this two-days conference is to take stock of the present day status and perspectives of the dismantling activity, to approach the question of the management of the wastes produced, and to share experience about large scale operations already carried out. This document gathers the available presentations given during this conference: 1 - the 'Passage' project (F. Tournebize); 2 - CEA-Grenoble: from Louis Neel to key enabling technologies (D. Bordet); 3 - Dismantling actions in France (L. Evrard); 4 - Securing control of long-term charges funding (T. Furois); 5 - Waste disposal projects and their contribution to the management of dismantling wastes (M. Butez); 6 - Specificities linked with dismantling activities (Y. Billarand); 7 - Dismantling safety: the ASN's point of view (L. Evrad); 8 - Labor Ministry viewpoint about the dismantling related questions (T. Lahaye); 9 - Consideration of organizational and human factors in dismantling operations: a new deal in the operators-service providers relation (L. Menuet); 10 - Diploma and training experience (A. Pin); 11 - Glove-boxes dismantling at La Hague plant - status and experience feedback (P. Mougnard); 12 - Dismantling of Siloe reactor (CEA-Grenoble): application of the ALARA approach (P. Charlety); 13 - BR3 - a complex dismantling: the neutron shield tank (NST) in remote operation and indirect vision (L. Denissen); 14 - Cleansing and dismantling of the Phebus PF containment (S. Charavy); 15 - Integration of dismantling at the design and exploitation stages of nuclear facilities (P. Poncet); 16 - Consideration during the design and exploitation stages of dispositions aiming at

  11. Cleansing and dismantling of CEA-Saclay nuclear licensed facilities

    International Nuclear Information System (INIS)

    Jeanjacques, Michel; Delaire, Isabelle; Glevarec, Rebecca; Mandard, Lionel; Martin, Jean-Louis; Serrano, Roger

    2013-01-01

    This summary presents the cleansing and dismantling operations currently realized on the CEA center of Saclay (CEA-Saclay). It was initiated at the beginning of the 2000 years a cleansing and dismantling program of the old Nuclear Licensed Facilities (NLF). Currently this program relates the dismantling operations to the Hot Laboratories (Laboratoires de Haute Activite: LHA) and the old workshops of the Liquid Waste Treatment Plant (Station des Effluents Liquides: STEL), the dismantling preparation of Ulysse reactor and the dismantling studies to the Solid Waste Management Plant (SWMP; Zone de Gestion des Dechets Solides) and the Osiris reactor. (authors)

  12. STMI: several years of experience in nuclear plant dismantling

    International Nuclear Information System (INIS)

    Moreau, J.C.

    1985-01-01

    Since 1977, when STMI performed its first dismantling operation, the Company appreciably improved in that field through important operations: the dismantling of the calciothermy and fluoration metal Pu preparation facility, in La Hague reprocessing plant; the dismantling of the slag treatment chain, associated to calciothermy and fluoration processes, in La Hague reprocessing plant; and the cleaning of EL4 cell in Marcoule. To perform these operations, STMI's operating teams, on top of decontamination and dismantling technologies, strived to improve handling and transportation technologies, and to nuclearize many equipments. In order to increase its technical efficiency, STMI signed a cooperation agreement with FRAMATOME company. Therefore, the union between the operational know-hows of STMI and the design experience of TECHNICATOME allow the needs of any customs facing a dismantling case to be satisfied [fr

  13. Dismantling at the CEA's Nuclear Energy Division: strategy and programmes

    International Nuclear Information System (INIS)

    Lecomte, C.; Prunele, D. de; Rozain, J.P.; Nokhamzon, J.G.; Tallec, M.

    2008-01-01

    The CEA's Nuclear Energy Division (DEN) nuclear facilities currently include seventeen reactors and thirty six other miscellaneous facilities, particularly laboratories, fuel processing units and facilities specific to waste management. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. At CEA, the first nuclear facility dismantling operations go back several dozen years and involve numerous and varied facilities. The first operations of any significance took place in the 1960's and 1970's and covered, for example, the first plutonium plant at Fontenay-aux-Roses (total dismantling) and small research reactors or critical models - CESAR and PEGGY at Cadarache and MINERVE at Fontenay-aux Roses (civil engineering cleaned up and kept). At La Hague, the dismantling of AT1, a pilot workshop used by the CEA during the 1970's to process irradiated fuels from fast neutron reactors, was completed in March 2001 (IAEA former stage 3, excluding civil engineering demolition). On the other hand, during this period of first dismantling, the intermediate-sized reactors (G1, Rapsodie) were only partially dismantled after shut down, mainly due to the lack of graphite and sodium waste management routes at the time. About twenty facilities were thus dealt with up to 2001, in other words about half of all the nuclear facilities shut down permanently before this date. (authors)

  14. NucLab Marcoule. A laboratory facility dedicated to support dismantling operations

    International Nuclear Information System (INIS)

    Dugne, O.; Houssin, A.; Pierre, D.; Bec-Espitalier, L.

    2013-06-01

    Formerly dedicated to plutonium production support, NucLab was renovated to perform a wide range of analyses for dismantling, plant operation and process development activities mainly on Marcoule site but also outside (Veurey, Fontenay aux Roses). The Laboratory is under a CEA AREVA partnership as a CEA entity operated by AREVA employees. It provides services to several industrial operators (nuclear process and power plant) in the fields of analytical chemistry, radioactivity measurements, in situ nuclear measurements, decontamination processes and industrial chemistry processes, waste treatments to meet the following analysis requirements. NucLab today is able to support research, production and dismantling activities in all part of dismantling operations. (authors)

  15. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  16. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  17. Provisions for the dismantling of nuclear facilities are sufficient

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    The European Union has assessed the provisions made by the nuclear plant operators to face the future costs of dismantling. The United-Kingdom and the Netherlands are the single E.U. members to have provisions covering the whole of the expenses (respectively 100% and 94%). The figure for France is very low 33% (far below the European average of 56%). According to French authorities the provisions for the dismantling of nuclear facilities are strictly defined by law: they must be made progressively till the decommissioning and they must be composed by dedicated assets. The costs of the dismantling is regularly re-assessed for taking into account technological progress and changes in regulation. Furthermore the French system limits the period in which provisions are made to the initial operating life of the plant: mostly 40 years which is a prudent measure. In other E.U. members like Germany, the provisions are not covered by dedicated assets which might endanger the capacity of the operator to face the future costs. The progressiveness of the French systems of provision-making is fair because the dismantling costs are spread equally over the entire operating period of the facility. (A.C.)

  18. Cutting Method of the CAD model of the Nuclear facility for Dismantling Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikjune; Choi, ByungSeon; Hyun, Dongjun; Jeong, KwanSeong; Kim, GeunHo; Lee, Jonghwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Current methods for process simulation cannot simulate the cutting operation flexibly. As is, to simulate a cutting operation, user needs to prepare the result models of cutting operation based on pre-define cutting path, depth and thickness with respect to a dismantle scenario in advance. And those preparations should be built again as scenario changes. To be, user can change parameters and scenarios dynamically within a simulation configuration process so that the user saves time and efforts to simulate cutting operations. This study presents the methodology of cutting operation which can be applied to all the procedure in the simulation of dismantling of nuclear facilities. We developed the cutting simulation module for cutting operation in the dismantling of the nuclear facilities based on proposed cutting methodology. We defined the requirement of model cutting methodology based on the requirement of the dismantling of nuclear facilities. And we implemented cutting simulation module based on API of the commercial CAD system.

  19. Technology and costs for dismantling a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    1979-10-01

    Various estimates concerning the costs of decommissioning a redundant nuclear power reactor to the green fields state are given in the literature. The purpose of this study is to provide background material for the Swedish nuclear power utilities to estimate the costs and time required to dismantle an ASEA-ATOM Boiling Water Reactor. The units Oskarshamn II and Barsebeck 1, both with an installed capacity of approximately 600 MW, serve as reference plants. The time of operation before final shutdown is assumed to be 40 years. Dismantling operations are initiated one year after shutdown. When the dismantling of the plant is finished, the site is to be released for unrestricted use. The costs for dismantling and subsequent final disposal of the radioactive waste are estimated at approximately SEK 500 million (approximately US dollars 120 million) in terms of 1979 prices. The sum includes 25% contingency. The dismantling cost is equivalent to 10-15% of the installation cost of an equivalent new nuclear power plant. The exact percentage is dependent on the interest rate during the construction period. It is shown in the study that a total dismantling can be accomplished in less than five years. This report is a compilation of studies performed by ASEA-ATOM and VBB based on premises given by KBS. The reports from these studies are presented in appendices. (Auth.)

  20. Nuclear and non-nuclear safety aspects in nuclear facilities dismantling. The example of a PWR pilot decommissioning project

    International Nuclear Information System (INIS)

    Massaut, V.; Deboodt, P.; Dadoumont, J.; Valenduc, P.; Denissen, L.

    2002-01-01

    The dismantling of nuclear facilities, and in particular of nuclear power plants, involves new challenges for the nuclear industry. Although the dismantling of various activated and contaminated components is nowadays considered as almost industrial practice, the safety aspects of decommissioning bring some specific features which are not always taken into account in the operation of the plants. Moreover, most of the plants and facilities currently decommissioned are rather old and were never foreseen to be decommissioned. The operations involved in dismantling and decontamination, often imply new or unforeseen situations. On the nuclear, or radiological side, the radioprotection optimisation of the operations involved often requires to model the environment and to analyse different scenarios to tackle the operation. Recent 3-D software (like the Visiplan software) allowing representation of the actual environment and the influence of the various sources present, is really needed to be able to minimise the radiological impact on the operators. The risk of contamination spread, by opening loops and components or by the dismantling process itself, is also an important aspect of the radiological protection study. Nevertheless, the radiological aspects of the safety approach are not the only ones to be dealt with when decommissioning nuclear facilities. Indeed, classical industrial safety aspects are also important: the dismantling can bring handling and transporting risk (heavy loads, difficult ways, uneasy access, etc.) but also the handling of toxic or hazardous materials. For instance, the removal of asbestos in contaminated areas can lead to additional hazard; the presence of alkali metals (like Na or NaK), of toxic metals (like e.g. Beryllium) or of corrosive fluids (acid,...) have to be tackled often in unstructured environment, and sometimes with limited knowledge of the actual situation. This leads to approach the operations following the ASARA principle (As

  1. S.T.M.I.: Several years of experience in nuclear plant dismantling

    International Nuclear Information System (INIS)

    Moreau, J.C.

    1986-01-01

    Since 1977, when STMI performed its first dismantling operation, the Company appreciably improved in that field through important operations: the dismantling of the calciothermy and fluoration metal Pu preparation facility, in La Hague reprocessing plant, the dismantling of the slag treatment chain, associated to calciothermy and fluoration processes, in La Hague reprocessing plant, the cleaning of EL4 cell in Marcoule. To perform these operations, STMI's operating teams, on top of decontamination and dismantling technologies, strived to improve handling and transportation technologies, and to nuclearize many equipments. In order to increase its technical efficiency, STMI signed a cooperation agreement with TECHNICATOME company. Therefore, the union between the operational know-hows of STMI and the design experience of TECHNICATOME allow the needs of any customs facing a dismantling case to be satisfied [fr

  2. Decision support system for the dismantling of building in nuclear facilities

    International Nuclear Information System (INIS)

    Zeiher, M.

    2009-01-01

    In case of decommissioning and dismantling the complex structure of nuclear facilities requires a thorough selection of dismantling methods and a detailed operations planning. The decision for an appropriate technology with respect to economic, environmental and radiation protection aspects has to take into account that the different procedural steps are coordinated. Component specific boundary conditions and process parameters have to be considered. A data base was established that includes the process parameters for different dismantling methodologies. The next step is the determination of specific requirements of plant operators and engineers in order to identify the tasks in the frame of the dismantling process. The authors describes the decision support algorithm that allows to enhance the dismantling efficiency.

  3. Dismantling and decommissioning of Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2009-01-01

    With the start of the dismantling works at the Jose Cabrera nuclear power plant now in sight, this is an appropriate moment to look back and consider recent history. The first time that the issue of nuclear power plant dismantling was dealt with was in 1975, at a conference in Paris entitled Nuclear Energy Maturity. Up until then the entire question had been one of design, construction and operation, but since that moment and it has been quite a while since that conference dismantling has begun to be seen as just another activity in the nuclear cycle, a final activity that will sooner or later affect all the facilities, an activity different from its predecessors and with the ultimate objective of restoring the sites for whatever use might be determined. During the 1960s and 1970s, the construction of nuclear power plants was widespread across the entire world. It was the baby boom of nuclear energy and now, forty or fifty years later, we are seeing the arrival of the end of the service lifetime of these plants and are faced with the corresponding general process of dismantling these installations. The dismantling of nuclear power plants has ceased to be an emerging issue and is now consolidated as a regular activity in the nuclear industry, albeit an activity that lacks adequate financing or specific regulation in certain countries. Fortunately this is not the case in Spain, since economic provisions have been planned and the regulatory framework developed. In view of the above, the dismantling of the nuclear power plants is an industrial activity involving specific technologies that implies new professional and business opportunities that should be absorbed and seized by society. In Spain the path followed in this direction has been a long one, as is underlined by the experiences of dismantling the Argos (Barcelona, 1998- 2004) and Arbi (Bilbao, 2002-2005) research reactors, the Andujar Uranium Mill (Jaen, 1991-1995), the Vandellos I nuclear power plant

  4. Decommissioning of nuclear facilities: COGEMA expertise devoted to UP1 reprocessing plant dismantling programme

    International Nuclear Information System (INIS)

    Gay, A.

    2001-01-01

    Over the last past decades, the French nuclear industry has acquired a great experience and know-how in the field of dismantling. Today this experience amounts to more than 200,000 hours. The fundamental aims within dismantling strategy are the same as for all nuclear facilities: minimising doses received by workers, minimising waste volume and adapting waste management to radioactivity levels, minimising costs. French experience is based on technologies which are currently used in nuclear maintenance facilities. Dismantling is a dynamic process especially in the field of decontamination (chemical and mechanical), cleaning, robotics and remote control operations. The strategy for the dismantling of former UP1 reprocessing plant is based on the feedback of experience gained through the dismantling of other facilities such as the AT1 workshop at La Hague. This workshop, a pilot plant for reprocessing of fast-breeder reactor fuels (Rapsodie and Phenix) has to be dismantled to IAEA level 3 (unrestricted site use), excluding civil works structures. Currently conducted by trained shifts, this dismantling project should end in 1999. The experience already acquired proves that chemical rinsings with the use of specific reagents is sufficient to decontaminate the hot cells and that the use of remote operations or robotics is not as important as previously envisaged. The UP1 reprocessing plant of Marcoule operated from 1958 to 1997. End of the operation was pronounced on the 31st of December 1997. 20,000 tons of spent fuels were reprocessed at UP1. The cleaning and dismantling operations at the Marcoule site depend upon the CEA, EDF and COGEMA. The Defence and Industry Ministries asked for a specific structure to be set up. An economic interest group called CODEM was created in May 1996. CODEM decides, finances and supervises dismantling operations, while respecting the constraints of nuclear safety, environmental protection and cost-effectiveness. The cleaning operations of

  5. Dismantling of nuclear facilities: the industrial know-how

    International Nuclear Information System (INIS)

    Lellament, R.

    2004-01-01

    Numerous nuclear facilities in laboratories or research reactors have been decommissioned and dismantled over the 2 last decades throughout the world. The valuable feedback experience has allowed nuclear industry to design, upgrade and test specific techniques for dismantling. These techniques are efficient although they have been validated on a reduced number of nuclear power plants. In France only 3 power units have been dismantled: Chinon A1, A2 and Brennilis (EL4) and they are not representative of the real park of EDF'reactors. 6 PWR-type reactors have already been dismantled in the Usa. The results of a survey concerning 26 countries shows that the dismantling cost is around 320 dollars/kWe, it represents 15% of the construction cost which is far from being excessive as it is often read in the media. The dismantling costs can be broken into: - de-construction (25-55%), - wastes from dismantling (17-43%), - security and monitoring (8-13%), - site reclamation (5-13%), and - engineering and project management (5-24%). (A.C.)

  6. The dismantling of nuclear power plants which are not in use

    International Nuclear Information System (INIS)

    Tanguy, P.

    1987-01-01

    At the end of its life span, a nuclear power plant contains big quantities of radioactive products. The corresponding risks must be controlled and over the long range, all radioactivity must be definitively removed. The latter operation is called dismantling. In France, at the beginning of 1987, five nuclear units which were permanently put out of use have to be dismantled. These units are presented in this article. From this presentation, it can be seen that there are now techniques which provide for complete control of the risks corresponding to radioactivity. However, in France, as in the rest of the world, the dismantling of nuclear plants will not attain its full industrial level until the 21st Century. The problems which have to be solved are known, but better performing technologies have to be developed in order to obtain a superior protection of dismantling work crews and a reduction of costs. This article concludes with an appeal for high French interest in international activities in this field [fr

  7. Challenges of dismantling

    International Nuclear Information System (INIS)

    Chevet, P.F.; Schilz, F.; Rondeau, J.M.; Piketty, L.; Dupraz, B.; Conte, D.; Duguey, M.; Louet, C.A.; Dorison, A.; Dutzer, M.; Boucau, J.; Eimer, M.; Boutin, D.; Revilla, J.L.; Golshan, M.; Smith, G.

    2015-01-01

    This document is made up of short articles whose issue is reactor dismantling. The first article presents the French strategy that can be featured by immediate dismantling (the dismantling process is prepared a long time before decommissioning and begins as soon as the reactor is shut down) and massive dismantling (a lot of nuclear facilities will be decommissioned in a near future). The following 4 articles give the viewpoints of ASN (Nuclear Safety Authority), EDF (for its fleet of PWRs), CEA (for its experimental reactors and nuclear facilities) and AREVA (for the EURODIF George Besse plant). Costs and financing are dealt with in an article that says that the cost is greatly dependent on the final state: a complete nuclear-free area or an area whose radioactivity is below safe standards and that law implies to constitute provisions all along the operating life of the facility to cover dismantling costs. Dismantling generates a huge amount of very low-level radioactive wastes particularly metal scraps that might be recycled and get out of nuclear industry, an article details the feasibility of such recycling. Another article shows the impact of massive dismantling on the management of radioactive wastes. In an article Westinghouse presents its experience in the cutting of internal equipment of the reactor core. The last 2 articles presents the dismantling strategies in Spain and in the UK. (A.C.)

  8. The dismantling of nuclear installations in the Grenoble CEA centre - Press book 2013

    International Nuclear Information System (INIS)

    Laveissiere, Stephane; Coronini, Vincent

    2013-01-01

    After having outlined the importance of the project for the Grenoble CEA centre, this document presents the objectives, issues and challenges of dismantling activities performed on various nuclear installations located in the CEA centre of Grenoble. Objectives are presented in terms of agenda, predicted production of radioactive wastes, budget, personnel and steering committee. The various nuclear installations are presented: experimental reactors (Melusine, Siloe, Siloette), LAMA (laboratory of analysis of active materials), STED (station for the treatment of effluents and wastes). The safety and protection of workers is addressed in terms of protection and monitoring measures, and of exposure to radiations. The next part deals with the monitoring of the environment (actors, history of control of the centre's releases, control points, releases, atmosphere monitoring, and hydrological monitoring). A second part presents the global strategy of the CEA for its activities of sanitation and nuclear dismantling: present operations, dismantling activities in Fontenay-aux-Roses and in Marcoule, economic organization, contribution of advanced technology in radiological measurement and control, simulation and modelling, decontamination techniques, cutting operations, and remotely controlled operations

  9. The dismantling of nuclear installations: The dismantling of nuclear installations at the CEA's Directorate for nuclear energy; The CEA's sanitation and dismantling works: example of one of the Marcoule UP1 program lots; Research and innovation in sanitation-dismantling; Global optimisation of the management of dismantling radioactive wastes

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre; Piketty, Laurence; Moitrier, Cyril; Blanchard, Samuel; Soulabaille, Yves; Georges, Christine; Dutzer, Michel; Legee, Frederic

    2016-01-01

    This publication proposes a set of four articles which addresses issues related to the dismantling of nuclear installations in France, notably for the different involved actors such as the CEA and the ANDRA. The authors more particularly address the issue and the general strategy of dismantling within the Directorate for nuclear energy of the CEA; comment the example of one of the Marcoule UP1 program lots to highlight sanitation and dismantling works performed by the CEA; discuss current research and innovation activities within the CEA regarding sanitation and dismantling; and comment how to globally optimise the management of radioactive wastes produced by dismantling activities

  10. Note n. SD3-DEM-01 regulations procedures relative to the based nuclear installations dismantling

    International Nuclear Information System (INIS)

    2003-02-01

    This note aims to define the regulations procedures relative to the safety of based nuclear installations dismantling defined by the decree of the 11 december 1963 modified. The first part describes the two main phases of a based nuclear installation life, the operating and the dismantling phase. The second part is devoted to the procedures. (A.L.B.)

  11. A Study on Dismantling of Westinghouse Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Lee, Sang-Guk

    2014-01-01

    KHNP started a research project this year to develop a methodology to dismantle nuclear reactors and internals. In this paper, we reviewed 3D design model of the reactor and suggested feasible cutting scheme.. Using 3-D CAD model of Westinghouse type nuclear reactor and its internals, we reviewed possible options for disposal. Among various options of dismantling the nuclear reactor, plasma cutting was selected to be the best feasible and economical method. The upper internals could be segmented by using a band saw. It is relatively fast, and easily maintained. For cutting the lower internals, plasma torch was chosen to be the best efficient tool. Disassembling the baffle and the former plate by removing the baffle former bolts was also recommended for minimizing storage volume. When using plasma torch for cutting the reactor vessel and its internal, installation of a ventilation system for preventing pollution of atmosphere was recommended. For minimizing radiation exposure during the cutting operation, remotely controlled robotic tool was recommended to be used

  12. Education and research when dismantling nuclear plants at the Technical University Dresden

    International Nuclear Information System (INIS)

    Hurtado, A.; Anthofer, A.; Cloppenborg, T.; Schreier, M.

    2013-01-01

    With the decision by the German government in 2011 to revoke the operating permission from 8 of the existing 17 German nuclear power plants, the responsibility of decommissioning and dismantling these plants has moved back into the focus of public awareness. Under the current legal conditions, the last nuclear plant will be disconnected from the grid on 31.12.2022 and this will create an enormous challenge for all the involved approving authorities, expert organisations, as well as companies involved in dismantling the plants. The development of new and efficient dismantling technologies and strategies is required to perform these highly responsible tasks. On the other hand, the nuclear competence and knowhow, as well as the promotion of young talents in the relevant scientific fields must be preserved. Technological and economic solutions are in demand for the various plants due to the different specifics of nuclear power plants. This will still require e.g. in the field of radiation protection highly qualified and well trained staff in future. The training of these skilled employees will require expanding the subject matter taught at universities, colleges and polytechnics to suit the changed parameters. The chair for hydrogen and nuclear energy technology at the TU Dresden will in future offer lectures as part of a new teaching discipline with the focus on dismantling and disposal. The course 'Dismantling nuclear power plants' took place for the first time in the summer semester 2013. It is organised as a three-day block seminar with an excursion to the company NIS Ingenieurgesellschaft mbH in Alzenau. The company NIS is a subsidiary of the Siempelkamp Nukleartechnik GmbH. This article intends to provide an overview of the contents of the courses and the impressions of the participants. In this way the TU Dresden is making a further contribution to preserving nuclear competence and inter-disciplinary dialogue. (orig.)

  13. The management of waste originating from the dismantling of nuclear power stations, a growth business that has yet to be optimized

    International Nuclear Information System (INIS)

    Cahen, B.

    2013-01-01

    The dismantling of a nuclear power plant consists of all the operations undertaken by the operator after the definitive shutdown, until such time that risks to humanity and the environment on the site are strictly limited or totally removed. Thus, the dismantling process may necessitate stripping and decontaminating a building which will be reusable, or it can go as far as the total demolition of machinery, equipment and structures. Cleaning up the land is an integral part of the dismantling brief. In France, dismantling requires prior authorization by government decree, after approval by the Nuclear Safety Authority. The decree stipulates the terms and nature of all the operations to be undertaken and the final state to be obtained by the operator. (author)

  14. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  15. Taking into account of dismantling constraints in the design of nuclear facilities

    International Nuclear Information System (INIS)

    Gouhier, E.; Moitrier, C.; Girones, P.; Pitrou, Y.; Poncet, P.; O'Sullivan, P.

    2014-01-01

    The taking into account of dismantling constraints in the design of nuclear facilities allows the reduction of the dosimetry during the dismantling operations, the reduction of the amount of wastes to manage and the saving of time and money by foreseeing an adequate and simple solution for each component. It is to notice that the strategy of life-extension strengthens that of dismantling because life-extension implies the possibility for any component of the reactor except the pressure vessel to be replaced. The feedback experience capitalized on various types of nuclear facilities have enabled IAEA and OECD to publish recommendations to facilitate dismantling. For instance, pipes and ventilation ducts must be designed to minimize the deposit of dust and residues, the natural porosity of concrete must be limited through the use of polishing products or a metal liner, the type and concentrations of impurities present in the structure materials must be controlled to limit radioactivation, the documentation describing the facility must be kept up to date, or the history of contamination events must be recorded all along the life of the facility. The integration of the dismantling constraints in the design stage is illustrated with 3 examples: the Georges Besse 2 enrichment fuel plant, new reactors (EPR, ASTRID and RJH), and ITER. (A.C.)

  16. Achievements and prospects of robotics in dismantling operations

    International Nuclear Information System (INIS)

    Clement, G.; Goetghebeur, S.; Ravera, J.P.

    1993-01-01

    After a definition of 'robotic systems' (poly functionality is the main concept), the nuclear facilities that have used robotic systems for their dismantling are reviewed; the various robot intervention domains in dismantling, the different types of machines and the work carried out by robots are presented. Difficulties arising from robot utilization for reactor dismantling, robot design considerations, reliability, personnel training needs, tooling and costs are discussed. Applicability criteria are derived concerning radio protection, hard working conditions, task complexity, multiplicity and quality, and costs

  17. National School of Dismantling

    International Nuclear Information System (INIS)

    Ivaldi, Fabienne

    2003-01-01

    The National Institut of Nuclear Sciences and Techniques founded of 2001 a National School of Dismantling, NSD, at the end, which was validated by CEA, COGEMA, EDF and ANDRA. This school addresses four major issues: Decontamination; Dismantling; Demolition and waste Disposal (4D). Dedicated for instructing scientific and technical knowledge and know-how, needed in dismantling the nuclear installations, NSD has as targets: - personnel at engineering and operational level; - personnel occupied with involved trades from conception through intervention; - students and employees on leave; - employees while training on the job. Initial basic education for students in collaboration with schools and universities concerns: - master degree in radioactive waste management; - master degree in dismantling; - professional license in 3 D; - pro 4 D graduation. NSD is also engaged in continual formation for employees qualified, or not, adapted to the needs generated by the following tasks and personnel: - introduction in dismantling; - project team; - specialist engineer; - team head; - agent for remedial action; - agent for dismantling. The National School of Dismantling joins a network of human and technological capabilities confined within the 4 D frame, namely: - scientific and technical competencies (experts, instructors working in the nuclear field and dismantling); - pedagogical competence (professionals from basic and continual education); - specific material means such as those used by construction site schools, mock-ups, rooms for practical training etc

  18. An approach to evaluate the cutting time for the nuclear dismantling simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghwan; Hyun, Dongjun; Kang, Sinyoung; Kim, Ikjune; Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear power plant (NPP) decommissioning involves various processes and technologies. Decommissioning should be performed after a comprehensive review of the information related to these processes and technologies. There are various means of prior examination and evaluation to ensure the feasibility and safety of the decommissioning process plan. Our dismantling simulation system aims to simulate and evaluate whole processes related to the dismantlement of core equipment of NPP such as the device preparation, cutting operation, waste transfer, and so on. This paper introduces the estimation methodology of the time required for the cutting processes based on real cutting conditions in order to provide effective economic evaluation functionalities used for the system. The methodology to estimate the time required for the remote cutting process in the nuclear dismantling simulation system was proposed. Among the factors which mainly determine the time, the cutting trace was directly calculated from the simulation system and the continuous cutting speed was obtained by proper order of the spline fitting with constraint conditions.

  19. Dismantling the nuclear research reactor Thetis

    Energy Technology Data Exchange (ETDEWEB)

    Michiels, P. [Belgoprocess, 2480 Dessel (Belgium)

    2013-07-01

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storage rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were

  20. Shutdown, dismantling and decommissioning of nuclear facilities in France - Guide no. 6 - Update of 30/08/2016

    International Nuclear Information System (INIS)

    2016-01-01

    After a recall of the regulatory context and references, this guide addresses the strategy for an immediate dismantling of an installation, the dismantling planning, the different phases of the end of life of nuclear base installations, the authorization of definitive stop and dismantling, the preliminary phase preparing the definitive stop (regulatory context, technical aspects), the dismantling phase (regulatory context, technical aspects for the concerned operations, the security functions, hardware important for security, taking ageing into account), and the final status of installations (downgrading, constraints)

  1. Economical dismantling of nuclear power stations

    International Nuclear Information System (INIS)

    Mallok, J.; Andermann, H.

    1999-01-01

    The dismantling of nuclear power stations requires a high degree of security and economic efficiency due to the strong contamination of components and the close spatial conditions. In order to protect involved staff from radiation, modern remote-controlled technology is applied in sectors with heavy radioactive contamination such as reactor pressure vessels. The article shows, that the dismantling of reactor pressure vessels using a remote-controlled milling machine developed by the Siemens subsidiary Mechanik Center Erlangen GmbH, can be done in a secure and efficient way. (orig.) [de

  2. Nuclab Marcoule: a dedicated waste management and dismantling support laboratory

    International Nuclear Information System (INIS)

    Dugne, Olivier; Bec-Espitalier, Lionel; Rosen, Jeremy

    2014-01-01

    Formerly dedicated to plutonium production support, NucLab was renovated to perform a wide range of analyses for dismantling, plant operation and process development activities mainly at Marcoule but also for external clients. The laboratory is a CEA entity in the Nuclear Energy Division. It provides services to several industrial operators (nuclear processes and power plants) in the fields of analytical chemistry, radioactivity measurements, in situ nuclear measurements, decontamination processes, industrial chemistry processes, and waste treatment. NucLab supports research, production, and dismantling activities in all areas of dismantling operations (authors)

  3. Drafting of the dismantling operations of the MAR 200 workshop with the help of virtual reality

    International Nuclear Information System (INIS)

    Chabal, C.; Soulabaille, Y.; Garnier, T.; Callixte, O.

    2014-01-01

    In order to optimize future dismantling operations of nuclear installations virtual reality allows the validation of predefined scenarios and their adequacy with the environment. CEA uses an immersion and interactive room to validate maintenance and dismantling operations. The equipment of this room is composed of a video wall that gives a 3-dimensional view of the virtual environment, and of a system for motion capture. For the simulation of handling operations a haptic interface has been designed, it allows the user to receive a tactic and effort-feeling feed back. The immersion is completed by a phonic ambience that creates sounds for virtual operations. The use of the immersion room for optimizing the dismantling of a spent fuel dissolver (MAR 200) used in hot cell is presented. (A.C.)

  4. Cutting and decontamination technologies for nuclear facility dismantling; Technologien zur Zerlegung und zur Dekontamination von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Felix; Grone, Georg von; Schultmann, Frank

    2017-03-15

    The German Government's decision to phase-out nuclear power will lead to a substantial increase of the number of nuclear decommissioning and dismantling projects. The decommissioning of nuclear facilities must meet the requirements of the radiation protection ordinance. This study deals with the decontamination and dismantling technologies available to meet radiation protection requirements. The aim of this study is to determine the state of the art in the field of decommissioning and dismantling technologies. Furthermore, future trends in the development and application of such technologies should be identified. A detailed study of current literature provides an overview of established decommissioning technologies. Moreover, experts were consulted in order to facilitate a practical assessment. The experts' statements indicate that (apart from the chemical decontamination of the primary circuit) the use of mechanical methods is generally preferred. Abrasive methods are rated as particularly efficient. According to the experts, the development of new decontamination technologies may allow a more efficient decontamination. However, the success of a new technology will be subject to its application costs. Mechanical technologies are preferred for the dismantling of nuclear facilities. The band saw has been identified as a standard tool in nuclear dismantling. The survey has concluded that there is no need for new dismantling technologies. The potential lies in the optimization of existing processes and techniques. With regard to remotely operated systems, experts' opinions vary on whether the use of these systems will increase in future. Most areas inside a nuclear facility have low radiation levels that allow the use of human labour for the dismantling. However, there is a need for an improvement in the allocation and management of decommissioning projects.

  5. Use of laser cutting techniques for dismantling tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Haferkamp, H.; Drygalla, M.; Goede, M.

    2001-01-01

    A handguided laser processing system developed by laser zentrum Hannover e.V. (LZH) allows impressive cutting, notching, and material removal applications for the dismantling of nuclear power plants. The handguided unit is equipped with a motor drive for consistent processing results and flexible processing for as long as desired. It offers the possibility to adjust the nozzle as well as focal position in order that various materials with different material thicknesses may be processed. The set process parameters may be viewed on a display which also indicates the laser processing programme selected. An integrated exhaust system guarantees a shielded process. The operator is not only protected against process emissions but also against laser beam reflexions. The handguided unit is connected to the laser beam source via an optical fibre and can be used for laser output powers of up to 1500 W with a high beam quality. For handguided laser material processing low emissions at high feed rates as well as cutting kerf widths between 0.5 and 0.3 mm for special applications such as the dismantling of large facilities or units, etc. are decisive, especially when cutting metal sheets for the dismantling of nuclear power plants. (orig.)

  6. Use of laser cutting techniques for dismantling tasks in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H.; Drygalla, M.; Goede, M. [Laser Zentrum Hannover e.V. (Germany)

    2001-07-01

    A handguided laser processing system developed by laser zentrum Hannover e.V. (LZH) allows impressive cutting, notching, and material removal applications for the dismantling of nuclear power plants. The handguided unit is equipped with a motor drive for consistent processing results and flexible processing for as long as desired. It offers the possibility to adjust the nozzle as well as focal position in order that various materials with different material thicknesses may be processed. The set process parameters may be viewed on a display which also indicates the laser processing programme selected. An integrated exhaust system guarantees a shielded process. The operator is not only protected against process emissions but also against laser beam reflexions. The handguided unit is connected to the laser beam source via an optical fibre and can be used for laser output powers of up to 1500 W with a high beam quality. For handguided laser material processing low emissions at high feed rates as well as cutting kerf widths between 0.5 and 0.3 mm for special applications such as the dismantling of large facilities or units, etc. are decisive, especially when cutting metal sheets for the dismantling of nuclear power plants. (orig.)

  7. Radiation protection procedures for the dismantling and decontamination of nuclear facility

    International Nuclear Information System (INIS)

    Almeida, C.C.; Garcia, R.H.L.; Cambises, P.B.S.; Silva, T.M. da; Paiva, J.E.; Carneiro, J.C.G.G.; Rodrigues, D.L.

    2013-01-01

    This work presents the operational procedures and conditions to ensure the required level of protection and safety during the dismantling and decontamination of a natural uranium purification facility at IPEN-CNEN/SP, Brazil. The facility was designed for chemical processing of natural uranium, aiming to obtain the uranyl nitrate, nuclear-grade. Afterwards, the installation operated in treatment and washing of thorium sulfate and thorium oxycarbonate dissolution, to get thorium nitrate as final product. A global evaluation of the potential exposure situation was carried out by radioprotection team in order to carry out the operations planned. For the facility dismantling, was established both measures to control the radiation exposure at workplace and individual monitoring of workers. A combination of physical, chemical and mechanical methods was used in the decontamination procedure applied in this unit. Concerning the internal operation procedures of IPEN-CNEN/SP, the radioactive waste control, the transport of the radioactive materials and authorization of use of decontaminated equipment were also subject of study. (author)

  8. Deregulation in the field of decommissioning and dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Kurz, A.

    1994-05-01

    The report comprises two articles covering current topics of the decommissioning and dismantling of nuclear facilities. In the first article written by Kurz, the legal standards are listed together with conclusions and proposals regarding their implementation for the further development of this field of law. The article by Baumgaertel is aimed at evaluating the regulations governing nuclear technology as regards their applicability to the decommissioning and dismantling of nuclear facilities. These articles shall contribute to the discussions taking place in this field at the moment. As a result, an appropriate and project-specific application of the legal provisions and not legally binding (technical) regulations in the field of nuclear technology (deregulation) in the licensing procedures required for the decommissioning and dismantling of nuclear facilities is requested by the authors. (orig.) [de

  9. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Management of JPDR dismantling waste

    International Nuclear Information System (INIS)

    Abe, Masayoshi; Nakata, Susumu; Ito, Shinichi

    1996-01-01

    The management of wastes, both radioactive and non-radioactive, is one of the most important issues for a safe and reasonable dismantling operation of nuclear power plants. A large amount of radioactive wastes is arising from a reactor dismantling operation in a relatively short period time, ranging in a wide variety from very low level to relatively high level. Moreover non-radioactive waste is also in a huge amount. The dismantling operation of Japan Power Demonstration Reactor (JPDR) resulted in 24,440 tons of dismantling wastes, of which about 15% was radioactive and 85% non-radioactive. These wastes were managed successfully implementing a well developed management plan for JPDR dismantling waste. Research and development works for handling of JPDR dismantling wastes were performed, including fixation of loose contamination on surface, volume reduction and waste containers for on-site transportation and interim storage. The JPDR dismantling wastes generated were classified and categorized depending on their materials, characteristics and activity level. Approximately 2,100 tons of radioactive wastes were stored in the interim storage facilities on site using developed containers, and 1,670 tons of radioactive concrete waste were used for a safe demonstration test of a simple near-surface disposal for very low level waste. Other dismantling wastes such as steel and concrete which were categorized as non-radioactive were recycled and reused as useful resources. This paper describes the management of the JPDR dismantling wastes. (author)

  10. A Study on Dismantling and Verifying North Korea's Nuclear Capabilities

    International Nuclear Information System (INIS)

    Kim, Young Jae; Cheon, Seong Whun

    2007-10-01

    North Korea's nuclear weapon development is a serious threat to South Korea's national security and can become a trigger to change the status quo in the Korean peninsula. Having prevailed security dynamics in Northeast Asia last 20 years, the North Korea's nuclear problem faced a key turning point when Pyongyang tested its first nuclear weapon on October 9, 2006. Despite this test, however, diplomatic efforts to resolve the nuclear issue were never given up, resulting in a so-called, initial agreement signed at the Six-Party Talks in February 2007. With the Six-Party Talks being held more than four years, the six countries have had sufficient time to discuss principal and political matters regarding the dismantlement of North Korea's nuclear weapons. Under the circumstances, this report is going to study practical and detail issues related with dismantling the North's nuclear weapons. Specifically, in light of historical experiences, the report will investigate possible problems to be faced in the course of dismantlement and propose policy measures to overcome these problems

  11. The nuclear installations dismantling and the management of radioactive wastes; Le demantelement des installations nucleaires et la gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    As other industrial activities, the nuclear industry causes risks. The risks bound to the dismantling operations are known and controlled. After a presentation of the dismantling and radioactive wastes challenge, this document proposes recommendations based on the first experiences of dismantling and wastes storage. It aims then to answer to the questions relative to the cost and the financing of the operations. Finally it wonders on the public information modalities. (A.L.B.)

  12. Stade. Decommissioning and dismantling of the nuclear power plant - from the nuclear power plant to the green lawn. 3. ed.

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear power plant Stade (KKS) was shutdown in 2003 and is being dismantled since 2005. The contribution covers the following issues: What means decommissioning and dismantling? What was the reason for decommissioning? What experiences on the dismantling of nuclear power plants are available? What is the dismantling procedure? What challenges for the power plant personal result from dismantling? What happens with the deconstruction material? What happens with the resulting free area (the ''green lawn'')? What is the legal frame work for dismantling?

  13. Dismantling of civilian nuclear powered fleet technical support vessels. engineering solutions - 59386

    International Nuclear Information System (INIS)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2012-01-01

    At the present time six nuclear technical support vessels are operated and maintained by Atomflot. Two of them (Volodarsky FTB (floating technical base) and Lepse FTB) were taken out of service for decommissioning and are stored afloat. One more vessel Lotta FTB should be decommissioned during next two years. The nuclear technological support ships carrying spent nuclear fuel (SNF), liquid and solid radioactive wastes (LRW and SRW) appear to be a possible radiation contamination of Murmansk region and Kola Bay because the Ship long-term storage afloat has the negative effect on hull's structures technical condition. As a result of this in the context of the Federal Program 'Nuclear and Radiation Safety' (2008-2015) NIPTB Onega OAO was engaged by state corporation Rosatom to develop the dismantling procedure for Volodarsky FTB and Lotta FTB. Before developing of nuclear technological support ships decommissioning projects the technical and economic assessment of decommissioning/dismantling was carried out. The following options were examined: - formation of module as one-piece Ship's hull for long-term storage at Saida Bay; - formation of separated modules for long-term storage at Saida Bay; - complete dismantling of hull's structures, systems and equipment with packing all generated SRW into certified long-term storage containers. This paper contains description of options, research procedure, comparative analysis of options of decommissioning and dismantling (D and D) of nuclear technological support ships and its difference with dismantling of nuclear submarine. On the basis of the technical and economic assessment of FTB D and D options the least expensive on the first D and D stage and the least duration option is the option 1 (Formation of module as one-piece Ship's hull for long-term storage at Saida Bay). By the implementation of the given option there will be the need of large areas for modules storage at Saida Bay. It was not considered while working out

  14. Dismantling of nuclear facilities. From a structural engineering perspective

    International Nuclear Information System (INIS)

    Block, Carsten; Henkel, Fritz-Otto; Bauer, Thomas

    2014-01-01

    The paper summarizes some important aspects, requirements and technical boundary conditions that need to be considered in dismantling projects in the nuclear sector from a structural engineering perspective. Besides general requirements regarding radiation protection, occupational safety, efficiency and cost effectiveness it is important to take into account other conditions which have a direct impact on technical details and the structural assessment of the dismantling project. These are the main aspects highlighted in this paper: - The structural assessment of dismantling projects has to be based on the as-built situation. - The limitations in terms of available equipment and space have to be taken into account. - The structural assessments are often non-standardized engineering evaluations. A selection of five dismantling projects illustrates the various structural aspects. (orig.)

  15. Reinforcement course 2013. Challenges at the operation end of nuclear power plants

    International Nuclear Information System (INIS)

    Rey, Matthias

    2014-01-01

    The reinforcement course 2013 of the Nuclear Forum in Switzerland dedicated itself to the question, of which challenges are implicated by decommissioning and dismantling nuclear power plants. The course has been divided into 4 blocks, discussing concepts regarding decommissioning, special points such as organisational or psychological aspects as well as juridical and practical questions. Around 140 persons accepted the invitation of the committee for educational questions under the patronage of Urs Weidmann, head of the nuclear power plant Beznau. Altogether 17 presentations dealt with the following topics: 'Strategies and Steps of Decommissioning' by Roger Lundmark, 'Decommissioning from the Perspective of the Swiss Regulatory Authority' by Hannes Haenggi, 'Operating Period Management Using the Example of the Nuclear Power Plant Leibstadt' by Johannis Noeggerath, 'Questions and Concepts from the Perspective of a Nuclear Power Plant Operator' by Roland Schmidiger, 'Decommissioning of nuclear facilities in the UK' by Andrew Munro, 'Practical experiences of transferring nuclear power plants from operating to out of operation' by Gerd Reinstrom, 'Dismantling of Nuclear Facilities: From the Pilot Scheme to Industrialized Disassembling' by Anke Traichel and Thomas Seipolt, 'Organisational challenges: From Decommissioning Strategy to Decommissioning Targets' by Michael Kruse, Anton von Gunten, Julia Heizinger, Joerg Sokoll, 'Knowing That and Knowing How - Motivational Aspects of Safety-Related Knowledge Management for the Post-Operational phase and dismantling' by Frank Ritz, 'The Juridical Frame of Decommissioning' by Peter Koch, 'The Path to the Decommissioning Order and its Guidelines Ensi-G17' by Torsten Krietsch, 'Requirements for a Safe and Economical Decommissioning From the Perspective of the Operator' by Anton Von Gunten, Michael Kruse, Thomas Herren, Erwin Neukaeter, Mario Radke and Anton Schegg, 'Evaluation of Activation Distribution in a Nuclear Power Plant

  16. EDF decommissioning and dismantling policy a global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Rondeau, J.

    2001-01-01

    Until recently, EDF's policy regarding the dismantling of its decommissioned nuclear power plants was to reach 'level 2' (release of non-nuclear facilities) and to postpone final dismantling for another 30-40 years. Today, some studies suggest that a full deconstruction program of the first generation NPPs (9 units) could be optimized over the period 2000 - 2025. EDF has acquired during the last ten years an unique experience, both as an operator and as an engineering company, in the frame of the decommissioning programme of its own NPPs. Many types of reactors, including graphite moderated one, PWR, are at varying stages of the dismantling process.Plant operation quality is at the core of a satisfactory control of releases. Over the last decade, as a result of the efforts of all operating sites associated with good in-house operating practice feedback, the overall release volume has been divided by two, and the release activity by one hundred. Another issue given increased attention is radiological cleanliness. EDF-DPN launched a 'radiological cleanliness' action plan revolving around two main themes: increased monitoring of nuclear-related transportations, site entrance and access to controlled areas, along with on-site radiological cleanliness, particularly during maintenance work tasks. Progress is already apparent in several points at issue and the overall objective of the action plan should be attained. (author)

  17. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  18. Evaluation methodology of a manipulator actuator for the dismantling process during nuclear decommissioning

    International Nuclear Information System (INIS)

    Park, Jongwon; Kim, Chang-Hoi; Jeong, Kyung-min; Choi, Byung-Seon; Moon, Jeikwon

    2016-01-01

    Highlights: • A methodology to evaluate actuators of a dismantling manipulator. • Evaluation criteria for choosing the most suitable actuator type. • A mathematical evaluation model for evaluation. • The evaluation method is expected to be used for determining other manipulators. - Abstract: This paper presents a methodology to evaluate actuators of a manipulator for dismantling nuclear power plants. Actuators are the most dominant components because a dismantling manipulator relies heavily on the actuator type used. To select the most suitable actuator, evaluation criteria are presented in four categories based on the nuclear dismantling environment. A mathematical model is presented and evaluation results are calculated with weights and scores for each criterion. The proposed evaluation method is expected to be used for determining other aspects of the design of dismantling manipulators.

  19. Method of dismantling nuclear fuel elements

    International Nuclear Information System (INIS)

    Adams, G.J.

    1983-01-01

    Nuclear fuel assemblies of the kind comprising fuel pins in dimpled cellular grids are freed from the grids to aid dismantling of the assemblies by causing a rotary sleeve to pass concentrically over the pins to remove the dimples in the grids and thereby increase the freedom of the pins in the cells of the grids. (author)

  20. For a public management of funds dedicated to nuclear dismantling: the TESEN (fund for the Energy transition and a fair phasing out nuclear), and its assignment to the financing of energy transition

    International Nuclear Information System (INIS)

    Autissier, Isabelle; Germa, Philippe

    2013-01-01

    The report outlines that the cost of nuclear energy in France is largely under-assessed because of the under-evaluation of the future dismantling of nuclear installations and of the management of radioactive wastes. It outlines that provisions made for this dismantling are insufficient, opaque and very risky. This report proposes the creation of a fund independent from nuclear operators to make pay the actual cost of nuclear energy and reduce the French electrical dependence on this energy, to secure long-term financing to finance the dismantling, to bring the financing for the decades to come to finance energy transition, to finance energy transition at reasonable rates, and to clarify the governance for phasing out nuclear

  1. Long-term management of wastes resulting from dismantling operations. Storing the very low-level activity wastes at Morvilliers

    International Nuclear Information System (INIS)

    Duret, F.; Dutzer, M.; Beranger, V.; Lecoq, P.

    2003-01-01

    Extension of dismantling operations in France in the years to come poses the question of availability of long-term waste facility. Large amount of such wastes will be produced after progressive shutdown of the 58 pressurized water reactors now in operation, not before 2010. However, France is already confronted with dismantling of 9 power reactors (6 of which of gas cooled graphite type), the first reprocessing plant at Marcoule, as well as, dismantling of other installations, for instance the CEA reactors or laboratories. The systems of processing the dismantling waste are not different from those used for wastes resulting from nuclear operations. For the high-level or long-term intermediate level activity disposal the debates must start by 2006, as based on the results of the research conducted according to different provisions of the December 30, 1991 law. These wastes represent however small amounts from the dismantling (around 2000 t for the 9 reactors at shutdown) and they will be stored until a decision will be made. A specific storing system should be implemented by 2008-2010 for the graphite wastes (around 23,000 t) which contain significant amount of long-lived radioelements, although their gross activity is low. But the most significant amount will come from low-level or intermediate-level of short lifetime or from wastes of very low activity. The first category is stored at Storage Center at Aube (CSA), its capacity being of 1,000,000 m 3 of drums. The total volume stored by the end of 2002 amounted 136,500 m 3 with an annual delivering of 12-15,000 m 3 at design rate of 30,000 m 3 /y. This center will be able to absorb the flux increase resulting from dismantling of the decommissioned nuclear installations (around 50,000 t from the dismantling of the 9 power reactor). The Center at Aube can be also adapted for storing wastes of large sizes as for instance the lid of the reactor vessel. According to the French regulation, the wastes produced within a

  2. The market of nuclear plant dismantling. The new EDF's strategy, process standardisation, robotization: which perspectives for the market by 2030?

    International Nuclear Information System (INIS)

    2017-09-01

    Dismantling appears as the most promising activity in the nuclear sector due to ageing plants, to ambitious objectives of reduction of the nuclear share in the energy mix, or to high expertise of French companies in robotic and digital solutions for deconstruction in radioactive environments. However, the development of the dismantling market depends on EDF decisions: the extension of nuclear reactor lifetime postpones the development of this market. In this context, this study aims at giving an anticipated view of the plant dismantling market by 2030, at deciphering growth levers for the sector actors, and at understanding the sector operation and the business model of operators. Thus, the report presents the main components of the market (key figures, dismantling types, dismantling steps, sector ecosystem, barriers to enter the market, costs, contractual relationships), proposes an analysis of the market and of its perspectives (situation in France, and at the world level, predictive scenario for 2030), and discusses the development axes and demand evolutions (robotization and digitalisation, elaboration of standardised processes, management of wastes produced by nuclear dismantling, internationalisation of French actors). It also proposes an overview of actors in France, and identity sheets for commissioners (EDF, New Areva), contractors (Onet, Vinci, Engie), and other actors (Veolia, Assystem, Ortec, Cybernetix, Oreka Group). The last part proposes synthetic sheets for more than 110 companies of the sector (general information, management and financial performance data under the form of tables and figures) and comparative tables according to 5 key indicators. Data are presented for a period ranging from 2010 to 2016

  3. Remote dismantling of the French Brennilis nuclear power plant

    International Nuclear Information System (INIS)

    Studenski, Joerg

    2009-01-01

    The paper deals with the remote dismantling of the decommissioned EL4 prototype power plant Brennilis in France. The block contains the reactor pressure vessel including internals and biological shield, the piping and the control systems. The authors describe the general operation principle of the reactor to illustrate the peculiarities of the dismantling concept and the concept-related challenges. Detailed information is given concerning the following issues: creation of an access to the reactor block, the used remote technology, dismantling of the coolant piping and the axial shield, dismantling of the reactor pressure vessel and the lateral shield. Special attention is given on the minimization of the produced radioactive waste.

  4. Remote dismantling of the French Brennilis nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Studenski, Joerg [NUKEM Technologies GmbH (Germany)

    2009-07-01

    The paper deals with the remote dismantling of the decommissioned EL4 prototype power plant Brennilis in France. The block contains the reactor pressure vessel including internals and biological shield, the piping and the control systems. The authors describe the general operation principle of the reactor to illustrate the peculiarities of the dismantling concept and the concept-related challenges. Detailed information is given concerning the following issues: creation of an access to the reactor block, the used remote technology, dismantling of the coolant piping and the axial shield, dismantling of the reactor pressure vessel and the lateral shield. Special attention is given on the minimization of the produced radioactive waste.

  5. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options

    International Nuclear Information System (INIS)

    Meyer, Bettina

    2012-01-01

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  6. BRET fuel assembly dismantling machine

    International Nuclear Information System (INIS)

    Titzler, P.A.; Bennett, K.L.; Kelley, R.S. Jr.; Stringer, J.L.

    1984-08-01

    An automated remote nuclear fuel assembly milling and dismantling machine has been designed, developed, and demonstrated at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The machine can be used to dismantle irradiated breeder fuel assemblies from the Fast Flux Test Facility prior to fuel reprocessing. It can be installed in an existing remotely operated shielded hot cell facility, the Fuels and Materials Examination Facility (FMEF), at the Hanford Site in Richland, Washington

  7. Dismantlement and destruction of chemical, nuclear and conventional weapons

    International Nuclear Information System (INIS)

    Schulte, N.T.

