WorldWideScience

Sample records for nuclear dismantling operations

  1. Remote tool development for nuclear dismantling operations

    International Nuclear Information System (INIS)

    Craig, G.; Ferlay, J.C.; Ieracitano, F.

    2003-01-01

    Remote tool systems to undertake nuclear dismantling operations require careful design and development not only to perform their given duty but to perform it safely within the constraints imposed by harsh environmental conditions. Framatome ANP NUCLEAR SERVICES has for a long time developed and qualified equipment to undertake specific maintenance operations of nuclear reactors. The tool development methodology from this activity has since been adapted to resolve some very challenging reactor dismantling operations which are demonstrated in this paper. Each nuclear decommissioning project is a unique case, technical characterisation data is generally incomplete. The development of the dismantling methodology and associated equipment is by and large an iterative process combining design and simulation with feasibility and validation testing. The first stage of the development process involves feasibility testing of industrial tools and examining adaptations necessary to control and deploy the tool remotely with respect to the chosen methodology and environmental constraints. This results in a prototype tool and deployment system to validate the basic process. The second stage involves detailed design which integrates any remaining technical and environmental constraints. At the end of this stage, tools and deployment systems, operators and operating procedures are qualified on full scale mock ups. (authors)

  2. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  3. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  4. The nuclear submarines dismantling

    International Nuclear Information System (INIS)

    Queau, Ph.

    2002-01-01

    The replacement of the first French nuclear submarines by these ones of new generation has led to put in place the dismantling and decommissioning of nuclear boilers on board. Technicatome is in charge of shutdown, decommissioning and dismantling studies of nuclear submarines. (N.C.)

  5. The dismantling of CEA nuclear installations

    International Nuclear Information System (INIS)

    Piketty, Laurence

    2016-03-01

    After having indicated locations of French nuclear installations which are currently being dismantled (about 30 installations), and recalled the different categories of radioactive wastes with respect to their activity level and the associated storage options, this article gives an overview of various aspects of dismantling, more precisely in the case of installations owned and managed by the CEA. These operations comprise the dismantling itself, the recovery and packaging of wastes, old effluents and spent fuels. The organisation and responsible departments within the CEA are presented, and the author outlines some operational problematic issues met due to the age of installations (traceability of activities, regulation evolutions). The issue of financing is then discussed, and its uncertainties are outlined. The dismantling strategy within the CEA-DEN is described, with reference to legal and regulatory frameworks. The next parts of the article address the organisation and the economic impact of these decontamination and dismantling activities within the CEA-DEN, highlight how R and D and advanced technology are a support to this activities as R and D actions address all scientific and technical fields of nuclear decontamination and dismantling. An overview of three important dismantling works is proposed: Fontenay-aux-Roses, the Marcoule CEA centre (a reference centre in the field of nuclear dismantling and decontamination) and the Grenoble CEA centre (reconversion in R and D activities in the fields of technologies of information, of communication, technologies, for health, and in renewable energies). The last part addresses the participation to the Strategic Committee of the Nuclear Sector (CSFN)

  6. The dismantling of nuclear installations; Le demantelement des installations nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, A.C.; Duthe, M.; Mignon, H. [Ministere de l`Industrie, des Postes et Telecommunications et du Commerce Exterieur, 75-Paris (France). Direction de la Surete des Installations Nucleaires; Charles, Th. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Michon, D. [Electricite de France (EDF), 75 - Paris (France); Lambert, F. [Unite de demantelement des installations nucleaires (UDIN), CEA (France); Pradel, Ph. [Compagnie Generale de Matieres Nucleaires (COGEMA), 30 - Bagnols-sur-Ceze (France). Etablissement de Marcoule; Vergne, C. [CODEM Groupement d`interet economique (France); Hillewaere, J.P.; Dupre la Tour, St. [DRIRE Nord-Pas-de-Calais (France); Mandil, C. [Ministere de l`Economie, des Finances et de l`Industrie (France); Weil, L.; Eickelpasch, N.; Finsterwalder, L. [Office Federal de radioprotection, (Germany)

    1997-10-01

    for nuclear installations, the dismantling is an important part of their exploitation. The technology of dismantling is existing and to get a benefit from the radioactive decay, it seems more easy for operating company such E.D.F. to wait for fifty years before dismantling. But in order to get the knowledge of this operation, the Safety Authority wanted to devote this issue of `Controle`to the dismantling method. This issue includes: the legal aspects, the risks assessment, the dismantling policy at E.D.F., the site of Brennilis (first French experience of dismantling), the dismantling techniques, the first dismantling of a fuel reprocessing plant, comparison with classical installations, economic aspect, some German experiences, the cleansing of the american site of Handford. (N.C.)

  7. The nuclear installations dismantling and the management of radioactive wastes

    International Nuclear Information System (INIS)

    2005-01-01

    As other industrial activities, the nuclear industry causes risks. The risks bound to the dismantling operations are known and controlled. After a presentation of the dismantling and radioactive wastes challenge, this document proposes recommendations based on the first experiences of dismantling and wastes storage. It aims then to answer to the questions relative to the cost and the financing of the operations. Finally it wonders on the public information modalities. (A.L.B.)

  8. Dismantling of nuclear facilities and related problems - Conference proceedings

    International Nuclear Information System (INIS)

    Tournebize, Frederic; Bordet, Didier; Charlety, Philippe; Gore, Thierry; Estrade, Jerome; Lemaire, Hermine; Ginet, Annick; Fabrier, Lionel; Evrard, Lydie; Furois, Timothee; Butez, Marc; Dutzer, Michel; Faure, Vincent; Billarand, Yann; Menuet, Lise; Lahaye, Thierry; Pin, Alain; Mougnard, Philippe; Charavy, Sylvain; Poncet, Philippe; Moggia, Fabrice; Dochy, Arnaud; Benjamin, Patrick; Poncet, Pierre-Emmanuel; Beneteau, Yannick; Richard, Jean-Baptiste; Pellenz, Gilles; Ollivier Dehaye, Catherine; Gerard, Stephane; Denissen, Luc; Davain, Henri; Duveau, Florent; Guyot, Jean-Luc; Ardellier, Luc

    2012-11-01

    The oldest French nuclear facilities, built for some of them in the 1950's for research or power generation purposes, have reached more or less the end of their life. More than 30 facilities have entered the shutdown or dismantling phase, among which 8 reactors of the very first generations of Electricite de France (EdF) reactors. The aim of this two-days conference is to take stock of the present day status and perspectives of the dismantling activity, to approach the question of the management of the wastes produced, and to share experience about large scale operations already carried out. This document gathers the available presentations given during this conference: 1 - the 'Passage' project (F. Tournebize); 2 - CEA-Grenoble: from Louis Neel to key enabling technologies (D. Bordet); 3 - Dismantling actions in France (L. Evrard); 4 - Securing control of long-term charges funding (T. Furois); 5 - Waste disposal projects and their contribution to the management of dismantling wastes (M. Butez); 6 - Specificities linked with dismantling activities (Y. Billarand); 7 - Dismantling safety: the ASN's point of view (L. Evrad); 8 - Labor Ministry viewpoint about the dismantling related questions (T. Lahaye); 9 - Consideration of organizational and human factors in dismantling operations: a new deal in the operators-service providers relation (L. Menuet); 10 - Diploma and training experience (A. Pin); 11 - Glove-boxes dismantling at La Hague plant - status and experience feedback (P. Mougnard); 12 - Dismantling of Siloe reactor (CEA-Grenoble): application of the ALARA approach (P. Charlety); 13 - BR3 - a complex dismantling: the neutron shield tank (NST) in remote operation and indirect vision (L. Denissen); 14 - Cleansing and dismantling of the Phebus PF containment (S. Charavy); 15 - Integration of dismantling at the design and exploitation stages of nuclear facilities (P. Poncet); 16 - Consideration during the design and exploitation stages of dispositions aiming at

  9. Towards the creation of an industrial sector dedicated to nuclear dismantling

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    In next decades the business of nuclear dismantling is expected to grow exponentially due to the decommissioning of nuclear facilities that will have reached the end of their operating life. Dismantling has 2 main features: dismantling operations on a same site can span decades and dismantling is a new activity in which innovations are likely to appear and may benefit other sectors. In France regional authorities have promoted public-private partnerships in order to make working together small enterprises very specialized in sectors like robotic, laser cutting, waste processing, remote operations... with public laboratories dedicated to nuclear research, and with graduate schools to include dismantling in curriculum and with major industrial operators of the nuclear industry. The aim is the creation of jobs and the building of an industrial sector able to win market shares in the worldwide business of nuclear dismantling. (A.C.)

  10. Environmental assessment of the dismantling of 12 Russian nuclear submarines

    International Nuclear Information System (INIS)

    Moffett, D.; Gerchikov, M.; Washer, M.J.; Craig, P.; Kulikov, K.

    2006-01-01

    The project to dismantle 12 out-of-service nuclear submarines ('the dismantling project') consists of all operations and activities that are required for the defuelling and recycling of 12 Russian nuclear submarines at Zvezdochka shipyard in Severodvinsk, northwest Russia. The dismantling began in late 2004 and will continue over the next four years. The dismantling project will secure the highly-enriched spent nuclear fuel (SNF) currently onboard the 12 submarines by re-incorporating it into the Russian nuclear fuel cycle, thereby combating the proliferation of weapons and materials of mass destruction. The assessment was conducted over a two month period in 2004, including a study team visit to the dismantling site. A systemic multi-step screening approach was used to focus a team visit to the site and allow production of a thorough Screening Report on an accelerated schedule. Potential effects were methodically assessed and opportunities for environmental performance improvement identified. Methods and procedures for conducting EAs on Canadian nuclear projects were applied in this challenging international project. The assessment concluded that the project is not likely to result in any significant adverse effects on the environment, taking into account identified mitigation measures. A follow-up program is planned to confirm the validity of this conclusion. (author)

  11. Environmental assessment of the dismantling of 12 Russian nuclear submarines

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, D. [Golder Associates Ltd., Mississauga, Ontario (Canada)]. E-mail: dmoffett@golder.com; Gerchikov, M. [Nuclear Safety Solutions Ltd., Toronto, Ontario (Canada); Washer, M.J. [Foreign Affairs Canada, Ottawa, Ontario (Canada); Craig, P. [Golder Associates Ltd., Mississauga, Ontario (Canada); Kulikov, K. [NIPTB Onega, Severodvinsk (Russian Federation)

    2006-07-01

    The project to dismantle 12 out-of-service nuclear submarines ('the dismantling project') consists of all operations and activities that are required for the defuelling and recycling of 12 Russian nuclear submarines at Zvezdochka shipyard in Severodvinsk, northwest Russia. The dismantling began in late 2004 and will continue over the next four years. The dismantling project will secure the highly-enriched spent nuclear fuel (SNF) currently onboard the 12 submarines by re-incorporating it into the Russian nuclear fuel cycle, thereby combating the proliferation of weapons and materials of mass destruction. The assessment was conducted over a two month period in 2004, including a study team visit to the dismantling site. A systemic multi-step screening approach was used to focus a team visit to the site and allow production of a thorough Screening Report on an accelerated schedule. Potential effects were methodically assessed and opportunities for environmental performance improvement identified. Methods and procedures for conducting EAs on Canadian nuclear projects were applied in this challenging international project. The assessment concluded that the project is not likely to result in any significant adverse effects on the environment, taking into account identified mitigation measures. A follow-up program is planned to confirm the validity of this conclusion. (author)

  12. Environmental assessment of the dismantling of 12 Russian nuclear submarines

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, D.; Craig, P. [Golder Associates Limited, Mississauga, Ontario (Canada); Gerchikov, M. [Nuclear Safety Solutions Limited, Toronto, Ontario (Canada); Washer, M.J. [Foreign Affairs Canada, Ottawa, Ontario (Canada); Kulikov, K. [NIPTB Onega, Severodvinsk (Russian Federation)

    2005-06-15

    The project to dismantle 12 out-of-service nuclear submarines ('the dismantling project') consists of all operations and activities that are required for the defuelling and recycling of 12 Russian nuclear submarines at Zvezdochka shipyard in Severodvinsk, northwest Russia. The dismantling began in late 2004 and will continue over the next four years. The dismantling project will secure the highly enriched spent nuclear fuel (SNF) currently onboard the 12 submarines by re-incorporating it into the Russian nuclear fuel cycle, thereby combating the proliferation of weapons and materials of mass destruction. The assessment was conducted over a two-month period in 2004, including a study team visit to the dismantling site. A systemic multi-step screening approach was used to focus a team visit to the site and allow production of a thorough Screening Report on an accelerated schedule. Potential effects were methodically assessed and opportunities for environmental performance improvement identified. Methods and procedures for conducting EAs on Canadian nuclear projects were applied in this challenging international project. The assessment concluded that the project is not likely to result in any significant adverse effects on the environment, taking into account identified mitigation measures. A follow-up program is planned to confirm the validity or this conclusion. (author)

  13. Temperature buffer test. Dismantling operation

    International Nuclear Information System (INIS)

    Aakesson, Mattias

    2010-12-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite in the usual way, whereas the upper heater was surrounded by a ring of sand. The test was dismantled and sampled during a period from the end of October 2009 to the end of April 2010, and this report describes this operation. Different types of samples have been obtained during this operation. A large number of diameter 50 mm bentonite cores have been taken for analysis of water content and density. Large pieces, so-called big sectors, have been taken for hydro-mechanical and chemical characterizations. Finally, there has been an interest to obtain different types of interface samples in which bentonite were in contact with sand, iron or concrete. One goal has been to investigate the retrievability of the upper heater, given the possibility to remove the surrounding sand shield, and a retrieval test has therefore been performed. The sand in the shield was first removed with an industrial vacuum cleaner after loosening the material through mechanical means (with hammer drill and core machine). A front loader was subsequently used for applying a sufficient lifting force to release the heater from the bentonite underneath. The experiment has been documented in different aspects: measurements of the coordinate (height or radius) of different interfaces (between bentonite blocks and between bentonite and sand); verification of sensor positions and retrieval of sensors for subsequent

  14. Temperature buffer test. Dismantling operation

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias [Clay Technology AB, Lund (Sweden)

    2010-12-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite in the usual way, whereas the upper heater was surrounded by a ring of sand. The test was dismantled and sampled during a period from the end of October 2009 to the end of April 2010, and this report describes this operation. Different types of samples have been obtained during this operation. A large number of diameter 50 mm bentonite cores have been taken for analysis of water content and density. Large pieces, so-called big sectors, have been taken for hydro-mechanical and chemical characterizations. Finally, there has been an interest to obtain different types of interface samples in which bentonite were in contact with sand, iron or concrete. One goal has been to investigate the retrievability of the upper heater, given the possibility to remove the surrounding sand shield, and a retrieval test has therefore been performed. The sand in the shield was first removed with an industrial vacuum cleaner after loosening the material through mechanical means (with hammer drill and core machine). A front loader was subsequently used for applying a sufficient lifting force to release the heater from the bentonite underneath. The experiment has been documented in different aspects: measurements of the coordinate (height or radius) of different interfaces (between bentonite blocks and between bentonite and sand); verification of sensor positions and retrieval of sensors for subsequent

  15. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  16. Provisions for the dismantling of nuclear facilities are sufficient

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    The European Union has assessed the provisions made by the nuclear plant operators to face the future costs of dismantling. The United-Kingdom and the Netherlands are the single E.U. members to have provisions covering the whole of the expenses (respectively 100% and 94%). The figure for France is very low 33% (far below the European average of 56%). According to French authorities the provisions for the dismantling of nuclear facilities are strictly defined by law: they must be made progressively till the decommissioning and they must be composed by dedicated assets. The costs of the dismantling is regularly re-assessed for taking into account technological progress and changes in regulation. Furthermore the French system limits the period in which provisions are made to the initial operating life of the plant: mostly 40 years which is a prudent measure. In other E.U. members like Germany, the provisions are not covered by dedicated assets which might endanger the capacity of the operator to face the future costs. The progressiveness of the French systems of provision-making is fair because the dismantling costs are spread equally over the entire operating period of the facility. (A.C.)

  17. Note n. SD3-DEM-01 regulations procedures relative to the based nuclear installations dismantling

    International Nuclear Information System (INIS)

    2003-02-01

    This note aims to define the regulations procedures relative to the safety of based nuclear installations dismantling defined by the decree of the 11 december 1963 modified. The first part describes the two main phases of a based nuclear installation life, the operating and the dismantling phase. The second part is devoted to the procedures. (A.L.B.)

  18. Remote controllable systems for nuclear technical facility dismantling

    International Nuclear Information System (INIS)

    Lozovetskij, V.V.

    1998-01-01

    Features of stationary and mobile remote systems used for dismantling and decontamination of nuclear technological objects are described. Examples of the application of developed designs are considered

  19. Future of nuclear power plants and reactor dismantling

    International Nuclear Information System (INIS)

    Tanguy, P.; Cregut, A.

    1994-01-01

    After some considerations on dismantling experience, technology, legislation and costs, the various causes for dismantling a reactor are reviewed (research program termination, plant obsolescence, ageing and safety problems) and the present and future situation concerning the French nuclear park is examined. The various tools, equipment and techniques for reactor dismantling and the related researches are presented: cutting techniques, decontamination techniques, remote control, robotics and automation, waste processing and conditioning

  20. Achievements and prospects of robotics in dismantling operations

    International Nuclear Information System (INIS)

    Clement, G.; Goetghebeur, S.; Ravera, J.P.

    1993-01-01

    After a definition of 'robotic systems' (poly functionality is the main concept), the nuclear facilities that have used robotic systems for their dismantling are reviewed; the various robot intervention domains in dismantling, the different types of machines and the work carried out by robots are presented. Difficulties arising from robot utilization for reactor dismantling, robot design considerations, reliability, personnel training needs, tooling and costs are discussed. Applicability criteria are derived concerning radio protection, hard working conditions, task complexity, multiplicity and quality, and costs

  1. Method of dismantling a nuclear reactor

    International Nuclear Information System (INIS)

    Shirai, Masato; Hashimoto, Osamu.

    1984-01-01

    Purpose: To enable rapid and simple positioning for a plasma arc torch disposed to the inside of a nuclear reactor main body. Method: After removing the upper semi-spherical portion, fuel portion and control rod portion of a nuclear reactor, a rotary type girder is placed on the upper edge of a cylindrical portion remained after the removal of the upper semi-spherical portion. Then, the upper portion of a supporting rod provided with a swing arm having a plasma arc torch at the top end is situated at the center of the reactor main body. Then, the top end of the support rod is inserted to fix in the housing of control rod drives. Then, the swing arm is actuated to situate the plasma arc torch to a desired position to be cut, whereafter cutting is initiated while rotating the rotary type girder. Thus, plasma arc torch is moved horizontally along an arcuate trace, whereby pipeways, accessories or the likes disposed to the inside of the main body are at first cut and then the cylindrical portion constituting the main body is cut to dismantle the reactor. (Moriyama, K.)

  2. Consideration of dismantling operations in the design

    International Nuclear Information System (INIS)

    Dubourg; Bonin.

    1984-12-01

    This analysis shows that the parameters and the constraints taken into account at the design level to facilitate the exploitation and the maintenance make the dismantling and its preparation easier [fr

  3. Conceptual Study on Dismantling of CANDU Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo-Tae; Lee, Sang-Guk [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    In this paper, we reviewed 3D design model of the CANDU type reactor and suggested feasible cutting scheme. The structure of CANDU nuclear reactor, the calandria assembly was reviewed using 3-D CAD model for future decommissioning. Through the schematic diagram of CANDU nuclear power plant, we identified the differences between PWR and CANDU reactor assembly. Method of dismantling the fuel channels from the calandria assembly was suggested. Custom made cutter is recommended to cut all the fuel channels. The calandria vessel is recommended to be cut by band saw or plasma torch. After removal of the fuel channels, it was assumed that radiation level near the calandria vessel is not very high. For cutting of the end shields, various methods such as band saw, plasma torch, CAMC could be used. The choice of a specific method is largely dependent on radiological environment. Finally, method of cutting the embedment rings is considered. As we assume that operators could cut the rings without much radiation exposure, various industrial cutting methods are suggested to be applied. From the above reviews, we could conclude that decommissioning of CANDU reactor is relatively easy compared to that of PWR reactor. Technologies developed from PWR reactor decommissioning could be applied to CANDU reactor dismantling.

  4. Dismantling of nuclear facilities. From a structural engineering perspective

    International Nuclear Information System (INIS)

    Block, Carsten; Henkel, Fritz-Otto; Bauer, Thomas

    2014-01-01

    The paper summarizes some important aspects, requirements and technical boundary conditions that need to be considered in dismantling projects in the nuclear sector from a structural engineering perspective. Besides general requirements regarding radiation protection, occupational safety, efficiency and cost effectiveness it is important to take into account other conditions which have a direct impact on technical details and the structural assessment of the dismantling project. These are the main aspects highlighted in this paper: - The structural assessment of dismantling projects has to be based on the as-built situation. - The limitations in terms of available equipment and space have to be taken into account. - The structural assessments are often non-standardized engineering evaluations. A selection of five dismantling projects illustrates the various structural aspects. (orig.)

  5. Algorithmisation of nuclear installations equipment dismantling

    Energy Technology Data Exchange (ETDEWEB)

    Bezak, Peter, E-mail: bezak@decom.s [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Department of Nuclear Physics and Technology, Ilkovicova 3, Bratislava, 812 19 (Slovakia); DECOM, a.s., Sibirska 1, Trnava, 917 01 (Slovakia); Daniska, Vladimir [DECONTA, a.s., Sibirska 1, Trnava, 917 01 (Slovakia); Rehak, Ivan [DECOM, a.s., Sibirska 1, Trnava, 917 01 (Slovakia); Necas, Vladimir [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Department of Nuclear Physics and Technology, Ilkovicova 3, Bratislava, 812 19 (Slovakia)

    2010-12-15

    The standardised structure of cost items for decommissioning was issues jointly by OECD/NEA, IAEA and European Commission in 1999 for promoting of harmonisation in decommissioning costing. The computer code OMEGA, developed recently by the company DECOM, a.s. in Slovakia, implements this standardised structure of cost items as the base of an universal cost calculation structure for evaluation and optimisation of cost, exposure and other parameters for decommissioning options. The paper focuses on selected modules of the code which were developed for modelling of dismantling of systems, decontamination of building surfaces and demolition of structures. Evaluation of these activities is one of the most important tasks to be done prior to performance of decommissioning activities. Selection of proper techniques for these activities depends on category of the item to be dismantled, decontaminated or demolished (material composition, construction, type of building surface, etc.), local radiological conditions (dose rate, contamination), local working conditions (constraints), and other factors. Local radiological conditions and pre-defined limits of dose rate determine the selection of manual or remote techniques. Dismantling, decontamination of building surfaces and demolition activities include also set of preparatory and finishing activities. Extent of these auxiliary activities varies when performed within or outside of the controlled area and/or when performed manually or remote. Paper presents the approach for selection of the techniques for decommissioning activities and extent of auxiliary activities which was implemented in the OMEGA code, using the standardised cost structure as the cost calculation structure.

  6. Nuclear and non-nuclear safety aspects in nuclear facilities dismantling. The example of a PWR pilot decommissioning project

    International Nuclear Information System (INIS)

    Massaut, V.; Deboodt, P.; Dadoumont, J.; Valenduc, P.; Denissen, L.

    2002-01-01

    The dismantling of nuclear facilities, and in particular of nuclear power plants, involves new challenges for the nuclear industry. Although the dismantling of various activated and contaminated components is nowadays considered as almost industrial practice, the safety aspects of decommissioning bring some specific features which are not always taken into account in the operation of the plants. Moreover, most of the plants and facilities currently decommissioned are rather old and were never foreseen to be decommissioned. The operations involved in dismantling and decontamination, often imply new or unforeseen situations. On the nuclear, or radiological side, the radioprotection optimisation of the operations involved often requires to model the environment and to analyse different scenarios to tackle the operation. Recent 3-D software (like the Visiplan software) allowing representation of the actual environment and the influence of the various sources present, is really needed to be able to minimise the radiological impact on the operators. The risk of contamination spread, by opening loops and components or by the dismantling process itself, is also an important aspect of the radiological protection study. Nevertheless, the radiological aspects of the safety approach are not the only ones to be dealt with when decommissioning nuclear facilities. Indeed, classical industrial safety aspects are also important: the dismantling can bring handling and transporting risk (heavy loads, difficult ways, uneasy access, etc.) but also the handling of toxic or hazardous materials. For instance, the removal of asbestos in contaminated areas can lead to additional hazard; the presence of alkali metals (like Na or NaK), of toxic metals (like e.g. Beryllium) or of corrosive fluids (acid,...) have to be tackled often in unstructured environment, and sometimes with limited knowledge of the actual situation. This leads to approach the operations following the ASARA principle (As

  7. Drafting of the dismantling operations of the MAR 200 workshop with the help of virtual reality

    International Nuclear Information System (INIS)

    Chabal, C.; Soulabaille, Y.; Garnier, T.; Callixte, O.

    2014-01-01

    In order to optimize future dismantling operations of nuclear installations virtual reality allows the validation of predefined scenarios and their adequacy with the environment. CEA uses an immersion and interactive room to validate maintenance and dismantling operations. The equipment of this room is composed of a video wall that gives a 3-dimensional view of the virtual environment, and of a system for motion capture. For the simulation of handling operations a haptic interface has been designed, it allows the user to receive a tactic and effort-feeling feed back. The immersion is completed by a phonic ambience that creates sounds for virtual operations. The use of the immersion room for optimizing the dismantling of a spent fuel dissolver (MAR 200) used in hot cell is presented. (A.C.)

  8. The dismantling of nuclear installations: The dismantling of nuclear installations at the CEA's Directorate for nuclear energy; The CEA's sanitation and dismantling works: example of one of the Marcoule UP1 program lots; Research and innovation in sanitation-dismantling; Global optimisation of the management of dismantling radioactive wastes

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre; Piketty, Laurence; Moitrier, Cyril; Blanchard, Samuel; Soulabaille, Yves; Georges, Christine; Dutzer, Michel; Legee, Frederic

    2016-01-01

    This publication proposes a set of four articles which addresses issues related to the dismantling of nuclear installations in France, notably for the different involved actors such as the CEA and the ANDRA. The authors more particularly address the issue and the general strategy of dismantling within the Directorate for nuclear energy of the CEA; comment the example of one of the Marcoule UP1 program lots to highlight sanitation and dismantling works performed by the CEA; discuss current research and innovation activities within the CEA regarding sanitation and dismantling; and comment how to globally optimise the management of radioactive wastes produced by dismantling activities

  9. A Study on Dismantling and Verifying North Korea's Nuclear Capabilities

    International Nuclear Information System (INIS)

    Kim, Young Jae; Cheon, Seong Whun

    2007-10-01

    North Korea's nuclear weapon development is a serious threat to South Korea's national security and can become a trigger to change the status quo in the Korean peninsula. Having prevailed security dynamics in Northeast Asia last 20 years, the North Korea's nuclear problem faced a key turning point when Pyongyang tested its first nuclear weapon on October 9, 2006. Despite this test, however, diplomatic efforts to resolve the nuclear issue were never given up, resulting in a so-called, initial agreement signed at the Six-Party Talks in February 2007. With the Six-Party Talks being held more than four years, the six countries have had sufficient time to discuss principal and political matters regarding the dismantlement of North Korea's nuclear weapons. Under the circumstances, this report is going to study practical and detail issues related with dismantling the North's nuclear weapons. Specifically, in light of historical experiences, the report will investigate possible problems to be faced in the course of dismantlement and propose policy measures to overcome these problems

  10. Safe enclosure of nuclear facilities during deferred dismantling

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this Safety Report is to provide information to Member States to help ensure that a nuclear installation that will be or has been placed in a safe enclosure mode is maintained in a safe state until the final dismantling is performed and the facility or site released from regulatory control. This period of time may be referred to as the deferred dismantling, safe enclosure or long term storage period. During this safe enclosure period, control of the radioactive material and any other hazardous material must be maintained and the safety of the general public and the environment ensured. This Safety Report applies to the safe enclosure of large nuclear facilities such as nuclear power plants, research reactors, large research facilities, large manufacturing facilities and some fuel cycle facilities. Safe enclosure is not normally applicable to smaller industrial and medical installations owing to the small amount of radioactive material present and the nature of that material. This Safety Report would not normally be applicable to facilities that contain long lived radionuclides, as there is little benefit in placing them into safe enclosure. For these facilities, immediate dismantling is normally the preferred option. This publication describes the activities and concerns that are considered from the time when the initial decision is taken to defer dismantling activities, to the point when final dismantling commences or resumes. It is an expansion of the guidance provided in three IAEA Safety Guides. This Safety Report discusses methods that can be used to meet safety requirements, describes good practices and gives practical examples. The IAEA has published a Technical Report that provides technical details relating to the safe enclosure strategy

  11. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  12. Education and research when dismantling nuclear plants at the Technical University Dresden

    International Nuclear Information System (INIS)

    Hurtado, A.; Anthofer, A.; Cloppenborg, T.; Schreier, M.

    2013-01-01

    With the decision by the German government in 2011 to revoke the operating permission from 8 of the existing 17 German nuclear power plants, the responsibility of decommissioning and dismantling these plants has moved back into the focus of public awareness. Under the current legal conditions, the last nuclear plant will be disconnected from the grid on 31.12.2022 and this will create an enormous challenge for all the involved approving authorities, expert organisations, as well as companies involved in dismantling the plants. The development of new and efficient dismantling technologies and strategies is required to perform these highly responsible tasks. On the other hand, the nuclear competence and knowhow, as well as the promotion of young talents in the relevant scientific fields must be preserved. Technological and economic solutions are in demand for the various plants due to the different specifics of nuclear power plants. This will still require e.g. in the field of radiation protection highly qualified and well trained staff in future. The training of these skilled employees will require expanding the subject matter taught at universities, colleges and polytechnics to suit the changed parameters. The chair for hydrogen and nuclear energy technology at the TU Dresden will in future offer lectures as part of a new teaching discipline with the focus on dismantling and disposal. The course 'Dismantling nuclear power plants' took place for the first time in the summer semester 2013. It is organised as a three-day block seminar with an excursion to the company NIS Ingenieurgesellschaft mbH in Alzenau. The company NIS is a subsidiary of the Siempelkamp Nukleartechnik GmbH. This article intends to provide an overview of the contents of the courses and the impressions of the participants. In this way the TU Dresden is making a further contribution to preserving nuclear competence and inter-disciplinary dialogue. (orig.)

  13. Measures for minimizing residual operating costs and simultaneous optimization of the dismantling strategy

    International Nuclear Information System (INIS)

    Mordiziol, K.E.

    2008-01-01

    The end of power operation of a nuclear power plant is followed either by safe enclosure and later demolition, or immediate dismantling and demolition. In the latter case, measures should be taken at the onset of the decommissioning phase to minimize the costs of operation of the infrastructure required during the disassembly phase (residual operation), thus allowing speedy disassembly over large areas of systems and components no longer required. Once a nuclear power plant has been decommissioned, the main systems determining costs of residual operation are those auxiliary systems whose economic performance had been of secondary importance during power operation, such as auxiliary cooling water, auxiliary steam, demineralized water supply, waste water treatment, ventilation, heating, air conditioning, etc. They are vastly overdimensioned for the requirements of residual operation, and even when the often highly diversified systems have been trimmed down, many pipe systems are bound to remain in operation in many parts of the building which upset the dismantling process. The case of the decommissioned Muelheim-Kaerlich nuclear power station now being dismantled is used to show that often it is not conversion and downsizing of former plant operation systems which constitute the best solution in terms of overall economics, but rather the installation, at an early point in time, of new systems and components adapted to the requirements of demolition and representing the current state of the art. (orig.)

  14. The nuclear installations dismantling and the management of radioactive wastes; Le demantelement des installations nucleaires et la gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    As other industrial activities, the nuclear industry causes risks. The risks bound to the dismantling operations are known and controlled. After a presentation of the dismantling and radioactive wastes challenge, this document proposes recommendations based on the first experiences of dismantling and wastes storage. It aims then to answer to the questions relative to the cost and the financing of the operations. Finally it wonders on the public information modalities. (A.L.B.)

  15. The dismantling of nuclear installations in the Grenoble CEA centre - Press book 2013

    International Nuclear Information System (INIS)

    Laveissiere, Stephane; Coronini, Vincent

    2013-01-01

    After having outlined the importance of the project for the Grenoble CEA centre, this document presents the objectives, issues and challenges of dismantling activities performed on various nuclear installations located in the CEA centre of Grenoble. Objectives are presented in terms of agenda, predicted production of radioactive wastes, budget, personnel and steering committee. The various nuclear installations are presented: experimental reactors (Melusine, Siloe, Siloette), LAMA (laboratory of analysis of active materials), STED (station for the treatment of effluents and wastes). The safety and protection of workers is addressed in terms of protection and monitoring measures, and of exposure to radiations. The next part deals with the monitoring of the environment (actors, history of control of the centre's releases, control points, releases, atmosphere monitoring, and hydrological monitoring). A second part presents the global strategy of the CEA for its activities of sanitation and nuclear dismantling: present operations, dismantling activities in Fontenay-aux-Roses and in Marcoule, economic organization, contribution of advanced technology in radiological measurement and control, simulation and modelling, decontamination techniques, cutting operations, and remotely controlled operations

  16. German assistance for the dismantling of nuclear submarines in Russia

    International Nuclear Information System (INIS)

    Hinsdorf, H.J.

    2005-01-01

    On October 9, 2003, the German Ministry of Economics and Labor signed an agreement with the Russian Federation's former Ministry of Atomic Energy for support in eliminating the nuclear weapons that the Russian Federation has pledged to reduce through the dismantlement of decommissioned nuclear submarines. This treaty, which is binding under international law, implements the Global Partnership against the Spread of Weapons and Materials of Mass Destruction as agreed to at the G8 Summit in Kananaskis in 2002. The core element of the German-Russian project is the creation of a long-term interim storage facility for 120 nuclear submarine reactor compartments near Murmansk in northwestern Russia and the preparation of the reactor compartments for interim storage. This technically demanding project, which began not without some problems, has developed in a positive manner since the end of 2003. The provisions in the treaty and its supplementary documents, which were internationally publicized, have generally proven to be successful. (orig.)

  17. Decree no. 2005-78 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.20, named Siloe reactor, in the Grenoble city territory (Isere)

    International Nuclear Information System (INIS)

    2005-02-01

    On March 19, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloe reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  18. Decree no. 2005-79 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.21, named Siloette research reactor, in the Grenoble city territory (Isere)

    International Nuclear Information System (INIS)

    2005-02-01

    On May 26, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloette research reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  19. Challenges of dismantling

    International Nuclear Information System (INIS)

    Chevet, P.F.; Schilz, F.; Rondeau, J.M.; Piketty, L.; Dupraz, B.; Conte, D.; Duguey, M.; Louet, C.A.; Dorison, A.; Dutzer, M.; Boucau, J.; Eimer, M.; Boutin, D.; Revilla, J.L.; Golshan, M.; Smith, G.

    2015-01-01

    This document is made up of short articles whose issue is reactor dismantling. The first article presents the French strategy that can be featured by immediate dismantling (the dismantling process is prepared a long time before decommissioning and begins as soon as the reactor is shut down) and massive dismantling (a lot of nuclear facilities will be decommissioned in a near future). The following 4 articles give the viewpoints of ASN (Nuclear Safety Authority), EDF (for its fleet of PWRs), CEA (for its experimental reactors and nuclear facilities) and AREVA (for the EURODIF George Besse plant). Costs and financing are dealt with in an article that says that the cost is greatly dependent on the final state: a complete nuclear-free area or an area whose radioactivity is below safe standards and that law implies to constitute provisions all along the operating life of the facility to cover dismantling costs. Dismantling generates a huge amount of very low-level radioactive wastes particularly metal scraps that might be recycled and get out of nuclear industry, an article details the feasibility of such recycling. Another article shows the impact of massive dismantling on the management of radioactive wastes. In an article Westinghouse presents its experience in the cutting of internal equipment of the reactor core. The last 2 articles presents the dismantling strategies in Spain and in the UK. (A.C.)

  20. Definitive stop, dismantling and downgrading of nuclear base installations in France - Guide nr 6 - Release of the 18/06/2010

    International Nuclear Information System (INIS)

    2010-01-01

    After a recall of the regulatory context and references, this guide addresses the strategy for an immediate dismantling of an installation, the dismantling planning, the different phases of the end of life of nuclear base installations, the authorization of definitive stop and dismantling, the preliminary phase preparing the definitive stop (regulatory context, technical aspects), the dismantling phase (regulatory context, technical aspects for the concerned operations, the security functions, hardware important for security, taking ageing into account), and the final status of installations (downgrading, constraints)

  1. Recycling of concrete generated from Nuclear Power Plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nawa, Toyoharu; Ishikura, Takeshi; Tanaka, Hiroaki

    2013-01-01

    Reactor decommissioning required various technologies such as dismantling of facilities, decontamination, radioactivity measurement and recycling of dismantling wastes. This article discussed recycling of demolished concrete wastes. Dismantling of reactor building of large one unit of nuclear power plants would generate about 500 K tons of concrete wastes, about 98% of which was non-radioactive and could be used as base course material or backfill material after crushed to specified particle size. Since later part of 1990s, high quality recycled aggregate with specified limit of bone-dry density, water absorptivity and amount of fine aggregate had been developed from demolished concrete with 'Heat and rubbing method', 'Eccentric rotor method' and 'Screw grinding method' so as to separate cements attached to aggregate. Recycled aggregates were made from concrete debris with 'Jaw crusher' to particle size less than 40 mm and then particle size control or grinded by various grinding machines. Recycled fine aggregates made from crushing would have fragile site with cracks, air voids and bubbles. The author proposed quality improvement method to selectively separate fragile defects from recycled aggregates using weak grinding force, leaving attached pastes much and preventing fine particle generation as byproducts. This article outlined experiments to improve quality of recycled fine aggregates and their experimental results confirmed improvement of flow ability and compressive strength of mortal using recycled fine aggregates using 'Particle size selector' and 'Ball mill' so as to remove their fragile parts less than 2%. Mortal made from recycled fine aggregate could also prevent permeation of chloride ion. Recycled aggregate could be used for concrete instead of natural aggregate. (T. Tanaka)

  2. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options

    International Nuclear Information System (INIS)

    Meyer, Bettina

    2012-01-01

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  3. National School of Dismantling

    International Nuclear Information System (INIS)

    Ivaldi, Fabienne

    2003-01-01

    The National Institut of Nuclear Sciences and Techniques founded of 2001 a National School of Dismantling, NSD, at the end, which was validated by CEA, COGEMA, EDF and ANDRA. This school addresses four major issues: Decontamination; Dismantling; Demolition and waste Disposal (4D). Dedicated for instructing scientific and technical knowledge and know-how, needed in dismantling the nuclear installations, NSD has as targets: - personnel at engineering and operational level; - personnel occupied with involved trades from conception through intervention; - students and employees on leave; - employees while training on the job. Initial basic education for students in collaboration with schools and universities concerns: - master degree in radioactive waste management; - master degree in dismantling; - professional license in 3 D; - pro 4 D graduation. NSD is also engaged in continual formation for employees qualified, or not, adapted to the needs generated by the following tasks and personnel: - introduction in dismantling; - project team; - specialist engineer; - team head; - agent for remedial action; - agent for dismantling. The National School of Dismantling joins a network of human and technological capabilities confined within the 4 D frame, namely: - scientific and technical competencies (experts, instructors working in the nuclear field and dismantling); - pedagogical competence (professionals from basic and continual education); - specific material means such as those used by construction site schools, mock-ups, rooms for practical training etc

  4. Status of the Digital Mock-up System for the dismantling of the nuclear facilities

    International Nuclear Information System (INIS)

    Park, Hee Seoung; Kim, S. K.; Lee, K. W.; Oh, W. J.

    2004-12-01

    The database system have already developed is impossible to solve a quantitative evaluation about a various situation from the dismantle activities of the reactor had contaminated with radioactivity. To satisfy the requirements for safety and economical efficiency among a major decommissioning technologies, it need a system that can evaluate and estimate dismantling scheduling, amount of radioactive waste being dismantled, and decommissioning cost. We have review and analyzed status of the digital mock-up system to get a technical guide because we have no experience establishment of one relation to dismantling of research reactor and nuclear power plant

  5. Design and testing of remote handling systems for reprocessing plant maintenance and for nuclear reactor dismantling

    International Nuclear Information System (INIS)

    Baier, J.; Blaseck, K.; Krieger, F.; Kuhn, R.; Leister, P.

    1986-01-01

    In 1986 two important milestones will be reached in the field of remote handling technology in Germany: 1. The prototype of the manipulator carrier system with power manipulator (MTS) for the reprocessing plant in Wackersdorf will be completed and cold test operation will be started. 2. The dismantling manipulator with all special tools for the demolition of the Niederaichbach nuclear power station will be completed and cold test under mockup conditions. Both system were designed, constructed, and tested by Noell GmbH in Wuerzburg. The report describes main features of the design, the problems in fabrication and the first test results

  6. Evaluation methodology of a manipulator actuator for the dismantling process during nuclear decommissioning

    International Nuclear Information System (INIS)

    Park, Jongwon; Kim, Chang-Hoi; Jeong, Kyung-min; Choi, Byung-Seon; Moon, Jeikwon

    2016-01-01

    Highlights: • A methodology to evaluate actuators of a dismantling manipulator. • Evaluation criteria for choosing the most suitable actuator type. • A mathematical evaluation model for evaluation. • The evaluation method is expected to be used for determining other manipulators. - Abstract: This paper presents a methodology to evaluate actuators of a manipulator for dismantling nuclear power plants. Actuators are the most dominant components because a dismantling manipulator relies heavily on the actuator type used. To select the most suitable actuator, evaluation criteria are presented in four categories based on the nuclear dismantling environment. A mathematical model is presented and evaluation results are calculated with weights and scores for each criterion. The proposed evaluation method is expected to be used for determining other aspects of the design of dismantling manipulators.

  7. Decree no. 2004-48 from January 12, 2004 authorizing the French atomic energy commission to proceed to the definitive decommissioning and dismantling operations of the nuclear facility no. 43, named Saclay linear accelerator (ALS), on the territory of Saint-Aubin town (Essonne)

    International Nuclear Information System (INIS)

    2004-01-01

    The linear accelerator of Saclay (ALS) has been the object of a commissioning permission given by decree by the French prime minister in October 8, 1965. It is submitted to the regime of basic nuclear facilities as defined in the decree no. 63-1228 from December 11, 1963. The French atomic energy commission (CEA) put down a request for the definitive decommissioning and dismantling of this facility on May 30, 2002. The duration foreseen for these operations is of 4 years. After the safety examination of the request by the DGSNR and the institute of radioprotection and nuclear safety (IRSN), a favorable and conformable advice has been given by the different ministries (health, finances and industry, ecology and sustainable development) and has led to this decree which precises the different protection measures to be implemented during the dismantling work. (J.S.)

  8. An evaluation of the dismantling technologies for decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, Jeikwon; Hyun, Dongjun; Lee, JongHwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok

    2014-01-01

    Highlights: • This paper is evaluation method on the technologies for decommissioning of nuclear power plants. • The parameters of evaluation are performance, site-specific, safety, and cost impacts. • The evaluation model was applied for dismantling of a steam generator. - Abstract: This paper is to suggest an evaluation method on the dismantling technologies for decommissioning of nuclear power plants. The parameters of evaluation are performance impacts, site-specific impacts, safety impacts, and cost impacts. The evaluation model was provided and applied for dismantling of a steam generator

  9. Sites with nuclear facilities in the state of dismantling and their future from the public perspective

    International Nuclear Information System (INIS)

    Kretz, Simon Philipp

    2015-01-01

    The thesis on the public perspective at sites of nuclear facility dismantling covers the following issues: the change of German energy landscapes under social and political points of view, theoretical frame of the work, combination of empirical studies and the theoretical approaches in a space concept, action model and hypotheses on the situation and development in communities with nuclear facilities in the state of dismantling, description of the interviewees, and the empirical results of the interviews.

  10. Rosie: A mobile worksystem for decontamination and dismantlement operations

    International Nuclear Information System (INIS)

    Thompson, B.R.; Conley, L.

    1996-01-01

    RedZone Robotics, Inc. and Carnegie Mellon University's Field Robotics Center have undertaken a contract to develop a next-generation worksystem for decommissioning and dismantlement tasks in Department of Energy (DOE) facilities. Currently, the authors are closing the second phase of this three phase effort and have completed the design and fabrication of the worksystem: Rosie. Rosie includes a locomotor, heavy manipulator, control center, and control system for robot operation. The locomotor is an omni-directional platform with tether management and hydraulic power capabilities. The heavy manipulator is a high-payload, long-reach system intended to deploy tools into the work area. The heavy manipulator is capable of deploying systems such as the Dual-Arm Work Module--a five degree-of-freedom platform supporting two highly dexterous manipulators--or a single manipulator for performing simpler, less dexterous tasks. Rosie is telerobotic to the point of having servo-controlled motions which can be operated and coordinated through the control center

  11. Rosie: A mobile workstation for decontamination and dismantlement operations

    International Nuclear Information System (INIS)

    1994-01-01

    RedZone Robotics, Inc. and Carnegie Mellon University's Field Robotics Center have undertaken a contract to develop a next-generation worksystem for decommissioning and dismantlement tasks in Department of Energy (DOE) facilities. Currently, the authors are in the second phase of this three phase effort and are completing the design of the worksystem. Within this project RedZone is designing and fabricating a worksystem: Rosie. Rosie will include a locomotor, heavy manipulator, control center, and control system for robot operation. The locomotor is an omni-directional platform with tether management and hydraulic power capabilities. The heavy manipulator is a high-payload, long-reach system to deploy tools into the work area. The heavy manipulator will be capable of deploying systems such as the Dual-Arm Work Module--a five degree-of-freedom platform supporting two highly dexterous manipulators--or a single manipulator for performing simpler, less dexterous tasks. Rosie will be telerobotic to the point of having servo-controlled motions which can be operated and coordinated through the control center. This report describes the design of the systems. In phase three Rosie will be radiation-hardened and perform a demonstration in a contaminated facility

  12. The inherent advantages of delayed dismantling of decommissioning nuclear stations

    International Nuclear Information System (INIS)

    Liederman, J.M.; Saroudis, J.I.