    1997-01-01

    The safe destruction and dismantling of chemical, nuclear and conventional weapons is of fundamental importance to the security of all countries represented in this volume. Expertise in the field is not confined to one country or organisation: all can benefit from each other. There is an ever present danger of proliferation of weapons of mass destruction: approximately two dozen countries have ongoing programmes to develop or acquire such weapons, and many are also gaining the capability to build air-surface delivery systems. But much can be done to prevent proliferation by reducing leakage of materials and know-how and by solving the problems of the destruction of surplus weapons systems, which has now come to be a key issue. In 13 sessions of the workshop attention was paid to (1) Dismantlement and Destruction of Chemical, Nuclear and Conventional Weapons; (2) Status of Implementation of Arms Control Treaties and Voluntary Commitments; (3) National Perspectives on Cooperation in Disarmament; (4) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Chemical Weapons; (5) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Nuclear Weapons; (6) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Conventional Weapons. Session; (7) Experience with Currently Employed Chemical Destruction Technologies; (8) Alternative Chemical Destruction Technologies; (9) Deactivation, Dismantlement and Destruction of Delivery Systems and Infrastructure for Nuclear Weapons; (10) Storage, Safeguarding and Disposition of Fissile Materials; (11) Technologies for Conversion and Civil Use of Demilitarized Materials; (12) International Organizations; and (13) Environmental Challenges Posed by Chemical and Nuclear Disarmament

  8. Failure prevention with stress measurement for dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Komber, T.; Reimche, W.; Bach, F.W.

    2003-07-01

    The dismantling of nuclear facilities is in progress since 20 years in Germany. Practical experiences in decommissioning have shown, that problem can occur during dismantling operations caused by release of residual stresses. In this case cutting parts or cutting tools get jammed if mechanical cutting techniques are used. The aim of this research work was to develop measuring techniques for the determination of the stress state in RPV, to predict the deformation during dismantling operations. This can serve as additional base for improved decommissioning planning and for time optimised dismantling. For determination of the stress state in components two small and inexpensive measuring techniques were new designed, for remote-controlled on-site use in atmosphere and under water. For the nondestructive determination of the directional stress state, based on the magnetostriction and the Harmonic-Analysis of alternating magnetic fields, a new developed rotating sensor is in use with a principal magnetisation direction. Because of the mainly isotropic material properties and the directional stresses, measured Harmonic values are influenced mainly by the stress state in the surface areas. In this way it is possible to determine the stress state qualitatively and the direction of principal stresses in the surface areas of the component. As an alternative to the established wire strain gauge, which remote-controlled application is still not possible under water, a new slot jet cutting strain control technique was designed. This technique detects the deformation in the surface after stresses are cut free by a water jet. So the stress state could be determined quantitatively in the surface and assessed in the depth. With the help of these two measuring techniques it is possible to characterize the stress state along a planned cutting line. The use of an adapted FEM simulation enables to calculate and determine the deformation of the cutting gap beforehand. These information

  9. Transparency in nuclear warhead dismantlement -- Limited chain of custody and warhead signatures

    International Nuclear Information System (INIS)

    Kiernan, G.; Percival, M.; Bratcher, L.

    1996-01-01

    The goal of the US Safeguards, Transparency, and Irreversibility (STI) initiative is the development of a series of transparency measures that provide confidence that nuclear warheads are actually being dismantled and that the fissile material being removed from these dismantled weapons is not recycled into new production. A limited chain of custody (LCC) would follow a warhead from the time it is declared excess until it is actually dismantled and the fissile materials are stored. Measurement of warhead signatures is an option in LCC using radiation detection techniques to confirm that a warhead has been dismantled, without intrusive inspections within the dismantlement facility. This paper discusses LCC and warhead signatures as well as indicate first results of laboratory measurements related to warhead signatures

  10. Dismantling and waste managing benefit from digital technologies

    International Nuclear Information System (INIS)

    Moitrier, C.

    2017-01-01

    Dismantling is a very important challenge for nuclear industry as its success will prove the ability of the industry to deal with all the stages of a nuclear power plant from design to the end. A dismantling project is constraint by costs, time, feasibility, safety and environment protection and all of this implies a perfect knowledge of both the initial state of the facility at the beginning of the dismantling and the supply chain to avoid delays and extra-costs. Digital tools have a very important role to play as a provider of a 3-dimensional digital twin of the facility. This digital model allows: a remote preparation of the dismantling actions, to assess and optimize the radiation exposure during the intervention, to simulate various scenarios and select the most adequate, to ease collaborative work between various teams, to assess the volume and kind of waste at a very early stage of the dismantling, and to train operators and workers for x. (A.C.)

  11. Study on treatment of dust by dismantling

    International Nuclear Information System (INIS)

    Torikai, K.; Suzuki, K.

    1987-01-01

    In dismantling of nuclear reactors, various kinds of treatment of dust generated by cutting or dismantling concrete structures of components of reactors are evaluated for safety, cost, and performance comparing the work in air with water. A method of dust treatment for work in air is discussed. The dry method has an easy operation in practice and a good performance in the equipment, but has problem on the prevention from radioactive contamination by diffusion of dust in air. For the purpose of advancing the strong points and eliminating the weak points in dry method, an improved venturi scrubber system is proposed for dismantling work as a dust collecting system. The system consists of dust absorbing pipe, dust collector, separator of dust and water and dust transfer equipment to a storage of waste. This system would be expected to have better performance and lower operating cost in decommissioning nuclear reactors, especially, the number of dust filters, for example, HEPA filters, will be considerably saved

  12. SGDES: Management system dismantling of ENRESA

    International Nuclear Information System (INIS)

    Julian, A. de; Fernandez, M.; Vidaechea, S.

    2013-01-01

    ENRESA, the Spanish public company responsible for managing radioactive waste and nuclear facilities decommissioning, has developed a management information system (SGDES) for the decommissioning of nuclear power plants. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both under human and technological point of view. SGDES system is capable of responding to the mentioned operational needs, efficiently and safely.

  13. The Dismantling of Nuclear Installations in France

    International Nuclear Information System (INIS)

    Bonnaure, P.

    2011-01-01

    As we saw in the previous article by Pierre Bonnaure, though it has long been decried for the dangers inherent in its production structures and the very long-lived waste that it generates, nuclear power may yet recover its credibility, particularly in France. However, on close examination, we see that the nuclear industry is beset by a number of unresolved questions, beginning with the dismantling of installations that have become obsolete or are set to become so. Nuclear power took off after the Second World War, but several generations of technology have been developed since then, and most currently functioning power-stations - mainly second-generation installations - are theoretically nearing the end of their useful lives, at least in terms of what was said when they were being built. The problem therefore arises of their dismantling and the clean-up of the sites on which they were built, a thorny question on which Pierre Bonnaure casts light in this article (prospects, strategies, financing, management of waste etc.). Unfortunately, it emerges that in France nothing has really been resolved, that public debate on the matter is decidedly limited and that investment (both financial investment and research) is not commensurate with the needs of a sector which is, after all, the source of three quarters of national electricity production. (author)

  14. Decommissioning and dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Pelzer, N.

    1993-01-01

    The German law governing decommissioning and dismantling of nuclear installations can be called to be embryonic as compared to other areas of the nuclear regulatory system, and this is why the AIDN/INLA regional meeting organised by the German national committee in July 1992 in Schwerin has been intended to elaborate an assessment of the current legal situation and on this basis establish proposals for enhancement and development, taking into account the experience reported by experts from abroad. The proceedings comprise the paper of the opening session, 'Engineering and safety aspects of the decommissioning of nuclear installations', and the papers and discussions of the technical sessions entitled: - Comparative assessment of the regulatory regimes. - Legislation governing the decommissioning of nuclear installations in Germany. - Analysis of the purpose and law making substance of existing regulatory provisions for the decommissioning of nuclear installations. All seventeen papers of the meeting have been prepared for separate retrieval from the database. (orig./HSCH) [de

  15. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    International Nuclear Information System (INIS)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2013-01-01

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices of the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)

  16. General Research and Development problems in dismantling

    International Nuclear Information System (INIS)

    Lorin, C.

    1993-01-01

    R and D studies for dismantling nuclear facilities have been conducted in several domains: safety evaluation (3D cameras, gamma camera, gamma low level control bench, alpha measures); general studies (such as the Baladin software, an expert system for dismantling); decontamination techniques (utilisation of acid or base liquids, laser, ...); cutting techniques and tools (remote controlled grinder, remote controlled robot, carrier crane); robotics for remote operations and handling; waste processing

  17. Simulation for preparation of dismantling operations

    International Nuclear Information System (INIS)

    Carrere, J.M.; Idasiak, J.M.

    2003-01-01

    New applications of 3D models are still emerging. At first, simulation of dismantling operations has been used to illustrate the proposed scenarios, with 3D views or animated films, for: - internal and external communication; - technical reviews; - presentation to Safety Authorities. It helps a lot to explain the structure of the facility to dismantle, the proposed solutions, to convince people that the study is detailed enough. But 3D modelling is an investment in time and money. A lot of time is spent in collecting the drawings, and checking them with pictures, videos, interviews of operators, new measurements. This investment can be much more exploited, during all the life time of the decommissioning project, to avoid problems during operations, and so to save a lot of money. It is possible to have navigation or even immersion inside 3D models of facilities to dismantle, so that the project team or the operators can be familiar with the configuration of rooms, of accesses, with the location of equipment. A 3D model can hardly be as detailed as the real facility. Some simplifications have to be done, to avoid having too heavy models. But in a training process, 3D-models help to have rapidly an overview of complex environments. Dose uptake simulation is becoming also a tool for decommissioning projects. It is possible to compute either off line, or even in real time, the dose uptake of the operators, and to compare easily different options for the ALARA principle: decontamination or not, use of shielding or not. It requires to have not only the geometrical model, but also a radiological model of the facility, but with the use of gamma camera and spectrometry, it becomes easier. 3D-models can be used to integrate in an user-friendly way all the knowledge of a facility to decommission, and to update that knowledge during operations: reports on construction, on exploitation, on shut-down, physical and radiological measurements, traceability of wastes. Progress are

  18. Cost effective decommissioning and dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2012-01-01

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  19. Preliminary dismantling for the decommissioning of nuclear licensed facilities at the CEA Centre in Fontenay aux Roses

    International Nuclear Information System (INIS)

    Estivie, D.; Bohar, M.P.; Jeanjacques, M.; Binet, C.

    2008-01-01

    Under the perimeter modification programme for the Nuclear Licensed Facilities (NLFs) of the French Atomic Energy Commission centre at Fontenay aux Roses (CEN-FAR), preliminary dismantling work proved necessary to decommission the buildings outside the nuclear perimeter and create interim storage areas for waste packages. This summary describes the dismantling of Buildings 07, 53 and 91/54, which are the most representative of the preliminary dismantling work. (author)

  20. Dismantling of nuclear facilities: the industrial know-how; Demantelement des installations nucleaires: les voies de la maitrise industrielle

    Energy Technology Data Exchange (ETDEWEB)

    Lellament, R. [Societe Francaise d' Energie Nucleaire (SFEN), Groupe de Reflexion Energie/Environnement, 75 - Paris (France)

    2004-11-01

    Numerous nuclear facilities in laboratories or research reactors have been decommissioned and dismantled over the 2 last decades throughout the world. The valuable feedback experience has allowed nuclear industry to design, upgrade and test specific techniques for dismantling. These techniques are efficient although they have been validated on a reduced number of nuclear power plants. In France only 3 power units have been dismantled: Chinon A1, A2 and Brennilis (EL4) and they are not representative of the real park of EDF'reactors. 6 PWR-type reactors have already been dismantled in the Usa. The results of a survey concerning 26 countries shows that the dismantling cost is around 320 dollars/kWe, it represents 15% of the construction cost which is far from being excessive as it is often read in the media. The dismantling costs can be broken into: - de-construction (25-55%), - wastes from dismantling (17-43%), - security and monitoring (8-13%), - site reclamation (5-13%), and - engineering and project management (5-24%). (A.C.)

  1. Decommissioning and dismantling of nuclear research facilities in Switzerland: lessons learned

    International Nuclear Information System (INIS)

    Leibundgut, Fritz

    2017-01-01

    Paul Scherrer Institute is the largest research institute for natural and engineering science in Switzerland. It operated various nuclear facilities from 1960 to 2011: Research reactors DIORIT, SAPHIR and PROTEUS, and an incineration plant for low and medium level radioactive waste. Concerning SAPHIR research reactor: in operation from 1958 to 1993, planning of decommissioning from 1998 to 2000. Decommissioning work started in 2004. Finishing is planned for 2019. Concerning DIORIT research reactor: operation as DIORIT I (20 MWth) from 1960 to 1967, then reconstruction to DIORIT II (30 MWth) and operation from 1970 until 1977. Planning of decommissioning from 1992 to 1994. Decommissioning work started in 1994 and was finished in 2012. Concerning PROTEUS research reactor: in operation from 1966 to 2011. Planning of decommissioning from 2013 to 2014. Starting of decommissioning work is planned for 2017, finishing is planned for the end of 2018 Incineration plant: In operation from 1974 to 2002. Planning of decommissioning from 2011 to 2012. Starting of decommissioning work in 2016. Finishing planned for end of 2019. Treatment of various material categories from dismantling: Concerning aluminum: because of the production of H_2 during solidification in concrete, it was necessary to minimize the surface area. When dismantling research reactors, the aluminum removed was melted in an induction furnace and poured into a 4.5 m"3 concrete container to solidify. Cutting the metal and handling it was largely accomplished remote control, using conventional technology. Concerning Steel/Cast-iron: the storage containers to be filled determined the method used for reducing the size of these materials, and the technique used for handling them. The goal was to optimize the packing density to reduce repository costs. The selected method of reducing the size of components is to cut them up using diamond-tipped tools, like saw blades. Concerning Graphite: for graphite, grinding was the

  2. A methodology to simulate the cutting process for a nuclear dismantling simulation based on a digital manufacturing platform

    International Nuclear Information System (INIS)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung Seon; Moon, Jeikwon

    2017-01-01

    Highlights: • Goal is to provide existing tech. with cutting function handling dismantling process. • Proposed tech. can handle various cutting situations in the dismantlement activities. • Proposed tech. can be implemented in existing graphical process simulation software. • Simulation results have demonstrated that the proposed technology achieves its goal. • Proposed tech. enlarges application of graphic simulation into dismantlement activity. - Abstract: This study proposes a methodology to simulate the cutting process in a digital manufacturing platform for the flexible planning of nuclear facility decommissioning. During the planning phase of decommissioning, visualization and verification using process simulation can be powerful tools for the flexible planning of the dismantling process of highly radioactive, large and complex nuclear facilities. However, existing research and commercial solutions are not sufficient for such a situation because complete segmented digital models for the dismantling objects such as the reactor vessel, internal assembly, and closure head must be prepared before the process simulation. The preparation work has significantly impeded the broad application of process simulation due to the complexity and workload. The methodology of process simulation proposed in this paper can flexibly handle various dismantling processes including repetitive object cuttings over heavy and complex structures using a digital manufacturing platform. The proposed methodology, which is applied to dismantling scenarios of a Korean nuclear power plant in this paper, is expected to reduce the complexity and workload of nuclear dismantling simulations.

  3. Status and perspectives of the dismantling of nuclear power plants in Germany (Dismantling monitoring 2015); Stand und Perspektiven des Rueckbaus von Kernkraftwerken in Deutschland (''Rueckbau-Monitoring 2015'')

    Energy Technology Data Exchange (ETDEWEB)

    Wealer, Ben; Seidel, Jan Paul [Technische Univ. Berlin (Germany); Gerbaulet, Clemens; Hirschhausen, Christian von [Technische Univ. Berlin (Germany); Deutsches Institut fuer Wirtschaftsforschung, Berlin (Germany)

    2015-11-15

    The dismantling monitoring 2015 covers the nuclear power plants HDR Grosswelzheim, Niederaichbach (KKN), MZFR Karlsruhe, Lingen (KWL), Gundremmingen unit A (KRB-A), VAK Kahl, Muehlheim-Kaerlich (KMK), THTR-300 Hamm-Uentrop, AVR Juelich, Greifswald (KGR 1-5), KNK II Karlsruhe, Rheinsberg (KKR), Wuergassen (KWW), Stade (KKS), Obrigheim (KWO), SNR 300. The post-operational phase activities of other shut-down nuclear power plants and the active companies are summarized.

  4. Status of the Digital Mock-up System for the dismantling of the nuclear facilities

    International Nuclear Information System (INIS)

    Park, Hee Seoung; Kim, S. K.; Lee, K. W.; Oh, W. J.

    2004-12-01

    The database system have already developed is impossible to solve a quantitative evaluation about a various situation from the dismantle activities of the reactor had contaminated with radioactivity. To satisfy the requirements for safety and economical efficiency among a major decommissioning technologies, it need a system that can evaluate and estimate dismantling scheduling, amount of radioactive waste being dismantled, and decommissioning cost. We have review and analyzed status of the digital mock-up system to get a technical guide because we have no experience establishment of one relation to dismantling of research reactor and nuclear power plant

  5. Dismantling and waste management: CEA's strategy and research programs

    International Nuclear Information System (INIS)

    Behar, C.

    2012-01-01

    There are 3 main dismantling operations in CEA. First, the dismantling of the UP1 facility in the Marcoule site. UP1 was a reprocessing plant of nuclear fuels that operated from 1958 to 1997 and is now the biggest dismantling operation in the world. Its dismantling operation follows a 6-step scheme that will end in 2050. Secondly, the Passage project on the Grenoble site that concerns the dismantling of 3 research reactors (Siloette, Melusine and Siloe), of a laboratory dedicated to the analysis of active materials (Lama) and of a station for the processing of waste (Sted). Thirdly the Aladin project that concerns the installations of the Fontenay-aux-Roses site. The dismantling operations are complex because all the first research programs on high activity chemistry and on transuranium elements were performed in Fontenay-aux-Roses facilities and because ancient activities have to leave a clean place to be replaced by new ones. The radioactive waste produced by CEA enter the flow of waste that is normally processed and managed by ANDRA. Only high-activities waste have not yet a definitive solution, they are stored in waiting the opening of a geological repository. CEA leads research programs on the separation and transmutation of minor actinides and on the long-term behaviour of waste packages put in deep geological layers. (A.C.)

  6. Dismantling of JPDR begins: to demonstrate advanced technology

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    The first dismantling of the Japan Power Demonstration Reactor (JPDR, BWR, 90 MWt, 12.5 MWe) began on December 4, 1986, claiming the attention of nuclear interests in Japan and overseas. The Japan Atomic Energy Research Institute undertook the project as the second phase of the six year program for dismantling the JPDR at the Tokai Research Establishment. It is the demonstration of the technology developed in the first phase of the program from 1981 to 1986, aiming at establishing a total system for dismantling commercial nuclear power plants in the furture. At the ceremony for the beginning of dismantling held on December 4 at the site, a special switch was operated to fire a gas burner, and cutting of the upper head of the reactor pressure vessel on the service floor of the reactor building began. The long term program on the development and utilization of nuclear energy in 1982 decided the basic policy on reactor decommissioning. Under this policy, in July, 1984, the nuclear subcommittee of the Advisory Committee for Energy set up the guideline for standardized decommissioning suitable to the actual situation in Japan. The schedule of the program, the development of eight fundamental techniques, disassembling techniques, decontamination, measurement and robotics are described. (Kako, I.).

  7. Decommissioning of the AVR reactor, concept for the total dismantling

    International Nuclear Information System (INIS)

    Marnet, C.; Wimmers, M.; Birkhold, U.

    1998-01-01

    After more than 21 years of operation, the 15 MWe AVR experimental nuclear power plant with pebble bed high temperature gas-cooled reactor was shout down in 1988. Safestore decommissioning began in 1994. In order to completely dismantle the plant, a concept for Continued dismantling was developed according to which the plant could be dismantled in a step-wise procedure. After each step, there is the possibility to transform the plant into a new state of safe enclosure. The continued dismantling comprises three further steps following Safestore decommissioning: 1. Dismantling the reactor vessels with internals; 2. Dismantling the containment and the auxiliary units; 3. Gauging the buildings to radiation limit, release from the validity range of the AtG (Nuclear Act), and demolition of the buildings. For these steps, various technical procedures and concepts were developed, resulting in a reference concept in which the containment will essentially remain intact (in-situ concept). Over the top of the outer reactor vessel a disassembling area for remotely controlled tools will be erected that tightens on that vessel and can move down on the vessel according to the dismantling progress. (author)

  8. Weapons dismantlement issues in independent Ukraine

    International Nuclear Information System (INIS)

    Zack, N.R.

    1995-01-01

    The American Association for the Advancement of Science sponsored a seminar during September 1993 in Kiev, Ukraine, titled, ''Toward a Nuclear-Free Future--Barriers and Problems.'' It brought together Ukrainians, Belarusians and Americans to discuss the legal, political, economic, technical, and safeguards and security dimensions of nuclear weapons dismantlement and destruction. US representatives initiated discussions on legal and treaty requirements and constraints, safeguards and security issues surrounding dismantlement, storage and disposition of nuclear materials, warhead transportation, and economic considerations. Ukrainians gave presentations on arguments for and against the Ukraine keeping nuclear weapons, the Ukrainian Parliament's nonapproval of START 1, alternative strategies for dismantling silos and launchers, and economic and security implications of nuclear weapons removal from the Ukraine. Participants from Belarus discussed proliferation and control regime issues. This paper will highlight and detail the issues, concerns and possible impacts of the Ukraine's dismantlement of its nuclear weapons

  9. Processing of LLW arising from dismantling activities in a reprocessing facility

    International Nuclear Information System (INIS)

    Geens, L.G.; Geens, L.P.; Vandeven, I.

    1990-01-01

    The Eurochemic reprocessing facility, at the Mol-Dessel site in Belgium was in active operation from July 1966 until January 1975. In total, about 210 Mg of various types of irradiated nuclear fuels were processed. After the shut-down the plant has been partially decontaminated in view of recommissioning. When the recommissioning option was abandoned, the decision was taken in 1986 to dismantle the plant. A 2 years study resulted in the start of a pilot project: the dismantling of two smaller buildings, previously used for storage of uranyl nitrate and used solvent. The minimization of radioactive waste generation was also one of the major goals of this project. The report deals with the different steps in the minimization of radioactive waste generation during the dismantling activities. First, an estimation of the amounts of radioactive waste, expected to be generated, was made. In a second step the actual waste production during dismantling operations was minimized and compared with the estimations. Finally, a large part of the primary radioactive dismantling waste has been completely decontaminated, resulting in much lower amounts of nuclear waste generated. 2 refs., 3 figs., 2 tabs

  10. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    International Nuclear Information System (INIS)

    Guidice, S.J.; Inlow, R.O.

    1995-01-01

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996

  11. Iraq nuclear facility dismantlement and disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J R; Danneels, J [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W D [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C J; Chesser, R K [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

    2007-07-01

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

  12. The WAK decommissioning and dismantling program

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    After an extensive rinsing of the reprocessing equipment the operation in the plant was terminated in 1991 following the principal political decision to abolish reprocessing of nuclear fuel in Germany. Since July 1991 only the safety relevant units are still in operation including the waste storage facilities for 80 m 3 of high active waste concentrate (HAWC). The decommissioning and dismantling will be achieved in six steps taking into account that some of the reprocessing equipment can be dismantled before and the rest only after the HAWC has been vitrified approximately by mid 2000. So far two licenses for decommissioning have been granted. An application for the dismantling of twelve systems in the process building including headend and tailend facilities will be licensed in 1995. The remote dismantling of equipment from the hot cells in the process building is being planned and will be executed between 1998--2001. New remote handling equipment will be cold tested in a test facility scheduled to start in the middle of this year. The final task is the green meadow after demolishing of the building and remediation of the site which is scheduled for 2005

  13. The challenges of dismantling

    International Nuclear Information System (INIS)

    Sene, Monique; Lheureux, Yves; Leroyer, Veronique; Rollinger, Francois; Gauthier, Florence; Depauw, Denis; Reynal, Nathalie; Fraysse, Thierry; Burger, Eric; Bertrand, Adrien; Vallat, Christophe; Bernet, Philippe; Eimer, Michel; Boutin, Dominique; Bietrix, Philippe; Richard, Francoise; Piketty, Laurence; Mouchet, Chantal; Charre, Jean-Pierre

    2014-01-01

    This document gathers Power Point presentations which address the contexts and challenges of dismantling (legal framework, safety and radiation protection challenges, waste processing industry), and propose illustrations of dismantling challenges (example of operations to prepare EURODIF dismantling and CLIGEET work-group on EURODIF dismantling, examples of dismantling of EDF installations and CLIs' opinion on the dismantling of EDF installations, Brennilis dismantling follow-up performed by the CLI, examples of dismantling of CEA installations and opinion of a CLI on the dismantling of CEA installations)

  14. Radiological impact of very slightly radioactive copper and aluminium recovered from dismantled nuclear facilities

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.; Cahuzac, O.; Guetat, P.; Haristoy, D.; Renaud, P.

    1991-01-01

    This work is in keeping with a large evaluation of doses likely to be received by public and non nuclear workers when dismantling nuclear installations. A bibliographic study and inquiries are realized, in the nuclear field to evaluate quantities of very slightly radioactive materials, in the conventional copper and aluminium recovery fields: waste recovery, metal refinery and processing, occupational or domestic uses of the metals or their alloys. In fact copper and aluminium waste arising from the dismantling of nuclear installations are mainly electrical cables constituents including insulation material which is mainly polyvinyle chloride (PVC). Estimated quantities are relatively low compared to steel quantities arising from dismantling. The study is based on the hypothesis of two PWRs dismantled per year, estimated quantities are 200 tonnes of copper, 40 tonnes of aluminium and 500 tonnes of PVC. A special case is also studied, which is the dismantling of low and medium uranium enrichment plant in Pierrelatte (France); the plant pipework is mainly made of an aluminium and magnesium alloy: AG3. From these informations, one can define exposure scenarios which may occur with a non negligible probability. The doses likely to be received under the foreseen conditions are calculated. Reference doses are established from recommendations of international organisations as ICRP, IAEA, NEA. Comparing the calculated doses and the reference doses, the activity level of the initial waste can be deduced as to follow the recommendations. The mean specific activity of main beta-gamma emitters in copper, aluminium and PVC are of the same order of magnitude, 10Bq.g -1 . In the case of alpha emitters specific activity levels depend on the material and on the radionuclide, from 2 Bq.g -1 to 10 Bq.g -1 in copper, from 10 Bq.g -1 to 50 Bq.g -1 in aluminium

  15. Reinforcement course 2013. Challenges at the operation end of nuclear power plants; Vertiefungskurs 2013. Herausforderungen am Betriebsende von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Matthias [Nuklearforum Schweiz/Forum nucleaire suisse, Bern (Switzerland)

    2014-03-15

    The reinforcement course 2013 of the Nuclear Forum in Switzerland dedicated itself to the question, of which challenges are implicated by decommissioning and dismantling nuclear power plants. The course has been divided into 4 blocks, discussing concepts regarding decommissioning, special points such as organisational or psychological aspects as well as juridical and practical questions. Around 140 persons accepted the invitation of the committee for educational questions under the patronage of Urs Weidmann, head of the nuclear power plant Beznau. Altogether 17 presentations dealt with the following topics: 'Strategies and Steps of Decommissioning' by Roger Lundmark, 'Decommissioning from the Perspective of the Swiss Regulatory Authority' by Hannes Haenggi, 'Operating Period Management Using the Example of the Nuclear Power Plant Leibstadt' by Johannis Noeggerath, 'Questions and Concepts from the Perspective of a Nuclear Power Plant Operator' by Roland Schmidiger, 'Decommissioning of nuclear facilities in the UK' by Andrew Munro, 'Practical experiences of transferring nuclear power plants from operating to out of operation' by Gerd Reinstrom, 'Dismantling of Nuclear Facilities: From the Pilot Scheme to Industrialized Disassembling' by Anke Traichel and Thomas Seipolt, 'Organisational challenges: From Decommissioning Strategy to Decommissioning Targets' by Michael Kruse, Anton von Gunten, Julia Heizinger, Joerg Sokoll, 'Knowing That and Knowing How - Motivational Aspects of Safety-Related Knowledge Management for the Post-Operational phase and dismantling' by Frank Ritz, 'The Juridical Frame of Decommissioning' by Peter Koch, 'The Path to the Decommissioning Order and its Guidelines Ensi-G17' by Torsten Krietsch, 'Requirements for a Safe and Economical Decommissioning From the Perspective of the Operator' by Anton Von Gunten, Michael Kruse, Thomas

  16. Remote dismantlement tasks for the CP5 reactor: Implementation, operations, and lessons learned

    International Nuclear Information System (INIS)

    Noakes, M.W.

    1998-01-01

    This paper presents a developer's perspective on lessons learned from one example of the integration of new prototype technology into a traditional operations environment. The dual arm work module was developed by the Robotics Technology Development Program as a research and development activity to examine manipulator controller modes and deployment options. It was later reconfigured for the dismantlement of the Argonne National Laboratory Chicago Pile number-sign 5 reactor vessel as the crane-deployed dual arm work platform. Development staff worked along side operations staff during a significant part of the deployment to provide training, maintenance, and tooling support. Operations staff completed all actual remote dismantlement tasks. At the end of available development support funding, the Dual Arm Work Platform was turned over to the operations staff, who is still using it to complete their dismantlement tasks

  17. Some regulation aspects in dismantling

    International Nuclear Information System (INIS)

    Niel, J.C.

    1993-01-01

    In the French regulation framework, operations linked to dismantling are controlled by an overall technical and legislative system applied to all the different stages of the facility (commissioning, etc.). Government control on facilities under dismantling is aimed at dismantling operation safety and security, and dismantling waste processing in order to ensure public and environmental protection

  18. Development of telerobotic manipulators for reactor dismantling work

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    This paper describes the amphibious electrical manipulators JARM-10, JART-25, JART-100 and JARM-25 which were developed in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. They are multi-functional telerobotic light-duty (10 and 25 daN) and heavy-duty (100 daN) Manipulators which can be used in hostile environments in reactor dismantling work such as high radiation, underwater work and electrical noise. Each manipulator can be operated in either a bilateral master-slave, a teach-and-playback or a programmed control mode. By combining these modes appropriately, it is possible to perform complex tasks of remote handling. The usefulness of the telerobotic systems for dismantling nuclear reactors has been demonstrated by successful application of the JARM-25 for remote underwater dismantlement of highly radioactive reactor internals of complex form of an experimental nuclear power reactor. (author)

  19. UDIN's dismantling projects

    International Nuclear Information System (INIS)

    Laffaille, C.

    1993-01-01

    The role of UDIN (Central unit for nuclear facility decommissioning) at the CEA is reviewed together with the main specific aspects of nuclear dismantling: the different options and dismantling strategies and costs. The characteristics of the main on-going projects are described: graphite-gas reactors (G2/G3), RAPSODIE (RNR), AT1 (pilot RNR fuel reprocessing plant), ELAN II B (Cesium source conditioning plant), EL4 (heavy water/CO2 reactor), RM2 (fuel control radio-metallurgical laboratory) and UB-UM (Uranium enrichment plant)

  20. EDF's dismantling experience

    International Nuclear Information System (INIS)

    Mira, J.J.

    1993-01-01

    The dismantling policy at EDF, taking into account technical, economical and socio-political factors, is presented. The various current realizations are reviewed and their dismantling solution discussed: Chinon A2, Chinon A1, Marcoule G1, G2, G3, Brennilis (EL4). Several dismantling projects are also described (Chinon A3, St-Laurent A1-A2, Chooz A). The various dismantling operations are presented and scheduled

  1. Supply, operation and radioactive waste disposal of nuclear power plants

    International Nuclear Information System (INIS)

    Mohrhauer, H.; Krey, M.; Haag, G.; Wolters, J.; Merz, E.; Sauermann, P.F.

    1981-07-01

    The subject of 'Nuclear Fuel Cycle' is treated in 5 reports: 1. Uranium supply; 2. Fabrication and characteristics of fuel elements; 3. Design, operation and safety of nuclear power plants after Harrisburg; 4. Radioactive waste disposal of nuclear power plants - changed political scenery after 1979; 5. Shutdown and dismantling of LWR-KKW - state of knowledge and feasibility. (HP) [de

  2. Sites with nuclear facilities in the state of dismantling and their future from the public perspective

    International Nuclear Information System (INIS)

    Kretz, Simon Philipp

    2015-01-01

    The thesis on the public perspective at sites of nuclear facility dismantling covers the following issues: the change of German energy landscapes under social and political points of view, theoretical frame of the work, combination of empirical studies and the theoretical approaches in a space concept, action model and hypotheses on the situation and development in communities with nuclear facilities in the state of dismantling, description of the interviewees, and the empirical results of the interviews.

  3. The AIDA-MOX 1 program: Results of the French-Russian study on peaceful use of plutonium from dismantled Russian Nuclear weapons

    International Nuclear Information System (INIS)

    Yegorov, N.N.; Kudriavtsev, E.; Poplavsky, V.; Polyakov, A.; Ouin, X.; Camarcat, N.; Sicard, B.; Bernard, H.

    1997-01-01

    The Intergovernmental Agreement signed on November 12, 1992, between the governments of France and the Russian Federation instituted cooperation between the two countries for the safe elimination of the excess Russian nuclear weapons. France has allocated 400 million francs to this program, covering transportation and dismantling of nuclear weapons, interim storage and subsequent commercial use of the nuclear materials from the dismantled weapons, nuclear materials accountancy and safeguards, and scientific research. The concept of loading commercial Russian reactors with fuel fabricated from the plutonium recovered from dismantled nuclear weapons of the former Soviet Union is gaining widespread acceptance, and is at the heart of the French-Russian AIDA/MOX project

  4. The promising opportunity of dismantlement

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Civil engineering, mechanics and waste conditioning companies are thriving around the market of nuclear facilities dismantlement which is promised to a huge development in the coming decade. This paper presents a map of the opportunities of the dismantlement market throughout Europe (research and power reactors, fuel fabrication plants, spent fuel reprocessing plants) and a cost estimation of a given dismantling work with respect to the different steps of the work. In France a small core of about twenty companies is involved in nuclear dismantlement but the French market is also looking towards foreign specialists of this activity. The British market is also targeted by the French companies but for all the actors the technological or commercial advance gained today will be determining for the future markets. (J.S.)

  5. Evaluation of scheduling problems for the project planning of large-scale projects using the example of nuclear facility dismantling; Evaluation von Schedulingproblemen fuer die Projektplanung von Grossprojekten am Beispiel des kerntechnischen Rueckbaus

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Felix; Schellenbaum, Uli; Stuerck, Christian; Gerhards, Patrick; Schultmann, Frank

    2017-05-15

    The magnitude of widespread nuclear decommissioning and dismantling, regarding deconstruction costs and project duration, exceeds even most of the prominent large-scale projects. The deconstruction costs of one reactor are estimated at several hundred million Euros and the dismantling period for more than a decade. The nuclear power plants built in the 1970s are coming closer to the end of their planned operating lifespan. Therefore, the decommissioning and dismantling of nuclear facilities, which is posing a multitude of challenges to planning and implementation, is becoming more and more relevant. This study describes planning methods for large-scale projects. The goal of this paper is to formulate a project planning problem that appropriately copes with the specific challenges of nuclear deconstruction projects. For this purpose, the requirements for appropriate scheduling methods are presented. Furthermore, a variety of possible scheduling problems are introduced and compared by their specifications and their behaviour. A set of particular scheduling problems including possible extensions and generalisations is assessed in detail. Based on the introduced problems and extensions, a Multi-mode Resource Investment Problem with Tardiness Penalty is chosen to fit the requirements of nuclear facility dismantling. This scheduling problem is then customised and adjusted according to the specific challenges of nuclear deconstruction projects. It can be called a Multi-mode Resource Investment Problem under the consideration of generalized precedence constraints and post-operational costs.

  6. Technical challenges for dismantlement verification

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Johnston, R.G.; Nakhleh, C.W.; Dreicer, J.S.

    1997-01-01

    In preparation for future nuclear arms reduction treaties, including any potential successor treaties to START I and II, the authors have been examining possible methods for bilateral warhead dismantlement verification. Warhead dismantlement verification raises significant challenges in the political, legal, and technical arenas. This discussion will focus on the technical issues raised by warhead arms controls. Technical complications arise from several sources. These will be discussed under the headings of warhead authentication, chain-of-custody, dismantlement verification, non-nuclear component tracking, component monitoring, and irreversibility. The authors will discuss possible technical options to address these challenges as applied to a generic dismantlement and disposition process, in the process identifying limitations and vulnerabilities. They expect that these considerations will play a large role in any future arms reduction effort and, therefore, should be addressed in a timely fashion

  7. Education and research when dismantling nuclear plants at the Technical University Dresden; Lehre und Forschung beim Rueckbau kerntechnischer Anlagen an der Technischen Universitaet Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, A.; Anthofer, A.; Cloppenborg, T.; Schreier, M. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik

    2013-08-15

    With the decision by the German government in 2011 to revoke the operating permission from 8 of the existing 17 German nuclear power plants, the responsibility of decommissioning and dismantling these plants has moved back into the focus of public awareness. Under the current legal conditions, the last nuclear plant will be disconnected from the grid on 31.12.2022 and this will create an enormous challenge for all the involved approving authorities, expert organisations, as well as companies involved in dismantling the plants. The development of new and efficient dismantling technologies and strategies is required to perform these highly responsible tasks. On the other hand, the nuclear competence and knowhow, as well as the promotion of young talents in the relevant scientific fields must be preserved. Technological and economic solutions are in demand for the various plants due to the different specifics of nuclear power plants. This will still require e.g. in the field of radiation protection highly qualified and well trained staff in future. The training of these skilled employees will require expanding the subject matter taught at universities, colleges and polytechnics to suit the changed parameters. The chair for hydrogen and nuclear energy technology at the TU Dresden will in future offer lectures as part of a new teaching discipline with the focus on dismantling and disposal. The course 'Dismantling nuclear power plants' took place for the first time in the summer semester 2013. It is organised as a three-day block seminar with an excursion to the company NIS Ingenieurgesellschaft mbH in Alzenau. The company NIS is a subsidiary of the Siempelkamp Nukleartechnik GmbH. This article intends to provide an overview of the contents of the courses and the impressions of the participants. In this way the TU Dresden is making a further contribution to preserving nuclear competence and inter-disciplinary dialogue. (orig.)

  8. Manually-Operated Crate Dismantlement System for Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Laffitte, John; Lagos, Leo; Morales, Miguel

    2002-01-01

    Los Alamos National Laboratory currently possesses between 500 and 800 fiberglass-reinforced plywood crates that contain hazardous materials that need to be decontaminated. To access the hazardous material, a system is needed to dismantle the crate. Currently, crates are dismantled by workers using hand-held tools. This technique has numerous disadvantages. One disadvantage is that it is difficult for a worker to hold the tool for an extended period of time in the awkward angles and positions necessary to fully size-reduce the crate. Other disadvantages of using hand tools include managing power cords and vacuum hoses, which become entangled or can act as tripping hazards. In order to improve the crate opening and size-reduction task, Florida International University's Hemispheric Center for Environmental Technology (HCET) is developing a manually operated crate dismantlement system. This versatile system is expected to greatly increase worker efficiency while decreasing fatigue and the possibility of accidents. (authors)

  9. Feedback from dismantling operations (level 2) on EDF's first generation reactors

    International Nuclear Information System (INIS)

    West, J P.; Dionisio-Gomes, A.; Kus, J P.; Mervaux, P.; Bernet, P.; Dalmas, R.

    2003-01-01

    EDF's policy as regards the dismantling of the reactors that have ceased commercial operation, namely the eight power plants of the first generation and the Creys-Malville power plant, is explained. Generally speaking, prior to the year 2001, EDF had opted for the de-construction of these power plants to comply with a 'long wait' scenario, which consisted of waiting for a period of 5 to 10 years to achieve IAEA level 2 (partial release of the site), then postponing the total de-construction of the facilities for 25 to 50 years. Today, EDF has decided to undertake the total de-construction of these reactors, which have ceased commercial operation, over a period of 25 years. The purpose of this document is to present: - The reactors concerned, their background and their 'regulatory' situation, - The main operations performed and/or currently in progress, - The main elements of feedback from such operations, shedding light on the approach adopted in 2001. The installations concerned by the de-construction programme are as follows: - The 8 power plants of the first generation, which were built during the fifties and sixties and ceased commercial operation between 1973 and 1994, namely: Brennilis (industrial prototype using heavy water technology, jointly operated by EDF and CEA), the 6 power units of the NUGG type (natural uranium gas graphite) at Chinon, Saint-Laurent des Eaux and Bugey and the PWR reactor at Chooz A, - The storage silos at Saint-Laurent, where the sleeves for the fuel assemblies of reactors SLA1 and SLA2 are stored, corresponding to approximately 2000 tonnes of graphite, - The Creys-Malville reactor, FBR (fast breeder reactor) shut down in accordance with a government decision, which is currently undergoing decommissioning. At the current stage, our feedback from the dismantling operations carried out on nuclear facilities is based on (i) the work carried out or in progress that will make it possible to achieve the equivalent of IAEA level 2 in the

  10. DISMANTLING OF THE FUEL CELL LABORATORY AT RESEARCH CENTRE JUELICH

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Bensch, D.; Ambos, Frank

    2003-01-01

    The fuel cell laboratory was constructed in three phases and taken into operation in the years 1962 to 1966. The last experimental work was carried out in 1996. After all cell internals had been disassembled, the fuel cell laboratory was transferred to shutdown operation in 1997. Three cell complexes, which differed, in particular, by the type of shielding (lead, cast steel, concrete), were available until then for activities at nuclear components. After approval by the regulatory authority, the actual dismantling of the fuel cell laboratory started in March 2000. The BZ I laboratory area consisted of 7 cells with lead shieldings of 100 to 250 mm thickness. This area was dismantled from April to September 2000. Among other things, approx. 30,000 lead bricks with a total weight of approx. 300 Mg were dismantled and disposed of. The BZ III laboratory area essentially consisted of cells with concrete shieldings of 1200 to 1400 mm thickness. The dismantling of this area started in the fir st half of 2001 and was completed in November 2002. Among other things, approx. 900 Mg of concrete was dismantled and disposed of. Since more than 90 % of the dismantled materials was measurable for clearance, various clearance measurement devices were used during dismantling. The BZ II laboratory area essentially consists of cells with cast steel shieldings of 400 to 460 mm thickness. In September 2002 it was decided to continue using this laboratory area for future tasks. The dismantling of the fuel cell laboratory was thus completed. After appropriate refurbishment, the fuel cell laboratory will probably take up operation again in late 2003

  11. Dismantling of Vandellos I

    International Nuclear Information System (INIS)

    Armada, J. R.

    2003-01-01

    Spain is witnessing the phase-out of a nuclear power plant. It is a unique experience in our country and therefore the dismantling work has been watched closely, not only from here but also from abroad. The Empresa Nacional de Residuos Radiactivos (ENRESA) is in charge of managing the dismantling and decommissioning work of the Vandellos-I nuclear power plant, located in the municipality of L'Hospitalet de l'Infant (Tarragona). the work began five years ago and has been executed on schedule. the appearance of what was one of the first Spanish commercial nuclear power plants has been changed radically to leave premises suitable for any other activity. (Author)

  12. The role of congress in future disposal of fissile materials from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Donnelly, W.H.; Davis, Z.S.

    1991-01-01

    Assuming the Soviet Union remains intact as a major power and the superpowers do not retrogress to a new Cold War era, it is likely that the United States and the Soviet Union will eventually agree to deep cuts in their nuclear arsenals. Future arms control agreements may be coupled with companion agreements to stop production of fissile materials for nuclear weapons, to dismantle the warheads of the nuclear weapons, and to dispose of their fissile materials to prevent reuse in new warheads. Such agreements would be negotiated by the U.S. executive branch but probably would require ratification, funding, and enabling legislation from the U.S. Congress if they are to succeed. There follows a brief review of the ideas for disposal of fissile materials from dismantled nuclear warheads and the potential role and influence of the Congress in the negotiation, ratification, and implementation of U.S.-Soviet agreements for such disposal

  13. Study on the Operating Strategy of HVAC Systems for Nuclear Decommissioning Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-hwan; Han, Sung-heum; Lee, Jae-gon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    According as Kori nuclear power plant unit 1 was determined to be defueled in 2017, various studies on nuclear plant decommissioning have been performed. In nuclear decommissioning plant, HVAC systems with large fan and electric coil have to be operated for long periods of time to support various types of work from defueled phase to final dismantling phase. So, in view of safety and utility costs, their overall operating strategy need to be established prior to defueled phase. This study presents HVAC system operating strategy at each decommissioning phase, that is, defueled plant operating phase, SSCs(systems, structures, components) decontamination and dismantling phases. In defueled plant operating phase, all fuel assemblies in reactor vessel are transferred to spent fuel pool(SFP) permanently. In defueled plant operation phase, reduction of the operating system trains is more practicable than the introduction of new HVAC components with reduced capacity. And, based on the result of the accident analyses for this phase, HVAC design bases such as MCR habitability requirement can be mitigated. According to these results, associated SSCs also can be downgraded. In similar approach, at each phase of plant decommissioning, proper inside design conditions and operating strategies should be re-established.

  14. Decommissioning of nuclear reprocessing plants French past experience and approach to future large scale operations

    International Nuclear Information System (INIS)

    Jean Jacques, M.; Maurel, J.J.; Maillet, J.

    1994-01-01

    Over the years, France has built up significant experience in dismantling nuclear fuel reprocessing facilities or various types of units representative of a modern reprocessing plant. However, only small or medium scale operations have been carried out so far. To prepare the future decommissioning of large size industrial facilities such as UP1 (Marcoule) and UP2 (La Hague), new technologies must be developed to maximize waste recycling and optimize direct operations by operators, taking the integrated dose and cost aspects into account. The decommissioning and dismantling methodology comprises: a preparation phase for inventory, choice and installation of tools and arrangement of working areas, a dismantling phase with decontamination, and a final contamination control phase. Detailed description of dismantling operations of the MA Pu finishing facility (La Hague) and of the RM2 radio metallurgical laboratory (CEA-Fontenay-aux-Roses) are given as examples. (J.S.). 3 tabs

  15. Parameters of Dismantling Techniques Related to Costs for Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon

    2012-01-01

    Reliable cost estimating is one of the most important elements of decommissioning operation. Reliable cost estimating is one of the most important elements of decommissioning planning. Alternative technologies may be evaluated and compared on their efficiency and effectiveness, and measured against a baseline cost as to the feasibility and benefit derived from the technology. This principle ensures that the cost consideration is economically sound and practical for funding. This paper provides a list with basic review of cutting and dismantling techniques, including some typical characteristics if available, as well as aspects of implementation, parameters of cutting and dismantling techniques in decommissioning costing. This paper gives an overview of the principles of the unit factor approach and its implementation in costing in relation to dismantling activities. In general, proper evaluation of decommissioning costs is important for following issues and relevant measures for achieving the listed aspects are: · Selection of a decommissioning strategy and activities: several decommissioning options should be evaluated: · Support to a cost-benefit analysis to ensure that the principle of optimization and reasonably practicable measures are applied: the extent of evaluated decommissioning options should cover all possible scenarios for dismantling activities; · Estimate of required financial resources for the selected strategy: the selected option should involve the dismantling activities in a structure and extent relevant to real procedure of dismantling activities; · Preparation of the project schedule, workforce requirements and phased funding needs: dismantling activities should be structured according to the tasks of the decommissioning schedule; · Definition of measures for proper management and maintenance of resources for safe and timely decommissioning: the time distribution and safety related parameters of dismantling activities should be known

  16. Polychlorinated biphenyls (PCBs) in the frame of the dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Hagenbart, Lars; Held, Christian; Reichert, Alexander

    2013-01-01

    During construction and maintenance of nuclear facilities PCB (polychlorinated biphenyls) containing paints were used in a large extent in the past. The WAK dismantling and disposal Company has dismantles such facilities and identified the PCB in the buildings. Besides the radionuclides the conventional hazardous material group of the PCBs has also to be disposed. The respective legal regulations have to be considered. In the frame of the contribution the radiological release of building structures with respect to re-use or demolition and residual PCB containing materials is discussed. The radiological disposal in final repositories and the conventional disposal regulations for releasable residual wastes are reported.

  17. Health and Safety Considerations Associated with Sodium-Cooled Experimental Nuclear Fuel Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Carvo, Alan E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Between the mid-1970s and the mid-1980s Sandia National Laboratory constructed eleven experimental assemblies to simulate debris beds formed in a sodium-cooled fast breeder reactor. All but one of the assemblies were irradiated. The experimental assemblies were transferred to the Idaho National Laboratory (INL) in 2007 and 2008 for storage, dismantlement, recovery of the uranium for reuse in the nuclear fuel cycle, and disposal of unneeded materials. This paper addresses the effort to dismantle the assemblies down to the primary containment vessel and repackage them for temporary storage until such time as equipment necessary for sodium separation is in place.

  18. Expertise of the Oeko-Institute on the application to obtain permission to partially dismantle the Niederaichbach nuclear power plant

    International Nuclear Information System (INIS)

    1985-01-01

    This expertise gives an overview on the problems associated with the decommissioning and dismantling of the Niederaichbach nuclear power plant, considering technical and legal aspects. It wants to prove that the dismantling of this reactor cannot serve as evidence to prove the general feasibility of reactor dismantling. Much space is dedicated to the discussion about where the borderline should be drawn between radioactive and non-radioactive materials according to the ordinance on radiation protection. The reasons for rejecting the partial dismantling application are given. (DG) [de

  19. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka Shipyard, Russia

    International Nuclear Information System (INIS)

    Washer, M.; Cull, M.; Crocker, C.; Ivanov, V.; Shepurev, A.; Khan, B.U.Z.; Lee, M.; Gerchikov, M.

    2007-01-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal and spent nuclear fuel assemblies; treatment/decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  20. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka shipyard, Russia

    International Nuclear Information System (INIS)

    Washer, M.; Cull, M.; Crocker, C.; Ivanov, V.; Shepurev, A.; Khan, B.U.Z.; Lee, M.; Gerchikov, M.

    2008-01-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal of spent nuclear fuel assemblies; treatment/ decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  1. Method of dismantling a nuclear reactor

    International Nuclear Information System (INIS)

    Shirai, Masato; Hashimoto, Osamu.

    1984-01-01

    Purpose: To enable rapid and simple positioning for a plasma arc torch disposed to the inside of a nuclear reactor main body. Method: After removing the upper semi-spherical portion, fuel portion and control rod portion of a nuclear reactor, a rotary type girder is placed on the upper edge of a cylindrical portion remained after the removal of the upper semi-spherical portion. Then, the upper portion of a supporting rod provided with a swing arm having a plasma arc torch at the top end is situated at the center of the reactor main body. Then, the top end of the support rod is inserted to fix in the housing of control rod drives. Then, the swing arm is actuated to situate the plasma arc torch to a desired position to be cut, whereafter cutting is initiated while rotating the rotary type girder. Thus, plasma arc torch is moved horizontally along an arcuate trace, whereby pipeways, accessories or the likes disposed to the inside of the main body are at first cut and then the cylindrical portion constituting the main body is cut to dismantle the reactor. (Moriyama, K.)

  2. Vandellos-I Dismantling nearing completion

    International Nuclear Information System (INIS)

    Armada, J. R.

    2004-01-01

    Spain is witnessing the phase-out of a nuclear power plant. It is a unique experience in our country and therefore the dismantling work has been watched closely, not only from here but also from abroad. The Empresa Nacional de Residuos Radiactivos (ENRESA) is in charge of managring the dismantling and decommissioning work of the Vandellos-1 nuclear power plant, located in the municipally of l' Hospitalet de l'Infant (Tarragona). The work began five years ago and has been executed on schedule. The appearance of what was one of the first Spanish commercial nuclear power plants has been changed radically to leave premises suitable for any other activity. (Author)

  3. Evaluation of the secondary radiation impact on personnel during the dismantling of contaminated nuclear equipment

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2013-01-01

    Full Text Available The article contains a numerical analysis of the secondary radiation contribution to the total radiation affecting the operational personnel during the dismantling activities of the contaminated equipment at a nuclear power plant. This study considers a widely applicable Monte Carlo particle transport code MCNPX and real Ignalina nuclear power plant records. A simplified albedo method is investigated in order to analyze the selected geometrical design cases. Additionally, the impact of the secondary radiation on the personnel dose was analyzed. The numerical MCNPX simulation allowed ascertaining the optimal distance between the source and the wall for the working personnel in closed rooms with contaminated equipment. The developed dose rate maps of the secondary radiation showed cross-sectional distribution of the dose rate inside the enclosed area.