    1985-01-01

    Recent studies in Canada pertaining to the decommissioning of the CANDU 600 MW(e) reactor have led to the development of the option of a ''static state'' condition. This alternative is based on judging risk and benefit to society considering the greatly reduced potential radiation exposure to personnel after 30 to 80 years have elapsed, following the final shutdown of the reactor. After approximately 80 to 120 years have elapsed, the decay in all systems and components (with the exception of the reactor assembly) would be such that radiation fields would be at background levels producing an environment that would be acceptable for Stage 3 decommissiong. This philosophy is based on the current engineering judgement that: - All systems, components, and structures which were associated with the nuclear processes and are radioactive, can be put into a static or storage state, and a containment function maintained at low cost for prolonged periods of between 80 to 120 years. - Between 80 to 120 years after shutdown, most of the radioactivity, except for some long lived radionuclides in the reactor vessel itself and its vault, will have naturally decayed to near releasable limits without any external intervention. - There is a lower overall risk to society in this approach, than dismantling and transporting radioactive materials prematurely. This philosophy is developed taking into consideration radiation protection, financial and risk assessment issues. The Canadian concept of dry storage of spent fuel is part of this philosophy and may be of interest to decommissioned nuclear plants of other types. 4 tables, 5 graphs

  13. Radiation protection procedures for the dismantling and decontamination of nuclear facility

    International Nuclear Information System (INIS)

    Almeida, C.C.; Garcia, R.H.L.; Cambises, P.B.S.; Silva, T.M. da; Paiva, J.E.; Carneiro, J.C.G.G.; Rodrigues, D.L.

    2013-01-01

    This work presents the operational procedures and conditions to ensure the required level of protection and safety during the dismantling and decontamination of a natural uranium purification facility at IPEN-CNEN/SP, Brazil. The facility was designed for chemical processing of natural uranium, aiming to obtain the uranyl nitrate, nuclear-grade. Afterwards, the installation operated in treatment and washing of thorium sulfate and thorium oxycarbonate dissolution, to get thorium nitrate as final product. A global evaluation of the potential exposure situation was carried out by radioprotection team in order to carry out the operations planned. For the facility dismantling, was established both measures to control the radiation exposure at workplace and individual monitoring of workers. A combination of physical, chemical and mechanical methods was used in the decontamination procedure applied in this unit. Concerning the internal operation procedures of IPEN-CNEN/SP, the radioactive waste control, the transport of the radioactive materials and authorization of use of decontaminated equipment were also subject of study. (author)

  14. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  15. Evaluation of the secondary radiation impact on personnel during the dismantling of contaminated nuclear equipment

    Directory of Open Access Journals (Sweden)

    Stankunas Gediminas

    2013-01-01

    Full Text Available The article contains a numerical analysis of the secondary radiation contribution to the total radiation affecting the operational personnel during the dismantling activities of the contaminated equipment at a nuclear power plant. This study considers a widely applicable Monte Carlo particle transport code MCNPX and real Ignalina nuclear power plant records. A simplified albedo method is investigated in order to analyze the selected geometrical design cases. Additionally, the impact of the secondary radiation on the personnel dose was analyzed. The numerical MCNPX simulation allowed ascertaining the optimal distance between the source and the wall for the working personnel in closed rooms with contaminated equipment. The developed dose rate maps of the secondary radiation showed cross-sectional distribution of the dose rate inside the enclosed area.

  16. The challenges of dismantling

    International Nuclear Information System (INIS)

    Sene, Monique; Lheureux, Yves; Leroyer, Veronique; Rollinger, Francois; Gauthier, Florence; Depauw, Denis; Reynal, Nathalie; Fraysse, Thierry; Burger, Eric; Bertrand, Adrien; Vallat, Christophe; Bernet, Philippe; Eimer, Michel; Boutin, Dominique; Bietrix, Philippe; Richard, Francoise; Piketty, Laurence; Mouchet, Chantal; Charre, Jean-Pierre

    2014-01-01

    This document gathers Power Point presentations which address the contexts and challenges of dismantling (legal framework, safety and radiation protection challenges, waste processing industry), and propose illustrations of dismantling challenges (example of operations to prepare EURODIF dismantling and CLIGEET work-group on EURODIF dismantling, examples of dismantling of EDF installations and CLIs' opinion on the dismantling of EDF installations, Brennilis dismantling follow-up performed by the CLI, examples of dismantling of CEA installations and opinion of a CLI on the dismantling of CEA installations)

  17. EDF decommissioning and dismantling policy a global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Rondeau, J.

    2001-01-01

    Until recently, EDF's policy regarding the dismantling of its decommissioned nuclear power plants was to reach 'level 2' (release of non-nuclear facilities) and to postpone final dismantling for another 30-40 years. Today, some studies suggest that a full deconstruction program of the first generation NPPs (9 units) could be optimized over the period 2000 - 2025. EDF has acquired during the last ten years an unique experience, both as an operator and as an engineering company, in the frame of the decommissioning programme of its own NPPs. Many types of reactors, including graphite moderated one, PWR, are at varying stages of the dismantling process.Plant operation quality is at the core of a satisfactory control of releases. Over the last decade, as a result of the efforts of all operating sites associated with good in-house operating practice feedback, the overall release volume has been divided by two, and the release activity by one hundred. Another issue given increased attention is radiological cleanliness. EDF-DPN launched a 'radiological cleanliness' action plan revolving around two main themes: increased monitoring of nuclear-related transportations, site entrance and access to controlled areas, along with on-site radiological cleanliness, particularly during maintenance work tasks. Progress is already apparent in several points at issue and the overall objective of the action plan should be attained. (author)

  18. Reform of reserve requirements for nuclear decommissioning, dismantling and disposal

    International Nuclear Information System (INIS)

    Meyer, Bettina; Kuechler, Swantje; Wronski, Rupert

    2015-01-01

    This article reports on the ongoing intense discussion as to whether the financial reserves of nuclear power plant operators are sufficient. It starts out with an overview of the current scientific and political debate. This is followed by a brief analysis of nuclear financial reserves in 2014 and preceding years. The authors then present the reform concept of the Forum Oekologisch-Soziale Marktwirtschaft (FOes) and go on to compare it with concepts from the political realm.

  19. Decommissioning and dismantling of nuclear research facilities in Switzerland: lessons learned

    International Nuclear Information System (INIS)

    Leibundgut, Fritz

    2017-01-01

    Paul Scherrer Institute is the largest research institute for natural and engineering science in Switzerland. It operated various nuclear facilities from 1960 to 2011: Research reactors DIORIT, SAPHIR and PROTEUS, and an incineration plant for low and medium level radioactive waste. Concerning SAPHIR research reactor: in operation from 1958 to 1993, planning of decommissioning from 1998 to 2000. Decommissioning work started in 2004. Finishing is planned for 2019. Concerning DIORIT research reactor: operation as DIORIT I (20 MWth) from 1960 to 1967, then reconstruction to DIORIT II (30 MWth) and operation from 1970 until 1977. Planning of decommissioning from 1992 to 1994. Decommissioning work started in 1994 and was finished in 2012. Concerning PROTEUS research reactor: in operation from 1966 to 2011. Planning of decommissioning from 2013 to 2014. Starting of decommissioning work is planned for 2017, finishing is planned for the end of 2018 Incineration plant: In operation from 1974 to 2002. Planning of decommissioning from 2011 to 2012. Starting of decommissioning work in 2016. Finishing planned for end of 2019. Treatment of various material categories from dismantling: Concerning aluminum: because of the production of H 2 during solidification in concrete, it was necessary to minimize the surface area. When dismantling research reactors, the aluminum removed was melted in an induction furnace and poured into a 4.5 m 3 concrete container to solidify. Cutting the metal and handling it was largely accomplished remote control, using conventional technology. Concerning Steel/Cast-iron: the storage containers to be filled determined the method used for reducing the size of these materials, and the technique used for handling them. The goal was to optimize the packing density to reduce repository costs. The selected method of reducing the size of components is to cut them up using diamond-tipped tools, like saw blades. Concerning Graphite: for graphite, grinding was the

  20. Status and perspectives of the dismantling of nuclear power plants in Germany (Dismantling monitoring 2015); Stand und Perspektiven des Rueckbaus von Kernkraftwerken in Deutschland (''Rueckbau-Monitoring 2015'')

    Energy Technology Data Exchange (ETDEWEB)

    Wealer, Ben; Seidel, Jan Paul [Technische Univ. Berlin (Germany); Gerbaulet, Clemens; Hirschhausen, Christian von [Technische Univ. Berlin (Germany); Deutsches Institut fuer Wirtschaftsforschung, Berlin (Germany)

    2015-11-15

    The dismantling monitoring 2015 covers the nuclear power plants HDR Grosswelzheim, Niederaichbach (KKN), MZFR Karlsruhe, Lingen (KWL), Gundremmingen unit A (KRB-A), VAK Kahl, Muehlheim-Kaerlich (KMK), THTR-300 Hamm-Uentrop, AVR Juelich, Greifswald (KGR 1-5), KNK II Karlsruhe, Rheinsberg (KKR), Wuergassen (KWW), Stade (KKS), Obrigheim (KWO), SNR 300. The post-operational phase activities of other shut-down nuclear power plants and the active companies are summarized.

  1. Dismantling of the nuclear premises; Le demantelement des installations nucleaires. Strategie pour le demantelement. La deconstruction d'EL 4: organisation et mise en oeuvre. Les operations d'arret de Chinon A3 et son demantelement partiel. Un premier demantelement d'une usine de retraitement: l'usine UP1 de Marcoule. Les projets en cours au CEA. Un cas particulier: le demantelement des sous-marins nucleaires francais. La R and D sur le demantelement. La prise en compte du demantelement lors de la Conception de l'EPR. Le demantelement: le point de vue d'une entreprise qui realise. Le stockage des dechets radioactifs issus du demantelement des installations nucleaires. L'ingenierie de demantelement a l'international. Un bilan des experiences etrangeres

    Energy Technology Data Exchange (ETDEWEB)

    d' Escatha, Y. [CEA, 75 - Paris (France); Reynard, P. [CEA Sites des Monts d' Arree, 29 - La Feuillee (France); Desbazeille, Y.; Lubawy, J.L. [Electricite de France (EDF), 75 - Paris (France); Duboc, G. [Electricite de France (EDF), 75 - Paris (France); Rolland, P. [Codem (France); Pradel, Ph. [Cogema, 78 - Velizy-Villacoublay (France); Lambert, F. [CEA DSNQ (France); Buzonniere, A. de; Robin, B. [Technicatome, CEA Saclay, 91 - Gif-sur-Yvette (France); Carrere, J.M. [CEA, 75 - Paris (France); Dumont, A. [Esic, Espace Industrie Controles, 50 - Cherbourg (France); Gendreau, F.; Destrait, L. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France); Larue, F.; Mahaud, G. [FRAMATOME, 92 - Paris-La-Defence (France); Rottner, B. [ONECTRA (France); Perotin, J.P. [Societe des Techniques en Milieu Ionisant (STMI), 91 - Gif-sur-Yvette Cedex (France); Jousselin, D. [Andra, 92 - Chatenay-Malabry (France); Poirier, J. [CEA, 75 - Paris (France)

    1998-06-01

    This issue gives a thorough overview of the dismantling (or 'disassembly') policy followed in France for the nuclear premises and of the actions already undertaken. In addition to the general articles on the various dismantling strategies and on R and D in this field, some articles are devoted to concrete examples of past and current operations. Some dismantling operations carried out abroad are also dealt with. (author)

  2. Foam decontamination of large nuclear components before dismantling

    International Nuclear Information System (INIS)

    Costes, J.R.; Sahut, C.

    1998-01-01

    Following some simple theoretical considerations, the authors show that foam compositions can be advantageously circulated them for a few hours in components requiring decontamination before dismantling. The technique is illustrated on six large ferritic steel valves, then on austenitic steel heat exchangers for which the Ce(III)/Ce(IV) redox pair was used to dissolve the chromium; Ce(III) was reoxidized by ozone injection into the foam vector gas. Biodegradable surfactants are sued in the process; tests have shown that the foaming power disappears after a few days, provided the final radioactive liquid waste is adjusted to neutral pH, allowing subsequent coprecipitation of concentration treatment. (author)

  3. Safe organization of nuclear phase-out. Why Germany needs nuclear competence for dismantling, reactor safety, final waste storage and radiation protection

    International Nuclear Information System (INIS)

    2011-01-01

    As a consequence of the catastrophic accidents in Fukushima Daiichi Germany is the first industrial country in the world that decided the nuclear phase- out within the next decade. This decision implies that the operation of the remaining nuclear power plants has to be performed according to the highest safety standards. Apart from that the dismantling of the decommissioned nuclear power plants and the still not resolved radioactive waste disposal will keep the society in action for the next decades. The book covers the actual status with respect to the need of nuclear competence to cope with the mentioned challenges. [de

  4. Remote dismantlement tasks for the CP5 reactor: Implementation, operations, and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Noakes, M.W.

    1998-11-01

    This paper presents a developer`s perspective on lessons learned from one example of the integration of new prototype technology into a traditional operations environment. The dual arm work module was developed by the Robotics Technology Development Program as a research and development activity to examine manipulator controller modes and deployment options. It was later reconfigured for the dismantlement of the Argonne National Laboratory Chicago Pile {number_sign}5 reactor vessel as the crane-deployed dual arm work platform. Development staff worked along side operations staff during a significant part of the deployment to provide training, maintenance, and tooling support. Operations staff completed all actual remote dismantlement tasks. At the end of available development support funding, the Dual Arm Work Platform was turned over to the operations staff, who is still using it to complete their dismantlement tasks.

  5. Polychlorinated biphenyls (PCBs) in the frame of the dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Hagenbart, Lars; Held, Christian; Reichert, Alexander

    2013-01-01

    During construction and maintenance of nuclear facilities PCB (polychlorinated biphenyls) containing paints were used in a large extent in the past. The WAK dismantling and disposal Company has dismantles such facilities and identified the PCB in the buildings. Besides the radionuclides the conventional hazardous material group of the PCBs has also to be disposed. The respective legal regulations have to be considered. In the frame of the contribution the radiological release of building structures with respect to re-use or demolition and residual PCB containing materials is discussed. The radiological disposal in final repositories and the conventional disposal regulations for releasable residual wastes are reported.

  6. Health and Safety Considerations Associated with Sodium-Cooled Experimental Nuclear Fuel Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Carvo, Alan E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Between the mid-1970s and the mid-1980s Sandia National Laboratory constructed eleven experimental assemblies to simulate debris beds formed in a sodium-cooled fast breeder reactor. All but one of the assemblies were irradiated. The experimental assemblies were transferred to the Idaho National Laboratory (INL) in 2007 and 2008 for storage, dismantlement, recovery of the uranium for reuse in the nuclear fuel cycle, and disposal of unneeded materials. This paper addresses the effort to dismantle the assemblies down to the primary containment vessel and repackage them for temporary storage until such time as equipment necessary for sodium separation is in place.

  7. Expertise of the Oeko-Institute on the application to obtain permission to partially dismantle the Niederaichbach nuclear power plant

    International Nuclear Information System (INIS)

    1985-01-01

    This expertise gives an overview on the problems associated with the decommissioning and dismantling of the Niederaichbach nuclear power plant, considering technical and legal aspects. It wants to prove that the dismantling of this reactor cannot serve as evidence to prove the general feasibility of reactor dismantling. Much space is dedicated to the discussion about where the borderline should be drawn between radioactive and non-radioactive materials according to the ordinance on radiation protection. The reasons for rejecting the partial dismantling application are given. (DG) [de

  8. The role of congress in future disposal of fissile materials from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Donnelly, W.H.; Davis, Z.S.

    1991-01-01

    Assuming the Soviet Union remains intact as a major power and the superpowers do not retrogress to a new Cold War era, it is likely that the United States and the Soviet Union will eventually agree to deep cuts in their nuclear arsenals. Future arms control agreements may be coupled with companion agreements to stop production of fissile materials for nuclear weapons, to dismantle the warheads of the nuclear weapons, and to dispose of their fissile materials to prevent reuse in new warheads. Such agreements would be negotiated by the U.S. executive branch but probably would require ratification, funding, and enabling legislation from the U.S. Congress if they are to succeed. There follows a brief review of the ideas for disposal of fissile materials from dismantled nuclear warheads and the potential role and influence of the Congress in the negotiation, ratification, and implementation of U.S.-Soviet agreements for such disposal

  9. Radiological impact of very slightly radioactive copper and aluminium recovered from dismantled nuclear facilities

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.; Cahuzac, O.; Guetat, P.; Haristoy, D.; Renaud, P.

    1991-01-01

    This work is in keeping with a large evaluation of doses likely to be received by public and non nuclear workers when dismantling nuclear installations. A bibliographic study and inquiries are realized, in the nuclear field to evaluate quantities of very slightly radioactive materials, in the conventional copper and aluminium recovery fields: waste recovery, metal refinery and processing, occupational or domestic uses of the metals or their alloys. In fact copper and aluminium waste arising from the dismantling of nuclear installations are mainly electrical cables constituents including insulation material which is mainly polyvinyle chloride (PVC). Estimated quantities are relatively low compared to steel quantities arising from dismantling. The study is based on the hypothesis of two PWRs dismantled per year, estimated quantities are 200 tonnes of copper, 40 tonnes of aluminium and 500 tonnes of PVC. A special case is also studied, which is the dismantling of low and medium uranium enrichment plant in Pierrelatte (France); the plant pipework is mainly made of an aluminium and magnesium alloy: AG3. From these informations, one can define exposure scenarios which may occur with a non negligible probability. The doses likely to be received under the foreseen conditions are calculated. Reference doses are established from recommendations of international organisations as ICRP, IAEA, NEA. Comparing the calculated doses and the reference doses, the activity level of the initial waste can be deduced as to follow the recommendations. The mean specific activity of main beta-gamma emitters in copper, aluminium and PVC are of the same order of magnitude, 10Bq.g -1 . In the case of alpha emitters specific activity levels depend on the material and on the radionuclide, from 2 Bq.g -1 to 10 Bq.g -1 in copper, from 10 Bq.g -1 to 50 Bq.g -1 in aluminium

  10. For a public management of funds dedicated to nuclear dismantling: the TESEN (fund for the Energy transition and a fair phasing out nuclear), and its assignment to the financing of energy transition

    International Nuclear Information System (INIS)

    Autissier, Isabelle; Germa, Philippe

    2013-01-01

    The report outlines that the cost of nuclear energy in France is largely under-assessed because of the under-evaluation of the future dismantling of nuclear installations and of the management of radioactive wastes. It outlines that provisions made for this dismantling are insufficient, opaque and very risky. This report proposes the creation of a fund independent from nuclear operators to make pay the actual cost of nuclear energy and reduce the French electrical dependence on this energy, to secure long-term financing to finance the dismantling, to bring the financing for the decades to come to finance energy transition, to finance energy transition at reasonable rates, and to clarify the governance for phasing out nuclear

  11. BRET fuel assembly dismantling machine

    International Nuclear Information System (INIS)

    Titzler, P.A.; Bennett, K.L.; Kelley, R.S. Jr.; Stringer, J.L.

    1984-08-01

    An automated remote nuclear fuel assembly milling and dismantling machine has been designed, developed, and demonstrated at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The machine can be used to dismantle irradiated breeder fuel assemblies from the Fast Flux Test Facility prior to fuel reprocessing. It can be installed in an existing remotely operated shielded hot cell facility, the Fuels and Materials Examination Facility (FMEF), at the Hanford Site in Richland, Washington

  12. The market of nuclear plant dismantling. The new EDF's strategy, process standardisation, robotization: which perspectives for the market by 2030?

    International Nuclear Information System (INIS)

    2017-09-01

    Dismantling appears as the most promising activity in the nuclear sector due to ageing plants, to ambitious objectives of reduction of the nuclear share in the energy mix, or to high expertise of French companies in robotic and digital solutions for deconstruction in radioactive environments. However, the development of the dismantling market depends on EDF decisions: the extension of nuclear reactor lifetime postpones the development of this market. In this context, this study aims at giving an anticipated view of the plant dismantling market by 2030, at deciphering growth levers for the sector actors, and at understanding the sector operation and the business model of operators. Thus, the report presents the main components of the market (key figures, dismantling types, dismantling steps, sector ecosystem, barriers to enter the market, costs, contractual relationships), proposes an analysis of the market and of its perspectives (situation in France, and at the world level, predictive scenario for 2030), and discusses the development axes and demand evolutions (robotization and digitalisation, elaboration of standardised processes, management of wastes produced by nuclear dismantling, internationalisation of French actors). It also proposes an overview of actors in France, and identity sheets for commissioners (EDF, New Areva), contractors (Onet, Vinci, Engie), and other actors (Veolia, Assystem, Ortec, Cybernetix, Oreka Group). The last part proposes synthetic sheets for more than 110 companies of the sector (general information, management and financial performance data under the form of tables and figures) and comparative tables according to 5 key indicators. Data are presented for a period ranging from 2010 to 2016

  13. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  14. Manually-Operated Crate Dismantlement System for Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Laffitte, John; Lagos, Leo; Morales, Miguel

    2002-01-01

    Los Alamos National Laboratory currently possesses between 500 and 800 fiberglass-reinforced plywood crates that contain hazardous materials that need to be decontaminated. To access the hazardous material, a system is needed to dismantle the crate. Currently, crates are dismantled by workers using hand-held tools. This technique has numerous disadvantages. One disadvantage is that it is difficult for a worker to hold the tool for an extended period of time in the awkward angles and positions necessary to fully size-reduce the crate. Other disadvantages of using hand tools include managing power cords and vacuum hoses, which become entangled or can act as tripping hazards. In order to improve the crate opening and size-reduction task, Florida International University's Hemispheric Center for Environmental Technology (HCET) is developing a manually operated crate dismantlement system. This versatile system is expected to greatly increase worker efficiency while decreasing fatigue and the possibility of accidents. (authors)

  15. Management of wastes from dismantled nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The problems associated with the management of radioactive wastes encountered in the dismantling of a 1200MWe PWR reactor are considered. It is possible to extend all the conclusions reached in these studies to BWR's or other reactors of the same type using light water as a coolant and moderator. The studies performed established the specific characteristics of these wastes: a gamma activity due essentially to 60 Co (after some fifty years this radioisotope will have decayed sufficiently to enable it to be stored without shielding); the presence of 63 Ni and 59 Ni (these long half-life beta emitting radioisotopes need to be stored over a long or even indefinite period of time); contaminated components (60% of the overall wastes), the reselling of these components involving costly decontamination processes. Extensive studies have been conducted on the management and handling of these wastes: packaging, transport, processing, storage and a great many techniques have been developed. However, further developments in concentration methods (fusion, crushing, cryogenics etc) and the selection of storage sites for this type of waste are necessary. Depending on the solutions chosen, the global cost of the wastes coming from a 1200 MW PWR reactor can vary between 10 and 20 million BFR

  16. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A. [NIPTB Onega OAO, Severodvinsk (Russian Federation); Abramov, Andrey N. [FGUP ' Atomflot' , Murmansk (Russian Federation)

    2013-07-01

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices of the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)

  17. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  18. Nuclear dismantling and asbestos elimination: the same challenge?

    International Nuclear Information System (INIS)

    Dadoumont, J.; Deboodt, P.

    1998-01-01

    The ALARA principle constitutes a powerful tool for workers dosimetry management in the nuclear field. A consequence of the application of this principle could be an accentuation of the nuclear risk face to the industrial risk. Using works of asbestos elimination in nuclear medium, the present article examines how a generalization of the utilization of the ALARA principle is conceivable and how the existing obstacles could be removed. (N.C.)

  19. A process for separating aggregate from concrete waste during the dismantlement of nuclear power plants

    International Nuclear Information System (INIS)

    Koga, Yasuo; Inoue, Toshikatsu; Tateyashiki, Hisashi; Sukekiyo, Mitsuaki; Okamoto, Masamichi; Asano, Touichi.

    1997-01-01

    The decommissioning and dismantling of nuclear power plants will produce a large quantity of non-active waste concrete. From the viewpoint of recycling of this waste concrete the recovery of aggregate contained in concrete at 80% and reuse of it into a new plant construction are envisioned. For these purposes we have studied the recovery process of aggregate from concrete composed of a heating step followed by a milling step onto waste concrete blocks. We have found that higher operation temperature brings a better effect for the separation of aggregate from a concrete body, however too high temperature may reversely degrade a quality of recovered aggregate itself. The most effective heating temperature which is considered not to give the damage to a quality of aggregate stays between 200-500degC. The effect of a duration at such temperature zone is relatively small. As a conclusion we have found that 300degC of heating temperature and 30-120 minutes of a duration in a rod mill with high efficiency of rubbing work for getting coarse aggregate and an agitate mill for fine aggregate might be proper operating conditions under which we can recover both coarse and fine aggregate with the quality within JASS 5N standard. (author)

  20. Control of radioactive waste in dismantling of a nuclear facility; Control de residuos radiactivos en desmantelamiento de una instalacion nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Campayo, E.

    2014-07-01

    In the dismantling of a nuclear facility are generated radioactive waste that must be suitably processed. The overall process, in a simplified manner, contemplates the characterization in origin, their segregation on the basis of physical, mechanical, and radiological characteristics and their packaging. (Author)

  1. Radiation protection during backfitting or dismantling work in the controlled area of nuclear facilities

    International Nuclear Information System (INIS)

    Baumann, J.; Kausch, S.; Palmowski, J.

    1980-01-01

    Backfitting measures or dismantling activities within the controlled area put special requirements on radiological protection. This is to be shown by the example of the following cases. Sanitation of the general decontamination services of the Karlsruhe Nuclear Research Center; waste water, equipment decontamination, incineration and packaging facility; dismantling and disposal of high-radiation components including decontamination of buildings of the Eurochemic reprocessing plant at Mol; reconstruction of the HDR plant for safety experiments together with waste management for components and systems, as e.g. pressure vessel internals, pipes etc.; exchange of the steam dryer and the water separator including planning of the conditioning process in the Wuergassen nuclear power plant. This lecture deals with the engineering and organizational problems, especially accounting for radiological protection and enters into planning of measures for radiological protection, their organization and execution, problems of direct and remote-controlled work also being discussed. The question of personnel qualification is also commented on. (orig.) [de

  2. Decommissioning and dismantling of nuclear installations within the responsibility of the Federal Ministry of Education, Science, Research, and Technology (BMBF) - current situation, costs and perspectives

    International Nuclear Information System (INIS)

    Komorowski, K.; Meuresch, S.

    1995-01-01

    After the first nuclear energy programme was announced in 1956, the German Federal Government spent about DM 29 billion on the promotion of nuclear engineering up to and including the year 1994, primarily on cooperation in experimental and demonstration facilities as well as on research and development projects. The majority of these installations were constructed and commissioned in the period from 1960 to 1980. They comprise prototype and demonstration plants, research and test reactors and smaller facilities at national research centres as well as a research mine. The facilities are all located in the territory of the old federal states. Some of them are now out of operation, dismantled or ready for dismantling. For public future acceptance of nuclear energy in Germany it is of considerable significance to demonstrate, in practice, environmentally compatible and low-cost decommissioning and dismantling techniques. This report surveys the state of the art in decommissioning and dismantling, and of the financing of obsolete nuclear facilities under the responsibility of the Federal Ministry of Education, Science, Research and Technology (BMBF). (Author)

  3. Project management for the decommissioning and dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Klasen, Joerg; Wilhelm, Oliver; Seizer, Burkhard; Schuetz, Tobias

    2015-01-01

    The decommissioning of nuclear power plants is executed in a classic project manner as it is known from other construction projects. It is obvious to use the known portfolio of project management tools. The complexity that is created by the large size of the project in combination with safety requirements of the nuclear industry has to be handled. Complexity can only be managed addressing two main drivers: Prioritization and speed (agility) in project execution. Prioritization can be realized by applying tools like Earned Value Management. A high speed of project execution is established by applying Agile Management like SCRUM-methods. This method is adopted in the context of the cooperation ''Complex Projects'' to the needs of nuclear industry.

  4. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion.

  5. The management of radioactive wastes and the dismantling of nuclear installations in Spain

    International Nuclear Information System (INIS)

    Bouchet, Bertrand

    2014-08-01

    This report first presents the Spanish institutional framework, briefly presents the multi-year national plan of management of radioactive wastes, and indicates the origin and volume of radioactive wastes produced in Spain. It addresses the management of low and medium level wastes, the case of spent fuel and high level wastes (storage in pool and installations of temporary warehousing, project of a centralized temporary storage, the question of definitive management), and proposes an overview of R and D activities in the different domains of waste management in Spain: waste technology, technologies and processes of treatment, packaging and dismantling, materials and containment systems, behaviour and safety assessment, radiological protection and associated modelling, infrastructure and cooperation. The two last parts briefly address the funding of waste management and the dismantling of nuclear installations

  6. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion

  7. Robots in dismantling

    International Nuclear Information System (INIS)

    Grandjean, J.P.; Lambert, F.; Streiff, G.

    1995-01-01

    Because of personnel radiologic hazards, dismantling of most nuclear installations cannot be considered without robots use. Robot solutions have been used for fifteen years by the Nuclear Installation Dismantling Unit of the CEA to carry out projects of level 3 (i.e. removal of all radioactivity from the installations). PIADE and ATENA carriers and MA23 and RD500 manipulators have largely contributed to the success of ELAN IIB and AT1 projects. The experience benefits of these projects has led the CEA to propose new research programs to test a new hydraulic arm and more changeable and lighter carriers. In future projects, the use of computerized simulation and more powerful remote viewing equipments for tool control and irradiation points locating will improve the training and comfort of operators. The use of modeling in connection with new control systems, such as TAO2000, will allow more complete automatic cutting and handling operations. (J.S.). 7 figs., 1 tab

  8. Some regulation aspects in dismantling

    International Nuclear Information System (INIS)

    Niel, J.C.

    1993-01-01

    In the French regulation framework, operations linked to dismantling are controlled by an overall technical and legislative system applied to all the different stages of the facility (commissioning, etc.). Government control on facilities under dismantling is aimed at dismantling operation safety and security, and dismantling waste processing in order to ensure public and environmental protection

  9. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Management of JPDR dismantling waste

    International Nuclear Information System (INIS)

    Abe, Masayoshi; Nakata, Susumu; Ito, Shinichi

    1996-01-01

    The management of wastes, both radioactive and non-radioactive, is one of the most important issues for a safe and reasonable dismantling operation of nuclear power plants. A large amount of radioactive wastes is arising from a reactor dismantling operation in a relatively short period time, ranging in a wide variety from very low level to relatively high level. Moreover non-radioactive waste is also in a huge amount. The dismantling operation of Japan Power Demonstration Reactor (JPDR) resulted in 24,440 tons of dismantling wastes, of which about 15% was radioactive and 85% non-radioactive. These wastes were managed successfully implementing a well developed management plan for JPDR dismantling waste. Research and development works for handling of JPDR dismantling wastes were performed, including fixation of loose contamination on surface, volume reduction and waste containers for on-site transportation and interim storage. The JPDR dismantling wastes generated were classified and categorized depending on their materials, characteristics and activity level. Approximately 2,100 tons of radioactive wastes were stored in the interim storage facilities on site using developed containers, and 1,670 tons of radioactive concrete waste were used for a safe demonstration test of a simple near-surface disposal for very low level waste. Other dismantling wastes such as steel and concrete which were categorized as non-radioactive were recycled and reused as useful resources. This paper describes the management of the JPDR dismantling wastes. (author)

  10. Electromagnetic Signature Technique as a Promising Tool to Verify Nuclear Weapons Storage and Dismantlement under a Nuclear Arms Control Regime

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.; Ramuhalli, Pradeep

    2012-08-01

    The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without the use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.

  11. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Migliorati, B.; Difino, M.; Manassero, G.

    1990-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (Fiat-CIEI and Fiat-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: (i) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; (ii) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; (iii) study of long-distance transmission of the laser beam power performed with a 5KW laser source with an evaluation of the power loss and beam characteristic modifications; (iv) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long-distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme

  12. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1991-02-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: 1) study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; 2) study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; 3) study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; 4) study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components. Although the main aspects of the laser cutting process have been examined, some problems remain to be investigated. This could be performed, after proper cost-benefit evaluation, during a future decommissioning programme. (author)

  13. Automatic Estimation of the Radiological Inventory for the Dismantling of Nuclear Facilities

    International Nuclear Information System (INIS)

    Garcia-Bermejo, R.; Felipe, A.; Gutierrez, S.; Salas, E.; Martin, N.

    2008-01-01

    The estimation of the radiological inventory of Nuclear Facilities to be dismantled is a process that included information related with the physical inventory of all the plant and radiological survey. Estimation of the radiological inventory for all the components and civil structure of the plant could be obtained with mathematical models with statistical approach. A computer application has been developed in order to obtain the radiological inventory in an automatic way. Results: A computer application that is able to estimate the radiological inventory from the radiological measurements or the characterization program has been developed. In this computer applications has been included the statistical functions needed for the estimation of the central tendency and variability, e.g. mean, median, variance, confidence intervals, variance coefficients, etc. This computer application is a necessary tool in order to be able to estimate the radiological inventory of a nuclear facility and it is a powerful tool for decision taken in future sampling surveys

  14. Proposed radiation hardened mobile vehicle for Chernobyl dismantlement and nuclear accident response

    International Nuclear Information System (INIS)

    Rowland, M.S.; Holliday, M.A.; Karpachov, J.A.

    1995-01-01

    Researchers are developing a radiation hardened, Telerobotic Dismantling System (TDS) to remediate the Chernobyl facility. To withstand the severe radiation fields, the robotic system, will rely on electrical motors, actuators, and relays proven in the Chernobyl power station. Due to its dust suppression characteristics and ability to cut arbitrary materials the authors propose using a water knife as the principle tool to slice up the large fuel containing masses. The front end of the robot will use a minimum number of moving parts by locating most of the susceptible and bulky components outside the work area. Hardened and shielded video cameras will be designed for remote control and viewing of the robotic functions. Operators will supervise and control robot movements based on feedback from a suite of sensory systems that would include vision systems, radiation detection and measurement systems and force reflection systems. A gripper will be instrumented with a variety of sensors (e.g. force, torque, or tactile), allowing varying debris surface properties to be grasped. The gripper will allow the operator to manipulate and segregate debris items without entering the radiologically and physically dangerous dismantlement operations area. The robots will initially size reduce the FCM's to reduce the primary sources of the airborne radionuclides. The robot will then remove the high level waste for packaging or decontamination, and storage nearby

  15. I.Care.fire. EDP-supported dynamic fire-protection concept adaptation in the course of dismantling nuclear facilities

    International Nuclear Information System (INIS)

    Mummert, Maxi; Traichel, Anke

    2015-01-01

    Through the political resolution to terminate the use of nuclear energy, the number of dismantling projects in the nuclear area will significantly increase in the years to come. In the course of dismantling, the buildings and plant measures for fire protection will change constantly, this means that the existing fire-protection concept of the plant must be subjected to ongoing adaptation. This adaptation is based on preparation of fire load lists and execution of safety analyses. Previously this adaptation was executed manually, this was both time-intensive and personnel-intensive. The transition to EDP-supported fire protection should occur with the aid of adaptive fire-protection design to optimise adaptation of the fire protection. This adaptive fire protection design, with the aid of a software tool, enables electronic recording of the fire load lists, automatic execution of safety analyses and facilitation of dismantling steps relative to fire protection.

  16. Decommissioning and dismantling of nuclear and fuel cycle facilitites in Spain

    International Nuclear Information System (INIS)

    Gravalos, J.M.; Alamo, S.

    1992-01-01

    In the recent past, and as a consequence of a fire in the turbine island of the Vandellos I Graphite Gas type Nuclear Plant, which damaged the facility to a point that recovery was not judged economically feasible, the authorities decided on the final shutdown of the plant. Several studies were performed in order to select the dismantling strategy to be adopted. In spite of Valdellos I being the first commercial reactor to be decommissioned in Spain, several research reactors and fuel cycle facilities, which have reached the end of their commercial lives, are at present at different stages of their dismantling and decommissioning process as is described further. The development of an exemption policy for below regulatory concern wastes is considered a very significant issue regarding decommissioning as it has a large impact on radioactive waste volumes, and thus on costs. Aware of this problem ENRESA together with Spanish regulatory authorities are working in close cooperation with CEC research programs to complete the development of criteria and methodologies for the application of exemption practices in Spain

  17. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  18. Progress toward mutual reciprocal inspections of fissile materials from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Johnson, M.W.; Gosnell, T.B.

    1995-01-01

    In March 1994, the United States and the Russian Federation announced their intention to conduct mutual reciprocal inspections (MRI) to confirm inventories of fissile materials from dismantled nuclear weapons. Subsequent interactions between the two countries have established the basis for an MRI regime, covering instrumentation, candidate sites for MRI, and protection of information deemed sensitive by the countries. This paper discusses progress made toward MRI, stressing measurement technologies and observables, as well as prospects for MRI implementation. An analysis is presented of observables that might be exploited to provide assurance that the material being measured could have come from a dismantled weapon rather than other sources. Instrumentation to exploit these observables will also be discussed, as will joint US/Russian efforts to demonstrate such instrumentation. Progress toward a so-called ''program of cooperation'' between the two countries in protecting each other's sensitive information will be reviewed. All of these steps are essential components of an eventual comprehensive regime for controlling fissile materials from weapons

  19. Identification of economizing potentials in decommissioning and dismantling of German nuclear installations

    International Nuclear Information System (INIS)

    Weil, L.

    2000-01-01

    The study covers nuclear installations in Germany that belong to the responsibility of the Federal Government or Land governments and have been decommisioned, or are earmarked for decommissioning. These installations include zero power reactors (training reactors) and research reactors as well as power reactors, reprocessing plants and hot cells. Both the Federal Government and the Land governments are looking for measures to minimize the cost for dismantling and waste management, as the estimated expenses to be paid from public funds amount to a total of approx. DM 18 billion. The study was to review the required dismantling and waste management activities for identifying economizing potentials. The installations examined for this purpose are: 1. the VVER power reactors of EWN at Greifswald, 2. the Braunschweig research and mesuring reactor (FMRB) of PTB Braunschweig, 3. the MERLIN research reactor of Juelich Research Center (FZJ), 4. the AVR reactor of Arbeitsgemeinschaft Versuchsreaktor (AVR) GmbH, 5. the sodium-cooled reactor KNK II of Karlsruhe Research Center (FZK), 6. the reprocessing plant (MILLI) of FZK, 7. the Rossendorf research reactor (RFR) of Verein f. Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), 9. the installations for molybdenum production (AMOR) of the VKTA at Rossendorf. It is expected that the results elaborated with this study can be used as a datapool and general basis for suitably modified application for other installations. (orig./CB) [de

  20. The AIDA-MOX 1 program: Results of the French-Russian study on peaceful use of plutonium from dismantled Russian Nuclear weapons

    International Nuclear Information System (INIS)

    Yegorov, N.N.; Kudriavtsev, E.; Poplavsky, V.; Polyakov, A.; Ouin, X.; Camarcat, N.; Sicard, B.; Bernard, H.

    1997-01-01

    The Intergovernmental Agreement signed on November 12, 1992, between the governments of France and the Russian Federation instituted cooperation between the two countries for the safe elimination of the excess Russian nuclear weapons. France has allocated 400 million francs to this program, covering transportation and dismantling of nuclear weapons, interim storage and subsequent commercial use of the nuclear materials from the dismantled weapons, nuclear materials accountancy and safeguards, and scientific research. The concept of loading commercial Russian reactors with fuel fabricated from the plutonium recovered from dismantled nuclear weapons of the former Soviet Union is gaining widespread acceptance, and is at the heart of the French-Russian AIDA/MOX project

  1. CP-5 reactor remote dismantlement activities: Lessons learned in the integration of new technology in an operations environment

    Energy Technology Data Exchange (ETDEWEB)

    Noakes, M.W.

    1998-06-01

    This paper presents the developer`s perspective on lessons learned from one example of the integration of new prototype technology into a traditional operations environment. The dual arm work module was developed by the Robotics Technology Development Program as a research and development activity to examine manipulator controller modes and deployment options. It was later reconfigured for the dismantlement of the Argonne National Laboratory Chicago Pile No. 5 reactor vessel as the crane-deployed dual arm work platform. Development staff worked along side operations staff during a significant part of the deployment to provide training, maintenance, and tooling support. Operations staff completed all actual remote dismantlement tasks. At the end of available development support funding, the Dual Arm Work Platform was turned over to the operations staff, who are still using it to complete their dismantlement tasks.

  2. The dismantling of nuclear installations and the radioactive wastes management. Report of the President of the Republic followed by the answers of concerned administrations and organisms

    International Nuclear Information System (INIS)

    2005-01-01

    The discussed subjects concerns the situation and the challenges of the nuclear installations dismantling and the radioactive wastes management (main intervenors, panorama of the situation, rules applied to the dismantling and the radioactive wastes), the first experiences of dismantling and radioactive wastes disposal (experiences at the CEA and EDF, implementing of solutions for the disposal), interrogations and certainties (provision for future expenses, public information). (A.L.B.)

  3. Evaluation of scheduling problems for the project planning of large-scale projects using the example of nuclear facility dismantling; Evaluation von Schedulingproblemen fuer die Projektplanung von Grossprojekten am Beispiel des kerntechnischen Rueckbaus

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Felix; Schellenbaum, Uli; Stuerck, Christian; Gerhards, Patrick; Schultmann, Frank

    2017-05-15

    The magnitude of widespread nuclear decommissioning and dismantling, regarding deconstruction costs and project duration, exceeds even most of the prominent large-scale projects. The deconstruction costs of one reactor are estimated at several hundred million Euros and the dismantling period for more than a decade. The nuclear power plants built in the 1970s are coming closer to the end of their planned operating lifespan. Therefore, the decommissioning and dismantling of nuclear facilities, which is posing a multitude of challenges to planning and implementation, is becoming more and more relevant. This study describes planning methods for large-scale projects. The goal of this paper is to formulate a project planning problem that appropriately copes with the specific challenges of nuclear deconstruction projects. For this purpose, the requirements for appropriate scheduling methods are presented. Furthermore, a variety of possible scheduling problems are introduced and compared by their specifications and their behaviour. A set of particular scheduling problems including possible extensions and generalisations is assessed in detail. Based on the introduced problems and extensions, a Multi-mode Resource Investment Problem with Tardiness Penalty is chosen to fit the requirements of nuclear facility dismantling. This scheduling problem is then customised and adjusted according to the specific challenges of nuclear deconstruction projects. It can be called a Multi-mode Resource Investment Problem under the consideration of generalized precedence constraints and post-operational costs.

  4. Declassification of radioactive water from a pool type reactor after nuclear facility dismantling

    Science.gov (United States)

    Arnal, J. M.; Sancho, M.; García-Fayos, B.; Verdú, G.; Serrano, C.; Ruiz-Martínez, J. T.

    2017-09-01

    This work is aimed to the treatment of the radioactive water from a dismantled nuclear facility with an experimental pool type reactor. The main objective of the treatment is to declassify the maximum volume of water and thus decrease the volume of radioactive liquid waste to be managed. In a preliminary stage, simulation of treatment by the combination of reverse osmosis (RO) and evaporation have been performed. Predicted results showed that the combination of membrane and evaporation technologies would result in a volume reduction factor higher than 600. The estimated time to complete the treatment was around 650 h (25-30 days). For different economical and organizational reasons which are explained in this paper, the final treatment of the real waste had to be reduced and only evaporation was applied. The volume reduction factor achieved in the real treatment was around 170, and the time spent for treatment was 194 days.

  5. Stimulation of innovation in the course of decommissioning and dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Bach, F.W.

    1996-01-01

    For the last 30 years, national and international projects have been performed for development and testing of dismantling and cutting technology, covering theoretical experiments as well as laboratory work and applications in pilot projects. An aspect of major interest of the scientific and technical studies was the adjustment of conventional thermal, mechanical, hydraulic and (electro)chemical cutting processes to the specific requirements posed by nuclear facilities. At first sight, one would not expect much innovative potential in the field of cutting technology alone, except for, perhaps, process optimizations such as extensions of dwell times or process stability. However, the intelligent application of available cutting techniques and tools or instruments, leading in their proper combinations to novel techniques and experience, is an interesting challenge to scientists and engineers and hold a wide range of innovative potential. The paper presents some cutting techniques of particular interest in this context. (orig./DG)

  6. Polychlorinated biphenyls (PCBs) in the frame of the dismantling of nuclear facilities; Polychlorierte Biphenyle (PCB) beim Rueckbau von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hagenbart, Lars; Held, Christian; Reichert, Alexander [WAK-Rueckbau- und Entsorgungs-GmbH, Eggenstein-Leopoldshafen (Germany)

    2013-08-01

    During construction and maintenance of nuclear facilities PCB (polychlorinated biphenyls) containing paints were used in a large extent in the past. The WAK dismantling and disposal Company has dismantles such facilities and identified the PCB in the buildings. Besides the radionuclides the conventional hazardous material group of the PCBs has also to be disposed. The respective legal regulations have to be considered. In the frame of the contribution the radiological release of building structures with respect to re-use or demolition and residual PCB containing materials is discussed. The radiological disposal in final repositories and the conventional disposal regulations for releasable residual wastes are reported.

  7. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka shipyard, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Washer, M. [Dept. of Foreign Affairs and International Trade, Ontario (Canada); Cull, M.; Crocker, C. [Teledyne Brown Engineering Limited, Arlington, Virginia (United States); Ivanov, V.; Shepurev, A. [FSUE Zvezdochka, Arkhangelsk region, Severodvinsk (Russian Federation); Khan, B.U.Z.; Lee, M.; Gerchikov, M. [Nuclear Safety Solutions Limited, Toronto, Ontario (Canada)

    2008-03-15

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal of spent nuclear fuel assemblies; treatment/ decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  8. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka Shipyard, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Washer, M. [Dept. of Foreign Affairs and International Trade, Ottawa, Ontario (Canada); Cull, M.; Crocker, C. [Teledyne Brown Engineering Limited, Arlington, Virginia (United States); Ivanov, V.; Shepurev, A. [FSUE Zvezdochka, Arkhangelsk region, Severodvinsk (Russian Federation); Khan, B.U.Z.; Lee, M.; Gerchikov, M. [Nuclear Safety Solutions Limited, Toronto, Ontario (Canada)

    2007-07-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal and spent nuclear fuel assemblies; treatment/decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  9. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka Shipyard, Russia

    International Nuclear Information System (INIS)

    Washer, M.; Cull, M.; Crocker, C.; Ivanov, V.; Shepurev, A.; Khan, B.U.Z.; Lee, M.; Gerchikov, M.

    2007-01-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal and spent nuclear fuel assemblies; treatment/decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  10. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka shipyard, Russia

    International Nuclear Information System (INIS)

    Washer, M.; Cull, M.; Crocker, C.; Ivanov, V.; Shepurev, A.; Khan, B.U.Z.; Lee, M.; Gerchikov, M.

    2008-01-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal of spent nuclear fuel assemblies; treatment/ decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  11. Further studies on melting of radioactive metallic wastes from the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Diepenau, H.; Seidler, M.

    1991-01-01

    Melting of radioactive waste metal from the dismantling/refurbishing of nuclear installations is an acceptable way for nuclear waste recycling. This material can be used for the casting of qualified products such as type A- and type B-waste containers. The results of the melting facility -TAURUS- were used to build the industrial scale melting facility -CARLA- at Siempelkamp. The test results and the longterm-behaviour of the facility showed that the licensing conditions can be respected. The radiation exposure of workers was in the range of the admissible limit for non-exposed people. The radiation exposure of the environment is far below the value of the German Radiation Protection Law. The activity distribution within the product is homogeneous, so that its activity can be measured exactly before it is sent back in the nuclear area. By melting waste copper it is possible to respect the specific limits for unrestricted reuse, whereas for brass the limit for conditioned reuse in the industrial field was reached. Radioactive carbon can only be bound in form of small graphite lamellas or nodules in the cast iron; i.e. radioactive carbon can only be added to the melt as crushed material. During the research programme 2000 Mg of waste steel was melted at industrial scale and mainly products such as shielding blocks and waste containers were produced. 12 figs., 27 tabs., 6 refs

  12. Explosive cutting techniques for dismantling of concrete structures in a nuclear power station following decommissioning

    International Nuclear Information System (INIS)

    Freund, H.U.; Fleischer, C.C.

    1993-01-01

    This report describes the work that has been jointly carried out, based on a common and complementary research programme, by the Battelle Institut e.V., Frankfurt and Taylor Woodrow Construction Ltd., Southall, on the controlled use of explosives for the cutting and safe removal of activated and contaminated parts of nuclear facilities without impairing the overall structural integrity. Previous work had demonstrated the feasibility of using explosive techniques for the stripping off of an equivalent thickness of concrete, for radiation protection, from the inside walls of nuclear facilities. The present research work aims at complementing, improving and optimizing the foregoing work. Extensive investigations have been executed on the adjustment of blasting parameters, material and structural effects, drilling techniques, particle distribution and on procedures for remote handling. The report presents the results obtained from field trials and theoretical analysis undertaken to augment the development programme. It concludes that the controlled use of explosives offers a safe and favourable dismantling technique for the decommissioning of nuclear facilities

  13. The Dismantling of Nuclear Submarines in North-West Russia An Overview of two projects and the end products

    International Nuclear Information System (INIS)

    Simmons, V.M.; Wells, D.A.; Field, D.P.; Crimp, C.D.H.

    2006-01-01

    This paper explains the background to the projects, and the setting up of the contracts to dismantle two Oscar-I submarines and one Victor-III submarine. As a pre -cursor to the dismantling, Russian documentation covering environmental, safety, operational and technical issues had to be prepared and submitted to the Russian regulatory bodies for approval, including a full Environmental Impact Assessment (EIA) of the projects. In addition to the dismantling projects, funds were also made available for shipyard infrastructure improvement projects necessary to ensure the safe and efficient completion of the projects. The paper describes these aspects as well as the submarines themselves and gives an overview of the dismantling process. It also describes the nature of the wastes produced, including handling and processing together with the safety and environmental issues. Project Management and monitoring contracted to RWE NUKEM by the U.K. Department of Trade and Industry (DTI) is described emphasizing the importance of strong working relationships between British and Russian teams. Finally the paper discusses the 'end products' of the Oscar-I and Victor-III dismantling and how the projects have provided a useful, high-profile platform on which to demonstrate the success of the DTI and their contractors in helping the U.K. meet its commitments under the Global Partnership Initiative. (authors)

  14. Provision and testing of remote handling equipment to dismantle nuclear facilities, based on a current project of the WAK BGmbH

    International Nuclear Information System (INIS)

    Hendrich, K.

    1992-01-01

    The remotely handled dismantling of the cell OIId could be successfully demonstrated in a test stand. Within the framework of the test stand operation for remotely handled dismantling of about 3.5 Mp of technical equipment, the following data could be determined: planned personnel service time within the radiation field of 8 manh; expected collective dose of ∝0.02 manSv, and planned remotely handled dismantling time of the cell OIId of 52 days. (orig.) [de

  15. Rosie - mobile robot worksystem for decommissioning and dismantling operations. Final report, April 1, 1996 - January 31, 1997

    International Nuclear Information System (INIS)

    1998-01-01

    RedZone Robotics, Inc. has undertaken development of an advanced remote worksystem - Rosie - specifically designed to meet the challenges of performing a wide range of decontamination and dismantlement (D ampersand D) operations in nuclear environments. The Rosie worksystem includes a locomotor, heavy manipulator, operator console, and control system for remote operations. The locomotor is a highly mobile platform with tether management and hydraulic power onboard. The heavy manipulator is a high-payload, long-reach boom used to deploy a wide variety of tools and/or sensors into the work area. Rosie's advanced control system, broad work capabilities, and hardening/reliability for hazardous duty make it a new and unique capability that facilitates completion of significant cleanup projects throughout the Department of Energy (DOE) and private sector. Endurance testing of the first Rosie system from September 1995 to March 1996 has proven its capabilities and appropriateness for D ampersand D applications. Design enhancements were incorporated into the second Rosie system to improve and add features necessary for deployment at a DOE facility decommissioning. This second Rosie unit was deployed to the Argonne National Laboratory's CP-5 reactor facility in early December 1996, and it is currently being used in the decommissioning of the reactor there. This report will overview this second Rosie system and the design enhancements made to it based on the lessons learned during the design, fabrication, and testing of the first Rosie system. The Rosie system has been designed to be a versatile and adaptable tool that can be used in many different applications in D ampersand D work at nuclear facilities. It can carry a wide variety of tooling, sensors, and other robotic equipment at the tip of its heavy manipulator, and it can deploy those items to many different hazardous work areas. Rosie's capabilities and system design address the need for durability and reliability in

  16. Dismantling of JPDR internals using under water plasma arc cutting technique operated by robotic manipulator

    International Nuclear Information System (INIS)

    Yanagihara, S.; Asida, S.; Usui, H.

    1989-01-01

    Technology of underwater plasma cutting and design of robotic manipulator, successfully used for the dismantling of Japanese power demonstration JPDR reactor internals are considered. Of all time consumption which was 882 man-days, the 124 man-days were spent for preparation, 220 - for equipment mounting, 368 - for dismantling, 89 - for equipment disassembling and 81 - for decontamination. Labour consumption for dismantling of 1 t of the structures constituted 2200 man-days. Total dose of personnel irradiation does not exceed 0.05 R (10 -4 Sv)

  17. Nuclear cost studies for decontamination and dismantling. The interim storage for spent fuels at Studsvik

    International Nuclear Information System (INIS)

    Sjoeblom, Rolf; Sjoeoe, Cecilia; Lindskog, Staffan; Cato, Anna

    2005-05-01

    The interim store for spent fuel (FA) at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. FA comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e g expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to 'calibrate' against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of FA, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the drains; Radiological

  18. Decontamination techniques for dismantling

    International Nuclear Information System (INIS)

    Costes, J.R.; Lorin; Courtois, C.; Gauchon, J.P.

    1991-01-01

    Decontamination is one step of dismantling operations which can be necessary to optimize dismantling wastes management. Choice of a decontamination process follows experiments from laboratory scale to pilote scale, and takes into account needed decontamination efficiency, secondary wastes balance, difficulties and cost of industrial operations. Some examples of process development and industrial applications are indicated for gas cooled reactor G2 and fast breeder reactor Rapsodie

  19. Decommissioning of nuclear reprocessing plants French past experience and approach to future large scale operations

    International Nuclear Information System (INIS)

    Jean Jacques, M.; Maurel, J.J.; Maillet, J.

    1994-01-01

    Over the years, France has built up significant experience in dismantling nuclear fuel reprocessing facilities or various types of units representative of a modern reprocessing plant. However, only small or medium scale operations have been carried out so far. To prepare the future decommissioning of large size industrial facilities such as UP1 (Marcoule) and UP2 (La Hague), new technologies must be developed to maximize waste recycling and optimize direct operations by operators, taking the integrated dose and cost aspects into account. The decommissioning and dismantling methodology comprises: a preparation phase for inventory, choice and installation of tools and arrangement of working areas, a dismantling phase with decontamination, and a final contamination control phase. Detailed description of dismantling operations of the MA Pu finishing facility (La Hague) and of the RM2 radio metallurgical laboratory (CEA-Fontenay-aux-Roses) are given as examples. (J.S.). 3 tabs

  20. Digital Autoradiography as a novel complementary technique for the investigation of radioactive contamination in nuclear facilities under dismantlement

    International Nuclear Information System (INIS)

    Haudebourg, Raphael; Fichet, Pascal; Goutelard, Florence

    2015-01-01

    The detection (location and quantification) of nuclear facilities to be dismantled possible contamination with low-range particles emitters ( 3 H, other low-energy β emitters, a emitters) remains a tedious and expensive task. Indeed, usual remote counters show a too low sensitivity to these non-penetrating radiations, while conventional wipe tests are irrelevant for fixed radioactivity evaluation. The only method to accurately measure activity levels consists in sampling and running advanced laboratory analyses (spectroscopy, liquid scintillation counting, pyrolysis...). Such measurements generally induce sample preparation, waste production (destructive analyses, solvents), nuclear material transportation, long durations, and significant labor mobilization. Therefore, the search for the limitation of their number and cost easily conflicts with the necessity to perform a dense screening for sampling (to maximize the representativeness of the samples), in installations of thousands of square meters (floors, wells, ceilings), plus furniture, pipes, and other wastes. To overcome this contradiction, Digital Autoradiography (D. A.) was re-routed from bio molecular research to radiological mapping of nuclear installations under dismantling and to waste and sample analysis. After in-situ exposure to the possibly-contaminated areas to investigate, commercial reusable radiosensitive phosphor screens (of a few 100 cm 2 ) were scanned in the proper laboratory device and sharp quantitative images of the radioactivity could be obtained. The implementation of geostatistical tools in the data processing software enabled the exhaustive characterization of concrete floors at a rate of 2 weeks / 100 m 2 , at lowest costs. Various samples such as drilled cores, or tank and wood pieces, were also successfully evaluated with this method, for decisive results. Thanks to the accurate location of potential contamination spots, this approach ensures relevant and representative sampling

  1. Digital Autoradiography as a novel complementary technique for the investigation of radioactive contamination in nuclear facilities under dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Haudebourg, Raphael; Fichet, Pascal [Laboratory of Analyses and Operators Support, French Atomic Energy and Alternative Energies Commision (CEA), Saclay Center, 91191 Gif Sur Yvette Cedex, (France); Goutelard, Florence [NucLab, CEA Marcoule Center, (France)

    2015-07-01

    The detection (location and quantification) of nuclear facilities to be dismantled possible contamination with low-range particles emitters ({sup 3}H, other low-energy β emitters, a emitters) remains a tedious and expensive task. Indeed, usual remote counters show a too low sensitivity to these non-penetrating radiations, while conventional wipe tests are irrelevant for fixed radioactivity evaluation. The only method to accurately measure activity levels consists in sampling and running advanced laboratory analyses (spectroscopy, liquid scintillation counting, pyrolysis...). Such measurements generally induce sample preparation, waste production (destructive analyses, solvents), nuclear material transportation, long durations, and significant labor mobilization. Therefore, the search for the limitation of their number and cost easily conflicts with the necessity to perform a dense screening for sampling (to maximize the representativeness of the samples), in installations of thousands of square meters (floors, wells, ceilings), plus furniture, pipes, and other wastes. To overcome this contradiction, Digital Autoradiography (D. A.) was re-routed from bio molecular research to radiological mapping of nuclear installations under dismantling and to waste and sample analysis. After in-situ exposure to the possibly-contaminated areas to investigate, commercial reusable radiosensitive phosphor screens (of a few 100 cm{sup 2}) were scanned in the proper laboratory device and sharp quantitative images of the radioactivity could be obtained. The implementation of geostatistical tools in the data processing software enabled the exhaustive characterization of concrete floors at a rate of 2 weeks / 100 m{sup 2}, at lowest costs. Various samples such as drilled cores, or tank and wood pieces, were also successfully evaluated with this method, for decisive results. Thanks to the accurate location of potential contamination spots, this approach ensures relevant and representative

  2. Dismantling techniques

    International Nuclear Information System (INIS)

    Wiese, E.

    1998-01-01

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule

  3. EDV supported dynamic fire protection concept adaptation during dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Mummert, Maxi; Traichel, Anke; Dilger, Matthias

    2013-01-01

    Fire protection concepts are supposed to be a decision guide for the definition of measures and priorities in fire fighting and fire prevention. In case of reactor dismantling a fire protection concept for the actual status is required. Following the fuel removal from the reactor the protection goals are reduced to the safe confinement of radioactive materials and the restriction of radiation exposure. A dynamic fire protection concept was developed to allow the compliance with the required protection measures with respect to the protection targets. The implementation of the dynamic fire protection concept simplifies the planning of the dismantling steps and to adjust the fire protection measured in the frame of changes in the plant.

  4. Nuclear material operations manual

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  5. Nuclear material operations manuals

    International Nuclear Information System (INIS)

    Tyler, R.P.

    1979-06-01

    This manual is intended to provide a concise and comprehensive documentation of the operating procedures currently practiced at Sandia Laboratories with regard to the management, control, and accountability of radioactive and nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion

  6. Nuclear material operations manual

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  7. Development and demonstration of the safe dismantling of metal components from the decommissioning of nuclear facilities by means of underwater plasma arc cutting. Development of a measurement and control system for a underwater plasma arc cutting device for the safe dismantling of metallic components from the decommissioning of nuclear facility. Final report

    International Nuclear Information System (INIS)

    Haferkamp, H.; Bach, F.W.; Steiner, H.; Kah, S.

    1992-01-01

    For the decommissioning of nuclear installations, methods and tools for the dismantling of complicated metallic components with great material thickness are needed. The method of underwater plasma arc cutting offers the possibility for the dismantling of highly activated components because of the shielding effect of water. Up to now the tools for the underwater method are only available for simple contours. Target of the project was the development of a plasma arc cutting technique for the dismantling of complicated components and of a control and measurement system. (orig./DG) [de

  8. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options; Rueckstellungen fuer Stilllegung/Rueckbau und Entsorgung im Atombereich. Thesen und Empfehlungen zu Reformoptionen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Bettina [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany). Green Budget Germany (GBG)

    2012-04-11

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  9. Decommissioning and dismantling: how to manage risks to protect workers and the environment

    International Nuclear Information System (INIS)

    Rollinger, F.

    1995-01-01

    This paper gives the point of view from the French CFDT syndicate about the management of radiation risks for workers and environment during nuclear installations dismantling. The paper focusses on the lack of regulations about radiation protection during some dismantling and recycling operations and after the closeout of some feed materials plants, on the lack of training for the contractor personnel and on the lack of liability from contractors and operators during dismantling works. A dismantling operation managed with success requires a strategy of quality and implies an optimization of workmen and environment radioprotection and of waste management. This discussion is illustrated with several examples of faults, accidents and errors that occurred during dismantling operations in French facilities (J.S.). 1 append

  10. Machine for dismantling metal parts

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Loginovskiy, V.I.; Yagudin, S.Z.

    1982-01-01

    The purpose of the invention is to reduce the outlays of time for dismantling metal parts under conditions of eliminating open gas and oil gushers in operational drilling. This goal is achieved because the machine for dismantling the metal parts is equipped with a set of clamping elements arranged on the chassis, where each of them has a drive.

  11. Reinforcement course 2013. Challenges at the operation end of nuclear power plants

    International Nuclear Information System (INIS)

    Rey, Matthias

    2014-01-01

    The reinforcement course 2013 of the Nuclear Forum in Switzerland dedicated itself to the question, of which challenges are implicated by decommissioning and dismantling nuclear power plants. The course has been divided into 4 blocks, discussing concepts regarding decommissioning, special points such as organisational or psychological aspects as well as juridical and practical questions. Around 140 persons accepted the invitation of the committee for educational questions under the patronage of Urs Weidmann, head of the nuclear power plant Beznau. Altogether 17 presentations dealt with the following topics: 'Strategies and Steps of Decommissioning' by Roger Lundmark, 'Decommissioning from the Perspective of the Swiss Regulatory Authority' by Hannes Haenggi, 'Operating Period Management Using the Example of the Nuclear Power Plant Leibstadt' by Johannis Noeggerath, 'Questions and Concepts from the Perspective of a Nuclear Power Plant Operator' by Roland Schmidiger, 'Decommissioning of nuclear facilities in the UK' by Andrew Munro, 'Practical experiences of transferring nuclear power plants from operating to out of operation' by Gerd Reinstrom, 'Dismantling of Nuclear Facilities: From the Pilot Scheme to Industrialized Disassembling' by Anke Traichel and Thomas Seipolt, 'Organisational challenges: From Decommissioning Strategy to Decommissioning Targets' by Michael Kruse, Anton von Gunten, Julia Heizinger, Joerg Sokoll, 'Knowing That and Knowing How - Motivational Aspects of Safety-Related Knowledge Management for the Post-Operational phase and dismantling' by Frank Ritz, 'The Juridical Frame of Decommissioning' by Peter Koch, 'The Path to the Decommissioning Order and its Guidelines Ensi-G17' by Torsten Krietsch, 'Requirements for a Safe and Economical Decommissioning From the Perspective of the Operator' by Anton Von Gunten, Michael Kruse, Thomas Herren, Erwin Neukaeter, Mario Radke and Anton Schegg, 'Evaluation of Activation Distribution in a Nuclear Power Plant

  12. Data on the activation and dismantling of the 155MeV synchrocyclotron of the Institute of Nuclear Physics at Orsay

    International Nuclear Information System (INIS)

    Choquet, R.; Clapier, F.

    1979-01-01

    After twenty years of operation, the dismantling of a 155 MeV proton Synchrocyclotron led to define working conditions and to examine the final destination of materials affected by radioactivation by direct or indirect ionizing radiation. The dismantling operation and the separation of radioactive material after consideration of activation analysis data and indirect measuring methods adopted are described. Arising from this experience suggestions are made, for if personnel dose limitation is attained, it appears that solutions must still be found to process important amounts of metals of rather small specific activity; it should be possible to handle the treatment of waste much more satisfactorily in terms of cost and ecology [fr

  13. Melting of contaminated steel scrap arising in the dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Gomer, C.R.; Lambley, J.T.

    1985-01-01

    In this work scrap steel components from nuclear power plants, about 2 t in all, have been studied during 16 melts and the melt products in these or in subsequent production melts brought below a de minimis (reclaim) radioactivity concentration of 10 pCi g -1 . Radioactivity inventories for furnace systems have been made. In addition there have been melts with known amounts of radioactivities diluted uniformly into steel to provide sample calibration standards but also to directly measure dosage for various configurations and thicknesses of plate rolled from the steel. The work shows that Co-60 has in all cases finished entirely in steel and in uniform dilution in both electric arc and induction furnace melting, and, that Cs radioactivities do not enter steel at all and can readily be made to stay substantially in slag in the induction furnace. Under certain circumstances which may not be fully practical in production furnaces, cesium can be retained in slag in the electric arc furnace. These results together permit combined dilution/decontamination reclaim of selected nuclear steel scrap. The experimental melting of material within this range has been done at negligible radiation dosage to melting plant operatives or any evidence of airborne radioactivity external to the furnace system. It is likely that this would apply for the largest production furnaces which of necessity have high filtration efficiency fume control equipment. A projection has been made for a nuclear scrap reclaim program of 4000 t/a with overall contamination of 1 Ci Co-60 or equivalent, in respect of arisings of the scrap, preparation and routing to the steelworks, dosage in steelmaking and use of the product. The benefit versus detriment of this is derived to be favourable. Finally, the impact on the overall steel pool in the UK of such a programme is shown to be very small indeed. 4 refs

  14. Nuclear reactor operator licensing

    International Nuclear Information System (INIS)

    Bursey, R.J.

    1978-01-01

    The Atomic Energy Act of 1954, which was amended in 1974 by the Energy Reorganization Act, established the requirement that individuals who had the responsibility of operating the reactors in nuclear power plants must be licensed. Section 107 of the act states ''the Commission shall (1) prescribe uniform conditions for licensing individuals; (2) determine the qualifications of such individuals; and (3) issue licenses to such individuals in such form as the Commission may prescribe.'' The article discusses the types of licenses, the selection and training of individuals, and the administration of the Nuclear Regulatory Commission licensing examinations

  15. DISMANTLING OF THE FUEL CELL LABORATORY AT RESEARCH CENTRE JUELICH

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Bensch, D.; Ambos, Frank

    2003-01-01

    The fuel cell laboratory was constructed in three phases and taken into operation in the years 1962 to 1966. The last experimental work was carried out in 1996. After all cell internals had been disassembled, the fuel cell laboratory was transferred to shutdown operation in 1997. Three cell complexes, which differed, in particular, by the type of shielding (lead, cast steel, concrete), were available until then for activities at nuclear components. After approval by the regulatory authority, the actual dismantling of the fuel cell laboratory started in March 2000. The BZ I laboratory area consisted of 7 cells with lead shieldings of 100 to 250 mm thickness. This area was dismantled from April to September 2000. Among other things, approx. 30,000 lead bricks with a total weight of approx. 300 Mg were dismantled and disposed of. The BZ III laboratory area essentially consisted of cells with concrete shieldings of 1200 to 1400 mm thickness. The dismantling of this area started in the fir st half of 2001 and was completed in November 2002. Among other things, approx. 900 Mg of concrete was dismantled and disposed of. Since more than 90 % of the dismantled materials was measurable for clearance, various clearance measurement devices were used during dismantling. The BZ II laboratory area essentially consists of cells with cast steel shieldings of 400 to 460 mm thickness. In September 2002 it was decided to continue using this laboratory area for future tasks. The dismantling of the fuel cell laboratory was thus completed. After appropriate refurbishment, the fuel cell laboratory will probably take up operation again in late 2003

  16. The promising opportunity of dismantlement

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Civil engineering, mechanics and waste conditioning companies are thriving around the market of nuclear facilities dismantlement which is promised to a huge development in the coming decade. This paper presents a map of the opportunities of the dismantlement market throughout Europe (research and power reactors, fuel fabrication plants, spent fuel reprocessing plants) and a cost estimation of a given dismantling work with respect to the different steps of the work. In France a small core of about twenty companies is involved in nuclear dismantlement but the French market is also looking towards foreign specialists of this activity. The British market is also targeted by the French companies but for all the actors the technological or commercial advance gained today will be determining for the future markets. (J.S.)

  17. Dismantling the activated annular water tank of the Rheinsberg nuclear power plant

    International Nuclear Information System (INIS)

    Klietz, Maik; Konitzer, Arnold; Luedeke, Michael

    2010-01-01

    Acting on behalf of Energiewerke Nord GmbH Lubmin, Anlagen- und Kraftwerksrohrleitungsbau Greifswald GmbH (AKB) planned and built a station for disassembly of the activated annular water tank (RWB) of the decommissioned Rheinsberg nuclear power plant. As part of this demolition step, the annular water tank must be conditioned and disposed of as a component of the reactor facility. This required planning, manufacturing, testing and construction on site of suitable disassembly and handling techniques and the necessary plant and equipment. The client opted for disassembly by means of a diamond cable saw for conditioning the annular water tank into segments fit for shipping, and defined the basic components for the disassembly station in a specification of deliveries and services. The disassembly station serves to divide the annular water tank by means of diamond cable saws into 2 sections in such a way that segment pieces for transport are produced. The existing activation of the annular water tank also entailed the need to plan for the shortest possible time to be spent on handling near the annular water tank, providing radiological protection to the personnel, and performing the sawing steps from a separate operating console assisted by camera surveillance. After works acceptance tests at the manufacturer's, AKB, in October 2009 and February 2010, the disassembly station was delivered to the customer at Rheinsberg KKR free from defects in June 2010. (orig.)

  18. LEP dismantling starts

    CERN Multimedia

    2000-01-01

    Since the end of November, various teams have been getting stuck into dismantling the LEP accelerator and its four experiments. After making the installations safe, the dismantling and removal of 40,000 tonnes of equipment is underway. Down in the tunnel, it is a solemn moment. It is 10 o'clock on 13 December and Daniel Regin, one of those heading the dismantling work, moves in on a magnet, armed with a hydraulic machine. Surrounded by teams gathered there for a course in dismantling, he makes the first cut into LEP. The great deconstruction has begun. In little over than a year, the accelerator will have been cleared away to make room for its successor, the LHC. The start of the operation goes back to 27 November. Because before setting about the machine with hydraulic shears and monkey wrenches, LEP had first to be made safe - it was important to make sure the machine could be taken apart without risk. All the SPS beam injection systems to LEP were cut off. The fluids used for cooling the magnets and superc...

  19. Sites with nuclear facilities in the state of dismantling and their future from the public perspective; Standorte mit kerntechnischen Anlagen im Rueckbau und deren Zukunft aus der Perspektive der Bevoelkerung

    Energy Technology Data Exchange (ETDEWEB)

    Kretz, Simon Philipp

    2015-07-17

    The thesis on the public perspective at sites of nuclear facility dismantling covers the following issues: the change of German energy landscapes under social and political points of view, theoretical frame of the work, combination of empirical studies and the theoretical approaches in a space concept, action model and hypotheses on the situation and development in communities with nuclear facilities in the state of dismantling, description of the interviewees, and the empirical results of the interviews.

  20. Operational successes in nuclear power

    International Nuclear Information System (INIS)

    Palmer, F.A.

    1984-01-01

    This paper presents several positive indicators that demonstrate the growing success of the nuclear power program in the United States. Nuclear power plant performance data such as availability and capacity factor will be discussed along with several examples of outstanding performance that demonstrate the viability of the nuclear option. Since operational nuclear safety is the number one objective of every nuclear power plant, the NRC Licensing Event Report (LER) analysis program performed by a division of the Institute of Nuclear Power Operations (INPO) will be discussed along with the analysis and evaluation of event significance over the past few years. The impact of INPO on nuclear power plant operations and their programs that have contributed to the growing success of nuclear power operations such as operating plant evaluations, construction evaluations, corporate evaluations, assistance visits and training program accreditation are discussed

  1. Dismantling and waste managing benefit from digital technologies

    International Nuclear Information System (INIS)

    Moitrier, C.

    2017-01-01

    Dismantling is a very important challenge for nuclear industry as its success will prove the ability of the industry to deal with all the stages of a nuclear power plant from design to the end. A dismantling project is constraint by costs, time, feasibility, safety and environment protection and all of this implies a perfect knowledge of both the initial state of the facility at the beginning of the dismantling and the supply chain to avoid delays and extra-costs. Digital tools have a very important role to play as a provider of a 3-dimensional digital twin of the facility. This digital model allows: a remote preparation of the dismantling actions, to assess and optimize the radiation exposure during the intervention, to simulate various scenarios and select the most adequate, to ease collaborative work between various teams, to assess the volume and kind of waste at a very early stage of the dismantling, and to train operators and workers for x. (A.C.)

  2. Nuclearity for dual operator spaces

    Indian Academy of Sciences (India)

    spaces. This result is used to prove that V. ∗∗ is nuclear if and only if V is nuclear and. V. ∗∗ is exact. Keywords. Operator space; nuclear; injective. 1. Introduction. The theory of operator spaces is a recently arising area in modern analysis, which is a natural non-commutative quantization of Banach space theory.

  3. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  4. Definition of a dismantling project

    International Nuclear Information System (INIS)

    Meyers, H.; Claes, J.; Geens, L.

    1988-01-01

    The shutdown of the fuel reprocessing plant of Eurochemic having been decided, a study for defining the facilities to be dismantled and how to do it, was conducted by Belgoprocess. The cost of the operation was estimated by an accurate investigation and by a pilot project on the dismantling of the wastes storage building. The work carried out up to now and the problems to be solved are summarized [fr

  5. Decommissioning and dismantling of nuclear facilities - economic, legal, and political aspects. Proceedings

    International Nuclear Information System (INIS)

    1996-01-01

    In contrast to the approaches taken in other countries, in Germany the licensing regime as well as the political attitude foster a tendency to rather delay decommissioning, which in the end entails unproportionally high costs. This is why the conference focuses on the economic, legal and political aspects of nuclear facility decommissioning and their relevance to the site regions and the near-site environment and population. The conference is intended to provide a forum for learning from the information and experience available at the national, European and international level, in order to identify required policy and action planning leading to improvements in the future. The conference was concluded with a visit of the nuclear facilities at Greifswald. (orig./DG)

  6. Cost calculations for decommissioning and dismantling of nuclear research facilities, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Inga [StudsvikNuclear AB (Sweden); Backe, S. [Institute for Energy Technology (Norway); Iversen, Klaus [Danish Decommissioning (Denmark); Lindskog, S [Swedish Nuclear Power Inspectorate (Sweden); Salmenhaara, S. [VTT Technical Research Centre of Finland (Finland); Sjoeblom, R. [Tekedo AB (Sweden)

    2006-11-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility. However, no actual international guideline on cost calculations exists at present. Intuitively, it might be tempting to regard costs for decommissioning of a nuclear facility as similar to those of any other plant. However, the presence of radionuclide contamination may imply that the cost is one or more orders of magnitude higher as compared to a corresponding inactive situation, the actual ratio being highly dependent on the level of contamination as well as design features and use of the facility in question. Moreover, the variations in such prerequisites are much larger than for nuclear power plants. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological and other prerequisites. Application of inadequate methodologies especially at early stages has often lead to large underestimations. The goals of the project and the achievements described in the report are as follows: 1) Advice on good practice with regard to: 1a) Strategy and planning; 1b) Methodology selection; 1c) Radiological surveying; 1d) Uncertainty analysis; 2) Techniques for assessment of costs: 2a) Cost structuring; 2b) Cost estimation methodologies; 3) Compilation of data for plants, state of planning, organisations, etc.; 3a) General descriptions of relevant features of the nuclear research facilities; 3b) General plant specific data; 3c) Example of the decommissioning of the R1 research reactor in Sweden; 3d) Example of the decommissioning of the DR1 research reactor in Denmark. In addition, but not described in the present report, is the establishment of a Nordic network in the area including an internet based expert system. It should be noted that the project is planned to exist for at least three years and that the present report is an interim one

  7. Dismantling support project for the Bohunice Nuclear Power Plant Units 1 and 2 (Slovakia)

    International Nuclear Information System (INIS)

    Sanchez-Mayoral, M. L.; Gonzalez, J.; Lamela, B.

    2004-01-01

    The consortium formed by IBERDROLA Ingenieria y Consultoria, leading company, Electricite de France, Empresarios Agrupados, Internacional,. S. A., and Soluziona Ingenieria has been awarded the decommissioning support project for the Units 1 and 2 of Bohunice V1 Nuclear Power Plant (Slovakia). The plant and the site, the activities to be developed and the main characteristics of the project are described in this paper. (Author)

  8. Dismantling and rehabilitation programme of nuclear and radioactive facilities at the Spanish Research Centre (CIEMAT)

    International Nuclear Information System (INIS)

    Diaz Diaz, J.L.; Lopez Jimenez, J.

    2002-01-01

    Ciemat was gradually proceeding to the decommissioning of its more than 60 historical facilities. At present, a general decommissioning programme has been established that includes, to a different extent, all radioactive and nuclear facilities and their areas of influence, particularly those related to the front-end and back-end of the nuclear fuel cycle, hot cells and three experimental reactors. The purpose of the programme is to manage a model of a research centre integrating, on one side, a set of radioactive and conventional facilities and laboratories, and, on the other, a small area temporarily classified as a nuclear facility dedicated to the radioactive wastes management and providing an interim storage for materials under safeguards. The largest part of the radioactive wastes produced will be sent to El Cabril, a near surface disposal facility for low and intermediate level wastes, and the rest will be temporarily stored at Ciemat. This paper presents the main features of the programme and the lessons learned in its execution so far. (author)

  9. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  10. Integration of remotely operated manipulator systems for the nuclear industry

    International Nuclear Information System (INIS)

    Blight, J.; Cornec, G.

    2003-01-01

    There is no getting away from remotely operated manipulator systems in significant part in dismantling operations, because of the actual radioactive emitting level of installations. However, some main contractors, who have been involved in dismantling projects in the past few years are reluctant to use remotely operated systems because: - equipment characteristics are not suitable for the environment and the work to be performed; - There are some design problems; - Main components do not withstand operation any longer, after some time; - There are deficiencies in the management of quality, for critical equipment problems that degrade the productivity and increase direct and indirect labour cost. As a summary therefore, equipment available on this dismantling market are reputedly unreliable and not 'industrial' (sturdy) enough. However, numerous operations in maintenance in primary loops of nuclear reactors, or in the Offshore sector, are carried out remotely, to the satisfaction of the operators and the investors. In the dismantling sector, a thorough analysis of the difficulties encountered indicates that their origin is mostly due to a lack of methodology - that needs to be addressed -, rather than a technical problem. In that context, CYBERNETIX proposes to be involved in phases upstream and downstream of the equipment supply's. Upstream: Participate in developing/validating the scenarios to be used to optimise the constraints of remote operations/equipment. Downstream: Participate actively in supporting the client on-site, ensuring that equipment are available and maintained by competent and motivated people, and thus, getting experience in order to improve the State-of-the-Art of robotic in that field. Then, the contracting authority and CYBERNETIX jointly define the limits and the content of the involvement of each party, and also define the most appropriate type of 'partnership' between the main contactor and the participating companies, and in order to

  11. Smelting of contaminated steel scrap arising in the dismantling of nuclear power plant

    International Nuclear Information System (INIS)

    Gomer, C.R.; Lambley, J.T.

    1985-01-01

    In this work scrap steel components from nuclear power plants, about 2 t in all, have been studied during 16 melts and the melt products in these or in subsequent production melts brought below a de minimis (reclaim) radioactivity concentration of 10 pCi g -1 . Radioactivity inventories for furnace systems have been made by means of further melts with known amounts of radioactivities applied to steel surfaces as simulated contamination. In addition there have been melts with known amounts of radioactivities diluted uniformly into steel to provide sample calibration standards but also to directly measure dosage for various configurations and thicknesses of plate rolled from the steel. The work shows: that Co-60 has in all cases finished entirely in steel and in uniform dilution in both electric arc and induction furnace melting. That Cs radioactivities do not enter steel at all and can readily be made to stay substantially in slag in the induction furnace. Under certain circumstances which may not be fully practical in production furnaces, caesium can be retained in slag in the electric arc furnace. These results together permit combined dilution/decontamination reclaim of selected nuclear steel scrap. (author)

  12. Nuclearity for dual operator spaces

    Indian Academy of Sciences (India)

    In this short paper, we study the nuclearity for the dual operator space V ∗ of an operator space . We show that V ∗ is nuclear if and only if V ∗ ∗ ∗ is injective, where V ∗ ∗ ∗ is the third dual of . This is in striking contrast to the situation for general operator spaces. This result is used to prove that V ∗ ∗ is nuclear if and ...

  13. Building confidence and partnership through the safe and secure dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Goodby, J.E.

    1993-01-01

    The cold war is behind us now. It was with us a long time and we came to know it well. It was a dangerous time, but it had familiar contours and predictable reference points. Now, the topography of the bipolar confrontation is gone. We face great uncertainty and, yes, danger is still our companion. It is close at hand in the deadly relics of the cold war-the thousands of nuclear weapons that have been left behind like mines buried in a battlefield long after the guns have fallen silent. Our challenge is to construct a new and safer framework for our mutual relations beyond the cold war, based not on suspicion and fear, but on confidence and partnership. In doing so, it would be well to reflect on the enormous resources that were devoted to building weapons as compared to the relatively modest resources that will be needed to invest in peace. From that comparison should emerge a sense of proportion as to what we are called upon to do. We have choices. We can idly 'sleepwalk through history' and, once again, allow nuclear weapons to generate suspicion, competition, tension, and arms races reminiscent of the cold war. If we allow that to happen, we will have failed in our duty to posterity, and future generations will and should-judge us harshly. This would truly be the 'march of folly'. But if we seize the moment to build a solid foundation of confidence and partnership, we will surely be celebrated for our legacy of wisdom and peace. This is that moment. Let us now be wise

  14. Target: The green meadow. How much knowledge is needed for the dismantling of nuclear power plants?; Ziel: die Gruene Wiese. Wieviel Know-how man braucht, um ein Kernkraftwerk zurueckzubauen

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Friedrich-Wilhelm; Hassel, Thomas [Unterwassertechnikum Hannover (UWTH), Hannover (Germany). Inst. fuer Werkstoffkunde

    2013-07-01

    As from the year 2022, there will no nuclear power plant exist in Germany. In the contribution under consideration two scientists from the Institute of Materials Science (Hanover, Federal Republic of Germany) report on the preparations and the necessary technical knowledge in order to dismantle the highly complex nuclear facilities and to recultivate former nuclear power plant sites.

  15. Cutting and dismantling of the South West ladder of the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Anasco, Roberto

    2006-01-01

    The metallic ladder built in stainless steel was used originally to check the welding of the reactor pressure vessel. It was located between the thermal insulation and reactor pressure vessel. Because of a failure in the mechanism, which let the ladder runs around the vessel, it had to be removed. A special tool remotely operated was designed to make different cuts in the bottom of the structure in a very high radioactive location [es

  16. The good wealth of dismantlement

    International Nuclear Information System (INIS)

    Maincent, G.

    2009-01-01

    Civil engineering, mechanical and waste conditioning companies are working hard on the market of nuclear facilities dismantling. This market has a great future ahead of it in the ten years to come. According to the European Commission, 50 to 60 reactors among the 157 actually in service in the European Union should be dismantled by 2025. The cost per reactor is estimated to 10-15% of the initial investment, which represents an enormous amount of money, estimated to 20-39 billion euros for the only French nuclear park. In France, this market is shared by a core of about 20 companies, like Spie Nucleaire, Onet, Vinci (Nuvia) and Areva. Some dismantling sites require a specific skill, in particular those in relation with the research activity of the CEA (the French atomic energy commission) or involving specific technologies (research reactors, spent fuel reprocessing plants, sodium-cooled rectors..). (J.S.)

  17. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Sneve, M.K.

    2013-01-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  18. Dismantlement of nuclear facilities decommissioned from the Russian navy: Enhancing regulatory supervision of nuclear and radiation safety

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, M.K.

    2013-03-01

    The availability of up to date regulatory norms and standards for nuclear and radiation safety, relevant to the management of nuclear legacy situations, combined with effective and efficient regulatory procedures for licensing and monitoring compliance, are considered to be extremely important. Accordingly the NRPA has set up regulatory cooperation programs with corresponding authorities in the Russian Federation. Cooperation began with the civilian regulatory authorities and was more recently extended to include the military authority and this joint cooperation supposed to develop the regulatory documents to improve supervision over nuclear and radiation safety while managing the nuclear military legacy facilities in Northwest Russia and other regions of the country. (Author)

  19. Weapons dismantlement issues in independent Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Zack, N.R. [Los Alamos National Lab., NM (United States); Kirk, E.J. [American Association for the Advancement of Science, Washington, DC (United States)

    1994-07-01

    The American Association for the Advancement of Science sponsored a seminar during September 1993, in Kiev, Ukraine, entitled ``Toward a Nuclear Free Future -- Barriers and Problems.`` It brought together Ukrainians, Belarusians, and Americans to discuss the legal, political, safeguards and security, economic, and technical dimensions of nuclear weapons dismantlement and destruction. US representatives initiated discussions on legal and treaty requirements and constraints, safeguards and security issues surrounding dismantlement, storage and disposition of nuclear materials, warhead transportation, and economic considerations. Ukrainians gave presentations on arguments for and against the Ukraine keeping nuclear weapons, Ukrainian Parliament non-approval of START I, alternative strategies for dismantling silos and launchers, and economic and security implications of nuclear weapons removal from the Ukraine. Participants from Belarus discussed proliferation and control regime issues, This paper will highlight and detail the issues, concerns, and possible impacts of the Ukraine`s dismantlement of its nuclear weapons.

  20. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF{sub 6}) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF{sub 6}) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ``transparency),`` and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed.

  1. Environmental assessment for the purchase of Russian low enriched uranium derived from the dismantlement of nuclear weapons in the countries of the former Soviet Union

    International Nuclear Information System (INIS)

    1994-01-01

    The United States is proposing to purchase from the Russian Federation low enriched uranium (LEU) derived from highly enriched uranium (HEU) resulting from the dismantlement of nuclear weapons in the countries of the former Soviet Union. The purchase would be accomplished through a proposed contract requiring the United States to purchase 15,250 metric tons (tonnes) of LEU (or 22,550 tonnes of UF 6 ) derived from blending 500 metric tones uranium (MTU) of HEU from nuclear warheads. The LEU would be in the form of uranium hexafluoride (UF 6 ) and would be converted from HEU in Russia. The United States Enrichment Corporation (USEC) is the entity proposing to undertake the contract for purchase, sale, and delivery of the LEU from the Russian Federation. The US Department of Energy (DOE) is negotiating the procedure for gaining confidence that the LEU is derived from HEU that is derived from dismantled nuclear weapons (referred to as ''transparency),'' and would administer the transparency measures for the contract. There are six environments that could potentially be affected by the proposed action; marine (ocean); US ports of entry; truck or rail transportation corridors; the Portsmouth GDP; the electric power industry; and the nuclear fuel cycle industry. These environmental impacts are discussed

  2. Dismantling of the rooms 82 to 100 at Marcoule

    International Nuclear Information System (INIS)

    Fiol, A.

    1988-01-01

    The dismantling of the rooms 82 to 100 at Marcoule is up to now, the most important decommissioning operation. The COGEMA Marcoule had the responsibility of studying and organizing the operation. On the works site the work was performed by STMI. The construction of a complete nuclear waste processing system was necessary, to protect against Pu contamination. Moreover, the efficiency of the work, was improved by the development and use of large special cutting tools [fr

  3. Requirement Management between Regulatory Framework and Dismantling Activities for Decommissioning of a Nuclear Facility

    International Nuclear Information System (INIS)

    Park, H.S.; Jin, H.G.; Hong, Y.J.; Choi, J.W.; Park, S.

    2016-01-01

    Full text: The decommissioning and environmental remediation (D&ER) projects require stepwise long-term research and development (R&D) such as a shutdown, transition, decontamination and decommissioning (D&D) activities, radioactive waste management, and site restoration. During each step of the D&ER projects, a significant amount of information and knowledge such as experimental data, databases, design drawings, technical reports, guidelines, operation manuals, and modeling and simulation reports are produced. Knowledge based on experiences by staff members participating in each step of the D&ER project are also very important. Such knowledge based on experiences may disappear with the retirement of staff members if there are no effective and systematic approaches for its acquisition and storage. Therefore, to perform the D&ER project successfully, it is necessary to preserve written theses and experiences systematically. The integrated knowledge management system (KMS) for the D&ER projects have never been developed. Therefore, the establishment of an integrated KMS is necessary for the effective performance of D&ER projects. This study introduces a decommissioning procedure requirement management system as a part of the KMS related to the D&ER projects. (author

  4. Reform of reserve requirements for nuclear decommissioning, dismantling and disposal; Reform der Atomrueckstellungen fuer Stilllegung/Rueckbau und Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Bettina [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany); Kuechler, Swantje; Wronski, Rupert [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany). Bereich Energiepolitik

    2015-07-15

    This article reports on the ongoing intense discussion as to whether the financial reserves of nuclear power plant operators are sufficient. It starts out with an overview of the current scientific and political debate. This is followed by a brief analysis of nuclear financial reserves in 2014 and preceding years. The authors then present the reform concept of the Forum Oekologisch-Soziale Marktwirtschaft (FOes) and go on to compare it with concepts from the political realm.