  4. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Equipment Dismantlement Technologies. Topical Report January 1998

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The dismantlement of radioactively contaminated process equipment is a major concern during the D and D process. As buildings undergo the D and D process, metallic equipment contaminated with radionuclides such as uranium and plutonium must be dismantled before final disposal.The primary objective for equipment dismantlement is to reduce the potential for personnel and environmental exposure to contaminants during the decommissioning of the nuclear facility. The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D and D project costs. Innovative technologies are being developed with the goal of providing safer and more cost-effective alternatives that generate less secondary waste, thereby decreasing the operating costs for dismantlement. During the development and implementation process, performance indicators for the success of these technologies must be reviewed to ensure that these aims are being met. This project provides a mechanism for the assessment of innovative and commercially available nuclear and non-nuclear technologies for equipment dismantlement

  5. Adaptation of high pressure water jets with abrasives for nuclear installations dismantling

    International Nuclear Information System (INIS)

    Rouviere, R.; Pinault, M.; Gasc, B.; Guiadeur, R.; Pilot, M.

    1989-01-01

    This report presents the work realized for adjust the cutting technology with high pressure water jet with abrasives for nuclear installation dismantling. It has necessited the conception and the adjustement of a remote tool and the realization of cutting tests with waste produce analysis. This technic can be ameliorated with better viewing systems and better fog suction systems

  6. Taking into account dismantling and decommissioning waste management in conception and operation phases

    International Nuclear Information System (INIS)

    Poncet, Philippe

    2016-01-01

    Managing waste during the Dismantling and Decommissioning (D and D) phase is quite specific and different from what it was during the operation phase. Indeed, waste generated during dismantling could present some analogy especially with regards to the radionuclides spectrum and contents. However waste from dismantling and cleanup could actually presents a lower level of radiologic activity but produced in much larger quantities, which requires new solutions. Moreover the characteristics and quantities of waste to be managed during D and D are highly depending on the way the facility was designed and also how it was actually operated during its life time. Taking future D and D into consideration in the early design as well as during the operation of new facilities is becoming more and more mandatory. It is now an explicit requirement set by safety authorities, to provide - in the license application for news plants - a description of design provisions and future plans for D and D as well as anticipated technical and financial impacts,. Two major aspects are driving the cost and complexity of future D and D operations: waste volumes by categories and occupational exposure while performing the work. To reduce such impacts, key approaches are to maintain areas clean, segregate the waste types and provide appropriate provisions in the design. The paper's first part describes the related design and operation concepts derived from lessons learned, and illustrations by examples are presented in a second part. (author)

  7. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion

  8. Systems analysis of radiation safety during dismantling of power-plant equipment at a nuclear power station

    International Nuclear Information System (INIS)

    Bylkin, B.K.; Shpitser, V.Ya.

    1993-01-01

    A systems analysis of the radiation safety makes possible an ad hoc determination of the elements forming the system, as well as the establishment of the characteristics of their interaction with radiation-effect factors. Here the authors will present part of the hierarchical analysis procedure, consisting in general of four separate procedures. The purpose is to investigate and analyze the mean and stable (on the average) indices of radiation safety, within the framework of alternative mathematical models of dismantling the power-plant equipment of a nuclear power station. The following three of the four procedures are discussed: (1) simulated projection, of the processing of radioactive waste; (2) analysis of the redistribution of radionuclides during the industrial cycle of waste treatment; (3) planning the collective dose load during the dismantling operation. Within the framework of the first of these procedures, the solutions to the problem of simulating a waste-treatment operation of maximum efficiency are analyzed. This analysis is based on the use of a data base for the parameters of the installations, assemblies, and equipment, enabling the integration of these in a simulation of a complex automated facility. The results were visualized in an AUTOCAD-10 medium using a graphical data base containing an explanation of the rooms

  9. The good wealth of dismantlement

    International Nuclear Information System (INIS)

    Maincent, G.

    2009-01-01

    Civil engineering, mechanical and waste conditioning companies are working hard on the market of nuclear facilities dismantling. This market has a great future ahead of it in the ten years to come. According to the European Commission, 50 to 60 reactors among the 157 actually in service in the European Union should be dismantled by 2025. The cost per reactor is estimated to 10-15% of the initial investment, which represents an enormous amount of money, estimated to 20-39 billion euros for the only French nuclear park. In France, this market is shared by a core of about 20 companies, like Spie Nucleaire, Onet, Vinci (Nuvia) and Areva. Some dismantling sites require a specific skill, in particular those in relation with the research activity of the CEA (the French atomic energy commission) or involving specific technologies (research reactors, spent fuel reprocessing plants, sodium-cooled rectors..). (J.S.)

  10. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  11. Recycling of concrete generated from Nuclear Power Plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nawa, Toyoharu; Ishikura, Takeshi; Tanaka, Hiroaki

    2013-01-01

    Reactor decommissioning required various technologies such as dismantling of facilities, decontamination, radioactivity measurement and recycling of dismantling wastes. This article discussed recycling of demolished concrete wastes. Dismantling of reactor building of large one unit of nuclear power plants would generate about 500 K tons of concrete wastes, about 98% of which was non-radioactive and could be used as base course material or backfill material after crushed to specified particle size. Since later part of 1990s, high quality recycled aggregate with specified limit of bone-dry density, water absorptivity and amount of fine aggregate had been developed from demolished concrete with 'Heat and rubbing method', 'Eccentric rotor method' and 'Screw grinding method' so as to separate cements attached to aggregate. Recycled aggregates were made from concrete debris with 'Jaw crusher' to particle size less than 40 mm and then particle size control or grinded by various grinding machines. Recycled fine aggregates made from crushing would have fragile site with cracks, air voids and bubbles. The author proposed quality improvement method to selectively separate fragile defects from recycled aggregates using weak grinding force, leaving attached pastes much and preventing fine particle generation as byproducts. This article outlined experiments to improve quality of recycled fine aggregates and their experimental results confirmed improvement of flow ability and compressive strength of mortal using recycled fine aggregates using 'Particle size selector' and 'Ball mill' so as to remove their fragile parts less than 2%. Mortal made from recycled fine aggregate could also prevent permeation of chloride ion. Recycled aggregate could be used for concrete instead of natural aggregate. (T. Tanaka)

  12. SGN's Dismantling and Decommissioning engineering, projects experience and capabilities

    International Nuclear Information System (INIS)

    Destrait, L.

    1998-01-01

    Its experience in waste treatment, conditioning, storage and disposal, its cooperation with CEA and COGEMA Group in license agreements give SGN expertise in the decommissioning field. SGN's experience and background in all areas of nuclear facility decommissioning, such as chemical and mechanical cells, nuclear advanced reactors, reprocessing facilities result in fruitful references to the customers. The poster is presenting different achievements and projects with SGN's participation such as: - The decommissioning of Windscale Advanced Gas cooled Reactors (WAGR), in particular providing methodology and equipment to dismantle the Pressure and Insulation Vessel of the reactor. - The decommissioning plan of Ignalina (Lithuania) and Paldiski (Estonia), defining strategies, scenarios, necessary equipments and tools and choosing the best solutions to decommission the site under different influencing parameters such as cost, dose rate exposure, etc... - Th One Site Assistance Team (OSAT) at Chernobyl regarding the preparation works for the waste management and decommissioning of the plant. - The decommissioning of French nuclear facilities such as reprocessing (UP1) and reactor (EL4) plants. The important experience acquired during the facility management and during the first dismantling and decommissioning operations is an important factor for the smooth running of these techniques for the future. The challenge to come is to control all the operations, the choice of strategies, the waste management, the efficiency of tools and equipments, and to provide nuclear operators with a full range of proven techniques to optimise costs and minimize decommissioning personnel exposure. (Author)

  13. Evolution of radiation protection of overall decommissioning and Dismantling of a Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ortiz, M. T.; Ondaro, M.; Irun, I.; Just, J.

    2000-01-01

    From the point of view of Radiological Protection, the overall Decommissioning and Dismantling (D and D) Plan of a Nuclear Power Plant cannot be considered in isolation without considering the evolution of the radiological characteristics of the installation and the site itself from previous, during and final states. This experience of D and D is the first in Spain and in other European countries due to several aspects: 1) the reference reactor technology, 2) total grass power, and 3) management of a great amount of materials to be released. Three decommissioning alternatives were studied: Indefinite maintenance in shutdown state, Stage 1. Stage 2 for the defuelled reactor vessel and contents, with decontamination of most of the rest of the site. Immediate dismantling to Stage 3. Stage 2 was the alternative selected with the release of 80% of the site, keeping the remaining 20% of the site as a regulated area, housing the reactor vessel in a new structure and removing the radioactive waste. The above, along with the fact that this is a specific type of natural uranium-graphite-gas plant (NUGG) and that ownership of the facility has been transferred for dismantling (from HIFRENSA to ENRESA), implies a series of preliminary considerations that, for the purposes of this article, are compiled in the following aspects: a) Preliminary phase prior to transfer, b) Preparatory phase, and c) Dismantling phase. This paper describes aspects under the D and D experiences at CN-V1 NPP, now in progress, from the point of view of the radiological aspects in relation with the continuous updating of the source term. Operative Radiological nuclide vectors, applicable in the Radiation Protection tasks, are also commented to prevent and evaluate several risks during the execution of the works. Finally, there is a description of the results obtained from the work performed to decay the three actual nuclide vectors, to evaluate and obtain activity calculations for the release of the

  14. Technical report on dismantling of incinerator building of JNC with strict environmental assessments especially for the contamination of surroundings of incinerator by Dioxin's in soil

    International Nuclear Information System (INIS)

    Aizawa, Masanori; Ohmori, Koji; Nomura, Takeshi; Numano, Tatuo; Usui, Kazuya; Irinouchi, Shigenori

    2003-03-01

    Building of incinerator for general waste located at Tokai of Japan Nuclear Cycle Development Institute (JNC in short) were dismantled form April 2002 to March 2003 under environmental control According to the regulation entitled 'Outline for the prevention of exposure of Dioxin's to operators engaged in dismantling of waste incinerator' issued on June 01, 2000 by Ministry of Health, Labor and Welfare in Japan, the regulation requests proper protection methodology to dismantling the incinerator and surroundings contaminated by Dioxin's. This report consists of Environmental assessment under Japanese law and regulations and Procedure of actual dismantling of incinerator building with law-abiding stand point. 1. Environmental assessment; Survey of several laws and regulations concerning on the Dioxin's and actual site assessment to analyze the content of Dioxin's for surroundings of incinerator building. Ground design of dismantling procedures, waste management for disposed during dismantling and scheduling for dismantling of building. 2. Dismantling procedures; Prior to dismantling operation, contamination map by Dioxin's were established then restricted areas were determined. Protection methodology to dioxin's exposure for operators were selected and started dismantling operation after getting permission from the Labor Standards Bureau of Ibaraki Prefecture. Dismantling operations were carried out with respect o above mentioned regulations to prevent the operators exposure to Dioxin's if they are exists in soil or surroundings of building. Finally, dismantling operations were completed without accidents and confirmed no-exposure of Dioxin's to operators of dismantling. Waste generated during dismantling were recycled using specialized recycling companies in Ibaraki prefecture. Dismantling operation of incinerator was first experience at Ibaraki Prefecture, so the officials of Labor Standards Bureau were carried out on-the-spot inspection and have no claim from

  15. SGDES: Management system dismantling of ENRESA; SGDES: Sistema de gestion de desmantelamiento de ENRESA

    Energy Technology Data Exchange (ETDEWEB)

    Julian, A. de; Fernandez, M.; Vidaechea, S.

    2013-07-01

    ENRESA, the Spanish public company responsible for managing radioactive waste and nuclear facilities decommissioning, has developed a management information system (SGDES) for the decommissioning of nuclear power plants. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both under human and technological point of view. SGDES system is capable of responding to the mentioned operational needs, efficiently and safely.

  16. Method and jig for dismantling nuclear fuel assembly

    International Nuclear Information System (INIS)

    Urata, Megumi; Watahiki, Minoru.

    1989-01-01

    The object of the present inention is to extract a fuel element from a lower tie plate safely and at high efficiency by a remote control operation. That is, a forked top end of a lever of a dismantling jig is inserted between the tapered portion of a lower end plug and a lower tie plate. Then, a load is applied to the counter-lower end side of the lever by a motor. This exerts an elevating force to the fuel elements to easily release fixture between the lower end plug and the lower tie plate. Since the fuel can of fuel elements is not applied with a force by this mehtod, operation safety can be improved. (I.J.)

  17. Radiation protection during backfitting or dismantling work in the controlled area of nuclear facilities

    International Nuclear Information System (INIS)

    Baumann, J.; Kausch, S.; Palmowski, J.

    1980-01-01

    Backfitting measures or dismantling activities within the controlled area put special requirements on radiological protection. This is to be shown by the example of the following cases. Sanitation of the general decontamination services of the Karlsruhe Nuclear Research Center; waste water, equipment decontamination, incineration and packaging facility; dismantling and disposal of high-radiation components including decontamination of buildings of the Eurochemic reprocessing plant at Mol; reconstruction of the HDR plant for safety experiments together with waste management for components and systems, as e.g. pressure vessel internals, pipes etc.; exchange of the steam dryer and the water separator including planning of the conditioning process in the Wuergassen nuclear power plant. This lecture deals with the engineering and organizational problems, especially accounting for radiological protection and enters into planning of measures for radiological protection, their organization and execution, problems of direct and remote-controlled work also being discussed. The question of personnel qualification is also commented on. (orig.) [de

  18. CP-5 reactor remote dismantlement activities: Lessons learned in the integration of new technology in an operations environment

    International Nuclear Information System (INIS)

    Noakes, M.W.

    1998-01-01

    This paper presents the developer's perspective on lessons learned from one example of the integration of new prototype technology into a traditional operations environment. The dual arm work module was developed by the Robotics Technology Development Program as a research and development activity to examine manipulator controller modes and deployment options. It was later reconfigured for the dismantlement of the Argonne National Laboratory Chicago Pile No. 5 reactor vessel as the crane-deployed dual arm work platform. Development staff worked along side operations staff during a significant part of the deployment to provide training, maintenance, and tooling support. Operations staff completed all actual remote dismantlement tasks. At the end of available development support funding, the Dual Arm Work Platform was turned over to the operations staff, who are still using it to complete their dismantlement tasks

  19. Remote techniques for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1997-01-01

    Unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MWe. It was shut down in 1977 after eleven years of operation. The actual decommissioning started in 1983. Since then more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, which uses a dual-cycle system for additional steam generation, the experience gained is transferable to pressurized water reactors. (Author)

  20. Remote control for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1996-01-01

    The unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MW e . It was shut down in 1977 after 11 years of operation. The actual decommissioning started in 1983. Meanwhile more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, using an dual cycle system for additional steam generation, the experience gained is transferable to pressurised water reactors as well. (Author)

  1. Application and development of dismantling technologies for decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Bach, W.; Kremer, G.; Ruemenapp, T.

    2006-01-01

    The decommissioning of nuclear installations poses a challenge to high performance underwater cutting technologies because of complex limiting conditions, like radioactive contamination, accessibility, geometry of work piece, material thickness and composition. For the safe dismantling of the moderator tank and the thermal shield of the Multi-purpose Research Reactor (MZFR) Karlsruhe the development and the use of thermal cutting tools will be demonstrated, in this case the underwater plasma arc cutting and the contact arc metal cutting (CAMC). (orig.)

  2. Control of radioactive waste in dismantling of a nuclear facility; Control de residuos radiactivos en desmantelamiento de una instalacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Campayo, E.

    2014-07-01

    In the dismantling of a nuclear facility are generated radioactive waste that must be suitably processed. The overall process, in a simplified manner, contemplates the characterization in origin, their segregation on the basis of physical, mechanical, and radiological characteristics and their packaging. (Author)

  3. Dismantling of the rooms 82 to 100 at Marcoule

    International Nuclear Information System (INIS)

    Fiol, A.

    1988-01-01

    The dismantling of the rooms 82 to 100 at Marcoule is up to now, the most important decommissioning operation. The COGEMA Marcoule had the responsibility of studying and organizing the operation. On the works site the work was performed by STMI. The construction of a complete nuclear waste processing system was necessary, to protect against Pu contamination. Moreover, the efficiency of the work, was improved by the development and use of large special cutting tools [fr

  4. Latest expertise investigations in nuclear dismantling and industrial applications

    International Nuclear Information System (INIS)

    Gallozzi Ulmann, Adrien; Chazalet, Julien; Couturier, Pierre; Touzain, Etienne; Amgarou, Khalil; Menaa, Nabil

    2013-06-01

    During the last decades, CANBERRA has developed know-how, expertise and intervention strategies based on its feedback experiences in many countries. This document covers a wide range of applications involving nuclear characterization, for which CANBERRA is able to provide measurement set-up and results, activity characterization and radioactive source localization, as well as to guarantee safety or process thresholds corresponding to the customer's needs. To improve processes best-in-class methodology, know-how and tools have been used in complex examples described in this paper. CANBERRA has demonstrated its ability to better and efficiently prepare for and execute decontamination and dismantling activities. (authors)

  5. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  6. The management of radioactive wastes and the dismantling of nuclear installations in Spain

    International Nuclear Information System (INIS)

    Bouchet, Bertrand

    2014-08-01

    This report first presents the Spanish institutional framework, briefly presents the multi-year national plan of management of radioactive wastes, and indicates the origin and volume of radioactive wastes produced in Spain. It addresses the management of low and medium level wastes, the case of spent fuel and high level wastes (storage in pool and installations of temporary warehousing, project of a centralized temporary storage, the question of definitive management), and proposes an overview of R and D activities in the different domains of waste management in Spain: waste technology, technologies and processes of treatment, packaging and dismantling, materials and containment systems, behaviour and safety assessment, radiological protection and associated modelling, infrastructure and cooperation. The two last parts briefly address the funding of waste management and the dismantling of nuclear installations

  7. Decree no. 2004-48 from January 12, 2004 authorizing the French atomic energy commission to proceed to the definitive decommissioning and dismantling operations of the nuclear facility no. 43, named Saclay linear accelerator (ALS), on the territory of Saint-Aubin town (Essonne)

    International Nuclear Information System (INIS)

    2004-01-01

    The linear accelerator of Saclay (ALS) has been the object of a commissioning permission given by decree by the French prime minister in October 8, 1965. It is submitted to the regime of basic nuclear facilities as defined in the decree no. 63-1228 from December 11, 1963. The French atomic energy commission (CEA) put down a request for the definitive decommissioning and dismantling of this facility on May 30, 2002. The duration foreseen for these operations is of 4 years. After the safety examination of the request by the DGSNR and the institute of radioprotection and nuclear safety (IRSN), a favorable and conformable advice has been given by the different ministries (health, finances and industry, ecology and sustainable development) and has led to this decree which precises the different protection measures to be implemented during the dismantling work. (J.S.)

  8. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    Energy Technology Data Exchange (ETDEWEB)

    Volant, Emmanuelle [CEA DAM, Bruyeres-le-Chatel (France); Garnier, Cedric [CEA DEN, Marcoule (France)

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise and its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of

  9. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options; Rueckstellungen fuer Stilllegung/Rueckbau und Entsorgung im Atombereich. Thesen und Empfehlungen zu Reformoptionen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Bettina [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany). Green Budget Germany (GBG)

    2012-04-11

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  10. Dismantling method for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Shuji; Kato, Akihiro; Yoshida, Masafumi.

    1993-01-01

    An upper nozzle is detached from a control rod guide tube and an instrumentation tube. Subsequently, slots (slits) having a predetermined width are formed longitudinally at enlarged diameter portions of the control rod guide tube and the instrumentation tube. Then, the control rod guide tube and the instrumentation tube are separated from a lower nozzle, and pulled out from the lattice space of each of the support lattices. Thereafter, a predetermined key is inserted to a key insertion window formed at each of the support lattices, to distort a spring and take the fuel rod out of the lattice space of each of the support lattices. With such procedures, when the control rod guide tube and the instrumentation tube are pulled out of the lattice space of the support lattice, the enlarged diameter portion is narrowed to reduce the diameter, thereby enabling to take them out easily. Accordingly, since the space for inserting the key can be ensured, the nuclear fuel assemblies can easily be dismantled. In addition, fuel rods can be taken out smoothly and in an intact state. (I.N.)

  11. Data analysis on work activities in dismantling of Japan Power Demonstration Reactor (JPDR). Contract research

    International Nuclear Information System (INIS)

    Shiraishi, Kunio; Sukegawa, Takenori; Yanagihara, Satoshi

    1998-03-01

    The safe dismantling of a retired nuclear power plant was demonstrated by completion of dismantling activities for the Japan Power Demonstration Reactor (JPDR), March, 1996, which had been conducted since 1986. This project was a flag ship project for dismantling of nuclear power plants in Japan, aiming at demonstrating an applicability of developed dismantling techniques in actual dismantling work, developing database on work activities as well as dismantling of components and structures. Various data on dismantling activities were therefore systematically collected and these were accumulated on computer files to build the decommissioning database; dismantling activities were characterized by analyzing the data. The data analysis resulted in producing general forms such as unit activity factors, for example, manpower need per unit weight of component to be dismantled, and simple arithmetic forms for forecasting of project management data to be applied to planning another dismantling project through the evaluation for general use of the analyzed data. The results of data analysis could be usefully applied to planning of future decommissioning of commercial nuclear power plants in Japan. This report describes the data collection and analysis on the JPDR dismantling activities. (author)

  12. Decommissioning and dismantling of nuclear and fuel cycle facilitites in Spain

    International Nuclear Information System (INIS)

    Gravalos, J.M.; Alamo, S.

    1992-01-01

    In the recent past, and as a consequence of a fire in the turbine island of the Vandellos I Graphite Gas type Nuclear Plant, which damaged the facility to a point that recovery was not judged economically feasible, the authorities decided on the final shutdown of the plant. Several studies were performed in order to select the dismantling strategy to be adopted. In spite of Valdellos I being the first commercial reactor to be decommissioned in Spain, several research reactors and fuel cycle facilities, which have reached the end of their commercial lives, are at present at different stages of their dismantling and decommissioning process as is described further. The development of an exemption policy for below regulatory concern wastes is considered a very significant issue regarding decommissioning as it has a large impact on radioactive waste volumes, and thus on costs. Aware of this problem ENRESA together with Spanish regulatory authorities are working in close cooperation with CEC research programs to complete the development of criteria and methodologies for the application of exemption practices in Spain

  13. Cost effective decommissioning and dismantling of nuclear power plants; Kosteneffizienz bei Stilllegung und Rueckbau von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [AREVA NP GmbH, Offenbach (Germany)

    2012-10-15

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  14. LEP dismantling starts

    CERN Multimedia

    2000-01-01

    Since the end of November, various teams have been getting stuck into dismantling the LEP accelerator and its four experiments. After making the installations safe, the dismantling and removal of 40,000 tonnes of equipment is underway. Down in the tunnel, it is a solemn moment. It is 10 o'clock on 13 December and Daniel Regin, one of those heading the dismantling work, moves in on a magnet, armed with a hydraulic machine. Surrounded by teams gathered there for a course in dismantling, he makes the first cut into LEP. The great deconstruction has begun. In little over than a year, the accelerator will have been cleared away to make room for its successor, the LHC. The start of the operation goes back to 27 November. Because before setting about the machine with hydraulic shears and monkey wrenches, LEP had first to be made safe - it was important to make sure the machine could be taken apart without risk. All the SPS beam injection systems to LEP were cut off. The fluids used for cooling the magnets and superc...

  15. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  16. Contaminated Metal Components in Dismantling by Hot Cutting Processes

    International Nuclear Information System (INIS)

    Cesari, Franco G.; Conforti, Gianmario; Rogante, Massimo; Giostri, Angelo

    2006-01-01

    During the preparatory dismantling activities of Caorso's Nuclear Power Plant (NPP), an experimental campaign using plasma and oxyacetylene metal cutting processes has been performed and applied to plates and tubes exposed to the coolant steam of the reactor. The plant (Boiling Water Reactor, 870 MWe) was designed and built in the 70's, and it was fully operating by 1981 to 1986 being shut down after 1987 Italy's poll that abrogated nuclear power based on U235 fission. The campaign concerns no activated materials, even if the analyses have been performed of by use contaminated components under the free release level, not yet taking into account radioactivity. In this paper, the parameters related to inhalable aerosol, solid and volatile residuals production have been, studied during hot processes which applies the same characteristics of the cutting in field for the dismantling programs of Caorso NPP. The technical parameters such as cutting time and cutting rate vs. pipe diameter/thickness/schedule or plate thickness for ferritic alloys and the emissions composition coming from the sectioning are also reported. The results underline the sort of trouble that can emerge in the cutting processes, in particular focusing on the effects comparison between the two cutting processes and the chemical composition of powders captured by filtering the gaseous emission. Some preliminary considerations on methodology to be used during the dismantling have been presented. (authors)

  17. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Ford, J.; Bishop, J.F.W.

    1981-01-01

    An improved fuel sub-assembly for liquid metal cooled fast breeder nuclear reactors is described which facilitates dismantling operations for reprocessing purposes. The method of dismantling is described. (U.K.)

  18. Decommissioning and dismantling reactors and managing waste

    International Nuclear Information System (INIS)

    Bensoussan, E.; Reicher-Fournel, N.

    2005-01-01

    In the early forties/fifties, a number of countries launched the first developments in the field of nuclear power. Some of them now have large numbers of nuclear facilities and nuclear power plants which have met, and continue to meet, the objectives for which they were designed and built. Other plants, including nuclear fuel production and enrichment plants, experimental reactors or research reactors, will have to be dismantled and demolished in the near future. These activities are handled differently in different countries as a function of specific energy policies, advanced development plants, current financial resources, the availability of qualified engineers and specialized industries able to handle projects of this kind, as well as other factors. All dismantling and demolition projects serve the purpose of returning the respective sites to green-field conditions. (orig.)

  19. Metal Radioactive Waste Recycling from the Dismantling of Nuclear Facilities

    International Nuclear Information System (INIS)

    Fajt, B.; Prah, M.

    1996-01-01

    In the dismantling process of nuclear power plants a large amount of metal residues are generated. The residues of interest are stainless steel, copper and aluminium and can be reprocessed either for restricted or unrestricted use. Although there are many questions about the further use of these materials it should be convenient to recycle them. This paper discusses the complexity of the management of these metals. The radiation protection requirements are the most important principles. For these purposes great efforts in the decontamination have to be made. Regulatory aspects, clearance levels as well as characteristic of steel recycling industry, radiological impact and new developments are discussed. (author)

  20. Machine for dismantling metal parts

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Loginovskiy, V.I.; Yagudin, S.Z.

    1982-01-01

    The purpose of the invention is to reduce the outlays of time for dismantling metal parts under conditions of eliminating open gas and oil gushers in operational drilling. This goal is achieved because the machine for dismantling the metal parts is equipped with a set of clamping elements arranged on the chassis, where each of them has a drive.

  1. Consideration of dismantling operations in the design

    International Nuclear Information System (INIS)

    Dubourg; Bonin.

    1984-12-01

    This analysis shows that the parameters and the constraints taken into account at the design level to facilitate the exploitation and the maintenance make the dismantling and its preparation easier [fr

  2. Integration of remotely operated manipulator systems for the nuclear industry

    International Nuclear Information System (INIS)

    Blight, J.; Cornec, G.

    2003-01-01

    There is no getting away from remotely operated manipulator systems in significant part in dismantling operations, because of the actual radioactive emitting level of installations. However, some main contractors, who have been involved in dismantling projects in the past few years are reluctant to use remotely operated systems because: - equipment characteristics are not suitable for the environment and the work to be performed; - There are some design problems; - Main components do not withstand operation any longer, after some time; - There are deficiencies in the management of quality, for critical equipment problems that degrade the productivity and increase direct and indirect labour cost. As a summary therefore, equipment available on this dismantling market are reputedly unreliable and not 'industrial' (sturdy) enough. However, numerous operations in maintenance in primary loops of nuclear reactors, or in the Offshore sector, are carried out remotely, to the satisfaction of the operators and the investors. In the dismantling sector, a thorough analysis of the difficulties encountered indicates that their origin is mostly due to a lack of methodology - that needs to be addressed -, rather than a technical problem. In that context, CYBERNETIX proposes to be involved in phases upstream and downstream of the equipment supply's. Upstream: Participate in developing/validating the scenarios to be used to optimise the constraints of remote operations/equipment. Downstream: Participate actively in supporting the client on-site, ensuring that equipment are available and maintained by competent and motivated people, and thus, getting experience in order to improve the State-of-the-Art of robotic in that field. Then, the contracting authority and CYBERNETIX jointly define the limits and the content of the involvement of each party, and also define the most appropriate type of 'partnership' between the main contactor and the participating companies, and in order to

  3. The Japan Power Demonstration Reactor dismantling project. Radiation control

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Seiki, Yoshihiro

    1996-01-01

    In the Japan Power Demonstration Reactor (JPDR) dismantling project, radiation control was performed properly with routine and special monitoring to keep the occupational safety and to collect data necessary for future dismantling of nuclear facilities. This report describes a summary of radiation control in the dismantling activities and some results of parametric analysis on dose equivalent evaluation, and introduces the following knowledge on radiological protection effectiveness of the dismantling systems applied in the project. a) Use of remote dismantling systems was effective in reducing equivalent workplace exposure. b) Utilization of existing facilities as radiation shield or radioactivity containment was effective in reducing workplace exposure, and also in increasing work efficiency. c) Use of underwater cutting systems was useful to minimize air contamination, and to reduce the dose equivalent rate in the working area. d) In the planning of dismantling, it is necessary to optimize the radiation protection by analyzing dismantling work procedures and evaluating radiological features of the dismantling systems applied, including additional work which the systems require brought from such activities. (author)

  4. Cutting techniques for facilities dismantling in decommissioning projects

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2011-01-01

    Fuel cycle related activities were accomplished in IPEN-CNEN/SP in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years. During the operational activities in the decommissioning of old nuclear fuel cycle facilities, the personnel involved in the task had to face several problems. In old facilities, the need of large components dismantling and material removal use to present some difficulties, such as lack of available and near electricity supply. Besides this, the spread out of the superficial contamination in the form of dust or aerosols and the exposure of workers should be as much as possible avoided. Then, the selection and availability of suitable tools for the task, mainly those employed for cutting and segmentation of different materials is of significant importance. Slight hand tools, mainly those powered by rechargeable batteries, facilitate the work, especially in areas where the access is difficult. Based on the experience in the dismantling of some old nuclear facilities of IPEN-CNEN/SP, some tools that would have facilitated the operations were identified and their availability could have improved the quality and efficiency of different individual tasks. In this paper different cutting problems and techniques, as well as some available commercial hand tools, are presented as suggestion for future activities. (author)

  5. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1992-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components.

  6. Decontamination and remote dismantling tests in the Itrec reprocessing plant

    International Nuclear Information System (INIS)

    Candelieri, T.; Gerardi, A.; Soffietto, G.

    1993-01-01

    The scope of this research is to evaluate the advantages of the rack removal system in the dismantling of reprocessing installations. The objective of this work is to verify experimentally the possibility of the decontamination of any particular module and the capability of the remote dismantling of components installed in the mobile rack. In particular, the main objective is to develop remotely operated equipment for the dismantling of centrifugal contactors. The decontamination of the equipment which represents the most important preliminary phase of the decommissioning operation, allowed to obtain low-level radioactivity. A supporting programme has been performed in order to collect sufficient data for the project and design of the remote dismantling machine. On the basis of technological cold test results, the project of the dismantling machine's construction has been optimized. Positive results obtained during the hot dismantling operations on the Rack 6 bis attested the effectiveness of the rack removal system as an original design which facilitates decommissioning of reprocessing plants. 2 tabs., 18 figs

  7. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    Energy Technology Data Exchange (ETDEWEB)

    Boucau, Joseph [Westinghouse Electric Company, 43 rue de l' Industrie, Nivelles (Belgium); Mirabella, C. [Westinghouse Electric France, Orsay (France); Nilsson, Lennart [Westinghouse Electric Sweden, Vaesteraas (Sweden); Kreitman, Paul J. [Westinghouse Electric Company, Lake Bluff, IL 60048 (United States); Obert, Estelle [EDF - DPI - CIDEN, Lyon (France)

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Center for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French

  8. Pilot tests for dismantling by blasting of the biological shield of a shut down nuclear power station

    International Nuclear Information System (INIS)

    Freund, H.U.

    1995-01-01

    Following free-field tests on concrete blocks the feasibility of explosive dismantling of the biological shield of nuclear power stations has been succesfully tested at the former hotsteam reaction in Karlstein/Main Germany. For this purpose a model shield of scale 1:2 was embedded into the reactor structure at which bore-hole blasting tests employing up to about 15 kg of explosive were performed. An elaborate measurement system allowed to receive detailed information on the blast side-effects: Special emphasis was focussed on the quantitative registration of the dynamic blast loads; data for the transfer of the dismantling method to the removal of real ractor structures were obtained. (orig.) [de

  9. Quality Assurance in the Vandellos 1 Nuclear Power Plant Dismantling and Decommissioning Project

    International Nuclear Information System (INIS)

    Soto Lanuza, A.

    2000-01-01

    General description of the Quality Assurance System established and implemented for the efficient development of the current activities specified in the Dismantling and Decommissioning Plan for Vandellos I Nuclear Power Plant. Aspects related to the Quality organization, scope and applicability on the established Quality Assurance Manual, availability of requirements and recommendations on quality as well as actions to be taken for the correct verification on the quality and practical application of the Manual should be described. (Author)

  10. User Interface Technology to Reduce Mental Transformations for Tangible Remote Dismantling Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jeikwon; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    High-level radiation of the major components restricts access by human workers, and makes an accident or outage during the dismantling process more difficult to deal with. Since unexpected situations causes waste of budget and an aggravation of safety, the preliminary verification of the dismantling processes and equipment by the tangible remote dismantling simulator is very important. The design optimization of the dismantling processes and equipment is one of the most important objectives of the tangible remote dismantling simulator, as well. This paper proposes a user interface technology to reduce mental transformations for the tangible remote dismantling simulator. At the dismantling process simulation using the tangible remote dismantling simulator, the most difficult work is the remote operation handling the high degrees-of-freedom (DOF) manipulator due to complex mental transformations. The proposed user interface technology reduces mental transformations with constraints using the point projection and direction projection. The test result of the cutting process over the closure head of the RPV demonstrates that the proposed mental transformation reduction technology is operated successfully in the tangible remote dismantling simulator, and lets the operator be easy to control the high DOF manipulator even in the most difficult operation by reducing DOFs to be controlled manually.

  11. User Interface Technology to Reduce Mental Transformations for Tangible Remote Dismantling Simulator

    International Nuclear Information System (INIS)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jeikwon; Choi, Jong-Won

    2015-01-01

    High-level radiation of the major components restricts access by human workers, and makes an accident or outage during the dismantling process more difficult to deal with. Since unexpected situations causes waste of budget and an aggravation of safety, the preliminary verification of the dismantling processes and equipment by the tangible remote dismantling simulator is very important. The design optimization of the dismantling processes and equipment is one of the most important objectives of the tangible remote dismantling simulator, as well. This paper proposes a user interface technology to reduce mental transformations for the tangible remote dismantling simulator. At the dismantling process simulation using the tangible remote dismantling simulator, the most difficult work is the remote operation handling the high degrees-of-freedom (DOF) manipulator due to complex mental transformations. The proposed user interface technology reduces mental transformations with constraints using the point projection and direction projection. The test result of the cutting process over the closure head of the RPV demonstrates that the proposed mental transformation reduction technology is operated successfully in the tangible remote dismantling simulator, and lets the operator be easy to control the high DOF manipulator even in the most difficult operation by reducing DOFs to be controlled manually

  12. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  13. The timing of reactor dismantling

    International Nuclear Information System (INIS)

    Roberts, P.

    2000-01-01

    Work has been progressing across the world for the decommissioning of nuclear reactors. The initial work focused on the early, complete dismantling but this was associated with small size reactors and was done for experimental or demonstration purposes. The situation now is that an increasing number of full size power reactors are being shutdown and decision are being made as to the decommissioning strategy to be applied, e.g. with respect to the appropriate timing of reactor dismantling. There are two basic approaches to the timing of reactor dismantling, which are to either proceed with dismantling on an early time scale or to delay it for a period of years. There are a number of examples worldwide of both approaches being taken but one common feature of the approach taken by most countries is that decisions are made on a case by case basis, taking account of relevant factors, and as a result the strategy can vary from reactor to reactor and from country to country. Decisions on timing take account of the following main factors: safety, radioactive decay, financial factors, radioactive waste, reactor type, technology, repository availability, site re-use, regulatory standards, plant knowledge/records, other issues

  14. Dismantling Experiment of Mock-up Tube Bundle of Steam Generator

    International Nuclear Information System (INIS)

    Kim, Sung Kyun; Lee, Kune Woo

    2010-01-01

    A SG (steam generator) is one of the biggest decommissioning components in nuclear power plants and one has been replaced 2∼6 times during the whole operation of a nuclear power plant. The old SG should be decommissioned for the purpose of the volume reduction of radioactive waste. Among the components of SG, the tube bundle is one of the most difficult items to be dismantled due to the fact that it is very hard to cut since it is made of Inconel 600 which has high resistance of corrosion and abrasion. Moreover, All cutting process should be performed by remotely since radioactive contamination of the internal surface of SG tubes is very high (about 150,000∼300,000 Bq/cm 2 ). Therefore, it is necessary to choose the appropriate cutting methods by the pros and cons analysis for candidate dismantling technologies and to do experiment study for the validation. In this study, the results of cutting experiment for a mock-up bundle by using band saw cutting method are described herein

  15. Definition of a dismantling project

    International Nuclear Information System (INIS)

    Meyers, H.; Claes, J.; Geens, L.

    1988-01-01

    The shutdown of the fuel reprocessing plant of Eurochemic having been decided, a study for defining the facilities to be dismantled and how to do it, was conducted by Belgoprocess. The cost of the operation was estimated by an accurate investigation and by a pilot project on the dismantling of the wastes storage building. The work carried out up to now and the problems to be solved are summarized [fr

  16. Tools and tool application for the dismantling of the nuclear power plant Brennilis in France

    International Nuclear Information System (INIS)

    Bienia, Harald; Welbers, Philipp; Krueger, Peter; Noll, Thomas

    2012-01-01

    The EL-4 reactor in the NPP Brennilis in France is a CO2 cooled heavy water moderated test reactor with net power of 70 MW, the reactor started operation in 1967 and was decommissioned in 1985. Due to the construction features it was not necessary to enter the reactor area during operation, therefore the reactor pressure vessel and the surrounding piping systems are built in a very compact way. The dismantling procedures are therefore different from German BWR or PWR systems, the remote cutting and handling tools have to be adapted to the different features. Because of the high local dosage rate in the reactor hall it is also necessary to perform the erection of the dismantling equipment by robot systems. For cutting of the piping system a new plasma cutting technique, the hot wire method will be used. Other mechanical cutting techniques have to be used for instance for zircaloy containing components due to fire prevention purposes. The required time for tool and manipulator changes, including wearing part replacements constitute a significant part of the dismantling schedule. The suction/exhaust system for radioactive dust removal allowed a reduction of the total personal dose by one third of the allowed dose.

  17. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    International Nuclear Information System (INIS)

    Chambon, Frederic; CIZEL, Jean-Pierre; Blanchard, Samuel

    2013-01-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  18. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)

    2013-07-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  19. Proposed radiation hardened mobile vehicle for Chernobyl dismantlement and nuclear accident response

    International Nuclear Information System (INIS)

    Rowland, M.S.; Holliday, M.A.; Karpachov, J.A.

    1995-01-01

    Researchers are developing a radiation hardened, Telerobotic Dismantling System (TDS) to remediate the Chernobyl facility. To withstand the severe radiation fields, the robotic system, will rely on electrical motors, actuators, and relays proven in the Chernobyl power station. Due to its dust suppression characteristics and ability to cut arbitrary materials the authors propose using a water knife as the principle tool to slice up the large fuel containing masses. The front end of the robot will use a minimum number of moving parts by locating most of the susceptible and bulky components outside the work area. Hardened and shielded video cameras will be designed for remote control and viewing of the robotic functions. Operators will supervise and control robot movements based on feedback from a suite of sensory systems that would include vision systems, radiation detection and measurement systems and force reflection systems. A gripper will be instrumented with a variety of sensors (e.g. force, torque, or tactile), allowing varying debris surface properties to be grasped. The gripper will allow the operator to manipulate and segregate debris items without entering the radiologically and physically dangerous dismantlement operations area. The robots will initially size reduce the FCM's to reduce the primary sources of the airborne radionuclides. The robot will then remove the high level waste for packaging or decontamination, and storage nearby

  20. Cold trap dismantling and sodium removal at a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Anja; Petrick, Holger; Stutz, Uwe [WAK GmbH, Eggenstein-Leopoldshafen (Germany). Hauptabt. Dekontaminationsbetriebe Rueckbau Kompakte Natriumgekuehlte Kernreaktoranlage (KNK); Hosking, Paul [Nuclear Decommissioning Services Limited (NDSL), Sutherland, Dornoch (United Kingdom)

    2013-11-15

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, 7 cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed on-site by cutting them up into small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. (orig.)

  1. Dismantling without contaminating: The EUREX plant experience

    International Nuclear Information System (INIS)

    2001-01-01

    The EUREX pilot plant of ENEA Research Centre of Saluggia (Italy) reprocessed, between 1970 and 1983, some 600 elements and 1.5 tonnes of irradiated fuel from MTR and CANDU reactors. The general programme of denuclearization of the site actually focuses on the main priority of the conditioning of the about 400 m 3 of High and Low Level Liquid wastes stored in Saluggia. For this reason, in 1997 a project for the H and LLW conditioning, named 'CORA' has started. The 'CORA' unit will solidify the liquid wastes applying the Cold Crucible Melter (CCM) technology; due to the low volume amount of wastes to vitrify, the 'CORA' project has been accurately tailored in order to reduce social impact on public acceptance, costs and conditioning plant volumes to dismantle at the end of the work. For this reason, all the main nuclear components of the conditioning unit (input tank and pretreatment section, CC Melter, pot handling, off-gas system, interim glass storage) will be hosted inside four existing cells of the EUREX plant, duly dismantled. The EUREX plant services (electric and process fluid supplies, controlled areas, ventilation system...) will be reused too, revamped in some cases. The reuse of a nuclear plant which was built in the 60's, as the EUREX is, for future conditioning activities to be 'transplanted' there in the next years, it is not quite an easy job: the partial EUREX dismantling must permit an easy recovery of process areas and spread of contamination from old components (tanks, pipes, valves...) has to be minimized as far as possible. In order to minimize contamination spread, pipe cutting is made by a hydraulic shear, leaving the cut edges closed. Size reduction of pipes and tanks, to optimize the 5 m 3 steel storage containers filling is, as far as possible, made out of the working area of the cells. To achieve this goal a preliminary sketch of pipes to be cut and where the minimal cuts ought to be done is prepared before each intervention. The time

  2. Evaluation formulas of manpower needs for dismantling of equipments in uranium refining and conversion plant

    International Nuclear Information System (INIS)

    Izumo, Sari; Usui, Hideo; Kubota, Shintaro; Tachibana, Mitsuo; Kawagoshi, Hiroshi; Tokuyasu, Takashi; Takahashi, Nobuo; Morimoto, Yasuyuki; Tanaka, Yoshio; Sugitsue, Noritake

    2014-07-01

    Japan Atomic Energy Agency has developed PROject management data evaluation code for DIsmantling Activities (PRODIA) to make an efficient decommissioning for nuclear facilities. PRODIA is a source code which provides estimated value such as manpower needs, costs, etc., for dismantling by evaluation formulas according to the type of nuclear facility. Evaluation formulas of manpower needs for dismantling of equipments about reprocessed uranium conversion in Uranium Refining and Conversion Plant (URCP) have been developed in this report. In the result, evaluation formulas of manpower needs for dismantling of equipment were derived based on the classifications of equipment's functions or work items. These evaluation formulas are widely applicable to the estimation of the manpower needs for dismantling the other nuclear facilities, in particular uranium handling facilities. It was confirmed that some of these evaluation formulas with the same applicable condition could be unified to some inclusive evaluation formulas. It turned out that all steel equipment contaminated by uranium could be evaluated by one evaluation formula. (author)

  3. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1991-02-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  4. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Migliorati, B.; Difino, M.; Manassero, G.

    1990-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (Fiat-CIEI and Fiat-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: (i) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; (ii) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; (iii) study of long-distance transmission of the laser beam power performed with a 5KW laser source with an evaluation of the power loss and beam characteristic modifications; (iv) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long-distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme

  5. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G; De Zaiacomo, T; Melandri, C; Formignani, M; Barilli, L [ENEA - Area Energia, Ambiente e Salute - Centro Ricerche Energia ' Ezio Clementel' - Bologna (Italy); Di Fino, M [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Frascati, Rome (Italy); Picini, P; Galuppi, G; Rocca, C [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Casaccia, Rome (Italy); Manassero, G [Centro Ricerche FIAT, Orbassano, Torino (Italy); Migliorati, B [FIAT-CIEI, Torino (Italy)

    1991-02-15

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  6. Rosie: A mobile worksystem for decontamination and dismantlement operations

    International Nuclear Information System (INIS)

    Thompson, B.R.; Conley, L.

    1996-01-01

    RedZone Robotics, Inc. and Carnegie Mellon University's Field Robotics Center have undertaken a contract to develop a next-generation worksystem for decommissioning and dismantlement tasks in Department of Energy (DOE) facilities. Currently, the authors are closing the second phase of this three phase effort and have completed the design and fabrication of the worksystem: Rosie. Rosie includes a locomotor, heavy manipulator, control center, and control system for robot operation. The locomotor is an omni-directional platform with tether management and hydraulic power capabilities. The heavy manipulator is a high-payload, long-reach system intended to deploy tools into the work area. The heavy manipulator is capable of deploying systems such as the Dual-Arm Work Module--a five degree-of-freedom platform supporting two highly dexterous manipulators--or a single manipulator for performing simpler, less dexterous tasks. Rosie is telerobotic to the point of having servo-controlled motions which can be operated and coordinated through the control center

  7. Experience acquired by EDF in implementation of its dismantling programme

    Energy Technology Data Exchange (ETDEWEB)

    Klaeyle, S.; Dalmas, R.; Davoust, M. [EDF - Centre d' Ingenerie Deconstruction Environnement (CIDEN), 69 - Villeurbanne (France)

    2008-07-01

    EDF decided in 2001 to implement immediate dismantling of its first generation nuclear plants. Seven years after this decision, the physical progress of the programme is 24% and is due to reach 50 % by 2013. This paper presents the experiences acquired in the fields of organization, project and programme management, purchasing strategies and waste management. Until now, the principal works involve Brennilis (Heavy water), ChoozA (PWR) and Creys Malville (fast breeder reactor). The detailed pre-project concerning the first of the six gas graphite reactors is complete and the call for bids process has been launched. The organization to manage projects, established at the De-construction and Environment Engineering Center (CIDEN), is effective and productive. Estimates of costs and expenses are coherent, which makes the forecasts put together to finance the programme secure. CIDEN has carried out significant engineering work over the last six years, making it possible to apply for the administrative authorizations which have now been obtained or are in the process of being obtained. Technical specifications are prepared at an optimized level of detail according to a contractual policy adapted to the complexity of the operations and the sharing of risk with manufacturers. The ChoozA contractualization process has been launched and the first dismantling work has begun in the nuclear auxiliary part. The main Brennilis contract will be completed in mid- 2008 and dismantling works will restart after renewal of the decree which was cancelled in mid-2007. Treatment of sodium from Creys Malville is about to begin, leading to elimination of the sodium risk by 2013. The very low activity waste (TFA) and low to medium activity waste (FA-MA) removal chains are operational. The intermediate activity/long lived (MA-VL) waste will be stored in a facility which will be brought into operational service in 2012. The graphite storage center is due to open between 2017 and 2019

  8. Development of project management data calculation models relating to dismantling of nuclear facilities. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Sukegawa, Takenori; Ohshima, Soichiro; Shiraishi, Kunio; Yanagihara, Satoshi [Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai Ibaraki (Japan)

    1999-02-01

    Labor-hours necessary for dismantling activities are generally estimated based on experience, for example, as a form of unit productivity factors such as the relationship between labor-hours and weight of components dismantled which were obtained by actual dismantling activities. The project management data calculation models together with unit productivity factors for basic dismantling work activities were developed by analyzing the data obtained from the Japan Power Demonstration Reactor (JPDR) dismantling project, which will be applicable to estimation of labor-hours in various dismantling conditions. Typical work breakdown structures were also prepared by categorizing repeatable basic dismantling work activities for effective planning of dismantling activities. The labor-hours for dismantling the JPDR components and structures were calculated by using the code system for management of reactor decommissioning (COSMARD), in which the work breakdown structures and the calculation models were contained. It was confirmed that the labor-hours could be easily estimated by COSMARD through the calculations. This report describes the labor-hour calculation models and application of these models to COSMARD. (author)

  9. The real competitiveness of nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The recent report of the Audit Office on the real costs of nuclear power has killed the idea that there exist some hidden costs in the nuclear sector. According to the Audit Office, the costs of nuclear power have been well assessed, they include the costs of all the past, present and future operations that are necessary: research, nuclear fuel, plant construction, maintenance, reactor operation, dismantling, waste management and waste disposal. The uncertainty lies in the amount of money allowed to each post: it is difficult to estimate the price of dismantling as no power reactor has already been dismantled in France. Nevertheless, in the case of an underestimation of the dismantling costs, the impact of the real costs on the production cost will be low (a few percent) since they will be spread over a large period of time. As for the upgrading of the reactors for a better standard of nuclear safety, the extra costs will add 10% to the production cost. It appears that even by taking account all these corrections, the nuclear power will remain competitive in the future. The French nuclear industry exports equipment and services at a level of 6 billions euros each year. The decommissioning of reactors for only political reasons would be a total economical nonsense. (A.C.)

  10. Lessons learned. Optimization of the plant structure at the beginning of the dismantling process

    International Nuclear Information System (INIS)

    Sesterhenn, Kurt

    2008-01-01

    The processes of shutdown and dismantling of the NPP Muehlheim-Kaerlich included several steps: conservation operation including fuel element removal, decontamination and radiological characterization, conservation of components that may still be used, removal and disposal of operating supply items, preparation of concepts for the dismantling process and realization of dismantling. The authors describe in detail the safety concept, the waste tracking program, the operational organization and reduction of area subject to radiological surveillance during the dismantling and renaturation project.

  11. Decommissioning engineering systems for nuclear facilities and knowledge inheritance for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo

    2016-01-01

    Information on construction, operation and maintenance of a nuclear facility is essential in order to plan and implement the decommissioning of the nuclear facility. A decommissioning engineering system collects these information efficiently, retrieves necessary information rapidly, and support to plan the reasonable decommissioning as well as the systematic implementation of dismantling activities. Then, knowledge of workers involved facility operation and dismantling activities is important because decommissioning of nuclear facility will be carried out for a long period. Knowledge inheritance for decommissioning has been carried out in various organizations. This report describes an outline of and experiences in applying decommissioning engineering systems in JAEA and activities related to knowledge inheritance for decommissioning in some organizations. (author)

  12. Study of aerosol diffusion behaviors in dismantling nuclear facilities. Contract research

    International Nuclear Information System (INIS)

    Shimada, Taro; Tachibana, Mitsuo; Yanagihara, Satoshi

    2001-09-01

    To evaluate aerosol diffusion behaviors under dismantling of nuclear facilities, plasma arc cuttings were conducted in the enclosure. The flow of air and high temperature gas in the enclosure were visualized, and the temperature distributions in the enclosure and the number density and size distribution of aerosol and the temperature in air of outlet flow were measured in the experiments. As a result, it was confirmed that ascending high temperature gas flow produced by the plasma arc is corresponded with aerosol diffusion behavior during cutting. It was also confirmed that after completing the cuttings the aerosol tends to fall due to decreasing of flow velocity of high temperature gas and the aerosol which reaches near the floor is resuspended by relatively high velocity exhaust flow. (author)

  13. Using SAFRAN Software to Assess Radiological Hazards from Dismantling of Tammuz-2 Reactor Core at Al-tuwaitha Nuclear Site

    Science.gov (United States)

    Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas

    2018-05-01

    The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field

  14. Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316

    International Nuclear Information System (INIS)

    Field, D.; Mizen, K.

    2013-01-01

    The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been used to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The Northern

  15. Digital Autoradiography as a novel complementary technique for the investigation of radioactive contamination in nuclear facilities under dismantlement

    International Nuclear Information System (INIS)

    Haudebourg, Raphael; Fichet, Pascal; Goutelard, Florence

    2015-01-01

    The detection (location and quantification) of nuclear facilities to be dismantled possible contamination with low-range particles emitters ( 3 H, other low-energy β emitters, a emitters) remains a tedious and expensive task. Indeed, usual remote counters show a too low sensitivity to these non-penetrating radiations, while conventional wipe tests are irrelevant for fixed radioactivity evaluation. The only method to accurately measure activity levels consists in sampling and running advanced laboratory analyses (spectroscopy, liquid scintillation counting, pyrolysis...). Such measurements generally induce sample preparation, waste production (destructive analyses, solvents), nuclear material transportation, long durations, and significant labor mobilization. Therefore, the search for the limitation of their number and cost easily conflicts with the necessity to perform a dense screening for sampling (to maximize the representativeness of the samples), in installations of thousands of square meters (floors, wells, ceilings), plus furniture, pipes, and other wastes. To overcome this contradiction, Digital Autoradiography (D. A.) was re-routed from bio molecular research to radiological mapping of nuclear installations under dismantling and to waste and sample analysis. After in-situ exposure to the possibly-contaminated areas to investigate, commercial reusable radiosensitive phosphor screens (of a few 100 cm 2 ) were scanned in the proper laboratory device and sharp quantitative images of the radioactivity could be obtained. The implementation of geostatistical tools in the data processing software enabled the exhaustive characterization of concrete floors at a rate of 2 weeks / 100 m 2 , at lowest costs. Various samples such as drilled cores, or tank and wood pieces, were also successfully evaluated with this method, for decisive results. Thanks to the accurate location of potential contamination spots, this approach ensures relevant and representative sampling

  16. Dismantling of the research reactor RTS-1 Galileo Galilei in Pisa (Italy)

    International Nuclear Information System (INIS)

    Ruiz Martinez, J. t.; Farella, G.; Cimini, E.; Russo, M.

    2014-01-01

    This paper is about the most relevant aspects of the first phase of the dismantling, removal of the water in the pool, prior treatment through evaporation, the dismantling of all the submerged activated elements and other activated or contaminated elements that have been part of the nuclear facility. (Author)

  17. Characterization of radioactive graphite and concrete of the reactor ULYSSE/INSTN at CEA/Saclay to be dismantled

    International Nuclear Information System (INIS)

    Van Lauwe, Aymeric; Ridikas, Danas; Damoy, Francois; Blideanu, Valentin; Fajardo, Christophe; Aubert, Marie-Cecile; Foulon, Francois

    2006-01-01

    Decommissioning and dismantling of nuclear installations after their service life are connected with the necessity of the disassembling, handling and disposing of a large amount of radioactive material. In order to optimize the disassembling operations, to reduce the undesirable volume to the minimum and to successfully plan the dismantling and disposal of radioactive materials to storage facilities, the radiological characterisation of the material present in the reactor and around its environment should be accurately evaluated. The present work has been done in the framework of the decommissioning and dismantling of the experimental reactor ULYSSE that is presently operating in INSTN/Saclay and will be closed in the middle of 2006. A methodology, already successfully used for another research reactor, is proposed for determining accurately the long-term induced activity of the materials present in the active reactor core and its surroundings. The comparison of theoretical predictions, based on Monte Carlo technique, with experimental values validated the approach and the methodology used in the present study. The goal is to plan efficiently the disassembling and dismantling of the system and to optimise the mass flow going to different waste repositories. We show that this approach might reduce substantially the total cost of decommissioning. (authors)

  18. Development of decommissioning engineering support system for fugen. Development of support system during actual dismantlement works

    International Nuclear Information System (INIS)

    Masanori Izumi; Yukihiro Iguchi; Yoshiki Kannehira

    2005-01-01

    The Advanced Thermal Reactor, Fugen Nuclear Power Station was permanently shut down in March 2003, and is now preparing for decommissioning. We have been developing Decommissioning Engineering Support System (DEXUS) aimed at planning optimal dismantlement process and carrying out dismantlement work safely and precisely. DEXUS consists of 'decommissioning planning support system' and 'dismantling support system'. The dismantling support system is developed aiming at using during actual dismantling work. It consists of three subsystems such as 'Worksite Visualization System', 'Dismantling Data Collection System' and 'Generated Waste Management System'. 'Worksite Visualization System' is a support system designed to provide the necessary information to workers during actual dismantlement works. And this system adopts AR (Augmented Reality) technology, overlapping calculation information into real world. 'Dismantling Data Collection System' is to collect necessary data for improving accuracy of decommissioning planning by evaluating work content and worker equipage, work time for dismantlement works. 'Generated Waste Management system' is a system recording necessary information by attaching the barcode to dismantled wastes or the containers. We can get the information of generated waste by recording generation place, generated time, treatment method and the contents. These subsystems enable to carry out reasonable and safe decommissioning of Fugen. In addition, we expect that those systems will be used for decommissioning of other nuclear facilities in the future. (authors)

  19. Recognition method for three-dimensional image in dismantling of nuclear power plant

    International Nuclear Information System (INIS)

    Chino, Koichi.

    1993-01-01

    The present invention constitutes three-dimensional images of structures, in a short period of time, at a place where a man can hardly access upon dismantling of a large scaled nuclear power facilities contaminated by radioactive materials. That is, a television set is disposed on a movable rack. Images of structures as an objective are taken and compared with previously inputted data, to constitute rough images. The television set is moved to an evaluated position where a view angle changes sufficiently based on the rough images. Images of the objective structures are taken at the position after movement. A plurality of thus obtained images and previously stored information concerning the structures are compared, examined and corrected if required, and the three-dimensional images of the objective structures are recognized. According to the present invention, the three-dimensional images of the structures in the nuclear power plant can be recognized automatically at high accuracy by one television set. (I.S.)

  20. Automatic Estimation of the Radiological Inventory for the Dismantling of Nuclear Facilities

    International Nuclear Information System (INIS)

    Garcia-Bermejo, R.; Felipe, A.; Gutierrez, S.; Salas, E.; Martin, N.

    2008-01-01

    The estimation of the radiological inventory of Nuclear Facilities to be dismantled is a process that included information related with the physical inventory of all the plant and radiological survey. Estimation of the radiological inventory for all the components and civil structure of the plant could be obtained with mathematical models with statistical approach. A computer application has been developed in order to obtain the radiological inventory in an automatic way. Results: A computer application that is able to estimate the radiological inventory from the radiological measurements or the characterization program has been developed. In this computer applications has been included the statistical functions needed for the estimation of the central tendency and variability, e.g. mean, median, variance, confidence intervals, variance coefficients, etc. This computer application is a necessary tool in order to be able to estimate the radiological inventory of a nuclear facility and it is a powerful tool for decision taken in future sampling surveys

  1. Dismantling and decontamination of the PIVER prototype vitrification facility

    International Nuclear Information System (INIS)

    Jouan, A.

    1989-01-01

    The PIVER facility was dismantled for replacement by a new continuous pilot plant. The more important operation concerns the vitrification cell, containing equipments of the process, for complete disposal and maximum decontamination, requiring dismantling, cutting, conditioning and removal of equipment inside the cell. Manipulators, handling and cutting tools were used. Activity of removed material and irradiation of personal are followed during the work for matching intervention means to operation conditions [fr

  2. Characterization and impact of incandescent particles in the ventilation networks during dismantling operations

    International Nuclear Information System (INIS)

    Marchal, Pierre

    2014-01-01

    Fire hazards while metal cutting on dismantling operations led IRSN to focus a study on incandescent particles emitted by these cutting tools and their impact on air filter. If micronic particles (≤ 10 μm) have been studied for their negative impact on human health, few studies are dealing with incandescent particles, despite their strong thermal energy. These particles are mainly made of iron, coming from the metal cutting, and the exothermic oxidation reaction coupled to a high temperature emission causes them to molt. An experimental system was designed, representative of dismantling operations with instrumentations adapted for in-flight particles measurement, such as size, velocity and temperature. The particles are characterized from the emission source (automated cut-off grinder) and all along their path into the ventilation duct to their impact on a filter. An analytical approach of the impact of these particles on the filter shows that the temperature of the particles, greater than 430 C damages the filter medium, and may reduce the filter thickness or perforate it, which leads to a decrease of its filtration efficiency determined according to the French standard. Comparison between the characteristics of the particles and the filtration efficiency has permitted to establish empirical correlations in order to predict the loss of filtration efficiency versus the cutting parameters and some good practices have been proposed to protect the filter. (author)

  3. Dismantling and removal of the Niederaichbach nuclear power plant (KKN) to the 'Green Field'. Final report

    International Nuclear Information System (INIS)

    Valencia, L.; Prechtl, E.

    1998-04-01

    The major objective of the present project consisted in the complete dismantling and removal of the Niederaichbach nuclear power plant (KKN), ranging from the state of safe enclosure to re-establishing the original state of vegetation of the site (so-called 'green field'). By reaching this objective, principle feasibility of the complete removal of a power reactor was demonstrated. In addition, considerable experience has been gained with regard to the execution of all phases of such a complex project and project optimization. The following phases of the project can be distinguished: - Licensing procedure - dismantling of the inactive, contaminated and activated plant sections - disassembly of the activated building structures and decontamination of the buildings - demolition (conventional) of the buildings and recultivation of the site. Moreover, the project included the work performed under the direct supervision of the licensing authority, comprehensive radiation protection activities, the solution of waste management problems and the respective public relations work. (orig./MM) [de

  4. HCTISN - High Committee for transparency and information on nuclear safety, Plenary meeting of the 3 October 2013

    International Nuclear Information System (INIS)

    Buerger, Eric; Schilz, Fabien; Piketty, Laurence; Martelet, Bertrand; Quintin, Christophe; Gauthier, Florence; Charles, T.

    2013-01-01

    This document gathers a set of Power Point presentations. The first one, proposed by the ANDRA, addresses the challenges related to the long term management of dismantling wastes (quantities, perspectives for planning, optimization and R and D investments, ANDRA's missions, R and D themes, industrial developments, service providing). The second one, proposed by AREVA, addresses the dismantling of Areva's nuclear sites (challenges and peculiarities, organisation, overview of the different current dismantling projects in France). The third one, proposed by the ASN, discusses the current status, perspectives and challenges of dismantling (dismantling definition, objectives and strategies, ASN missions for the regulation, authorization, control, public information, and crisis management regarding dismantling, regulatory context with its procedures and for waste management, and installations being currently dismantled). The fourth one, proposed by the CEA, addresses the dismantling of CEA nuclear installations (presentation, challenges, strategy, organisation and financing of the A and D process (cleaning up and dismantling) within the CEA, a focus on the case of CEA installations in Grenoble, the return on experience within the CEA, R and D for A and D programs). The sixth presentation by EDF addresses the program of deconstruction of EDF generation-1 nuclear power plants (legal and financial framework and governance, dismantling policy and strategy, management of deconstruction waste, dismantling program for first-generation reactors and focus on the Brennilis and Chooz reactors, industrial and social challenges of operational practices). Proposed by the ministry of Ecology, the next presentation addresses the safety of nuclear installations and the return on experience after the intrusion in Tricastin (overview of regulation, progress in the implementation of PCMNIT regulation - protection and control of nuclear materials, of their installations and transport - by

  5. Decontamination and radioactivity measurement on building surfaces related to dismantling of Japan power demonstration reactor (JPDR)

    International Nuclear Information System (INIS)

    Hatakeyama, Mutsuo; Tachibana, Mitsuo; Yanagihara, Satoshi

    1997-12-01

    In the final stage of dismantling activities for decommissioning a nuclear power plant, building structures have to be demolished to release the site for unrestricted use. Since building structures are generally made from massive reinforced concrete materials, it is not a rational way to treat all concrete materials arising from its demolition as radioactive waste. Segregation of radioactive parts from building structures is therefore indispensable. The rational procedures were studied for demolition of building structures by treating arising waste as non-radioactive materials, based on the concept established by Nuclear Safety Commission, then these were implemented in the following way by the JPDR dismantling demonstration project. Areas of the JPDR facilities are categorized into two groups : possibly contaminated areas, and possibly non-contaminated areas, based on the document of the reactor operation. Radioactivity on the building surfaces was then measured to confirm that the qualitative categorization is reasonable. After that, building surfaces were decontaminated in such a way that the contaminated layers were removed with enough margin to separate radioactive parts from non-radioactive building structures. Thought it might be possible to demolish the building structures by treating arising waste as non-radioactive materials, confirmation survey for radioactivity was conducted to show that there is no artificial radioactive nuclides produced by operation in the facility. This report describes the procedures studied on measurement of radioactivity and decontamination, and the results of its implementation in the JPDR dismantling demonstration project. (author)

  6. Deregulation in the field of decommissioning and dismantling of nuclear facilities. Legal frame conditions and regulations in the field of nuclear engineering; Deregulierung bei der Stillegung und Beseitigung nuklearer Anlagen; Rechtliche Rahmenbedingungen und kerntechnisches Regelwerk

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, A [Kernforschungszentrum Karlsruhe GmbH (Germany). Vorstandsbereich 2 - Neue Technologien und Grundlagenforschung; Baumgaertel, G [Kernforschungszentrum Karlsruhe GmbH (Germany). Koordinationsstelle Genehmigungsverfahren (KGV)

    1994-05-01

    The report comprises two articles covering current topics of the decommissioning and dismantling of nuclear facilities. In the first article written by Kurz, the legal standards are listed together with conclusions and proposals regarding their implementation for the further development of this field of law. The article by Baumgaertel is aimed at evaluating the regulations governing nuclear technology as regards their applicability to the decommissioning and dismantling of nuclear facilities. These articles shall contribute to the discussions taking place in this field at the moment. As a result, an appropriate and project-specific application of the legal provisions and not legally binding (technical) regulations in the field of nuclear technology (deregulation) in the licensing procedures required for the decommissioning and dismantling of nuclear facilities is requested by the authors. (orig.) [Deutsch] Der Bericht enthaelt zwei Ausarbeitungen zu aktuellen Themenstellungen der Stillegung und Beseitigung nuklearer Anlagen. Der Bericht von Kurz beinhaltet eine thesenartige Auflistung der normativen Voraussetzungen mit Schlussfolgerungen und Umsetzungsvorschlaegen zur Weiterentwicklung dieses Rechtsgebietes; die Ausarbeitung von Baumgaertel beinhaltet eine wertende Durchsicht des kerntechnischen Regelwerkes im Hinblick auf die Anwendbarkeit bei der Stillegung und Beseitigung nuklearer Anlagen. Die Ausarbeitungen dienen als Beitrag zur aktuellen Diskussion in diesem Themenfeld. Im Ergebnis fordern die Autoren die angemessene, vorhabensspezifische Anwendung der rechtlichen Voraussetzungen des kerntechnischen Regelwerkes (Deregulierung) in den zur Stillegung und Beseitigung nuklearer Anlagen erforderlichen Genehmigungsverfahren. (orig.)

  7. Sites with nuclear facilities in the state of dismantling and their future from the public perspective; Standorte mit kerntechnischen Anlagen im Rueckbau und deren Zukunft aus der Perspektive der Bevoelkerung

    Energy Technology Data Exchange (ETDEWEB)

    Kretz, Simon Philipp

    2015-07-17

    The thesis on the public perspective at sites of nuclear facility dismantling covers the following issues: the change of German energy landscapes under social and political points of view, theoretical frame of the work, combination of empirical studies and the theoretical approaches in a space concept, action model and hypotheses on the situation and development in communities with nuclear facilities in the state of dismantling, description of the interviewees, and the empirical results of the interviews.

  8. Die Energiewerke Nord GmbH. From operator of a decommissioned Russian nuclear power plant to one of Europe's leading decommissioning companies

    International Nuclear Information System (INIS)

    Philipp, Marlies

    2011-01-01

    EWN GmbH is a state-owned company with these duties: - decommissioning and demolition of the Greifswald and Rheinsberg nuclear power stations; - safe operation of the Zwischenlager Nord interim store; - development of the 'Lubminer Heide' industrial and commercial estate. Other projects for which EWN GmbH uses its know-how: - disposal of 120 decommissioned Russian nuclear submarines in Murmansk; - decommissioning and dismantling of the Juelich, NRW, AVR experimental reactor; - demolition of nuclear plants; running the Central Decontamination Operations Department at Karlsruhe, BW. Since 2008, EWN GmbH has held 25% of the shares of Deutsche Gesellschaft zum Bau- und Betrieb von Endlagern fuer Abfallstoffe mbH (DBE), a firm building and operating nuclear repositories. (orig.)

  9. Experience in dismantling and packaging of pressure vessel and core internals

    International Nuclear Information System (INIS)

    Pillokat, Peter; Bruhn, Jan Hendrik

    2011-01-01

    Nuclear Company AREVA is proud to look back on versatile experience in successfully dismantling nuclear components. After performing several minor dismantling projects and studies for nuclear power plants, AREVA completed the order for dismantling of all remaining Reactor Pressure Vessel internals at German Boiling Water Reactor Wuergassen NPP in October '08. During the onsite activities about 121 tons of steel were successfully cut and packed under water into 200l- drums, as the dismantling was performed partly in situ and partly in an underwater working tank. AREVA deployed a variety of different cutting techniques such as band sawing, milling, nibbling, compass sawing and water jet cutting throughout this project. After successfully finishing this task, AREVA dismantled the cylindrical part of the Wuergassen Pressure Vessel. During this project approximately 320 tons of steel were cut and packaged for final disposal, as dismantling was mainly performed by on air use of water jet cutting with vacuum suction of abrasive and kerfs material. The main clue during this assignment was the logistic challenge to handle and convey cut pieces from the pressure vessel to the packing area. For this, an elevator was installed to transport cut segments into the turbine hall, where a special housing was built for final storage conditioning. At the beginning of 2007, another complex dismantling project of great importance was acquired by AREVA. The contract included dismantling and conditioning for final storage of the complete RPV Internals of the German Pressurized Water Reactor Stade NPP. Very similar cutting techniques turned out to be the proper policy to cope this task. On-site activities took place in up to 5 separate working areas including areas for post segmentation and packaging to perform optimized parallel activities. All together about 85 tons of Core Internals were successfully dismantled at Stade NPP until September '09. To accomplish the best possible on

  10. Experience of partial dismantling and large component removal of light water reactors

    International Nuclear Information System (INIS)

    Dubourg, M.

    1987-01-01

    Not any of the French PWR reactors need to be decommissioned before the next decade or early 2000. However, feasibility studies of decommissioning have been undertaken and several dismantling scenarios have been considered including the dismantling of four PWR units and the on-site entombment of the active components into a reactor building for interim disposal. In addition to theoretical evaluation of radwaste volume and activity, several operations of partial dismantling of active components and decontamination activities have been conducted in view of dismantling for both PWR and BWR units. By analyzing the concept of both 900 and 1300 MWe PWR's, it appears that the design improvements taken into account for reducing occupational dose exposure of maintenance personnel and the development of automated tools for performing maintenance and repairs of major components, contribute to facilitate future dismantling and decommissioning operations

  11. A process for separating aggregate from concrete waste during the dismantlement of nuclear power plants

    International Nuclear Information System (INIS)

    Koga, Yasuo; Inoue, Toshikatsu; Tateyashiki, Hisashi; Sukekiyo, Mitsuaki; Okamoto, Masamichi; Asano, Touichi.

    1997-01-01

    The decommissioning and dismantling of nuclear power plants will produce a large quantity of non-active waste concrete. From the viewpoint of recycling of this waste concrete the recovery of aggregate contained in concrete at 80% and reuse of it into a new plant construction are envisioned. For these purposes we have studied the recovery process of aggregate from concrete composed of a heating step followed by a milling step onto waste concrete blocks. We have found that higher operation temperature brings a better effect for the separation of aggregate from a concrete body, however too high temperature may reversely degrade a quality of recovered aggregate itself. The most effective heating temperature which is considered not to give the damage to a quality of aggregate stays between 200-500degC. The effect of a duration at such temperature zone is relatively small. As a conclusion we have found that 300degC of heating temperature and 30-120 minutes of a duration in a rod mill with high efficiency of rubbing work for getting coarse aggregate and an agitate mill for fine aggregate might be proper operating conditions under which we can recover both coarse and fine aggregate with the quality within JASS 5N standard. (author)

  12. Decontamination and partial dismantling of the Eurochemic plant. Part 1

    International Nuclear Information System (INIS)

    Detilleux, E.; Geens, L.; Hild, W.; Klonk, W.

    1980-09-01

    A description is given of the partial dismantling of the dissolver used for fuel elements of up to 1.6 wt % 235 U enrichment, and of the total dismantling of the dissolver for highly enriched fuel elements. The corresponding head-end cells have been decontaminated, allowing prolonged interventions, either in view of refurbishing or complete dismantling. An assessment of required manpower, dose commitments, material consumption, and waste production for all operations is given. (author)

  13. A future for nuclear sites beyond their service life. Nuclear site value development

    International Nuclear Information System (INIS)

    2008-01-01

    As the nuclear industry moves into a new development phase, many facilities built in the fifties and sixties are reaching the end of their service life. Dismantling them and rehabilitating the sites on which they stand is a major industrial challenge which will give rise to a number of new projects. AREVA has more than 20 years' experience in these highly technical fields. As more and more sites reach the end of their service life, AREVA considers nuclear site value development as a fully-fledged industrial activity. The group's competencies in this field have been grouped together to form a dedicated entity: the Nuclear Site Value Development Business Unit, created in 2008. Several billion euros are invested in site value development projects which are far-reaching and complex, and often last for several decades. Long before work actually begins, lengthy studies and preparations are required to schedule operations, select the techniques to be used and optimize costs and deadlines. The Nuclear Site Value Development BU is currently working on four major projects involving its own facilities and those of the CEA: - La Hague: dismantling of the first generation of used fuel recycling facilities. Between 1966 and 1998, almost 5,000 tons of used fuel from graphite-moderated gas-cooled reactors, 4,500 tons of light water reactor fuel, as well as fuel from fast reactors and research reactors, were treated at UP2 400, the very first industrial recycling plant on the La Hague site. - Marcoule: first-time dismantling of a recycling plant. 1,000 rooms to be cleaned up, 30,000 tons of waste to be treated, 30 years of work. - Cadarache: first-time dismantling of a Mox fuel fabrication plant. The Cadarache plant was commissioned in 1962 to fabricate fuel for fast reactors; this was followed by MOX fuel for light water reactors, an activity which continued until the plant was shut down in 2003. - Annecy and Veurey: giving a new lease of life to former industrial sites in built

  14. Development of multi-functional telerobotic systems for reactor dismantlement

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Usui, Hozumi; Shinohara, Yoshikuni

    1992-01-01

    This report summarizes technological features of advanced telerobotic systems for reactor dismantling application developed at the Japan Atomic Energy Research Institute. Taking into consideration the special environmental conditions in reactor dismantling, major effort was made to develop multifunctional telerobotic system of high reliability which can be used to perform various complex tasks in an unstructured environment and operated in an easy and flexible manner. The system development was carried out through constructing three systems in seccession; a light-duty and a heavy-duty system as a prototype system for engineering test in cold environment, and a demonstration system for practical on-site application to dismantling highly radioactive reactor internals of an experimental boiling water reactor JPDR (Japan Power Demonstration Reactor). Each system was equipped with one or two amphibious manipulators which can be operated in either a push-button manual, a bilateral master-slave, a teach-and-playback or a programmed control mode. Different scheme was adopted in each system at designing the manipulator, transporter and man-machine interface so as to compare their advantages and disadvantages. According to the JPDR decommissioning program, the demonstration system was successfully operated to dismantle a portion of the radioactive reactor internals of the JPDR, which used underwater plasma arc cutting method and proved the usefulness of the multi-functional telerobotic system for reducing the occupational hazards and enhancing the work efficiency in the course of dismantling highly radioactive reactor components. (author)

  15. Economic challenges of nuclear power

    International Nuclear Information System (INIS)

    Legee, F.; Devezeaux de Lavergne, J.G.; Duquesnoy, T.; Mathonniere, G.

    2012-01-01

    The costs of nuclear power is detailed. Concerning the construction costs, the mean value over the French fleet of reactors is 1,2 billions euros/GWe and 1.5 billions euros/GWe when the engineering and pre-exploitation costs are included. The construction costs of future reactors will be far higher than expected: 6 billion euros versus 3.5 billions euros for the EPR. The Audit Office has recently made public the real cost of today's nuclear electricity in France: 54 euros/MWh, this value is given by the CCE method and includes all the aspects of nuclear energy: construction, operation, dismantling, maintenance, upgrading works required for life extension, new safety requirements due to Fukushima feedback and long-term managing of wastes. The cost of nuclear accidents is not taken into account. The costs of dismantling can be estimated from the feedback experience from the dismantling of nuclear reactors in the Usa, the value obtained is consistent with the OECD rule that states that it represents 15% of the construction cost. The economic impact of decommissioning a plant after 40 years of operating life while its operating life could have been extended to reach 50 or even 60 years has a cost of losing 1 billion to 2 billion euros per reactor. Despite the fact that tomorrow's nuclear systems will be more expensive than today's, it will stay in a competitive range. (A.C.)

  16. Rosie: A mobile workstation for decontamination and dismantlement operations

    International Nuclear Information System (INIS)

    1994-01-01

    RedZone Robotics, Inc. and Carnegie Mellon University's Field Robotics Center have undertaken a contract to develop a next-generation worksystem for decommissioning and dismantlement tasks in Department of Energy (DOE) facilities. Currently, the authors are in the second phase of this three phase effort and are completing the design of the worksystem. Within this project RedZone is designing and fabricating a worksystem: Rosie. Rosie will include a locomotor, heavy manipulator, control center, and control system for robot operation. The locomotor is an omni-directional platform with tether management and hydraulic power capabilities. The heavy manipulator is a high-payload, long-reach system to deploy tools into the work area. The heavy manipulator will be capable of deploying systems such as the Dual-Arm Work Module--a five degree-of-freedom platform supporting two highly dexterous manipulators--or a single manipulator for performing simpler, less dexterous tasks. Rosie will be telerobotic to the point of having servo-controlled motions which can be operated and coordinated through the control center. This report describes the design of the systems. In phase three Rosie will be radiation-hardened and perform a demonstration in a contaminated facility

  17. Method of processing dismantled products of radiation-contaminated equipments and transportation container therefor

    International Nuclear Information System (INIS)

    Komura, Shiro; Heki, Hideaki.

    1991-01-01

    In a method of decontaminating dismantled products of radiation-contaminated equipments removed at nuclear power facilities and classifying the dismantled products depending on their remaining radioactivity levels measured at a processing facility, the dismantled products are contained in a transportation container, to which decontamination liquids are injected and they are transferred to the processing facility. The decontaminated liquid wastes are drained from the transportation container, the dismantled products are washed while being contained in the transportation container as they are. Then, they are transferred to a step for measuring their remaining radioactivity level. This can shorten the time from the containment of the dismantled products to the transportation container to the completion of the decontamination, to improve the efficiency for the decontamination processing. Further, by separately containing the dismantled products on every kind of materials to respective containers, the processing time can be appropriately controlled respectively even if the dissolving efficiency to the decontamination liquids is different depending on the materials. (T.M.)

  18. Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316

    Energy Technology Data Exchange (ETDEWEB)

    Field, D.; Mizen, K. [Nuvia Limited (United Kingdom)

    2013-07-01

    The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been used to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The

  19. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  20. Explosive cutting techniques for dismantling of concrete structures in a nuclear power station following decommissioning

    International Nuclear Information System (INIS)

    Freund, H.U.; Fleischer, C.C.

    1993-01-01

    This report describes the work that has been jointly carried out, based on a common and complementary research programme, by the Battelle Institut e.V., Frankfurt and Taylor Woodrow Construction Ltd., Southall, on the controlled use of explosives for the cutting and safe removal of activated and contaminated parts of nuclear facilities without impairing the overall structural integrity. Previous work had demonstrated the feasibility of using explosive techniques for the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of nuclear facilities. The present research work aims at complementing, improving and optimizing the foregoing work. Extensive investigations have been executed on the adjustment of blasting parameters, material and structural effects, drilling techniques, particle distribution and on procedures for remote handling. The report presents the results obtained from field trials and theoretical analysis undertaken to augment the development programme. It concludes that the controlled use of explosives offers a safe and favourable dismantling technique for the decommissioning of nuclear facilities

  1. A treaty more alarming than efficient. The dismantled warheads will not be destroyed. Danger

    International Nuclear Information System (INIS)

    Riche, P.; Despic-Popovic, H.; Nougayrede, N.

    2002-01-01

    This political analysis presents the new treaty of nuclear weapons dismantling between Russia and Usa. In fact the warheads will not be completely dismantling but only stocked, leading to a possible recovery by terrorists. It underlines the real interests of this agreement which are more economic than peaceful. (A.L.B.)

  2. Nuclear. When Fessenheim will close..

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2012-01-01

    Even if the ASN stated it could keep on operating, the Fessenheim nuclear power station is planned to be closed by 2017, notably because of its age and of its neighbourhood with Germany and Switzerland. This closure raises the question of electricity supply for the region, of job losses not automatically balanced by activities in the field of renewable energies, and of earning losses for EDF. Moreover, dismantling operations will have to be financed. The site could then become a pilot one for dismantling activities

  3. Dismantling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  4. Dismantling techniques

    International Nuclear Information System (INIS)

    Wiese, E.

    1998-01-01

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule

  5. Disposition of excess weapons plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1997-01-01

    With the end of the Cold War and the implementation of various nuclear arms reduction agreements, US and Russia have been actively dismantling tens of thousands of nuclear weapons. As a result,large quantities of fissile materials, including more than 100 (tonnes?) of weapons-grade Pu, have become excess to both countries' military needs. To meet nonproliferation goals and to ensure the irreversibility of nuclear arms reductions, this excess weapons Pu must be placed in secure storage and then, in timely manner, either used in nuclear reactors as fuel or discarded in geologic repositories as solid waste. This disposition in US and Russia must be accomplished in a safe, secure manner and as quickly as practical. Storage of this Pu is a prerequisite to any disposition process, but the length of storage time is unknown. Whether by use as fuel or discard as solid waste, disposition of that amount of Pu will require decades--and perhaps longer, if disposition operations encounter delays. Neither US nor Russia believes that long-term secure storage is a substitute for timely disposition of excess Pu, but long-term, safe, secure storage is a critical element of all excess Pu disposition activities

  6. Cleaning and dismantling of a high activity laboratory (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Bredel; Thierry; Buzare, Alain

    2005-01-01

    The high activity laboratories have been built at the end of the 50ies. The particularity of this facility was that about 14 different laboratories worked in 14 different fields (biology, production of Cs and Cf sources, metallurgy, mechanical testing ...). Because of the optimization of the nuclear research, the CEA decided to close progressively this facility and to transfer the different experiments in other places. This action began in 1997 and is planed to end in 2010. 6 laboratories have been closed from 1997 to 2001 and the dismantling of the shielded cells has begun since 2002. Therefore, several laboratories have been cleaned of the materials and experiments. Nevertheless, the main particularity of this subject is that some experimental activities have been pursued during the cleaning and dismantling of other laboratories. For example, we describe the dismantling of the laboratory that performed metallurgical and mechanical characterization of irradiated materials. This laboratory occupied 20 lead cells and 2 glove boxes. The exploitation of those cells has been stopped progressively (12 at the end of 2001 and 5 at the end of 2003). The end of the last 3 cell exploitation is planed to end 2005. Since the end of 2001, 9 lead cells have been cleaned. Their dismantling is planed for next the two years. In parallel, we will clean all the other cells. During this phase we will have also to transfer all the irradiated samples (about 5000) that are still in the laboratory to the waste treatment facility of the CEA centre or to the new laboratory which has been presented during the previous hotlab meeting in Saclay. The paper gives details for background about ended operations: Organization, waste production, specific designs which improve radioprotection, waste destinations and costs, Difficulties and feedback experience of dismantling. (Author)

  7. Mock-up test of remote controlled dismantling apparatus for large-sized vessels (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Myodo, Masato; Miyajima, Kazutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Okane, Shogo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-03-01

    The Remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedures for dismantling the large-sized vessel was studied and various date was obtained in the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF. (author)

  8. Mock-up test of remote controlled dismantling apparatus for large-sized vessels (contract research)

    International Nuclear Information System (INIS)

    Myodo, Masato; Miyajima, Kazutoshi; Okane, Shogo

    2001-03-01

    The Remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedures for dismantling the large-sized vessel was studied and various date was obtained in the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF. (author)

  9. Analysis of operational possibilities and conditions of remote handling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Hourfar, D.

    1989-01-01

    Accepting the development of the occupational radiation exposure in nuclear facilities, it will be showing possibilities of cost effective reduction of the dose rate through the application of robots and manipulators for the maintenance of nuclear power plants, fuel reprocessing plants, decommissioning and dismantling of the mentioned plants. Based on the experiences about industrial robot applications by manufacturing and manipulator applications by the handling of radioactive materials as well as analysis of the handling procedures and estimation of the dose intensity, it will be defining task-orientated requirements for the conceptual design of the remote handling systems. Furthermore the manifold applications of stationary and mobil arranged handling systems in temporary or permanent operation are described. (orig.) [de

  10. Dismantling technologies trends

    International Nuclear Information System (INIS)

    Devaux, P.

    2009-01-01

    In this work dismantling technologies trends realized by the CEA are reviewed. There following technologies are presented: Data acquisition from facilities; Scenario studies; Remote handling and carriers; Dismantling techniques; Decontamination.

  11. Abrasive water jet cutting technique for biological shield concrete dismantlement

    International Nuclear Information System (INIS)

    Konno, T.; Narazaki, T.; Yokota, M.; Yoshida, H.; Miura, M.; Miyazaki, Y.

    1987-01-01

    The Japan Atomic Energy Research Institute (JAERI) is developing the abrasive-water jet cutting system to be applied to dismantling the biological shield walls of the JPDR as a part of the reactor dismantling technology development project. This is a total system for dismantling highly activated concrete. The concrete biological shield wall is cut into blocks by driving the abrasive-water jet nozzle, which is operated with a remote, automated control system. In this system, the concrete blocks are removed to a container, while the slurry and dust/mist which are generated during cutting are collected and treated, both automatically. It is a very practical method and will quite probably by used for actual dismantling of commercial power reactors in the future because it can minimize workers' exposure to radioactivity during dismantling, contributes to preventing diffusion of radiation, and reduces the volume of contaminated secondary waste

  12. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  13. Development of equipments for remote dismantling of joule heated ceramic melter

    International Nuclear Information System (INIS)

    Badgujar, Kiran T.; Usarkar, Sachin G.; Kumar, Binu; Nair, K.N.S.

    2011-01-01

    Joule Heated Ceramic Melter (JHCM) technology has been adopted for industrial scale vitrification of high level liquid waste (HLLW) at Tarapur and Kalpakkam. The melter installed at Advanced Vitrification System (AVS), Tarapur has immobilized 175 m 3 of HLLW in 113 canisters containing 11533Kg of Vitrified Waste Product (VWP). The melter has been in operation for 3 years before shutdown. It is intended to demonstrate the complete procedure of dismantling of Joule Melter in 1:1 scale prior to going in for actual dismantling in the hot cell. The Melter consists of an assembly of Inconel/SS pipes and plates, fuse cast refractories, thermal insulations of various types inside a SS casing and possibly some glass which is left over in the melter. Dismantling of melter involves remote cutting of the outer casing, pipe connections, electrical connections and removal, sizing and packing of internals in a sequential manner to minimise generation of secondary waste. The challenge involves development of remotely operated multi-degrees of freedom fixtures, modification and performance testing of standard industrial cutting and breaking tools and adapting them for remote operations. The work also involves development of equipments for collection of waste generated during the dismantling operation and packaging thus in special packages. Remotely actuated fixtures have been developed for remote top plate and side electrodes cutting. Remotely operated grab has been developed for handling of loose material and grippers have been developed for handling of refractory blocks. Industrial vacuum suction device has been modified into split units to enable for reducing the spread of powder material, while dismantling in progress. The performance test of developed fixtures, equipments, cutting and breaking tools have been carried on 1:1 scale melter model. Various parameters like cutting speed, cutting tool performance, generation of waste volume has been measured and analysed for

  14. Analysis of dismantling possibility and unloading efforts of fuel assemblies from core of WWER

    International Nuclear Information System (INIS)

    Danilov, V.; Dobrov, V.; Semishkin, V.; Vasilchenko, I.

    2006-01-01

    The computation methods of optimal dismantling sequence of fuel assemblies (FA) from core of WWER after different operating periods and accident conditions are considered. The algorithms of fuel dismantling sequence are constructed both on the basis of analysis of mutual spacer grid overlaps of adjacent fuel assemblies and numerical structure analysis of efforts required for FA removal as FA heaving from the core. Computation results for core dismantling sequence after 3-year operating period and LB LOCA are presented in the paper

  15. State of dismantling of reactor facilities (JPDR) in Tokai Research Establishment, Japan Atomic Energy Research Institute (fiscal year 1986)

    International Nuclear Information System (INIS)

    1987-01-01

    As to this dismantling work, the contents of the notice on the dismantling and the policy of administration offices to deal with it were reported to the Nuclear Safety Commission beforehand, and after the approval was obtained, it has been executed. Based on the talk of the chairman of Nuclear Safety Commission on January 6, 1983, the state of dismantling is reported. In fiscal year 1986, the second stage dismantling was begun in December, and it was confirmed that the works were carried out safety. In order to ensure the place required for dismantling and removing in-core structures and the pressure vessel, the pressure vessel upper cover and its heat insulator were removed from the third story of the containment vessel. A part of the facilities installed on the second and third stories of the containment vessel was also dismantled and removed. In order to utilize as the place for the temporary preservation and decontamination of dismantled things, a part of the facilities installed in the dump condenser building was dismantled and removed. The control building was reconstructed for smoothly carrying out the entrance control of workers. 36 spent fuel assemblies were carried away for reprocessing. The exposure dose of workers was below the detectable limit of film badges. The dismantled wastes were about 171 t of metals and 34 t of concrete. (Kako, I.)

  16. New wireless system for fire protection (detection) during dismantling works in Jose Cabrera NPP (CNJC); Nuevo Sistema Inalámbrico de detección contraincendios para el desmantelamiento de a Central Nuclear José Cabrera

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, F.J.; Gómez Rodríguez, C.A.

    2016-07-01

    José Cabrera Nuclear Power Plant is currently in an advanced stage in the process of dismantling and decommissioning. As part of that process, it is necessary to remove the maximum possible interference with operating systems, which are still needed to support the works ongoing or to ensure the safety. With that goal it has been installed a new wireless fire detection system that substitutes the old wired one. The coverage of this new system was initially focused on the containment building, establishing a first phase of analysis of signal coverage, and location of the different components in the building and a second phase of implementation (monitoring and testing) to demonstrate the reliability and robustness of the system in a building with such a complex geometry configuration. Currently the WIFI system is in operation, providing coverage to the containment building and other external facilities (laundry, control room, etc) that have been incorporated to support the process of dismantling.

  17. Rosie - mobile robot worksystem for decommissioning and dismantling operations. Final report, April 1, 1996 - January 31, 1997

    International Nuclear Information System (INIS)

    1998-01-01

    RedZone Robotics, Inc. has undertaken development of an advanced remote worksystem - Rosie - specifically designed to meet the challenges of performing a wide range of decontamination and dismantlement (D ampersand D) operations in nuclear environments. The Rosie worksystem includes a locomotor, heavy manipulator, operator console, and control system for remote operations. The locomotor is a highly mobile platform with tether management and hydraulic power onboard. The heavy manipulator is a high-payload, long-reach boom used to deploy a wide variety of tools and/or sensors into the work area. Rosie's advanced control system, broad work capabilities, and hardening/reliability for hazardous duty make it a new and unique capability that facilitates completion of significant cleanup projects throughout the Department of Energy (DOE) and private sector. Endurance testing of the first Rosie system from September 1995 to March 1996 has proven its capabilities and appropriateness for D ampersand D applications. Design enhancements were incorporated into the second Rosie system to improve and add features necessary for deployment at a DOE facility decommissioning. This second Rosie unit was deployed to the Argonne National Laboratory's CP-5 reactor facility in early December 1996, and it is currently being used in the decommissioning of the reactor there. This report will overview this second Rosie system and the design enhancements made to it based on the lessons learned during the design, fabrication, and testing of the first Rosie system. The Rosie system has been designed to be a versatile and adaptable tool that can be used in many different applications in D ampersand D work at nuclear facilities. It can carry a wide variety of tooling, sensors, and other robotic equipment at the tip of its heavy manipulator, and it can deploy those items to many different hazardous work areas. Rosie's capabilities and system design address the need for durability and reliability in

  18. Rosie - mobile robot worksystem for decommissioning and dismantling operations. Final report, April 1, 1996--January 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    RedZone Robotics, Inc. has undertaken development of an advanced remote worksystem - Rosie - specifically designed to meet the challenges of performing a wide range of decontamination and dismantlement (D&D) operations in nuclear environments. The Rosie worksystem includes a locomotor, heavy manipulator, operator console, and control system for remote operations. The locomotor is a highly mobile platform with tether management and hydraulic power onboard. The heavy manipulator is a high-payload, long-reach boom used to deploy a wide variety of tools and/or sensors into the work area. Rosie`s advanced control system, broad work capabilities, and hardening/reliability for hazardous duty make it a new and unique capability that facilitates completion of significant cleanup projects throughout the Department of Energy (DOE) and private sector. Endurance testing of the first Rosie system from September 1995 to March 1996 has proven its capabilities and appropriateness for D&D applications. Design enhancements were incorporated into the second Rosie system to improve and add features necessary for deployment at a DOE facility decommissioning. This second Rosie unit was deployed to the Argonne National Laboratory`s CP-5 reactor facility in early December 1996, and it is currently being used in the decommissioning of the reactor there. This report will overview this second Rosie system and the design enhancements made to it based on the lessons learned during the design, fabrication, and testing of the first Rosie system. The Rosie system has been designed to be a versatile and adaptable tool that can be used in many different applications in D&D work at nuclear facilities. It can carry a wide variety of tooling, sensors, and other robotic equipment at the tip of its heavy manipulator, and it can deploy those items to many different hazardous work areas. Rosie`s capabilities and system design address the need for durability and reliability in these environments.

  19. Temperature buffer test. Dismantling operation

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias [Clay Technology AB, Lund (Sweden)

    2010-12-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite in the usual way, whereas the upper heater was surrounded by a ring of sand. The test was dismantled and sampled during a period from the end of October 2009 to the end of April 2010, and this report describes this operation. Different types of samples have been obtained during this operation. A large number of diameter 50 mm bentonite cores have been taken for analysis of water content and density. Large pieces, so-called big sectors, have been taken for hydro-mechanical and chemical characterizations. Finally, there has been an interest to obtain different types of interface samples in which bentonite were in contact with sand, iron or concrete. One goal has been to investigate the retrievability of the upper heater, given the possibility to remove the surrounding sand shield, and a retrieval test has therefore been performed. The sand in the shield was first removed with an industrial vacuum cleaner after loosening the material through mechanical means (with hammer drill and core machine). A front loader was subsequently used for applying a sufficient lifting force to release the heater from the bentonite underneath. The experiment has been documented in different aspects: measurements of the coordinate (height or radius) of different interfaces (between bentonite blocks and between bentonite and sand); verification of sensor positions and retrieval of sensors for subsequent

  20. Temperature buffer test. Dismantling operation

    International Nuclear Information System (INIS)

    Aakesson, Mattias

    2010-12-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite in the usual way, whereas the upper heater was surrounded by a ring of sand. The test was dismantled and sampled during a period from the end of October 2009 to the end of April 2010, and this report describes this operation. Different types of samples have been obtained during this operation. A large number of diameter 50 mm bentonite cores have been taken for analysis of water content and density. Large pieces, so-called big sectors, have been taken for hydro-mechanical and chemical characterizations. Finally, there has been an interest to obtain different types of interface samples in which bentonite were in contact with sand, iron or concrete. One goal has been to investigate the retrievability of the upper heater, given the possibility to remove the surrounding sand shield, and a retrieval test has therefore been performed. The sand in the shield was first removed with an industrial vacuum cleaner after loosening the material through mechanical means (with hammer drill and core machine). A front loader was subsequently used for applying a sufficient lifting force to release the heater from the bentonite underneath. The experiment has been documented in different aspects: measurements of the coordinate (height or radius) of different interfaces (between bentonite blocks and between bentonite and sand); verification of sensor positions and retrieval of sensors for subsequent

  1. Dismantling of an alpha contaminated hot cell at the Marcoule Pilot Plant

    International Nuclear Information System (INIS)

    Tachon, M.

    1988-01-01

    For the remodeling of Marcoule Pilot Plant, the cell 82: old unit for plutonium solution purification by extraction, was dismantled. About 42 tons of wastes were evacuated. Some wastes wen decontaminated by mechanical means other wastes with higher residual activity were stored for subsequent processing. The operation shows that dismantling of a hot cell is possible even if incorporated in an operating plant [fr

  2. Radioactivity, radiation protection and monitoring during dismantling of light-water reactors

    International Nuclear Information System (INIS)

    Hummel, L.; Zech, J.B.

    2005-01-01

    Based on the radioactivity inventory in the systems and components of light-water reactors observed during operation, the impact of actions during plant emptying after the conclusion of power operation and possible subsequent long-term safe enclosure concerning the composition of the nuclide inventory of the plant to be dismantled will be described. Derived from this will be the effects on radioactivity monitoring in the plant, physical radiation protection monitoring, and the measured characterization of the residual materials resulting from the dismantling. The impact of long-term interim storage will also be addressed in the discussion. The talk should provide an overview of the interrelationships between source terms, decay times and the radioactivity monitoring requirements of the various dismantling concepts for commercial light-water reactors. (orig.)

  3. Modelling the cooling and partial dismantling of the Febex in-situ test

    International Nuclear Information System (INIS)

    Sanchez, M.; Gens, A.; Guimaraes, L.

    2010-01-01

    Document available in extended abstract form only. In many designs for radioactive waste disposal the space between the canister and the cavity surface is filled by an engineered barrier made up of compacted expansive clay. Engineered barrier and adjacent host rock will be submitted to the heating effect of the nuclear waste as well as to associated hydraulic and mechanical phenomena that interact in a complex way. In order to achieve a safe and robust repository design, it is necessary to have a good understanding of the processes that occur in the near field and their evolution over time. To this end, properly instrumented full scale in situ tests provide essential information. The in-situ test operated at full scale and under natural conditions at the underground laboratory managed by NAGRA (Swiss National Cooperative for the Disposal of Radioactive Waste) at the Grimsel test site in Switzerland. Two 4300 W heaters were placed in the axis of the horizontal drift in the natural rock (granite). The heaters were 4.54 m long and 0.90 m in diameter, and were intended to simulate the release of heat by nuclear waste. The space between the rock surface and the heaters was backfilled using blocks of compacted bentonite. The test area was sealed with a 2.7 m long concrete plug. The test was heavily instrumented, including 632 sensors that were installed in the clay barrier and in the rock with measurements of temperatures, relative humidity (equivalent to total suction), pore pressures, displacements, and stresses. The heaters were symmetrically placed in relation to the central section of the test. The power of the heaters was adjusted to maintain a 100 deg. C temperature at the interface between heaters and bentonite barrier. The test was run in this way for five years when one of the heaters was switched off and dismantled. Dismantling data provided extremely valuable information about the state of the barrier at the end of the experiment and a useful benchmark for

  4. Decree no. 2005-78 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.20, named Siloe reactor, in the Grenoble city territory (Isere)

    International Nuclear Information System (INIS)

    2005-02-01

    On March 19, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloe reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  5. Dismantling and decontamination of Piver prototype vitrification plant

    International Nuclear Information System (INIS)

    Jouan, A.; Roudil, S.; Thomas, F.

    1991-01-01

    The PIVER prototype was targeted for dismantling in order to install a new pilot facility for the french continuous vitrification process. Most of the work involved the vitrification cell containing the process equipments, which had to be cleared out and thoroughly decontaminated; this implied disassembling, cutting up, conditioning and removing all the equipment installed in the cell. Remote manipulation, handling and cutting devices were used and some prior modifications were implemented in the cell environment. The dismantling procedure was conducted under a detailed programme defining the methodology for each operation. After equipment items and active zones were identified, the waste materials were removed, and several liquid decontamination operations were implemented. Removed activity, levels of irradiation in the cell and doses integrated by personnel were monitored to control progress and to adapt procedures to the conditions encountered. At the end of December 1989, the PIVER cleanup programme was at 87% complete and the total activity removed was 2.11 X 10 14 Bq (5712 Ci). The objective now is to obtain suitable working conditions in order to allow operators to enter the cell to remove items that are inaccessible or which cannot be dismantled by remote manipulators and to complete the decontamination procedure

  6. Jose Cabrera dismantling and decommissioning project

    International Nuclear Information System (INIS)

    Ondaro, Manuel

    2013-01-01

    The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available for unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and

  7. Jose Cabrera dismantling and decommissioning project

    Energy Technology Data Exchange (ETDEWEB)

    Ondaro, Manuel [ENRESA, Madrid (Spain)

    2013-07-01

    The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available for unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and

  8. Atomic Energy Commission (CEA) dismantling experience review and perspectives

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1992-01-01

    Reorganization and dismantling have been part of the CEA's facility renewal process for more than twenty years now. Many facilities have already been downrated or will be in the near future. The strategy developed so far is founded on acquired experience, on the basis of which it may be said that: nuclear facilities are reversible in full and strict compliance with safety and security rules; a field of competence has been developed that will help French industries to land on their feet when the time comes on the dismantling market; public opinion has been informed as to the soundness of the energy alternatives chosen

  9. Setting UP a decontamination and dismantling (D and D) scenario - methodology and tools developed leopard

    International Nuclear Information System (INIS)

    Pradoura, F.

    2009-01-01

    At the AREVA NC La Hague site, the former nuclear spent fuel reprocessing plant UP2-400 was shutdown on December 30, 2003. Since then, the cleaning up and dismantling activities have been carried by the DV/PRO project, which is the program management organization settled by AREVA NC, for valorization projects. SGN, part of the AREVA NC Engineering Business Unit, operates as the main contractor of the DV/PRO project and provides project management services related to decommissioning and waste management. Hence, SGN is in charge of building D and D's scenarios for all the facilities of the UP2-400 plant, in compliance with safety, technical and financial requirements. Main outputs are logic diagrams, block flow diagrams, wastes and effluents throughputs. In order to meet with AREVA NC's requirements and expectations, SGN developed specific process and tools methods adapted to the scale and complexity of decommissioning a plant with several facilities, with different kind of processes (chemical, mechanical), some of which are in operation and other being dismantled. Considering the number of technical data and inputs to be managed, this methodology leads to complex outputs such as schedules, throughputs, work packages... The development, the maintenance and the modification of these outputs become more and more difficult with the complexity and the size of the plant considered. To cope with these issues, SGN CDE/DEM UP2-400 project team has developed a dedicated tool to assist and optimize in elaborating D and D scenarios. This tool is named LEOPARD (Logiciel d'Elaboration et d'Optimisation des Programmes d'Assainissement Radiologique et de Demantelement) (Software for the Development and Optimization of Radiological Clean up and Dismantling Programs). The availability of this tool allowed the rapid construction of a test case (demonstrator) that has convinced DV/PRO of its numerous advantages and of the future further development potentials. Presentations of LEOPARD

  10. Waste management concept during dismantling of KKS NPP in Germany

    International Nuclear Information System (INIS)

    Bacmeister, Georg U.

    2008-01-01

    Full text: This paper gives an overview on the waste management of NPP Stade during dismantling. The general idea is to reduce the radioactive waste to about three percentage of the complete dismantling mass. The NPP Stade in Germany was shut down in November 2003. After a transient phase the license for dismantling was given in 2005. In the following 8 years about 20.000 tones of steel and 120.000 tones of concrete will be put out by the dismantling. The yearly output of steel will by about 100 times higher than during the running time of the NNP. For this a new processes for waste management had to be installed. The waste management during dismantling focus on free release (about 97%). Beside some minor exception, the rest is deemed to be radioactive waste. This will be collected in 1000 packages, which are ready to be sent to a final storage. As until now in Germany no final storage is open (and sending of radioactive waste to another country is forbidden), the NNP Stade build an intermediate storage, where the packages may by saved for longest 40 years. The clearance procedure in Germany is regulated in the radiation protection ordinances. It is based on a nuclide specific set of clearance levels. To fulfil these demands the NNP Stade chose a semi automated system for characterization and documentation, which we develop in accordance to our release license. It guaranties a most accurate determination of the relevant nuclides for a set of dismantling material (some 10 to 100 tones). After the characterization only the gamma-activity of the material is measured in boxes of about 500 kg. A short comparison of the chosen procedure with other options, possible in Germany will be given and the decision from the collaboration with the NPP in Barsebaeck, Sweden, will be withdrawn. Beside the free release different options are used for waste management, like incineration, sending to landfill or reuse in nuclear industry. The waste management of the NNP Stade take

  11. LEP Dismantling Reaches Half-Way Stage

    CERN Multimedia

    2001-01-01

    LEP's last superconducting module leaves its home port... Just seven months into the operation, LEP dismantling is forging ahead. Two of the eight arcs which form the tunnel have already been emptied and the last of the accelerator's radiofrequency (RF) cavities has just been raised to the surface. The 160 people working on LEP dismantling have reason to feel pleased with their progress. All of the accelerator's 72 superconducting RF modules have already been brought to the surface, with the last one being extracted on 2nd May. This represents an important step in the dismantling process, as head of the project, John Poole, explains. 'This was the most delicate part of the project, because the modules are very big and they could only come out at one place', he says. The shaft at point 1.8 through which the RF cavity modules pass is 18 metres in diameter, while each module is 11.5 metres long. Some modules had to travel more than 10 kilometres to reach the shaft. ... is lifted up the PM 1.8 shaft, after a m...