  5. LEP Dismantling: Wagons Roll!

    CERN Multimedia

    2001-01-01

    The first trucks transporting material from LEP and its four experiments left CERN on 31 January. Since the LEP dismantling operation began, the material had been waiting to be removed from the sites of the four experiments and the special transit area on the Prévessin site. On the evening of 30 January, the French customs authorities gave the green light for the transport operation to begin. So first thing the next day, the two companies in charge of recycling the material, Jaeger & Bosshard (Switzerland) and Excoffier (France), set to work. Only 1500 truckloads to go before everything has been removed!

  6. Treatment of active concrete waste arising from the dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Barody, I.I.; Langridge, D.G.; Speyer, D.S.; Towell, D.R.

    1985-01-01

    This report describes an investigation into a method of immobilizing dust following demolition of a concrete structure. It considers a number of materials that could be used for this purpose and selects sodium silicate for detailed assessment as a first choice, based on various practical factors. Part A dealing with the chemical aspects shows that sodium silicate will successfully encapsulate dust in bulk and will affix that left attached to rubble and which is not easily removable. It determines the technology of use of sodium silicate and its properties in relation to dust encapsulation paying attention to the effect of the silica/alkali ratio on the properties of sodium silicate solutions. Part B, dealing with the engineering and process aspects, examines how the dust may be collected and stabilized with silicate. The preferred process from operational considerations is to pelletize the dust, so that it can be held in a harmless form. The pellets can be packed economically with more active material. A study of pneumatic conveying shows that the feasibility of collection by suction nozzle, conveying and separation from the air stream is not in doubt. Pelletizing machines are selected from those in use on other materials. The most successful machines are a pan agglomerator and various forms of briquetting roller compaction machines. A comparison is made of the properties of pellets made in these trials. This leads to recommendations of the most suitable pelletizing machine and process parameters for a pilot plant. For a remotely controlled pelletizing process the proportions of dust in different particle size ranges has to be controlled, particularly to ensure the presence of a sufficient quantity of fine particles. The strength of binder solution and the dustbinder ratio must also be controlled to optima established to suit the dust

  7. Skills management medical labor in the plan of dismantling and decommissioning of the nuclear power plant Jose Cabrera

    International Nuclear Information System (INIS)

    Garcia Martinez, M.

    2012-01-01

    The model adopted for managing the skills of workers in the various contracts present in the dismantling in order to minimize, on the one hand, workplace accidents attributable to previous health status of the worker and the other the effects on the health could have a possible exposure to ionizing radiation. This model is based on the close coordination between the departments directly involved.

  8. Radiation protection of staff during treatment, transport and storage of radioactive materials and dismantling of nuclear facilities. Release of radioactive materials and radiation measurement

    International Nuclear Information System (INIS)

    2004-01-01

    This is the proceedings volume of the 4th meeting of radiation protection experts, held at Bad Kohlgrub in Bavaria on March 23 - 26, 2004. Subjects were: Protection of staff during dismantling of nuclear plants and facilities; Protection of staff during treatment,transport and storage of radioactive materials; Release of radioactive materials and radiation measuring technology, and three parallel workshops on the above subjects for discussion of the three years of experience in the implementation of the new StrlSchV. (orig.)

  9. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  10. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Equipment Dismantlement Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Lagos, L.E.

    1998-01-01

    The dismantlement of radioactively contaminated process equipment is a major concern during the D and D process. As buildings undergo the D and D process, metallic equipment contaminated with radionuclides such as uranium and plutonium must be dismantled before final disposal.The primary objective for equipment dismantlement is to reduce the potential for personnel and environmental exposure to contaminants during the decommissioning of the nuclear facility. The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D and D project costs. Innovative technologies are being developed with the goal of providing safer and more cost-effective alternatives that generate less secondary waste, thereby decreasing the operating costs for dismantlement. During the development and implementation process, performance indicators for the success of these technologies must be reviewed to ensure that these aims are being met. This project provides a mechanism for the assessment of innovative and commercially available nuclear and non-nuclear technologies for equipment dismantlement.

  11. Operators' policy about the management of nuclear wastes

    International Nuclear Information System (INIS)

    Gloaguen, A.; Ricaud, J.L.

    1995-01-01

    In France, nuclear power plants are the main producers of radioactive wastes which can be divided in two categories: power plant wastes due to daily operation and which are stored in surface sites, and spent fuels which produce wastes after reprocessing. The operators policy consist in minimizing the production of technical wastes during operation, maintenance and dismantling. The conditioning and the packaging of these wastes is directly performed in the plants. Spent fuels are reprocessed by Cogema, in particular using the Melox process for uranium and plutonium recycle (La Hague plant). Fission products, hulls and nozzles are reprocessed to reduce their volume. The use of remote handling equipment allows a considerable reduction of personnel dosimetry and of additional wastes. New techniques (compacting, incineration..) are developed by Cogema to further reduce the cost-benefit ratio of the existing processing techniques and to reduce the volume of wastes before ultimate storage. (J.S.)

  12. Dismantling technologies trends

    International Nuclear Information System (INIS)

    Devaux, P.

    2009-01-01

    In this work dismantling technologies trends realized by the CEA are reviewed. There following technologies are presented: Data acquisition from facilities; Scenario studies; Remote handling and carriers; Dismantling techniques; Decontamination.

  13. Closing the sky. The total dismantling of the Jose Cabrera nuclear power plant demonstrates maturity in the nuclear sector

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2015-01-01

    This article aims to put the situation of the decommissioning of nuclear power plants in the world into perspective as an already consolidated activity and with an important future of industrial activity. The decommissioning project that Enresa is currently performing in the old Jose Cabrera plant is being explained in detail, by providing data of the newest and most relevant technical aspects as well as the lessons learned to be reusable in other decommissioning projects. The previous background, the project planning, the activities performed and those still to be done as well as their timing are being explained in detail. (Author)

  14. Nuclear Powerplant Safety: Operations.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Powerplant systems and procedures that ensure the day-to-day health and safety of people in and around the plant is referred to as operational safety. This safety is the result of careful planning, good engineering and design, strict licensing and regulation, and environmental monitoring. Procedures that assure operational safety at nuclear…

  15. Study on measurement of spatial dose rates from simulated products made from recycled metal below clearance levels arising from dismantling of nuclear facilities. Contract research

    CERN Document Server

    Okamoto, A; Kitami, Y; Nakamura, H; Nakashima, M; Saitô, K

    2002-01-01

    In order to contribute to safety assessment of recycling products made from dismantling metal wastes, metal ingots containing sup 6 sup 0 Co were produced and spatial dose rates from ingots were evaluated by gamma-ray measurement and calculation. Stripping operations were made using detector response functions calculated by Monte Carlo program to derive spatial dose rates from measured gamma-ray spectra. In the computer simulation, Monte Carlo and point kernel calculation codes were used. Agreement between measured and calculated values was satisfactory in spite of an extremely low concentration of sup 6 sup 0 Co in the ingots and a complicated geometric condition between detector and samples.

  16. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 2

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1986-09-01

    This report deals with the operational, radiological and economic aspects of transport as well as conceptual designs of large containers for the transport of radioactive decommissioning wastes from nuclear power plants within the member states of the European Economic Community. The means of transport, the costs and radiological detriment are considered, and conceptual designs of containers are described. Recommendations are made for further studies. (U.K.)

  17. Nuclear operations summary Engineering organization for Plowshare nuclear operations

    International Nuclear Information System (INIS)

    Broadman, Gene A.

    1970-01-01

    The availability of nuclear explosives for peaceful projects has given the engineer a new dimension in his thinking. He can now seek methods of adapting Plowshare to a variety of industrial applications. The full potential of the Plowshare Program can only be attained when industry begins to use nuclear explosives on a regular basis, for economically sound projects. It is the purpose of this paper to help the engineer familiarize himself with Plowshare technology to hasten the day when 'Plowsharee goes commercial'. An engineering project utilizing nuclear exposives ordinarily involves three main phases: Phase I (a) The theoretical and empirical analysis of effects. (b) Projected economic and/or scientific evaluation. (c) A safety analysis. Phase II (a) Field construction. (b) Safe detonation of the nuclear explosive. (c) Data acquisition. Phase III The evaluation and/or exploitation of the results. This paper will be restricted to Phase II, referred to collectively as the 'nuclear operation'

  18. Operation of nuclear power plants

    International Nuclear Information System (INIS)

    Severa, P.

    1988-04-01

    The textbook for training nuclear power plant personnel is centred on the most important aspects of operating modes of WWER-440 reactors. Attention is devoted to the steady state operation of the unit, shutdown, overhaul with refuelling, physical and power start-up. Also given are the regulations of shift operation and the duties of individual categories of personnel during the shift and during the change of shifts. (Z.M.). 3 figs., 1 tab

  19. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  20. The dismantling of nuclear installations and the radioactive wastes management. Report of the President of the Republic followed by the answers of concerned administrations and organisms; Le demantelement des installations nucleaires et la gestion des dechets radioactifs. Rapport au President de la Republique suivi des reponses des administrations et des organismes interesses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    The discussed subjects concerns the situation and the challenges of the nuclear installations dismantling and the radioactive wastes management (main intervenors, panorama of the situation, rules applied to the dismantling and the radioactive wastes), the first experiences of dismantling and radioactive wastes disposal (experiences at the CEA and EDF, implementing of solutions for the disposal), interrogations and certainties (provision for future expenses, public information). (A.L.B.00.

  1. Decree nr 2016-846 of the 28 June 2016 related to the modification, to the final shut-down and dismantling of basic nuclear installations, as well as to subcontracting

    International Nuclear Information System (INIS)

    Valls, Manuel; Royal, Segolene; Urvoas, Jean-Jacques

    2016-01-01

    This decree defines legal arrangements (or modifications of previous decrees) regarding modifications of basic nuclear installations, the final shut-down and dismantling of these installations (general arrangements, specific arrangements regarding installations dedicated to the storage of radioactive wastes), the use of service providers and subcontractors, penal sanctions, coordination arrangements, and transitional arrangements

  2. Safe operation of nuclear ships

    International Nuclear Information System (INIS)

    Danilov, L.

    1982-01-01

    A summary is given of the experience with the three Soviet nuclear icebreakers, Lenin, Arktika and Sibir. Engineering problems, especially of reactor maintenance, and the way they have been overcome, are described. Reference is also made to improvements in reactor fuel and core design, and to safety aspects of the refuelling operation. (U.K.)

  3. Study on the Operating Strategy of HVAC Systems for Nuclear Decommissioning Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-hwan; Han, Sung-heum; Lee, Jae-gon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    According as Kori nuclear power plant unit 1 was determined to be defueled in 2017, various studies on nuclear plant decommissioning have been performed. In nuclear decommissioning plant, HVAC systems with large fan and electric coil have to be operated for long periods of time to support various types of work from defueled phase to final dismantling phase. So, in view of safety and utility costs, their overall operating strategy need to be established prior to defueled phase. This study presents HVAC system operating strategy at each decommissioning phase, that is, defueled plant operating phase, SSCs(systems, structures, components) decontamination and dismantling phases. In defueled plant operating phase, all fuel assemblies in reactor vessel are transferred to spent fuel pool(SFP) permanently. In defueled plant operation phase, reduction of the operating system trains is more practicable than the introduction of new HVAC components with reduced capacity. And, based on the result of the accident analyses for this phase, HVAC design bases such as MCR habitability requirement can be mitigated. According to these results, associated SSCs also can be downgraded. In similar approach, at each phase of plant decommissioning, proper inside design conditions and operating strategies should be re-established.

  4. Public inquiry related to the request by EDF of a definitive stopping and complete dismantling of the hardware storage installation of the Monts d'Arree nuclear power plant (INB n.162). Opinion and conclusions of the inquiry commission

    International Nuclear Information System (INIS)

    2010-03-01

    After a recall of the project of stopping and dismantling of the hardware storage installation (INB n.162) which had been created after the stopping and dismantling of the Monts d'Arree heavy water nuclear reactor (INB n.28), this report analyzes the results of the public inquiry, and highlights the arguments of those in favour of this project and those opposed to it. Then, it states the Inquiry Commission's opinion which addresses the request for a national public debate, the project justification, the inquiry file, the site radiological status, the site radiological control during works, the impacts of dismantling, the various risks (for the population and the workers, in terms of fire risks), the issue of radioactive wastes, economic aspects (costs, jobs, local economy, tourism and site image), and site reconversion

  5. Nuclear reactor operation control process

    International Nuclear Information System (INIS)

    Doi, T.; Hiranuma, H.; Nishida, C.; Suematsu, S.

    1981-01-01

    A process for controlling operation of a nuclear reactor is described in which first control means is operated to cause reactor power to rise to a level at which a pellet-clad-mechanical-interaction begins to take place between a cladding and pellets of a fuel element. After interrupting the operation of the first control means, second control means is operated to cause the reactor power to rise to a preset level, the second control means being capable of effecting finer control of the reactor power than the first control means. When the reactor power deviates from the preset level with the progress of the reactor operation in the preset level, the second control means is operated so as to maintain the reactor power at the preset level

  6. Methodology applied to the waste management study for the dismantling project of APM (Reprocessing power plant)

    International Nuclear Information System (INIS)

    Girones, Ph.; Ducros, Ch.; Lebrun, D.; Berenger, B.

    2008-01-01

    The dismantling of a nuclear installation consists in transforming an industrial process into production lines of nuclear waste. This objective is common to all the projects of dismantling. So, the production of nuclear waste is comparable to a line of manufactured products as in the car production, the food-processing industry, the avionics, in the specific statutory context of nuclear energy. This definition has been applied to the project studies of a reprocessing plant dismantling on the site of Marcoule. In practice, the studies of the waste production ways began with the analysis of the waste management during the industrial operation phase of the plant. This work allowed at first to divide the plant following various standard spectra areas; in a second step, the performances of the various systems of production control are analyzed. The modification from a management model in the operation phase to a dismantling model articulates around the increase of the quantity and the modification of the quality of the nuclear waste. Because, if in the operation phase, the number of drums and their activity level may be low, during the dismantling operation, the waste activity is significant and all the radionuclides which have been processed in the plant are present in the nuclear waste. The drum radiological characterization is based on analysis techniques among which the performances and the possibilities are strongly dependent on the standard spectra. So, to find how to manage each component, the classic method consists in coupling physical information dependent on the Radiotracer with standard spectra. An estimation of the activity for every radioelement is possible and can be applied to all the components. The main radiotracers for the reprocessing plants are the 137 Cs and 240 Pu. The analysis of the waste flow is based on a physical inventory and of a schedule of the reference scenario. After having evaluated the waste flow, an analysis of the waste control

  7. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Equipment Dismantlement Technologies. Topical Report January 1998

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The dismantlement of radioactively contaminated process equipment is a major concern during the D and D process. As buildings undergo the D and D process, metallic equipment contaminated with radionuclides such as uranium and plutonium must be dismantled before final disposal.The primary objective for equipment dismantlement is to reduce the potential for personnel and environmental exposure to contaminants during the decommissioning of the nuclear facility. The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D and D project costs. Innovative technologies are being developed with the goal of providing safer and more cost-effective alternatives that generate less secondary waste, thereby decreasing the operating costs for dismantlement. During the development and implementation process, performance indicators for the success of these technologies must be reviewed to ensure that these aims are being met. This project provides a mechanism for the assessment of innovative and commercially available nuclear and non-nuclear technologies for equipment dismantlement

  8. Comments on conceptual questions concerning the clearance of wastes for disposal on a dump site during the decommissioning and dismantling of the nuclear power plant Obrigheim (KWO); Stellungnahme zu konzeptionellen Fragen der Freigabe zur Beseitigung auf einer Deponie bei Stilllegung und Abbau des Kernkraftwerks Obrigheim (KWO)

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, Christian

    2015-08-03

    The comments on conceptual questions concerning the clearance of wastes for disposal on a dump site during the decommissioning and dismantling of the nuclear power plant Obrigheim (KWO) cover the following issues: fundamentals of the 10 micro-Sv concept for clearance; specific regulations for the clearance of wastes from the dismantling of KWO for disposal on a dump site; disposal concept at shutdown and dismantling of KWO; measurements and control during clearance for disposal during shutdown and dismantling of KWO; documentation and reports.

  9. Research into the melting/refining of contaminated steel scrap arising in the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Harvey, D.S.

    1990-01-01

    The main part of this report is concerned with the steel-making behaviour of various radioisotopes encountered in steel from decommissioning of nuclear installations (e.g. cobalt 60, caesium 134 and europium 154). Under a wide range of conditions cobalt is largely absorbed by the steel, europium is absorbed by the slag, whereas caesium may be largely volatized, or largely absorbed by the slag. Radiation exposures which might occur during a large-scale recycling operation, during routine operations and accidents would not be significant according to published criteria in the UK. The second part of the report concerns the detection of radioactive materials which may be accidentally delivered to steelworks in scrap steel and used in steel-making. Detectors have been developed which would indicate the presence of radioactivity in scrap. A survey of the steelworks revealed areas where detection might be performed. Experiments have shown that a gamma ray detector of large volume could provide useful sensitivity of detection

  10. Nuclearity for dual operator spaces

    Indian Academy of Sciences (India)

    V. ∗∗ is injective. As pointed out in [8], local reflexivity is an essential condition in this result since Kirchberg [10] has constructed a separable non-nuclear operator space V for which V. ∗∗ = ∏+∞ n=1 Mn. Turning to C. ∗. -algebra theory, using Conne's deep work in [3],. Choi and Effros proved the following result in [1, 2]:.

  11. Health requirements for nuclear reactor operators

    International Nuclear Information System (INIS)

    1980-05-01

    The health prerequisites established for the qualification of nuclear reactor operators according to CNEN-NE-1.01 Guidelines Licensing of nuclear reactor operators, CNEN-12/79 Resolution, are described. (M.A.) [pt

  12. Contaminated Metal Components in Dismantling by Hot Cutting Processes

    International Nuclear Information System (INIS)

    Cesari, Franco G.; Conforti, Gianmario; Rogante, Massimo; Giostri, Angelo

    2006-01-01

    During the preparatory dismantling activities of Caorso's Nuclear Power Plant (NPP), an experimental campaign using plasma and oxyacetylene metal cutting processes has been performed and applied to plates and tubes exposed to the coolant steam of the reactor. The plant (Boiling Water Reactor, 870 MWe) was designed and built in the 70's, and it was fully operating by 1981 to 1986 being shut down after 1987 Italy's poll that abrogated nuclear power based on U235 fission. The campaign concerns no activated materials, even if the analyses have been performed of by use contaminated components under the free release level, not yet taking into account radioactivity. In this paper, the parameters related to inhalable aerosol, solid and volatile residuals production have been, studied during hot processes which applies the same characteristics of the cutting in field for the dismantling programs of Caorso NPP. The technical parameters such as cutting time and cutting rate vs. pipe diameter/thickness/schedule or plate thickness for ferritic alloys and the emissions composition coming from the sectioning are also reported. The results underline the sort of trouble that can emerge in the cutting processes, in particular focusing on the effects comparison between the two cutting processes and the chemical composition of powders captured by filtering the gaseous emission. Some preliminary considerations on methodology to be used during the dismantling have been presented. (authors)

  13. Radiological Characterisation for Decommissioning of Nuclear Installations - Final Report of the Task Group on Radiological Characterisation and Decommissioning (RCD) of the Working Party on Decommissioning and Dismantling (WPDD) - Final Report, September 2013

    International Nuclear Information System (INIS)

    Andrieu, Caroline; Olivier Dehaye, Catherine; Tardy, Frederic; Boisserie, Thierry; Desnoyers, Yvon; Thierfeldt, Stefan; Martin, Nieves; Henrik Efraimsson; Haakansson, Lars; Larsson, Arne; Dunlop, Alister A.; Jarman, Sean; Orr, Peter; Abu-Eid, Boby

    2013-01-01

    Radiological characterisation plays an important role in the decommissioning of nuclear facilities. It is the basis for radiation protection, identification of contamination, assessment of potential risks, cost estimation, planning and implementation of decommissioning and other matters. At all stages of a decommissioning project, adequate radiological characterisation is of crucial importance. The focus of this report is the task of radiological characterisation. The important role and the significance of radiological characterisation become clear when its various objectives are considered, including in particular: - determination of the type, isotopic composition and extent of contamination in structures, systems, components and environmental media; - identification of the nature and extent of remedial actions and decontamination; - supporting planning of decommissioning; - estimation of decommissioning costs. A large number of measurement techniques are available for successful application of radiological characterisation, allowing rapid and comprehensive determination of the activities of most relevant radionuclides. For other radionuclides that are hard to detect, scaling factors can be established that relate their activities to key nuclides. Radiological characterisation is relevant in all phases of the life cycle of a nuclear installation, albeit with different levels of detail and with differing objectives. Basically, the following characterisation phases can be distinguished: pre-operational characterisation; characterisation during operation; characterisation during the transition phase (after final shutdown before initiation of dismantling); characterisation during dismantling (including remediation and decontamination); and characterisation to support the final status survey for site release. The most comprehensive characterisation campaigns are usually carried out during the transition phase in preparation for implementation of dismantling activities

  14. Advanced systems for dismantling

    International Nuclear Information System (INIS)

    Guittet, J.

    1987-01-01

    In this paper the author shows the approach used by the UDIN (Unite Centrale de Declassement des Installations Nucleaires) for dismantling. With respect of costs for dismantling, it is necessary to take in account the specificity of dismantling work site and to protect the environment and the workers. Some examples show these points. The protections are made by a good study of the work site, by a preliminary decontamination if possible by containment of contamination and by utilization of robots and technics to reduce radioactive wastes [fr

  15. Nuclear dismantling and asbestos elimination: the same challenge?; Demantelement nucleaire et elimination d'asbeste: un meme challenge?

    Energy Technology Data Exchange (ETDEWEB)

    Dadoumont, J.; Deboodt, P. [Centre d' Etude de l' Energie Nucleaire, Mol (Belgium)

    1998-07-01

    The ALARA principle constitutes a powerful tool for workers dosimetry management in the nuclear field. A consequence of the application of this principle could be an accentuation of the nuclear risk face to the industrial risk. Using works of asbestos elimination in nuclear medium, the present article examines how a generalization of the utilization of the ALARA principle is conceivable and how the existing obstacles could be removed. (N.C.)

  16. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  17. Set-up of polarographic analytical methods in the framework of nuclear reactor dismantling en of the decontamination of metallic pieces

    International Nuclear Information System (INIS)

    Poirier, S.; Rahier, A.

    1996-06-01

    Differential pulse polarography has been used to measure several chemical species, relevant to the dismantling and the decontamination of a nuclear power reactor. First, a method which allows the determination of low concentrations of Co in stainless steels has been studied. Co 3+ is reduced in the presence of ethylenediamine at pH 7.5 at -0.47 V vs Ag/AgCl sat. A preliminary extraction of iron (and partially chromium) in diethylether is required. Interferences with iron and nickel have been completely eliminated without using any precipitation technique. Some complications may result from the precipitation of residual Cr 3+ in the presence of EDA, even when fluorides are added. Next, the measurements of the main components of steels have been carried out successfully. The reduction of CrO 4 2- is observed at -0.46 V vs Ag/AgCl sat. in a medium containing 0.1 M KOH, 0.5 M citric acid and 1 M NH 3 . Adding dimethylglyoxime in the same medium allows to identify the reduction to Fe 2+ and Ni 2+ respectively at -1.65 and -1.13 V vs Ag/AgCl sat. Finally, the reduction to Cr 3+ is observed at -1.2 V vs Ag/AgCl sat. in an acetic buffer containing 0.1 M EDTA

  18. Development of a technique for dismantling geometric complicated and thick components of closed down nuclear power plants with the principle of arc-waterjet cutting

    International Nuclear Information System (INIS)

    Bach, F.W.; Bruening, D.

    1989-04-01

    1. Status of research: With arc waterjet cutting it is possible to cut stainless steel up to a wall thickness of 30 mm under water. An application of this technique in 20 m water depth is possible. 2. Aim of research work: A thermal cutting process which is empolyed in a water depth of 20 m is to be developed. Stainless steel up to a wall thickness of 100 mm must be sectile. Cutting of plane parts with variable wall thickness and geometric must be possible. Pipes and pipe assemblies are to be cut from inside or outside. 3. Method of research: A torch was developed which can melt the work piece with a wire electrode. The ignition of cutting will be done with short circuit with a concentrial around the wire out going water jet the liquid metal will be washed away. 4. Results: It is possible to cut stainless steel under water up to a wall thickness of 100 mm. There is no influence to the cutting process in a water depth of 20 m. 5. Suitability: With arc waterjet cutting remote controlled dismantling of thick-walled components of closed down nuclear power plants under water is possible. (orig.) With 35 refs., 6 tabs., 65 figs [de

  19. Programming of nuclear power operation database

    International Nuclear Information System (INIS)

    Fang Zhaoxia

    1996-01-01

    The article deals with requirements and process of programming for nuclear power operation database and describes the programming for the password module, search module, display module, print module and quit module of the search system included in nuclear power operation database, together with its advantages of quick search, easy operation, friendly user's interface and convenient, database management etc.. Finally, the trend of nuclear power operation database is mentioned

  20. A study of design features of civil works of nuclear installations facilitating their eventual refurbishing, renewal, dismantling or demolition

    International Nuclear Information System (INIS)

    Paton, A.A.; Benwell, P.; Irwin, T.F.; Hunter, I.

    1984-03-01

    This report describes a study that has been carried out to identify civil engineering features which could be incorporated in future gas cooled and light water cooled nuclear power plants to facilitate their decommissioning. The report reviews the problems likely to be met in decommissioning present day nuclear power plants and concludes that there is a number of such features which could be introduced in future designs to overcome or eliminate the problems. The report identifies and describes these features and recommends that further work be carried out to confirm their feasibility. The study briefly considered the possibility of refurbishing nuclear plants and concluded that this is not a realistic option in present circumstances. (author)

  1. Project management for the decommissioning and dismantling of nuclear facilities; Projektmanagement fuer Stilllegung und Rueckbau kerntechnischer Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, Joerg; Wilhelm, Oliver [ENBW Kernkraft GmbH, Neckarwestheim (Germany); Seizer, Burkhard; Schuetz, Tobias [Drees und Sommer, Stuttgart (Germany)

    2015-12-15

    The decommissioning of nuclear power plants is executed in a classic project manner as it is known from other construction projects. It is obvious to use the known portfolio of project management tools. The complexity that is created by the large size of the project in combination with safety requirements of the nuclear industry has to be handled. Complexity can only be managed addressing two main drivers: Prioritization and speed (agility) in project execution. Prioritization can be realized by applying tools like Earned Value Management. A high speed of project execution is established by applying Agile Management like SCRUM-methods. This method is adopted in the context of the cooperation ''Complex Projects'' to the needs of nuclear industry.

  2. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 1

    International Nuclear Information System (INIS)

    Price, M.S.T.; Lafontaine, I.

    1985-01-01

    The purpose of this volume is to introduce the main types of nuclear reactor in the European Community (EC), select reference plants for further study, estimate the waste streams from the reference reactors, survey the transport regulations and assess existing containers

  3. The auxiliary activities for segmentation of internals reactor. Plan of dismantling and decommissioning of the Jose Cabrera Nuclear Power Station; Trabajos auxiliares para la segmentacion de los internos del reactor. Plan de desmantelamiento y clausura de la central nuclear Jose Cabrera

    Energy Technology Data Exchange (ETDEWEB)

    Zurita, A.; Curiel, M.; Cabanillas, S. V.; Herreruela, C.

    2012-11-01

    As part of Jose Cabrera Nuclear Power Plant Dismantling and Decommissioning Plan one of the main activities is the Reactor Vessel Internals Segmentation. ENRESA as utility has been awarded these Project to Westinghouse after International bidding process. The auxiliary and support activities are subcontracted from Westinghouse to MONCASA-LAINSA Joint venture (Monlain ASI-CNJC), as the most experienced company on previous dismantling projects of nuclear power plants in Spain. The main previous activities related to segmentation are described below. (Author) 5 refs.

  4. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  5. An evaluation on the scenarios of work trajectory during installation of dismantling equipment for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Kang, ShinYoung; Choi, JongWon; Jeong, SeongYoung; Ahn, SangMyeon; Lee, JungJun

    2016-01-01

    Highlights: • An evaluation on the scenarios of work trajectory. • An evaluation using the virtual decommissioning environments. • An evaluation on work movement under radiation environments. - Abstract: This study is intended to suggest an ergonomic evaluation on the working postural comfort. This study issued for the first time a methodology in view of combination between visual field and comfort. Especially, the ergonomic evaluation using the virtual decommissioning environments is user-friendly because setup of physical mock-up environments is difficult. This study verified the front and standing postures are best working postures during movement under radiation environments of nuclear facilities. It is expected that this methodology will make it possible to establish the ergonomic plan for decommissioning of nuclear facilities and safety of decommissioning will be improved and also decommissioning costs also can be reduced.

  6. Conclusions of a study for the large scale melting of radioactive steel scrap arising from the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Cross, M.T.

    1992-01-01

    This Summary Paper gives an overview of the feasibility assessment carried out by AEA Technology for the evaluation of melting as a waste conditioning method for metallic Low-Level Wastes (LLW). The assessment wa carried out on behalf of BNFL, Nuclear Electric (NE) and the Department of Energy (DEn) in a work programme started in 1987 and completed during 1990. The salient technical findings and economic arguments for the method are presented in this brief appraisal of the study

  7. A framework for verifying the dismantlement and abandonment of nuclear weapons. A policy implication for the denuclearization of Korea Peninsula

    International Nuclear Information System (INIS)

    Ichimasa, Sukeyuki

    2011-01-01

    Denuclearization of Korean Peninsula has been a serious security issue in the North East Asian region. Although the Six-Party Talks has been suspended since North Korea declared a boycott in 2008, aims of denuclearizing North Korea has still been discussed. For instance, the recent Japan and the U.S. '2+2' dialogue affirmed its importance to achieve complete and verifiable denuclearization of North Korea, including scrutinizing its uranium enrichment program, through irreversible steps under the Six Party process. In order to identify effective and efficient framework for denuclearization of North Korea, this paper examines 5 major denuclearization methods including (1) the Nunn-Luger Method, (2) the Iraqi Method, (3) the South African Method, (4) the Libyan Method and (5) the denuclearization method shown in the Nuclear Weapons Convention (NWC), while referring to the recent developments of the verification studies for nuclear disarmament, such as a joint research conducted by the United Kingdom and Norway and any other arguments made by disarmament experts. Moreover, this paper argues what political and security conditions will be required to make North Korea to accept intrusive verification for its denuclearization. Conditions for successful denuclearization talks among the Six-Party member states and a realistic approach of verifiable denuclearization will be also examined. (author)

  8. The nuclear fuel cycle associated with the operation of nuclear ...

    African Journals Online (AJOL)

    The nuclear power option has been mentioned as an alternative for Ghana but the issue of waste management worries both policy makers and the public. In this paper, the nuclear fuel cycle associated with the operation of nuclear power plants (NPPs) for electric power generation has been extensively reviewed. Different ...

  9. Optimum operation cycle of nuclear plant in power system operation

    International Nuclear Information System (INIS)

    Kurihara, Ikuo; Matsumura, Tetsuo; Katayama, Noboru

    1989-01-01

    Extension of nuclear power plant operation cycle leads to improvement of its capacity factor and affects to suppress thermal plant generation of which fuel cost is relatively high. On the other hand, the number of nuclear fuel assembly to be exchanged at the time of maintenance increases with the operation cycle extension and this makes the fuel cost of nuclear generation high. For this reason, there exists the optimum operation cycle from the power system operation. This report deals with the optimum operation cycle of nuclear plant as the optimum sharing problem of generated energy between nuclear and thermal plants. The incremental fuel cost is considered to find the optimum value. The effects of the generation mix and high burn-up fuel on optimum operation cycle are examined. (author)

  10. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  11. Decommissioning and dismantling reactors and managing waste

    International Nuclear Information System (INIS)

    Bensoussan, E.; Reicher-Fournel, N.

    2005-01-01

    In the early forties/fifties, a number of countries launched the first developments in the field of nuclear power. Some of them now have large numbers of nuclear facilities and nuclear power plants which have met, and continue to meet, the objectives for which they were designed and built. Other plants, including nuclear fuel production and enrichment plants, experimental reactors or research reactors, will have to be dismantled and demolished in the near future. These activities are handled differently in different countries as a function of specific energy policies, advanced development plants, current financial resources, the availability of qualified engineers and specialized industries able to handle projects of this kind, as well as other factors. All dismantling and demolition projects serve the purpose of returning the respective sites to green-field conditions. (orig.)

  12. Nuclear cost studies for decontamination and dismantling. The interim storage for spent fuels at Studsvik.; Kaerntekniska kostnadsstudier avseende dekontaminering och nedlaeggning. Mellanfoervaret foer anvaent kaernbraensle (FA) i Studsvik.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeblom, Rolf; Sjoeoe, Cecilia [Tekedo AB, Nykoeping (Sweden); Lindskog, Staffan; Cato, Anna [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2005-05-01

    The interim store for spent fuel (FA) at Studsvik was designed and constructed in 1962-64. It has been used for wet storage of fuel from the Aagesta Nuclear Power Plant as well as the R2 reactor at Studsvik. FA comprises three cylindrical pools for fuel storage as well as equipment for handling and decontamination. The purpose of the present work is to develop methodology for calculation of future costs for decontamination and dismantling of nuclear research facilities. The analysis is based on information from Studsvik as well as results from information searches. The requirements on precision of cost calculations is high, also at early stages. The reason for this is that the funds are to be collected now but are to be used some time in the future. At the same time they should neither be insufficient nor superfluous. It is apparent from the compilation and analysis that when methodology that has been developed for the purpose of cost calculations for power reactors is applied to research facilities certain drawbacks become apparent, e.g. difficulties to carry out variation analyses. Generally, feedback of data on incurred costs for the purpose of cost calculations can be achieved by using one or more scaling factors together with weighing factors which are established based on e g expert judgement. For development and utilisation of such tools it is necessary to have access to estimated costs together with incurred ones. In the report, the following combination of aspects is identified as being of primary significance for achieving a high precision: Calculations with the possibility to 'calibrate' against incurred costs; Radiological surveying tailored to the needs for calculations; Technical planning including selection of techniques to be used; Identification of potential sources for systematic deviations. In the case of FA, some of the sources of uncertainty are as follows: Damaged surface layers in the pools; Maintenance status for the drains

  13. Limiting the liability of the nuclear operator

    International Nuclear Information System (INIS)

    Reyners, P.

    1986-01-01

    This article discusses the questioning of a fundamental principle of the special nuclear third party liability regime by certain NEA countries: the limitation of the nuclear operator's liability. This regime, set up since the late fifties at European then at worldwide level, had until now been widely adopted in the national legislation of most of the countries with a nuclear power programme. The author analyses the different arguments in favour of restoring unlimited liability for the nuclear operator and attempts to define its implications for the future of the nuclear third party liability regime in NEA countries. (NEA) [fr

  14. Intelligent operation system for nuclear power plants

    International Nuclear Information System (INIS)

    Morioka, Toshihiko; Fukumoto, Akira; Suto, Osamu; Naito, Norio.

    1987-01-01

    Nuclear power plants consist of many systems and are operated by skillful operators with plenty of knowledge and experience of nuclear plants. Recently, plant automation or computerized operator support systems have come to be utilized, but the synthetic judgment of plant operation and management remains as human roles. Toshiba is of the opinion that the activities (planning, operation and maintenance) should be integrated, and man-machine interface should be human-friendly. We have begun to develop the intelligent operation system aiming at reducing the operator's role within the fundamental judgment through the use of artificial intelligence. (author)

  15. Operation reports of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    The requirements aiming to standardize the program of nuclear power plant operation report, required by Brazilian Energy Commission - CNEN - to evaluate the activities related to the nuclear technical safety and to the radiation protection during the units operational phase, are showed. (E.G.) [pt

  16. Physical protection of nuclear operational units

    International Nuclear Information System (INIS)

    1981-07-01

    The general principles of and basic requirements for the physical protection of operational units in the nuclear field are established. They concern the operational units whose activities are related with production, utilization, processing, reprocessing, handling, transport or storage of materials of interest for the Brazilian Nuclear Program. (I.C.R.) [pt

  17. SMANT: a complete code to determine the optimal sequence of dismantling of nuclear power plant components in order to reduce occupational doses

    International Nuclear Information System (INIS)

    Mincarini, M.

    1988-01-01

    The computer program SMANT, developed to assess the best disassembly sequence in case of decommissioning of nuclear installations, is presented in the report. The program is mainly related to: 1) amount of working time; 2) adsorbed doses of radiation by operator teams; 3) available segmenting processes for components piping and walls. An example of application to a real nuclear installation is also presented in appendix

  18. Data analysis on work activities in dismantling of Japan Power Demonstration Reactor (JPDR). Contract research

    International Nuclear Information System (INIS)

    Shiraishi, Kunio; Sukegawa, Takenori; Yanagihara, Satoshi

    1998-03-01

    The safe dismantling of a retired nuclear power plant was demonstrated by completion of dismantling activities for the Japan Power Demonstration Reactor (JPDR), March, 1996, which had been conducted since 1986. This project was a flag ship project for dismantling of nuclear power plants in Japan, aiming at demonstrating an applicability of developed dismantling techniques in actual dismantling work, developing database on work activities as well as dismantling of components and structures. Various data on dismantling activities were therefore systematically collected and these were accumulated on computer files to build the decommissioning database; dismantling activities were characterized by analyzing the data. The data analysis resulted in producing general forms such as unit activity factors, for example, manpower need per unit weight of component to be dismantled, and simple arithmetic forms for forecasting of project management data to be applied to planning another dismantling project through the evaluation for general use of the analyzed data. The results of data analysis could be usefully applied to planning of future decommissioning of commercial nuclear power plants in Japan. This report describes the data collection and analysis on the JPDR dismantling activities. (author)

  19. The Nuclear Insurance Pools: Operations and Covers

    International Nuclear Information System (INIS)

    Tetley, M.

    2008-01-01

    Nuclear insurance pools have provided insurance for the nuclear industry for over fifty years and it is fair to say that the development of civil nuclear power would not have been possible without the support of the commercial insurance market. The unknown risks presented by the nascent nuclear power industry in the 1950s required a leap of faith by insurers who developed specialist pooled insurance capacity to ensure adequate capacity to back up the operators' compensation obligations. Since then, nuclear insurance pools have evolved to become comprehensive suppliers of most types of insurance for nuclear plant globally. This paper will outline the structure, development, products and current operations of nuclear insurance pools.(author)

  20. Radiation protection aspects of established dismantling and decontamination technologies. Information and experiences from the decommissioning of nuclear facilities; Strahlenschutzaspekte gaengiger Abbau- und Dekontaminationstechniken. Informationen und Erfahrungen aus der Stilllegung kerntechnischer Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Kaulard, Joerg; Brendebach, Boris; Strub, Erik

    2010-12-15

    The report covers the following topics: the concept of an idealized dismantling technology selection process, examples on aspects of the dismantling strategy,features of dismantling and decontamination technologies in the frame of radiation protection aspects, examples of dismantling technologies based on the features of the German decommissioning practice (NPPs Greifswald, Wuergassen, Stade, Gundremmingen, research reactors Kahl, KNK and MZFR) experiences on radiation protection aspects with decontamination and dismantling technologies.

  1. Qualification of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1984-01-01

    With the ultimate aim of reducing the possibility of human error in nuclear power plant operations, the Guidebook discusses the organizational aspects, the staffing requirements, the educational systems and qualifications, the competence requirements, the ways to establish, preserve and verify competence, the specific aspects of personnel management and training for nuclear power plant operations, and finally the particular situations and difficulties to be overcome by utilities starting their first nuclear power plant. An important aspect presented in the Guidebook is the experience in training and qualification of nuclear power plant personnel in various countries: Argentina, Belgium, Canada, Czechoslovakia, France, Federal Republic of Germany, Spain, Sweden, United Kingdom and United States of America

  2. Technical support for nuclear power operations

    International Nuclear Information System (INIS)

    1999-04-01

    This report prepared by the group of senior experts from nuclear operating organizations in Member states, addresses the problem of improving the operating performance of nuclear power plants. Safe and reliable operation is essential for strengthening the viability of nuclear power in the increasingly competitive market of electric power. Basic principles and requirements concerning technical procedures and developed practices are discussed. Report reflects the best current international practices and presents those management initiatives that go beyond the mandated regulatory compliance and could lead to enhancement od operational safety and improved plant performance. By correlating experiences and presenting collective effective practices it is meant to assist nuclear power plant managers in achieving improvement in operation through the contribution of effective technical support

  3. The human factor in nuclear reactor operation

    International Nuclear Information System (INIS)

    Bertron, L.

    1982-05-01

    The principal operating characteristics of nuclear power plants are summarized. A description of major hazards relating to operator fallibility in normal and abnormal operating conditions is followed by a specific analysis of control room hazards, shift organization and selection and training of management personnel

  4. Evaluation of nuclear power plant operator's ability

    International Nuclear Information System (INIS)

    Wei Li; He Xuhong; Zhao Bingquan

    2004-01-01

    Based on the quantitative research on nuclear power plant (NPP) operator's psychological characteristics and performance, the Borda's method of fuzzy mathematics combined with the character of operator's task is used to evaluate their abilities. The result provides the reference for operator's reliability research and psychological evaluation. (author)

  5. Operational safety of nuclear power plants

    International Nuclear Information System (INIS)

    Tanguy, P.

    1987-01-01

    The operational safety of nuclear power plants has become an important safety issue since the Chernobyl accident. A description is given of the various aspects of operational safety, including the importance of human factors, responsibility, the role and training of the operator, the operator-machine interface, commissioning and operating procedures, experience feedback, and maintenance. The lessons to be learnt from Chernobyl are considered with respect to operator errors and the management of severe accidents. Training of personnel, operating experience feedback, actions to be taken in case of severe accidents, and international cooperation in the field of operational safety, are also discussed. (U.K.)

  6. Nuclear Experts Discuss IAEA Operational Safety Reviews

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Senior nuclear experts today offered several recommendations on how the International Atomic Energy Agency (IAEA) can further develop its operational safety review services. The IAEA hosted a technical meeting on the Evaluation of Effectiveness of Operational Safety Review Services and their Future Evolution at the Agency's headquarters in Vienna from 1 to 4 November 2011. Representatives from nuclear regulatory bodies, nuclear utilities, nuclear power plants and technical support organisations from 19 IAEA Member States and the World Association of Nuclear Operators (WANO) took part in the meeting. It provided a platform for the exchange of information, experience and lessons learned from the operational safety review missions performed during 2008-2011. The meeting also included discussion of expectations for the future evolution of these services. ''This week's meeting demonstrated the response of the IAEA's Member States to the lessons learned from the Fukushima accident. Nations must constantly strive to improve their nuclear safety practices, and the IAEA review services provide an excellent tool to assess their progress,'' said Miroslav Lipar, head of the IAEA's Operational Safety Section. The IAEA's operational safety review services assess the operational safety performance of nuclear power plants by conducting peer reviews using the requirements of IAEA Safety Standards. The longest running safety review service, the Operational Safety Review Team (OSART) programme, was established in 1982 and has provided advice and assistance to Member States in 165 missions to enhance the safety of nuclear power plants during commissioning and operation. Other review services available in the area of operations evaluate operating experience feedback, safe long-term operation and safety culture. The IAEA Action Plan on Nuclear Safety includes actions focused towards strengthening the existing IAEA peer reviews by incorporating lessons learned and improving

  7. Review of operational aids for nuclear plant operators

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1983-01-01

    Many approaches are being explored to improve the safety of nuclear plant operations. One approach is to supply high-quality, relevant information by means of computer-based diagnostic systems to assist plant operators in performing their operational and safety-related roles. The evaluation of operational aids to ensure safe plant operations is a necessary function of NRC. This work has two purposes: to collect limited data on a diversity of operational aids, and to provide a method for evaluating the safety implications of the functions of proposed operational aids. After a discussion of the method evaluation now under study, this paper outlines this data collection to date

  8. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-09-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear safety and radiation protection which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Safety-enhancing modifications at the nuclear power plants and issues relating to the use of nuclear energy which are of general interest are also reported. The reports include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the first quarter of 1993, a primary feedwater system pipe break occurred at Loviisa 2, in a section of piping after a feedwater pump. The break was erosion-corrosion induced. Repairs and inspections interrupted power generation for seven days. On the International Nuclear Event Scale the event is classified as a level 2 incident. Other events in the first quarter of 1993 had no bearing on nuclear safety and radiation protection

  9. Nuclear power plant operation 2016. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2017-05-15

    A report is given on the operating results achieved in 2016, events important to plant safety, special and relevant repair, and retrofit measures from nuclear power plants in Germany. Reports about nuclear power plants in Belgium, Finland, the Netherlands, Switzerland, and Spain will be published in a further issue.