  12. Further retardation could lead to a hold-up of nuclear reactor dismantling; Weitere Verzoegerungen koennten zu einem Stillstand des Kernkraft-Rueckbaus fuehren

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Konstantin (comp.) [Innovations- und Technologieberatung Altran, Frankfurt am Main (Germany). Bereich Energy and Industry

    2015-07-01

    The following issues concerning the consequences of the German nuclear power phaseout are discussed: the cost of reactor dismantling could increase; the complete deconstruction of a nuclear power plant including environmental revitalization take a time of 10-15 years; the largest challenge is the still unsolved problem of final disposal; further retardations could trigger a complete deadlock of the deconstruction due to completely filled interim storage facilities. A further problem is the knowledge preservation due to the lack of students.

  13. The Superphenix dismantling

    International Nuclear Information System (INIS)

    Carle, R.

    1999-01-01

    This document presents selected abstracts of Remy Carle's presentation on the dismantling of Superphenix (october 1998). The author wonders about the consequences of such a decision. After a chronological account of this fast reactor project, its cost and the scientific and technical contribution, the dismantling problem is considered. For EDF (Electricite De France) the dismantling dimension is considered at the same time of the design. The main problem is the liquid sodium reprocessing: a technical but also a financing problem. The end of the speech deals with the political aspects of Superphenix and the relations with the public. (A.L.B.)

  14. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1993-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by Kernkraftwerke RWE Bayernwerk GmbH (KRB) and the CEC at Gundremmingen-Guenzburg (D), where the former KRB-A BWR is presently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, the results and conclusions on techniques and procedures presently applied in the dismantling of large-scale nuclear installations in the European Community. Besides the four pilot dismantling projects of the presently running third R and D programme (1989-93) of the European Community on decommissioning of nuclear installations (WAGR, BR-3 PWR, KRB-A BWR and AT-1 FBR fuel reprocessing), the organizers selected the presentation of topics on the following facilities which have a significant scale and/or representative features and are presently being dismantled: the Magnox reprocessing pilot plant at Sellafield, the HWGCR EL4 at Monts d'Arree, the operation of an on-site melting furnace for G2/G3 GCR dismantling waste at Marcoule, an EdF confinement conception of shut-down LWRs for deferred dismantling, and the technical aspects of the Greifswald WWER type NPPs decommissioning. This was completed by a presentation on the decommissioning of material testing reactors in the United Kingdom and by an overview on the conception and implementation of two EC databases on tools, costs and job doses. The seminar concluded with a guided visit of the KRB-A dismantling site. This meeting was attended by managers concerned by the decommissioning of nuclear installations within the European Community, either by practical dismantling work or by decision-making functions. Thereby, the organizers expect to have contributed to the achievement of decommissioning tasks under optimal conditions - with respect to safety and economics - by making available a complete and updated insight into on-going dismantling projects and by

  15. The Pierrelatte's military factories dismantling

    International Nuclear Information System (INIS)

    Bourrelier, P.; Kassel, Ch.

    1999-01-01

    The site of Pierrelatte in France, receives since 1958 gaseous diffusion plants assigned to the uranium enrichment for military uses. Since 1996 Cogema implements, by order of the Cea, a dismantling operation of the site. The operation which will begin in 2000, is going to last ten years. This project shows difficulties that make it innovative. Its originality, the planning, the risks, the program progressing and the regulation aspects are detailed in this paper. Beyond the complicated technical operations, the wastes management is of primary importance for the good development of the operations. (A.L.B.)

  16. Criteria, standards and policies regarding decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Detilleux, E.; Lennemann, W.L.

    1977-01-01

    At the end of this century, there will probably be around 2500 operating nuclear power reactors, along with all the other nuclear fuel cycle facilities supporting their operation. Eventually these facilities, one by one, will be shut down and it will be necessary to dispose of them as with any redundant industrial facility or plant. Some parts of a nuclear fuel cycle facility can be dismantled by conventional methods, but those parts which have become contaminated with radioactive nuclear products or induced radioactivity must be subject to rigid controls and restrictions and handled by special dismantling and disposal procedures. In many cases, the resulting quantity of radioactive waste is likely to be relatively large and dismantling quite costly. Decommissioning nuclear facilities is a multifaceted problem involving planners, design engineers, operators, waste managers and regulatory authorities. Preparation for decommissioning should begin as early as site selection and plant design. The corner stone for the preparation of a decommissioning programme is the definition of its extent, meeting the requirements for public and environmental protection during the period that the radioactive material is of concern. The paper discusses the decontamination and decommissioning experience at the Eurochemic fuel reprocessing plant, the implications and the knowledge gained from this experience. It includes the results of technical reviews made by the Nuclear Energy Agency of OECD and the International Atomic Energy Agency regarding decommissioning nuclear facilities. The paper notes the special planning that should be arranged between those responsible for the nuclear facility and competent public authorities who should jointly make a realistic determination of the eventual disposition of the nuclear facility, even before it is built. Recommendations cover the responsibilities of nuclear plant entrepreneurs, designers, operators, and public and regulatory authorities

  17. Target: The green meadow. How much knowledge is needed for the dismantling of nuclear power plants?; Ziel: die Gruene Wiese. Wieviel Know-how man braucht, um ein Kernkraftwerk zurueckzubauen

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Friedrich-Wilhelm; Hassel, Thomas [Unterwassertechnikum Hannover (UWTH), Hannover (Germany). Inst. fuer Werkstoffkunde

    2013-07-01

    As from the year 2022, there will no nuclear power plant exist in Germany. In the contribution under consideration two scientists from the Institute of Materials Science (Hanover, Federal Republic of Germany) report on the preparations and the necessary technical knowledge in order to dismantle the highly complex nuclear facilities and to recultivate former nuclear power plant sites.

  18. Ethics of nuclear decommissioning

    International Nuclear Information System (INIS)

    Surrey, John

    1992-01-01

    What to do with the numerous reactors that reach the end of their operating lives over the next 30 years involves ethical issues of an intergenerational kind. This essay examines various nuclear decommissioning options in the light of the ethical issues. Prompt dismantlement seems preferable to other options involving postponed dismantlement, entombment of some kind or doing nothing. It would avoid bequeathing future generations with the disamenity of entombed reactors or responsibility for dismantling other disused reactors. The choice of option also depends on the health risks through time and whether a sufficient decommissioning fund exists to avoid handing down debt and constrained choice. There is a strong case for supporting research and development from public funds to develop the technology and reduce both the health risks and the costs, especially if dismantlement is left to a future generation. (author)

  19. The Molten Salt Reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.; Dodds, H.L.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined. It is concluded that MSRs are very suitable for beneficial utilization of the dismantled fuel. The MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus MSRs are flexible while maintaining their economy. MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, all of which supports nonproliferation and averts diversion. MSRs have inherent safety features which make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment of nuclear power. 19 refs

  20. Chooz A: a model for the dismantling of water-cooled reactors

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    The specificity of Chooz-A, the first French pressurized water reactor (PWR), is that the reactor and its major components (pumps, exchangers and cooling circuits) are installed in 2 caves dug out in a hill slope. Chooz-A was operating from 1967 to 1991, in 1993 the fuel was removed and in 2007 EDF received the authorization to dismantle the reactor. In 2012, EDF completed the dismantling of the cave containing the elements of the cooling circuit, a cornerstone was the removing of the four 14 m high steam generators. The dismantling of the pressure vessel began in march 2017, it is the same tools and the same processes that were used for the dismantling of the pressure vessel of the Zorita plant (Spain) in 2016. The end of the Chooz-A dismantling is expected in 2022. The feedback experience will help to standardize practices for the French fleet of PWRs. (A.C.)

  1. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    Feaugas, J.; Jeanjacques, M.; Peulve, J.

    1994-01-01

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  2. Overall strategy of Creys Malville power station dismantling

    International Nuclear Information System (INIS)

    Alphonse, P.

    2002-01-01

    The power station was stopped by a government decision following the elections in 1997. This shutdown was then made official by a letter dated April 1998 and the decree of December 1998. This was a non-technical shutdown and as such had not been envisaged; there has been no early warning. Current dismantling strategy: The studies leading to shutdown and then dismantling were engaged in 1998 based on a scenario with a status corresponding to IAEA level 2 until 2046. In 2001, EDF management made the decision to dismantle all the first generation power stations and Creys Malville between now and 2025. It should be noted that the presence of strongly irradiated stellite in the Creys Malville reactor would still require remote systems for working in the reactor block after 2046. The sequence of operations dictated by the dismantling strategy is as follows: eliminate the risks as soon as possible and in particular the risk related to the sodium, 3300 tonnes of which is kept in liquid form in the reactor vessel; dismantle the most active parts which are too radioactive to be sent to the existing or planned storage centres. This may lead to on-site storage to allow decay to occur before sending to a storage centre; planning of the work interventions in order to limit the costs

  3. The inherent advantages of delayed dismantling of decommissioning nuclear stations

    International Nuclear Information System (INIS)

    Liederman, J.M.; Saroudis, J.I.

    1985-01-01

    Recent studies in Canada pertaining to the decommissioning of the CANDU 600 MW(e) reactor have led to the development of the option of a ''static state'' condition. This alternative is based on judging risk and benefit to society considering the greatly reduced potential radiation exposure to personnel after 30 to 80 years have elapsed, following the final shutdown of the reactor. After approximately 80 to 120 years have elapsed, the decay in all systems and components (with the exception of the reactor assembly) would be such that radiation fields would be at background levels producing an environment that would be acceptable for Stage 3 decommissiong. This philosophy is based on the current engineering judgement that: - All systems, components, and structures which were associated with the nuclear processes and are radioactive, can be put into a static or storage state, and a containment function maintained at low cost for prolonged periods of between 80 to 120 years. - Between 80 to 120 years after shutdown, most of the radioactivity, except for some long lived radionuclides in the reactor vessel itself and its vault, will have naturally decayed to near releasable limits without any external intervention. - There is a lower overall risk to society in this approach, than dismantling and transporting radioactive materials prematurely. This philosophy is developed taking into consideration radiation protection, financial and risk assessment issues. The Canadian concept of dry storage of spent fuel is part of this philosophy and may be of interest to decommissioned nuclear plants of other types. 4 tables, 5 graphs

  4. Waste from decommissioning of research reactors and other small nuclear facilities

    International Nuclear Information System (INIS)

    Massaut, V.

    2001-01-01

    Full text: Small nuclear facilities were often built for research or pilot purposes. It includes the research reactors of various types and various aims (physics research, nuclear research, nuclear weapons development, materials testing reactor, isotope production, pilot plant, etc.) as well as laboratories, hot cells and accelerators used for a broad spectrum of research or production purposes. These installations are characterized not only by their size (reduced footprint) but also, and even mostly, by the very diversified type of materials, products and isotopes handled within these facilities. This large variety can sometimes enhance the difficulties encountered for the dismantling of such facilities. The presence of materials like beryllium, graphite, lead, PCBs, sodium, sometimes in relatively large quantities, are also challenges to be faced by the dismantlers of such facilities, because these types of waste are either toxic or no solutions are readily available for their conditioning or long term disposal. The paper will review what is currently done in different small nuclear facilities, and what are the remaining problems and challenges for future dismantling and waste management. The question of whether Research and Development for waste handling methods and processes is needed is still pending. Even for the dismantling operation itself, important improvements can be brought in the fields of characterization, decontamination, remote handling, etc. by further developments and innovative systems. The way of funding such facilities decommissioning will be reviewed as well as the very difficult cost estimation for such facilities, often one-of-a-kind. The aspects of radioprotection optimization (ALARA principle) and classical operators safety will also be highlighted, as well as the potential solutions or improvements. In fact, small nuclear facilities encounter often, when dismantling, the same problems as the large nuclear power plants, but have in

  5. Report of working group for technical standard of cutting and melting works in Glovebox dismantling

    International Nuclear Information System (INIS)

    Asazuma, Shinichiroh; Takeda, Shinsoh; Tajima, Shoichi

    2004-11-01

    In order to prevent spread of contamination, glovebox dismantling activity is usually performed in a confined enclosure with personal radioactive protective equipment. Since large potion of these materials is made of vinyl acetate, there exist potential risks of fire, damage and injury to the environment and workers during the dismantling (cutting or melting) operation. It is therefore important to establish standard for proper use of equipment and hazard controls in such a specific environment. Working Group composed of Tokai Works and Oarai Works has examined and developed the operational standard for cutting work in glovebox dismantlement. The result is reflected to the Tokai Works Safety Operational Standard. (author)

  6. Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE)

    International Nuclear Information System (INIS)

    Lafaille, C.

    1991-01-01

    This paper describes the advance used in C.E.A. to realize dismantling operations in the best technical and economical conditions. Particularly, for low-level radioactive waste management CEA's advance defines, first, the final destination of dismantling materials: - recycling in public lands for level activity inferior to 1 Bq/g; directly or after transformation (melting, calcination, extrusion) - storage in a ground disposal, after compacting, encapsulation or drumming. Two examples are given: - Marcoule G2 - G3 reactor dismantling - Gaseous diffusion plants demolition (COGEMA Pierrelatte)

  7. Brennilis, laboratory of dismantlement

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    This article comments some aspects of the dismantlement activity on the Brennilis site (in Brittany) where a heavy water reactor has been operated from 1966 to 1985. Half of the deconstruction work has been performed between 1996 and 2006. As the model proposed by EDF for this operation raised some questions, works have been stopped for a while, until July 2011 when a decree authorized them again, but for some parts of the site only. The reactor block must wait as no technical solution exists for storage. But, the experience from this site will be used for eight other first generation power plants

  8. LEP Dismantling: Wagons Roll!

    CERN Multimedia

    2001-01-01

    The first trucks transporting material from LEP and its four experiments left CERN on 31 January. Since the LEP dismantling operation began, the material had been waiting to be removed from the sites of the four experiments and the special transit area on the Prévessin site. On the evening of 30 January, the French customs authorities gave the green light for the transport operation to begin. So first thing the next day, the two companies in charge of recycling the material, Jaeger & Bosshard (Switzerland) and Excoffier (France), set to work. Only 1500 truckloads to go before everything has been removed!

  9. Nuclear safety and renewals of authorisations for operation of plants nuclear in the law of sustainable economy

    International Nuclear Information System (INIS)

    Bello Paredes, S. A.

    2011-01-01

    Depending on the nature of the activity to develop, the legislation establishes a different typology of administrative authorizations that must ensure the adaptation to law for all activity relating to nuclear facilities, from the planning stage of activity, to its closing and dismantling.

  10. Decree no. 2005-79 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.21, named Siloette research reactor, in the Grenoble city territory (Isere)

    International Nuclear Information System (INIS)

    2005-02-01

    On May 26, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloette research reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  11. Long-term problem for the nuclear industry

    International Nuclear Information System (INIS)

    Norman, C.

    1982-01-01

    Dismantling of the 24-year-old Shippingport atomic power station over the next two years will test whether the nuclear industry can safely dispose of high-level radioactive facilities. Recent findings that some components will remain radioactive longer than anticipated may require dismantling instead of the permanent entombment the industry was planning. The five-year dismantlement will cost $40 million and generate 11,700 cubic meters of radioactive waste. Larger reactors will be even more costly. Current regulations require utilities to choose between dismantlement, safe storage, or entombment of contaminated materials. Each has its problems, but the industry objects to an evolving policy for dismantling and an accompanying requirement for a segregated decommissioning fund that would be set aside before a reactor begins operating or during plant lifetime. The latter would require an adequate insurance mechanism to cover premature shutdown

  12. Main Results of Updated Decommission Conception of NPPs Operating in Ukraine

    International Nuclear Information System (INIS)

    Purtov, Oleg; Masko, Alexander; Vasilchenko, Victor

    2014-01-01

    Results of long-term planning analysis based on consideration of 6 possible scenarios for the nuclear energy development with 15 years and 20 years life time extensions of operation of nuclear power units beyond 30 year provided by original design are presented in the updated decommission conception of NPP's operating in Ukraine. These characteristics of the two main options for NPP decommissioning deferred or immediate dismantling, which is close to the level of acceptability with relative superiority variant of deferred dismantling, are presented. The best option for NPP unit decommissioning as comparative analysis results is the option with deferred dismantling with 30 years endurance time. It can be taken as a basis for optimal strategies for NPP unit decommission design development. Cost estimations for the decommissioning of WWER-440 and WWER-1000 reactor type units are presented in the updated conception. The updated cost assessment for required annual payments with uniform accumulation costs to the Decommission Fund corresponding deferred dismantling variant with 20 years life time extension operation time is 98,2 mln US$ per year. This value is 3.61% of the electricity generated by NPP's in Ukraine and supplied to the wholesale electricity market of Ukraine in 2012 base year. (authors)

  13. ANCCLI White Paper VI. Which conditions for an influential participation of CLIs and ANCCLI to the territorial and national follow-up of dismantling works

    International Nuclear Information System (INIS)

    Delalonde, Jean-Claude; Eimer, Michel; Boutin, Dominique

    2017-01-01

    After a brief presentation of the different phases of nuclear installation dismantling, and a statement about the interest of CLIs (Local information commissions) and ANCCLI (National association of local information commissions and committees), the first part of this white paper addresses the regulatory framework of dismantling, its process, and outlines roles of CLIs and ANCCLI in this process, and remaining issues. It describes the role CLIs already had in issues related to dismantling for different sites (Tricastin, Gard, Monts d'Arree, Saint-Laurent-des-Eaux). A set of proposals is formulated for an influential participation of CLIs and ANCCLI to the national and territorial follow-up of dismantling works. A road-map is proposed for CLIs who want to tackle the dismantling issue. An amendment is proposed for a decree related to the definitive stoppage and dismantling of basic nuclear installations and to subcontracting

  14. From the nuclear world

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    This document gathers pieces of information concerning nuclear industry worldwide. The most relevant are the following ones. CGN (China General Nuclear) will launched in 2017 the construction of a prototype of a small transportable modular reactor whose purpose is to produce electricity on a remote place like an island or aboard a boat for long-term missions. The Wylfa reactor (490 MWe) was decommissioned on December 30., 2015. Wylfa was the last Magnox type reactor operating in the world. In France a campaign of information and iodine drug dispatching has been launched for people living near nuclear power plants. The global cost of the CIGEO project whose aim is the disposal of high-level radioactive wastes has been estimated to 25 billions euros including construction costs, operating costs over a 100 year period and dismantling costs. The European Commission has warned France that the financial provisions made for the dismantling of nuclear facilities and the processing of the consequent wastes are not sufficient to cover the future costs. 4 reactors with a power of 1400 MWe each, are being built on the Barakah site in Abu Dhabi, works are on time and the first unit may operate end 2016. Wikileaks has accused AREVA of not taking all necessary measures for the protection of its employees at the Bakouma mine. AREVA denies the charges and affirms that regulations and safety requirements are the same as for its French sites whatever the country. The initiative 'Nuclear for Climate' gathering pro-nuclear associations worldwide, intends to remind the international community that nuclear energy is an important tool to fight climate change. The French site for the disposal of low-level radioactive wastes is facing saturation in the very short term while the volume of such wastes is expected to soar in the next decades as the dismantling programmes will gain in importance. A new policy for the management of such wastes is needed. (A.C.)

  15. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    International Nuclear Information System (INIS)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF 6 ) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF 6 ) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ''transparency),'' and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed

  16. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

  17. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning

    International Nuclear Information System (INIS)

    Baumann, R.; Faber, P.

    2003-01-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  18. Remotely-Controlled Shear for Dismantling Highly Radioactive Tools In Rokkasho Vitrification Facility - 12204

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Sawa, Shusuke; Sadaki, Akira; Awano, Toshihiko [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Cole, Matt [S.A. Technology Inc, 3985 S. Lincoln Ave., Ste. 100, Loveland CO 80537 (United States); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2012-07-01

    A high-level liquid waste vitrification facility in the Japanese Rokkasho Reprocessing Plant (RRP) is right in the middle of hot commissioning tests toward starting operation in fall of 2012. In these tests, various tools were applied to address issues occurring in the vitrification cell. Because of these tools' unplanned placement in the cell it has been necessary to dismantle and dispose of them promptly. One of the tools requiring removal is a rod used in the glass melter to improve glass pouring. It is composed of a long rod made of Inconel 601 or 625 and has been highly contaminated. In order to dismantle these tools and to remotely put them in a designated waste basket, a custom electric shear machine was developed. It was installed in a dismantling area of the vitrification cell by remote cranes and manipulators and has been successfully operated. It can be remotely dismantled and placed in a waste basket for interim storage. This is a very good example of a successful deployment of a specialty remote tool in a hot cell environment. This paper also highlights how commissioning and operations are done in the Japanese Rokkasho Reprocessing Plant. (authors)

  19. EDV supported dynamic fire protection concept adaptation during dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Mummert, Maxi; Traichel, Anke; Dilger, Matthias

    2013-01-01

    Fire protection concepts are supposed to be a decision guide for the definition of measures and priorities in fire fighting and fire prevention. In case of reactor dismantling a fire protection concept for the actual status is required. Following the fuel removal from the reactor the protection goals are reduced to the safe confinement of radioactive materials and the restriction of radiation exposure. A dynamic fire protection concept was developed to allow the compliance with the required protection measures with respect to the protection targets. The implementation of the dynamic fire protection concept simplifies the planning of the dismantling steps and to adjust the fire protection measured in the frame of changes in the plant.

  20. Robotic dismantlement systems at the CP-5 reactor D and D project

    International Nuclear Information System (INIS)

    Seifert, L. S.

    1998-01-01

    The Chicago Pile 5 (CP-5) Research Reactor Facility is currently undergoing decontamination and decommissioning (D and D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principle nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water cooled and moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D and D project includes the disassembly, segmentation and removal of all the radioactive components, equipment and structures associated with the CP-5 facility. The Department of Energy's Robotics Technology Development Program and the Federal Energy Technology Center, Morgantown Office provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor assembly for tasks requiring remote dismantlement as part of the EM-50 Large-Scale Demonstration Program (LSDP). The teleoperated systems provided were the Dual Arm Work Platform (DAWP), the Rosie Mobile Teleoperated Robot Work System (ROSIE), and a remotely-operated crane control system with installed swing-reduction control system. Another remotely operated apparatus, a Brokk BM250, was loaned to ANL by the Princeton Plasma Physics Laboratory (PPPL). This machine is not teleoperated and was not part of the LSDP, but deserves some mention in this discussion. The DAWP is a robotic dismantlement system that includes a pair of Schilling Robotic Systems Titan III hydraulic manipulator arms mounted to a specially designed support platform: a hydraulic power unit (HPU) and a remote operator console. The DAWP is designed to be crane-suspended for remote positioning. ROSIE, developed by RedZone Robotics, Inc. is a mobile, electro-hydraulic, omnidirectional platform with a heavy-duty telescoping boom mounted to the platform's deck. The work system includes the mobile platform (locomotor), a power distribution unit (PDU) and a remote operator console. ROSIE moves about the reactor building

  1. Declassification of radioactive water from a pool type reactor after nuclear facility dismantling

    Science.gov (United States)

    Arnal, J. M.; Sancho, M.; García-Fayos, B.; Verdú, G.; Serrano, C.; Ruiz-Martínez, J. T.

    2017-09-01

    This work is aimed to the treatment of the radioactive water from a dismantled nuclear facility with an experimental pool type reactor. The main objective of the treatment is to declassify the maximum volume of water and thus decrease the volume of radioactive liquid waste to be managed. In a preliminary stage, simulation of treatment by the combination of reverse osmosis (RO) and evaporation have been performed. Predicted results showed that the combination of membrane and evaporation technologies would result in a volume reduction factor higher than 600. The estimated time to complete the treatment was around 650 h (25-30 days). For different economical and organizational reasons which are explained in this paper, the final treatment of the real waste had to be reduced and only evaporation was applied. The volume reduction factor achieved in the real treatment was around 170, and the time spent for treatment was 194 days.

  2. Stimulation of innovation in the course of decommissioning and dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Bach, F.W.

    1996-01-01

    For the last 30 years, national and international projects have been performed for development and testing of dismantling and cutting technology, covering theoretical experiments as well as laboratory work and applications in pilot projects. An aspect of major interest of the scientific and technical studies was the adjustment of conventional thermal, mechanical, hydraulic and (electro)chemical cutting processes to the specific requirements posed by nuclear facilities. At first sight, one would not expect much innovative potential in the field of cutting technology alone, except for, perhaps, process optimizations such as extensions of dwell times or process stability. However, the intelligent application of available cutting techniques and tools or instruments, leading in their proper combinations to novel techniques and experience, is an interesting challenge to scientists and engineers and hold a wide range of innovative potential. The paper presents some cutting techniques of particular interest in this context. (orig./DG)

  3. Change-management. From commercial power operation to post power operation and decommissioning

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2015-01-01

    Transition from power generation to decommissioning challenges utilities. Power generation is mainly characterized by a stable working environment and constant workload, decommissioning and dismantling, however, by transformation and change. Also, changing requirements for the workforce's skills challenge the organization and its senior management. Ensuring effective and efficient performance, while maintaining motivation of staff, requires adjustment of management processes as well as of operational organization and human resources management. AREVA has more than 20 years of experience in decommissioning of own nuclear fuel cycle plants in France, as well as of other large plants and power reactors in Germany, the United Kingdom and the US. Therefore, the group has developed and successfully implemented integrated change management processes. The implementation of well-established and proven methods, developed by the productive industry and adjusted to the nuclear regulatory requirements, significantly improves the performance and efficiency of means and methods in use. The AREVA Performance Improvement Process defines concrete approaches to identify and improve potential deficits of productivity in six main areas (decommissioning scenarios and stra-tegies, waste treatment and logistics, operations management, supply chain, regulatory monitoring and controls as well as dismantling operation). Nuclear plant and facility owners around the world benefit from AREVA experts well experienced in execution of large and complex decommissioning projects.

  4. ''1995/2010: site drainage and nuclear facilities dismantling program'' result 2001

    International Nuclear Information System (INIS)

    2001-01-01

    A drainage and dismantling planing with the corresponding wastes management, has been decided for the CEA of Fontenay aux roses, in 1995. It will end in 2010. This document presents the main evolutions occurred since october 2000. (A.L.B.)

  5. Decommissioning of nuclear facilities: 'it can and has been done'

    International Nuclear Information System (INIS)

    2009-01-01

    Considerable international experience gained over the last 20 years demonstrates that nuclear facilities can be safely dismantled and decommissioned once a decision is made to cease operations and permanently shut them down. The term decommissioning is used to describe all the management and technical actions associated with ceasing operation of a nuclear installation and its subsequent dismantling to facilitate its removal from regulatory control (de-licensing). These actions involve decontamination of structures and components, dismantling of components and demolition of buildings, remediation of any contaminated ground and removal of the resulting waste. Worldwide, of the more than 560 commercial nuclear power plants that are or have been in operation, about 120 plants have been permanently shut down and are at some stage of decommissioning. About 10% of all shutdown plants have been fully decommissioned, including eight reactors of more than 100 MWe. A larger number of various types of fuel cycle and research facilities have also been shut down and decommissioned, including: facilities for the extraction and enrichment of uranium, facilities for fuel fabrication and reprocessing, laboratories, isotope production facilities and particle accelerators. This brochure looks at decommissioning across a spectrum of nuclear facilities and shows worldwide examples of successful projects. Further information can be found in NEA publications and on a number of web-sites

  6. Decommissioning of the LURE Nuclear Facility

    International Nuclear Information System (INIS)

    Pauwels, N.; Horodynski, J.M.; Robert, P.; Tadjeddine, A.

    2013-01-01

    With the goal of obtaining the decommissioning of the LURE nuclear facility, three of its accelerators were dismantled and another was modified to be below the thresh- old of 'Installation Nucleaire de Base' status. Operations were carried out with the strategy of mechanical dismantling with no cutting process. As the civil engineering radioactivity level was low, a great majority of it has been left in place with no process- ing, but compensatory measures have been taken for public and environmental protection. The overall result of these operations is a gain in both cost and operating time. They also contribute to a significant decrease in the risks, including radiological ones. The radiological impact after decommissioning remains acceptable. (authors)

  7. Safe dismantling of the SVAFO research reactors R2 and R2-0 in Sweden

    International Nuclear Information System (INIS)

    ARNOLD, Hans-Uwe; BROY, Yvonne; Dirk Schneider

    2017-01-01

    The R2 and R2-0 reactors were part of the Swedish government's research program on nuclear power from the early 1960's. Both reactors were shut down in 2005 following a decision by former operator Studsvik Nuclear AB. The decommissioning of the R2 and R2-0 reactors is divided into three phases. The first phase - awarded to AREVA - involved dismantling of the reactors and associated systems in the reactor pool, treatment of the disassembled components as well as draining, cleaning and emptying the pool. In the second phase, the pool structure itself will be dismantled, while removal of remaining reactor systems, treatment and disposal of materials and clean-up will be carried out in the third stage. The entire work is planned to be completed before the end of this decade. The paper describes the several steps of phase 1 - starting with the team building, followed by the dismantling operations and covers challenges encountered and lessons learned as well. The reactors consist of 5.400 kg aluminum, 6.000 kg stainless steel restraint structures as well as, connection elements of the mostly flanged components (1.000 kg). The most demanding - from a radiological point of view - was the R2-0 reactor that was limited to ∼ 1 m"3 construction volumes but with an extremely heterogeneous activation profile. Based on the calculated radiological entrance data and later sampling, nuclide vectors for both reactors depending on the real placement of the single component and on the material (aluminum and stainless steel) were created. Finally, for the highest activated component from R2 reactor, 85 Sv/h were measured. The dismantling principles - adopted on a safety point of view - were the following: The always protected base area of the ponds served as a flexible buffer area for waste components and packaging. Specific protections were also installed on the walls to protect them from mechanical stress which may occur during dismantling work. A specific work platform was

  8. Development and evaluation of temporary placement and conveyance operation simulation system using augmented reality

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Weida; Aoyama, Shuhei; Ishii, Hirotake; Shimoda, Hiroshi [Graduate School of Energy Science, Kyoto University, Kyoto (Japan); Sang, Tran T.; Inge, Solhang Lars [AR Lab, Halden (Norway); Lygren, Toppe Aleksander; Terje, Johnsen [Institute for Energy Technolog, Halden (Norway); Izumi, Masanori [Fugen Decommissioning Engineering Center, Japan Atomic Energy Agency, Fukui (Japan)

    2012-06-15

    When decommissioning a nuclear power plant, it is difficult to make an appropriate plan to ensure sufficient space for temporary placement and conveyance operations of dismantling targets. This paper describes a system to support temporary placement and conveyance operations using augmented reality (AR). The system employs a laser range scanner to measure the three-dimensional (3D) information of the environment and a dismantling target to produce 3D surface polygon models. Then, the operator simulates temporary placement and conveyance operations using the system by manipulating the obtained 3D model of the dismantling target in the work field. Referring to the obtained 3D model of the environment, a possible collision between the dismantling target and the environment is detectable. Using AR, the collision position is presented intuitively. After field workers evaluated this system, the authors concluded that the system is feasible and acceptable to verify whether spaces for passage and temporary storage are sufficient for temporary placement and conveyance operations. For practical use in the future, some new functions must be added to improve the system. For example, it must be possible for multiple workers to use the system simultaneously by sharing the view of dismantling work.

  9. Development and evaluation of temporary placement and conveyance operation simulation system using augmented reality

    International Nuclear Information System (INIS)

    Yan, Weida; Aoyama, Shuhei; Ishii, Hirotake; Shimoda, Hiroshi; Sang, Tran T.; Inge, Solhang Lars; Lygren, Toppe Aleksander; Terje, Johnsen; Izumi, Masanori

    2012-01-01

    When decommissioning a nuclear power plant, it is difficult to make an appropriate plan to ensure sufficient space for temporary placement and conveyance operations of dismantling targets. This paper describes a system to support temporary placement and conveyance operations using augmented reality (AR). The system employs a laser range scanner to measure the three-dimensional (3D) information of the environment and a dismantling target to produce 3D surface polygon models. Then, the operator simulates temporary placement and conveyance operations using the system by manipulating the obtained 3D model of the dismantling target in the work field. Referring to the obtained 3D model of the environment, a possible collision between the dismantling target and the environment is detectable. Using AR, the collision position is presented intuitively. After field workers evaluated this system, the authors concluded that the system is feasible and acceptable to verify whether spaces for passage and temporary storage are sufficient for temporary placement and conveyance operations. For practical use in the future, some new functions must be added to improve the system. For example, it must be possible for multiple workers to use the system simultaneously by sharing the view of dismantling work.

  10. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    International Nuclear Information System (INIS)

    None

    1997-01-01

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  11. Evaluation formulas of manpower needs for dismantling of equipment in FUGEN-3. Dismantling process of the condenser removal

    International Nuclear Information System (INIS)

    Kubota, Shintaro; Izumo, Sari; Usui, Hideo; Kawagoshi, Hiroshi; Koda, Yuya; Nanko, Takashi

    2014-07-01

    Japan Atomic Energy Agency (JAEA) has been developing the PRODIA code which supports to make decommissioning plan and has been preparing evaluation formulas. Manpower needs for the dismantling of the condenser that had conducted from 2010 to 2012 was analyzed and compared with existing evaluation formulas. Applicability of evaluation formulas for a large scale reactor facility was confirmed in dismantling of the heat insulating materials and reliability of unit productivity factor was improved. The evaluation formula of work for clearance was made in dismantling of pipes and supports. Unit productivity factor of dismantling of feed water heaters which is applicable for a large scale reactor facility was derived. For derivation of unit productivity factor, statistically meaningful data was provided from the dismantling of the condenser. Manpower needs for dismantling of the condenser has positive correlation to the weight of equipment and can be described in linear expression. Reliability of each unit productivity factor will be improved with accumulating actual dismantling data in future. (author)

  12. Further studies on melting of radioactive metallic wastes from the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Diepenau, H.; Seidler, M.

    1991-01-01

    Melting of radioactive waste metal from the dismantling/refurbishing of nuclear installations is an acceptable way for nuclear waste recycling. This material can be used for the casting of qualified products such as type A- and type B-waste containers. The results of the melting facility -TAURUS- were used to build the industrial scale melting facility -CARLA- at Siempelkamp. The test results and the longterm-behaviour of the facility showed that the licensing conditions can be respected. The radiation exposure of workers was in the range of the admissible limit for non-exposed people. The radiation exposure of the environment is far below the value of the German Radiation Protection Law. The activity distribution within the product is homogeneous, so that its activity can be measured exactly before it is sent back in the nuclear area. By melting waste copper it is possible to respect the specific limits for unrestricted reuse, whereas for brass the limit for conditioned reuse in the industrial field was reached. Radioactive carbon can only be bound in form of small graphite lamellas or nodules in the cast iron; i.e. radioactive carbon can only be added to the melt as crushed material. During the research programme 2000 Mg of waste steel was melted at industrial scale and mainly products such as shielding blocks and waste containers were produced. 12 figs., 27 tabs., 6 refs

  13. Strategically oriented project management of the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Kemmeter, Sascha; Woempener, Andreas

    2013-01-01

    Due to the politically induced change of the energy sector in Germany, the operators of nuclear power plants had to react and to deal with completely new conditions concerning the decommissioning of their plants on short notice. Therefore the operators have to devise new strategies for controlling their decommissioning and dismantling projects in a short amount of time and most often similarly for several plants. Two fundamental procedures are possible for the successful controlling of these dismantling projects: a centralized or a decentralized management organization. How these project control processes can be realized in an optimal way, is, next to other economic specifications of the dismantling of nuclear power plants, the topic of a new research project of the Chair of Management Accounting at the University Duisburg-Essen. In that process, results and experiences from other research and practical projects concerning general large-scale projects are being used. Selected findings have been compiled and are being discussed in this paper. (orig.)

  14. The possibility of creating a new low power nuclear facility with slightly enriched nuclear fuel on the basis of the decommissioned IRT-M reactor intended for applied purposes

    International Nuclear Information System (INIS)

    Abramidze, Sh.P.; Katamadze, N.M.; Kiknadze, G.G.; Rostomashvili, Z.I.; Saralidze, Z.K.

    2002-01-01

    Nearly 50 years have passed since the appearance of the first nuclear research reactors. Most of them have completed their operating life and must be dismantled. But it is known that the dismantling of permanently shut down nuclear reactors is a very complex process, full realization that it generates a lot of radioactive waste (both solid and liquid), it is connected with high financial expenditures, and its solution is apparently beyond the possibilities of many countries, including Georgia In the given paper we consider a radiologically safe, ecologically clean and economically beneficial version of the decommissioning of the IRT-M nuclear research reactor and the stages of its implementation that are not connected with the dismantling of its highly radioactive technological components. We justify the possibility of creating a new Low Power Nuclear Facility on the basis of the decommissioned IRT-M reactor to solve the problems of applied nature in different fields of science and technology being very important for Georgia. (author)

  15. A future for nuclear sites beyond their service life. Nuclear site value development; Un avenir pour les sites nucleaires en fin de cycle. Valorisation des sites nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    As the nuclear industry moves into a new development phase, many facilities built in the fifties and sixties are reaching the end of their service life. Dismantling them and rehabilitating the sites on which they stand is a major industrial challenge which will give rise to a number of new projects. AREVA has more than 20 years' experience in these highly technical fields. As more and more sites reach the end of their service life, AREVA considers nuclear site value development as a fully-fledged industrial activity. The group's competencies in this field have been grouped together to form a dedicated entity: the Nuclear Site Value Development Business Unit, created in 2008. Several billion euros are invested in site value development projects which are far-reaching and complex, and often last for several decades. Long before work actually begins, lengthy studies and preparations are required to schedule operations, select the techniques to be used and optimize costs and deadlines. The Nuclear Site Value Development BU is currently working on four major projects involving its own facilities and those of the CEA: - La Hague: dismantling of the first generation of used fuel recycling facilities. Between 1966 and 1998, almost 5,000 tons of used fuel from graphite-moderated gas-cooled reactors, 4,500 tons of light water reactor fuel, as well as fuel from fast reactors and research reactors, were treated at UP2 400, the very first industrial recycling plant on the La Hague site. - Marcoule: first-time dismantling of a recycling plant. 1,000 rooms to be cleaned up, 30,000 tons of waste to be treated, 30 years of work. - Cadarache: first-time dismantling of a Mox fuel fabrication plant. The Cadarache plant was commissioned in 1962 to fabricate fuel for fast reactors; this was followed by MOX fuel for light water reactors, an activity which continued until the plant was shut down in 2003. - Annecy and Veurey: giving a new lease of life to former industrial sites

  16. Future jobs in nuclear industry

    International Nuclear Information System (INIS)

    Asquier, S.

    2017-01-01

    CEA leads research on fast reactors in the framework of Generation-4 reactors, it also brings technical support to industrial partners like EDF or AREVA for today operating reactors. Computerized simulation is strongly developed in order to get reliable computers codes able to simulate mechanical behavior of new materials or neutron transport in new reactor cores. CEA is also in charge of the dismantling and remediation of its own nuclear facilities, today about 1000 people work on the dismantling of 35 facilities. CEA is also participating in fusion research programs. This broad range of activities makes CEA an important recruiter of competencies in a lot of domains from nuclear engineering to biological impact of radiations via computer sciences. (A.C.)

  17. Decommissioning of nuclear facilities in Europe and the experience of TUV SUD

    International Nuclear Information System (INIS)

    Hummel, Lothar; Kim, Duill; Ha, Taegun; Yang, Kyunghwa

    2012-01-01

    Many commercial nuclear facilities of the first generation will be taken out of operation in the near future. As of January 2012, total 19 prototype and commercial nuclear reactors have been decommissioned or are under dismantling in Germany. Most of decommissioning projects were successfully performed and a great deal of experience has been accumulated. Selecting a decommissioning strategy is a very important step at the beginning of the decision making process. According to IAEA requirements immediate dismantling is chosen as a preferred option in many countries today. It is associated with less uncertainty, positive political and social effect, and it can make use of existing operational experience and know-how. The availability of funds and final repository is of high importance for a decommissioning strategy selection. The time frame for the dismantling of nuclear facilities depends on the type, size and complexity of the individual project. TUV SUD, which is supervising most of nuclear power plants in Germany, has accumulated lots of experience by taking parts in decommissioning projects. It direct dismantling is chosen, actual light water reactor in Germany decommissioned to green field in approx. 10 years. The activities of TUV SUD cover from establishing the decommissioning concept to the clearance of the sites. This provides an overview of decommissioning projects of nuclear facilities in Europe, including a detail illustration of the German situation. Finally, some recommendations are suggested for the first decommissioning project based on the lessons and experiences derived from many decommissioning works in Europe

  18. Development of an augmented reality based simulation system for cooperative plant dismantling work

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Man, Zhiyuan; Yan, Weida; Shimoda, Hiroshi; Izumi, Masanori

    2015-01-01

    An augmented reality-based simulation system for cooperative plant dismantling work has been developed and evaluated. In the system, behaviors of virtual objects such as the dismantling target, chain blocks, and trolleys are physically simulated. Their appearance is superimposed on camera images captured with cameras on users' tablet devices. The users can manipulate virtual objects cooperatively via touch operation. They can cut the dismantling targets, lift them on the trolleys using chain blocks, and convey them through narrow passages to ascertain whether the dismantling targets can be conducted without colliding with the passages. During the simulation, collisions between the virtual objects and real work environment are detected based on their three-dimensional shape data measured in advance. The collided parts are visualized using augmented reality superimposition. Four evaluators assessed the simulation system. Results show that the simulation system can be useful for prior examination of dismantling works, but some points were also found to need improvement. (author)

  19. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  20. Better uses for financial reserves. Reserves for decommisioning, dismantling and waste management could be used for changing energy sructures

    International Nuclear Information System (INIS)

    Irrek, W.

    1996-01-01

    The reserves laid back by German operators of nuclear power plants for decommissioning, dismantling and waste management amounted to more than DM 44 billion in 1994, and the sum is still increasing. With this money, the public utilities intend to strengthen their competitive position in other industrial sectrors. The author proposes to transfer this money into public funds instead in order to ensure that it is used in an economically more efficient manner. (orig./RHM) [de

  1. Experience of the remote dismantling of the Windscale advanced gas-cooled reactor and Windscale pile chimneys

    International Nuclear Information System (INIS)

    Wright, E.M.

    1993-01-01

    This paper gives brief descriptions of some of the remote dismantling work and equipment used on two large decommissioning projects: the BNFL Windscale Pile Chimneys Project (remote handling machine, waste packaging machine, remotely controlled excavator, remotely controlled demolition machine) and the AEA Windscale Advanced Gas-cooled Reactor Project (remote dismantling machine, operational waste, bulk removal techniques, semi-remote cutting operations)

  2. An Evaluation of Dismantling Scenarios Using a Computer Simulation Technology for KRR-1 and 2

    International Nuclear Information System (INIS)

    Kim, S.K.; Park, H.S.; Lee, K.W.; Oh, W.Z.; Park, J.H.

    2006-01-01

    A graphic simulation has been used to design and verify new equipment and has also been expanded to virtual prototyping technology [1∼5]. In the nuclear decommissioning field, this technology has been utilized to validate the design of dismantling processes and to check the interferences and collisions in dismantling scenarios. However, a graphic simulation only provides us with visible result it just provides us with illustrative information of the decommissioning process. A scenario evaluation program has been developed using the computer simulation technology to create an efficient decommissioning plan. In the D and D planning stage, it is important that the scenarios are evaluated from a engineering point of view because the decommissioning work has to be executed economically and safely following the best scenarios. Therefore, we need several modules to evaluate scenarios. We composed the systems like this: 1. Decommissioning DB module for managing the decommissioning activity information (nuclear facility data, worker's data, radioactive inventory date, etc.). Dismantling process evaluation module 3. Visualization module for a radioactive inventory and a dismantling process using 3D CAD and virtual reality technology. 4. Analysis module for the evaluation results of a dismantling process. The evaluation module's capabilities produce a dismantling schedule, quantify radioactive waste, visualize a radioactive inventory, estimate a decommissioning cost, estimate a worker's exposure, and check for interference/collisions. After using the simulation results, the expert ranking system to evaluate scenarios for economics and worker's safety are implemented. The expert ranking system is a powerful and flexible decision making process to help set priorities and make the best decisions when both the qualitative and quantitative aspects of a decision need to be considered. By reducing complex decisions to a series of one-on-one comparisons, then synthesizing the

  3. DIRECT DISMANTLING OF REPROCESSING PLANT CELLS THE EUREX PLANT EXPERIENCEe2d12c

    International Nuclear Information System (INIS)

    Gili, M.; Troiani, F.; Risoluti, P.

    2003-01-01

    After finishing the reprocessing campaigns in 1970-1983, the EUREX pilot reprocessing plant of ENEA Saluggia Research Center started into a new phase, aiming to materials and irradiated fuel systemation and radioactive wastes conditioning. In 1997 the project ''CORA'' for a vitrification plant for the high and intermediate liquid radioactive wastes started. The ''CORA'' plant will be hosted in some dismantled cells of the EUREX plant, reusing many of the EUREX plant auxiliary systems, duly refurbished, saving money and construction time and avoiding a new nuclear building in the site. Two of the cells that will be reused were part of the EUREX chemical process (solvent recovery and 2nd extraction cycle) and the components were obviously internally contaminated. In 2000 the direct (hands-on) dismantling of one of them started and has been completed in summer 2002; the second one will be dismantled in the next year and then the ''CORA'' plant will be assembled inside the cells. Special care w as taken to avoid spread of contamination in the cells, where ''CORA'' installation activities will start in the next years, during the dismantling process The analysis of data and results collected during the dismantling of the first cell shows that direct dismantling can be achieved with careful choice of tools, procedures and techniques, to reduce volumes of wastes to be disposed and radiological burden

  4. Foam decontamination of large nuclear components before dismantling

    International Nuclear Information System (INIS)

    Costes, J.R.; Sahut, C.

    1998-01-01

    Following some simple theoretical considerations, the authors show that foam compositions can be advantageously circulated them for a few hours in components requiring decontamination before dismantling. The technique is illustrated on six large ferritic steel valves, then on austenitic steel heat exchangers for which the Ce(III)/Ce(IV) redox pair was used to dissolve the chromium; Ce(III) was reoxidized by ozone injection into the foam vector gas. Biodegradable surfactants are sued in the process; tests have shown that the foaming power disappears after a few days, provided the final radioactive liquid waste is adjusted to neutral pH, allowing subsequent coprecipitation of concentration treatment. (author)

  5. Nuclear Energy Agency task group on Radiological Characterisation for Decommissioning of Nuclear Installations

    International Nuclear Information System (INIS)

    Larsson, Arne; Weber, Inge

    2016-01-01

    Radiological characterisation plays a significant role in the process of decommissioning of shut-down nuclear facilities in order to ensure the protection of the environment and radiation safety. At all stages of a decommissioning programme or project, adequate radiological characterisation is of crucial importance, not least from a material and waste perspective. The radiological characterisation is a key element for planning, controlling and optimising decommissioning and dismantling activities. Experience has shown that data and information from the operation of a facility can - supplemented by recently collected and analysed data and information - be of crucial importance for decisions on waste management and for characterisation of radioactive waste. Once the dismantling has been done, some information may be hard, costly or even impossible to obtain later in the waste management process. This was the reason why the Working Party on Decommissioning and Dismantling (WPDD) of the OECD Nuclear Energy Agency (NEA) decided in late 2013 to extend the mandate of the Task Group on Radiological Characterisation and Decommissioning (TGRCD) for a second phase focusing on nuclear facility characterisation from a waste and material end-state perspective whereas the first phase focused on overall strategies of radiological characterisation. This paper gives an overview of the activities and findings within both phases up to now. (authors)

  6. In-situ dismantling of plutonium-contaminated glove box

    International Nuclear Information System (INIS)

    Numata, Koji; Watanabe, Hisashi; Ishikawa, Hisashi; Miyo, Hiroaki; Ohtsuka, Katsuyuki

    1980-01-01

    A plutonium-contaminated glove box was dismantled along with the development of the treatment techniques for plutonium-bearing wastes. The objectives of this in-situ dismantling of the glove box are to reuse the Plutonium Fuel Fabrication Facility more efficiently, to reduce the volume of wastes generated during the dismantling, and to acquire dismantling techniques for decommissioning the Plutonium Fuel Fabrication Facility in the future. Prior to the dismantling works, a greenhouse for decontamination was installed, and the decontamination with surfactants was performed. Unremovable contamination was coated with paint. After this greenhouse was removed, the main greenhouse for dismantling and three greenhouses for contamination control were assembled. The main workers wearing protective devices engaged in dismantling works in the greenhouse. As the protective devices, anorak type PVC suits with air line masks, Howell type pressurized suits, and respirators were used. The tools used for the dismantling are a plasma cutter, an electric nibbler, an electric disk grinder, an electric circular saw and an electric jig saw. The results of the dismantling in-situ were compared with two previous cases of dismantling carried out by different procedures. In the case of in-situ dismantling, the volume of wastes was 1.6 - 1.8 m 3 /m 3 of glove box, and considerable reduction was realized. (Kako, I.)

  7. Measurement of radioactive aerosol behavior during dismantling and reflection to the exposure dose evaluation - 16107

    International Nuclear Information System (INIS)

    Iguchi, Yukihiro; Kato, Masami

    2009-01-01

    Radioactive aerosol disperses slightly via contamination prevention systems such as control enclosures and filters when the nuclear installation is dismantled, and it might impact the environment. Therefore, when decommissioning is planned, it is necessary to assess the safety such as exposure dose evaluation to the public. For the radioactive aerosol, it is possible that the dispersion ratio is different according to the contamination condition, the dismantlement method of the material, nuclides (elements), etc. The radiation exposure evaluation for the decommissioning plan has been executed by operators in Japan based on a number of experiments (mostly cold tests) and overseas results. The decommissioning is now being carried out at the Tokai Power Station (GCR) and Fugen Decommissioning Engineering Center in Japan. In this study, the results data is acquired at the decommissioning sites, and the methodology and data for the exposure dose evaluation are verified and confirmed. These examination results will lead to the upgrading and improvement of the exposure evaluation methodology. In particular, the dismantlement work of connected piping of the heat exchanger (steam generator) was executed in the Tokai Power Station in 2008. In this study, we paid attention to the radionuclides of Co-60 and Cs-137 that adhered to piping, and the dispersion behavior of aerosol was measured and contamination prevention effect was assured. As a result, the data show that the cesium concentrates about four times higher than cobalt. Moreover, the effects of the prevention measures of contamination were confirmed and the behavior of the radioactive aerosol became clear and the effective findings about the dose evaluation of the dismantling were collected. (authors)

  8. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  9. A study of internal dosimetry of Am-241 and Sr-90 by dismantling of a nuclear installation; Eine Fallstudie zur internen Dosimetrie von Am-241 und Sr-90 bei Rueckbau einer kerntechnischen Anlage

    Energy Technology Data Exchange (ETDEWEB)

    Froning, M.; Hill, P. [Forschungszentrum Juelich GmbH (Germany). Geschaeftsbereich Sicherheit und Strahlenschutz

    2016-07-01

    During dismantling operation in former nuclear facility routine incorporation monitoring had been part of the safety measures. For an occupational radiation worker positive measurements results for {sup 241}Am, {sup 90}Sr and {sup 137}Cs were obtained after the end of the working period. Follow up monitoring had been performed assessing urine and faeces samples for {sup 241}Am and {sup 90}Sr as well as in-vivo measurements for {sup 137}Cs. Ingestion could be proven as incorporation path. The internal dose assessment according to GMBl 2007{sup [1]} finally yielded internal dose at 13 μSv.

  10. Preparing for Decommissioning During Operation and After Final Shutdown

    International Nuclear Information System (INIS)

    Kostova, Milena; Papaz, Dan; Pottelberg, Paul; Clement, Gilles; Falcone, Jean-Luc; Gouhier, Eric; Laurent, Gerard; Rondeau, Jean-Marie; Siefridt, Camille; Brendebach, Boris; Knaack, Michael; Ahn, Sangmyeon; Correa Sainz, Cristina; Carroll, Simon; Larsson, Arne; Norberg, Thomas; Stridsman, Henrik; Minges, Juergen; Boniface, Simon; Dunlop, Alister; Jassal, Raj; Moakes, Joanna; Abu-Eid, Rateb; Watson, Bruce; Devgun, Jas; McGrath, Richard; Glorennec, Christian; ); Weber, Inge; )

    2018-01-01

    The transition from an operating nuclear facility to the decommissioning phase is critical in the life cycle of every facility. A number of organisational and technical modifications are needed in order for the facility to meet new objectives and requirements, and a certain number of activities must be initiated to support the transition and preparation for the dismantling of the facility. Thorough preparation and planning is key for the success of global decommissioning and dismantling projects, both to minimise delays and undue costs and to ensure a safe and efficient decommissioning process. The aim of this report is to inform regulatory bodies, policy makers and planners about the relevant aspects and activities that should begin during the last years of operation and following the end of operation. Compiling lessons learnt from experiences and good practices in NEA member countries, the report supports the further optimisation of transition strategies, activities and measures that will ensure adequate preparation for decommissioning and dismantling

  11. Experience in the decontamination and dismantling of alpha facilities

    International Nuclear Information System (INIS)

    Charamathieu, A.

    1988-01-01

    Experience in dismantling alpha-containing radiochemical installations in France is described. The dismantling programme undertaken by the Societe des Techniques en Milieu Ionisant since 1977 is tabulated. This includes the dismantling of CALCIO and FLUO (plutonium metal), the dismantling of a slag processing plant, the dismantling of part of a medium activity plutonium mine and the dismantling of rooms 82-100 at Marcoule, France. (author)

  12. Nuclear reactors built, being built, or planned: 1987

    International Nuclear Information System (INIS)

    1988-06-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1987. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually for Washington headquarters and field offices of DOE; from the US Nuclear regulatory Commission; from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The major change in this revision involves the data related to shutdown and dismantled facilities. Because this information serves substantially different purposes, it has been accumulated in a separate section, ''Reactors and Facilities Shutdown or Dismantled.'' Cancelled reactors or reactors whose progress has been terminated at some stage before operation are included in this section

  13. Comments on conceptual questions concerning the clearance of wastes for disposal on a dump site during the decommissioning and dismantling of the nuclear power plant Obrigheim (KWO); Stellungnahme zu konzeptionellen Fragen der Freigabe zur Beseitigung auf einer Deponie bei Stilllegung und Abbau des Kernkraftwerks Obrigheim (KWO)

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, Christian

    2015-08-03

    The comments on conceptual questions concerning the clearance of wastes for disposal on a dump site during the decommissioning and dismantling of the nuclear power plant Obrigheim (KWO) cover the following issues: fundamentals of the 10 micro-Sv concept for clearance; specific regulations for the clearance of wastes from the dismantling of KWO for disposal on a dump site; disposal concept at shutdown and dismantling of KWO; measurements and control during clearance for disposal during shutdown and dismantling of KWO; documentation and reports.

  14. Development of Digital Mock-Up for the Assessment of Dismantling Scenarios

    International Nuclear Information System (INIS)

    Kim, Sung-Kyun; Park, Hee-Sung; Lee, Kune-Woo; Jung, Chong-Hun

    2008-01-01

    As the number of superannuated research reactors and nuclear power plants increase, dismantling nuclear power facilities has become a big issue. However, decommissioning a nuclear facility is still a costly and possibly hazardous task. So prior to an actual decommission, what should be done foremost is to establish a proper procedure. Due to the fact that a significant difference in cost, exposure to a radiation, and safety might occur, a proper procedure is imperative for the entire engineering process. The purpose of this paper is to develop a system for evaluating the decommissioning scenarios logically and systematically. So a digital mockup system with functions such as a dismantling schedule, decommissioning costs, wastes, worker's exposure dose, and a radiation distribution was developed. Also on the basis of the quantitative information calculated from a DMU system and the data evaluated by decommissioning experts about qualitatively evaluating the items, the best decommissioning scenarios were established by using the analytic hierarchy process (AHP) method. Finally, the DMU was implemented in the thermal column of KRR-1 and adequate scenarios were provided after comparing and analyzing the two scenarios. In this paper, we developed the virtual environment of KRR-1 by using computer graphic technology and simulating the dismantling processes. The data-computing modules were also developed for quantitatively comparing the decommissioning scenarios. The decommissioning DMU system was integrated with both the VE system and the data-computing modules. In addition, we presented a decision-making method for selecting the best decommissioning scenario through the AHP. So the scenarios can be evaluated logically and quantitatively through the decommissioning DMU. As an implementation of the AHP, the plasma cutting scenario and the nibbler cutting scenario of the thermal column were prioritized. The fact that the plasma cutting scenario ranked the better than the

  15. Decree no. 2004-48 from January 12, 2004 authorizing the French atomic energy commission to proceed to the definitive decommissioning and dismantling operations of the nuclear facility no. 43, named Saclay linear accelerator (ALS), on the territory of Saint-Aubin town (Essonne); Decret no. 2004-48 du 12 janvier 2004 autorisant le Commissariat a l'energie atomique a proceder aux operations de mise a l'arret definitif et de demantelement de l'installation nucleaire de base no. 43 denommee accelerateur lineaire de Saclay (ALS) sur le territoire de la Commune de Saint-Aubin (Essonne)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    The linear accelerator of Saclay (ALS) has been the object of a commissioning permission given by decree by the French prime minister in October 8, 1965. It is submitted to the regime of basic nuclear facilities as defined in the decree no. 63-1228 from December 11, 1963. The French atomic energy commission (CEA) put down a request for the definitive decommissioning and dismantling of this facility on May 30, 2002. The duration foreseen for these operations is of 4 years. After the safety examination of the request by the DGSNR and the institute of radioprotection and nuclear safety (IRSN), a favorable and conformable advice has been given by the different ministries (health, finances and industry, ecology and sustainable development) and has led to this decree which precises the different protection measures to be implemented during the dismantling work. (J.S.)

  16. A virtual nuclear world?

    International Nuclear Information System (INIS)

    Salve, R.

    1998-01-01

    The way in which virtual reality technology has so dramatically developed over the last few years has opened up the possibility of its application to various industrial processes. This article describes the possible uses of such a technique in nuclear power plants in various phases such as design, construction, operation or dismantling. (Author)

  17. Study on safety evaluation for unrestricted recycling criteria of radioactive waste from dismantling operation

    International Nuclear Information System (INIS)

    Yoshimori, Michiro; Ohkoshi, Minoru; Abe, Masayoshi

    1995-01-01

    The study on safety evaluation was done, under contracting with the Science and Technology Agency, for recycling scrap metal arising from dismantling of reactor facilities. An object of this study is to contribute to the examination of establishing criteria and safety regulation for unrestricted recycling steel scrap. To define amount of market flow of iron material in Japan and the amount of radioactive waste generated from dismantling of reactor facilities, investigation had been carried out. On basis of these investigation results and data in several literature, individual doses to workers and to the members of the public have been calculated as well as collective doses. (author)

  18. Place of the final disposal of short lived dismantling waste; Plats foer slutfoervaring av kortlivat rivningsavfall

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    This report deals with the short-lived low and intermediate level radioactive waste, which will mainly arise from the dismantling of the Swedish nuclear power plants, but also the dismantling of other nuclear facilities. For these installations to be dismantled, there must be the capacity to receive and dispose of dismantling waste. SKB plans to expand the existing final repository for short-lived radioactive waste (SFR) in Forsmark for this purpose. The legislation requires alternatives to the chosen location. The alternate location for the disposal of decommissioning waste SKB has chosen to compare with is a location in the Simpevarp area outside Oskarshamn. There are currently Oskarshamn nuclear power plant and SKB between stock 'CLAB'. The choice of Simpevarp as alternative location is based on that it's one of the places in the country where data on the bedrock is available to an extent that allows an assessment of the prospects for long-term security, such an assessment is actually showing good potential, and that the location provide realistic opportunities to put into practice the disposal of decommissioning waste. At a comparison between the disposal of short-lived decommissioning waste in an extension of SFR with the option to build a separate repository for short-lived decommissioning waste in Simpevarp, the conclusion is that both options offer potentially good prospects for long-term security. The differences still indicated speaks to the Forsmark advantage. Similar conclusions were obtained when comparing the factors of environment, health and social aspects.

  19. Towards a more professional demolition and dismantling industry

    International Nuclear Information System (INIS)

    1988-01-01

    The work of the National Economic Development Office Demolition and Dismantling Group in four areas which are crucial to the economic performance of the demolition and dismantling industry and its safety record is considered. The first concerns the availability and accessibility of information about unconventional structures and details are given of the sort of information often kept for different types of structure. Secondly, the need is stressed for guidelines for the client, particularly on the risks involved and the choice of a competent contractor. Thirdly, basic credentials which it is important for contractors to set out in order to establish a good reputation for the industry are set out. Finally, the particular case of nuclear power station decommissioning is considered with reference to the size of the market, the pioneering knowledge to be gained from the decommissioning of the Windscale Advanced Gas-cooled Reactor, private sector involvement and the special techniques required. (U.K.)

  20. Remotely controlled cutting techniques in the field of nuclear decommissioning. Overview of effectively applied thermal and non thermal cutting methods

    International Nuclear Information System (INIS)

    Bienia, H.

    2008-01-01

    Remote disassembly of radiologically burdened large components is among the most sophisticated and complex activities in the dismantling of nuclear installations. The required space for the technical equipment during the dismantling operations, especially for the removal of larger components is often an additional problem. Conventional cutting technologies like sawing with a disk saw or band saw require large and heavy frameworks as well as guiding systems with high rigidity. These solutions are expensive and sometimes not applicable. The essential question of all cutting and dismantling tasks is the physiological constitution of the component which will be dismantled. That means size, material and structure of the component. All these points are primarily technological questions. The last question is about the estimated costs of the used dismantling technology. Therefore following questions must be answered. How much are the investments for the cutting equipment itself and how much are the investments for the supporting equipment (e.g. necessary handling equipment)? Can I use this cutting equipment only for one special task or is it applicable for many tasks and therefore saves money because other cutting or dismantling technologies are dispensable? How long is the cutting time and what is the to control this technique required personnel? Four different cutting and dismantling technologies will be introduced and described. These four technologies differ in their principle of operation but all of them are used by cutting and dismantling tasks in nuclear power plants. (author)

  1. Decree of the 28 August 2017 bearing approval of the decision nr 2017-DC-0592 of the Authority for Nuclear Safety of the 13 June 2017 related to obligations of operators of basic nuclear installations in terms of preparation and of management of emergency situations, and to the content of the internal emergency plan. Decision nr 2017-DC-0592 of the Authority for Nuclear Safety of 13 June 2017 related to obligations of operators of basic nuclear installations in terms of preparation and of management of emergency situations, and to the content of the internal emergency plan

    International Nuclear Information System (INIS)

    Mortureux, M.

    2017-01-01

    The decree formalises the implementation of decision made by the ASN regarding the preparation and management of emergency situations, and the content of the internal emergency plan for basic nuclear installations (some aspects concern installations others than nuclear power plants). Delays of elaboration and publication of the internal emergency plan are indicated for nuclear installations, and depend on the fact the installation is being dismantled or to be dismantled, or is being operated or to be created. An appendix contains a set of definitions of relevant terms related to the installation organisation, a specification of some general measures regarding the organisation to be implemented, procedures related to the alert and coordination with authorities and external bodies and departments, involved human resources, crisis exercises and real-life simulations to be performed, material resources to be used for the management of emergency situations, and aspects related to the protection of people present within the installation

  2. Annual meeting on nuclear technology 2005. Proceedings

    International Nuclear Information System (INIS)

    2005-03-01

    The proceedings of the annual meeting on nuclear technology 2005 covers the following issues: (1) reactor physics and methods of calculation: design and transients; method development and validation; (2): thermodynamics and fluid dynamics: analytical thermohydraulics for existing reactors; experiments and operational behavior; analytical methods for innovative reactors; (3) Safety of nuclear installations - methods, analysis, results: special problems; PSA and in-vessel phenomena; ex-vessel phenomena; (4) front end and back end of the fuel cycle, radioactive waste, storage: intermediate storage of fuel elements, waste treatment, (5) fuel elements and core components: fuel elements, new methods in the interpretation, manufacturing and service; (6) operation of nuclear installations: experience with the operation of NPPs; management systems, digital instrumentation and control of NPPs revision management; (7) decommissioning of nuclear installations: concepts and strategies for decommissioning and dismantling; experiences with decommissioning projects; (8) fusion technology: fusion facilities; materials and test facility; cryo technique and simulations; (9) research reactors: building new and backfitting of existing research reactors; current development; dismantling of research reactors; (10) advanced reactor concepts, energy systems, energy economics; (11) communication with the public; (12) component materials, fabrication and service behavior: degradation effects of component materials; component behavior; (13): radiation protection: PSA and in-vessel phenomena, ex-vessel phenomena.

  3. Dismantling of a hot cell of high level activity. Method and tools used

    International Nuclear Information System (INIS)

    Jeantet, E.; Miquel, P.; Baudoin, J.C.; Moutonnet, A.

    1981-05-01

    The aim of this operation is the removal of all the equipment and the material introduced and used in the hot cell 'Attila' and its decontamination to obtain an irradiation level as low as possible to allow direct intervention. The Attila facilitie was build in 1964-1966 to study dry processing of irradiated fuels by halogenide volatility process. Dismantling of the out-cell and of the laboratory associated to the shielded cell, dismantling inside the shielded cell with the remote handling equipment of the cell and tools used for these operations are described in this article [fr

  4. Decontamination and dismantling of large plutonium-contamined glove boxes

    International Nuclear Information System (INIS)

    Draulans, J.

    1991-01-01

    This report describes the work performed in the frame of two C.E.C. - Contracts FI1D-002400-B Decommissioning of very large glove boxes and FI1D-0058 Decommissioning of a complex glove box structure to be dismounted partially on place. Detailed information is given about each glove box. The selection of the solution Transportation of the glove boxes to a specialized dismantling plant is justified. The necessary contacts inside the BELGONUCLEAIRE MOX plant and between the latter and other organizations are explained. The problems of manipulating large gloves are listed and the retained solution of building a so called Stiffening frame around each glove box is described. Furthermore information is given concerning required operators time for cleaning, manipulating, packing and dismantling together with received doses and quantities of waste produced. Concerning the glove box unit partially to be dismounted on place, detailed information is given about the way the glove boxes have been treated prior to this partial dismantling on place and about the way this partial dismantling has been performed. From these results one can conclude that such a delicate task can be performed without major difficulties. Finally information is given of the decontamination test of a highly Pu contaminated glove box with freon with rather poor results and of the preliminary CO 2 blasting tests on non active samples

  5. Assisted supervision of a computer aided tele-operation system

    Energy Technology Data Exchange (ETDEWEB)

    Le Bars, H; Gravez, P; Fournier, R

    1994-12-31

    This paper talks about Computer Aided Tele-operation (CAT) in dismantling and maintenance of nuclear plants. The current research orientations at CEA, basic concepts of the supervision assistance system and the realisation of a prototype are presented. (TEC). 3 refs., 4 figs.

  6. Assisted supervision of a computer aided tele-operation system

    International Nuclear Information System (INIS)

    Le Bars, H.; Gravez, P.; Fournier, R.

    1994-01-01

    This paper talks about Computer Aided Tele-operation (CAT) in dismantling and maintenance of nuclear plants. The current research orientations at CEA, basic concepts of the supervision assistance system and the realisation of a prototype are presented. (TEC). 3 refs., 4 figs

  7. Chapter 12. Nullification of nuclear reactors

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with problems connected with nullification of nuclear reactors. There are tree basic methods of nullification of nuclear reactors: (1) conservation, (2) safe close (wall up, embed in concrete), (3) direct dismantlement and remotion and two combined ways: (1) combination of mothball with subsequent dismantlement and remotion and (2) combination of safe close with subsequent dismantlement and remotion. Activity levels as well as volumes of radioactive wastes connected with decommissioning of nuclear reactors are reviewed

  8. Days of dismantling activities of installations and rehabilitation of contaminated sites in France

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of these days, organized by the section environment of the French society of radiation protection, is to present a panorama of the activities of nuclear installations dismantling and contaminated sites rehabilitation in France, by leaning in the same time on practical cases and by stating the French rule and the national and international recommendations on the subject. These days have also for object to approach the stakes associated with the sectors of waste management and the materials generated by these activities and in a more general way, the stakes to come for the different actors of the dismantling and the rehabilitation. (N.C.)

  9. On evaluation of assessments of accruals of future dismantling costs

    Energy Technology Data Exchange (ETDEWEB)

    Labor, Bea [B D Projects 2013, Gdansk (Poland); Lindskog, Staffan [Swedish Radiation Safety Authority, Solna (Sweden)

    2013-07-01

    A major prerequisite in order for civilian commercial nuclear energy production to qualify as sustainable energy production is that systems for the management of the nuclear waste legacy are in operation. These waste types are present in a range from very low short lived waste (VLLW) to long lived high level waste (HLW) (including the used nuclear fuel). The second prerequisite is that financial responsibilities or other constraints must not be passed on to coming generations. The first condition for qualification corresponds to the Polluters Pays Principle (PPP) which demands that the responsibility for the waste management rests solely with the polluter. The second qualification corresponds to the principle of fairness between generations and thus concerns the appropriate distribution of responsibilities between the generations. It is important to note that these two conditions must be met simultaneously, and that compliance with both is a necessary prerequisite in order for commercial use of nuclear power to qualify as a semi-sustainable energy source. Financial and technical planning for dismantling and decommissioning of nuclear installations cannot be regarded as successful unless it rests upon a distinctive way to describe and explain the well-founded values of different groups of stakeholders. This cumbersome task can be underpinned by transparent and easy to grasp models for calculation and estimation of future environmental liabilities. It essential that a systematic classification is done of all types of costs and that an effort is done to evaluate the precision level in the cost estimates. In this paper, a systematic and transparent way to develop a parametric approach that rest upon basic accounting standards is combined with data about younger stakeholder's values towards decommissioning and dismantling of nuclear installation. The former entity rests upon theoretical and practical methods from business administration, whilst the latter is based

  10. On evaluation of assessments of accruals of future dismantling costs

    International Nuclear Information System (INIS)

    Labor, Bea; Lindskog, Staffan

    2013-01-01

    A major prerequisite in order for civilian commercial nuclear energy production to qualify as sustainable energy production is that systems for the management of the nuclear waste legacy are in operation. These waste types are present in a range from very low short lived waste (VLLW) to long lived high level waste (HLW) (including the used nuclear fuel). The second prerequisite is that financial responsibilities or other constraints must not be passed on to coming generations. The first condition for qualification corresponds to the Polluters Pays Principle (PPP) which demands that the responsibility for the waste management rests solely with the polluter. The second qualification corresponds to the principle of fairness between generations and thus concerns the appropriate distribution of responsibilities between the generations. It is important to note that these two conditions must be met simultaneously, and that compliance with both is a necessary prerequisite in order for commercial use of nuclear power to qualify as a semi-sustainable energy source. Financial and technical planning for dismantling and decommissioning of nuclear installations cannot be regarded as successful unless it rests upon a distinctive way to describe and explain the well-founded values of different groups of stakeholders. This cumbersome task can be underpinned by transparent and easy to grasp models for calculation and estimation of future environmental liabilities. It essential that a systematic classification is done of all types of costs and that an effort is done to evaluate the precision level in the cost estimates. In this paper, a systematic and transparent way to develop a parametric approach that rest upon basic accounting standards is combined with data about younger stakeholder's values towards decommissioning and dismantling of nuclear installation. The former entity rests upon theoretical and practical methods from business administration, whilst the latter is based

  11. Development of a handling technology for underwater inspection and dismantling

    International Nuclear Information System (INIS)

    Rose, N.

    1994-01-01

    For the purpose of underwater inspection and dismantling of nuclear facilities, a prototype of a freely submersible, remote-controlled handling system was developed and tested under laboratory conditions. Particular interest was taken in the specific boundary conditions of the area of application and the methodological concept. The system was developed in three phases; in each phase, a prototype was constructed and tested. (orig.) [de

  12. KONTEC 2009. Report about the 9th International Symposium on ''Conditioning of radioactive operational and decommissioning wastes''

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    ''Kontec 2009'' was organized in Dresden on April 15-17, 2009. For the 8 th time, this established international meeting covered the subjects of ''Conditioning of Radioactive Operational and Decommissioning Wastes'' and ''Decommissioning and Dismantling of Nuclear Facilities'' and the R and D Status Report delivered by the German Federal Ministry for Education and Research on this key topic. Some 790 participants from 13 countries heard and discussed the contributions to the three-day meeting. The program of the symposium comprised plenary sessions dealing with these 4 key subjects: Disposal of Radioactive Residues from Nuclear Facilities' Operation and Decommissioning, Decommissioning and Dismantling of Nuclear Facilities, Facilities and Systems for the Conditioning of Operational and Decommissioning Wastes, Transport, Interim and Final Storage of Non-heat Generating Wastes (i.e. Konrad). The sessions were supplemented by poster sessions and selected short presentations under the heading of ''Kontec Direct.'' (orig.)

  13. Quality Assurance in the Vandellos 1 Nuclear Power Plant Dismantling and Decommissioning Project; La garantia de calidad en el proyecto de desmantelamiento y clausura de la Central Nuclear de Vandellos I

    Energy Technology Data Exchange (ETDEWEB)

    Soto Lanuza, A

    2000-07-01

    General description of the Quality Assurance System established and implemented for the efficient development of the current activities specified in the Dismantling and Decommissioning Plan for Vandellos I Nuclear Power Plant. Aspects related to the Quality organization, scope and applicability on the established Quality Assurance Manual, availability of requirements and recommendations on quality as well as actions to be taken for the correct verification on the quality and practical application of the Manual should be described. (Author)

  14. Clearance of materials from dismantling of nuclear facilities in Sweden - a study on whether the EU recommendations are applicable in Sweden; Friklassning av material fraan rivning av kaerntekniska anlaeggningar i Sverige - en utredning om EU:s rekommenderade regler aer tillaempbara i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Hamrefors, Gunilla [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2004-02-01

    The report presents a study on whether the EU recommendations on clearance of metals, buildings and building rubble from the dismantling of nuclear facilities are applicable in Sweden. Analyses are made to estimate the amounts of waste that would be released from dismantling of the Swedish nuclear power plants and to what degree the costs of the licence holders would be influenced. A summary and evaluation of different methods and equipments for measurement is also given. The main conclusion is that the EU recommendations are applicable in Sweden.

  15. Decommissioning and dismantling policy in Spain

    International Nuclear Information System (INIS)

    Landa, J.

    2004-01-01

    Decommissioning and dismantling nuclear installations is an increasingly important topic for governments, regulators, industries and civil society. There are many aspects that have to be carefully considered and planned, in many cases well in advance when they really need to be implemented. In my speech I am going to focus on policy-making considerations. Firstly I will go briefly over the current Spanish strategy on D and D, discussing the know-how we have gained from past experience. Then I will review the challenges that we will have to face in the near future, suggesting possible alternatives and approaches. I will finish talking a little bit about the international scene. (author)

  16. Dismantling of transuranic contaminated facilities

    International Nuclear Information System (INIS)

    Roux, P.

    1985-01-01

    The dismantling of transuranic contaminated facilities raises specific problems. A large part of these problems relates to the management of the waste resulting from dismantling. From the experience gained in the different centers CEA and COGEMA it appears that there are industrial solutions in the group CEA and that an engineering company such as SGN can export them [fr

  17. Current status of radioactive waste management from nuclear applications in Korea

    International Nuclear Information System (INIS)

    Kwan Sik Chun

    1997-01-01

    Korea has been in operation of nuclear research reactor(s) since the first research reactor, TRIGA MARK-II type, started to operate in 1965. The third research reactor, HANARO, has begun to operate since 1995 while other research reactors have been shut down for their decommissioning and will be dismantled in near future. The RI application wastes have been collected and stored at the Nuclear Environment Technology Institute (NETEC) separately from the operational wastes of nuclear power plant (NPP) which are being stored at on-site storage of each NPP. 10 refs, 2 figs, 4 tabs

  18. Strategically oriented project management of the decommissioning of nuclear power plants; Strategieorientiertes Projektmanagement der Stilllegung von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Kemmeter, Sascha [Conscore GmbH, Duesseldorf (Germany); Woempener, Andreas [Duisburg-Essen Univ., Duisburg (Germany). Lehrstuhl fuer ABWL und Controlling

    2013-12-15

    Due to the politically induced change of the energy sector in Germany, the operators of nuclear power plants had to react and to deal with completely new conditions concerning the decommissioning of their plants on short notice. Therefore the operators have to devise new strategies for controlling their decommissioning and dismantling projects in a short amount of time and most often similarly for several plants. Two fundamental procedures are possible for the successful controlling of these dismantling projects: a centralized or a decentralized management organization. How these project control processes can be realized in an optimal way, is, next to other economic specifications of the dismantling of nuclear power plants, the topic of a new research project of the Chair of Management Accounting at the University Duisburg-Essen. In that process, results and experiences from other research and practical projects concerning general large-scale projects are being used. Selected findings have been compiled and are being discussed in this paper. (orig.)

  19. Nuclear phaseout: a battle over figures

    International Nuclear Information System (INIS)

    Coloma, T.

    2012-01-01

    It is very difficult to assess the cost of abandoning nuclear energy in France because a lot of relevant figures are not published. The Court of Auditors is due to publish in 2012 a report of the costs of nuclear energy. In the case of nuclear phase out 2 costs have to be considered the dismantling cost and the cost of processing wastes and their disposal. As for the dismantling cost, official assessments in Great-Britain or Germany give a figure around 3 billions pounds per dismantled unit. In France the law imposes to EDF to put by 18 billions euros by 2016 for the future reactor dismantling. Concerning the cost of wastes, it could reach 35 billions euros for dealing with all the radioactive wastes produced till 2030. (A.C.)

  20. Decision no. 2011-DC-0219 of the French nuclear safety authority from May 5, 2011, ordering the SOCATRI company to proceed to a complementary safety evaluation of some of its basic nuclear facilities in the eyes of the Fukushima Daiichi nuclear power plant accident

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the SOCATRI company, operator of the nuclear dismantling and waste processing plants of the Tricastin site (France). (J.S.)

  1. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1992-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by the AEA, BNFL and the CEC at Windermere and the sites of Windscale/Sellafield, where the former Windscale advanced gas-cooled reactor and the Windscale piles are currently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, results and conclusions on techniques and procedures currently applied in the dismantling of large scale nuclear installations in the European Community

  2. Visualization of a dismantling environment for an evaluation of a worker's dose during the decommissioning of KRR-1 and 2

    International Nuclear Information System (INIS)

    Park, Hee Seong; Kim, Sung Kyun; Lee, Kune Woo; Jung, Chong Hun; Jin, Seong Il

    2008-01-01

    The purpose of this paper is to provide a basis for an optimization of a dismantling process of a research reactor and nuclear facility. An optimization of a dismantling process should be at the beginning of a study for an evaluation of the radioactivity inventory and the safety of the workers. Many countries have conducted an optimization to achieve a shortened dismantling schedule, a reduction of the amount of waste, and cut down on the decommissioning by using computer graphics such as animation, simulation, and virtual reality. In the present study, we propose methods for identifying the existence of radioactivity which is contained in the dismantled objects and for evaluating a worker's dose through a simulation. To evaluate a worker's external dose under a virtual dismantling environment generated by computer graphics, the shape of the thermal column horizontal door was created by 3D CAD and the radiation dose surrounding the door was calculated by using MCNP-4C. An animation that can demonstrate a dismantling procedure according to a dismantling scenario was produced. For matching the radiation dose, which was calculated by MCNP-4C with an area where workers are dismantling a door, a simulation module was developed which could show a worker's external dose in real-time. The result from the distribution of the radioactivity enables us to specify where the most contaminated part of the dismantling objects is. In the animation, a virtual worker demonstrated a dismantling activity procedure as a chosen scenario. In the simulation, a worker's exposure dose rate in real-time has been evaluated

  3. Dismantling institutional racism: theory and action.

    Science.gov (United States)

    Griffith, Derek M; Mason, Mondi; Yonas, Michael; Eng, Eugenia; Jeffries, Vanessa; Plihcik, Suzanne; Parks, Barton

    2007-06-01

    Despite a strong commitment to promoting social change and liberation, there are few community psychology models for creating systems change to address oppression. Given how embedded racism is in institutions such as healthcare, a significant shift in the system's policies, practices, and procedures is required to address institutional racism and create organizational and institutional change. This paper describes a systemic intervention to address racial inequities in healthcare quality called dismantling racism. The dismantling racism approach assumes healthcare disparities are the result of the intersection of a complex system (healthcare) and a complex problem (racism). Thus, dismantling racism is a systemic and systematic intervention designed to illuminate where and how to intervene in a given healthcare system to address proximal and distal factors associated with healthcare disparities. This paper describes the theory behind dismantling racism, the elements of the intervention strategy, and the strengths and limitations of this systems change approach.

  4. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  5. KWL Lingen nuclear plant. Technical annual report 2016; KWL Kernkraftwerk Lingen. Technischer Jahresbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    The technical annual report 2016 for KWL (Lingen nuclear plant) covers the following sections: dismantling project management and operation, monitoring and clearance; waste management, technical qualification, security and safety, central tasks; licensing and supervision procedures, operational data, radiation monitoring, radioactive materials, in-service inspections.

  6. Qualification of a laser cutting process for nuclear dismantling operations AREVA NC BU Valorisation - CEA/DPAD - IRSN/DSU/SERAC

    International Nuclear Information System (INIS)

    2008-01-01

    A major decommissioning project is under way on the Marcoule French Atomic Site (CEA) at the UP1 reprocessing plant where AREVA plays the role of prime contractor. Due to severe radiological levels on certain cells, these require remote operations. The cutting tools commonly used today are mainly mechanical such as grinders, saws and hydraulic shears. Nowadays, the feed-back shows that the implementation of these mechanical techniques: *?Is the main factor of mechanical failures of the remote arms. *?Requires a lot of spare parts (saw blades, discs...) The future cutting operations to be done in the UP1 reprocessing plant needs to be more industrial and productive. That is why CEA and AREVA NC are evaluating a new cutting process based on a laser set up on a remote arm. The laser cutting is already widely used in none nuclear environment and the goal is to evaluate if this thermal process may be used in nuclear installations with existing remote control arms. (authors)

  7. Qualification of a laser cutting process for nuclear dismantling operations AREVA NC BU Valorisation - CEA/DPAD - IRSN/DSU/SERAC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    A major decommissioning project is under way on the Marcoule French Atomic Site (CEA) at the UP1 reprocessing plant where AREVA plays the role of prime contractor. Due to severe radiological levels on certain cells, these require remote operations. The cutting tools commonly used today are mainly mechanical such as grinders, saws and hydraulic shears. Nowadays, the feed-back shows that the implementation of these mechanical techniques: *?Is the main factor of mechanical failures of the remote arms. *?Requires a lot of spare parts (saw blades, discs...) The future cutting operations to be done in the UP1 reprocessing plant needs to be more industrial and productive. That is why CEA and AREVA NC are evaluating a new cutting process based on a laser set up on a remote arm. The laser cutting is already widely used in none nuclear environment and the goal is to evaluate if this thermal process may be used in nuclear installations with existing remote control arms. (authors)

  8. Nuclear decommissioning: A problem that won't go away

    International Nuclear Information System (INIS)

    Lenssen, N.

    1999-01-01

    The problem of shutdown reactors is growing steadily. As of the beginning of 1999, 94 reactors have been shutdown, only 429 were in operation, meaning that one out of 5.5 reactors ever built was permanently closed. Yet only a handful of these have actually been dismantled. Some countries as Japan and USA, have announced their policies that hey plan to dismantle their reactors in a decade or two after closure. Other countries like Canada or France intend to wait several decades. At the extreme United Kingdom decided to wait more than 100 years. This old shutdown reactors could become a near permanent fixture in some countries. The problem is that, the longer the reactors run, the more radioactive their interiors become, the more difficult, dangerous and expensive is to dismantle the plants, to store and bury the residual radioactive waste. Despite some early real experience with the cost of decommissioning plants, it still remains uncertain just what those costs will be and who will pay. Estimates of the dismantling cost have ranged from 10% of the initial capital investment up to 40% and even 100%. Thus, decommissioning could become the largest remaining expense facing the nuclear industry and the governments who have supported it, particularly if efforts to confine radioactive waste fail. The challenge facing the human societies is to keep nuclear waste including the shuttered plants in isolation for the many millennia that make up the hazardous life of these materials. In this light, no matter what becomes of nuclear power, the nuclear age will continue for a very long time

  9. Feedback experience from the decommissioning of Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Santiago, J.L.

    2008-01-01

    The Spain has accumulated significant experience in the field of decommissioning of nuclear and radioactive facilities. Relevant projects include the remediation of uranium mills and mines, the decommissioning of research reactors and nuclear research facilities and the decommissioning of gas-graphite nuclear power plants. The decommissioning of nuclear facilities in Spain is undertaken by ENRESA, who is also responsible for the management of radioactive wastes. The two most notable projects are the decommissioning of the Vandellos I nuclear power plant and the decommissioning of the CIEMAT nuclear research centre. The Vandellos I power plant was decommissioned in about five years to what is known as level 2. During this period, the reactor vessel was confined, most plant systems and components were dismantled, the facility was prepared for a period of latency and a large part of the site was restored for subsequent release. In 2005 the facility entered into the phase of dormancy, with minimum operating requirements. Only surveillance and maintenance activities are performed, among which special mention should be made to the five-year check of the leak tightness of the reactor vessel. After the dormancy period (25 - 30 years), level 3 of decommissioning will be initiated including the total dismantling of the remaining parts of the plant and the release of the whole site for subsequent uses. The decommissioning of the CIEMAT Research Centre includes the dismantling of obsolete facilities such as the research reactor JEN-1, a pilot reprocessing plant, a fuel fabrication facility, a conditioning plant for liquid and a liquid waste storage facility which were shutdown in the early eighties. Dismantling works have started in 2006 and will be completed by 2009. On the basis of the experience gained in the above mentioned sites, this paper describes the approaches adopted by ENRESA for large decommissioning projects. (author)

  10. Decommissioning of uranium pilot plants at IPEN-CNEN/SP: Facilities dismantling, decontamination and reuse as new laboratories for strategic programs

    International Nuclear Information System (INIS)

    Oliveira Lainetti, P.; Freitas, A.; Cotrim, M.; Pires, M.

    2014-01-01

    Radical changes of the Brazilian nuclear policy, in the beginning of 1990s, determined the interruption of most nuclear fuel cycle activities and the facilities shutdown at IPEN. Those facilities had already played their roles of technological development and personnel's training, with transfer of the technology for institutions entrusted of the ''scale up'' of the units. Most of the pilot plants interrupted the activities more than ten years ago, due to the lack of resources for the continuity of the research. The appropriate facilities maintenance had been also harmed by the lack of resources, with evident signs of deterioration in structures and equipment. The existence of those facilities also implicated in the need of constant surveillance, representing additional obligations, costs and problems. It should be emphasized that one of the most concerning aspects, with relationship to the future of the facilities and the postponement of the dismantling, was the loss of the experience accumulated by the personnel that set up and operated the referred units. Besides the mentioned aspects, other reasons to promote the dismantling of the IPEN´s Nuclear Fuel Cycle Pilot Plants elapsed mainly from the need of physical space for new activities, since the R in the nuclear fuel cycle area were interrupted. In the last decade IPEN has changed its “nuclear profile” to a “comprehensive and multidisciplinary profile”. During this period, IPEN has been restructured in 13 Research Centers. With the end of most nuclear fuel cycle activities, the former facilities were distributed in four different centers: Environmental and Chemical Technology Center; Fuel Cell Center; Materials Science and Engineering Center; Nuclear Fuel Center. Each center has adopted a different strategy and priority to face the R problem and to reintegrate the areas. The resources available depend on the specific program developed in each area (resources available from other sources, not only CNEN

  11. CRITICALITY CONTROL DURING THE DISMANTLING OF A URANIUM CONVERSION PLANT

    International Nuclear Information System (INIS)

    LADURELLE, Laurent; LISBONNE, Pierre

    2003-01-01

    Within the Commissariat a l'Energie Atomique, in the Cadarache Research Center in southern France, the production at the Enriched Uranium Treatment Workshops started in 1965 and ended in 1995. The dismantling is in progress and will last until 2006. The decommissioning is planned in 2007. Since the authorized enrichment in 235U was 10% in some parts of the plant, and unlimited in others, the equipment and procedures were designed for criticality control during the operating period. Despite the best previous removing of the uranium in the inner parts of the equipment, evaluation of the mass of remaining fissile material by in site gamma spectrometry measurement shows that the safety of the ''clean up'' operations requires specific criticality control procedures, this mass being higher than the safe mass. The chosen method is therefore based on the mapping of fissile material in the contaminated parts of the equipment and on the respect of particular rules set for meeting the criticality control standards through mass control. The process equipment is partitioned in separated campaign, and for each campaign the equipment dismantling is conducted with a precise traceability of the pieces, from the equipment to the drum of waste, and the best final evaluation of the mass of fissile material in the drum. The first results show that the mass of uranium found in the dismantled equipment is less than the previous evaluation, and they enable us to confirm that the criticality was safely controlled during the operations. The mass of fissile material remaining in the equipment can be then carefully calculated, when it is lower than the minimal critical mass, and on the basis of a safety analysis, we will be free of any constraints regarding criticality control, this allowing to make procedures easier, and to speed up the operations

  12. Decontamination and dismantling at the CEA

    International Nuclear Information System (INIS)

    2006-01-01

    This document presents the dismantling policy at the CEA (French Research Center on the atomic energy), the financing of the decontamination and the dismantling, the regulatory framework, the knowledge and the technology developed at the CEA, the radiation protection, the environment monitoring and the installations. (A.L.B.)

  13. Method of freezing type dismantling for wasted reactors

    International Nuclear Information System (INIS)

    Tatsumi, Toshiyuki.

    1985-01-01

    Purpose: To enable to operate a cutting device in the air by placing a working table on ice while utilizing the ice as radiation shielding materials thereby prevent the diffusion of air contaminations. Method: Upon dismantling a BWR type reactor, ice is packed into a reactor container and a pressure vessel and frozen state is maintained by cooling coils disposed to the outer circumference of the pressure vessel. Then, an airtight hood is covered over the pressure vessel and a working table is rotatably disposed therein. Upon working, when the upper layer ice is melted by a heat pump and discharged, the airtight hood is lowered to a predetermined level. After freezing the melted portion again at the lowered level, cutting work is conducted by an operator in the hood. The cut pieces are conveyed after hoisting the airtight hood by a crane. The pressure vessel is dismantled by repeating the foregoing procedures. In this way, cut pieces can be recovered without falling them to the reactor bottom as in the conventional work in water. In addition, since the procedures are conducted while covering the airtight hood, diffusion of air contaminations can be prevented. (Kamimura, M.)

  14. Project WAGR: the UK demonstration project for power reactor decommissioning - a review of the tools used to dismantle the reactor core

    International Nuclear Information System (INIS)

    Benest, T.G.

    2008-01-01

    The United Kingdom Atomic Energy Authority (UKAEA) has built and operated a wide range of nuclear facilities since the late 1940. UKAEA mission is to restore the environment of its sites in a safe and secure manner. This restoration includes the decommissioning of a number of redundant research and power reactors. The Windscale Advanced Gas-cooled Reactor (WAGR) was the UK prototype Advanced gas cooled reactor and became the forerunner of a family of 14 reactors built to generate cheaper and more efficient electricity in the UK. WAGR was constructed between 1957 and 1961 and was a carbon dioxide cooled, graphite moderated reactor using uranium oxide fuel in stainless steel cans. The reactor consisted of a graphite moderator housed in a cylindrical reactor vessel with hemispherical ends. The reactor and associated heat exchangers were enclosed in the iconic spherical containment building regularly used by the media in the UK as an illustration of the nuclear industry. The reactor first produced power in August 1962 and achieved full design output in 1963. It operated at an electrical output of 33 MW (E) for 18 years (average load factor of 75%). In 1981 the reactor was shut down after satisfactory completion of all the research and development objectives. In anticipation of the UK likely nuclear decommissioning needs the UKAEA decided to decommission WAGR to the International Atomic Energy Agency (IAEA) stage 3 (restoration of the area occupied by the facility to a condition of unrestricted re-usability) as the national demonstration exercise for power reactor decommissioning. Since 1998 the UKAEA and its contractors have been undertaking the dismantling of the reactor core components and pressure vessel in a series of 10 campaigns. These contain neutron activated components expected to produce dose rates well in excess of 1 Sv/hr. To carry out the work UKAEA installed an 8M remote dismantling machine (RDM) a waste recovery and transport system and a shielded waste

  15. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    International Nuclear Information System (INIS)

    Kenny, Stephen

    2008-01-01

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred

  16. Dismantling of the 904 Cell at the HAO/Sud Facility - 13466

    Energy Technology Data Exchange (ETDEWEB)

    Vaudey, C.E.; Crosnier, S. [AREVA Clean-Up BU, 1 route de la Noue 91196 - Gif-sur-Yvette (France); Renouf, M.; Gaspard, N. [AREVA Clean-Up BU, Site de La Hague - BV 35 - 50444 Beaumont Hague (France); Pinot, L. [AREVA D and D BU, Site de La Hague - 50444 Beaumont Hague (France)

    2013-07-01

    La Hague facility, in France, is the spent fuel recycling plant wherein a part of the fuel coming from some of the French, German, Belgian, Swiss, Dutch and Japanese nuclear reactors is reprocessed before being recycled in order to separate certain radioactive elements. The facility has been successively handled by the CEA (1962-1978), Cogema (1978-2006), and AREVA NC (since 2006). La Hague facility is composed of 3 production units: The UP2-400 production unit started to be operated in 1966 for the reprocessing of UNGG metal fuel. In 1976, following the dropout of the graphite-gas technology by EDF, an HAO workshop to reprocess the fuel from the light water reactors is affiliated and then stopped in 2003. - UP2-400 is partially stopped in 2002 and then definitely the 1 January 2004 and is being dismantled - UP2-800, with the same capacity than UP3, started to be operated in 1994 and is still in operation. And UP3 - UP3 was implemented in 1990 with an annual reprocessing capacity of 800 tons of fuel and is still in operation The combined licensed capacity of UP2-800 and UP3 is 1,700 tons of used fuel. (authors)

  17. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  18. The dismantling of nuclear installations and the radioactive wastes management. Report of the President of the Republic followed by the answers of concerned administrations and organisms; Le demantelement des installations nucleaires et la gestion des dechets radioactifs. Rapport au President de la Republique suivi des reponses des administrations et des organismes interesses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    The discussed subjects concerns the situation and the challenges of the nuclear installations dismantling and the radioactive wastes management (main intervenors, panorama of the situation, rules applied to the dismantling and the radioactive wastes), the first experiences of dismantling and radioactive wastes disposal (experiences at the CEA and EDF, implementing of solutions for the disposal), interrogations and certainties (provision for future expenses, public information). (A.L.B.00.

  19. Decontamination in preparation for dismantlement - AREVA's chemical decontamination technologies, projects performed and results obtained in the period 2011-2016

    International Nuclear Information System (INIS)

    Topf, C.; Sempere Belda, L.

    2017-01-01

    As a consequence of the nuclear phase-out decreed by the German government, several nuclear power plants in the country have already ceased operation. The remaining ones will cease operation by 2022. This has turned Germany into one of the most active regions worldwide in the field of nuclear decommissioning, with new and emerging technologies being deployed on the field, and already preexisting technologies being put to the test, optimized and developed into full maturity. The chemistry services division of AREVA GmbH has already performed 5 Full System Decontaminations (FSD) in preparation for decommissioning in this period - three in PWRs and two in BWRs - along with other international projects of relevance for decommissioning operations. During a FSD, the complete primary circuit of a nuclear power plant including auxiliary systems is subject to a chemical treatment; designed to remove radioactive matter accumulated onto system surfaces during operation. Through the effective removal of this radioactive accumulations contact dose rates on the different components of the primary circuit can be consistently reduced by factors larger than 50. This results in much lower ambient dose rates and, hence, in very significant dose savings for subsequent decommissioning activities. Additionally, dismantlement operations of large components are considerably simplified and can be performed under conditions that wouldn't have been possible before. The project specific objectives and challenges, the technologies employed, and the results obtained are presented and commented here. (authors)

  20. Shutdown and degradation: Optimization of thermal cutting processes for the dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Schultz, H.; Hammer, G.; Hampe, A.; Homburg, A.

    1996-01-01

    Cutting processes are required for the dismantling of nuclear facilities which emit only a minimum of contaminated material in the form of shavings, sparks, dust, steam concentrate etc. and equipment which is easy to handle and can be remote controlled. A check of the usual mechanical, thermal and thermo-mechanical cutting procedures showed to what varying extent they are suitable for these tasks. Also the laser beam cutting was able to reduce the material discharge by optimal joints. For the investigation, the plasma cutting and the laser beam cutting were used with the aim of reducing considerably the material discharge by changing the adjust and device setting data for theses cases. The adapting of the speed and the amounts of gas turned out to be effective measures in reducing discharge. Adhesion of metal mass and slag in the joint edge could be achieved with aggressive bearth formation. The expectations made of the project could be fulfilled and process parameters for a pollutant optimised cutting determined. (orig.) [de

  1. EL-3 dismantling of an experimental reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The EL3 experimental reactor has been definitively stopped in march 1979. Its decommissioning has been pronounced in the end of 1982. This article is consecrated at decontamination and dismantling works necessited by its passage at the dismantling level 2 [fr

  2. Decommissioning and back working of Greifswald nuclear power plant

    International Nuclear Information System (INIS)

    Rittscher, D.; Leushacke, D.F.; Meyer, R.

    1998-01-01

    At Nuclear Power Plant Greifswald, the Energiewerke Nord are carrying out the presently world's largest decommissioning project. This requires the gathering up of experience from the operation of the nuclear power plants at Greifswald, the decommissioning of other nuclear power plants, waste management, project management and licensing procedures for the decommissioning of nuclear power plants. That confirmed that the back working of nuclear plants is not a technical problem but a challenge for project management and logistics. It shows that the dismantling and disposal of nuclear plants is an ordinary process in our economic life. (orig.) [de

  3. Dismantling large components at the Jose-Cabrera NPP (CNJC) in Spain

    International Nuclear Information System (INIS)

    Santiago, Juan Luis

    2012-01-01

    Located in central Spain, near Madrid, the Jose-Cabrera NPP (also known as Zorita) is the first PWR to be dismantled in Spain. The unit is a one-loop Westinghouse PWR, with a capacity of 150 MW. The plant was shut down in 1996 and ENRESA (Empresa Nacional de Residuos Radioactivos) has decided its prompt decommissioning, starting in 2010. In preparation for decommissioning, a full system decontamination (FSD) of the whole reactor cooling system (including the reactor vessel in the flow path) was carried out in 2006-7. The large components to be dismantled include: the reactor pressure vessel (RPV) and the internals; the vessel head; the SG; the pressurizer and the surge line; the reactor coolant pump, and the primary loop piping The objective of the project is not only to ensure the safe and efficient dismantling of those large components, but also to gain experience and to learn lessons to be applied during the future decommissioning and dismantling of the remaining six operating PWRs in Spain, whose operational lives are currently planned to end between 2021 and 2028. ENRESA has defined a waste-management policy for decommissioning activities, which includes Waste-management routes and optimisation. A case study describes the results obtained by ENRESA in the specific case of CNJC large components (including the RPV) dismantling project: Removal and conditioning of large components as a single piece is not considered a viable option. Segmentation therefore is required and 2 options have been analysed: large pieces for disposal in a large container and small pieces for disposal in approved concrete packages (CE-2a and the smaller CE-2b). The use of the CE-2b package is a feasible option and is easy to implement as a logical extension from the CE-2a. The use of the CE-2b package results in an important reduction in the total volume of final waste packages and does not require, in itself, any changes in the current waste handling and kinematics. The large size

  4. BNFL nuclear decommissioning liabilities management program

    International Nuclear Information System (INIS)

    Colquhoun, A.P.

    1995-01-01

    The objective of this paper is to describe BNFL's policy and strategy for decommissioning and also to summarize the overall scope of nuclear liabilities in the wider field of waste retrieval and storage, as well as the dismantling and demolition aspects of decommissioning. BNFL's recently established organisational arrangements for discharging all types of these liabilities are explained, together with a review of practical progress in dealing with them. Organisational changes in recent years have amalgamated decommissioning work with operations covering waste storage and retrieval operations. A strategy of minimising residual activity in shutdown plants is pursued, followed by dismantling and demolition on appropriate time scales to minimise risk and cost. Since April 1995, a new BNFL subsidiary, Nuclear Liabilities Management Company Limited has taken responsibility for discharge of BNFL's Waste Retrieval and Decommissioning liabilities on all BNFL sites. NLM has the objectives of optimal and lowest cost management of liabilities and much clearer segregation of physical operations from project specification and planning. The Ministry of Defense (MoD) policy, strategy, work programmes and progress for the Atomic Weapons Establishment (AWE) are also outlined. MoD/AEA has established an equivalent strategy for dealing with its liabilities. (J.S.). 5 refs., 2 figs., 4 appends

  5. Public inquiry related to the request by EDF of a definitive stopping and complete dismantling of the hardware storage installation of the Monts d'Arree nuclear power plant (INB n.162). Opinion and conclusions of the inquiry commission

    International Nuclear Information System (INIS)

    2010-03-01

    After a recall of the project of stopping and dismantling of the hardware storage installation (INB n.162) which had been created after the stopping and dismantling of the Monts d'Arree heavy water nuclear reactor (INB n.28), this report analyzes the results of the public inquiry, and highlights the arguments of those in favour of this project and those opposed to it. Then, it states the Inquiry Commission's opinion which addresses the request for a national public debate, the project justification, the inquiry file, the site radiological status, the site radiological control during works, the impacts of dismantling, the various risks (for the population and the workers, in terms of fire risks), the issue of radioactive wastes, economic aspects (costs, jobs, local economy, tourism and site image), and site reconversion

  6. Decree no 2007-1557 from November 2, 2007, relative to basic nuclear facilities and to the nuclear safety control of nuclear materials transport

    International Nuclear Information System (INIS)

    2007-11-01

    This decree concerns the enforcement of articles 5, 17 and 36 of the law 2006-686 from June 13, 2006, relative to the transparency and safety in the nuclear domain. A consultative commission of basic nuclear facilities is established. The decree presents the general dispositions relative to basic nuclear facilities, the dispositions relative to their creation and operation, to their shutdown and dismantling. It precises the dispositions in the domain of public utility services, administrative procedures and sanctions. It stipulates also the particular dispositions relative to other facilities located in the vicinity of nuclear facilities, relative to the use of pressure systems, and relative to the transport of radioactive materials. (J.S.)

  7. Pt. 1: Decommissioning of nuclear facilities. Pt. 2: Methods of decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Steinkilberg, W.

    1982-01-01

    In the present paper the different steps of dismantlement of nuclear facilities are dealt with. First the planning principles for decomminconing are discussed and then the planning of the reactorblock dismantlement in the FR2 research reactor is described. (RW)

  8. Vandellos 1 NPP. Dismantling at the level 1

    International Nuclear Information System (INIS)

    Pla, E.; Perez Pallares, J.

    1998-01-01

    Because of the fire in a main turbogenerator in October 1989, the Spanish Ministry of Industry ordered the definitive shutdown of Vandellos 1 NPP. The tasks allowed to the owner in the Ministerial Order were: the reactor defueling, the operation radwaste conditioning. The size of the reactor core needed to prepare an adequate defueling plan in order to prevent the potential reactivity oscillations and ensure the refrigeration of the nuclear fuel remaining in the core. The operation radwastes were divided in four types, according to the conditioning method: the low level solid radwaste, the irradiated metallic materials, the resins and zeolites used for decontaminating the liquid effluents, the radwaste stored in three graphite silos. The low level solid radwastes were stored during operation in drums of 220 litres. Recently they were compacted at a pressure of 40 tones before to be shipped to en ENRESA disposal. The irradiated metallic materials are, essentially, some parts of the refuelling machine. For deactivating the liquid effluents, Vandellos 1 used both organic resins and zeolites. The presence of zeolites helps the cementation, but its rough surface makes difficult to flow in the pipes of the cementation plant. 35 m 3 of this mixture have been conditioned into 670 drums of 220 liters. Vandellos 1 has three silos designed to store the graphite sleeves (reactor fuel support). In the silo number 1 some other radwastes were stored, as low level solid radwastes and two fuel elements. An international request for tenders was made in order to undertake the extraction and conditioning all these radwastes. The project was awarded to the Spanish/French Consortium EQUIPOS NUCLEARES-FRAMATOME. The achievement of the graphite silos project needed to design specific devices for separating irradiated wires from graphite, and searching and extracting two fuel elements jumbled up with the graphite sleeves. The spent fuel ponds have been emptied and its internals confined

  9. Report from the nuclear safety authority about the preparation of nuclear facilities to the year 2000 transition

    International Nuclear Information System (INIS)

    Lacoste, A.C.