  10. Analysis of operational possibilities and conditions of remote handling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Hourfar, D.

    1989-01-01

    Accepting the development of the occupational radiation exposure in nuclear facilities, it will be showing possibilities of cost effective reduction of the dose rate through the application of robots and manipulators for the maintenance of nuclear power plants, fuel reprocessing plants, decommissioning and dismantling of the mentioned plants. Based on the experiences about industrial robot applications by manufacturing and manipulator applications by the handling of radioactive materials as well as analysis of the handling procedures and estimation of the dose intensity, it will be defining task-orientated requirements for the conceptual design of the remote handling systems. Furthermore the manifold applications of stationary and mobil arranged handling systems in temporary or permanent operation are described. (orig.) [de

  11. 76 FR 19148 - Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear...

    Science.gov (United States)

    2011-04-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Entergy Nuclear Vermont Yankee, LLC, Vermont Yankee Nuclear... (10 CFR), Section 2.206, ``Requests for Action under this Subpart,'' the U.S. Nuclear Regulatory...

  12. 77 FR 70847 - Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc., Indian Point Nuclear...

    Science.gov (United States)

    2012-11-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Indian Point 2, LLC; Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 2, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request for Action...

  13. Academic training for nuclear power plant operators

    International Nuclear Information System (INIS)

    Jones, D.W.

    1982-01-01

    In view of the increasing emphasis being placed upon academic training of nuclear power plant operators, it is important that institutions of higher education develop and implement programs which will meet the educational needs of operational personnel in the nuclear industry. Two primary objectives must be satisfied by these programs if they are to be effective in meeting the needs of the industry. One objective is for academic quality. The other primary objective is for programs to address the specialized needs of the nuclear plant operator and to be relevant to the operator's job. The Center for Nuclear Studies at Memphis State University, therefore, has developed a total program for these objectives, which delivers the programs, and/or appropriate parts thereto, at ten nuclear plant sites and with other plants in the planning stage. The Center for Nuclear Studies program leads to a Bachelor of Professional Studies degree in nuclear industrial operations, which is offered through the university college of Memphis State University

  14. Taxonomy of the nuclear plant operator's role

    International Nuclear Information System (INIS)

    Kisner, R.A.; Fullerton, A.M.; Frey, P.R.; Dougherty, E.M.

    1981-01-01

    A program is presently under way at the Oak Ridge National Laboratory (ORNL) to define the functional design requirements of operational aids for nuclear power plant operators. A first and important step in defining these requirements is to develop an understanding of the operator's role or function. This paper describes a taxonomy of operator functions that applies during all operational modes and conditions of the plant. Other topics such as the influence of automation, role acceptance, and the operator's role during emergencies are also discussed. This systematic approach has revealed several areas which have potential for improving the operator's ability to perform his role

  15. Knowledge management for nuclear industry operating organizations

    International Nuclear Information System (INIS)

    2006-10-01

    The nuclear energy sector is characterized by lengthy time frames and technical excellence. Early nuclear plants were designed to operate for 40 years but their service life now frequently extends between 50 and 60 years. Decommissioning and decontamination of nuclear plants will also be spread over several years resulting in a life cycle - from cradle to grave - in excess of 100 years, which gives rise to two challenges for the nuclear industry: (1) Retention of existing skills and competencies for a period of over fifty years, particularly in countries where no new nuclear power plants are being planned; and (2) Development of new skills and competencies in the areas of decommissioning and radioactive waste management in many industrialized countries if younger workers cannot continue to be attracted to the nuclear disciplines. As many nuclear experts around the world are retiring, they are taking with them a substantial amount of knowledge and corporate memory. Typically, these retirees are individuals who can answer questions very easily and who possess tacit knowledge never before extracted from them. The loss of such employees who hold knowledge critical to either operations or safety poses a clear internal threat to the safe and reliable operation of nuclear power plants (NPPs). Therefore, the primary challenge of preserving such knowledge is to determine how best to capture tacit knowledge and transfer it to successors. These problems are exacerbated by the deregulation of energy markets around the world. The nuclear industry is now required to reduce its costs dramatically in order to compete with generators that have different technology life cycle profiles. In many countries, government funding has been dramatically reduced or has disappeared altogether while the profit margins of generators have been severely squeezed. The result has been lower electricity prices but also the loss of expertise as a result of downsizing to reduce salary costs, a loss of

  16. Nuclear operating costs are rising exponentially - official

    International Nuclear Information System (INIS)

    Thomas, S.

    1988-01-01

    The Energy Information Agency of the United States Department of Energy has collected data on the operations of nuclear power plants in the United States. A statistical regression analysis was made of this data base. This shows that the escalation in annual, real non-fuel operating costs is such that the operating cost savings made by closing down an old nuclear plant would be sufficient to pay the capital and operating costs of replacing it with a brand new coal-fired plant. The main reason for the increasing operating and maintenance costs is the cost of replacement power i.e. the higher the economic penalty of plant breakdown the more the utility has to spend on maintenance. Another reason is time -not the age of the plant - but the year the data was collected. The economic case for nuclear power is seriously challenged. (U.K.)

  17. Dismantling and decontamination of the PIVER prototype vitrification facility

    International Nuclear Information System (INIS)

    Jouan, A.

    1989-01-01

    The PIVER facility was dismantled for replacement by a new continuous pilot plant. The more important operation concerns the vitrification cell, containing equipments of the process, for complete disposal and maximum decontamination, requiring dismantling, cutting, conditioning and removal of equipment inside the cell. Manipulators, handling and cutting tools were used. Activity of removed material and irradiation of personal are followed during the work for matching intervention means to operation conditions [fr

  18. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    International Nuclear Information System (INIS)

    Chambon, Frederic; CIZEL, Jean-Pierre; Blanchard, Samuel

    2013-01-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  19. Clearance of materials from dismantling of nuclear facilities in Sweden - a study on whether the EU recommendations are applicable in Sweden; Friklassning av material fraan rivning av kaerntekniska anlaeggningar i Sverige - en utredning om EU:s rekommenderade regler aer tillaempbara i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Hamrefors, Gunilla [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2004-02-01

    The report presents a study on whether the EU recommendations on clearance of metals, buildings and building rubble from the dismantling of nuclear facilities are applicable in Sweden. Analyses are made to estimate the amounts of waste that would be released from dismantling of the Swedish nuclear power plants and to what degree the costs of the licence holders would be influenced. A summary and evaluation of different methods and equipments for measurement is also given. The main conclusion is that the EU recommendations are applicable in Sweden.

  20. Operations quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    1987-01-01

    This standard covers the quality assurance of all activities concerned with the operation and maintenance of plant equipment and systems in CANDU-based nuclear power plants during the operations phase, the period between the completion of commissioning and the start of decommissioning

  1. Operator support system for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Tai, Ichiro; Sudo, Osamu; Naito, Norio.

    1987-01-01

    The nuclear power generation in Japan maintains the high capacity factor, and its proportion taken in the total generated electric power exceeded 1/4, thus it has become the indispensable energy source. Recently moreover, the nuclear power plants which are harmonious with operators and easy to operate are demanded. For realizing this, the technical development such as the heightening of operation watching performance, the adoption of automation, and the improvement of various man-machine systems for reducing the burden of operators has been advanced by utilizing electronic techniques. In this paper, the trend of the man-machine systems in nuclear power plants, the positioning of operation support system, the support in the aspects of information, action and knowledge, the example of a new central control board, the operation support system using a computer, an operation support expert system and the problems hereafter are described. As the development of the man-machine system in nuclear power plants, the upgrading from a present new central control board system PODIA through A-PODIA, in which the operational function to deal with various phenomena arising in plants and safety control function are added, to 1-PODIA, in which knowledge engineering technology is adopted, is expected. (Kako, I.)

  2. Professional adaptability of nuclear power plant operators

    International Nuclear Information System (INIS)

    He Xuhong; Huang Xiangrui

    2006-01-01

    The paper concerns in the results of analysis for nuclear power plant (NPP) operator job and analysis for human errors related NPP accidents. Based on the principle of ergonomics a full psychological selection system of the professional adaptability of NPP operators including cognitive ability, personality and psychological health was established. The application way and importance of the professional adaptability research are discussed. (authors)

  3. Nuclear units operating improvement by using operating experience

    International Nuclear Information System (INIS)

    Rotaru, I.; Bilegan, I.C.

    1997-01-01

    The paper presents how the information experience can be used to improve the operation of nuclear units. This areas include the following items: conservative decision making; supervisory oversight; teamwork; control room distraction; communications; expectations and standards; operator training and fundamental knowledge, procedure quality and adherence; plant status awareness. For each of these topics, the information illustrate which are the principles, the lessons learned from operating experience and the most appropriate exemplifying documents. (authors)

  4. Digital computer operation of a nuclear reactor

    Science.gov (United States)

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  5. Regulatory Safety Requirements for Operating Nuclear Installations

    International Nuclear Information System (INIS)

    Gubela, W.

    2017-01-01

    The National Nuclear Regulator (NNR) is established in terms of the National Nuclear Regulator Act (Act No 47 of 1999) and its mandate and authority are conferred through sections 5 and 7 of this Act, setting out the NNR's objectives and functions, which include exercising regulatory control over siting, design, construction etc of nuclear installations through the granting of nuclear authorisations. The NNR's responsibilities embrace all those actions aimed at providing the public with confidence and assurance that the risks arising from the production of nuclear energy remain within acceptable safety limits -> Therefore: Set fundamental safety standards, conducting pro-active safety assessments, determining licence conditions and obtaining assurance of compliance. The promotional aspects of nuclear activities in South Africa are legislated by the Nuclear Energy Act (Act No 46 of 1999). The NNR approach to regulations of nuclear safety and security take into consideration, amongst others, the potential hazards associated with the facility or activity, safety related programmes, the importance of the authorisation holder's safety related processes as well as the need to exercise regulatory control over the technical aspects such as of the design and operation of a nuclear facility in ensuring nuclear safety and security. South Africa does not have national nuclear industry codes and standards. The NNR is therefore non-prescriptive as it comes to the use of industry codes and standards. Regulatory framework (current) provide for the protection of persons, property, and environment against nuclear damage, through Licensing Process: Safety standards; Safety assessment; Authorisation and conditions of authorisation; Public participation process; Compliance assurance; Enforcement

  6. Development of decommissioning engineering support system for fugen. Development of support system during actual dismantlement works

    International Nuclear Information System (INIS)

    Masanori Izumi; Yukihiro Iguchi; Yoshiki Kannehira

    2005-01-01

    The Advanced Thermal Reactor, Fugen Nuclear Power Station was permanently shut down in March 2003, and is now preparing for decommissioning. We have been developing Decommissioning Engineering Support System (DEXUS) aimed at planning optimal dismantlement process and carrying out dismantlement work safely and precisely. DEXUS consists of 'decommissioning planning support system' and 'dismantling support system'. The dismantling support system is developed aiming at using during actual dismantling work. It consists of three subsystems such as 'Worksite Visualization System', 'Dismantling Data Collection System' and 'Generated Waste Management System'. 'Worksite Visualization System' is a support system designed to provide the necessary information to workers during actual dismantlement works. And this system adopts AR (Augmented Reality) technology, overlapping calculation information into real world. 'Dismantling Data Collection System' is to collect necessary data for improving accuracy of decommissioning planning by evaluating work content and worker equipage, work time for dismantlement works. 'Generated Waste Management system' is a system recording necessary information by attaching the barcode to dismantled wastes or the containers. We can get the information of generated waste by recording generation place, generated time, treatment method and the contents. These subsystems enable to carry out reasonable and safe decommissioning of Fugen. In addition, we expect that those systems will be used for decommissioning of other nuclear facilities in the future. (authors)

  7. Cutting techniques for facilities dismantling in decommissioning projects

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2011-01-01

    Fuel cycle related activities were accomplished in IPEN-CNEN/SP in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years. During the operational activities in the decommissioning of old nuclear fuel cycle facilities, the personnel involved in the task had to face several problems. In old facilities, the need of large components dismantling and material removal use to present some difficulties, such as lack of available and near electricity supply. Besides this, the spread out of the superficial contamination in the form of dust or aerosols and the exposure of workers should be as much as possible avoided. Then, the selection and availability of suitable tools for the task, mainly those employed for cutting and segmentation of different materials is of significant importance. Slight hand tools, mainly those powered by rechargeable batteries, facilitate the work, especially in areas where the access is difficult. Based on the experience in the dismantling of some old nuclear facilities of IPEN-CNEN/SP, some tools that would have facilitated the operations were identified and their availability could have improved the quality and efficiency of different individual tasks. In this paper different cutting problems and techniques, as well as some available commercial hand tools, are presented as suggestion for future activities. (author)

  8. Artificial intelligence in nuclear reactor operation

    International Nuclear Information System (INIS)

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  9. Institute of Nuclear Power Operations (INPO)

    International Nuclear Information System (INIS)

    Pack, R.W.

    1980-01-01

    The electric utility industry established the Institute of Nuclear Power Operations, or INPO, the purpose of which is to ensure the highest quality of operations in nuclear power plants. INPO will be an industry self-help instrument focusing on human factors. From top management to the operator trainee, it will measure utility performance against benchmarks of excellence and help utilities reach those benchmarks throughout training and operating programs. INPO will see that the utilities ferret out lessons for all from the abnormal operating experiences of any. It will do everything possible to assist utilities in meeting its certification requirements, but will have the clout to see that those requirements are met. INPO is also managing the nationwide system of utility emergency response capability

  10. Nuclear plant operation: achieving excellence through quality

    International Nuclear Information System (INIS)

    Bergstrom, L.; Bergeron, J.P.; Coakley, W.

    1992-01-01

    Nuclear power operation is characterised by a very high level of safety and availability resulting in economically competitive electricity production. This achievement must not only be maintained but must be further developed if nuclear power is to regain momentum in the light of its widely recognized environmental advantages. Therefore this meeting bring together all those, managers and technical staff, responsible for the operation of the nuclear in order to allow them to exchange views, experience and knowledge on fundamental aspects such as: management philosophy, quality assurance, human resources and international co-operation; focusing on training (incident analysis and management), human factors and experience feedback; maintenance philosophy, life extension and upgrading, organisation and administration. (A.L.B.)

  11. Nuclear plant operation: achieving excellence through quality

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, L. [Barseback Nuclear Power Plant (Sweden); Bergeron, J.P. [Electricite de France (EDF), 75 - Paris (France); Coakley, W. [and others

    1992-07-01

    Nuclear power operation is characterised by a very high level of safety and availability resulting in economically competitive electricity production. This achievement must not only be maintained but must be further developed if nuclear power is to regain momentum in the light of its widely recognized environmental advantages. Therefore this meeting bring together all those, managers and technical staff, responsible for the operation of the nuclear in order to allow them to exchange views, experience and knowledge on fundamental aspects such as: management philosophy, quality assurance, human resources and international co-operation; focusing on training (incident analysis and management), human factors and experience feedback; maintenance philosophy, life extension and upgrading, organisation and administration. (A.L.B.)

  12. Cleaning and dismantling of a high activity laboratory (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Bredel; Thierry; Buzare, Alain

    2005-01-01

    The high activity laboratories have been built at the end of the 50ies. The particularity of this facility was that about 14 different laboratories worked in 14 different fields (biology, production of Cs and Cf sources, metallurgy, mechanical testing ...). Because of the optimization of the nuclear research, the CEA decided to close progressively this facility and to transfer the different experiments in other places. This action began in 1997 and is planed to end in 2010. 6 laboratories have been closed from 1997 to 2001 and the dismantling of the shielded cells has begun since 2002. Therefore, several laboratories have been cleaned of the materials and experiments. Nevertheless, the main particularity of this subject is that some experimental activities have been pursued during the cleaning and dismantling of other laboratories. For example, we describe the dismantling of the laboratory that performed metallurgical and mechanical characterization of irradiated materials. This laboratory occupied 20 lead cells and 2 glove boxes. The exploitation of those cells has been stopped progressively (12 at the end of 2001 and 5 at the end of 2003). The end of the last 3 cell exploitation is planed to end 2005. Since the end of 2001, 9 lead cells have been cleaned. Their dismantling is planed for next the two years. In parallel, we will clean all the other cells. During this phase we will have also to transfer all the irradiated samples (about 5000) that are still in the laboratory to the waste treatment facility of the CEA centre or to the new laboratory which has been presented during the previous hotlab meeting in Saclay. The paper gives details for background about ended operations: Organization, waste production, specific designs which improve radioprotection, waste destinations and costs, Difficulties and feedback experience of dismantling. (Author)

  13. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    Energy Technology Data Exchange (ETDEWEB)

    Volant, Emmanuelle [CEA DAM, Bruyeres-le-Chatel (France); Garnier, Cedric [CEA DEN, Marcoule (France)

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise and its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of

  14. Operating performance of LWR nuclear generating units

    International Nuclear Information System (INIS)

    Pia, S.

    1984-01-01

    This work aims at reviewing, on the basis of historical data, the operational problem areas which explain the degree of availability and productivity achieved up to now by nuclear power plants in commercial operation in the world. The operating performance data of nuclear power plants area analysed with respect to plant type, size and other significant reference parameters and they are evaluated also by comparison with fossil generating unit data. Major performance indices data are presented for both nuclear and fossil units type and distribution of outage causes. Unplanned full outages caused by nuclear power plant equipment and components failure are particulary emphasized. The trend for unplanned full outages due to the failure of components shows decreasing numerical values in 1981 with respect to the previous years. But this result should be weighed with the increasing plant unavailability hours needed for maintenance and repair action (chiefly preventive maintenance on critical components). This means that the number and downtime of forced outage must be drastically reduced for economic reasons (production losses and problems associated with the unavailable unit unplanned replacement) as well as for plant safe and reliable operation (sudden unavailability of key components and frequency of transients associated with plant shutdown and routine startup operation)

  15. Training device for nuclear power plant operators

    International Nuclear Information System (INIS)

    Schoessow, G. J.

    1985-01-01

    A simulated nuclear energy power plant system with visible internal working components comprising a reactor adapted to contain a liquid with heating elements submerged in the liquid and capable of heating the liquid to an elevated temperature, a steam generator containing water and a heat exchanger means to receive the liquid at an elevated temperature, transform the water to steam, and return the spent liquid to the reactor; a steam turbine receiving high energy steam to drive the turbine and discharging low energy steam to a condenser where the low energy steam is condensed to water which is returned to the steam generator; an electric generator driven by the turbine; indicating means to identify the physical status of the reactor and its contents; and manual and automatic controls to selectively establish normal or abnormal operating conditions in the reactor, steam generator, pressurizer, turbine, electric generator, condenser, and pumps; and to be selectively adjusted to bring the reactor to acceptable operating condition after being placed in an abnormal operation. This device is particularly useful as an education device in demonstrating nuclear reactor operations and in training operating personnel for nuclear reactor systems and also as a device for conducting research on various safety systems to improve the safety of nuclear power plants

  16. Modifications at operating nuclear power plants

    International Nuclear Information System (INIS)

    Duffy, T.J.; Gazda, P.A.

    1985-01-01

    Modifications at operating nuclear power plants offer the structural engineer many challenges in the areas of scheduling of work, field adjustments, and engineering staff planning. The scheduling of structural modification work for operating nuclear power plants is normally closely tied to planned or unplanned outages of the plant. Coordination between the structural engineering effort, the operating plant staff, and the contractor who will be performing the modifications is essential to ensure that all work can be completed within the allotted time. Due to the inaccessibility of some areas in operating nuclear power plants or the short time available to perform the structural engineering in the case of an unscheduled outrage, field verification of a design is not always possible prior to initiating the construction of the modification. This requires the structural engineer to work closely with the contractor to promptly resolve problems due to unanticipated interferences or material procurement problems that may arise during the course of construction. The engineering staff planning for structural modifications at an operating nuclear power plant must be flexible enough to permit rapid response to the common ''fire drills,'' but controlled enough to ensure technically correct designs and to minimize the expenditure of man-hours and the resulting engineering cost

  17. Nuclear safety and renewals of authorisations for operation of plants nuclear in the law of sustainable economy

    International Nuclear Information System (INIS)

    Bello Paredes, S. A.

    2011-01-01

    Depending on the nature of the activity to develop, the legislation establishes a different typology of administrative authorizations that must ensure the adaptation to law for all activity relating to nuclear facilities, from the planning stage of activity, to its closing and dismantling.

  18. A recipe for nuclear operation success

    International Nuclear Information System (INIS)

    McConnell, L.G.

    1987-01-01

    Ontario, one of ten Canadian provinces, receives the majority of its electrical service from one utility called Ontario Hydro. Today, Ontario Hydro generates more than 50% of its electricity from nuclear stations of the CANDU type. The CANDU station performance, in respect to worker safety, public safety, environmental protection, reliability and cost, has been out-standing. Operations and maintenance is one of the several functions essential to high performance. This paper discusses some of the major considerations important to successful operations. (author)

  19. Operation Safety Review of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suharno

    2005-01-01

    A review on operation safety of Nuclear Power Plant (NPP) is carried out. NPP is established through several phases that are siting, design, fabrication and construction, and after completion of construction the next phase is operation, therefore operating organization is established. The safety of NPP is relied on operation safety. Based on that case the aim of this review is to get impression that operating organization and its activities are very important on determining the achievement of operation safety. Operating organization determines qualification and training of personnel, commissioning programs, plant operation programs, and supporting activities programs. The method used in this review is by explains the operating organization and its activities. The results indicate that the role of operating organization and its activities are very important on determining the achievement of the goals of the operation which are secure, reliable and safe. Operating organization directly responsible to operation safety. Besides that, human factor related to the implementation of safety culture has also important role. (author)

  20. On evaluation of assessments of accruals of future dismantling costs

    International Nuclear Information System (INIS)

    Labor, Bea; Lindskog, Staffan

    2013-01-01

    A major prerequisite in order for civilian commercial nuclear energy production to qualify as sustainable energy production is that systems for the management of the nuclear waste legacy are in operation. These waste types are present in a range from very low short lived waste (VLLW) to long lived high level waste (HLW) (including the used nuclear fuel). The second prerequisite is that financial responsibilities or other constraints must not be passed on to coming generations. The first condition for qualification corresponds to the Polluters Pays Principle (PPP) which demands that the responsibility for the waste management rests solely with the polluter. The second qualification corresponds to the principle of fairness between generations and thus concerns the appropriate distribution of responsibilities between the generations. It is important to note that these two conditions must be met simultaneously, and that compliance with both is a necessary prerequisite in order for commercial use of nuclear power to qualify as a semi-sustainable energy source. Financial and technical planning for dismantling and decommissioning of nuclear installations cannot be regarded as successful unless it rests upon a distinctive way to describe and explain the well-founded values of different groups of stakeholders. This cumbersome task can be underpinned by transparent and easy to grasp models for calculation and estimation of future environmental liabilities. It essential that a systematic classification is done of all types of costs and that an effort is done to evaluate the precision level in the cost estimates. In this paper, a systematic and transparent way to develop a parametric approach that rest upon basic accounting standards is combined with data about younger stakeholder's values towards decommissioning and dismantling of nuclear installation. The former entity rests upon theoretical and practical methods from business administration, whilst the latter is based

  1. Decontamination and remote dismantling tests in the Itrec reprocessing plant

    International Nuclear Information System (INIS)

    Candelieri, T.; Gerardi, A.; Soffietto, G.

    1993-01-01

    The scope of this research is to evaluate the advantages of the rack removal system in the dismantling of reprocessing installations. The objective of this work is to verify experimentally the possibility of the decontamination of any particular module and the capability of the remote dismantling of components installed in the mobile rack. In particular, the main objective is to develop remotely operated equipment for the dismantling of centrifugal contactors. The decontamination of the equipment which represents the most important preliminary phase of the decommissioning operation, allowed to obtain low-level radioactivity. A supporting programme has been performed in order to collect sufficient data for the project and design of the remote dismantling machine. On the basis of technological cold test results, the project of the dismantling machine's construction has been optimized. Positive results obtained during the hot dismantling operations on the Rack 6 bis attested the effectiveness of the rack removal system as an original design which facilitates decommissioning of reprocessing plants. 2 tabs., 18 figs

  2. Nuclear Materials Identification System Operational Manual

    CERN Document Server

    Chiang, L G

    2001-01-01

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a sup 2 sup 5 sup 2 Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  3. Experience acquired by EDF in implementation of its dismantling programme

    Energy Technology Data Exchange (ETDEWEB)

    Klaeyle, S.; Dalmas, R.; Davoust, M. [EDF - Centre d' Ingenerie Deconstruction Environnement (CIDEN), 69 - Villeurbanne (France)

    2008-07-01

    EDF decided in 2001 to implement immediate dismantling of its first generation nuclear plants. Seven years after this decision, the physical progress of the programme is 24% and is due to reach 50 % by 2013. This paper presents the experiences acquired in the fields of organization, project and programme management, purchasing strategies and waste management. Until now, the principal works involve Brennilis (Heavy water), ChoozA (PWR) and Creys Malville (fast breeder reactor). The detailed pre-project concerning the first of the six gas graphite reactors is complete and the call for bids process has been launched. The organization to manage projects, established at the De-construction and Environment Engineering Center (CIDEN), is effective and productive. Estimates of costs and expenses are coherent, which makes the forecasts put together to finance the programme secure. CIDEN has carried out significant engineering work over the last six years, making it possible to apply for the administrative authorizations which have now been obtained or are in the process of being obtained. Technical specifications are prepared at an optimized level of detail according to a contractual policy adapted to the complexity of the operations and the sharing of risk with manufacturers. The ChoozA contractualization process has been launched and the first dismantling work has begun in the nuclear auxiliary part. The main Brennilis contract will be completed in mid- 2008 and dismantling works will restart after renewal of the decree which was cancelled in mid-2007. Treatment of sodium from Creys Malville is about to begin, leading to elimination of the sodium risk by 2013. The very low activity waste (TFA) and low to medium activity waste (FA-MA) removal chains are operational. The intermediate activity/long lived (MA-VL) waste will be stored in a facility which will be brought into operational service in 2012. The graphite storage center is due to open between 2017 and 2019

  4. Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316

    International Nuclear Information System (INIS)

    Field, D.; Mizen, K.

    2013-01-01

    The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been used to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The Northern

  5. Characterization of radioactive graphite and concrete of the reactor ULYSSE/INSTN at CEA/Saclay to be dismantled

    International Nuclear Information System (INIS)

    Van Lauwe, Aymeric; Ridikas, Danas; Damoy, Francois; Blideanu, Valentin; Fajardo, Christophe; Aubert, Marie-Cecile; Foulon, Francois

    2006-01-01

    Decommissioning and dismantling of nuclear installations after their service life are connected with the necessity of the disassembling, handling and disposing of a large amount of radioactive material. In order to optimize the disassembling operations, to reduce the undesirable volume to the minimum and to successfully plan the dismantling and disposal of radioactive materials to storage facilities, the radiological characterisation of the material present in the reactor and around its environment should be accurately evaluated. The present work has been done in the framework of the decommissioning and dismantling of the experimental reactor ULYSSE that is presently operating in INSTN/Saclay and will be closed in the middle of 2006. A methodology, already successfully used for another research reactor, is proposed for determining accurately the long-term induced activity of the materials present in the active reactor core and its surroundings. The comparison of theoretical predictions, based on Monte Carlo technique, with experimental values validated the approach and the methodology used in the present study. The goal is to plan efficiently the disassembling and dismantling of the system and to optimise the mass flow going to different waste repositories. We show that this approach might reduce substantially the total cost of decommissioning. (authors)

  6. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-12-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well TVO I and II were in operation for almost the whole second quarter of 1992. Longer breaks in production were caused by the annual maintenance of the TVO plant units. The load factor was 87.4 %. At TVO I it was detected during the annual maintenance outage when removing nuclear fuel assemblies from the reactor that one assembly had been loaded into the reactor in an incorrect manner during the previous year's annual maintenance: the assembly was slightly higher than the other assemblies. The water cooling the nuclear fuel partly by-passed the fuel assembly and the coolant flow proper passing through the assembly was below design. The fuel assembly's cooling had been sufficient during the whole operating cycle but could have essentially deteriorated during certain transients with the danger of consequent damage to some fuel rods. On the International Nuclear Event Scale the event is classified as level 1. Other events in this quarter which are classified on the International Nuclear Event Scale were level 0/below scale on the scale

  7. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-03-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in operation for almost the whole third quarter of 1991. Longer interruptions in electricity generation were caused by the annual maintenances of the Loviisa plant units. The load factor average was 81.7 %. In a test conducted during the annual maintenance outage of Loviisa 1 it was detected that the check valve of the discharge line of one pressurized emergency make-up tank did not open sufficiently at the tank's hydrostatic pressure. In connection with a 1988 modification, a too tightly dimensioned bearing had been mounted on the valve's axle rod and the valve had not been duly tested after the operation. The event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale). Occupational radiation doses and releases of radioactive material off-site were below authorised limits in this quarter. Only small amounts of radioactive materials originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  8. Safety goals for nuclear power plant operation

    International Nuclear Information System (INIS)

    1983-05-01

    This report presents and discusses the Nuclear Regulatory Commission's, Policy Statement on Safety Goals for the Operation of Nuclear Power Plants. The safety goals have been formulated in terms of qualitative goals and quantitative design objectives. The qualitative goals state that the risk to any individual member of the public from nuclear power plant operation should not be a significant contributor to that individual's risk of accidental death or injury and that the societal risks should be comparable to or less than those of viable competing technologies. The quantitative design objectives state that the average risks to individual and the societal risks of nuclear power plant operation should not exceed 0.1% of certain other risks to which members of the US population are exposed. A subsidiary quantitative design objective is established for the frequency of large-scale core melt. The significance of the goals and objectives, their bases and rationale, and the plan to evaluate the goals are provided. In addition, public comments on the 1982 proposed policy statement and responses to a series of questions that accompanied the 1982 statement are summarized

  9. Operation guide device for nuclear power plants

    International Nuclear Information System (INIS)

    Araki, Tsuneyasu

    1982-01-01

    Purpose: To enable to maintain the soundness of nuclear fuels and each of equipments by compensating the effect of the xenon density on the reactor core thermal power resulted upon load following operation of a nuclear reactor. Constitution: The device comprises an instrumentation system for measuring the status of the nuclear reactor, a reactor core performance calculator for calculating the reactor core performance based on the output from the instrumentation system, a xenon density calculator for calculating the xenon density based on the output from the performance calculator, a memory unit for storing the output from the reactor core performance calculator and the xenon density calculator and for transferring the stored memory to a nuclear reactor status forecasting device and an alternative load pattern searching device for searching, in cooperation with the memory unit, an alternative load pattern which is within an operation restrictive condition and most closed to a demanded load pattern when a monitor for the deviation from the flowrate distribution detects the deviation from the operation restrictive conditions. (Yoshino, Y.)

  10. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Reponen, H.; Viitasaari, O.

    1985-09-01

    These general reviews of the operation of the Finnish nuclear power plants concentrate on such events and discoveries related to reactor and radiation safety that the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as significant. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment. The report also includes a summary of the radiation safety of the personnel and the environment and tabulated data on the production and capacity factors of the plants. (author)

  11. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Lehtinen, P.

    1985-11-01

    These general reviews of the operation of the Finnish nuclear power plants concentrate on such events and discoveries related to reactor and radiation safety that the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment and tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment. (author)

  12. Operation of nuclear power stations during 1975

    International Nuclear Information System (INIS)

    1976-08-01

    In 1975, the production of nuclear energy in the Community of the Nine was 77 thousand million net kWh, an increase of 26.5% over 1974. A short commentry explains this large increase and the situation in each country is briefly reviewed. Then data on the evolution of net production (partitioned according to reactor family), on the availability of reactor types according to their age, and on the structure of nuclear plants (situation at the end of 1975) are presented. The statistical data of annual operation are given for each reactor

  13. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Reponen, H.; Viitasaari, O.

    1985-05-01

    This general review of the operation of the Finnish nuclear power plants in the third quarter of the year 1984 concentrates on such events and discoveries related to reactor and radiation safety that the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as significant. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment. The report also includes a summary of the radiation safety of the personnel and the environment and tabulated data on the production and capacity factors of the plants. (author)

  14. Regulatory framework for nuclear power plant operation

    International Nuclear Information System (INIS)

    Perez Alcaniz, T.; Esteban Barriendos, M.

    1995-01-01

    As the framework of standards and requirements covering each phase of nuclear power plant project and operation developed, plant owners defined their licensing commitments (codes, rules and design requirements) during the project and construction phase before start-up and incorporated regulatory requirements imposed by the regulatory Body during the licensing process prior to operation. This produces a regulatory framework for operating a plant. It includes the Licensing Basis, which is the starting point for analyzing and incorporating new requirements, and for re-evaluation of existing ones. This presentation focuses on the problems of applying this regulatory framework to new operating activities, in particular to new projects, analyzing new requirements, and reconsidering existing ones. Clearly establishing a plant's licensing basis allows all organizations involved in plant operation to apply the requirements in a more rational way. (Author)

  15. A treaty more alarming than efficient. The dismantled warheads will not be destroyed. Danger

    International Nuclear Information System (INIS)

    Riche, P.; Despic-Popovic, H.; Nougayrede, N.

    2002-01-01

    This political analysis presents the new treaty of nuclear weapons dismantling between Russia and Usa. In fact the warheads will not be completely dismantling but only stocked, leading to a possible recovery by terrorists. It underlines the real interests of this agreement which are more economic than peaceful. (A.L.B.)

  16. 75 FR 2164 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...

    Science.gov (United States)

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293; NRC-2010-0010] Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and Finding of No Significant Impact The U.S... Entergy Nuclear Operations, Inc. (Entergy or the licensee), for operation of Pilgrim Nuclear Power Station...

  17. Die Energiewerke Nord GmbH. From operator of a decommissioned Russian nuclear power plant to one of Europe's leading decommissioning companies

    International Nuclear Information System (INIS)

    Philipp, Marlies

    2011-01-01

    EWN GmbH is a state-owned company with these duties: - decommissioning and demolition of the Greifswald and Rheinsberg nuclear power stations; - safe operation of the Zwischenlager Nord interim store; - development of the 'Lubminer Heide' industrial and commercial estate. Other projects for which EWN GmbH uses its know-how: - disposal of 120 decommissioned Russian nuclear submarines in Murmansk; - decommissioning and dismantling of the Juelich, NRW, AVR experimental reactor; - demolition of nuclear plants; running the Central Decontamination Operations Department at Karlsruhe, BW. Since 2008, EWN GmbH has held 25% of the shares of Deutsche Gesellschaft zum Bau- und Betrieb von Endlagern fuer Abfallstoffe mbH (DBE), a firm building and operating nuclear repositories. (orig.)

  18. 77 FR 76541 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station

    Science.gov (United States)

    2012-12-28

    ....; Pilgrim Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... licensee), for operation of the Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth, Massachusetts... Regarding Pilgrim Nuclear Power Station, Final Report- Appendices,'' published in July 2007 (ADAMS Accession...

  19. 78 FR 39018 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3

    Science.gov (United States)

    2013-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3 AGENCY: Nuclear Regulatory Commission. ACTION: Supplement to Final Supplement 38 to the Generic Environmental...

  20. Summary of the nuclear safety in operation

    International Nuclear Information System (INIS)

    2004-01-01

    This summary is a collection of general information about nuclear safety of PWR type reactors exploited by EDF. Teaching aid, this work has been conceived by operators for operators, it must not be considered nor used as a doctrine document with a regulatory or prescriptive characteristic. it summarizes the great principles of nuclear safety, places them in a global approach and shows their coherence. It consists in 6 chapters and 6 annexes. The news of this edition are the chapter 2 devoted to the safety management and the annexe 6 devoted to the principal teaching coming from the feedback. At the end a glossary explains the signs and abbreviations and an index allows to find themes in the memento text from keywords. (N.C.)

  1. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  2. Statistical operation of nuclear power plants

    International Nuclear Information System (INIS)

    Gauzit, Maurice; Wilmart, Yves

    1976-01-01

    A comparison of the statistical operating results of nuclear power stations as issued in the literature shows that the values given for availability and the load factor often differ considerably from each other. This may be due to different definitions given to these terms or even to a poor translation from one language into another. A critical analysis of these terms as well as the choice of a parameter from which it is possible to have a quantitative idea of the actual quality of the operation obtained is proposed. The second section gives, on an homogenous basis and from the results supplied by 83 nuclear power stations now in operation, a statistical analysis of their operating results: in particular, the two light water lines, during 1975, as well as the evolution in terms of age, of the units or the starting conditions of the units during their first two operating years. Test values thus obtained are compared also to those taken 'a priori' as hypothesis in some economic studies [fr

  3. Disposition of excess weapons plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1997-01-01

    With the end of the Cold War and the implementation of various nuclear arms reduction agreements, US and Russia have been actively dismantling tens of thousands of nuclear weapons. As a result,large quantities of fissile materials, including more than 100 (tonnes?) of weapons-grade Pu, have become excess to both countries' military needs. To meet nonproliferation goals and to ensure the irreversibility of nuclear arms reductions, this excess weapons Pu must be placed in secure storage and then, in timely manner, either used in nuclear reactors as fuel or discarded in geologic repositories as solid waste. This disposition in US and Russia must be accomplished in a safe, secure manner and as quickly as practical. Storage of this Pu is a prerequisite to any disposition process, but the length of storage time is unknown. Whether by use as fuel or discard as solid waste, disposition of that amount of Pu will require decades--and perhaps longer, if disposition operations encounter delays. Neither US nor Russia believes that long-term secure storage is a substitute for timely disposition of excess Pu, but long-term, safe, secure storage is a critical element of all excess Pu disposition activities

  4. Dismantling of large components from the PHENIX reactor

    International Nuclear Information System (INIS)

    Roux, A.

    2013-01-01

    The PHENIX reactor was shut down in 2009. The cleaning and dismantling preparation operations are underway. These operations include dealing with large removable components such as primary coolant pumps, intermediate heat exchanger and heat exchanger blanking device (DOTE). This presentation describes the waste transformation operations performed on a large component, from its extraction from the reactor core until transformation to waste for disposal

  5. LEP Dismantling Reaches Half-Way Stage

    CERN Multimedia

    2001-01-01

    LEP's last superconducting module leaves its home port... Just seven months into the operation, LEP dismantling is forging ahead. Two of the eight arcs which form the tunnel have already been emptied and the last of the accelerator's radiofrequency (RF) cavities has just been raised to the surface. The 160 people working on LEP dismantling have reason to feel pleased with their progress. All of the accelerator's 72 superconducting RF modules have already been brought to the surface, with the last one being extracted on 2nd May. This represents an important step in the dismantling process, as head of the project, John Poole, explains. 'This was the most delicate part of the project, because the modules are very big and they could only come out at one place', he says. The shaft at point 1.8 through which the RF cavity modules pass is 18 metres in diameter, while each module is 11.5 metres long. Some modules had to travel more than 10 kilometres to reach the shaft. ... is lifted up the PM 1.8 shaft, after a m...

  6. A virtual nuclear world?

    International Nuclear Information System (INIS)

    Salve, R.

    1998-01-01

    The way in which virtual reality technology has so dramatically developed over the last few years has opened up the possibility of its application to various industrial processes. This article describes the possible uses of such a technique in nuclear power plants in various phases such as design, construction, operation or dismantling. (Author)

  7. Dismantling of an alpha contaminated hot cell at the Marcoule Pilot Plant

    International Nuclear Information System (INIS)

    Tachon, M.

    1988-01-01

    For the remodeling of Marcoule Pilot Plant, the cell 82: old unit for plutonium solution purification by extraction, was dismantled. About 42 tons of wastes were evacuated. Some wastes wen decontaminated by mechanical means other wastes with higher residual activity were stored for subsequent processing. The operation shows that dismantling of a hot cell is possible even if incorporated in an operating plant [fr

  8. Long-term problem for the nuclear industry

    International Nuclear Information System (INIS)

    Norman, C.

    1982-01-01

    Dismantling of the 24-year-old Shippingport atomic power station over the next two years will test whether the nuclear industry can safely dispose of high-level radioactive facilities. Recent findings that some components will remain radioactive longer than anticipated may require dismantling instead of the permanent entombment the industry was planning. The five-year dismantlement will cost $40 million and generate 11,700 cubic meters of radioactive waste. Larger reactors will be even more costly. Current regulations require utilities to choose between dismantlement, safe storage, or entombment of contaminated materials. Each has its problems, but the industry objects to an evolving policy for dismantling and an accompanying requirement for a segregated decommissioning fund that would be set aside before a reactor begins operating or during plant lifetime. The latter would require an adequate insurance mechanism to cover premature shutdown

  9. Decontamination of operational nuclear power plants

    International Nuclear Information System (INIS)

    1981-06-01

    In order to reduce the radiation fields around nuclear power plants, and, consequently, to limit the radiation exposure of and dose commitments to the operating and maintenance personnel, the contamination build-up should be kept to a minimum. The most fruitful approach, from the point of view of economics and efficiency, is to tackle the problems of contamination and decontamination in the design and construction phases of the reactor. To do this, knowledge gained from the operation of existing power reactors should be used to make improvements in new designs. New structural materials with low corrosion rates or whose constituents are not activated by neutrons should also be used. For older reactors, in most cases it is already too late to incorporate design changes without extensive and expensive modifications. For these plants, decontamination remains the most efficient way to reduce radiation fields. The aim of this report is to deal with the different decontamination methods that may be applied to nuclear power plant circuits and equipment during operation. The factors that have to be considered in determining the type and the extent of the methods used are the engineering and the planning of the decontamination operation and the treatment of the resulting waste generated during the process are also discussed

  10. DETAILS OF OPERATIONS PERFORMED BY THE REMOTE CONTROL ROBOT (CONCEPT TO THE HORIZONTAL FUEL CHANNEL DURING DECOMMISSIONING PHASE OF NUCLEAR REACTOR CALANDRIA STRUCTURE. PART I: OUTSIDE OPERATIONS

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2017-05-01

    Full Text Available The authors contribution to this paper is to present a concept solution of a remote control robot (RCR used for the horizontal fuel channels pressure tube decommissioning in the CANDU nuclear reactor. The authors highlight in this paper, few details of geometry, operations, constraints by kinematics and dynamics of the robot movement outside of the reactor fuel channel. Outside operations performed has as the main steps of dismantling process the followings: positioning front of Calandria structure at the fuel channel to be decommissioned, coupling and locking to the End Fitting (EF, sorting and storage extracted items in the safe container. All steps are performed in automatic mode. The remote control robot (RCR represents a safety system controlled by sensors and has the capability to analyze any error registered and decide next activities or abort the outside decommissioning procedure in case of any risk rise in order to ensure the environmental and workers protection.

  11. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Science.gov (United States)

    2013-08-19

    ... Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission. ACTION: Request... that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

  12. 77 FR 40091 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3

    Science.gov (United States)

    2012-07-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3 AGENCY: Nuclear... statement for license renewal of nuclear plants; availability. SUMMARY: The U.S. Nuclear Regulatory...

  13. Measurement of radioactive aerosol behavior during dismantling and reflection to the exposure dose evaluation - 16107

    International Nuclear Information System (INIS)

    Iguchi, Yukihiro; Kato, Masami

    2009-01-01

    Radioactive aerosol disperses slightly via contamination prevention systems such as control enclosures and filters when the nuclear installation is dismantled, and it might impact the environment. Therefore, when decommissioning is planned, it is necessary to assess the safety such as exposure dose evaluation to the public. For the radioactive aerosol, it is possible that the dispersion ratio is different according to the contamination condition, the dismantlement method of the material, nuclides (elements), etc. The radiation exposure evaluation for the decommissioning plan has been executed by operators in Japan based on a number of experiments (mostly cold tests) and overseas results. The decommissioning is now being carried out at the Tokai Power Station (GCR) and Fugen Decommissioning Engineering Center in Japan. In this study, the results data is acquired at the decommissioning sites, and the methodology and data for the exposure dose evaluation are verified and confirmed. These examination results will lead to the upgrading and improvement of the exposure evaluation methodology. In particular, the dismantlement work of connected piping of the heat exchanger (steam generator) was executed in the Tokai Power Station in 2008. In this study, we paid attention to the radionuclides of Co-60 and Cs-137 that adhered to piping, and the dispersion behavior of aerosol was measured and contamination prevention effect was assured. As a result, the data show that the cesium concentrates about four times higher than cobalt. Moreover, the effects of the prevention measures of contamination were confirmed and the behavior of the radioactive aerosol became clear and the effective findings about the dose evaluation of the dismantling were collected. (authors)

  14. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES).

  15. Participation of CIEMAT in the 29 Annual meeting of the Spanish Nuclear Society. Zaragoza 1,2 y 3 October 2003; Participacion del CIEMAT en la 29 Reunion Anual de la Sociedad Nuclear Espanola

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The book assembles the paper of researches of CIEMAT during the 29th annual meeting of Spanish Nuclear Society. The paper were presented during the following sessions : 1. Nuclear fuel. 2. R and D materials. 3.Operation and maintenance. Lifetime. 4.- R and D and T participation and transmutation.5. Environment. 6. Radioactive wastes and dismantling. 7. Nuclear safety. 8. Nuclear law.