    1999-01-01

    The French nuclear safety authority with the technical help of the Institute of Nuclear Protection and Safety (IPSN) started in 1998 an evaluation and control work of the measures taken by the different nuclear facility operators in anticipation of the year 2000 transition. This report makes a status of the state of preparation of nuclear facilities prior to the transition: 1 - The nuclear safety and the year 2000 transition (defense-in-depth approach, preventive actions); 2 - The action of the safety authority (demands addressed to the operators of nuclear facilities, technical evaluation and control of the methodology adopted by each operator, preparation of the safety authority to the transition, follow up of the international actions); 3 - Status of the preparation of the different operators: Electricite de France (EdF) (corrective actions, inventory and investigation of computer systems, results, corrections, preventive actions, defensive actions, synthesis), research centres, storage sites and shutdown reactors, waste storage centres of the ANDRA, CEA facilities, decommissioned or partially dismantled reactors, fuel cycle centres.. (J.S.)

  10. Project and feedback experience on nuclear facility decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L. [ENRESA (Spain); Benest, T.G. [United Kingdom Atomic Energy Authority, Windscale, Cumbria (United Kingdom); Tardy, F.; Lefevre, Ph. [Electricite de France (EDF/CIDEN), 69 - Villeurbanne (France); Willis, A. [VT Nuclear Services (United Kingdom); Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R. [Belgoprocess (Belgium); Jeanjacques, M. [CEA Saclay, 91 - Gif sur Yvette (France); Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C. [CEA Fontenay aux Roses, 92 (France); Fontana, Ph.; Fraize, G. [CEA Marcoule 30 (France); Seurat, Ph. [AREVA NC, 75 - Paris (France); Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2008-11-15

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  11. Project and feedback experience on nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Santiago, J.L.; Benest, T.G.; Tardy, F.; Lefevre, Ph.; Willis, A.; Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.; Jeanjacques, M.; Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C.; Fontana, Ph.; Fraize, G.; Seurat, Ph.; Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A.

    2008-01-01

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  12. Advanced Tele-operation

    International Nuclear Information System (INIS)

    Decreton, M.

    1998-01-01

    Maintenance, repair, and dismantling operations in nuclear facilities have to be performed remotely when high radiation doses exclude hands-on operation, but also to minimize contamination risks and occupational doses to the operators. Computer-aided and sensor-based tele-operation enhances safety, reliability, and performance by helping the operator in difficult tasks with poor remote environmental perception. The objectives of work in this domain are to increase the scientific knowledge of the studied phenomena, to improve the interpretation of data, to improve the piloting og experimental devices during irradiation, to reveal and to understand possible unexpected phenomena occurring during irradiation. This scientific report describes the achievements for 1997 in the area of radiation tolerance for of remote-sensing, optical fibres and optical fibre sensors

  13. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Miura, Noriaki [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Oowaki, Katsura; Kawaguchi, Isao [IHI Inspection and Instrumentation Co., Ltd, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  14. Decommissioning and dismantling of the Rossendorf Isotope Production

    International Nuclear Information System (INIS)

    Grahnert, Thomas

    2016-01-01

    After just over 40 years of production operation 2000, the operation of the Rossendorf Isotope Production was finally stopped. In the last few years of production already sections of the Rossendorf Isotope Production have been decommissioned. With the end of the isotope production the decommissioning of the entire complex started. In the two-part report, the decommissioning and dismantling of the Rossendorf Isotope production is presented. In part 1 (atw 5/2016) mainly the authorisation procedures and the realised decommissioning concept are presented. Part 2 (atw 6/2016) deals with special selected aspects of the implementation of the decommissioning programme.

  15. U P1, an example for advanced techniques applied to high level activity dismantling

    International Nuclear Information System (INIS)

    Michel-Noel, M.; Calixte, O.; Blanchard, S.; Bani, J.; Girones, P.; Moitrier, C.; Terry, G.; Bourdy, R.

    2014-01-01

    The U P1 plant on the CEA Marcoule site was dedicated to the processing of spend fuels from the G1, G2 and G3 plutonium-producing reactors. This plant represents 20.000 m 2 of workshops housing about 1000 hot cells. In 1998, a huge program for the dismantling and cleaning-up of the UP1 plant was launched. CEA has developed new techniques to face the complexity of the dismantling operations. These techniques include immersive virtual reality, laser cutting, a specific manipulator arm called MAESTRO and remote handling. (A.C.)

  16. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Dismantling of the reactor enclosure and the auxiliary buildings

    International Nuclear Information System (INIS)

    Seiki, Yoshihiro; Kubo, Takashi.

    1996-01-01

    As the final stage of the JPDR decommissioning program, after the major components were removed from each building of JPDR, the dismantling activities proceeded to the decontamination of contaminated concrete surface and the final radiation survey of buildings. These activities were conducted to verify the developed techniques and the detailed procedures for decontamination, and to allow unrestricted use of the JPDR buildings. Following the decontamination of buildings, the dismantling of each building was started. Before dismantling the buildings, the radiation control designations were changed. The buildings that contaminated embedded pipes were changed from first-class radiation controlled areas to second-class radiation controlled areas. On the other hand, the buildings that had no contaminated pipes were changed to uncontrolled areas. A first-class radiation controlled area allows the use of unsealed sources ; thus, radioactive contamination may exist. A second-class radiation controlled area is one where only sealed sources are allowed. Significant quantities of data and experience were obtained during these activities. The practical procedures for decontamination, the final survey of radioactivity, and the dismantling work of buildings were described in this report. (author)

  17. Radiation Hardened Telerobotic Dismantling System Development Final Report CRADA No. TC-1340-96

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lightman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This project was a collaborative effort between the University of California, LLNL and RedZone Robotics, Inc. for the development of radiation-hardened telerobotic dismantling systems for use in applications such as nuclear facility remediation, nuclear accident response, and Chemobyltype remediation. The project supported the design, development, fabrication and testing of a Ukrainian robotic systems. The project was completed on time and within budget. All deliverables were completed. The final project deliverables were consistent with the plans developed in the original project with the exception that the fabricated systems remained in Ukraine.

  18. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  19. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  20. Testing of different data libraries in activation analysis of concrete and graphite from nuclear installations

    International Nuclear Information System (INIS)

    Cometto, M.; Ancius, D.; Ridikas, D.

    2003-01-01

    With the aging of the nuclear park, decommissioning and dismantling of nuclear installations after their service life is becoming an important issue for the nuclear industry. The radiological characterisation of the equipment and structures present in the reactor and its environment is an essential stage in a decommissioning project since it permits to define and optimize the decommissioning strategy and the disassembling operations. In addition, correct activation estimates are essential for determining the quantity and the nature of the radiological waste generated during decommissioning. The adoption of efficient dismantling procedures and the optimization of the mass flow going to different waste repositories might reduce substantially the total cost of decommissioning. The present work has been done in the framework of the decommissioning and dismantling of the experimental reactor of the University of Strasbourg (RUS). A methodology that combines theoretical calculations and direct measurements has been developed for determining the long-term induced activity in the graphite, concrete and materials present in the reactor. After characterisation of the different elements present in the reactor, it is then possible to plan efficiently the disassembling and dismantling of the system and to optimise the mass flow going to different waste repositories. From a scientific perspective, the comparison of theoretical predictions with experimental values validates the approach and the methodology used in the present study and tests the consistency and the reliability of the nuclear data used for activation analysis. (orig.)

  1. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  2. Dismantling of Radium-226 Coal Level Gauges: Encountered Problems and How to Solve

    International Nuclear Information System (INIS)

    Punnachaiya, M.; Nuanjan, P.; Moombansao, K.; Sawangsri, T.; Pruantonsai, P.; Srichom, K.

    2006-01-01

    This paper describes the techniques for dismantling of disused-sealed Radium-226 (Ra-226) coal level gauges which the source specifications and documents were not available, including problems occurred during dismantling stage and the decision making in solving all those obstacles. The 2 mCi (20 pieces), 6 mCi (20 pieces) and 6.6 mCi (30 pieces) of Ra-226 hemi-spherically-shaped with lead-filled coal level gauges were used in industrial applications for electric power generation. All sources needed to be dismantled for further conditioning as requested by the International Atomic Energy Agency (IAEA). One of the 2 mCi Ra-226 source was dismantled under the supervision of IAEA expert. Before conditioning period, each of the 6 mCi and 6.6 mCi sources were dismantled and inspected. It was found that coal level gauges had two different source types: the sealed cylindrical source (diameter 2 cm x 2 cm length) locked with spring in lead housing for 2 mCi and 6.6 mCi; while the 6 mCi was an embedded capsule inside source holder stud assembly in lead-filled housing. Dismantling Ra-226 coal level gauges comprised of 6 operational steps: confirmation of the surface dose rate on each source activity, calculation of working time within the effective occupational dose limit, cutting the weld of lead container by electrical blade, confirmation of the Ra-226 embedded capsule size using radiation scanning technique and gamma radiography, automatic sawing of the source holder stud assembly, and transferring the source to store in lead safe box. The embedded length of 6 mCi Ra-226 capsule in its diameter 2 cm x 14.7 cm length stud assembly was identified, the results from scanning technique and radiographic film revealed the embedded source length of about 2 cm, therefore all the 6 mCi sources were safely cut at 3 cm using the automatic saw. Another occurring problem was one of the 6.6 mCi spring type source stuck inside its housing because the spring was deformed and there was

  3. Green light from the government to boost nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    The British government backs the project of building about 10 new nuclear power plants. The main reason is that renewable energies appear to be insufficiently advanced, in technical terms, to rely solely on them for the production of electricity. The British government has warned that the operators will have to pay entirely the dismantlement costs of these new nuclear plants and a fair part of the cost of the management of radioactive wastes they generate. (A.C.)

  4. The brief introduction to decommissioning of nuclear reactor projects

    International Nuclear Information System (INIS)

    Zhao Shixin

    1991-01-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste

  5. The brief introduction to decommissioning of nuclear reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Shixin, Zhao [Beijing Inst. of Nuclear Engineering (China)

    1991-08-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste.

  6. Nuclear nonproliferation

    International Nuclear Information System (INIS)

    Neubert, M.

    1992-01-01

    The following motion was put before the United Kingdom House of Commons on 3rd February 1992 and agreed; that this House, recognising the potential dangers of the rapidly changing world order, welcomes the recent proposals for substantial reductions in nuclear weaponry, the growing support for the non-proliferation treaty and progress in the implementation of the United Nations Security Council Resolutions concerning the dismantling of Iraqi nuclear, chemical and biological capabilities; urges the Government to play their full part in helping the relevant authorities in the Commonwealth of Independent States to dismantle their nuclear devices, to safeguard their nuclear components and to discourage the proliferation of nuclear expertise; and believes it is of the first importance that Britain retains an effective and credible minimum nuclear deterrent as security in a world where there remain many sources of instability. The record of arguments for and against the motion in the debate is presented. (author)

  7. Dismantling method for reactor shielding wall and device therefor

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A ring member having an outer diameter slightly smaller than an inner diameter of a reactor shielding wall to be dismantled is lowered in the inside of the reactor shielding wall while keeping a horizontal posture. A cutting device is disposed at the lower peripheral edge of the ring member. The cutting device can move along the peripheral edge of the circular shape of the ring member. The ring member is urged against the inner surface of the reactor shielding wall by using an urging member to immobilize the ring member. Then, the cutting device is operated to cut the reactor shielding wall into a plurality of ring-like blocks at a plurality of inner horizontal ribs or block connection ribs. Then, the blocks of the cut reactor shielding wall are supported by the ring member, and transported out of the reactor container by a lift. The cut blocks transported to the outside are finely dismantled for every block in a closed chamber. (I.N.)

  8. Implementing robotics in the Department of Energy Dismantlement Program

    International Nuclear Information System (INIS)

    Jones, A.T.

    1997-01-01

    Since the end of the cold war, as our nuclear stockpile has decreased, the Department of Energy (DOE) has been working rapidly to safely dismantle weapons returned by the military. In order to be retired, weapons must be returned to the Pantex Plant in Amarillo, Texas. There they are reduced to their component parts. Although many of these parts are not hazardous, some, including certain explosive assemblies and radioactive materials, are sufficiently hazardous so that special handling systems are necessary. This paper will describe several of these systems developed by Sandia for Pantex and their technical basis

  9. Nuclear energy. First experiences with decommissioning in Germany

    International Nuclear Information System (INIS)

    Sokoll, Joerg

    2015-01-01

    After the Fukushima disaster in 2011 the German parliament changed the national atomic energy law by way of its thirteenth amendment. In contrast to the initial ''nuclear phaseout'' the new phaseout of nuclear energy foresees a large number of decommissionings which will occur in part successively and in part simultaneously and will extend over a period of eleven years. Eight generating units were already decommissioned in 2011 or have not been ramped up again since then. By 2020 the last units will have been decommissioned and the phaseout of nuclear energy will have been completed, at least in terms of power plant operation. However the subsequent dismantling operations will keep German operators busy for decades to come. This article reports on first practical experiences in decommissioning.

  10. A treaty more alarming than efficient. The dismantled warheads will not be destroyed. Danger; Un traite plus inquietant qu'efficace. Les ogives demantelees ne seront pas detruites. Risque

    Energy Technology Data Exchange (ETDEWEB)

    Riche, P.; Despic-Popovic, H.; Nougayrede, N

    2002-07-01

    This political analysis presents the new treaty of nuclear weapons dismantling between Russia and Usa. In fact the warheads will not be completely dismantling but only stocked, leading to a possible recovery by terrorists. It underlines the real interests of this agreement which are more economic than peaceful. (A.L.B.)

  11. Expanding to teleoperation of a tight modular workshop for dismantling radioactive components

    International Nuclear Information System (INIS)

    Gasc, B.

    1990-01-01

    The CEA (French Nuclear Energy Commission) in connection with TECHNICATOME developed a tight modular workshop for the dismantling of AT1 plant facilities in LA HAGUE. This workshop constructed of reusable stainless steel panels assembled by bolting provides a tight and decontaminable working zone compatible with any building configuration. This being the case, the operators bearing ventilated suits may work under the best safety conditions on alpha-contaminated materials. For the purpose of expanding the working capacities of this workshop it was decided to develop special components for teleoperation from the outside as in a conventional cell. To meet this objective which is within the scope of the contract signed with the CEC, the following components were developed and constructed: - manipulator holder panel, - swivelling hatch panel, - wall equipment sealed transfer device and, - modular biological protection. The design, construction and tests of these new components led to their qualification and further incorporation in the list of components of the modular workshop liable to be used for teleoperation procedures

  12. Issues on a tritium measurement system's qualification on a dismantling site

    Energy Technology Data Exchange (ETDEWEB)

    Pigeon, Benoit; Met, Frederic [Waste Treatment and Nuclear Safety Service - SASN, Waste and Measurement Laboratory - LDM, CEA/SASN/LDM, DAM, DIF, Bruyeres Le Chatel, F-91297 Arpajon (France)

    2015-07-01

    In order to choose the suitable outlet, final disposal of radioactive package requires good knowledge of radiological characteristics of the waste. As part of a nuclear facility's dismantling within tritium proceeds, {sup 3}H contamination is evaluated by using wipe tests which are measured by liquid scintillation. The industrialist's choice is a triple coincidence to double coincidence ratio (TDCR) method with a dry counting protocol. The initial protocol had been defined to reduce the quantity of radioactive liquid waste and to perform an automatic quenching correction. A based on TDCR method liquid scintillation analyser was installed on the decommissioning site. It had had to be used by operator non specialized in metrology, This poster presents the laboratory's feedback on the use of the TDCR method on a site: - problems encountered about protocol on a decommissioning site - protocol adjustments and their consequences. (authors)

  13. Environmental Assessment for decontamination and dismantlement, Pinellas Plant

    International Nuclear Information System (INIS)

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-1092) of the proposed decontamination and dismantlement of the Pinellas Plant in Largo, Florida. Under the Decontamination and Dismantlement EA, the DOE proposes to clean up facilities, structures, and utilities; dismantle specific structures; and mitigate or eliminate any environmental impacts associated with the cleanup, dismantlement, and related activities. Related activities include utilization of specific areas by new tenants prior to full-scale cleanup. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  14. Decontamination of the HFR dismantling cell

    International Nuclear Information System (INIS)

    Cloes, K.; Husmann, K.; Hardt, P. von der.

    1976-05-01

    The Commission of the European Communities operates in the Petten Establishment of the Joint Research Centre (EURATOM), a 45 MW light-water cooled materials testing reactor, the HFR. Inside the reactor containment building, on top of a side wing of the main pool, a hot cell had been constructed for the dismantling, of irradiated equipment, and brought into active service in July 1966. Early in 1973, the cell was contaminated by 0.1 to 1 Ci of Po 210 , originating from an irradiation capsule containing Bi impregnated graphite specimens. Due to the elevated radiotoxicity of this isotope, and to numerous potential ways of spreading out the contamination it was decided to stop routine operation of the cell until a satisfactory degree of decontamination had been reached. Two years have been spent for preparation of specialized equipment and thorough clean-up and overhaul work of the cell. It went back into normal operation on February 21st, 1975 and has since then been working very successfully

  15. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Equipment Dismantlement Technologies. Final Report January 1998

    International Nuclear Information System (INIS)

    Lagos, L.E.; Ebadian, M.A.

    1998-01-01

    During the decontamination and decommissioning (D and D) activities being conducted by the U.S. Department of Energy (DOE), approximately 550,000 metric tons of contaminated metal will be generated by the disposition of contaminated buildings. The majority of the structural steel is considered to be radiologically contaminated. The D and D activities require the treatment of the structural steel to reduce occupational and environmental radiological exposures during dismantlement. Treatment technologies may also be required for possible recycling. Many proven commercial treatment technologies are available. These treatment processes vary in aggressiveness, safety requirements, secondary waste generation, necessary capital, and operation and maintenance costs. Choosing the appropriate technology to meet the decontamination objectives for structural steel is a difficult process. A single information source comparing innovative and nuclear and non-nuclear technologies in the areas of safety, cost and effectiveness is not currently commercially available to perform a detailed analysis. This study presents comparable data related to operation and maintenance, cost, and health and safely aspects of three readily available technologies and one innovative technology for nuclear decontamination. The technologies include Advance Recyclable Media System (ARMStrademark), NELCO Porta Shot Blasttrademark (JHJ-2000), Pegasus Coating Removal System 7 (PCRS-7) and the innovative laser ablation technology called the Yag Erasertrademark

  16. The Grenoble CEA Center: dismantled and rehabilitated

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The denuclearization program of the CEA center in Grenoble was launched in 2001. It involves 6 nuclear facilities (3 research reactors: Melusine, Siloette, and Siloe, and 1 laboratory (LAMA) and 2 units for processing wastes). The dismantling works were finished at the end of 2012 and the 2013 program concerns: the demolition of the buildings homing Melusine and Siloe reactors, the final rehabilitation of the Siloe raft, and the final rehabilitation of the laboratory and of the waste processing units. The budget is 117*10 6 euros for Siloe, 28*10 6 euros for Melusine, 6*10 6 euros for Siloette, 70*10 6 euros for the LAMA, and 90*10 6 euros for the 2 waste processing units. (A.C.)

  17. Aspects of reactor dismantling planning following the safe entombment in the NPP Lingen (KWL); Aspekte der Abbauplanung nach dem Sicheren Einschluss im Kernkraftwerk Lingen (KWL)

    Energy Technology Data Exchange (ETDEWEB)

    Priesmeyer, U.; Rojahn, T.; Fries, B. [Kernkraftwerk Lingen GmbH (Germany)

    2009-07-01

    The NPP Lingen (KWL) was shut-down in 1977. Due to the fact that no final repository was available the safe entombment for 25 years was chosen following the decommissioning. The conventional plant components were dismantled and removed from the plant site. The licensing procedure for reactor dismantling with final disposal in Schacht Konrad has been started. The beginning of dismantling operation is scheduled for 2013. The authors describe the preparatory work, the boundary conditions for the dismantling, radiation protection considerations with respect to manual demolition work after the rather long decay time.

  18. The nuclear power cycle

    International Nuclear Information System (INIS)

    2004-01-01

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  19. EDF decommissioning programme a global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Grenouillet, J.-J.

    2002-01-01

    EDF has 9 NPPs permanently shutdown and under decommissioning. EDF considers that if the nuclear option is to remain open, it is necessary to deal with increasing public concerns for environmental and waste management issues. Therefore EDF has decided to achieve total dismantling of all shutdown reactor in the next 25 years. The Decommissioning Program has been developed including 2 stages of activities. The first stage consists of: 1) Final dismantling of Brennilis in 2015; 2) A dismantling demonstration of a PWR reactor building (Chooz A) before starting replacing the population of PWRs currently in operation; 3) Final dismantling of reactor containment of a GCR (Bugey 1) as a first of its kind. The second stage includes: 1)Dismantling of following 5 GCR (Saint Laurent A1 and A2, Chinon A1, A2 and A3); 2) Final dismantling of Chooz A and Bugey 1 in 2025. The successful implementation relies on the simplification of the regulatory process; availability of treatment, conditioning and disposal facilities and effective nuclear industry. The main issue is availability of time and waste solutions such as opening of a Very Low Waste disposal in 2003 (130 000 tons); opening of a new disposal for graphite and radiferous wastes (17 000 tons) in 2010 and opening in 2007-2008 of a centralized interim storage (BANEDA) facility for long-lived Medium Level Wastes (500 tons including filters, control rods etc)Three investigations are to be carried out for high level radioactive waste before 2006

  20. The installation and dismantling of electrolytic cells

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to construction of aluminium electrolytic cells, their installation and dismantling. Therefore, the general characteristic and classification of aluminium electrolytic cells was considered. The anode and cathode structure was studied. The lining of cathode casing, the process of collection of anode gases, electrolytic cell cover, and electrical insulation was studied as well. The installation and dismantling of aluminium electrolytic cells was described.

  1. Aspects related to the decommissioning of the nuclear power plants

    International Nuclear Information System (INIS)

    Goicea, Andrei; Andrei, Veronica

    2003-01-01

    All power plants, either coal, gas or nuclear, at the end of their life needs to be decommissioned and demolished and thus, to made the site available for other uses. The first generation nuclear power plants were designed for a life of about 30 years and some of them proved capable of continuing well beyond this term. Newer plants have been designed for a 40 to 60 years operating life. To date, other 90 commercial power reactors have been retired from operation. For nuclear power plants and nuclear facilities in general the decommissioning process consists of some or all of the following activities: the safe management of nuclear materials held in the facility, cleaning-up of radioactivity (decontamination), plant dismantling, progressive demolition of the plant and site remediation. Following the decommissioning, the regulatory controls covering facility end, partially or totally, and the safe site is released for appropriate alternative use. Cernavoda NPP is a young plant and it can benefit from the continuously developing experience of the decommissioning process at the international level. The current experience allows the most metallic parts of a nuclear power to be decontaminated and recycled and makes available proven techniques and equipment to dismantle nuclear facilities safely. As experience is gained, decommissioning costs for nuclear power plants, including disposal of associated wastes, are reducing and thus, contribute in a smaller fraction to the total cost of electricity generation. The new specific Romanian regulations establish a funding system for decommissioning and provisions for long-term radioactive waste management. In the near future a decommissioning plan will be made available for Cernavoda NPP. Since the plant has only 7 years operation, that plan can be improved in order to benefit from international experience that is growing. (authors)

  2. Challenges of Ignalina NPP Decommissioning - View of Lithuanian Operator

    International Nuclear Information System (INIS)

    Aksionov, P.

    2017-01-01

    The state enterprise Ignalina Nuclear Power Plant (INPP) operates 2 similar design units of RBMK-1500 water-cooled graphite-moderated channel-type power reactors (1500 MW electrical power). INPP is carrying out the decommissioning project of the 2 reactors which includes: -) the retrieval of the spent nuclear fuel from the power units and its transportation into the Interim Spent Fuel Storage Facility; -) equipment and building decontamination and dismantling; -) radioactive waste treatment and storage; and -) the operation of key systems to ensure nuclear, radiation and fire protection. Ignalina NPP decommissioning project is planned to be completed by 2038. The presentation will be focused on the ongoing decommissioning activities at Ignalina NPP. The overview of main aspects and challenges of INPP decommissioning will be provided

  3. Technical and economic aspects of nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Glauberman, H.; Manion, W.J.

    1977-01-01

    Nuclear power plants may be decommissioned by one of three primary methods - mothballing, entombing, or dismantling, or by using combinations such as mothballing or entombing for a period of time followed by dismantling. Mothballing or entombing both result in an end-product which requires surveillance and maintenance for a significant period to ensure protection of public health and safety. This paper discusses costs for each of the decommissioning methods, including factors that will influence the method selected as well as the total costs. Decommissioning costs have been estimated for an 1100-MW(e) light-water reactor within one year after shutdown following forty years of operation. The basic economic parameters for each decommissioning method were developed using unit cost factors based on known costs of previously decommissioned reactors. Decommissioning cost estimates range from less than four million dollars for mothballing to about forty million dollars for complete dismantling. Estimated cost of entombment is about ten million dollars. Subsequent annual cost of surveillance and maintenance for a reactor facility using the mothballing or entombment method could be as high as US $200,000. Although some tooling development will be needed for removing highly activated reactor vessel segments and internals, technology is currently available and has been demonstrated on prior decommissionings, e.g. the BONUS and HALLUM reactor entombments and the Elk River Reactor complete dismantling. Costs associated with decommissioning are significant; however, allowance for them either as a one-time construction period sinking fund, or annual depreciation type operating allowance, will have little effect on construction or on operating costs. (author)

  4. Process cells dismantling of EUREX pant: previous activities

    International Nuclear Information System (INIS)

    Gili, M.

    1998-01-01

    In the '98-'99 period some process cells of the EUREX pant will be dismantled, in order to place there the liquid wastes conditioning plant 'CORA'. This report resumes the previous activities (plant rinsing campaigns and inactive Cell 014 dismantling), run in the past three years and the drawn experience [it

  5. Information report published in application of article 146 of the Regulation by the Commission of information related to the technical and financial feasibility of the dismantling of basic nuclear installations on the behalf of the Commission for sustainable development and land planning. Nr 4428

    International Nuclear Information System (INIS)

    Aubert, Julien; Romagnan, Barbara

    2017-01-01

    Based on visits, on hearings and on debates within the Commission, this report addresses the issue of the technical and financial feasibility of the dismantling of nuclear installations. Indeed, it appears that the technical feasibility is not as mastered as supposed, and that dismantling works will last longer than foreseen, with therefore a higher cost than foreseen. Thus, existing and foreseen funding might be insufficient, and the global strategy for dismantling should be seriously reviewed regarding both technical and financial points of view. Before reaching this conclusion, the report presents the general context: definition of dismantling, perspective of development of dismantling activities, specific case of marine reactors. The authors then present and comment initial basic principles (extrapolation with the Dampierre model, immediate dismantling, soil decontamination) and parameters which could result in cost reduction. The second part of the report discusses the technical issue, first by recalling and commenting the difficulties faced by EDF to dismantle its first reactors (case of Brennilis, complete shift by EDF regarding its strategy for graphite-gas reactors, case of Superphenix), secondly by outlining that waste management largely determines dismantling (situation for the different types of wastes, problem of saturation of some centres, issue of a release threshold, case of wastes from graphite-gas reactors), and thirdly by discussing the issue of subcontracting. The third part addresses the financial issue and EDF funding by discussing assessment principles and method used by EDF, by showing that the result is probably an under-assessment (due to optimistic hypotheses, to many unfunded expenses, and to under-assessed dismantling costs). The authors then compare the French situation with other countries (Germany, USA, Belgium, OECD countries) to show that institutional comparisons are consistent with each other. They propose a more detailed

  6. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  7. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1979-06-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  8. FEBEX-DP. Dismantling the ''full-scale engineered barrier experiment'' after 18 years of operation at the Grimsel Test Site, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Florian; Gaus, Irina [Nagra, Wettingen (Switzerland)

    2015-07-01

    The FEBEX experiment at the Grimsel Test Site (GTS) consists of an in-situ full-scale engineered barrier system (EBS) test for the disposal of high-level waste (HLW). It is performed under natural conditions in crystalline rock in which the canisters are placed horizontally in drifts and are surrounded by a clay barrier constructed of highly compacted bentonite blocks. A partial dismantling and sampling of the EBS was carried out during 2002. Heating of the FEBEX started in 1997 and since then a constant temperature of 100 deg C has been maintained, while the bentonite buffer has been slowly hydrating in a natural way. A total of 632 sensors in the bentonite barrier, the rock mass, the heaters and the service zone record temperature, water saturation, humidity, total pressure, displacement, and water pressure. The hydration pattern is relatively symmetric, with no major differences along the axis. Although the host rock is characterized by heterogeneities with zones of higher permeability, the resaturation process is driven by the suction of the bentonite rather than by the availability of water in the rock, especially in the early phase. After 17 years, the water content in the buffer close to the heater still continues to increase slowly. The hydraulic pore pressures in the buffer and the geosphere have practically stabilized. The total pressure in general continues to increase in most points into the buffer, where in some parts pressures of over 6 MPa are registered. The long monitoring phase and the partial dismantling in 2002 indicate that the EBS has largely performed as expected and the major processes and couplings affecting the buffer saturation during the initial thermal period identified prior to the start of the experiment have been confirmed. A comprehensive report documents and reviews the state of the FEBEX (Lanyon and Gaus, 2013). After 18 years of operation the experiment will be excavated and dismantled in 2015. The main objectives of the FEBEX

  9. Radiological Characterisation for Decommissioning of Nuclear Installations - Final Report of the Task Group on Radiological Characterisation and Decommissioning (RCD) of the Working Party on Decommissioning and Dismantling (WPDD) - Final Report, September 2013

    International Nuclear Information System (INIS)

    Andrieu, Caroline; Olivier Dehaye, Catherine; Tardy, Frederic; Boisserie, Thierry; Desnoyers, Yvon; Thierfeldt, Stefan; Martin, Nieves; Henrik Efraimsson; Haakansson, Lars; Larsson, Arne; Dunlop, Alister A.; Jarman, Sean; Orr, Peter; Abu-Eid, Boby

    2013-01-01

    Radiological characterisation plays an important role in the decommissioning of nuclear facilities. It is the basis for radiation protection, identification of contamination, assessment of potential risks, cost estimation, planning and implementation of decommissioning and other matters. At all stages of a decommissioning project, adequate radiological characterisation is of crucial importance. The focus of this report is the task of radiological characterisation. The important role and the significance of radiological characterisation become clear when its various objectives are considered, including in particular: - determination of the type, isotopic composition and extent of contamination in structures, systems, components and environmental media; - identification of the nature and extent of remedial actions and decontamination; - supporting planning of decommissioning; - estimation of decommissioning costs. A large number of measurement techniques are available for successful application of radiological characterisation, allowing rapid and comprehensive determination of the activities of most relevant radionuclides. For other radionuclides that are hard to detect, scaling factors can be established that relate their activities to key nuclides. Radiological characterisation is relevant in all phases of the life cycle of a nuclear installation, albeit with different levels of detail and with differing objectives. Basically, the following characterisation phases can be distinguished: pre-operational characterisation; characterisation during operation; characterisation during the transition phase (after final shutdown before initiation of dismantling); characterisation during dismantling (including remediation and decontamination); and characterisation to support the final status survey for site release. The most comprehensive characterisation campaigns are usually carried out during the transition phase in preparation for implementation of dismantling activities

  10. Building dismantlement and site remediation at the Apollo Fuel Plant: When is technology the answer?

    International Nuclear Information System (INIS)

    Walton, L.

    1995-01-01

    The Apollo fuel plant was located in Pennsylvania on a site known to have been used continuously for stell production from before the Civil War until after World War II. Then the site became a nuclear fuel chemical processing plants. Finally it was used to convert uranium hexafluoride to various oxide fuel forms. After the fuel manufacturing operations were teminated, the processing equipment was partially decontaminated, removed, packaged and shipped to a licensed low-level radioactive waste burial site. The work was completed in 1984. In 1990 a detailed site characterization was initiated to establishe the extent of contamination and to plan the building dismantlement and soil remediation efforts. This article discusses the site characterization and remedial action at the site in the following subsections: characterization; criticality control; mobile containment; soil washing; in-process measurements; and the final outcome of the project

  11. Decommissioning of the Nuclear Reactors R2 and R2-0 at Studsvik, Sweden. General Data as called for under Article 37 of the Euratom Treaty

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-15

    This document describes the plans for decommissioning of the nuclear research and material test reactors R2 and R2-0, situated at the Studsvik site close to the city of Nykoeping, Sweden. The purpose of the document is to serve as information for the European Commission, and to fulfil the requirements of Article 37 of the Euratom Treaty. Studsvik is situated on the Baltic coast, about 20 km east of Nykoeping and 80 km southwest of Stockholm. The site comprises the reactors R2 and R2-0 and several facilities for material investigation and radioactive waste treatment and storage. The reactors were used for a number of different purposes from 1960 until June 2005, when they were shut down following a decision by the operator. Decommissioning of the reactor facility is planned to be completed in 2016 after dismantling and conditioning of radioactive parts and demolition of the facility. Solid and liquid radioactive wastes from the dismantling activities will be treated and stored on-site awaiting final disposal. The waste treatment facilities, which are situated in other buildings at the Studsvik site, are planned to continue operation during and after the decommissioning of the reactor facility. All nuclear fuel has been transferred to a separate storage facility and is being shipped to the US according to existing agreements. The objective of the planned dismantling activities is to achieve clearance of the facility to make it possible to either demolish the buildings or use them for other purposes. The operator has divided the planning for dismantling and demolition of the facility into three phases [1]: Dismantling 1, including primary system decontamination, dismantling of the reactors with systems in the reactor pool, draining, cleaning and temporary covering of the reactor pool. This phase has begun and is due to last till approximately December 2009. Dismantling 2, including dismantling of systems in the reactor facility, removal of equipment, radiological

  12. Decommissioning of the Nuclear Reactors R2 and R2-0 at Studsvik, Sweden. General Data as called for under Article 37 of the Euratom Treaty

    International Nuclear Information System (INIS)

    2009-01-01

    This document describes the plans for decommissioning of the nuclear research and material test reactors R2 and R2-0, situated at the Studsvik site close to the city of Nykoeping, Sweden. The purpose of the document is to serve as information for the European Commission, and to fulfil the requirements of Article 37 of the Euratom Treaty. Studsvik is situated on the Baltic coast, about 20 km east of Nykoeping and 80 km southwest of Stockholm. The site comprises the reactors R2 and R2-0 and several facilities for material investigation and radioactive waste treatment and storage. The reactors were used for a number of different purposes from 1960 until June 2005, when they were shut down following a decision by the operator. Decommissioning of the reactor facility is planned to be completed in 2016 after dismantling and conditioning of radioactive parts and demolition of the facility. Solid and liquid radioactive wastes from the dismantling activities will be treated and stored on-site awaiting final disposal. The waste treatment facilities, which are situated in other buildings at the Studsvik site, are planned to continue operation during and after the decommissioning of the reactor facility. All nuclear fuel has been transferred to a separate storage facility and is being shipped to the US according to existing agreements. The objective of the planned dismantling activities is to achieve clearance of the facility to make it possible to either demolish the buildings or use them for other purposes. The operator has divided the planning for dismantling and demolition of the facility into three phases [1]: Dismantling 1, including primary system decontamination, dismantling of the reactors with systems in the reactor pool, draining, cleaning and temporary covering of the reactor pool. This phase has begun and is due to last till approximately December 2009. Dismantling 2, including dismantling of systems in the reactor facility, removal of equipment, radiological

  13. Change-management. From commercial power operation to post power operation and decommissioning; Change-Management. Vom Leistungsbetrieb ueber den Nachbetrieb zum Rueckbau. T. 1. Stilllegung und Rueckbau von Reaktoren und Anlagen im Brennstoffkreislauf durch AREVA

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [AREVA GmbH, Offenbach am Main (Germany)

    2015-02-15

    Transition from power generation to decommissioning challenges utilities. Power generation is mainly characterized by a stable working environment and constant workload, decommissioning and dismantling, however, by transformation and change. Also, changing requirements for the workforce's skills challenge the organization and its senior management. Ensuring effective and efficient performance, while maintaining motivation of staff, requires adjustment of management processes as well as of operational organization and human resources management. AREVA has more than 20 years of experience in decommissioning of own nuclear fuel cycle plants in France, as well as of other large plants and power reactors in Germany, the United Kingdom and the US. Therefore, the group has developed and successfully implemented integrated change management processes. The implementation of well-established and proven methods, developed by the productive industry and adjusted to the nuclear regulatory requirements, significantly improves the performance and efficiency of means and methods in use. The AREVA Performance Improvement Process defines concrete approaches to identify and improve potential deficits of productivity in six main areas (decommissioning scenarios and stra-tegies, waste treatment and logistics, operations management, supply chain, regulatory monitoring and controls as well as dismantling operation). Nuclear plant and facility owners around the world benefit from AREVA experts well experienced in execution of large and complex decommissioning projects.

  14. Techniques for CAD reconstruction of 'as-built' environments and application to preparing for dismantling of plants

    International Nuclear Information System (INIS)

    Pot, J.; Levesque, P.

    1997-01-01

    Electricite de France is using CAD-generated numeric geometrical models to simulate maintenance operations and enable optimizing maintenance procedures. These models are also used to program the machines or robots for certain servicing procedures. They are used in the operator interfaces for robot control, and provide the operator with virtual cameras or enable generating specific information (such as virtual force feedback). Even more recently, CAD models have been integrated in what is known as 'virtual reality' software, giving the operators a sensation of 'immersion' in a virtual universe. Depending on the need and on the type of results expected from the simulations, one needs more or less precise models of the environment in which work will be performed. EDF is using several techniques to get 'as-built' models of the environments. This article describes the SOISIC system, which is a 3D laser sensor widely used for environment data acquisition, associated with 3Dipsos software, for CAD model reconstruction. These techniques, and the applications subsequently developed formaintenance applications, can be used in preparing and carrying out dismantling operations: 'as-built' CAD modeling of the installation can be used in the preparatory phase, providing plans, simulating the varioussteps, calculating waste volumes, helping in optimization of waste management, etc. These models can also be used during the actual dismantling process, to program the machines or robots used, or in the robot or machinesupervisory system. Some of the presented techniques have been used in a room in the Brennilis plant, which is currently being dismantled. (orig.)

  15. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.; Gassman, L.D.

    1978-04-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations--management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of ''play-scripts'' in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  16. Reducing nuclear danger through intergovernmental technical exchanges on nuclear materials safety management

    International Nuclear Information System (INIS)

    Jardine, L.J.; Peddicord, K.L.; Witmer, F.E.; Krumpe, P.F.; Lazarev, L.; Moshkov, M.

    1997-01-01

    The United States and Russia are dismantling nuclear weapons and generating hundreds of tons of excess plutonium and high enriched uranium fissile nuclear materials that require disposition. The U.S. Department of Energy and Russian Minatom organizations.are planning and implementing safe, secure storage and disposition operations for these materials in numerous facilities. This provides a new opportunity for technical exchanges between Russian and Western scientists that can establish an improved and sustained common safety culture for handling these materials. An initiative that develops and uses personal relationships and joint projects among Russian and Western participants involved in fissile nuclear materials safety management contributes to improving nuclear materials nonproliferation and to making a safer world. Technical exchanges and workshops are being used to systematically identify opportunities in the nuclear fissile materials facilities to improve and ensure the safety of workers, the public, and the environment

  17. Study into the applicabilities of lasers for the dismantling of decommissioned nuclear power plant

    International Nuclear Information System (INIS)

    Haferkamp, H.; Bach, F.W.; Vinke, T.; Kinzel, A.; Mack, N.; Kuboschek, M.; Grobe, K.

    1989-01-01

    The project was intended to screen current laser technology for potential applications of laser beams in the dismantling of decommissioned nuclear power plant. As with CO 2 , Nd-YAG, or excimer lasers, developments clearly proceed towards higher output power. The market survey shows the CO 2 -laser to be the most efficient at present, with a great number of laser units available on the market in the range up to 5 kW, and some in the range up to 15 kW. The CO 2 -laser has exclusively been used so far for cutting work in steel plates thicker than 10 mm. Characteristic conditions of application include the high output power of more than 2 kW, long beam lengths, oxygen supply at strongly increased working pressure, sometimes from external sources. The maximum cutting work achieved in the laboratory was 110 mm in structural steel, 90 mm in austenitic steel, and 160 mm in concrete, all under conditions of easy access to the material. It remains to be examined whether steel cutting work at constrained positions will allow separation of wall thicknesses of more than 10 mm. Laser beam cutting under water is feasible in principle but has not been much studied yet. There also are only few sampling results of measurements of dust and aerosol quantities resulting from laser beam cutting work. (orig.) [de

  18. Multiparameter optimisation of dismantling activities and waste management at a research centre

    International Nuclear Information System (INIS)

    Andres, Roger

    2001-01-01

    Full text: The Paul Scherrer Institute (PSI) is a multi-disciplinary research centre for natural sciences and technology. The institute is active in solid-state physics, materials sciences, elementary particle physics, life sciences, nuclear and non-nuclear energy research, and energy-related ecology. PSI develops and operates complex research installations such as nuclear reactors and particle accelerators. These produce ionising radiation and major quantities of radioactive materials. The optimal handling of decommissioning and dismantling projects and radioactive waste treatment at PSI represents a complex management task, and is determined by many parameters that are only partially identical to those in the energy producing industry. Some of the major issues are addressed below. Management: The research community often requires rapid changes of experimental equipment. This necessitates that the four steps of decommissioning, removal, dismantling and conditioning of waste are spatially and temporally separated. The availability of a great scientific knowledge pool is instrumental for innovative solutions for the complex problems encountered. The accessibility of a modem hardware park (instruments, workshops etc.), sophisticated computer systems and modelling know how can facilitate the work considerably. The lack of a dedicated pool of decommissioning funds and the need for rapid response (see above) necessitate flexibility of the decommissioning crew and constant coordination and optimisation of the work packages with the institute's top management. The product of a research centre in general is not a tradable commodity and does not result in a direct return of money. Financial mechanisms such as the accumulation of funds for future liabilities are not an option. Since PSI - as probably most research institutes - is funded on a yearly basis, long term cost optimisations processes are in competition with legitimate short-term research needs. The benefits of

  19. Evaluation of decontamination during dismantling of plutonium-contaminated glove boxes

    International Nuclear Information System (INIS)

    Kinugasa, Manabu; Taguchi, Seigi; Ohzeki, Satoru; Inoue, Yoshiaki; Kashima, Sadamitsu

    1981-01-01

    The dismantling work of plutonium-contaminated glove boxes was carried out. These glove boxes had been used for the R and D of plutonium-uranium mixed oxide fuel for 15 years. The work was carried out in a pressure-controlled greenhouse, and the contamination of air in the greenhouse was monitored continuously. In order to reduce the contamination of air during dismantling, the decontamination and fixation of loose contaminants on the surfaces of glove boxes were very important. The correlation between decontamination and the contamination of air regarding dismantling is reported in this paper. The surface contamination density of the glove boxes was measured utilizing the smear method before and after the decontamination, and the decontamination effects were estimated. The contamination of air during dismantling was continuously measured with a plutonium dust monitor. It was found that loose contamination exponentially decreased by the decontamination process. When the so-called wet glove boxes, which contained wet recovery and waste disposal apparatus, were dismantled, the contamination of air did not exceed 500 (MPC) a. However, the contamination of air exceeded 500 (MPC) a several times in the present work of dismantling the so-called dry glove boxes which had been used for the fabrication of plutonium-uranium mixed oxide pellets. (Kato, T.)

  20. Development and evaluation of a dismantling planning support system based on augmented reality technology

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Oshita, Satoshi; Yan Weida; Shimoda, Hiroshi; Izumi, Masanori

    2011-01-01

    For this study, a Dismantling Planning Support System (DPSS) based on Augmented Reality technology was developed. Its effectiveness and applicability to a real working field were evaluated using a subjective experiment. The DPSS operators can simulate how to locate scaffolding and temporary enclosures (greenhouses) in a real dismantling field in order to decide their layout and to predict the amounts of necessary parts. An interview and questionnaire survey were conducted with Fugen Decommissioning Engineering Center (DEC) staff and a human interface expert, who used DPSS along with a scenario in which scaffolding and greenhouses were located in a turbine cooling water room of Fugen DEC. The experimental results show that the operation for locating the virtual scaffolding and greenhouses using marker boards is intuitive and comprehensive. However, additional research needs to be undertaken in order to improve the DPSS, particularly with respect to its graphical user interface. (author)

  1. Nuclear energy: a safe and environmentally sound energy?

    International Nuclear Information System (INIS)

    Perves, Jean-Pierre

    2014-01-01

    After having recalled some data regarding the impact on health of different sources of electricity production (coal, oil, nuclear) and air pollution, the author proposes an overview of the impact of nuclear energy on health and on the environment. As far as the impact on health is concerned, he briefly describes the impact of ionizing radiations and the associated cancer risk, how to protect oneself against radioactivity and ionizing radiations. He addresses how risks are managed in nuclear industrial installations: principles (prevention, control, and return on experience), defence in-depth (example of French nuclear plants). He addresses issues of protection of persons and of the environment in different cases: normal operating conditions, releases and wastes, transport of nuclear wastes and materials, dismantling operations. He comments the consequences and lessons learned from accidents (Three Mile Island, Chernobyl, Fukushima), and finally evokes the situation in France and the concerns about the Cigeo project

  2. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning; Zerlegungstechniken fuer Pu-kontaminierte Handschuhkaesten: Erfahrungsbericht nach einem Jahr Rueckbau

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Faber, P. [Siemens Power Generation, Decommissioning Projects, Hanau (Germany)

    2003-07-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  3. A study on the influence of the regulatory requirements of a nuclear facility during decommissioning activities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Park, Kook Nam; Hong, Yun Jeong; Park, Jang Jin; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The preliminary decommissioning plan should be written with various chapters such as a radiological characterization, a decommissioning strategy and methods, a design for decommissioning usability, a safety evaluation, decontamination and dismantling activities, radioactive waste management, an environmental effect evaluation, and fire protection. The process requirements of the decommissioning project and the technical requirements and technical criteria should comply with regulatory requirements when dismantling of a nuclear facility. The requirements related to safety in the dismantling of a nuclear facility refer to the IAEA safety serious. The present paper indicates that a decommissioning design and plan, dismantling activities, and a decommissioning project will be influenced by the decommissioning regulatory requirements when dismantling of a nuclear facility. We hereby paved the way to find the effect of the regulatory requirements on the decommissioning of a whole area from the decommissioning strategy to the radioactive waste treatment when dismantling a nuclear facility. The decommissioning requirements have a unique feature in terms of a horizontal relationship as well as a vertical relationship from the regulation requirements to the decommissioning technical requirements. The decommissioning requirements management will be conducted through research that can recognize a multiple relationship in the next stage.

  4. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  5. Management of wastes from dismantled nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The problems associated with the management of radioactive wastes encountered in the dismantling of a 1200MWe PWR reactor are considered. It is possible to extend all the conclusions reached in these studies to BWR's or other reactors of the same type using light water as a coolant and moderator. The studies performed established the specific characteristics of these wastes: a gamma activity due essentially to 60 Co (after some fifty years this radioisotope will have decayed sufficiently to enable it to be stored without shielding); the presence of 63 Ni and 59 Ni (these long half-life beta emitting radioisotopes need to be stored over a long or even indefinite period of time); contaminated components (60% of the overall wastes), the reselling of these components involving costly decontamination processes. Extensive studies have been conducted on the management and handling of these wastes: packaging, transport, processing, storage and a great many techniques have been developed. However, further developments in concentration methods (fusion, crushing, cryogenics etc) and the selection of storage sites for this type of waste are necessary. Depending on the solutions chosen, the global cost of the wastes coming from a 1200 MW PWR reactor can vary between 10 and 20 million BFR

  6. Study on applicability of evaluation model of manpower needs for dismantling of equipments in FUGEN-1. Dismantling process in 3rd/4th feedwater heater room

    International Nuclear Information System (INIS)

    Shibahara, Yuji; Izumi, Masanori; Nanko, Takashi; Tachibana, Mitsuo; Ishigami, Tsutomu

    2010-10-01

    Manpower needs for the dismantling process on the dismantling of equipments in FUGEN 3rd/4th feedwater heater room was calculated with the management data evaluation system (PRODIA Code), and it was inspected whether the conventional evaluation model had applicability for FUGEN or not. It was confirmed that the conventional evaluation model for feedwater heater had no applicability. In comparison of the calculated value with the actual data, we found two difference: 1) the calculated value were significantly larger than the actual data, 2) the actual data for the dismantling of 3rd feedwater heater was twice larger than that of 4th feedwater heater, though these equipments were almost same weight. It was found that these were brought 1) by the difference in the work descriptions of dismantling between JPDR and FUGEN, and 2) by that in the cutting number between 3rd feedwater heater and 4th one. The manpower needs for the dismantling of both feedwater heaters were calculated with a new calculation equation reflecting the descriptions of dismantling, and it was found that these results showed the good agreement with the actual data. (author)

  7. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    International Nuclear Information System (INIS)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-01

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample

  8. The KWS training power plant Zwentendorf. Optimal conditions for practical training in the sectors of maintenance and dismantling of nuclear power plants; Das KWS-Schulungskraftwerk Zwentendorf. Die ideale Voraussetzung fuer praktische Schulungen in den Bereichen Instandhaltung und Rueckbau von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Maassen, Herbert [KRAFTWERKSSCHULE E.V., Essen (Germany). Weiterbildung Instandhaltung fuer konventionelle-/kerntechnische Anlagen und erneuerbare Energien

    2014-06-15

    In consequence of several years of interbranch staff reduction, started middle of the 1990th, at producers of power plant installation engineering, at plant service companies as well as at the operators of power plants and nuclear power plants themselves, an area-wide decline in know-how took place, which put the safe performance of maintenance activities in nuclear power plants more and more into question. The search for adequate training possibilities to cover these deficits lead to the reorganization of the nuclear power plant Zwentendorf at the year 2002, which was changed into a training facility for maintenance trainings, particularly for the sectors of reactor service, decommissioning and dismantling of nuclear power plants and other types of power plant specific training measures. For this purpose Zwentendorf was upgraded and transformed within a long-time process, and its combination may be considered as unique throughout the world. The Kraftwerksschule e.V. (KWS) owns the exclusive rights for the performance of training measures at Zwentendorf. During the last 10 years the KWS has made almost all sectors of this nuclear power plant accessible for trainings and inspections and offers a large training program. It is the aim of the training measures to ensure the operational reliability of the mechanical and installation engineering of nuclear power plants as well as fossil fired power plants in the long term through optimized maintenance planning and performance and therefore to operate the plants safely. Because of the direct practical reference to the original mechanical and installation engineering in the real atmosphere of a power plant, the nuclear power plant of Zwentendorf is highly suitable as a training centre for staff training in theory and practice. (orig.)

  9. Nuclear energy Division - 2011 Activity report

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the activity of the Nuclear Energy Department (DEN) within the CEA. It evokes its international relationship (participation to international initiatives, cooperation with different countries), describes the scientific activity within the DEN, presents the Advanced Material Program, and the activities undertaken in different fields: future nuclear industrial systems (fourth generation reactors, downstream part of the future fuel cycle, fundamental scientific and technological research), optimization of the present nuclear industrial activity (second and third generation reactors, nuclear security, upstream and downstream part of the present fuel cycle), tools for nuclear development (numerical simulation, Jules Horowitz reactor), cleaning up and nuclear dismantling (dismantling strategy, the Passage project in Grenoble, works in Marcoule, the Aladin project in Fontenay, waste and material flow management, nuclear support installations, transports). It finally addresses the specific activities of the Marcoule, Cadarache and Saclay centres

  10. Technical and economic aspects of nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Glauberman, H.; Manion, W.J.

    1977-01-01

    Nuclear power plants may be decommissioned by one of three primary methods, namely, mothballing, entombing, or dismantling or by using combinations such as mothballing or entombing for a period of time followed by dismantling. Mothballing or entombing both result in an end-product which require surveillance and maintenance for a significant period of time to ensure protection of public health and safety. This paper discusses costs for each of the decommissioning methods, including factors that will influence the method selected as well as the total costs. Decommissioning costs have been estimated for a 1100 MW(e) light water reactor within one year after shutdown following forty years of operation. The basic economic parameters for each decommissioning method were developed using unit cost factors based on known costs of previously decommissioned reactors. Decommissioning cost estimates range from less than four million dollars for mothballing to about forty million dollars for complete dismantling. Estimated cost of entombment is about ten million dollars. Subsequent annual cost of surveillance and maintenance for a reactor facility using the mothballing or entombment method could be as high as $200,000. Although some tooling development will be needed for the removal of the highly activated reactor vessel segments and internals, technology is currently available and has been demonstrated on prior decommissionings, e.g., the BONUS and HALLUM reactor entombments and the Elk River Reactor complete dismantling. Costs associated with decommissioning are significant; however, allowance for them either as a one-time construction period sinking fund or annual depreciation type operating allowance will have little impact on either construction or operating costs

  11. Managing for nuclear operational effectiveness

    International Nuclear Information System (INIS)

    Nevins, P.A.; Kasperski, D.C.