  16. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    Energy Technology Data Exchange (ETDEWEB)

    Boucau, Joseph [Westinghouse Electric Company, 43 rue de l' Industrie, Nivelles (Belgium); Mirabella, C. [Westinghouse Electric France, Orsay (France); Nilsson, Lennart [Westinghouse Electric Sweden, Vaesteraas (Sweden); Kreitman, Paul J. [Westinghouse Electric Company, Lake Bluff, IL 60048 (United States); Obert, Estelle [EDF - DPI - CIDEN, Lyon (France)

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Center for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French

  17. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1993-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by Kernkraftwerke RWE Bayernwerk GmbH (KRB) and the CEC at Gundremmingen-Guenzburg (D), where the former KRB-A BWR is presently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, the results and conclusions on techniques and procedures presently applied in the dismantling of large-scale nuclear installations in the European Community. Besides the four pilot dismantling projects of the presently running third R and D programme (1989-93) of the European Community on decommissioning of nuclear installations (WAGR, BR-3 PWR, KRB-A BWR and AT-1 FBR fuel reprocessing), the organizers selected the presentation of topics on the following facilities which have a significant scale and/or representative features and are presently being dismantled: the Magnox reprocessing pilot plant at Sellafield, the HWGCR EL4 at Monts d'Arree, the operation of an on-site melting furnace for G2/G3 GCR dismantling waste at Marcoule, an EdF confinement conception of shut-down LWRs for deferred dismantling, and the technical aspects of the Greifswald WWER type NPPs decommissioning. This was completed by a presentation on the decommissioning of material testing reactors in the United Kingdom and by an overview on the conception and implementation of two EC databases on tools, costs and job doses. The seminar concluded with a guided visit of the KRB-A dismantling site. This meeting was attended by managers concerned by the decommissioning of nuclear installations within the European Community, either by practical dismantling work or by decision-making functions. Thereby, the organizers expect to have contributed to the achievement of decommissioning tasks under optimal conditions - with respect to safety and economics - by making available a complete and updated insight into on-going dismantling projects and by

  18. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  19. 78 FR 61400 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision

    Science.gov (United States)

    2013-10-03

    ... Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision Notice is hereby... ML102210411, respectively), concerns the operation of Pilgrim Nuclear Power Station (Pilgrim), owned by...) inaccessible cables at Pilgrim Nuclear Power Station (Pilgrim) are capable of performing their required...

  20. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1996-03-01

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  1. Cost management in a nuclear operating environment

    International Nuclear Information System (INIS)

    Steckel, J.K.; Gruber, C.O.

    1985-01-01

    This paper presents an integrated philosophy and program for managing costs in a nuclear operating environment. The ideas presented here are being used by Pennsyvania Power and Light Company (PPandL) at the Susquehanna Steam Electric Station. Three basic ideas necessary to successful cost management are listed and include: recognize the framework that is needed to ''manage'': treat cost as part of an integrated plan; and apply different techniques to different types of work activities. It is the author's opinion that the technical framework of a successful cost management system must include all work activities but recognize types. Project activities should be managed to a defined scope and authorized cost using a well communicated estimating program, aggressive trending and forecasting, and a change identification process

  2. Safety of nuclear operation and maintenance

    International Nuclear Information System (INIS)

    Mori, M.; Nitta, T.; Sakai, K.

    1994-01-01

    The Kansai Electric Power Co. Inc.(Kansai EPC) aims to pursue a high quality and highly reliable operation in nuclear power generation in order to ensure safety by reducing the risk of accidents and win the confidence from the society and the public. It is emphasised that in order to realize this aim manufacturers and contractors cooperate with each other in performing high quality maintenance through plant lifetime maintenance system. TQC (Total Quality Control) activity enhances the motivation for each individual to have a quality-oriented mind and cultivate the safety culture. Under the lifetime employment practice, Kansai EPC and maintenance contractors can conduct systematic education and training, and the Maintenance Training Center helps to make it effective. 6 figs

  3. Environmental impact of nuclear fuel cycle operations

    International Nuclear Information System (INIS)

    Wilkinson, W.L.

    1989-09-01

    This paper considers the environmental impact of nuclear fuel cycle operations, particularly those operated by British Nuclear Fuels plc, which include uranium conversion, fuel fabrication, uranium enrichment, irradiated fuel transport and storage, reprocessing, uranium recycle and waste treatment and disposal. Quantitative assessments have been made of the impact of the liquid and gaseous discharges to the environment from all stages in the fuel cycle. An upper limit to the possible health effects is readily obtained using the codified recommendations of the International Commission on Radiological Protection. This contrasts with the lack of knowledge concerning the health effects of many other pollutants, including those resulting from the burning of fossil fuels. Most of the liquid and gaseous discharges result at the reprocessing stage and although their impact on the environment and on human health is small, they have given rise to much public concern. Reductions in discharges at Sellafield over the last few years have been quite dramatic, which shows what can be done provided the necessary very large investment is undertaken. The cost-effectiveness of this investment must be considered. Some of it has gone beyond the point of justification in terms of health benefit, having been undertaken in response to public and political pressure, some of it on an international scale. The potential for significant off-site impact from accidents in the fuel cycle has been quantitatively assessed and shown to be very limited. Waste disposal will also have an insignificant impact in terms of risk. It is also shown that it is insignificant in relation to terrestrial radioactivity and therefore in relation to the human environment. 14 refs, 5 figs, 2 tabs

  4. Experience of partial dismantling and large component removal of light water reactors

    International Nuclear Information System (INIS)

    Dubourg, M.

    1987-01-01

    Not any of the French PWR reactors need to be decommissioned before the next decade or early 2000. However, feasibility studies of decommissioning have been undertaken and several dismantling scenarios have been considered including the dismantling of four PWR units and the on-site entombment of the active components into a reactor building for interim disposal. In addition to theoretical evaluation of radwaste volume and activity, several operations of partial dismantling of active components and decontamination activities have been conducted in view of dismantling for both PWR and BWR units. By analyzing the concept of both 900 and 1300 MWe PWR's, it appears that the design improvements taken into account for reducing occupational dose exposure of maintenance personnel and the development of automated tools for performing maintenance and repairs of major components, contribute to facilitate future dismantling and decommissioning operations

  5. Quality assurance during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1994-01-01

    The general requirements applicable to the quality assurance of the Finnish nuclear power plants are presented in the Council of State Decision (395/91) and in the guide YVL 1.4. This guide specifies the quality assurance requirements to be applied during the operation of the nuclear power plants as well as of the other nuclear facilities. Quality assurance applies to all the activities and organizations with a bearing on the safe operation of the nuclear power plants. (5 refs.)

  6. Computer training aids for nuclear operator training

    International Nuclear Information System (INIS)

    Phillips, J.G.P.; Binns, J.B.H.

    1983-01-01

    The Royal Navy's Nuclear Propulsion School at HMS SULTAN which is responsible for training all ratings and officers who operate Submarine Pressurised Water Reactor plants, has available a varied selection of classroom simulator training aids as well as purpose built Submarine Manoeuvring Room simulators. The use of these classroom training aids in the twelve months prior to Autumn 1981 is discussed. The advantages and disadvantages of using relatively expensive computer based aids to support classroom instruction for students who do not investigate mathematically the dynamics of the Reactor Plant are identified. The conclusions drawn indicate that for students of limited academic ability the classroom simulators are disproportionately expensive in cost, maintenance load, and instructional time. Secondly, the experience gained in the use of the Manoeuvring Room Simulators to train future operators who have just finished the academic phase of their training is outlined. The possible pitfalls for the instructor are discussed and the lessons learnt, concluding that these simulators provide a valuable substitute for the live plant enabling trainees to be brought up to a common standard and reducing their on job training time to an acceptable level. (author)

  7. The human factor in the operation of nuclear powered submarines

    International Nuclear Information System (INIS)

    Dambier, M.

    1982-05-01

    The conditions characterizing the operation of nuclear powered submarines are described and the precautionary measures suitable to reduce the incidence of human errors and their consequences are explained

  8. Development of an augmented reality based simulation system for cooperative plant dismantling work

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Man, Zhiyuan; Yan, Weida; Shimoda, Hiroshi; Izumi, Masanori

    2015-01-01

    An augmented reality-based simulation system for cooperative plant dismantling work has been developed and evaluated. In the system, behaviors of virtual objects such as the dismantling target, chain blocks, and trolleys are physically simulated. Their appearance is superimposed on camera images captured with cameras on users' tablet devices. The users can manipulate virtual objects cooperatively via touch operation. They can cut the dismantling targets, lift them on the trolleys using chain blocks, and convey them through narrow passages to ascertain whether the dismantling targets can be conducted without colliding with the passages. During the simulation, collisions between the virtual objects and real work environment are detected based on their three-dimensional shape data measured in advance. The collided parts are visualized using augmented reality superimposition. Four evaluators assessed the simulation system. Results show that the simulation system can be useful for prior examination of dismantling works, but some points were also found to need improvement. (author)

  9. The real competitiveness of nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The recent report of the Audit Office on the real costs of nuclear power has killed the idea that there exist some hidden costs in the nuclear sector. According to the Audit Office, the costs of nuclear power have been well assessed, they include the costs of all the past, present and future operations that are necessary: research, nuclear fuel, plant construction, maintenance, reactor operation, dismantling, waste management and waste disposal. The uncertainty lies in the amount of money allowed to each post: it is difficult to estimate the price of dismantling as no power reactor has already been dismantled in France. Nevertheless, in the case of an underestimation of the dismantling costs, the impact of the real costs on the production cost will be low (a few percent) since they will be spread over a large period of time. As for the upgrading of the reactors for a better standard of nuclear safety, the extra costs will add 10% to the production cost. It appears that even by taking account all these corrections, the nuclear power will remain competitive in the future. The French nuclear industry exports equipment and services at a level of 6 billions euros each year. The decommissioning of reactors for only political reasons would be a total economical nonsense. (A.C.)

  10. Waste management concept during dismantling of KKS NPP in Germany

    International Nuclear Information System (INIS)

    Bacmeister, Georg U.

    2008-01-01

    Full text: This paper gives an overview on the waste management of NPP Stade during dismantling. The general idea is to reduce the radioactive waste to about three percentage of the complete dismantling mass. The NPP Stade in Germany was shut down in November 2003. After a transient phase the license for dismantling was given in 2005. In the following 8 years about 20.000 tones of steel and 120.000 tones of concrete will be put out by the dismantling. The yearly output of steel will by about 100 times higher than during the running time of the NNP. For this a new processes for waste management had to be installed. The waste management during dismantling focus on free release (about 97%). Beside some minor exception, the rest is deemed to be radioactive waste. This will be collected in 1000 packages, which are ready to be sent to a final storage. As until now in Germany no final storage is open (and sending of radioactive waste to another country is forbidden), the NNP Stade build an intermediate storage, where the packages may by saved for longest 40 years. The clearance procedure in Germany is regulated in the radiation protection ordinances. It is based on a nuclide specific set of clearance levels. To fulfil these demands the NNP Stade chose a semi automated system for characterization and documentation, which we develop in accordance to our release license. It guaranties a most accurate determination of the relevant nuclides for a set of dismantling material (some 10 to 100 tones). After the characterization only the gamma-activity of the material is measured in boxes of about 500 kg. A short comparison of the chosen procedure with other options, possible in Germany will be given and the decision from the collaboration with the NPP in Barsebaeck, Sweden, will be withdrawn. Beside the free release different options are used for waste management, like incineration, sending to landfill or reuse in nuclear industry. The waste management of the NNP Stade take

  11. 77 FR 47680 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action

    Science.gov (United States)

    2012-08-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-293; License No. DPR-35; NRC-2012-0186] Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action Notice is hereby... the Commission) take action with regard to the Pilgrim Nuclear Power Station (Pilgrim). The Petitioner...

  12. 75 FR 38147 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-07-01

    ... Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things...-Besse Nuclear Power Station Exemption Request The licensee provided detailed information in the...

  13. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-04-01

    ... Company, Perry Nuclear Power Plant; Exemption 1.0 Background FirstEnergy Nuclear Operating Company (FENOC... the Perry Nuclear Power Plant, Unit 1 (PNPP). The license provides, among other things, that the... licensed activities in nuclear power reactors against radiological sabotage,'' published March 27, 2009...

  14. 75 FR 16523 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-04-01

    ... Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things... physical protection of licensed activities in nuclear power reactors against radiological sabotage...

  15. 75 FR 80549 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-12-22

    ... Company, Davis-Besse Nuclear Power Station; Exemption 1.0 Background FirstEnergy Nuclear Operating Company... of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The license provides, among other things... pressure-retaining components of the reactor coolant pressure boundary of light-water nuclear power...

  16. 78 FR 784 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Science.gov (United States)

    2013-01-04

    ....; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is... Nuclear Power Station (PNPS). The license provides, among other things, that the facility is subject to... participated in two FEMA-evaluated exercises in conjunction with the Vermont Yankee Nuclear Power Plant and...

  17. 75 FR 14209 - Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-03-24

    ....; Vermont Yankee Nuclear Power Station; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (Entergy... of the Vermont Yankee Nuclear Power Station (VY). The license provides, among other things, that the... licensed activities in nuclear power reactors against radiological sabotage,'' published March 27, 2009...

  18. 75 FR 14208 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-03-24

    ....; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (Entergy or the... Nuclear Power Station (Pilgrim). The license provides, among other things, that the facility is subject to... activities in nuclear power reactors against radiological sabotage,'' published March 27, 2009, effective May...

  19. 75 FR 11205 - Entergy Nuclear Operations, Inc; Pilgrim Nuclear Power Station Environmental Assessment and...

    Science.gov (United States)

    2010-03-10

    ...; Pilgrim Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth County, MA. In... License Renewal of Nuclear Plants: Regarding Pilgrim Nuclear Power Station,'' NUREG-1437, Supplement 29...

  20. 77 FR 36015 - Atomic Safety and Licensing Board; Entergy Nuclear Operations, Inc. (Indian Point Nuclear...

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Atomic Safety and Licensing Board; Entergy Nuclear Operations, Inc. (Indian Point Nuclear... proceeding arises out of the April 23, 2007, application of Entergy Nuclear Operations, Inc. (Entergy) to.... (Riverkeeper). On October 18, 2007, this Atomic Safety and Licensing Board was established to conduct this...

  1. Dismantling techniques for plutonium-contaminated gloveboxes: experience from first year of decommissioning

    International Nuclear Information System (INIS)

    Baumann, R.; Faber, P.

    2003-01-01

    At the mixed-oxide (MOX) processing facility formerly operated by ALKEM GmbH in Hanau, Germany - which was taken over to Siemens in 1988 and renamed Siemens' Hanau Fuel Fabrication Plant, MOX facility - around 8500 kg of plutonium were processed to make MOX fuel rods and fuel assemblies since production started in 1965. After shutdown of the facility by the authorities in mid-1991 for political reasons, the remaining nuclear fuel materials were processed during the subsequent ''cleanout'' phase starting in 1997 into rods and assemblies suitable for long-term storage. The last step in cleanout consisted of ''flushing'' the production equipment with depleted uranium and thoroughly cleaning the gloveboxes. During cleanout around 700 kg of plutonium were processed in the form of mixed oxides. The cleanout phase including the subsequent cleaning and flushing operations ended on schedule in September 2001 without any significant problems. Starting in mid-1999, the various glovebox dismantling techniques were tested using uncontaminated components while cleanout was still in progress and then, once these trials had been successfully completed, further qualified through use on actual components. The pilot-phase trials required four separate licenses under Section 7, Subsection (3) of the German Atomic Energy Act. Thanks to detailed advance planning and experience from the pilot trials the individual dismantling steps could be described in sufficient detail for the highly complex German licensing procedure. The first partial license for decommissioning the MOX facility under Sec. 7, Subsec. (3) of the Atomic Energy Act was issued on May 28, 2001. It mainly covers dismantling of the interior equipment inside the gloveboxes a well as the gloveboxes themselves. Actual decommissioning work inside the former production areas of the MOX facility started on a large scale in early September 2001. (orig.)

  2. Modelling the cooling and partial dismantling of the Febex in-situ test

    International Nuclear Information System (INIS)

    Sanchez, M.; Gens, A.; Guimaraes, L.

    2010-01-01

    Document available in extended abstract form only. In many designs for radioactive waste disposal the space between the canister and the cavity surface is filled by an engineered barrier made up of compacted expansive clay. Engineered barrier and adjacent host rock will be submitted to the heating effect of the nuclear waste as well as to associated hydraulic and mechanical phenomena that interact in a complex way. In order to achieve a safe and robust repository design, it is necessary to have a good understanding of the processes that occur in the near field and their evolution over time. To this end, properly instrumented full scale in situ tests provide essential information. The in-situ test operated at full scale and under natural conditions at the underground laboratory managed by NAGRA (Swiss National Cooperative for the Disposal of Radioactive Waste) at the Grimsel test site in Switzerland. Two 4300 W heaters were placed in the axis of the horizontal drift in the natural rock (granite). The heaters were 4.54 m long and 0.90 m in diameter, and were intended to simulate the release of heat by nuclear waste. The space between the rock surface and the heaters was backfilled using blocks of compacted bentonite. The test area was sealed with a 2.7 m long concrete plug. The test was heavily instrumented, including 632 sensors that were installed in the clay barrier and in the rock with measurements of temperatures, relative humidity (equivalent to total suction), pore pressures, displacements, and stresses. The heaters were symmetrically placed in relation to the central section of the test. The power of the heaters was adjusted to maintain a 100 deg. C temperature at the interface between heaters and bentonite barrier. The test was run in this way for five years when one of the heaters was switched off and dismantled. Dismantling data provided extremely valuable information about the state of the barrier at the end of the experiment and a useful benchmark for

  3. International co-operation through scientific and technical nuclear societies

    International Nuclear Information System (INIS)

    Manning Muntzing, L.

    1983-01-01

    As an international organization the American Nuclear Society (ANS) has played an active role in international co-operation of nuclear technology exchange since its establishment in 1954. The ANS has a membership of over 13,000 individuals, of whom approximately 1200 live overseas in forty countries. To carry out the goals of the Society, local sections have been established. Currently the ANS maintains 48 local sections in the United States of America and 8 overseas local sections in Africa, Asia, Europe and South America. The ANS also has formal agreements for co-operation with The Asociacion Argentina de Tecnologia Nuclear (AATN), the Israel Nuclear Society (INS), and the Chinese Nuclear Society (CNS). In 1977 the Japan Atomic Energy Society (JAES), the European Nuclear Society (ENS), and the ANS co-operation in sponsoring the First International Conference on Transfer of Nuclear Technology (ICONTT I) in Tehran, Iran. In 1982, the Second International Conference on Transfer of Nuclear Technology (ICONTT II), Buenos Aires, Argentina, was sponsored through the co-operation of the AATN, the ENS and the ANS. The ANS and its overseas sections sponsor the Pacific Basin Conference approximately every three years to discuss nuclear matters of concern to the countries around the Pacific Ocean. In 1981 the ANS held a Nuclear Technology Exhibit in Beijing, the People's Republic of China. In addition to meetings, the ANS is extensively involved in the co-operative exchange of applied nuclear research information through its publications. Nuclear Technology, a technical journal, is published monthly under joint ownership of the ENS and the ANS. The ANS has been a leader in voluntary standards development since 1958. In its dedication to the co-operation of international nuclear technology the ANS maintains a comprehensive international exchange of nuclear standards

  4. Research on psychological evaluation method for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2007-01-01

    The qualitative and quantitative psychology evaluation methods to the nuclear power plant operators were analyzed and discussed in the paper. The comparison analysis to the scope and result of application was carried out between method of outline figure fitted and method of fuzzy synthetic evaluation. The research results can be referenced to the evaluation of nuclear power plant operators. (authors)

  5. HCTISN - High Committee for transparency and information on nuclear safety, Plenary meeting of the 3 October 2013

    International Nuclear Information System (INIS)

    Buerger, Eric; Schilz, Fabien; Piketty, Laurence; Martelet, Bertrand; Quintin, Christophe; Gauthier, Florence; Charles, T.

    2013-01-01

    This document gathers a set of Power Point presentations. The first one, proposed by the ANDRA, addresses the challenges related to the long term management of dismantling wastes (quantities, perspectives for planning, optimization and R and D investments, ANDRA's missions, R and D themes, industrial developments, service providing). The second one, proposed by AREVA, addresses the dismantling of Areva's nuclear sites (challenges and peculiarities, organisation, overview of the different current dismantling projects in France). The third one, proposed by the ASN, discusses the current status, perspectives and challenges of dismantling (dismantling definition, objectives and strategies, ASN missions for the regulation, authorization, control, public information, and crisis management regarding dismantling, regulatory context with its procedures and for waste management, and installations being currently dismantled). The fourth one, proposed by the CEA, addresses the dismantling of CEA nuclear installations (presentation, challenges, strategy, organisation and financing of the A and D process (cleaning up and dismantling) within the CEA, a focus on the case of CEA installations in Grenoble, the return on experience within the CEA, R and D for A and D programs). The sixth presentation by EDF addresses the program of deconstruction of EDF generation-1 nuclear power plants (legal and financial framework and governance, dismantling policy and strategy, management of deconstruction waste, dismantling program for first-generation reactors and focus on the Brennilis and Chooz reactors, industrial and social challenges of operational practices). Proposed by the ministry of Ecology, the next presentation addresses the safety of nuclear installations and the return on experience after the intrusion in Tricastin (overview of regulation, progress in the implementation of PCMNIT regulation - protection and control of nuclear materials, of their installations and transport - by

  6. Operating Nuclear Power Stations in a Regulated Cyber Security Environment

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, E.

    2014-07-01

    The United States Nuclear Regulatory Commission (NRC) issued 10CFR73.54 to implement a regulated Cyber Security Program at each operating nuclear reactor facility. Milestones were implemented December 31, 2012 to mitigate the attack vectors for the most critical digital assets acknowledged by the industry and the NR C. The NRC inspections have begun. The nuclear Cyber Security Plan, implemented by the site Cyber Security Program (Program), is an element of the operating license at each facility. (Author)

  7. First time description of dismantling phenomenon

    OpenAIRE

    Barrer, Laurence; Gimenez, Guy

    2015-01-01

    International audience; Dismantling is a complex psychic phenomenon, which is not easy to define, and little interest has been shown in the subject. The authors of this paper want to demonstrate that dismantling is the main defense mechanism in autism, bringing about de-consensus of senses. The effects perceived in a child with autistic disorder are passivity and lack of thought. The authors' purpose here is to define the dismantled state and reveal its underlying process. This paper will the...

  8. First time description of dismantling phenomenon

    Science.gov (United States)

    Barrer, Laurence; Gimenez, Guy

    2015-01-01

    Dismantling is a complex psychic phenomenon, which is not easy to define, and little interest has been shown in the subject. The authors of this paper want to demonstrate that dismantling is the main defense mechanism in autism, bringing about de-consensus of senses. The effects perceived in a child with autistic disorder are passivity and lack of thought. The authors’ purpose here is to define the dismantled state and reveal its underlying process. This paper will therefore describe for the first time in literature, the dismantling phenomenon and will submit a metapsychological approach of this defense mechanism. PMID:25999871

  9. Safe dismantling of the SVAFO research reactors R2 and R2-0 in Sweden

    International Nuclear Information System (INIS)

    ARNOLD, Hans-Uwe; BROY, Yvonne; Dirk Schneider

    2017-01-01

    The R2 and R2-0 reactors were part of the Swedish government's research program on nuclear power from the early 1960's. Both reactors were shut down in 2005 following a decision by former operator Studsvik Nuclear AB. The decommissioning of the R2 and R2-0 reactors is divided into three phases. The first phase - awarded to AREVA - involved dismantling of the reactors and associated systems in the reactor pool, treatment of the disassembled components as well as draining, cleaning and emptying the pool. In the second phase, the pool structure itself will be dismantled, while removal of remaining reactor systems, treatment and disposal of materials and clean-up will be carried out in the third stage. The entire work is planned to be completed before the end of this decade. The paper describes the several steps of phase 1 - starting with the team building, followed by the dismantling operations and covers challenges encountered and lessons learned as well. The reactors consist of 5.400 kg aluminum, 6.000 kg stainless steel restraint structures as well as, connection elements of the mostly flanged components (1.000 kg). The most demanding - from a radiological point of view - was the R2-0 reactor that was limited to ∼ 1 m 3 construction volumes but with an extremely heterogeneous activation profile. Based on the calculated radiological entrance data and later sampling, nuclide vectors for both reactors depending on the real placement of the single component and on the material (aluminum and stainless steel) were created. Finally, for the highest activated component from R2 reactor, 85 Sv/h were measured. The dismantling principles - adopted on a safety point of view - were the following: The always protected base area of the ponds served as a flexible buffer area for waste components and packaging. Specific protections were also installed on the walls to protect them from mechanical stress which may occur during dismantling work. A specific work platform

  10. Operator psychological selection system for nuclear power plant

    International Nuclear Information System (INIS)

    He Xuhong; Huang Xiangrui

    2004-01-01

    Based on a detailed job analysis of nuclear power plant operator including operation procedures analysis, interview with personnel familiar with operator job, and 9 events happened in the past in the plant involved operator error analysis, several operator work characteristics and performance influence factors are obtained. According to these specific characteristics and factors, referring to the psychological selection research results in the other related critical occupational fields, a full psychological selection system of nuclear power plant operator is forwarded in this paper, including 21 dimensions in 3 facets as general psychological ability, personality and psychological healthy. Practical measurement methods for the proposed selection dimensions are discussed in the end

  11. Prefiltration of gaseous effluents in plant dismantling

    International Nuclear Information System (INIS)

    Pilot, G.; Pourprix, M.

    1991-01-01

    The dismantling techniques and mainly the thermal cutting tools can create large amounts of airbone dust, possibly contaminated in the case of the cutting of radioactive materials. Among the secondary solid emissions, the aerosols constitute the most mobile part which can disseminate contamination in the cell where the cutting operation takes place and in the ventilation ducts up to the HEPA filters. An optimised prefiltration coupled with a captation device at the aerosol generating source allows to avoid the dissemination of the contamination, to increase the life of HEPA filters and thus to reduce the amount of solid wastes. The object in this work was to select one or several cleaning devices, selection that can be done from the knowledge of the physico-chemical characteristics of the gas and aerosols to deal with, the available cleaning devices and the implied facility

  12. Nuclear quality assurance operating philosophy: A quality-oriented approach

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Geiger, J.E.; Heibel, R.E.; Cotton, J.B.; Sabol, A.R.

    1992-01-01

    Quality assurance programs have been part of the nuclear utility management process since the publication of the draft of 10CFR50 Appendix B in the late 1960s. The unwritten operational philosophy of nuclear quality assurance organizations focused on compliance with federal regulations. Adverse experiences, including operational events and extended shutdowns, prompted the gradual adoption of isolated practices extending beyond compliance orientation. These practices have an orientation that accommodates a definition of quality, a perspective of the role of nuclear quality assurance organizations in the overall concept of defense-in-depth, a definition of the segments of the nuclear quality assurance mission, and recent advances in the understanding of self-assessment. Observation of these practices at various nuclear utilities resulted in a syntheses of practices and approaches into a coherent quality-oriented nuclear quality assurance operating philosophy that is not totally adopted at any one utility

  13. The new operating conditions of French nuclear power plants

    International Nuclear Information System (INIS)

    Leclercq, J.

    1986-01-01

    Six themes are examined: France's unique position in view of the size of its nuclear operating plant, the role of nuclear power in matching electricity supply to demand, the excellent flexibility provided by PWR facilities in operation, the approaches used in the field of automatic operational control systems, the systematic use of data processing for maintenance and generation and the gains in productivity that can be gained as a result of improving fuel use [fr

  14. Training and qualification of nuclear power plant operators (4)

    International Nuclear Information System (INIS)

    Ohsuga, Y.

    2009-01-01

    Training center using the simulators, instructor training, training upgrade, deployment of digital control panel and review of training were described with overseas practice. Recently, nuclear power plant on-site simulators were also used for respective operator training. Operator teamwork training, training team performance upgrade, reflection of operating experiences in nuclear power plant accidents, development of training support equipments and management of training records were needed to review and upgrade training and qualification programs. (T. Tanaka)

  15. Nuclear operator. Liability amounts and financial security limits

    International Nuclear Information System (INIS)

    2015-07-01

    This paper gives, for numerous countries involved (or would be involved) in nuclear activities, financial information on the liability amount imposed on the operator, the amounts provided from public funds beyond the Operator's Liability Amount, to be made available by the State in whose territory the nuclear installation of the liable operator is situated, and the public funds contributed jointly by all the States parties to the BSC or CSC according to a pre-determined formula

  16. Decontamination and dismantling of large plutonium-contamined glove boxes

    International Nuclear Information System (INIS)

    Draulans, J.

    1991-01-01

    This report describes the work performed in the frame of two C.E.C. - Contracts FI1D-002400-B Decommissioning of very large glove boxes and FI1D-0058 Decommissioning of a complex glove box structure to be dismounted partially on place. Detailed information is given about each glove box. The selection of the solution Transportation of the glove boxes to a specialized dismantling plant is justified. The necessary contacts inside the BELGONUCLEAIRE MOX plant and between the latter and other organizations are explained. The problems of manipulating large gloves are listed and the retained solution of building a so called Stiffening frame around each glove box is described. Furthermore information is given concerning required operators time for cleaning, manipulating, packing and dismantling together with received doses and quantities of waste produced. Concerning the glove box unit partially to be dismounted on place, detailed information is given about the way the glove boxes have been treated prior to this partial dismantling on place and about the way this partial dismantling has been performed. From these results one can conclude that such a delicate task can be performed without major difficulties. Finally information is given of the decontamination test of a highly Pu contaminated glove box with freon with rather poor results and of the preliminary CO 2 blasting tests on non active samples

  17. Human factors in nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1980-08-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants

  18. Designing nuclear power plants for improved operation and maintenance

    International Nuclear Information System (INIS)

    1996-09-01

    The purpose of this publication is to compile demonstrated, experience based design guidelines for improving the operability and maintainability of nuclear power plants. The guidelines are for use principally in the design of new nuclear power plants, but should also be useful in upgrading existing designs. The guidelines derive from the experience of operating and maintaining existing nuclear power plants as well as from the design of recent plants. In particular these guidelines are based on and consistent with both the EPRI advanced Light Water Reactor Utility Requirements Document, Volume 1, and the European Utility Requirements for LWR Nuclear Power Plants. 6 refs, 1 fig

  19. Reduction of emission when applying thermal separation processes in the dismantling of nuclear facilities - oxy-fuel gas and plasma arc cutting

    International Nuclear Information System (INIS)

    Stoiber, H.; Hammer, G.; Schultz, H.

    1995-01-01

    Plasma arc cutting and laser beam cutting was used for the studies with the goal of significantly reducing material emission by changing the operating and equipment parameters. Some separations using the oxy-fuel gas cutting process served the purpose of providing a guide for determining which factors can most effectively reduce emission. The separation experiments were carried out with specimens of R-St 37-2, 10 mm thick, as well as of X 6 CrNi 18 10 steel 5, 10, 15 and 20 mm thick. In all cases, lowering speed and the amount of gas proved at first to be effective measures to check material emission. It was also possible to achieve adherence of molten mass and slag on the flank of the joint with excessive icicling. When the plasma separates the CrNi steel, it is possible to increase emission reduction additionally by using an argon/hydrogen mixture instead of nitrogen as a cutting gas. (orig./DG) [de

  20. Nuclear power plant life management and longer-term operation

    International Nuclear Information System (INIS)

    2006-01-01

    This book, prepared by NEA member country experts, contains data and analyses relevant to nuclear power plant life management and the plants' extended, longer-term operation (LTO). It addresses technical, economic and environmental aspects and provides insights into the benefits and challenges of plant life management and LTO. It will be of interest to policy makers and senior managers in the nuclear power sector and governmental bodies involved in nuclear power programme design and management. The data and information on current trends in nuclear power plant life management will be useful to researchers and analysts working in the field of nuclear energy system assessment. (authors)

  1. Guide for training nuclear power plant operators

    International Nuclear Information System (INIS)

    Cox, J.A.; Cagle, C.D.; Corbett, B.L.; Culbert, W.H.; Hamrick, T.P.; Hurt, S.S.; McCord, R.V.; Poteet, K.H.; Bates, A.E.G.; Casto, W.R.

    1977-01-01

    Topics covered include basic preparation, radiation safety and control, principles of reactor operation, general operating characteristics, facility design, safety systems, instrumentation, reactor theory, fuel handling and core parameters, radioactive material handling, and administrative procedures

  2. Guide for training nuclear power plant operators

    Energy Technology Data Exchange (ETDEWEB)

    Cox, J. A.; Cagle, C. D.; Corbett, B. L.; Culbert, W. H.; Hamrick, T. P.; Hurt, S. S.; McCord, R. V.; Poteet, K. H.; Bates, A. E.G.; Casto, W. R.

    1977-01-01

    Topics covered include basic preparation, radiation safety and control, principles of reactor operation, general operating characteristics, facility design, safety systems, instrumentation, reactor theory, fuel handling and core parameters, radioactive material handling, and administrative procedures.

  3. Experience in the decontamination and dismantling of alpha facilities

    International Nuclear Information System (INIS)

    Charamathieu, A.

    1988-01-01

    Experience in dismantling alpha-containing radiochemical installations in France is described. The dismantling programme undertaken by the Societe des Techniques en Milieu Ionisant since 1977 is tabulated. This includes the dismantling of CALCIO and FLUO (plutonium metal), the dismantling of a slag processing plant, the dismantling of part of a medium activity plutonium mine and the dismantling of rooms 82-100 at Marcoule, France. (author)

  4. U.S. Central Station Nuclear Power Plants: operating history

    International Nuclear Information System (INIS)

    1976-01-01

    The information assembled in this booklet highlights the operating history of U. S. Central Station nuclear power plants through December 31, 1976. The information presented is based on data furnished by the operating electric utilities. The information is presented in the form of statistical tables and computer printouts of major shutdown periods for each nuclear unit. The capacity factor data for each unit is presented both on the basis of its net design electrical rating and its net maximum dependable capacity, as reported by the operating utility to the Nuclear Regulatory Commission

  5. Effective corrective actions to enhance operational safety of nuclear installations

    International Nuclear Information System (INIS)

    2005-07-01

    The safe operation of nuclear power plants around the world and the prevention of incidents in these installations remain key concerns for the nuclear community. In this connection the feedback of operating experience plays a major role: every nuclear plant operator needs to have a system in place to identify and feed back the lessons learned from operating experience and to implement effective corrective actions to prevent safety events from reoccurring. An effective operating experience programme also includes a proactive approach that is aimed at preventing the first-time occurrence of safety events. In April 2003, the IAEA issued the PROSPER guidelines for nuclear installations to strengthen and enhance their own operating experience process and for self-assessment on the effectiveness of the feedback process. Subsequently, in the course of the Operational Safety Review Teams missions conducted by the IAEA that focused on the operational safety practices of nuclear power plants, the IAEA enhanced the review of the operating experience in nuclear power plants by implementing a new module that is derived from these guidelines. In order to highlight the effective implementation of the operating experience programme and to provide practical assistance in this area, the IAEA organized workshops and conferences to discuss recent trends in operating experience. The IAEA also performed assistance and review missions at plants and corporate organizations. The IAEA is further developing advice and assistance on operating experience feedback programmes and is reporting on good practices. The present publication is the outcome of two years of coordinated effort involving the participation of experts of nuclear organizations in several Member States. It provides information and good practices for successfully establishing an effective corrective actions programme. This publication forms part of a series that develops the principles set forth in these guidelines

  6. ANCCLI White Paper VI. Which conditions for an influential participation of CLIs and ANCCLI to the territorial and national follow-up of dismantling works

    International Nuclear Information System (INIS)

    Delalonde, Jean-Claude; Eimer, Michel; Boutin, Dominique

    2017-01-01

    After a brief presentation of the different phases of nuclear installation dismantling, and a statement about the interest of CLIs (Local information commissions) and ANCCLI (National association of local information commissions and committees), the first part of this white paper addresses the regulatory framework of dismantling, its process, and outlines roles of CLIs and ANCCLI in this process, and remaining issues. It describes the role CLIs already had in issues related to dismantling for different sites (Tricastin, Gard, Monts d'Arree, Saint-Laurent-des-Eaux). A set of proposals is formulated for an influential participation of CLIs and ANCCLI to the national and territorial follow-up of dismantling works. A road-map is proposed for CLIs who want to tackle the dismantling issue. An amendment is proposed for a decree related to the definitive stoppage and dismantling of basic nuclear installations and to subcontracting

  7. Decontamination and dismantling at the CEA

    International Nuclear Information System (INIS)

    2006-01-01

    This document presents the dismantling policy at the CEA (French Research Center on the atomic energy), the financing of the decontamination and the dismantling, the regulatory framework, the knowledge and the technology developed at the CEA, the radiation protection, the environment monitoring and the installations. (A.L.B.)

  8. EL-3 dismantling of an experimental reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The EL3 experimental reactor has been definitively stopped in march 1979. Its decommissioning has been pronounced in the end of 1982. This article is consecrated at decontamination and dismantling works necessited by its passage at the dismantling level 2 [fr

  9. Plight of China nuclear liability law and solutions of nuclear operating companies

    International Nuclear Information System (INIS)

    Su Guangchao; Wang Yonggang; Tang Yangyang

    2010-01-01

    With the development of nuclear use for peaceful purposes and the intensification of international cooperation in the field of nuclear energy, many countries attach more and more importance to legal risks of nuclear liability, and the companies in nuclear industry also enhance research on restrictive articles of nuclear liability in their international businesses. However, because China has neither signed any international convention on civil liability for nuclear damage nor adopted any law on atomic energy and on compensation for nuclear damage, many impediments often occur in international cooperation and trade. This essay is trying to outline the status and structure of international nuclear liability, analyze nuclear liabilities in international procurement for nuclear operating companies and respective solutions. (authors)

  10. Operational modes of french 900 MW nuclear power plant

    International Nuclear Information System (INIS)

    Shen Rugang

    1991-01-01

    The operational safety criteria of the PWR French 900 MW nuclear power plant and their operational modes: Mode A and Mode G is briefly introduced. The principle of the basic control, the operational performance, the advantages and the shortcomings of two modes are compared

  11. 75 FR 76498 - Firstenergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Science.gov (United States)

    2010-12-08

    ... Company, Davis-Besse Nuclear Power Station; Environmental Assessment And Finding of No Significant Impact... operation of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS), located in Ottawa County, Ohio. In... the reactor coolant pressure boundary of light-water nuclear power reactors provide adequate margins...

  12. 75 FR 12311 - Entergy Nuclear Operations, Inc; Vermont Yankee Nuclear Power Station Environmental Assessment...

    Science.gov (United States)

    2010-03-15

    ...; Vermont Yankee Nuclear Power Station Environmental Assessment and Finding of No Significant Impact The U.S... licensee), for operation of Vermont Yankee Nuclear Power Station (Vermont Yankee), located in Windham... Statement for Vermont Yankee Nuclear Power Station, Docket No. 50-271, dated July 1972, as supplemented...

  13. Quality Assurance for Operation of Nuclear Facilities

    International Nuclear Information System (INIS)

    Park, C. G.; Kwon, H. I.; Kim, K. H.; Oh, Y. W.; Lee, Y. G.; Ha, J. H.; Lim, N. J.

    2008-12-01

    This report describes QA activities performed within 'Quality Assurance for Nuclear facility project' and results thereof. Efforts were made to maintain and improve quality system of nuclear facilities. Varification activities whether quality system was implemented in compliance with requirements. QA department assisted KOLAS accredited testing and calibration laboratories, ISO 9001 quality system, establishment of QA programs for R and D, and carried out reviews and surveys for development of quality assurance technologies. Major items of this report are as follows : - Development and Improvement of QA Programs - QA Activities - Assessment of Effectiveness and Adequacy for QA Programs

  14. Summer camp course in nuclear operations

    International Nuclear Information System (INIS)

    Peterson, P.F.; James, J.Z.; Terrell, B.E.

    1993-01-01

    This paper describes a new kind of nuclear engineering curriculum that echoes an old method of professional training - the intensive summer camp. For many years a staple of the training of civil engineers and foresters, summer camp courses immerse the student in an intensive, focused experience, isolated from the familiar campus and resembling the actual work environment for which the student is being trained. With financial support from the U.S. Department of Energy, University of California-Berkeley (UCB) and Pacific Gas ampersand Electric (PG ampersand E) have launched such a course for UCB nuclear engineering undergraduates

  15. Institute of Nuclear Power Operations annual report, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen's joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO's 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  16. Institute of Nuclear Power Operations 1994 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  17. Institute of Nuclear Power Operations annual report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

  18. Institute of Nuclear Power Operations 1994 annual report

    International Nuclear Information System (INIS)

    1994-01-01

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen's joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO's 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

  19. 49 CFR 1242.37 - Dismantling retired property and depreciation (accounts XX-26-39 and 62-26-00).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Dismantling retired property and depreciation (accounts XX-26-39 and 62-26-00). 1242.37 Section 1242.37 Transportation Other Regulations Relating to... FOR RAILROADS 1 Operating Expenses-Equipment § 1242.37 Dismantling retired property and depreciation...

  20. 49 CFR 1242.51 - Dismantling retired property and depreciation (accounts XX-27-39 and 62-27-00).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Dismantling retired property and depreciation (accounts XX-27-39 and 62-27-00). 1242.51 Section 1242.51 Transportation Other Regulations Relating to... FOR RAILROADS 1 Operating Expenses-Equipment § 1242.51 Dismantling retired property and depreciation...

  1. 78 FR 26662 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public...

    Science.gov (United States)

    2013-05-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public Comment Period AGENCY: Nuclear Regulatory Commission. ACTION: Draft environmental assessment and finding...

  2. Integrated approach to optimize operation and maintenance costs for operating nuclear power plants

    International Nuclear Information System (INIS)

    2006-06-01

    In the context of increasingly open electricity markets and the 'unbundling' of generating companies from former utility monopolies, an area of major concern is the economic performance of the existing fleet of nuclear power plants. Nuclear power, inevitably, must compete directly with other electricity generation sources. Coping with this competitive pressure is a challenge that the nuclear industry should meet if the nuclear option is to remain a viable one. This competitive environment has significant implications for nuclear plant operations, including, among others, the need for the more cost effective management of plant activities, and the greater use of analytical tools to balance the costs and benefits of proposed activities, in order to optimize operation and maintenance costs, and thus insure the economic competitiveness of existing nuclear power plants. In the framework of the activities on Nuclear Economic Performance Information System (NEPIS), the IAEA embarked in developing guidance on optimization of operation and maintenance costs for nuclear power plants. The report was prepared building on the fundamental that optimization of operation and maintenance costs of a nuclear power plant is a key component of a broader integrated business strategic planning process, having as overall result achievement of organization's business objectives. It provides advice on optimization of O and M costs in the framework of strategic business planning, with additional details on operational planning and controlling. This TECDOC was elaborated in 2004-2005 in the framework of the IAEA's programme on Nuclear Power Plant Operating Performance and Life Cycle Management, with the support of two consultants meetings and one technical meeting and based on contributions provided by participants. It can serve as a useful reference for the management and operation staff within utilities, nuclear power plant operators and regulators and other organizations involved in

  3. Experience gained in enhancing operational safety at ComEd's nuclear power plants

    International Nuclear Information System (INIS)

    Elias, D.

    1997-01-01

    The following aspects of experience gained in enhancing operational safety at Comed's nuclear power plants are discussed: nuclear safety policy; centralization/decentralization; typical nuclear operating organization; safety review boards; human performance enhancement; elements of effective nuclear oversight

  4. Internet applications in nuclear power plant operation management

    International Nuclear Information System (INIS)

    Munoz, M.

    2000-01-01

    The use of the Internet is quickly becoming widespread in practically all areas of business and industry. The nuclear industry should not remain indifferent to this new trend. This paper analyses some of the Internet applications that can be easily adapted to nuclear power plant operation management, including. (Author)

  5. Nuclear weapons and NATO operations: Doctrine, studies, and exercises

    International Nuclear Information System (INIS)

    Karber, P.A.

    1994-01-01

    A listing of papers is presented on the doctrine, studies, and exercises dealing with nuclear weapons and NATO operations for the period 1950-1983. The papers deal with studies on massive retaliation, sword and shield, and flexible response. Some of the enduring issues of nuclear weapons in NATO are listed

  6. Quality assurance during operation of a nuclear power plant

    International Nuclear Information System (INIS)

    Stolz, J.

    1980-01-01

    The lecture provides a description of the QA manual as operated in French nuclear power plants. Oral comments will include discussion of some difficulties in actual implementation. Also examples will be given of incidents in nuclear plants, which could have been mitigated or fully prevented by QA attitude. (orig./RW)

  7. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  8. Management for nuclear power plants for safe operation

    International Nuclear Information System (INIS)

    Kueffer, K.