    1990-01-01

    The nuclear energy industry worldwide is changing, with significant implications for nuclear utility managers. While the UK and US nuclear industries have many differences, a number of the lessons learned in the US have direct applicability to the UK. Just as the physics behind nuclear power transcends political boundaries, so do many of the management techniques that are necessary to run an efficient and sound operation. The US nuclear industry is no longer a construction-based industry, as it has been for years. As nuclear construction slows or stops in many parts of the world and nuclear power comes under increased scrutiny everywhere, the industry is shifting away from a construction emphasis and towards an operations and maintenance emphasis. In North America more than one-half of nuclear executives believe that plant operating and maintenance costs, and not construction-related problems, are their number one concern. Furthermore, when asked what actions they would expect to take as a result of this concern, the majority indicated that the actions would be management-related for the most part, and included items such as: emphasize operating improvements, emphasize management improvements, upgrade outage management and maintenance management programs, increase senior management involvement and set management performance criteria. (author)

  12. The molten salt reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined and is found very suitable for the beneficial use of this fuel. MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus, MSRs are flexible while maintaining their economy. Furthermore, MSRs require only a minimum of special fuel preparation. They can tolerate denaturing and dilution of their fuel. The size of fuel shipments can be determined to optimize safety and security-all of which supports nonproliferation and resists diversion. In addition, MSRs have inherent safety features that make them acceptable and attractive. They can burn fissile material completely or can convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems in the deployment of nuclear power

  13. General data relating to the arrangements for disposal of radioactive waste required under Article 37 of the Euratom Treaty. Decommissioning of the nuclear facilities at Risoe National Laboratory, Denmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This document submitted by the Danish Government has been produced to satisfy the requirements of Article 37 of the Euratom Treaty as recommended by the Commission of the European Communities (Annex 2 of Commission Recommendation 1999/829/Euratom of 6 December 1999). The above Recommendations include the dismantling of nuclear reactors and reprocessing plants in the list of operations to which Article 37 applies. Under paragraph 5.1 of the Recommendation, a submission of General Data in respect of such dismantling operations is only necessary when the proposed authorised limits and other requirements are less restrictive than those in force when the plant was operational. However, in the case of Risoe National Laboratory, no previous submission of general data has been made under Article 37 and no Opinion given by the Commission on a plan for the disposal of radioactive waste. For this reason, general data are submitted in respect of the proposed dismantling operations, even though no change to a less restrictive authorisation is envisaged at this time. This submission is for the decommissioning of the nuclear facilities at Risoe National Laboratory, which are owned by the Danish Government and managed by a Board of Governors for the Ministry of Science, Technology and Innovation. (BA)

  14. NEA's analysis of the needs in innovation and research in the domain of dismantling

    International Nuclear Information System (INIS)

    Laurent, G.

    2014-01-01

    Today's approach of the dismantling of nuclear facilities is labour intensive and consequently very expensive. NEA's study suggests that research works should be done to find more efficient technologies for decontamination and dismantling. 5 lines of research have been identified by NEA. First, new technologies must be found to get a more accurate spatial distribution of contaminants. Secondly, the different cutting methods must be assessed in terms of efficiency, dosimetry and secondary waste generation. Thirdly, a better understanding of the chemical and physical processes that may be used for the decontamination of metals, concretes, underground water and soil. Fourthly, the management of radioactive waste implies to know the interaction between wastes and packages over a very long period. Fifthly, an accurate characterization of a complex site housing various contaminating sources and different hydro-geological conditions implies the development of 3-dimensional radiation transport codes and the use of innovative means like satellite monitoring. (A.C.)

  15. Disposition of Highly Enriched Uranium (HEU) and Pu from nuclear weapons

    International Nuclear Information System (INIS)

    Neff, T.L.

    1992-01-01

    Last year, as the Soviet Union began to crumble and the Bush-Gorbachev talks had advanced to consider the dismantling of actual warheads instead of mere delivery systems, Dr. Thomas L. Neff, a senior member of MIT's Center for International Studies, tinkered with the notion that one day soon the US could be buying Russian uranium from scrapped nuclear arms. He also considered the costly business of dismantlement and set to work on an ingenious proposal. The basic idea was simply to purchase the HEU from Russia using funds derived from savings in the US Department of Energy's enrichment enterprise. The proposal, now part of an umbrella agreement between the US and Russia announced in early September, promises large strategic benefits for the US in terms of both financing dismantlement (to the tune of $100 million annually), as well as political oversight for the operation itself. In the words of Dr. Neff, who made briefings to both governments on the proposal, open-quotes It's a budget-neutral, win-win solution.close quotes What follows is an illustrated, step-by-step analysis of the proposal, as well as a reprint of Dr. Neff's paper, Disposition of HEU and Pu from Nuclear Weapons, as presented to the Uranium Institute's annual symposium last month

  16. Some steps of the dismantling of the hot cell ATTILA

    International Nuclear Information System (INIS)

    Terrasson, L.

    1989-01-01

    This paper describes the dismantling, during 2 years and just finished now, of a large hot cell (11.6 m x 5.90 m x 5.80 m) at Fontenay-aux-Roses (France) characterised by an importand irradiation and contamination mean dose rate 7 rads/hr, in some places 20 rads/hr, coming at 98 % from Cesium 137 (beta decay radioisotope). Put into operation in March 1967, the Attila cell was used for spent fuel processing using halogenides [fr

  17. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    OpenAIRE

    Won-Jun Choi; Myung-Sub Roh; Chang-Lak Kim

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research...

  18. Shielded Cells D ampersand D and Dismantlement System Requirements

    International Nuclear Information System (INIS)

    Witherspoon, R.L.

    1995-01-01

    This document describes the basis for the development of the System for Highly Radioactive Equipment Dismantlement or SHRED. It is the result of a thorough investigation into current and past dismantlement practices at shielded cell facilities around the DOE complex. This information has been used to formulate the development requirements for the SHRED

  19. Cost-benefit analyses for decommissioning and dismantling of nuclear power stations

    International Nuclear Information System (INIS)

    Hock, R.

    1988-01-01

    According to ICRP provisions, radiation doses to the population are to be kept as low as possible, on the basis of a justifiable relationship between additional expense for dose reduction and the radiological benefit. The paper examines whether this optimisation principle requires maximum conceivable limits of personal doses as a result of materials recovery from dismantling ought to be reviewed, and whether clearance levels for materials to be recycled have to be reduced. The cost-benefit assessments presented for various options take into account the cost involved for processing and recycling methods as well as the social burden of dose commitments. A comparison in terms of radiological safety is presented for ultimate disposal of material, or meltdown of material subject to appropriate radiological measurement and surveillance. (DG) [de

  20. Development for recycle of dismantled metal wastes by decommissioning of NPP

    International Nuclear Information System (INIS)

    Asami, Tomohiro; Sato, Hiroshi; Hatakeyama, Mutsuo

    2007-01-01

    For recycle of dismantled metal wastes generated by the decommissioning of nuclear power plant, we examined a melting test for melting characterization of stainless steel scrap, designed the conceptual process to produce the recycle products, and developed a recycle cost evaluation code which is useful to make a rational planning for the waste management program (cost, determination of process, etc.) of these metal wastes. This report gives the summary of these development carried out from 2001 to 2005. This work was performed under the sponsorship of Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  1. Example of a quality control operation performed on a nuclear reactor waste package

    International Nuclear Information System (INIS)

    Nouguier, H.; Nomine, J.S.; Vaunois, P.

    1983-01-01

    The need has emerged to secure the possibility of the spot sampling and inspection of a package, in the production line or on its arrival at the disposal center. This external inspection (or superinspection) has a threefold objective: to check the conformity of the package and of all its components with the mechanical, chemical and radiochemical specifications; to ensure, by thorough inspection, that the product is similar to the product which was characterized and qualified, and which secured ANDRA's approval of the process; and, through the detection of any variations and discrepancies, to advise the process promoter and the research laboratories, so as to improve the process, the product and the specifications. This paper describes an operation of this type conducted in 1982 by ANDRA, with the help of the CEA's laboratories and technical units, on low and medium-level waste packages produced by an industrial installation in an EDF nuclear power plant. The following are described: dismantling and sampling methods implemented, means employed, and the specific characteristics tested and the first results obtained

  2. The Blue Lady Case and the International Issue of Ship Dismantling - Comment

    Directory of Open Access Journals (Sweden)

    Florent Pelsy

    2008-09-01

    Full Text Available This paper focuses on the decision of the Supreme Court of India to allow the dismantling of the Blue Lady (ex France in Alang. The first part underlines that the Supreme Court of India is prioritising the commercial interest of the dismantling companies over the social and environmental concerns of the workers and the communities living in Alang. It argues that such decision goes against its 2003 judgement on ship-dismantling. It then demonstrates that the Supreme Court of India is distorting the concept of sustainable development. The second part analyses the Blue Lady case from an international perspective since most of the ships that are dismantled in India come from developed countries. It provides an overview of the Basel Convention on ship dismantling issues and a study of the Clemenceau case before the French Conseil d'Etat. It then concludes that a better control of end-of-life ships in OECD countries and a new international convention on ship-dismantling would be necessary in order to prevent environmental and social disasters in Alang.

  3. Guides about nuclear energy in South Korea

    International Nuclear Information System (INIS)

    2004-03-01

    This document summarizes the main information on nuclear energy in South Korea: number of reactors in operation, type, date of commissioning, nuclear facilities under construction, nuclear share in power production, companies and organizations (Korea electric power company (KEPCO), Korea atomic energy institute (KAERI), Korea institute of nuclear safety (KINS), Korea nuclear energy foundation (KNEF), Korea hydro and nuclear power (KHNP), nuclear environment technology institute (NETEC), Korea basic science institute (KBSI)), nuclear fuel fabrication, research works on waste disposal, nuclear R and D in fission and fusion, safety of nuclear facilities, strategies under study (1000 MWe Korea standard nuclear power plant (KSNP), 1400 MWe advanced power reactor (APR), small power water cooled reactors (system-integrated modular advanced reactor (SMART) research program), development of fast reactors (Kalimer research program), development of the process of direct use of PWR fuel in Candu (DUPIC), use of reprocessing uranium, transmutation of trans-uranian and wastes (KOMAC program), first dismantling experience (Triga Mark II and III research reactors). (J.S.)

  4. Decommissioning of nuclear power plant

    International Nuclear Information System (INIS)

    Sato, Tadamichi

    2002-01-01

    On nuclear energy facilities, an abolished one is often difficult to reuse, and is difficult to subdivide because of its strong structure and its inclusion of many apparatus and constructions containing radioactive materials in them. And, it is required to consider radiation management under dismantling operation and radioactive wastes forming at its subdivision. Abolishment of nuclear power station is a measure carrying out subdivision removing of a facility ended its role to a condition unnecessary for its radiation administration, and is defined as all of measures to be done after unused condition before reaching green field condition. Here were described on basic principle on abolishment measure in Japan, processing and disposition of subdivided wastes, and system preparation. (G.K.)

  5. Nuclear reactors built, being built, or planned, 1988

    International Nuclear Information System (INIS)

    1989-08-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1988. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington Headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables. Section 2 includes nuclear reactors that are operating, being built, or planned. Section 3 includes reactors that have been shut down permanently or dismantled

  6. Days of dismantling activities of installations and rehabilitation of contaminated sites in France; Demantelement des installations et rehabilitation de sites contamines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The objective of these days, organized by the section environment of the French society of radiation protection, is to present a panorama of the activities of nuclear installations dismantling and contaminated sites rehabilitation in France, by leaning in the same time on practical cases and by stating the French rule and the national and international recommendations on the subject. These days have also for object to approach the stakes associated with the sectors of waste management and the materials generated by these activities and in a more general way, the stakes to come for the different actors of the dismantling and the rehabilitation. (N.C.)

  7. Method of dismantling cylindrical structure by cutting

    International Nuclear Information System (INIS)

    Harada, Minoru; Mitsuo, Kohei; Yokota, Isoya; Nakamura, Kenjiro.

    1989-01-01

    This invention concerns a method of cutting and removing cylindrical structures, for example, iron-reinforced concrete materials such as thermal shielding walls in BWR type power plants into block-like form. That is, in a method of cutting and removing the cylindrical structure from the side of the outer wall, the structural material is cut from above to below successively in the axial direction and the circumferential direction by means abrasive jet by remote operation and cut into blocks each of a predetermined size. The cut out blocks are successively taken out. Cutting of the material from above to below by remote operation and taking out of small blocks causes no hazards to human body. Upon practicing the present invention, it is preferred to use a processing device for slurry and exhaust gases for preventing scattering of activated dismantled pieces or powdery dusts. (K.M.)

  8. Removing of the fuel element storage basin by explosive technique in the course of decommissioning of the Nuclear research reactor FR 2 in the research center Karlsruhe. Permission and technical execution

    International Nuclear Information System (INIS)

    Jehle, P.; Freund, H.U.

    1999-01-01

    The fuel element storage basin was removed by explosive technique in the course of the decommissioning of the nuclear research reactor FR 2. This basin consisted of 6.800 tons of heavily reinforced concrete with 25 tons of stainless steel lining. The reactor building including residual radioactive inventory was constructionally connected to the basin and had to stay undamaged. For this reason and due to the fact that the storage basin as operational part of the nuclear facility was subject to the German nuclear law the dismantling had to follow stringent licensing and control requirements. Special restrictions concerned the tolerable reactor building vibrations and the direct blast loadings which could affect the structural integrity of the building enclosing the basin. The explosive dismantling operations which also included the final removal of the building foundation were successfully performed in 90 separate blasts employing 490 kg of commercial explosives. (orig.) [de

  9. Nuclear operations dictionary

    International Nuclear Information System (INIS)

    1990-01-01

    In less than fifty years, a sophisticated technical language has developed worldwide around broad-ranging operations in the field of nuclear technology. In South Africa the need to adapt this new technical language in an orderly and acceptable manner for common use was identified. The aim of this dictionary is to promote the use of correct nuclear technology in both English and Afrikaans, and to aid in the translation of nuclear terms from English into Afrikaans

  10. Nuclear operations dictionary

    International Nuclear Information System (INIS)

    1990-01-01

    In less than fifty years, a sophisticated technical language has developed worldwide around broad-ranging operations in the field of nuclear technology. In South Africa the need to adapt this new technical language in an orderly and acceptable manner for common use was identified. The aim of this dictionary is to promote the use of correct nuclear terminology in both Afrikaans and English, and to aid in the translation of nuclear terms from Afrikaans into English

  11. Radioactive waste management, decommissioning, spent fuel storage. V. 1. Waste management principles, decommissioning, dismantling, operations in hot environment

    International Nuclear Information System (INIS)

    1985-01-01

    This book deals mainly with decommissioning problems concerning more particularly dismantling and decontamination techniques, and radioactive waste processing. Radioactive waste management in France and the French regulation are tackled. Equipments developed for works in hostile environment are also presented [fr

  12. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  13. DETAILS OF OPERATIONS PERFORMED BY THE REMOTE CONTROL ROBOT (CONCEPT TO THE HORIZONTAL FUEL CHANNEL DURING DECOMMISSIONING PHASE OF NUCLEAR REACTOR CALANDRIA STRUCTURE. PART II: INSIDE OPERATIONS

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2017-05-01

    Full Text Available The authors contribution to this paper is to present a concept solution of a remote control robot (RCR used for decommissioning of the horizontal fuel channels pressure tube in the CANDU nuclear reactor. In this paper the authors highlight few details of geometry, operations, constraints by kinematics and dynamics of the robot movement inside of the reactor fuel channel. Inside operations performed has as the main steps of dismantling process the followings: unblock and extract the channel closure plug (from End Fitting - EF, unblock and extract the channel shield plug (from Lattice Tube - LT, cut the ends of the pressure tube, extract the pressure tube and cut it in small parts, sorting and storage extracted items in the safe robot container. All steps are performed in automatic mode. The remote control robot (RCR represents a safety system controlled by sensors and has the capability to analyze any error registered and decide next activities or abort the inside decommissioning procedure in case of any risk rise in order to ensure the environmental and workers protection.

  14. Nuclear operations summary Engineering organization for Plowshare nuclear operations

    Energy Technology Data Exchange (ETDEWEB)

    Broadman, Gene A [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    The availability of nuclear explosives for peaceful projects has given the engineer a new dimension in his thinking. He can now seek methods of adapting Plowshare to a variety of industrial applications. The full potential of the Plowshare Program can only be attained when industry begins to use nuclear explosives on a regular basis, for economically sound projects. It is the purpose of this paper to help the engineer familiarize himself with Plowshare technology to hasten the day when 'Plowsharee goes commercial'. An engineering project utilizing nuclear exposives ordinarily involves three main phases: Phase I (a) The theoretical and empirical analysis of effects. (b) Projected economic and/or scientific evaluation. (c) A safety analysis. Phase II (a) Field construction. (b) Safe detonation of the nuclear explosive. (c) Data acquisition. Phase III The evaluation and/or exploitation of the results. This paper will be restricted to Phase II, referred to collectively as the 'nuclear operation'.

  15. Plans for a reduction of the radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Dobschuetz, P. von; Herrmann, H.J.

    1977-01-01

    In order to reduce the radiation exposure of the personnel engaged in maintenance and repair jobs in future nuclear installations a study has been carried out to investigate whether planning new facilities on the basis of models could open up possibilities to improve the radiological protection of workers. It has been found that planning, construction, operation and dismantling of nuclear facilities can be carried out much more effectively on the basis of three-dimensional models than by mere two-dimensional drawings. However, it is necessary to align the sizes of the models and their details to the needs of nuclear technology. (orig.) [de

  16. Policies for closing down nuclear power plants. A Spanish review

    International Nuclear Information System (INIS)

    Ruiz del Olmo, G.A.

    2000-01-01

    A review of policies concerned with closing down the Spanish nuclear power plants is described, together with the role of Spanish Group of Municipalities affected by NPPs (AMAC) since its establishment in 1988. Currently there are 9 nuclear reactors operating in seven cities, contributing to the national network bu 39.3% of gross power generation, and one reactor dismantled after the accident in Vandellos in 1989. The main objectives of AMAC activity are concerned with security, economic development and transparency. It has an important role in improvement of the quality of life of the population in municipalities with operating NPPs. It is involved in solving the problems related to radioactive waste management and disposal

  17. G.D.F. Suez view on the nuclear energy production

    International Nuclear Information System (INIS)

    Rorive, P.

    2009-01-01

    G.D.F. Suez was a pioneer of nuclear energy in Europe. It masters competencies internationally recognized on any part of this sector of energy production ( engineering, services, exploitation, maintenance, nuclear fuels, radioactive waste management, dismantling). it has and exploits 7 units in Belgium, and have capabilities in French nuclear power plants of Chooz and Tricastin. G.D.F. Suez has today ambitious goals in terms of nuclear projects development: to own and operate nuclear power plants of third generation in 2020, to maintain in Europe the share of nuclear in a balanced energy mix and to develop out of Europe a significant capability on several key-markets. To reach these objectives, the group develops an active policy of human resources, research and development and communication in matter of nuclear energy. (N.C.)

  18. The operation of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  19. Evaluation of worker's dose on a virtual dismantling environment

    International Nuclear Information System (INIS)

    Park, Hee Seong; Kim, Sung Hyun; Park, Byung Suk; Yoon, Ji Sup

    2007-01-01

    The motivation of this study is to provide a basis for a minimization of worker's dose during dismantling activities. In the present study, we proposed methods for identifying an existence of radioactivity which is contained in the dismantling objects and for evaluating a worker's dose under a virtual dismantling environment. To evaluate a worker's external dose, the shape of the exposure room in the KRR 2(Korean Research Reactor TRIGA MARK III) by 3D CAD was created and the radiation dose surrounding the facility by using MCNP- 4C(Monte Carlo N-Particle-4C) was calculated. The radiation field of the exposure room was visualized three dimensionally by using the radiation dose that was obtained by the code

  20. Technical support for nuclear power operations

    International Nuclear Information System (INIS)

    1999-04-01

    This report prepared by the group of senior experts from nuclear operating organizations in Member states, addresses the problem of improving the operating performance of nuclear power plants. Safe and reliable operation is essential for strengthening the viability of nuclear power in the increasingly competitive market of electric power. Basic principles and requirements concerning technical procedures and developed practices are discussed. Report reflects the best current international practices and presents those management initiatives that go beyond the mandated regulatory compliance and could lead to enhancement od operational safety and improved plant performance. By correlating experiences and presenting collective effective practices it is meant to assist nuclear power plant managers in achieving improvement in operation through the contribution of effective technical support

  1. Decommissioning and dismantling of the reprocessing plant Karlsruhe

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    Reprocessing activities were discontinued in late 1990. The facility was drained and rinsed, and 80 m3 of HLWC have since been stored in special tanks, awaiting vitrification. Decommissioning work is scheduled to proceed in six phases. The reprocessing areas of the facility will be prepared for release from radiological control and dismantled in the first phase. The remaining facilities can be deregulated, and storage tanks dismantled, only after termination of phase 1. The goal of the following phase is clearance from radiological control of all controlled areas, and the last phase is to cover dismantling of all buildings and restoration of a green field site. The overall costs of these activities are estimated to amount to DM 1.657 million. The article explains the contents of the first permits for decommissioning as well as the documents prepared for planning of work and licence application. (orig./HP) [de

  2. The technological study on the decommissioning of nuclear facility, etc. in the Tokai Research Establishment

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Matsuo, Kiyoshi; Shiraishi, Kunio; Kato, Rokuro; Watabe, Kozou; Higashiyama, Yutaka; Nagane, Satoru

    2005-03-01

    Since JPDR is dismantled and is removed, in Tokai Research Establishment, Japan Atomic Energy Research Institute, the dismantling of nuclear facility which finished the mission, etc. is advanced. At present, nuclear facility as a dismantling object count the approximately 20 facilities, and decommissioning plan of these facilities becomes an important problem, when the decommissioning countermeasure is considered. However, decommissioning techniques in proportion to various nuclear facility, etc. are clearly, and it has not been determined. In this report, the technical consideration on decommissioning techniques of nuclear facility promoted on the basis of this experience in future, while until now decommissioning experience and technical knowledge are arranged, etc. was added in order to appropriately and surely carry out decommissioning techniques and legal procedures, etc. (author)

  3. Sixteen Years of International Co-operation. The OECD/NEA Co-operative Programme on Decommissioning

    International Nuclear Information System (INIS)

    Menon, S.; Valencia, L.

    2002-01-01

    The Co-operative Programme on Decommissioning under the administration of the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency (NEA) has recently completed sixteen years of operation. The Programme, which is essentially an information exchange programme between decommissioning projects, came into being in 1985. It has grown from an initial 10 decommissioning projects from 7 countries to 39 projects from 14 countries today. From purely information exchange to start with, the Programme has, in later years, been functioning as a voice for the collective expression of views of the implementers of nuclear decommissioning. During the first sixteen years of the operation of the Co-operative Programme, nuclear decommissioning has grown from local specialist activities within projects to a competitive commercial industry. By the dismantling and release from regulatory control of over a dozen diverse nuclear facilities, the Programme has been able to demonstrate in practice, that nuclear decommissioning can be performed safely both for the workers and the public, and that this can be done at reasonable costs in an environmentally friendly fashion. During the recent years, discussions and work within the Co-operative Programme, specially within some of the Task Groups, have had/are having effects and repercussions not just in the field of nuclear decommissioning, but can possibly affect activities and regulations in other industries. This paper describes how the Programme and its activities and procedures have evolved over the years and indicate the directions of developments in the organization and execution of decommissioning projects. Finally, it gives a brief overview of the achievements of the Cooperative Programme and visualizes future developments in the field of nuclear decommissioning

  4. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  5. The Community's research and development programme on decommissioning of nuclear installations: First annual progress report (year 1985)

    International Nuclear Information System (INIS)

    1986-01-01

    This is the first Annual Progress Report of the European Community's 1984-88 programme of research on the decommissioning of nuclear installations. It shows the status of implementation reached on 31 December 1985. The 1984-88 programme has the following contents: A. Research and development projects concerning the following subjects: Project No 1: Long-term integrity of building and systems; Project No 2: Decontamination for decommissioning purposes; Project No 3: Dismantling techniques; Project No 4: Treatment of specific waste materials: steel, concrete and graphite; Project No 5: Large containers for radioactive waste produced in the dismantling of nuclear installations; Project No 6: Estimation of the quantities of radioactive wastes arising from the decommissioning of nuclear installations in the Community; Project No 7: Influence of installation design features on decommissioning. B. Identification of guiding principles, namely: - certain guiding principles in the design and operation of nuclear installations with a view to simplifying their subsequent decommissioning, - guiding principles in the decommissioning of nuclear installations which could form the initial elements of a Community policy in this field. C. Testing of new techniques under real conditions, within the framework of large-scale decommissioning operations undertaken in Member States. This first progress report, covering the period of putting the programme into action, describes the work to be carried out under the 27 research contracts concluded, as well as initial work performed and first results obtained

  6. Radioactive waste: the poisoned legacy of the nuclear industry

    International Nuclear Information System (INIS)

    Rousselet, Y.

    2011-01-01

    The nuclear industry produces a huge amount of radioactive waste from one end to the other of the nuclear cycle: i.e. from mining uranium to uranium enrichment through reactor operating, waste reprocessing and dismantling nuclear power plants. Nuclear power is now being 'sold' to political leaders and citizens as an effective way to deal with climate change and ensure security of energy supplies. Nonetheless, nuclear energy is not a viable solution and is thus a major obstacle to the development of clean energy for the future. In addition to safety and security issues, the nuclear industry is, above all, faced with the huge problem of how to deal with the waste it produces and for which it has no solution. This ought to put a brake on the nuclear industry, but instead, against all expectations, its development continues to gather pace. (author)

  7. The development of automated fuel dismantling equipment for a future head-end plant

    International Nuclear Information System (INIS)

    Haberlin, M.M.

    1987-01-01

    For future reprocessing plants, practicable methods for dismantling fuel elements are being examined at Springfields Nuclear Power Development Laboratories which would meet the requirements of a high throughput facility. This paper contains the initial results of an experimental programme undertaken to develop and evaluate an automated high speed single/multiple pin extraction unit. Concomitant parts of the programme include the design and evaluation of single and multi-pin extraction chucks. Dummy fuel elements, a 325 pin gridded LMFBR assembly and a 17 x 17 pin gridded LWR assembly were used to assess process efficacy

  8. Dismantling method for reactor pressure vessel and system therefor

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Enomoto, Kunio; Kurosawa, Koichi; Saito, Hideyo.

    1994-01-01

    Upon dismantling of a reactor pressure vessel, a containment building made of concretes is disposed underground and a spent pressure vessel is contained therein, and incore structures are contained in the spent pressure vessel. Further, a plasma-welder and a pressing machine are disposed to a pool for provisionally placing reactor equipments in the reactor building for devoluming the incore structures by welding and compression. An overhead-running crane and rails therefor are disposed on the roof and the outer side of the reactor building for transporting the pressure vessel from the reactor building to the containment building. They may be contained in the containment building after incorporation of the incore structures into the pressure vessel at the outside of the reactor building. For the devoluming treatment, a combination of cutting, welding, pressing and the like are optically conducted. A nuclear power plant can be installed by using a newly manufactured nuclear reactor, with no requirement for a new site and it is unnecessary to provide a new radioactive waste containing facility. (N.H.)

  9. Regulations by the DFTCE concerning the Fund for the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    1985-02-01

    These Regulations were made by the Federal Ministry of Transport, Communications and Energy in implementation of the Ordinance of 5 December 1983 establishing a fund for the decommissioning of nuclear installations. They specify the way in which nuclear operators must contribute to the fund and the method for calculating the contributions. The costs of decommissioning also include dismantling and disposal of the resulting waste. The Regulations entered into force retroactively, on 1 January 1984, on the same date as the 1983 Ordinance. (NEA) [fr

  10. EUROSAFE forum 2013. Safe disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The proceedings of the EUROSAFE forum 2013 - safe disposal of nuclear waste include contributions to the following topics: Nuclear installation safety - assessment; nuclear installation safety - research; waste and decommissioning - dismantling; radiation protection, 3nvironment and emergency preparedness; security of nuclear installations and materials.

  11. Operational characteristics of nuclear power plants - modelling of operational safety

    International Nuclear Information System (INIS)

    Studovic, M.

    1984-01-01

    By operational experience of nuclear power plants and realize dlevel of availability of plant, systems and componenst reliabiliuty, operational safety and public protection, as a source on nature of distrurbances in power plant systems and lessons drawn by the TMI-2, in th epaper are discussed: examination of design safety for ultimate ensuring of safe operational conditions of the nuclear power plant; significance of the adequate action for keeping proess parameters in prescribed limits and reactor cooling rquirements; developed systems for measurements detection and monitoring all critical parameters in the nuclear steam supply system; contents of theoretical investigation and mathematical modeling of the physical phenomena and process in nuclear power plant system and components as software, supporting for ensuring of operational safety and new access in staff education process; program and progress of the investigation of some physical phenomena and mathematical modeling of nuclear plant transients, prepared at faculty of mechanical Engineering in Belgrade. (author)

  12. International co-operation for reactor safety: the World Association of Nuclear Operators

    International Nuclear Information System (INIS)

    Eckered, T.

    1989-01-01

    On 5 and 6 October 1987, senior representatives of most of the world's nuclear operators met in Paris with Lord Marshall of the UK Central Electricity Generating Board (CEGB) as Chairman. They resolved to strengthen the existing links and co-operation among nuclear operators by setting up the World Association of Nuclear Operators (Wano). The mission of the association is to be: 'to maximize the safety and reliability of the operation of nuclear power stations by exchanging information, encouraging comparison and stimulating emulation among nuclear power station operators.' The formation of Wano presents some information technology problems of a rather special kind that have to be solved before Wano can begin operation. The representatives at the Paris meeting therefore appointed a steering committee under Lord Marshall's chairmanship to formulate detailed proposals. The leaders of the world's nuclear operators will meet again in Moscow on 15-17 May 1989 in order to ratify the steering committee proposals and appoint the first Wano Board of Governors. A small interim secretariat is already working in London. (author)

  13. Safety aspects in decontamination operations: Lessons learned during the decommissioning of a small PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Ponnet, M.; Emond, O.

    2002-01-01

    Decontamination operations are generally executed during the decommissioning of nuclear installations for different objectives: decontamination of loops or large pieces to reduce the dose rate inside a contaminated plant or decontamination to minimize the amount of radioactive waste. These decontamination operations raise safety issues such as radiological exposure, classical safety, environmental releases, production and management of secondary waste, management of primary resources, etc. This paper presents the return of experience from decontamination operations performed during the dismantling of the BR3 PWR reactor. The safety issues are discussed for 3 types of decontamination operations: full system decontamination of the primary loop with a chemical process to reduce the dose rate by a factor of 10; thorough decontamination with an aggressive chemical process of dismantled pieces to reach the unconditional clearance values; and thorough decontamination processes with physical processes of metals and of concrete to reach the unconditional clearance values. For the protection of the workers, we must consider the ALARA aspects and the classical safety issues. During the progress of our dismantling operations, the dose rate issue was becoming less important but the classical safety issues were becoming preponderant due to the use of very aggressive techniques. For the protection of the environment, we must take all the precautions to avoid any leakages from the plant and we must use processes which minimize the use of toxic products and which minimize the production of secondary wastes. We therefore promote the use of regenerative processes. (author)

  14. Academic training for nuclear power plant operators

    International Nuclear Information System (INIS)

    Jones, D.W.

    1982-01-01

    In view of the increasing emphasis being placed upon academic training of nuclear power plant operators, it is important that institutions of higher education develop and implement programs which will meet the educational needs of operational personnel in the nuclear industry. Two primary objectives must be satisfied by these programs if they are to be effective in meeting the needs of the industry. One objective is for academic quality. The other primary objective is for programs to address the specialized needs of the nuclear plant operator and to be relevant to the operator's job. The Center for Nuclear Studies at Memphis State University, therefore, has developed a total program for these objectives, which delivers the programs, and/or appropriate parts thereto, at ten nuclear plant sites and with other plants in the planning stage. The Center for Nuclear Studies program leads to a Bachelor of Professional Studies degree in nuclear industrial operations, which is offered through the university college of Memphis State University

  15. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  16. Mobile worksystems for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Osborn, J.; Bares, L.C.; Thompson, B.R.

    1995-01-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes two technologies that are viable solutions for facility D ampersand D

  17. Mobile worksystems for decontamination and dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, J. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bares, L.C.; Thompson, B.R. [RedZone Robotics, Inc., Pittsburgh, PA (United States)

    1995-10-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D&D activities.

  18. KONTEC 2013. 11{sup th} international symposium on 'Conditioning of radioactive operational and decommissioning waste' and 11{sup th} BMBF status report on 'Decommissioning and demolition of nuclear facilities'; KONTEC 2013. 11. internationales Symposium 'Konditionierung radioaktiver Betriebs- und Stilllegungsabfaelle' einschliesslich 11. Statusbericht des BMBF 'Stilllegung und Rueckbau kerntechnischer Anlagen'. Veranstaltungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-06-15

    KONTEC 2013 was held in Dresden on 13 to 15 March 2013. The 11{sup th} event organized under this heading dealt with the subjects of 'Conditioning of Radioactive Operational and Decommissioning Waste' and 'Decommissioning and Demolition of Nuclear Facilities' including the R and D Status Report by the Federal Ministry of Education and Research (BMBF) on the same subject. The conference was attended by an international audience from 19 countries. The program included plenary sessions on these 4 key topics: - Disposal of Radioactive Residues from Nuclear Facilities' Operation and Decommissioning. - Decommissioning and Dismantling of Nuclear Facilities. - Facilities and Systems for the Conditioning of Operational and Decommissioning Wastes. - Transport, Interim and Final Storage of Non-heat Generating Wastes (i.e. Konrad). These sessions were accompanied by poster sessions and short presentations under the heading of 'Kontec Direct.' The best presentations of the categories Plenary Session Presentation, Poster Presentation and Kontec-Direct have been awarded. In detail, 'Dismantling of Russian nuclear powered submarines' by Detlef Mietann, 'Requalification of 'Old Packages' for the Konrad Repository Described for the Model Case of Packages from Storage Annex A and Repackaging of Containers Holding Compacts in Hall 2 of the GNS Plant' by Martina Koessler, Sebastian Schwall and Pascal Budriks, and 'Electrochemical process development for cleaning organic, C-14-labelled waste solutions' by Hans-Juergen Friedrich. (orig.)

  19. Virtual Reality: a way to prepare and optimize operations in decommissioning projects

    International Nuclear Information System (INIS)

    Chabal, Caroline; Soulabaille, Yves

    2016-01-01

    The CEA has operated numerous nuclear facilities to carry out R and D and define nuclear fuel life cycle processes since the 1950's. It must now manage the clean-up and dismantling of those which have reached the end of their lifetime. These high priority actions have led to the creation of a dismantling R and D division which provides innovative tools, including in-situ radiological characterization, remote handling and cutting, and intervention scenario simulation. The latter involves running defined scenarios and verifying their suitability for the environment. Simulation is an ideal means of visualizing and therefore better knowing highly radioactive environments where humans cannot enter, of testing different technical alternatives, and of training workers prior to interventions. This paper describes Virtual Reality (VR) uses on dismantling projects. A VR simulation can be defined as an interactive and immersive simulation that enables the user to interact with a computer-simulated environment. VR environments, mostly based on visual immersion displayed through stereoscopic devices, can also include additional sensory information, such as sound or touch. Our application, based on audio, tactile and visual immersion, provides a useful support to verify pre-defined scenarios and to design alternative solutions if necessary. Thanks to a stereoscopic visualization, users are immersed in a virtual world, where they can hear virtual sounds when there is a collision, and can manipulate virtual objects and touch them via a haptic interface. This article first describes the PRESAGE immersive room in Marcoule. Then, the data preparation is explained, especially the 3D model reconstruction and the simulation configuration (remote handling and radiological). Next, different VR uses on decommissioning projects are shown and illustrated by examples. The advantages of such technologies include their speed in testing, user-friendliness, reactivity and usefulness in the

  20. Development and application of nuclear power operation database

    International Nuclear Information System (INIS)

    Shao Juying; Fang Zhaoxia

    1996-01-01

    The article describes the development of the Nuclear Power Operation Database which include Domestic and Overseas Nuclear Event Scale Database, Overseas Nuclear Power Operation Abnormal Event Database, Overseas Nuclear Power Operation General Reliability Database and Qinshan Nuclear Power Operation Abnormal Event Database. The development includes data collection and analysis, database construction and code design, database management system selection. The application of the database to provide support to the safety analysis of the NPPs which have been in commercial operation is also introduced

  1. Health requirements for nuclear reactor operators

    International Nuclear Information System (INIS)

    1980-05-01

    The health prerequisites established for the qualification of nuclear reactor operators according to CNEN-NE-1.01 Guidelines Licensing of nuclear reactor operators, CNEN-12/79 Resolution, are described. (M.A.) [pt

  2. The decommissioning of nuclear facilities; Le demantelement des installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R

    2008-11-15

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  3. Nuclear reactor built, being built, or planned

    International Nuclear Information System (INIS)

    1991-06-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1990. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly

  4. Nuclear disarmament and peaceful nuclear technology

    International Nuclear Information System (INIS)

    Taylor, T.B.

    1989-01-01

    According to the author, it remains to be seen whether nuclear disarmament can reduce the risks of nuclear war sufficiently for the residual risks to be acceptable to a majority of the world's population, while at the same time vigorous growth in the world's dependence on nuclear energy for peaceful purposes continues. This paper discusses how use of nuclear materials from dismantled weapons as fuel for peaceful purposes may help progress to be made towards that goal, by stimulating considerable improvements in the effectiveness of arrangements for preventing diversion of the materials from peaceful to military purposes, while at the same time eliminating large numbers of nuclear weapons

  5. Optimized phases for reactor dismantling – an efficient and sustainable concept

    International Nuclear Information System (INIS)

    Krüger, S.; Winter, J.

    2013-01-01

    D&D projects are driven by costs, to implement an optimization process from the very beginning is key. Optimized strategy and sequencing of the dismantling (hot to cold) will provide serious economical savings . Larger dismantling packages will reduce interfaces and ease the coordination efforts on site. Early usage of mobile systems will ease the large-scale release for dismantling Social transition has to be addressed with priority and to be planned at an early phase in the D&D planning Concept, Planning & Project Management will influence the success of the project much more than the used technique

  6. The funds and the financing of the nuclear future expenses: who is going to pay the bill?

    International Nuclear Information System (INIS)

    Lahorgue, M.B.

    2007-01-01

    Nuclear industry has the particularity to generate from the commissioning of nuclear base installations, expenses of dismantling, of spent fuel processing and radioactive waste management. In view of the importance of the involved amounts and the far term of these expenditures it is important to give security to the financing of the future nuclear expenses. To that purpose, the operators have to evaluate periodically and carefully the whole of the nuclear expenses and constitute the corresponding funds but equally to command enough resources. The rules and the procedures to answer these requirements are so detailed in this text. (N.C.)

  7. Full system chemical decontamination used in nuclear decommissioning

    International Nuclear Information System (INIS)

    Elder, George; Rottner, Bernard; Braehler, Georg

    2012-01-01

    The decommissioning of nuclear power stations at the end of the operational period of electricity generation offers technical challenges in the safe dismantling of the facility and the minimization of radioactive waste arising from the decommissioning activities. These challenges have been successfully overcome as demonstrated by decommissioning of the first generation of nuclear power plants. One of the techniques used in decommissioning is that of chemical decontamination which has a number of functions and advantages as given here: 1. Removal of contamination from metal surfaces in the reactors cooling systems. 2. Reduction of radioactive exposure to decommissioning workers 3. Minimization of metal waste by decontamination and recycling of metal components 4. Control of contamination when dismantling reactor and waste systems 5. Reduction in costs due to lower radiation fields, lower contamination levels and minimal metal waste volume for disposal. One such chemical decontamination technology was developed for the Electric Power Research Institute (EPRI) by Bradtec (Bradtec is an ONET Technologies subsidiary) and is known as the EPRI DFD system. This paper gives a description of the EPRI DFD system, and highlights the experience using the system. (orig.)

  8. Enhancing operational nuclear safety

    International Nuclear Information System (INIS)

    Sengoku, Katsuhisa

    2008-01-01

    's safety standards and program which provides the safety objective following the 10 fundamental safety principles. The safety requirements defines the functional conditions required for safety and the safety guides provides user-friendly and up-to-date practical guidance representing good/best practices to fulfill the requirements. The IAEA provides safety review services and fields safety review teams upon request of member states for the regulatory, the International Regulatory Review Team (IRRT) and Operational Safety Review Team (OSART) and Peer Review of the Operational and Safety Performance Experience Review (PROSPER). The OSART programme's purpose is to assist member states in enhancing the operational safety of individual nuclear power plants and to promote the continuous development of operational safety within all member states by the dissemination of information on good practice. The OSART Mission Results (OSMIR) database contains the results from 73 OSART missions and 54 follow up visits from 1991 and its continually updated. The Asian Nuclear Safety Network (ANSN) was established to pool and share existing and new technical knowledge and practical experience to further improve the safety of nuclear installation in Asia. In summary, the enhancement of the GNSR is anchored in the recognition that all the states are in the same boat and the increasing importance of sharing and mutual learning, sharing knowledge and experience through regional and global networking. It requires joint and coordinated strategy by all states. The IAEA is willing and ready to support the GNSR through the establishment and application of safety standards, and safety review and advisory services and international instruments. (Author)

  9. Study of a Federal Nuclear Operations Corps

    International Nuclear Information System (INIS)

    1981-12-01

    The staffing requirements of the nuclear electric utility industry will create very large demands in the next 3 years for nuclear trained personnel in operation and maintenance. The commercial nuclear industry recognizes these needs, the importance of having qualified trained personnel, and is taking appropriate action to satisfy these requirements. The education and training capabilities both inside and outside of the utility industry have the capacity to meet these demands if they are properly managed. In particular, the Institute of Nuclear Power Operations Human Resource Management System provides a framework for an organized industry-wide program. The Nuclear Regulatory Commission's Office of Inspection and Enforcement is in effect a Federal Corps focused on nuclear operations. Its Reactor Training Center trains the professionals required to inspect nuclear operations and enforce regulations. Therefore, the Department of Energy (DOE) believes that the objectives of a Federal Nuclear Operations Corps can be met by existing private and Federal efforts and that there is no need to establish another corps or training academy. This is consistent with the Administration's policy of minimizing the Federal role in areas where the private sector is capable

  10. Operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  11. Nuclear dismantling and asbestos elimination: the same challenge?

    International Nuclear Information System (INIS)

    Dadoumont, J.; Deboodt, P.

    1998-01-01

    The ALARA principle constitutes a powerful tool for workers dosimetry management in the nuclear field. A consequence of the application of this principle could be an accentuation of the nuclear risk face to the industrial risk. Using works of asbestos elimination in nuclear medium, the present article examines how a generalization of the utilization of the ALARA principle is conceivable and how the existing obstacles could be removed. (N.C.)

  12. Nuclear Renaissance in Italy: Maintaining Momentum

    International Nuclear Information System (INIS)

    Iaccarino, F.

    2010-01-01

    Following the adoption of Law No.99 of July 209, Italy is on threshold of returning to nuclear power, even though there are many more challenges yet to overcome. It should be recalled that Law No. 99/2009 includes enabling provisions empowering the government to issue one or more implementing decrees providing rules for the sitting of new nuclear power plants, the licensing process for the construction, operation and dismantling of those plants, as well as rules for interim storage and the final disposal of nuclear waste. On 15 February 2010, upon the proposal of the Ministry of economic development, the Italian council of ministers issued legislative decree No. 31/2010 implementing the enabling provisions. This paper will analyse the strengths and weaknesses of the implementing decree in order to assess if it is able to provide Italy with a sound national nuclear legislative framework which is an essential precondition to the Italian nuclear resurgence. (N.C.)

  13. Annual meeting on nuclear technology. Opening address

    Energy Technology Data Exchange (ETDEWEB)

    Gueldner, Ralf [DAtF, Berlin (Germany)

    2014-07-15

    The operators of Germany's nuclear power plants continue to make their contribution to the security of supply with the safe and reliable operation of their plants, thus ensuring the success of the energy transition. Despite increased load following operation due to a further increase in feed-in especially of volatile renewable energies, three German nuclear power plants were in the Top Ten global producers of electricity from nuclear energy in 2013. In spite of not producing an equivalent of seven full-load days due to load following operation, the Isar 2 nuclear power plant once again bears the proud title of 'world champion producer'. This balance is also an impressive performance record for nuclear power made in Germany. Despite the accelerated nuclear phase-out, German plants with German operators, and suppliers and service providers based mainly in Germany, are in the top category worldwide once more. Since the end of last year Germany has a new Federal Government as a new version of the grand coalition of 2005 to 2009. The government has set new priorities in the energy sector. However, on many questions concerning nuclear energy, particularly the complex topics of decommissioning and waste management, we are still seeing far too little movement at present. Main topics are: - New site selection process for final repository for high active waste, - Alternative interim storage - just not Gorleben, - Decommissioning, dismantling and administrative bottlenecks, - Lack of predictability for low and medium active waste, - Nuclear fuel tax, electricity market and security of supply, - Electricity market, security of supply and regulation. (orig.)

  14. New nuclear technology; International developments. Review 1995

    International Nuclear Information System (INIS)

    Devell, L.; Aggeryd, I.; Hultgren, Aa.; Lundell, B.; Pedersen, T.

    1995-09-01

    A summary review of the development of new nuclear rector technology is presented in this report. Fuel cycle strategies and waste handling developments are also commented. Different plans for dismantling nuclear weapons are presented. 18 refs

  15. Method of decommissioning nuclear reactor building by utilizing sea water buyoancy

    International Nuclear Information System (INIS)

    Iwashima, Sumio; Ogoshi, Shigeru; Kobari, Shin-ichi.

    1989-01-01

    Upon dismantling nuclear reactor buildings, peripheral yards are excavated and channels leading to sea shore are formed. Since the outer walls of the reactor buildings are made of iron-reinforced concretes, the opening poritons are grouted with concretes to attain a tightly such closed structure that radioactive wastes, etc. in the inside are not flown out upon reactor discommisioning. Peripheral buildings at relatively low level of radiation contaminations are dismantled and withdrawn. The fundations of the nuclear reactor buildings were dug out and jacked to separate base rocks and the reactor buildings. Then, sea water is introduced into the water channels to entirely float up the buildings. A water gate is disposed in the water channel on the side of sea shore to control the level of sea water. The buildings are moved and guided to the sea shore and towed to a site optimum as a permanent storage area and then burried in that place. The operation period for the discommissioning work can greatly be shortened and the radiation dose and the amount of the wastes can be reduced. (T.M.)

  16. REUSE OF AUTOMOTIVE COMPONENTS FROM DISMANTLED END OF LIFE VEHICLES

    Directory of Open Access Journals (Sweden)

    Piotr NOWAKOWSKI

    2013-12-01

    Full Text Available The problem of recycling end of life automotive vehicles is serious worldwide. It is one of the most important streams of waste in developed countries. It has big importance as recycling potential of raw materials content in automotive vehicles is valuable. Different parts and assemblies after dismantling can also be reused in vehicles where replacement of specific component is necessary. Reuse of the components should be taken into consideration in selecting the vehicles dismantling strategy. It also complies with European Union policy concerning end of life vehicles (ELV. In the paper it is presented systematic approach to dismantling strategies including disassembly oriented on further reuse of components. It is focused on decision making and possible benefits calculation from economic and environmental point of view.

  17. Nuclear energy. First experiences with decommissioning in Germany; Kernenergie. Erste Erfahrungen aus den Stilllegungen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Sokoll, Joerg [Arthur D. Little, Frankfurt am Main (Germany). Energy/Utilities

    2015-05-15

    After the Fukushima disaster in 2011 the German parliament changed the national atomic energy law by way of its thirteenth amendment. In contrast to the initial ''nuclear phaseout'' the new phaseout of nuclear energy foresees a large number of decommissionings which will occur in part successively and in part simultaneously and will extend over a period of eleven years. Eight generating units were already decommissioned in 2011 or have not been ramped up again since then. By 2020 the last units will have been decommissioned and the phaseout of nuclear energy will have been completed, at least in terms of power plant operation. However the subsequent dismantling operations will keep German operators busy for decades to come. This article reports on first practical experiences in decommissioning.

  18. The VirtualwindoW for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.O.; McKay, M.D.; Willis, W.D.

    1997-08-01

    Throughout the Department of Energy (DOE) complex there are numerous facilities which were constructed to research and develop nuclear materials during the cold war era. As a result, there are now many facilities such as reactors which require dismantlement and clean up. Technological advances over the past 10 years have significantly increased the state of computers, electronics and automated machinery. Because of this rapid growth, the technology of robotics has played a key role in clean up and remote operations. While robotic systems which perform hazardous tasks are being advanced, the human interface has not. Only within the past few years has the human/machine interface been addressed. A growing concern with the rapid advances in technology is that the robotic systems will become so complex that operators will be overwhelmed by the complexity and number of controls. Thus there is an on going effort within the remote and teleoperated robotic field to develop better man-machine interfaces. The Department of Energy`s Idaho National Engineering Laboratory (INEL) has been researching methods to simplify this interface including telepresence techniques which are applicable to nuclear environments. Initial telepresence research conducted at the INEL developed a concept called the VirtualwindoW. This system minimizes the complexity of remote stereo viewing controls and provides the operator the `feel` of viewing the environment in a natural setting. The VirtualwindoW has shown that the man-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW system to provide a standard camera interface. An application of the VirtualwindoW in the dismantlement of the Chicago Pile-Five (CP-5) reactor at Argonne National Laboratory-East is discussed.

  19. The Virtualwindo W for nuclear applications

    International Nuclear Information System (INIS)

    Anderson, M.O.; McKay, M.D.; Willis, W.D.

    1997-01-01

    Throughout the Department of Energy (DOE) complex there are numerous facilities which were constructed to research and develop nuclear materials during the cold war era. As a result, there are now many facilities such as reactors which require dismantlement and clean up. Technological advances over the past 10 years have significantly increased the state of computers, electronics and automated machinery. Because of this rapid growth, the technology of robotics has played a key role in clean up and remote operations. While robotic systems which perform hazardous tasks are being advanced, the human interface has not. Only within the past few years has the human/machine interface been addressed. A growing concern with the rapid advances in technology is that the robotic systems will become so complex that operators will be overwhelmed by the complexity and number of controls. Thus there is an on going effort within the remote and teleoperated robotic field to develop better man-machine interfaces. The Department of Energy's Idaho National Engineering Laboratory (INEL) has been researching methods to simplify this interface including telepresence techniques which are applicable to nuclear environments. Initial telepresence research conducted at the INEL developed a concept called the VirtualwindoW. This system minimizes the complexity of remote stereo viewing controls and provides the operator the 'feel' of viewing the environment in a natural setting. The VirtualwindoW has shown that the man-machine interface can be simplified while increasing operator performance. This paper deals with the continuing research and development of the VirtualwindoW system to provide a standard camera interface. An application of the VirtualwindoW in the dismantlement of the Chicago Pile-Five (CP-5) reactor at Argonne National Laboratory-East is discussed

  20. Integrated approach to optimize operation and maintenance costs for operating nuclear power plants

    International Nuclear Information System (INIS)

    2006-06-01

    In the context of increasingly open electricity markets and the 'unbundling' of generating companies from former utility monopolies, an area of major concern is the economic performance of the existing fleet of nuclear power plants. Nuclear power, inevitably, must compete directly with other electricity generation sources. Coping with this competitive pressure is a challenge that the nuclear industry should meet if the nuclear option is to remain a viable one. This competitive environment has significant implications for nuclear plant operations, including, among others, the need for the more cost effective management of plant activities, and the greater use of analytical tools to balance the costs and benefits of proposed activities, in order to optimize operation and maintenance costs, and thus insure the economic competitiveness of existing nuclear power plants. In the framework of the activities on Nuclear Economic Performance Information System (NEPIS), the IAEA embarked in developing guidance on optimization of operation and maintenance costs for nuclear power plants. The report was prepared building on the fundamental that optimization of operation and maintenance costs of a nuclear power plant is a key component of a broader integrated business strategic planning process, having as overall result achievement of organization's business objectives. It provides advice on optimization of O and M costs in the framework of strategic business planning, with additional details on operational planning and controlling. This TECDOC was elaborated in 2004-2005 in the framework of the IAEA's programme on Nuclear Power Plant Operating Performance and Life Cycle Management, with the support of two consultants meetings and one technical meeting and based on contributions provided by participants. It can serve as a useful reference for the management and operation staff within utilities, nuclear power plant operators and regulators and other organizations involved in