    1981-01-01

    This lecture covers management aspects which have an immediate bearing on safety and identifies the objectives and tasks of management which are required for safe operation of a nuclear power plant and is based on the Codes of Practice and Safety Guides of the IAEA as well as arrangements in use at the Swiss Nuclear Power Station Beznau. (orig./RW)

  9. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  10. The operating organization for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. The present publication is a revision of the IAEA Safety Guide on Management of Nuclear Power Plants for Safe Operation issued in 1984. It supplements Section 2 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation. Nuclear power technology is different from the customary technology of power generation from fossil fuel and by hydroelectric means. One major difference between the management of nuclear power plants and that of conventional generating plants is the emphasis that should be placed on nuclear safety, quality assurance, the management of radioactive waste and radiological protection, and the accompanying national regulatory requirements. This Safety Guide highlights the important elements of effective management in relation to these aspects of safety. The attention to be paid to safety requires that the management recognize that personnel involved in the nuclear power programme should understand, respond effectively to, and continuously search for ways to enhance safety in the light of any additional requirements socially and legally demanded of nuclear energy. This will help to ensure that safety policies that result in the safe operation of nuclear power plants are implemented and that margins of safety are always maintained. The structure of the organization, management standards and administrative controls should be such that there is a high degree of assurance that safety policies and decisions are implemented, safety is continuously enhanced and a strong safety culture is promoted and supported. The objective of this publication is to guide Member States in setting up an operating organization which facilitates the safe operation of nuclear power plants to a high level internationally. The second objective is to provide guidance on the most important organizational elements in order to contribute to a strong safety

  11. Assuring nuclear energy's future through international co-operation

    International Nuclear Information System (INIS)

    Upson, P.

    1999-01-01

    It is invited lecture as the introduction to the sixt international meeting entitled Nuclear Energy in Central Europe. Good commercial operation, public information and education are needed to win the confidence of the public, and to attract young people to take over the industry's founding generation. Stimulating international co-operation and transfer of best practices can assure this happens across the whole of the Europian nuclear industry

  12. Organization of the operating quality in EDF nuclear power stations

    International Nuclear Information System (INIS)

    Stolz, J.

    1976-01-01

    The organization of operating quality in EDF nuclear stations cover a number of planned and systematic actions of technical and management order carried on at station level and Nuclear Safety Department level. Priority is given to safety quality which has to remain the same during the whole life of the stations; the safety of a station depending from its designing, realization and starting up quality on one hand and from its operating methods on the other [fr

  13. Virtual reality technology in nuclear power plant operation and maintenance

    International Nuclear Information System (INIS)

    Chen Sen

    2005-01-01

    In this paper a generic virtual reality comprehensive system focusing on the operation and maintenance in Nuclear Power Plant (NPP) is proposed. Under this layout, some key topics and means of the system are discussed. As example 'Virtual Nuclear Island' comprehensive system and its typical applications in NPP are set up. In the end, it prospects the applications of virtual reality technology in NPP operation, training and maintenance. (author)

  14. Quality assurance during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide provides requirements and recommendations for the establishment and implementation of quality assurance for activities important to safety during commissioning, operation and decommissioning of a nuclear power plant, hereinafter referred to in this Guide as the operation phase or operation. It applies to activities such as: operating, inspecting, testing, commissioning, refuelling, maintaining, repairing, modifying and eventual shut-down and decommissioning of nuclear power plants. It applies also to associated activities related to safety, such as environmental monitoring and responses to emergencies

  15. Virginia Power's nuclear operations: Leading by example

    International Nuclear Information System (INIS)

    Kuehn, S.E.

    1995-01-01

    Success has been a long time coming for Virginia Power's nuclear units, but after a record run and some of the shortest refueling outages ever, the rest of the industry could learn a few things. This article describes the changes made by Virginia Power at its Surry and North Anna plants. Virginia Power's recipe for success called for equal amounts of individual initiative, management savvy, engineering discipline, organization, dedication, perseverance, pride, introspection, motivation, and humility

  16. Laser dismantling of a glovebox

    International Nuclear Information System (INIS)

    Johnson, R.; Fender, M.

    1985-01-01

    A 5 kW laser has been used to cut up a 2.6 x 1 x 1 m glove box made of 5 mm mild steel with 12.5 mm perspex windows and 3 mm neoprene gaskets. The laser cut all components including the sandwich of perspex, neoprene and steel with ease. The production of fibrous filaments of perspex during the cutting process has been almost avoided by modifying the cutting variables. The combustion of material beyond that being cut has also been prevented by adopting the correct level of laser power. The problems encountered with loss of glove box rigidity with progressive dismantling are discussed, together with the relevance these problems have to possible cutting methods other than lasers. (author)

  17. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  18. Nuclear energy in the operation of the spanish electric system

    International Nuclear Information System (INIS)

    Atienza, L.

    2008-01-01

    Nuclear energy plays a basic role in electricity production in Spain. Its high availability rate, the predictability of its fuel recharges, its high operational reliability, its geographical location, the stability of its costs, with its fuel having low weight in the cost structure, the security of supply that the possibility of storing its fuel on-site in the power plant gives and the absence of CO 2 emissions are some of the advantages nuclear energy presents. Its stiffness for demand variations, its sudden disconnections, which are infrequent but with high impact on System Operation, the social perception and nuclear waste management must also be weighted up. (Author)

  19. Dismantling and decontamination of Piver prototype vitrification plant

    International Nuclear Information System (INIS)

    Jouan, A.; Roudil, S.; Thomas, F.

    1991-01-01

    The PIVER prototype was targeted for dismantling in order to install a new pilot facility for the french continuous vitrification process. Most of the work involved the vitrification cell containing the process equipments, which had to be cleared out and thoroughly decontaminated; this implied disassembling, cutting up, conditioning and removing all the equipment installed in the cell. Remote manipulation, handling and cutting devices were used and some prior modifications were implemented in the cell environment. The dismantling procedure was conducted under a detailed programme defining the methodology for each operation. After equipment items and active zones were identified, the waste materials were removed, and several liquid decontamination operations were implemented. Removed activity, levels of irradiation in the cell and doses integrated by personnel were monitored to control progress and to adapt procedures to the conditions encountered. At the end of December 1989, the PIVER cleanup programme was at 87% complete and the total activity removed was 2.11 X 10 14 Bq (5712 Ci). The objective now is to obtain suitable working conditions in order to allow operators to enter the cell to remove items that are inaccessible or which cannot be dismantled by remote manipulators and to complete the decontamination procedure

  20. US nuclear power plant operating cost and experience summaries

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  1. Operating experience of Fugen Nuclear Power Station

    International Nuclear Information System (INIS)

    Ohteru, Shigeru; Kaneko, Jun; Kawahara, Toshio; Matsumoto, Mitsuo

    1987-01-01

    The prototype ATR 'Fugen' developed as one of the national project has verified the performance and reliability of the advanced thermal reactor system through the operation for about eight years since 1979, and the elucidation of the characteristics in plutonium utilization and the development and verification of the tuilizing techniques have been advanced. Besides, the operational results and the achievement of the technical development are successively reflected to the design of a demonstration reactor. In this paper, the outline of Fugan and the operational results are reported. The ATR Fugen Power Station is that of the prototype reactor of heavy water moderated, boiling light water cooled, pressure tube type, having the electric output of 165 MW. It started the full scale operation on March 20, 1979, and as of January, 1987, the total generated electric power reached about 7 billion kWh, the time of power generation was about 43,000 h, and the average capacity factor was 60.6 %. Plutonium utilization techniques, the flow characteristics and the dynamic plant characteristics of a pressure tube type reactor, the operational characteristics of a heavy water system and the techniques of handling heavy water containing tritium, and the operational reliability and maintainability of the machinery and equipment installed have been studied. (Kako, I.)

  2. Setting UP a decontamination and dismantling (D and D) scenario - methodology and tools developed leopard

    International Nuclear Information System (INIS)

    Pradoura, F.

    2009-01-01

    At the AREVA NC La Hague site, the former nuclear spent fuel reprocessing plant UP2-400 was shutdown on December 30, 2003. Since then, the cleaning up and dismantling activities have been carried by the DV/PRO project, which is the program management organization settled by AREVA NC, for valorization projects. SGN, part of the AREVA NC Engineering Business Unit, operates as the main contractor of the DV/PRO project and provides project management services related to decommissioning and waste management. Hence, SGN is in charge of building D and D's scenarios for all the facilities of the UP2-400 plant, in compliance with safety, technical and financial requirements. Main outputs are logic diagrams, block flow diagrams, wastes and effluents throughputs. In order to meet with AREVA NC's requirements and expectations, SGN developed specific process and tools methods adapted to the scale and complexity of decommissioning a plant with several facilities, with different kind of processes (chemical, mechanical), some of which are in operation and other being dismantled. Considering the number of technical data and inputs to be managed, this methodology leads to complex outputs such as schedules, throughputs, work packages... The development, the maintenance and the modification of these outputs become more and more difficult with the complexity and the size of the plant considered. To cope with these issues, SGN CDE/DEM UP2-400 project team has developed a dedicated tool to assist and optimize in elaborating D and D scenarios. This tool is named LEOPARD (Logiciel d'Elaboration et d'Optimisation des Programmes d'Assainissement Radiologique et de Demantelement) (Software for the Development and Optimization of Radiological Clean up and Dismantling Programs). The availability of this tool allowed the rapid construction of a test case (demonstrator) that has convinced DV/PRO of its numerous advantages and of the future further development potentials. Presentations of LEOPARD

  3. IAEA activity on operator support systems in nuclear power plants

    International Nuclear Information System (INIS)

    Dounaev, V.; Fujita, Y.; Juslin, K.; Haugset, K.; Lux, I.; Naser, J.

    1994-01-01

    Various operator support systems for nuclear power plants are already operational or under development in the IAEA Member States. Operator support systems are based on intelligent data processing and, in addition to plant operation, they are also becoming more important for safety. A key feature of operator support systems is their availability to restructure data to increase its relevance for a given situation. This can improve the user's ability to identify plant mode, system state, and component state and to identify and diagnose faults. Operator support systems can also assist the user in planning and implementing corrective actions to improve the nuclear power plant's availability and safety. In September 1991, the IAEA Committee for Contractual Scientific Services approved the Co-ordinated Research Programme (CRP) on ''Operator Support Systems in Nuclear Power Plants'' in the framework of the Project ''Man-Machine Interface Studies''. The main objective of this programme is to provide guidance and technology transfer for the development and implementation of operator support systems. This includes the experience with human-machine interfaces and closely related issues such as instrumentation and control, the use of computers in nuclear power plants, and operator qualification. (author)

  4. Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316

    Energy Technology Data Exchange (ETDEWEB)

    Field, D.; Mizen, K. [Nuvia Limited (United Kingdom)

    2013-07-01

    The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been used to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The

  5. An analysis of nuclear power plant operating costs

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the results of a statistical analysis of nonfuel operating costs for nuclear power plants. Most studies of the economic costs of nuclear power have focused on the rapid escalation in the cost of constructing a nuclear power plant. The present analysis found that there has also been substantial escalation in real (inflation-adjusted) nonfuel operating costs. It is important to determine the factors contributing to the escalation in operating costs, not only to understand what has occurred but also to gain insights about future trends in operating costs. There are two types of nonfuel operating costs. The first is routine operating and maintenance expenditures (O and M costs), and the second is large postoperational capital expenditures, or what is typically called ''capital additions.'' O and M costs consist mainly of expenditures on labor, and according to one recently completed study, the majoriy of employees at a nuclear power plant perform maintenance activities. It is generally thought that capital additions costs consist of large maintenance expenditures needed to keep the plants operational, and to make plant modifications (backfits) required by the Nuclear Regulatory Commission (NRC). Many discussions of nuclear power plant operating costs have not considered these capital additions costs, and a major finding of the present study is that these costs are substantial. The objective of this study was to determine why nonfuel operating costs have increased over the past decade. The statistical analysis examined a number of factors that have influenced the escalation in real nonfuel operating costs and these are discussed in this report. 4 figs, 19 tabs

  6. Vandellos 1 NPP. Dismantling at the level 1

    International Nuclear Information System (INIS)

    Pla, E.; Perez Pallares, J.

    1998-01-01

    Because of the fire in a main turbogenerator in October 1989, the Spanish Ministry of Industry ordered the definitive shutdown of Vandellos 1 NPP. The tasks allowed to the owner in the Ministerial Order were: the reactor defueling, the operation radwaste conditioning. The size of the reactor core needed to prepare an adequate defueling plan in order to prevent the potential reactivity oscillations and ensure the refrigeration of the nuclear fuel remaining in the core. The operation radwastes were divided in four types, according to the conditioning method: the low level solid radwaste, the irradiated metallic materials, the resins and zeolites used for decontaminating the liquid effluents, the radwaste stored in three graphite silos. The low level solid radwastes were stored during operation in drums of 220 litres. Recently they were compacted at a pressure of 40 tones before to be shipped to en ENRESA disposal. The irradiated metallic materials are, essentially, some parts of the refuelling machine. For deactivating the liquid effluents, Vandellos 1 used both organic resins and zeolites. The presence of zeolites helps the cementation, but its rough surface makes difficult to flow in the pipes of the cementation plant. 35 m 3 of this mixture have been conditioned into 670 drums of 220 liters. Vandellos 1 has three silos designed to store the graphite sleeves (reactor fuel support). In the silo number 1 some other radwastes were stored, as low level solid radwastes and two fuel elements. An international request for tenders was made in order to undertake the extraction and conditioning all these radwastes. The project was awarded to the Spanish/French Consortium EQUIPOS NUCLEARES-FRAMATOME. The achievement of the graphite silos project needed to design specific devices for separating irradiated wires from graphite, and searching and extracting two fuel elements jumbled up with the graphite sleeves. The spent fuel ponds have been emptied and its internals confined

  7. Taking Human and organizational factors into account in AREVA NC Cadarache dismantling projects

    International Nuclear Information System (INIS)

    Sainte Marie, N. de; Lemarchand, J.L.; Cordoba, A.; Fanton, R.; Garcia, B.; Pecquais, D.

    2008-01-01

    AREVA NC Cadarache fabricated MOX fuel (fuel assemblies made with a mixture of uranium and plutonium oxides) and FBR fuel (fast breeder reactor) for 40 years. In 2003, commercial fuel fabrication was stopped and the plant began implementing a plan to remove the nuclear material and clean up its two production buildings and laboratory. The objective is to reduce the radiological activity in the process facilities to IAEA level 2 and transferred them back to the owner French Atomic Energy Commission (CEA). The type of facilities to be dismantled (glove boxes, tanks, etc.) and the products involved (uranium and plutonium), in the form of powder, require a high degree of manual operation. Human and Organizational Factors (HOF) therefore play a key role in the depth defense concept. (author)

  8. The molten salt reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined and is found very suitable for the beneficial use of this fuel. MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus, MSRs are flexible while maintaining their economy. Furthermore, MSRs require only a minimum of special fuel preparation. They can tolerate denaturing and dilution of their fuel. The size of fuel shipments can be determined to optimize safety and security-all of which supports nonproliferation and resists diversion. In addition, MSRs have inherent safety features that make them acceptable and attractive. They can burn fissile material completely or can convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems in the deployment of nuclear power

  9. Decontamination of the HFR dismantling cell

    International Nuclear Information System (INIS)

    Cloes, K.; Husmann, K.; Hardt, P. von der.

    1976-05-01

    The Commission of the European Communities operates in the Petten Establishment of the Joint Research Centre (EURATOM), a 45 MW light-water cooled materials testing reactor, the HFR. Inside the reactor containment building, on top of a side wing of the main pool, a hot cell had been constructed for the dismantling, of irradiated equipment, and brought into active service in July 1966. Early in 1973, the cell was contaminated by 0.1 to 1 Ci of Po 210 , originating from an irradiation capsule containing Bi impregnated graphite specimens. Due to the elevated radiotoxicity of this isotope, and to numerous potential ways of spreading out the contamination it was decided to stop routine operation of the cell until a satisfactory degree of decontamination had been reached. Two years have been spent for preparation of specialized equipment and thorough clean-up and overhaul work of the cell. It went back into normal operation on February 21st, 1975 and has since then been working very successfully

  10. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2000-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations; to be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; and to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  11. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2003-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  12. Safety of nuclear power plants: Operation. Safety requirements

    International Nuclear Information System (INIS)

    2004-01-01

    The safety of a nuclear power plant is ensured by means of its proper siting, design, construction and commissioning, followed by the proper management and operation of the plant. In a later phase, proper decommissioning is required. This Safety Requirements publication supersedes the Code on the Safety of Nuclear Power Plants: Operation, which was issued in 1988 as Safety Series No. 50-C-O (Rev. 1). The purpose of this revision was: to restructure Safety Series No. 50-C-O (Rev. 1) in the light of the basic objectives, concepts and principles in the Safety Fundamentals publication The Safety of Nuclear Installations. To be consistent with the requirements of the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources. And to reflect current practice and new concepts and technical developments. Guidance on fulfillment of these Safety Requirements may be found in the appropriate Safety Guides relating to plant operation. The objective of this publication is to establish the requirements which, in the light of experience and the present state of technology, must be satisfied to ensure the safe operation of nuclear power plants. These requirements are governed by the basic objectives, concepts and principles that are presented in the Safety Fundamentals publication The Safety of Nuclear Installations. This publication deals with matters specific to the safe operation of land based stationary thermal neutron nuclear power plants, and also covers their commissioning and subsequent decommissioning

  13. Selection/licensing of nuclear power plant operators

    International Nuclear Information System (INIS)

    Saari, L.M.

    1983-07-01

    An important aspect of nuclear power plant (NPP) safety is the reactor operator in the control room. The operators are the first individuals to deal with an emergency situation, and thus, effective performance on their part is essential for safe plant operations. Important issues pertaining to NPP reactor operators would fall within the personnel subsystem of our safety system analysis. While there are many potential aspects of the personnel subsystem, a key first step in this focus is the selection of individuals - attempting to choose individuals for the job of reactor operator who will safely perform the job. This requires a valid (job-related) selection process. Some background information on the Nuclear Regulatory Commission (NRC) licensing process used for selecting NPP reactor operators is briefly presented and a description of a research endeavor now underway at Battelle for developing a valid reactor operator licensing examination is included

  14. Centralized operation and monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Kudo, Mitsuru; Sato, Hideyuki; Murata, Fumio

    1988-01-01

    According to the prospect of long term energy demand, in 2000, the nuclear power generation facilities in Japan are expected to take 15.9% of the total energy demand. From this fact, it is an important subject to supply nuclear power more stably, and in the field of instrumentation and control, many researches and developments and the incessant effort of improvement have been continued. In the central operation and monitoring system which is the center of the stable operation of nuclear power plants, the man-machine technology aiding operators by electronic and computer application technologies has been positively developed and applied. It is considered that hereafter, for the purpose of rationally heightening the operation reliability of the plants, the high quality man-machine system freely using the most advanced technologies such as high reliability digital technology, optical information transmission, knowledge engineering and so on is developed and applied. The technical trend of operation and monitoring system, the concept of heightening operation and monitoring capability, the upgrading of operation and monitoring system, and the latest operation, monitoring and control systems for nuclear power plants and waste treatment facilities are described. (K.I.)

  15. Computer simulation of remote operations at nuclear power stations

    International Nuclear Information System (INIS)

    Lee, D.J.; Beaumont, F.R.

    1993-01-01

    A study incorporating an animated 3-D computer model of a remote recovery operation in a complex nuclear fuel handling environment has highlighted the following benefits: a significant reduction in time and cost, greatly improved recovery route evaluation consequently reducing the probability of collision, and greater operator awareness and confidence. (author)

  16. Mobile worksystems for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Osborn, J.; Bares, L.C.; Thompson, B.R.

    1995-01-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes two technologies that are viable solutions for facility D ampersand D

  17. Method of operating nuclear power plant

    International Nuclear Information System (INIS)

    Kodama, Tasuku.

    1991-01-01

    The present invention concerns a method of operating a plant in which the inside of a reactor container is filled with inert gases. That is, the pressure at the inside of the pressure vessel is controlled based on the values sent from an absolute pressure gage and a pressure low gage during usual operation. A pressure high alarm and a pressure high scram signal are generated from a pressure high detector and a scram pressure detector. With such a constitution, since the pressure at the inside of the reactor is always kept at a slightly positive level relative to the surrounding atmospheric pressure even when high atmospheric pressure approaches to the plant site, air does not flow into the reactor container. Accordingly, the oxygen concentration is not increased. When a low atmospheric pressure approaches, the control operation for the pressure at the inside of the container is not necessary. The amount of the inert gases consumed and the amount of radioactive materials released to the atmosphere are decreased. The method of the present invention improves the safety and the reliability of the reactor operation. (N.H.)

  18. Trojan Nuclear Plant. 1976 Annual operating report

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical energy generated was 2,102,986 MWH with the generator on line 3144.4 hours. Information is presented concerning operations, tests, corrective maintenance, auxiliary feedwater pump modifications, main generator fault, fuel performance, shutdowns and power outages, radiation exposure of personnel, radioactive and chemical effluents, and environmental surveillance

  19. Remote operation and maintenance support services for nuclear power plants

    International Nuclear Information System (INIS)

    Yamamoto, Hiroki; Higuma, Koji; Shimizu, Shunichi; Sakuma, Masatake; Sonoda, Yukio; Kanemoto, Shigeru

    2004-01-01

    Toshiba Corporation constructed e-Toshiba Operating Plant Service (e-TOPS TM ) system and began remote operation and maintenance support service for nuclear power plants. The service put into practice remote operation and maintenance by harmony of information technologies such as internet and mobile, and nuclear power measurement/diagnostic technologies and security techniques. Outline of e-TOPS TM , remote-control service, -inspection system, -diagnostic service and technologies support service are explained. Construction, objects and application effects of e-TOPS TM , remote diagnostic system using image treatment techniques, construction of device record card control system are illustrated. (S.Y.)

  20. The Spanish Nuclear Safety Council and nuclear power stations in operation in Spain

    International Nuclear Information System (INIS)

    Perello, M.

    1984-01-01

    On 20 April 1980 the Spanish Congress of Deputies passed an Act setting up the Nuclear Safety Council (CSN) as the sole organization responsible for nuclear safety and radiation protection. In this paper it is stated that that date marked the beginning of a new nuclear safety policy in Spain. As one of its objectives, this policy is aimed at the monitoring and testing of operating nuclear installations. A detailed description is given of the Operating Nuclear Installation Service (SINE), including its basic structure, its functions and the technical and manpower resources available to it. The maintenance of close relations with other organs of the CSN is considered of paramount importance in order for the tasks allotted to SINE to be fulfilled. International co-operation and outside contracting greatly assist importing countries which have limited manpower resources. A description is then given of the present state of the nuclear power stations in operation in Spain together with an account of the most important initiatives which have been taken so far. The year 1968 saw the beginning of commercial operation of the Jose Cabrera nuclear power station, which has the only single-loop PWR reactor in the world. At present, it is being subjected to the Systematic Evaluation Programme (SEP). The Santa Maria de Garona nuclear power station has been operating for over twelve years and is also being subjected to the SEP although design modifications derived from operating experience have already been introduced. The Vandellos I station was the last of the first generation and has also benefited from the operating experience of similar French plants. Unit 1 of the Almaraz power station opens the door to the second generation and the generic problem which has occurred with the steam generators is in process of being solved. Lastly, some general conclusions are presented about the organization of and experience acquired with operating nuclear power stations. (author)

  1. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  2. DETAILS OF OPERATIONS PERFORMED BY THE REMOTE CONTROL ROBOT (CONCEPT TO THE HORIZONTAL FUEL CHANNEL DURING DECOMMISSIONING PHASE OF NUCLEAR REACTOR CALANDRIA STRUCTURE. PART II: INSIDE OPERATIONS

    Directory of Open Access Journals (Sweden)

    Constantin POPESCU

    2017-05-01

    Full Text Available The authors contribution to this paper is to present a concept solution of a remote control robot (RCR used for decommissioning of the horizontal fuel channels pressure tube in the CANDU nuclear reactor. In this paper the authors highlight few details of geometry, operations, constraints by kinematics and dynamics of the robot movement inside of the reactor fuel channel. Inside operations performed has as the main steps of dismantling process the followings: unblock and extract the channel closure plug (from End Fitting - EF, unblock and extract the channel shield plug (from Lattice Tube - LT, cut the ends of the pressure tube, extract the pressure tube and cut it in small parts, sorting and storage extracted items in the safe robot container. All steps are performed in automatic mode. The remote control robot (RCR represents a safety system controlled by sensors and has the capability to analyze any error registered and decide next activities or abort the inside decommissioning procedure in case of any risk rise in order to ensure the environmental and workers protection.

  3. Personality Factors and Nuclear Power Plant Operators: Initial License Success

    Science.gov (United States)

    DeVita-Cochrane, Cynthia

    Commercial nuclear power utilities are under pressure to effectively recruit and retain licensed reactor operators in light of poor candidate training completion rates and recent candidate failures on the Nuclear Regulatory Commission (NRC) license exam. One candidate failure can cost a utility over $400,000, making the successful licensing of new operators a critical path to operational excellence. This study was designed to discover if the NEO-PI-3, a 5-factor measure of personality, could improve selection in nuclear utilities by identifying personality factors that predict license candidate success. Two large U.S. commercial nuclear power corporations provided potential participant contact information and candidate results on the 2014 NRC exam from their nuclear power units nation-wide. License candidates who participated (n = 75) completed the NEO-PI-3 personality test and results were compared to 3 outcomes on the NRC exam: written exam, simulated operating exam, and overall exam result. Significant correlations were found between several personality factors and both written and operating exam outcomes on the NRC exam. Further, a regression analysis indicated that personality factors, particularly Conscientiousness, predicted simulated operating exam scores. The results of this study may be used to support the use of the NEO-PI-3 to improve operator selection as an addition to the current selection protocol. Positive social change implications from this study include support for the use of a personality measure by utilities to improve their return-on-investment in candidates and by individual candidates to avoid career failures. The results of this study may also positively impact the public by supporting the safe and reliable operation of commercial nuclear power utilities in the United States.

  4. Performance management for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fan Pengfei

    2014-01-01

    Fuel was loaded to Unit 3 of the second power plant in May 2010. The Second Operation Division stepped in the operation stage from production preparation and commissioning and exploration of performance management was started. By means of performance evaluation, a closed loop of performance management was formed, staff enthusiasm improved, and potential capability inspired through evaluation, analysis and improvement. The performance evaluation covers attitude, skill, efficiency, performance, teamwork sense, cooperation, etc. Quantitative appraisal was carried out through 31 objective indicators of the working process and results. According to the evaluation results and personal interviews, indicators were modified. Through the performance evaluation, positive guidance is provided to the employees to promote the development of employees, departments and the enterprise. (authors)

  5. Proceedings of fifth international topical meeting on nuclear thermal hydraulics, operations and safety

    International Nuclear Information System (INIS)

    1997-01-01

    The fifth international topical meeting on nuclear thermohydraulics, operations and safety was convened in Beijing in April 14-18, 1997. The topical meeting was sponsored by the Chinese Nuclear Society and cosponsored by American Nuclear Society, Atomic Energy Society of Japan, American Society of Mechanical Engineers, Canada Nuclear Society, Korean Nuclear Society, Mexican Nuclear Society, Nuclear Society of Slovenia and Spanish Nuclear Society. There were 262 articles were published in the meeting. They are related nuclear power thermohydraulics, operations and safety

  6. Psychological characteristics of licensed nuclear power plant operators

    International Nuclear Information System (INIS)

    Sajwaj, T.; Ford, T.; McGee, R.K.

    1987-01-01

    The safe production of electricity by nuclear power plants has been the focus of considerable attention. Much of this concern has been focused on equipment and procedural issues, with less attention to the psychological factors that affect the operations staff of the plants, i.e., those individuals who are most directly responsible for a plant's operations. Stress and type A qualities would be significant for these individuals because of their relationships to job performance and health. Of equal significance would be work-related factors, such as job involvement and work pressure. Also of interest would be hostile tendencies because of the need for cooperation and communications among operations staff. Two variables could influence these psychological factors. One is the degree of responsibility for a plant's nuclear reactors. The individuals with the greatest responsibility are licensed by the US Nuclear Regulatory Commission (NRC). There are also individuals with less direct responsibilities who are not licensed. A second variable is the operating status of the plant, whether or not the plant is currently producing electricity. Relative to ensuring the safe operation of nuclear power plants, these data suggest a positive view of licensed operators. Of interest are the greater stress scores in the licensed staff of the operating plant in contrast with their peers in the nonoperating plant

  7. Operator training simulator for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Tadasu

    1988-01-01

    For the operation management of nuclear power stations with high reliability and safety, the role played by operators is very important. The effort of improving the man-machine interface in the central control rooms of nuclear power stations is energetically advanced, but the importance of the role of operators does not change. For the training of the operators of nuclear power stations, simulators have been used from the early stage. As the simulator facilities for operator training, there are the full scope simulator simulating faithfully the central control room of an actual plant and the small simulator mainly aiming at learning the plant functions. For BWR nuclear power stations, two full scope simulators are installed in the BWR Operator Training Center, and the training has been carried out since 1974. The plant function learning simulators have been installed in respective electric power companies as the education and training facilities in the companies. The role of simulators in operator training, the BTC No.1 simulator of a BWR-4 of 780 MWe and the BTC No.2 simulator of a BWR-5 of 1,100 MWe, plant function learning simulators, and the design of the BTC No.2 simulator and plant function learning simulators are reported. (K.I.)

  8. Nuclear safety surveillance and control of National Nuclear Safety Administration of PRC during commissioning and operation of nuclear power plants

    International Nuclear Information System (INIS)

    Feng, W.; Zhang, C.

    1994-01-01

    This article describes the method of nuclear safety surveillance and control of National Nuclear Safety Administration (NNSA) of PRC during commissioning and operation of nuclear power plants (NPPs) and fist use for Qinshan and Guangdong Daya Bay nuclear power plants (GNPS). It is concluded that the surveillance models set up for Qinshan NPP and for GNPS commissioning were effective and had played an important role by ensuring the quality and safety of the commissioning testing and consequently the nuclear safety of these two power plants. 2 tabs

  9. The operating staff of nuclear power plants

    International Nuclear Information System (INIS)

    Schlegel, G.; Christ, W.

    1988-01-01

    The training of its staff is one of the pillars of the safe and economical operation of a power plant. This is why power plant owners began to systematically train their staff already in the 50s, and why they created central training facilities. Staff members who have undergone this training make an indispensable contribution to the acceptedly high safety and availability of German power plants. The substantial cost of creating training facilities and of schooling plant staff is considered to be an investment for the future. Low labour turnover permits careful observation and development of staff and leads to a high standard of knowledge and experience. (orig./HSCH) [de

  10. Effective operators in nuclear-structure calculations

    International Nuclear Information System (INIS)

    Barrett, Bruce R

    2005-01-01

    A brief review of the history of the use of many-body perturbation theory to determine effective operators for shell-model calculations, i.e., for calculations in truncated model spaces, is given, starting with the ground-breaking work of Arima and Horie for electromagnetic moments. The problems encountered in utilizing this approach are discussed. New methods based on unitary-transformation approaches are introduced and analyzed. The old problems persist, but the new methods allow us to obtain a better insight into the nature of the physics involved in these processes

  11. KWL Lingen nuclear plant. Technical annual report 2016; KWL Kernkraftwerk Lingen. Technischer Jahresbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    The technical annual report 2016 for KWL (Lingen nuclear plant) covers the following sections: dismantling project management and operation, monitoring and clearance; waste management, technical qualification, security and safety, central tasks; licensing and supervision procedures, operational data, radiation monitoring, radioactive materials, in-service inspections.

  12. An intelligent tool for the training of nuclear plant operators

    International Nuclear Information System (INIS)

    Cordier, B.

    1990-01-01

    A new type of pedagogical tool has been developped for the training of nuclear power plant operation. This tool combines simulation and expert system. The first process developped is about Steam Generator Tube Rupture (S.G.T.R.). All nuclear power plants will be equiped with this system in 1989 and 1990. After this first experiment, others processes will be developped for this tool

  13. When does a kernel generate a nuclear operator? | Popa ...

    African Journals Online (AJOL)

    ... 1] a continuous bijective function and U : C[0, 1] → C [0, 1] the operator defined by (Uƒ) (x) = ∫0a(x) ƒ(t)K (t, x) dt: We prove that U is compact and absolutely summing, but U is nuclear if and only if K (t, a-1 (t)) = 0 for λ-almost all t ∈ [0, 1] . Keywords: Banach spaces, continuous functions, compact, nuclear, p-summing.

  14. Operation and Utilizations of Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilization of the reactor is presented. Some aspects of reactor safety are also discussed. (author) 2 figs.; 5 refs.; 1 tab

  15. Assisted supervision of a computer aided tele-operation system

    Energy Technology Data Exchange (ETDEWEB)

    Le Bars, H.; Gravez, P.; Fournier, R.

    1994-12-31

    This paper talks about Computer Aided Tele-operation (CAT) in dismantling and maintenance of nuclear plants. The current research orientations at CEA, basic concepts of the supervision assistance system and the realisation of a prototype are presented. (TEC). 3 refs., 4 figs.

  16. Assisted supervision of a computer aided tele-operation system

    International Nuclear Information System (INIS)

    Le Bars, H.; Gravez, P.; Fournier, R.

    1994-01-01

    This paper talks about Computer Aided Tele-operation (CAT) in dismantling and maintenance of nuclear plants. The current research orientations at CEA, basic concepts of the supervision assistance system and the realisation of a prototype are presented. (TEC). 3 refs., 4 figs

  17. Reporting nuclear power plant operation to the Finnish Centre for Radiation and Nuclear Safety

    International Nuclear Information System (INIS)

    1997-01-01

    The Finnish Centre for Radiation and Nuclear safety (STUK) is the authority in Finland responsible for controlling the safety of the use of nuclear energy. The control includes, among other things, inspection of documents, reports and other clarification submitted to the STUK, and also independent safety analyses and inspections at the plant site. The guide presents what reports and notifications of the operation of the nuclear facilities are required and how they shall be submitted to the STUK. The guide does not cover reports to be submitted on nuclear material safeguards addressed in the guide YVL 6.10. Guide YVL 6.11 presents reporting related to the physical protection of nuclear power plants. Monitoring and reporting of occupational exposure at nuclear power plants is presented in the guide YVL 7.10 and reporting on radiological control in the environment of nuclear power plants in the guide YVL 7.8

  18. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  19. Visualization of a dismantling environment for an evaluation of a worker's dose during the decommissioning of KRR-1 and 2

    International Nuclear Information System (INIS)

    Park, Hee Seong; Kim, Sung Kyun; Lee, Kune Woo; Jung, Chong Hun; Jin, Seong Il

    2008-01-01

    The purpose of this paper is to provide a basis for an optimization of a dismantling process of a research reactor and nuclear facility. An optimization of a dismantling process should be at the beginning of a study for an evaluation of the radioactivity inventory and the safety of the workers. Many countries have conducted an optimization to achieve a shortened dismantling schedule, a reduction of the amount of waste, and cut down on the decommissioning by using computer graphics such as animation, simulation, and virtual reality. In the present study, we propose methods for identifying the existence of radioactivity which is contained in the dismantled objects and for evaluating a worker's dose through a simulation. To evaluate a worker's external dose under a virtual dismantling environment generated by computer graphics, the shape of the thermal column horizontal door was created by 3D CAD and the radiation dose surrounding the door was calculated by using MCNP-4C. An animation that can demonstrate a dismantling procedure according to a dismantling scenario was produced. For matching the radiation dose, which was calculated by MCNP-4C with an area where workers are dismantling a door, a simulation module was developed which could show a worker's external dose in real-time. The result from the distribution of the radioactivity enables us to specify where the most contaminated part of the dismantling objects is. In the animation, a virtual worker demonstrated a dismantling activity procedure as a chosen scenario. In the simulation, a worker's exposure dose rate in real-time has been evaluated

  20. 78 FR 52987 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit 3

    Science.gov (United States)

    2013-08-27

    ... concludes that the proposed action will not have a significant effect on the quality of the human... Commission. Michele G. Evans, Director, Division of Operating Reactor Licensing, Office of Nuclear Reactor...

  1. Robotic dismantlement systems at the CP-5 reactor D&D project.

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, L. S.

    1998-10-28

    The Chicago Pile 5 (CP-5) Research Reactor Facility is currently undergoing decontamination and decommissioning (D&D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principle nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water cooled and moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D&D project includes the disassembly, segmentation and removal of all the radioactive components, equipment and structures associated with the CP-5 facility. The Department of Energy's Robotics Technology Development Program and the Federal Energy Technology Center, Morgantown Office provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor assembly for tasks requiring remote dismantlement as part of the EM-50 Large-Scale Demonstration Program (LSDP). The teleoperated systems provided were the Dual Arm Work Platform (DAWP), the Rosie Mobile Teleoperated Robot Work System (ROSIE), and a remotely-operated crane control system with installed swing-reduction control system. Another remotely operated apparatus, a Brokk BM250, was loaned to ANL by the Princeton Plasma Physics Laboratory (PPPL). This machine is not teleoperated and was not part of the LSDP, but deserves some mention in this discussion. The DAWP is a robotic dismantlement system that includes a pair of Schilling Robotic Systems Titan III hydraulic manipulator arms mounted to a specially designed support platform: a hydraulic power unit (HPU) and a remote operator console. The DAWP is designed to be crane-suspended for remote positioning. ROSIE, developed by RedZone Robotics, Inc. is a mobile, electro-hydraulic, omnidirectional platform with a heavy-duty telescoping boom mounted to the platform's deck. The work system includes the mobile platform (locomotor), a power distribution unit (PDU) and a remote operator console. ROSIE moves about the reactor building

  2. Robotic dismantlement systems at the CP-5 reactor D and D project

    International Nuclear Information System (INIS)

    Seifert, L. S.

    1998-01-01

    The Chicago Pile 5 (CP-5) Research Reactor Facility is currently undergoing decontamination and decommissioning (D and D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principle nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water cooled and moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D and D project includes the disassembly, segmentation and removal of all the radioactive components, equipment and structures associated with the CP-5 facility. The Department of Energy's Robotics Technology Development Program and the Federal Energy Technology Center, Morgantown Office provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor assembly for tasks requiring remote dismantlement as part of the EM-50 Large-Scale Demonstration Program (LSDP). The teleoperated systems provided were the Dual Arm Work Platform (DAWP), the Rosie Mobile Teleoperated Robot Work System (ROSIE), and a remotely-operated crane control system with installed swing-reduction control system. Another remotely operated apparatus, a Brokk BM250, was loaned to ANL by the Princeton Plasma Physics Laboratory (PPPL). This machine is not teleoperated and was not part of the LSDP, but deserves some mention in this discussion. The DAWP is a robotic dismantlement system that includes a pair of Schilling Robotic Systems Titan III hydraulic manipulator arms mounted to a specially designed support platform: a hydraulic power unit (HPU) and a remote operator console. The DAWP is designed to be crane-suspended for remote positioning. ROSIE, developed by RedZone Robotics, Inc. is a mobile, electro-hydraulic, omnidirectional platform with a heavy-duty telescoping boom mounted to the platform's deck. The work system includes the mobile platform (locomotor), a power distribution unit (PDU) and a remote operator console. ROSIE moves about the reactor building

  3. Systematic evaluation of nuclear operator team skills training

    International Nuclear Information System (INIS)

    Harrington, D.K.; Kello, J.E.

    1991-01-01

    In recent years, the nuclear industry has increasingly recognized with the technical training given its control room operators. As yet, however, little has been done to determine the actual effectiveness of such nontechnical training. Thus, the questions of how team training should be carried out for maximum impact on the safety and efficiency of control room operation and just what the benefits of such training might be remain open. We are in the early stages of establishing a systematic evaluation process that will help nuclear utilities assess the effectiveness of their existing team skills training programs for control room operators. Research focuses on defining the specific behavioral and attitudinal objectives of team skills training. Simply put, what does good practice look like and sound like in the control room environment? What specific behaviors and attitudes should the training be directed toward? Obviously, the answers to the questions have clear implications for the design of nuclear team skills training programs

  4. Training and qualification of nuclear power plant operators

    International Nuclear Information System (INIS)

    Ohsuga, Y.

    2008-01-01

    Based on training experiences of the nuclear power plant operators of pressurized water reactors (PWR) at the Nuclear Power Training Center Ltd. (NTC) in Japan, training programs were reviewed referring to US training programs. A systematic approach is deployed to them, which mainly consist of on-the-job training and the NTC training courses to meet the needs of all operators from beginners to experienced veterans according to their experiences and objectives. The NTC training is conducted using the simulators that simulate the nuclear power plant dynamics through the use of computers. The operators trained at the NTC work in the central control room of every PWR power plant. The NTC also carries out the qualification examinations for the shift managers. (T. Tanaka)

  5. An analysis of nuclear plant operating costs: A 1991 update

    International Nuclear Information System (INIS)

    1991-05-01

    This report updates a 1988 Energy Information Administration (EIA) report which examined trends in nonfuel operating costs at the Nation's nuclear power plants. Nonfuel operating costs are comprised of operating and maintenance (O ampersand M) costs and capital expenditures incurred after a plant begins operating. Capital expenditures are typically called ''capital additions'' because the costs are added to the utility's rate base and recovered as a depreciation expense over several years, the number of years being regulated by State Public Utility Commissions. These costs consist of large maintenance expenditures needed to keep a plant operational as well as those needed to make plant modifications mandated by the Nuclear Regulatory Commission (NRC) or implemented at the utility's discretion. The 1988 report found that from 1974 through 1984, the last year for which data were available, nuclear power plant nonfuel operating costs escalated by 14 percent annually in real terms. The objective of the present study was to determine whether trends in nonfuel operating costs have changed since 1984, if there was any change in the underlying factors influencing these costs, and if so, how these changes affect the basic conclusions of the 1988 report. The general trends are encouraging: Total nonfuel operating costs peaked in 1984 and have been lower since that time; O ampersand M costs have been rising, but at a much lower rate than seen from 1974 through 1984; capital additions costs have actually been declining. 9 figs., 12 tabs

  6. Implementing robotics in the Department of Energy Dismantlement Program

    International Nuclear Information System (INIS)

    Jones, A.T.

    1997-01-01

    Since the end of the cold war, as our nuclear stockpile has decreased, the Department of Energy (DOE) has been working rapidly to safely dismantle weapons returned by the military. In order to be retired, weapons must be returned to the Pantex Plant in Amarillo, Texas. There they are reduced to their component parts. Although many of these parts are not hazardous, some, including certain explosive assemblies and radioactive materials, are sufficiently hazardous so that special handling systems are necessary. This paper will describe several of these systems developed by Sandia for Pantex and their technical basis

  7. Implementing robotics in the Department of Energy Dismantlement Program

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.T.

    1997-12-31

    Since the end of the cold war, as our nuclear stockpile has decreased, the Department of Energy (DOE) has been working rapidly to safely dismantle weapons returned by the military. In order to be retired, weapons must be returned to the Pantex Plant in Amarillo, Texas. There they are reduced to their component parts. Although many of these parts are not hazardous, some, including certain explosive assemblies and radioactive materials, are sufficiently hazardous so that special handling systems are necessary. This paper will describe several of these systems developed by Sandia for Pantex and their technical basis.

  8. International co-operation and the transfer of nuclear technology

    International Nuclear Information System (INIS)

    di Primio, J.C.

    1977-01-01

    The transfer of technology from developed countries is usually done through industrial enterprises. The local industrialization of imported technology does not necessarily imply that full benefit is extracted from its application. A pre-established scientific and technical infrastructure is needed to understand and incorporate it, and to develop methods for improvement and use at the industrial level, in the frame of national conditions. The transference of nuclear technology has recently shown new concepts for implementation. It is becoming a rule that massive industrial nuclear technology transfer to developing nations is tied to a requirement for simultaneous assistance in creating or promoting the infrastructure. An example of international co-operation to meet this requirement is the Argentine-German Agreement for the Peaceful Applications of Nuclear Energy. Since 1971 this has been used to strengthen the scientific and technical programmes of the Argentine Atomic Energy Commission in the relevant fields of industrial applications. The objectives and implementation of the agreement are described: co-operative actions were initially directed to the infrastructure needed to support the nuclear fuel cycle industry. The results achieved during the period 1971-1976 are critically analysed. This analysis has influenced the selection of future co-operative projects as well as the extension of the co-operation to other nuclear fields of common interest. (author)

  9. Technological Advances, Human Performance, and the Operation of Nuclear Facilities

    Science.gov (United States)

    Corrado, Jonathan K.

    Many unfortunate and unintended adverse industrial incidents occur across the United States each year, and the nuclear industry is no exception. Depending on their severity, these incidents can be problematic for people, the facilities, and surrounding environments. Human error is a contributing factor in many such incidents. This dissertation first explored the hypothesis that technological changes that affect how operators interact within the systems of the nuclear facilities exacerbate the cost of incidents caused by human error. I conducted a review of nuclear incidents in the United States from 1955 through 2010 that reached Level 3 (serious incident) or higher on the International Nuclear Events Scale (INES). The cost of each incident at facilities that had recently undergone technological changes affecting plant operators' jobs was compared to the cost of events at facilities that had not undergone changes. A t-test determined a statistically significant difference between the two groups, confirming the hypothesis. Next, I conducted a follow-on study to determine the impact of the incorporation of new technologies into nuclear facilities. The data indicated that spending more money on upgrades increased the facility's capacity as well as the number of incidents reported, but the incident severity was minor. Finally, I discuss the impact of human error on plant operations and the impact of evolving technology on the 21st-century operator, proposing a methodology to overcome these challenges by applying the systems engineering process.

  10. Improvement of nuclear power plant operation and maintenance in Japan

    International Nuclear Information System (INIS)

    Kazushige Hamazaki

    1987-01-01

    Following the inauguration of commercial nuclear power generation in Japan in 1966, capacity factors were held in the relatively low level until around 1975 due to initial-period troubles. With subsequent improvement, however, capacity factors have climbed steadily and recently been sustaining more than 70%. To obtain this successful result, a various kind of improvement have been made not only for the operation management area but also for the maintenance management area in conjunction with the successive effort to reflect the operating experiences to the early stage design. Nowadays nuclear generation has assumed increasing importance for Japan's electrical power needs, and is making a great contribution to stabilizing power supply costs. (author)

  11. A methodology for nuclear power plant operational events evaluation

    International Nuclear Information System (INIS)

    Araujo, Jeferson

    2015-01-01

    Operational events are normal occurrences in industrial plants and in nuclear power plants. The evaluation of operational events gains importance when it comes specifically to nuclear power plants due to the proportions that the impact and the consequences of these events may cause to the installation itself, their workers, the external area of the nuclear installation, the environment and to the public in general. These consequences, for the operation of these facilities can range from very little, until the consequences that lead to accidents and can cause significant impacts. Operational events may be associated or have influence in many fields of knowledge, such as operation, maintenance, engineering, Radiological Protection, physical protection, chemistry, Human or Organizational Factors and external events, among others. The accident at the Fukushima Daichi nuclear power plant, shows the importance of exhausting all the studies concerning operational events in order to improve the operational safety of nuclear plants, considering all the causes and possible consequences. In this context, the evaluation of operational events discipline emerges as an important and relevant tool to contribute to the maintenance and/or improvement of the operational safety of nuclear installations. Not without reason the nuclear industry actively participates in programs of exchange of operational experience, where relevant events are thoroughly evaluated and discussed in specific forums, such as power plant operators, regulators and/or joint technical meetings, always with the purpose to prevent, minimize or mitigate its consequences. Any evaluation of operational events passes necessarily by an in-depth study of the circumstances of the event, culminating with the identification of your cause and proposition of corrective actions to prevent recurrence of similar events. Additionally, the events should not be studied individually, but evaluated within a temporal context in order

  12. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  13. Dismantling of the DIORIT research reactor - Conditioning of activated graphite.

    Science.gov (United States)

    Sierra Perler, Isabel Cecilia; Beer, Hans-Frieder; Müth, Joachim; Kramer, Andreas

    2017-08-16

    The research reactor DIORIT at the Paul Scherrer Institute was a natural uranium reactor moderated by D 2 O. It was put in operation in 1960 and finally shut down in August 1977. The dismantling project started in 1982 and could be successfully finished on September 11th, 2012. About 40 tons of activated reactor graphite had to be conditioned during the dismantling of this research reactor. The problem of conditioning of activated reactor graphite had not been solved so far worldwide. Therefore a conditioning method considering radiation protection and economic aspects had to be developed. As a result, the graphite was crushed to a particle size smaller than 5 mm and added as sand substitute to a specially developed grout. The produced graphite concrete was used as a matrix for embedding dismantling waste in containers. By conditioning the graphite conventionally, about 58.5 m 3 (13 containers) of waste volume would have been generated. The new PSI invention resulted in no additional waste caused by graphite. Consequently, the resulting waste volume, as well as the costs, were substantially reduced. Copyright © 2017. Published by Elsevier Ltd.

  14. Completely automated nuclear reactors for long-term operation

    International Nuclear Information System (INIS)

    Teller, E.; Ishikawa, M.; Wood, L.

    1996-01-01

    The authors discuss new types of nuclear fission reactors optimized for the generation of high-temperature heat for exceedingly safe, economic, and long-duration electricity production in large, long-lived central power stations. These reactors are quite different in design, implementation and operation from conventional light-water-cooled and -moderated reactors (LWRs) currently in widespread use, which were scaled-up from submarine nuclear propulsion reactors. They feature an inexpensive initial fuel loading which lasts the entire 30-year design life of the power-plant. The reactor contains a core comprised of a nuclear ignitor and a nuclear burn-wave propagating region comprised of natural thorium or uranium, a pressure shell for coolant transport purposes, and automatic emergency heat-dumping means to obviate concerns regarding loss-of-coolant accidents during the plant's operational and post-operational life. These reactors are proposed to be situated in suitable environments at ∼100 meter depths underground, and their operation is completely automatic, with no moving parts and no human access during or after its operational lifetime, in order to avoid both error and misuse. The power plant's heat engine and electrical generator subsystems are located above-ground

  15. Radiation protection during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide describes a Radiation Protection Programme for nuclear power plants. It includes: (1) An outline of the basic principles as well as practical aspects of the programme; (2) A description of the responsibilities of the operating organization to establish an effective programme based upon these principles; (3) A description of the administrative and technical measures to establish and implement the programme. This Guide also deals with the operational aspects to be considered by the operating organization in reviewing design in order to facilitate implementation of the Radiation Protection Programme. This Guide covers the requirements for a Radiation Protection Programme for all operational states of the nuclear power plant. It also includes guidelines for handling planned special exposures and for coping with unplanned exposures and contamination of personnel, areas, and equipment. Additional information concerning emergency situations involving releases of radioactive materials is given in Safety Guides 50-SG-O6, ''Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants'', and 50-SG-G6, ''Preparedness of Public Authorities for Emergencies at Nuclear Power Plants''. This Guide covers the principles of dose limitation to site personnel and to the public, but it does not include detailed instructions on the techniques used for the actual measurement and evaluation of the exposures. This Guide does not include detailed instructions on environmental surveys, but it does mention principal steps in environmental monitoring which may be required for confirmation of the acceptability of radioactive discharges

  16. Experiences of operation for Ikata Nuclear Power Station

    International Nuclear Information System (INIS)

    Kashimoto, Shigeyuki

    1979-01-01

    No. 1 plant in the Ikata Nuclear Power Station, Shikoku Electric Power Co., Inc., is a two-loop PWR unit with electric output of 566 MW, and it began the commercial operation on September 30, 1977, as the first nuclear power station in Shikoku. It is the 13th LWR and 7th PWR in Japan. The period of construction was 52 months since it had been started in June, 1973. During the period, it became the object of the first administrative litigation to seek the cancellation of permission to install the reactor, and it was subjected to the influence of the violent economical variation due to the oil shock, but it was completed as scheduled. After the start of operation, it continued the satisfactory operation, and generated about 2.35 billion KWh for 4300 operation hours. It achieved the rate of utilization of 96.7%. Since March 28, 1978, the first periodical inspection was carried out, and abnormality was not found in the reactor, the steam generator and the fuel at all. The period of inspection was 79 days and shorter than expected. The commercial operation was started again on June 14. The outline of the Ikata Nuclear Power Station, its state of operation, and the periodical inspection are reported. Very good results were able to be reported on the operation for one year, thanks to the valuable experiences offered by other electric power companies. (Kako, I.)

  17. Stress sources during normal operation of a nuclear power plant

    International Nuclear Information System (INIS)

    Saint Jean, T.

    1986-03-01

    This study points out some concrete aspects of the reality of working conditions during normal operation of a nuclear power plant which create incertitudes in the working situation of operators. Some of these incertitudes are inevitable and are induced by the life of any complex organization, but others are at the origin of a potential stress: incertitudes related to work organization and, incertitudes related to the operation of installations. These results lead to choose actions to prevent these stress situation rather than to correct the operator [fr

  18. Higher operational safety of nuclear power plants by evaluating the behaviour of operating personnel

    International Nuclear Information System (INIS)

    Mertins, M.; Glasner, P.

    1990-01-01

    In the GDR power reactors have been operated since 1966. Since that time operational experiences of 73 cumulative reactor years have been collected. The behaviour of operating personnel is an essential factor to guarantee the safety of operation of the nuclear power plant. Therefore a continuous analysis of the behaviour of operating personnel has been introduced at the GDR nuclear power plants. In the paper the overall system of the selection, preparation and control of the behaviour of nuclear power plant operating personnel is presented. The methods concerned are based on recording all errors of operating personnel and on analyzing them in order to find out the reasons. The aim of the analysis of reasons is to reduce the number of errors. By a feedback of experiences the nuclear safety of the nuclear power plant can be increased. All data necessary for the evaluation of errors are recorded and evaluated by a computer program. This method is explained thoroughly in the paper. Selected results of error analysis are presented. It is explained how the activities of the personnel are made safer by means of this analysis. Comparisons with other methods are made. (author). 3 refs, 4 figs

  19. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Science.gov (United States)

    2010-03-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 05000271; License No. DPR-28; EA-10-034; NRC-2010-0089] In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for.... The license authorizes the operation of the Vermont Yankee Nuclear Power Station (Vermont Yankee) in...

  20. Improving nuclear power plant safety through operator aids

    International Nuclear Information System (INIS)

    1987-12-01

    In October 1986, the IAEA convened a one-week Technical Committee Meeting on Improving Nuclear Power Plant Safety Through Operator Aids. The term ''operator aid'' or more formally ''operator support system'' refers to a class of devices designed to be added to a nuclear power plant control station to assist an operator in performing his job and thereby decrease the probability of operator error. The addition of a carefully planned and designed operator aid should result in an increase in nuclear power plant safety and reliability. Operator aids encompass a wide range of devices from the very simple, such as color coding a display to distinguish it out of a group of similar displays, to the very complex, such as a computer-generated video display which concentrates a number of scattered indicator readings located around a control room into a concise display in front of the operator. This report provides guidelines and information to help make a decision as to whether an operator aid is needed, what kinds of operator aids are available and whether it should be purchased or developed by the utility. In addition, a discussion is presented on advanced operator aids to provide information on what may become available in the future. The broad scope of these guidelines makes it most suitable for use by a multi-disciplinary team. The document consists of two parts. The recommendations and results of the meeting discussions are given in the first part. The second part is the annex where the papers presented at the Technical Committee Meeting are printed. A separate abstract was prepared for each of the 10 papers. Refs, figs and tabs

  1. Nuclear Power Plant Operator Reliability Research Based on Fuzzy Math

    Directory of Open Access Journals (Sweden)

    Fang Xiang

    2011-01-01

    Full Text Available This paper makes use of the concept and theory of fuzzy number in fuzzy mathematics, to research for the response time of operator in accident of Chinese nuclear power plant. Through the quantitative analysis for the performance shape factors (PSFs which influence the response time of operators, the formula of the operator response time is obtained based on the possibilistic fuzzy linear regression model which is used for the first time in this kind of research. The research result shows that the correct research method can be achieved through the analysis of the information from a small sample. This method breaks through the traditional research method and can be used not only for the reference to the safe operation of nuclear power plant, but also in other areas.

  2. Sustainable operations in nuclear research reactors. A bibliographical study

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso; Marotti de Mello, Adriana; Tromboni de Souza Nascimento, Paulo

    2017-01-01

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  3. Sustainable operations in nuclear research reactors. A bibliographical study

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  4. Operational limits and conditions for nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It covers the concept of operational limits and conditions, their content as applicable to various types of thermal reactors, and the responsibilities of the operating organization regarding their establishment, modification, compliance and documentation. The principles of the operational limits and conditions are established in section 3 of the Agency's Code of Practice on Safety in Nuclear Power Plant Operation, including Commissioning and Decommissioning (IAEA Safety Series No. 50-C-O), which this present Safety Guide supplements. In order to present all pertinent information in this Guide, the provisions of section 3 of the Code are repeated

  5. IAEA Leads Operational Safety Mission to Muehleberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency today concluded a review of the safety practices at the Muehleberg Nuclear Power Plant (NPP) near Bern in Switzerland. The team noted a series of good practices and made recommendations and suggestions to reinforce them. The IAEA assembled the Operational Safety Review Team at the request of the Swiss government. The team, led by the IAEA's Division of Nuclear Installation Safety, performed an in-depth operational safety review from 8 to 25 October 2012. The team comprised experts from Belgium, the Czech Republic, Finland, Germany, Hungary, Slovakia, Sweden, the United Kingdom and the United States as well as experts from the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Muehleberg NPP. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry, Emergency Planning and Preparedness, Severe Accident Management and Long-Term Operation. The OSART team made 10 recommendations and 11 suggestions related to areas where operations of Muehleberg NPP could be further improved, for example: - Plant management could improve the operating experience program and methods throughout the plant to ensure corrective actions are taken in a timely manner; - In the area of Long-Term Operation, the ageing management review for some systems and components is not complete and the environmental qualification of originally installed safety cables has not yet been revalidated for long-term operation; and - The plant provisions for the protection of persons on the site during an emergency with radioactive release can be improved to minimize health risks to plant personnel. The team also identified 10 good

  6. INTERNATIONAL CO-OPERATION IN NUCLEAR DATA EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M.; Katakura,J.; Koning,A.; Nordborg,C.

    2010-04-30

    The OECD Nuclear Energy Agency (NEA) is organising a co-operation between the major nuclear data evaluation projects in the world. The co-operation involves the ENDF, JEFF, and JENDL projects, and, owing to the collaboration with the International Atomic Energy Agency (IAEA), also the Russian RUSFOND and the Chinese CENDL projects. The Working Party on international nuclear data Evaluation Cooperation (WPEC), comprised of about 20 core members, manages this co-operation and meets annually to discuss progress in each evaluation project and also related experimental activities. The WPEC assesses common needs for nuclear data improvements and these needs are then addressed by initiating joint evaluation efforts. The work is performed in specially established subgroups, consisting of experts from the participating evaluation projects. The outcome of these subgroups is published in reports, issued by the NEA. Current WPEC activities comprise for example a number of studies related to nuclear data uncertainties, including a review of methods for the combined use of integral experiments and covariance data, as well as evaluations of some of the major actinides, such as {sup 235}U and {sup 239}Pu. This paper gives an overview of current and planned activities within the WPEC.

  7. Inspection during operation of a nuclear power plant in Spain

    International Nuclear Information System (INIS)

    Gutierrez Bernal, R.

    1977-01-01

    The control and surveillance activities, as well as the operating data and results of the three nuclear power plants presently in operation: Jose Cabrera, Santa Maria de Garona and Vandellos, are summarized. The first two are light-water type, with different pressure and boiling characteristics and the third is of the gas-graphite type. The main aspects, from an inspection point of view, of the experience obtained in these three plants are analyzed. (author) [es

  8. Training of technical staff for nuclear power station operation

    International Nuclear Information System (INIS)

    Haire, T.P.; Myerscough, P.B.

    1981-01-01

    The statutory training requirements covering the technical staff in the CEGB (Central Electricity Generating Board) are discussed. Details of the training programmes emphasize the importance of the staff having a thorough understanding of the nuclear processes involved in the station operation and not relying solely upon a mechanistic approach to operating procedures. The impact of this philosophy on the design of training simulators is examined and a brief comparison is made with the training philosophies in other countries. (U.K.)

  9. Contributions to economical and safe operation of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.

    1989-01-01

    Selected results of scientific and technical research works in the Department 'Nuclear Power' of the Zittau Technical University are summarized which have been obtained on behalf of the Kombinat Kernkraftwerke 'Bruno Leuschner' and in conjunction with the education of scientific successors and have been partly adopted in textbooks. Works on improved utilization of nuclear fuel in pressurized water reactors are mentioned which, among other things, are related with the use of stretch-out mode of operation and optimization of nuclear fuel loading sequence. Results of experimental and theoretical investigations on coolant mixing in the reactor core are presented. A complex modelling of the dynamical long-term behaviour of nuclear power plants with pressurized water reactors due to xenon poisoning are briefly described. Finally, some results on noise diagnostics theory of power reactors are summarized. (author)

  10. Operational experience, availability and reliability of nuclear power plants

    International Nuclear Information System (INIS)

    Kueffer, K.

    1980-01-01

    This lecture - presents a survey on nuclear power production and plant performance in the Western World covering all reactor types and light-water reactors in particular and discusses key parameters such as load factors and non-availability analysis. - outlines the main reasons for the reliable performance of Swiss nuclear power plants - quality equipment - operator qualification and training - engineering know how on site - maintenance philosophy and outage planning - information system and feedback of experience - explains the management functions as applied at the Beznau Nuclear Power Station to ensure high power productivity and reliability - improvement - a feedback control system - analysis of production losses - optimization in shut-down planning - minimizing disturbances during plant operation - optimizing personnel qualification and efficiency. (orig.)

  11. Assessment of field training for nuclear operations personnel

    International Nuclear Information System (INIS)

    White, M.

    1995-08-01

    Training of station personnel is an important component of the safe operation of the nuclear generating station. On-the-job training (OJT) is an important component of training. The AECB initiated this project to develop a process to assess the effectiveness of OJT for field operators, and perform an initial trial of the developed process. This report describes the recommended process to assess the effectiveness of OJT for field operators, as well as the results of the initial assessment at Pickering Nuclear Generating Station. The assessment's conclusions included: (1) Ontario Hydro policies and procedures are generally consistent with industry guidelines requiring a systematic approach to training; (2) Pickering NGS field operator performance is not always consistent with documented station requirements and standards, nor industry guidelines and practices; and (3) The Pickering NGS field operator on-the-job training is not consistent with a systematic approach to training, a requirement recognized in Ontario Hydro's Policy NGD 113, and does not contribute to a high level of performance in field operator tasks. Recommendations are made regarding the use of the developed process for future assessments of on-the-job training at nuclear power plants. (author). 36 refs., 4 tabs., 3 figs

  12. A regulator's view of management control of nuclear plant operations

    International Nuclear Information System (INIS)

    O'Reilly, J.P.; Martin, R.D.; Long, F.J.

    1983-01-01

    Operating reactor experiences in the post-Three Mile Island era are summarized, highlighting various issues from a regulatory viewpoint. The importance of on-site and off-site nuclear plant management is discussed based on experiences in such areas as management control systems in operating nuclear plants, the importance of learning from experience, selection and placement of key personnel, effectiveness of radiation protection programmes and adequacy of emergency planning. Many of the problems experienced at operating nuclear plants have resulted in significant costs, not only in direct expenditures but also in extended shutdowns amounting to millions of dollars per day in expense and significant public concern. Several regulatory/industry initiatives designed to enhance safety of operation and to improve communication between operators and the regulators are realized. The need in certain facilities for more disciplined operating procedures, higher levels of technical competence and realistic implementation of self-auditing programmes is identified. The immediate and long-term benefits should include both increased safety and lower costs. (author)

  13. Examination on establishment of safety culture for operating nuclear facilities

    International Nuclear Information System (INIS)

    Taniguchi, Taketoshi

    1997-01-01

    For safely operating nuclear power facilities, in addition to the technical countermeasures, the performance of the organizations that operate and manage them is important. In this paper, the spontaneous cooperation type management system that supported the introduction and development of nuclear power generation in electric power business is analyzed from the viewpoints of organization science and behavioral psychology, and based on the results of the investigation of the sense of value and psychological characteristics of young organization members who bear future nuclear power generation, on how to foster and establish safety culture which is called second safety principle in organizations, the subjects for hereafter are discussed from the viewpoints of respect of individuals and their integration with organizations, upbringing of talents and systematic learning. The factors which compose the safety culture are shown. The form of operating and managing the organizations are seen in first generation nuclear power generation, the similarity to Japanese type enterprise operation system, the change of the prerequisite of spontaneous cooperation type management and the difference of conscience among the generations of organization members are discussed. The above subjects for hereafter are discussed. (K.I.)

  14. Nuclear risk and optimal civil liability of the operator

    International Nuclear Information System (INIS)

    Schmitt, Andre; Spaeter, Sandrine

    2007-01-01

    The civil liability of nuclear operators are regulated by two sets of international Conventions. In particular, strict liability, limited financial responsibility and the obligation of providing financial guaranties are imposed to the nuclear operator by the Paris Convention and the Vienna Convention. Then national legislations are free to increase the financial cap of responsibility fixed by the international regimes. First we present the main elements of these Conventions. Then we focus on the impact of a modification in the amount of responsibility of the nuclear operator on his risk mitigation policy and on his financial condition. In particular we show that an increase of the cap beyond a given level determined by the model gives the operator some incentives to lessen the investment in prevention, contrary to what is expected. Besides, the impact of the preventive activities done by the firm on its financial constraint depends on the sensitivity of the risk distribution to the variation of the prevention level: The risk mitigation activities must be discussed with respect to the severity of the incidents and/or to the size of the nuclear park

  15. Self-assessment of operational safety for nuclear power plants

    International Nuclear Information System (INIS)

    1999-12-01

    Self-assessment processes have been continuously developed by nuclear organizations, including nuclear power plants. Currently, the nuclear industry and governmental organizations are showing an increasing interest in the implementation of this process as an effective way for improving safety performance. Self-assessment involves the use of different types of tools and mechanisms to assist the organizations in assessing their own safety performance against given standards. This helps to enhance the understanding of the need for improvements, the feeling of ownership in achieving them and the safety culture as a whole. Although the primary beneficiaries of the self-assessment process are the plant and operating organization, the results of the self-assessments are also used, for example, to increase the confidence of the regulator in the safe operation of an installation, and could be used to assist in meeting obligations under the Convention on Nuclear Safety. Such considerations influence the form of assessment, as well as the type and detail of the results. The concepts developed in this report present the basic approach to self-assessment, taking into consideration experience gained during Operational Safety Review Team (OSART) missions, from organizations and utilities which have successfully implemented parts of a self-assessment programme and from meetings organized to discuss the subject. This report will be used in IAEA sponsored workshops and seminars on operational safety that include the topic of self-assessment

  16. Assessing labour demand of nuclear power plants in operation

    International Nuclear Information System (INIS)

    Leicman, J.

    1980-01-01

    Factors are analysed and classified affecting the number of employees required to ensure operation of nuclear power plants with respect to handling all support and service activities. Methods are listed for assessing work requirements and difficulties in comparing and interpreting data are discussed. Assessing work requirements also represents an exacting task in the research sphere. (author)

  17. Implementation of an operator model with error mechanisms for nuclear power plant control room operation

    International Nuclear Information System (INIS)

    Suh, Sang Moon; Cheon, Se Woo; Lee, Yong Hee; Lee, Jung Woon; Park, Young Taek

    1996-01-01

    SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation

  18. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  19. Integrating Nuclear Energy to Oilfield Operations - Two Case Studies

    International Nuclear Information System (INIS)

    Robertson, Eric P.; Nelson, Lee O.; McKellar, Michael G.; Gandrik, Anastasia M.; Patterson, Mike W.

    2011-01-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming

  20. Aspects of reactor dismantling planning following the safe entombment in the NPP Lingen (KWL); Aspekte der Abbauplanung nach dem Sicheren Einschluss im Kernkraftwerk Lingen (KWL)

    Energy Technology Data Exchange (ETDEWEB)

    Priesmeyer, U.; Rojahn, T.; Fries, B. [Kernkraftwerk Lingen GmbH (Germany)

    2009-07-01

    The NPP Lingen (KWL) was shut-down in 1977. Due to the fact that no final repository was available the safe entombment for 25 years was chosen following the decommissioning. The conventional plant components were dismantled and removed from the plant site. The licensing procedure for reactor dismantling with final disposal in Schacht Konrad has been started. The beginning of dismantling operation is scheduled for 2013. The authors describe the preparatory work, the boundary conditions for the dismantling, radiation protection considerations with respect to manual demolition work after the rather long decay time.

  1. Computerized operation manual (COM) of nuclear power plants

    International Nuclear Information System (INIS)

    Szegi, Z.

    1985-01-01

    This paper is to be presented at the International Seminar on Diagnoses of and Response to Abnormal Occurrences at Nuclear Power Plants organized by the International Atomic Energy Agency. The topic of presentation is the Computerized Operational Manual. This system supports the operator at disturbance situations by displaying quickly and unambiguously the operational instructions and the relevant information without mistakes. By the computerized manual the operator can determine the instruction-subsystem which reflects the real state of the power unit. From this point the system guides the operator on how to drive the unit to another determined state by providing the operational instructions at any time. A data bank is also included which contains information concerning rules restricting on maintenance and repair. The system will be realized at Paks NPP. (author)

  2. Operation control device for a nuclear reactor fuel exchanger

    International Nuclear Information System (INIS)

    Aida, Takashi.

    1984-01-01

    Purpose: To provide a operation control device for a nuclear reactor fuel exchanger with reduced size and weight capable of optionally meeting the complicated and versatile mode of the operation scope. Constitution: The operation range of a fuel exchanger is finely divided so as to attain the state capable of discriminating between operation-allowable range and operation-inhibitive range, which are stored in a memory circuit. Upon operating the fuel exchanger, the position is detected and a divided range data corresponding to the present position is taken out from the memory circuit so as to determine whether the fuel exchanger is to be run or stopped. Use of reduced size and compact IC circuits (calculation circuit, memory circuit, data latch circuit) and input/output interface circuits or the likes contributes to the size reduction of the exchanger control system to enlarge the floor maintenance space. (Moriyama, K.)

  3. Study on training of nuclear power system operators

    International Nuclear Information System (INIS)

    Guo Lifeng; Zhou Gang; Yu Lei

    2012-01-01

    In order to satisfy new requirements about operators of nuclear power system, which are brought up by development and changes of social environment, science and technology, we do research on and make analysis of the problem of operator training. This paper focuses on development and changes of operator training system and content, mentality training, application of new technology to training, feedback of experience and so on. Analysis showed that the content of operator training is also confronted with some new requirements. So we bring up the new requirements to the operator, such as mentality training, cognizance ability training, adaptability training of special environment and endurance training. Besides, it is important for perfecting operator cultivation mechanism and improving training effect to feed back experience and apply new technology. So the trainer must improve training content and cultivation mechanism continuously. (authors)

  4. Days of dismantling activities of installations and rehabilitation of contaminated sites in France

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of these days, organized by the section environment of the French society of radiation protection, is to present a panorama of the activities of nuclear installations dismantling and contaminated sites rehabilitation in France, by leaning in the same time on practical cases and by stating the French rule and the national and international recommendations on the subject. These days have also for object to approach the stakes associated with the sectors of waste management and the materials generated by these activities and in a more general way, the stakes to come for the different actors of the dismantling and the rehabilitation. (N.C.)

  5. Physical security in multinational nuclear-fuel-cycle operations

    International Nuclear Information System (INIS)

    Willrich, M.

    1977-01-01

    Whether or not multinationalization will reduce or increase risks of theft or sabotage will depend on the form and location of the enterprise, the precise nature of the physical security arrangements applied to the enterprise, and the future course of crime and terrorism in the nuclear age. If nuclear operations are multinationalized, the host government is likely to insist on physical security measures that are at least as stringent as those for a national or private enterprise subject to its jurisdiction. At the same time, the other participants will want to be sure the host government, as well as criminal groups, do not steal nuclear material from the facility. If designed to be reasonably effective, the physical security arrangements at a multinational nuclear enterprise seem likely to reduce the risk that any participating government will seek to divert material from the facility for use in a nuclear weapons program. Hence, multinationalization and physical security will both contribute to reducing the risks of nuclear weapons proliferation to additional governments. If economic considerations dominate the timing, scale and location of fuel-cycle facilities, the worldwide nuclear power industry is likely to develop along lines where the problems of physical security will be manageable. If, however, nuclear nationalism prevails, and numerous small-scale facilities become widely dispersed, the problem of security against theft and sabotage may prove to be unmanageable. It is ironic, although true, that in attempting to strengthen its security by pursuing self-sufficiency in nuclear power, a nation may be reducing its internal security against criminal terrorists

  6. Quality management for nuclear power plant operation: A manual

    International Nuclear Information System (INIS)

    1990-01-01

    The experience from well operated nuclear power plants shows that achievement of safe, reliable and economic performance is closely related to a strong commitment and involvement by the management personnel. A system of controls is necessary to ensure that satisfactory quality in operation is achieved and maintained over the long term. The key to achieving and assuring quality lies in the ability of management to define performance objectives and to ensure that significant safety and reliability problems are prevented or detected early and resolved. This Manual has been developed by the IAEA to assist plant managers in fulfilling their responsibility with regard to the control and direction of quality and of quality assurance activities in nuclear power plant operation. It emphasizes quality objectives for nuclear power plant operation and indicates the way in which a quality system based on quality assurance principles as established in the IAEA NUSS documents can be used by managers to accomplish these objectives. Since the Manual is mainly directed at management personnel, it is presented in the form of short highlighted practices complemented by typical examples of forms and procedures. Since not all the activities under the heading of quality in operation could be covered in a single document, the activities selected for this Manual comprise those where it was felt that practical advice is generally needed. A pragmatic document useful for direct application by plant managers was the envisaged objective

  7. Fuzzy operation and real time surveillance of a nuclear reactor

    International Nuclear Information System (INIS)

    Si-Fodil, M.; Guely, F.; Siarry, P.; Tyran, J.L.

    1997-01-01

    The operating power of nuclear power plants needs to be modulated according to the thin evolutions of electric power demand. Two parameters are concerned by load following operations: the power axial disequilibrium and the position of control rods. This paper deals with the automation of the control of power axial disequilibrium using boration-dilution. An automatic system based on fuzzy logic is proposed which can be substituted to the expert operator who is in charge of this fastidious manual task. The management of water and boron flow rates are studied in details. A Graphic interface was designed for the real-time surveillance of the reactor. (J.S.)

  8. Protocol between the Nuclear Protection and Safety Bureau representing the Nuclear Authorities of Portugal and the Nuclear Energy Commission of Spain on Co-operation in Nuclear Safety

    International Nuclear Information System (INIS)

    1980-01-01

    This Protocol was signed further to the Agreement between Portugal and Spain on 14 January 1971 on co-operation in the peaceful use of nuclear energy. It provides for exchange of information on the general aspects of nuclear safety and radiation protection; study of the basic characteristics of siting, construction, operation and decommissioning of nuclear installations, and experience acquired in these areas; the problematics of planning against nuclear incidents and their environmental impact; legislation, regulations and technical standards concerning nuclear installations. The Protocol entered into force for a period of five years on the day of its signature. (NEA) [fr

  9. Development of operator thinking model and its application to nuclear reactor plant operation system

    International Nuclear Information System (INIS)

    Miki, Tetsushi; Endou, Akira; Himeno, Yoshiaki

    1992-01-01

    At first, this paper presents the developing method of an operator thinking model and the outline of the developed model. In next, it describes the nuclear reactor plant operation system which has been developed based on this model. Finally, it has been confirmed that the method described in this paper is very effective in order to construct expert systems which replace the reactor operator's role with AI (artificial intelligence) systems. (author)

  10. Dismantling the Curriculum in Higher Education

    Directory of Open Access Journals (Sweden)

    Richard Hall

    2016-04-01

    Full Text Available The higher education curriculum in the global North is increasingly co-opted for the production of measurable outcomes, framed by determinist narratives of employability and enterprise. Such co-option is immanent to processes of financialisation and marketisation, which encourage the production of quantifiable curriculum activities and tradable academic services. Yet the university is also affected by global socio-economic and socio-environmental crises, which can be expressed as a function of a broader crisis of social reproduction or sociability. As the labour of academics and students is increasingly driven by a commodity-valuation rooted in the measurement of performance, the ability for academics and students to respond to crises from inside the university is constrained by the market. This article argues that in understanding the relationship between the university and society, and in responding to a crisis of sociability, revealing the bounded nature of the curriculum is central. One possible way to address this crisis is by re-imagining the university through the co-operative practices of groups like the Dismantling the Masters House community and the Social Science Centre. Such an exploration, rooted in the organising principles of the curriculum, asks educators to consider how their curriculum reproduces an on-going colonisation by Capital. It is argued that such work enables a re-imagination of higher education that is rooted in a co-operative curriculum, and which might enable activist-educators to build an engaged curriculum, through which students and academics no longer simply learn to internalise, monitor and manage their own alienation.

  11. Summary of Operating Experience in Swiss Nuclear Power Plants 1999

    International Nuclear Information System (INIS)

    2000-05-01

    The five Swiss nuclear power units produced a net total of 23.6 TWh of electricity in 1999 - not as high as the all-time record (24.45 TWh in 1998), but nonetheless a solid operational performance. The nuclear share in overall electricity production was 35.3%, again lower than the previous year's 40%. In general, plant operation in 1999 was practically as undisturbed and as reliable as in 1998, reflecting the ongoing tradition of careful maintenance that contributes so much to keeping the plants in excellent condition. However, due to exceptional outage activities at Beznau 2 (steam generator replacement) and an unplanned shut-down at Goesgen to replace a hydrogen seal on the main generator, 1999 nuclear production could not match that of the previous year. Also, record hydro power production caused the nuclear share in total electricity production to drop. With the exception of Beznau 2, all refueling and maintenance outages were once again short. The Leibstadt outage lasted 26 days, Goesgen 33 days, Beznau 1 lasted 29 days, Beznau 2 89 days and Muehleberg 27 days. At Goesgen, MOX fuel was loaded for the third time in 1999. Of the 44 freshly-loaded fuel elements, 20 were MOX elements. Non-electrical energy supplies from the Beznau and Goesgen nuclear power plants functioned flawlessly. Beznau fed 143.6 GWh of heat energy into the Refuna district heating system, while Goesgen supplied 169 GWh of process heat to the neighboring Niedergoesgen cardboard factory. At the end of 1999 and the beginning of 2000 all Swiss nuclear units continued to operate flawlessly - notwithstanding the challenges posed by the 'Lothar' storm that hit Western Europe in late December and the so-called Y2K computer bug that threatened to hit shortly afterwards, during the 'millennial' change-over. (authors)

  12. Remote operated systems for the management of nuclear processes

    International Nuclear Information System (INIS)

    Popa, I.

    1997-01-01

    The paper shortly presents the remote techniques and systems used regularly for the management of nuclear processes according to the variability and complexity of human operations and to the degree of automation. The paper contains a synthesis of the evolution of remote operating systems and advances the model of an adaptive and self-adaptive expert-robot equipment which is a very complex equipment used for integrated management of nuclear processes. Due to the complexity and variability of the technological operations and environment conditions, none of the techniques and systems presented in the paper do satisfy completely the management of the nuclear technologies as a whole. They must be utilized selectively according to the nature of the actual characteristics of the nuclear process. The expert and expert-robot systems offer a series of advantages among which one can mention: the continuity of the high quality expert's reports, easy extension, the explanation of the decision in detail, the elimination of the routine, the diagnosis of some equipment and process state, forecast of the future behaviour of equipment, processes, market, environment, etc., the multiplying of sources of information, pertinent comparison, the increasing of the performance of the user in general. The expert and expert-robot systems maintain some important drawbacks as: the possibility of taking wrong decision, the difficulty of using information from other expert systems similar to this one at present and not in the least, the high prices. (author)

  13. Toward autonomous operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Kitamura, M.

    1994-01-01

    Issues toward realization of autonomous operation as well as maintenance of nuclear power plants are reviewed in this paper. First, the necessity and significance of the technical program aiming at the establishment of autonomous nuclear plant are discussed through reviewing the history and current status computerized operation of complex artifacts. Then, key technologies currently studied to meet the need within the framework of artificial intelligence (AI) and advanced robotics are described. Among such AI-technologies are distributed multi-agent system, operator thinking model, and advanced man-machine interface design. Advances in robot technology attained include active sensing technique and multi-unit autonomous maintenance robot systems. Techniques for simulation of human action have been pursued as basic issues for understanding mechanisms behind human behavior. In addition to the individual developments, methodological topics relevant to the autonomy of nuclear facilities are briefly addressed. The concepts called methodology diversity and dynamic functionality restoration (realization) are introduced and discussed as the underlining principles to be considered in the development of the autonomous nuclear power plants. (author)

  14. Safety of Nuclear Power Plants: Commissioning and Operation (Spanish Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    This publication is a revision of Safety Requirements No. NS-R-2, Safety of Nuclear Power Plants: Operation, and has been extended to cover the commissioning stage. It describes the requirements to be met to ensure the safe operation of nuclear power plants. Over recent years there have been developments in areas such as long term operation, plant ageing, periodic safety review, probabilistic safety analysis and risk informed decision making processes. It became necessary to revise the IAEA's safety requirements in these areas and to correct and/or improve the publication on the basis of feedback from its application by both the IAEA and its Member States. In addition, the requirements are governed by, and must apply, the safety objective and safety principles that are established in the Fundamental Safety Principles. Contents: 1. Introduction; 2. Safety objectives and principles; 3. The management and organizational structure of the operating organization; 4. Management of operational safety; 5. Operational safety programmes; 6. Plant commissioning; 7. Plant operations; 8. Maintenance, testing, surveillance and inspection; 9. Preparation for decommissioning.

  15. Strategically oriented project management of the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Kemmeter, Sascha; Woempener, Andreas

    2013-01-01

    Due to the politically induced change of the energy sector in Germany, the operators of nuclear power plants had to react and to deal with completely new conditions concerning the decommissioning of their plants on short notice. Therefore the operators have to devise new strategies for controlling their decommissioning and dismantling projects in a short amount of time and most often similarly for several plants. Two fundamental procedures are possible for the successful controlling of these dismantling projects: a centralized or a decentralized management organization. How these project control processes can be realized in an optimal way, is, next to other economic specifications of the dismantling of nuclear power plants, the topic of a new research project of the Chair of Management Accounting at the University Duisburg-Essen. In that process, results and experiences from other research and practical projects concerning general large-scale projects are being used. Selected findings have been compiled and are being discussed in this paper. (orig.)

  16. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    International Nuclear Information System (INIS)

    None

    1997-01-01

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  17. Human equation in operating a nuclear-power plant

    International Nuclear Information System (INIS)

    Barrett, R.S.

    1982-01-01

    The accident at Three Mile Island has forced the nuclear industry to acknowledge a badly neglected aspect of nuclear-power-plant safety - the human equation. The industry now appears to recognize the importance of operator selection, training, motivation, and licensing, and the need to design a system from the point of view of communication, information retrieval, record keeping, and human factors psychology. As a result, the relatively small initiatives that were begun a few years ago by the EPRI are now being greatly expanded

  18. Independent verification in operations at nuclear power plants

    International Nuclear Information System (INIS)

    Donderi, D.C.; Smiley, A.; Ostry, D.J.; Moray, N.P.

    1995-09-01

    A critical review of approaches to independent verification in operations used in nuclear power plant quality assurance programs in other countries, was conducted for this study. This report identifies the uses of independent verification and provides an assessment of the effectiveness of the various approaches. The findings indicate that at Canadian nuclear power plants as much, if not more, independent verification is performed than at power plants in the other countries included in the study. Additional requirements in this area are not proposed for Canadian stations. (author)

  19. Specific defences to the liability of a nuclear operator for damages resulting from a nuclear incident

    International Nuclear Information System (INIS)

    Schwartz, J.A.; Cunningham, G.H.

    1988-01-01

    This paper reviews the cases in which the nuclear operator may be partly or totally exonerated from his liability for a nuclear accident (insurrection, civil war, exceptional natural disasters, intentional act of the victim, etc.) under the Paris and Vienna Conventions and national laws. The laws of the countries reviewed are the following: United States, Japan, Canada, United Kingdom, Brazil, Belgium, the Federal Republic of Germany, France (NEA) [fr

  20. Technical co-operation for nuclear safety in developing countries

    International Nuclear Information System (INIS)

    Flakus, F.N.; Giuliani, P.

    1984-01-01

    The Agency's programme on technical co-operation for nuclear safety is, largely, responsive in character and the Agency's response is tailored to needs identified by developing countries. However, the Agency's assistance alone is not sufficient: technical co-operation can only be successful and is most effective when there is also a strong input from the counterpart body participating in a particular project. The commitment of national governments is fundamental to success. Technical co-operation is most fruitful if the Agency's assistance capabilities and the recipient country's co-operation capabilities match. Co-operation activities mostly take the form of single projects hosted by individual institutions within a single country; regional and inter-regional projects are also important

  1. Report on the behalf of the inquiry commission related to past, present and future costs of the nuclear sector, to the reactor exploitation duration, and to various economic and financial aspects of production and commercialization of nuclear electricity within the frame of the French and European electric mix, as well as to the consequences of the shutting down and dismantling of nuclear reactors, notably the Fessenheim power plant - Nr 2007

    International Nuclear Information System (INIS)

    Brottes, Francois; Baupin, Denis

    2014-01-01

    This official report first describes the role of nuclear energy in the European electric system: economic context (pricing mode, interconnection leading to a European price), similar situations and different policies in Germany, Belgium and UK. It proposes the contribution of the inquiry commission: a constrained energy transition, a shared diagnosis on the status of the European electric system but two possible solutions, nuclear as an economy on its own requiring a strong commitment of public authorities. The next part addresses the front end of the nuclear cycle, i.e. how to ensure the supply of the French nuclear fleet (world resources, demand-supply balance, weak relationship between uranium price and nuclear electricity price). The inquiry commission outlines and discusses the roles of AREVA for the front end, EDF which tries to be less vulnerable, and the State (EDF's regulator and Areva's support). The third part addresses the maintenance and subcontracting expenses: maintenance as a major challenge to control costs, subcontracting as a choice of industrial policy. The inquiry commission notices that EDF has not yet reached a full control of maintenance and that subcontracting remains a matter of controversy. The fourth part discusses the fleet evolution: entry in the fourth decade, a life extension project which requires safety improvement. The inquiry commission discusses the numerous uncertainties of the industrial project, outlines that the construction of a new fleet requires huge investments, that the future of the nuclear fleet requires a global approach, and that shutting down nuclear plants requires support. The fifth part discusses the correct assessment of the amount of future expenses and how to secure their funding: the main future expenses are those related to installation dismantling and to nuclear wastes. The inquiry commission outlines the uncertainties about this funding. The sixth chapter addresses reprocessing activities, MOX fuel and

  2. Report on nuclear safety on the operation of nuclear facilities in 1989

    International Nuclear Information System (INIS)

    Gregoric, M.; Levstek, M. F.; Horvat, D.; Kocuvan, M.; Cresnar, N.

    1990-01-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1989.

  3. Operation aid device upon periodical inspection of nuclear power plant

    International Nuclear Information System (INIS)

    Fukusaka, Ryoji.

    1997-01-01

    The present invention provides an operation aid device upon periodical inspection of a nuclear power plant, capable of controlling a plurality of control rods safely at good operation efficiency while maintaining subcritical state. Namely, a fuel exchange computer controls an operation for exchanging fuel assemblies upon periodical inspection. An operation aiding computer aids the exchanging operation of fuel assemblies. A control rod position monitoring device allows withdrawal of one control rod under the condition of establishment of entire control rod insertion signal upon operation of exchanging fuel assemblies. Whether all of the four fuel assemblies around one control rod have been entirely taken out or not is judged based on information on the fuel assembly exchanging operation. When conditions for the judgement for operation aiding computer are established, the all insertion signals for the entire control rods as the condition for the withdrawal of the control rods are bypassed, and operation enable signals for plurality control rods are outputted to a control rod manual operation device. (I.S.)

  4. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1992-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by the AEA, BNFL and the CEC at Windermere and the sites of Windscale/Sellafield, where the former Windscale advanced gas-cooled reactor and the Windscale piles are currently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, results and conclusions on techniques and procedures currently applied in the dismantling of large scale nuclear installations in the European Community

  5. Some steps of the dismantling of the hot cell ATTILA

    International Nuclear Information System (INIS)

    Terrasson, L.

    1989-01-01

    This paper describes the dismantling, during 2 years and just finished now, of a large hot cell (11.6 m x 5.90 m x 5.80 m) at Fontenay-aux-Roses (France) characterised by an importand irradiation and contamination mean dose rate 7 rads/hr, in some places 20 rads/hr, coming at 98 % from Cesium 137 (beta decay radioisotope). Put into operation in March 1967, the Attila cell was used for spent fuel processing using halogenides [fr

  6. Management of nuclear power plants for safe operation

    International Nuclear Information System (INIS)

    Kueffer, K.

    1980-01-01

    This lecture covers management aspects which have an immediate bearing on safety and identifies the objectives and tasks of management which are required for safe operation of a nuclear power plant and is based on the Codes of Practice and Safety Guides of the IAEA as well as arrangements in use at the Swiss Nuclear Power Station Beznau. This lecture - discusses the factors to be considered in structuring the operating organization, the support to be provided to plant management, the services and facilities needed and the management system for assuring the safety tasks are performed - describes the responsibilities of plant management and operating organization - outlines the requirements for recruitment, training and retraining as well as qualification and authorization of personnel - describes the programmes for maintenance, testing, examination, inspection, radiological protection, quality assurance, waste management, fuel management, emergency arrangement and security - describes the development of plant operating procedures including procedures to protect the personnel - outlines the requirements for initial and subsequent operation - describes the importance for evaluation and feedback of operating experience - describes the procedures for changes in hardware, procedures and set points - outlines the information flow and the requirements in reference to records and reports. (orig./RW)

  7. Spent fuel cask handling at an operating nuclear power plant

    International Nuclear Information System (INIS)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices at all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant

  8. Radioactivity, radiation protection and monitoring during dismantling of light-water reactors

    International Nuclear Information System (INIS)

    Hummel, L.; Zech, J.B.

    2005-01-01

    Based on the radioactivity inventory in the systems and components of light-water reactors observed during operation, the impact of actions during plant emptying after the conclusion of power operation and possible subsequent long-term safe enclosure concerning the composition of the nuclide inventory of the plant to be dismantled will be described. Derived from this will be the effects on radioactivity monitoring in the plant, physical radiation protection monitoring, and the measured characterization of the residual materials resulting from the dismantling. The impact of long-term interim storage will also be addressed in the discussion. The talk should provide an overview of the interrelationships between source terms, decay times and the radioactivity monitoring requirements of the various dismantling concepts for commercial light-water reactors. (orig.)

  9. Operation experience feedback and analysis of nuclear air cleaning system in nuclear power plant

    International Nuclear Information System (INIS)

    Yu Liantao; Lin Yuqing

    2012-01-01

    High-efficiency particulate air filter (HEPA Filter) and Charcoal Adsorber are the most important components affecting the performance of nuclear air cleaning system (NACS) in Nuclear Power Plant. Based on the configuration of HEPA Filter and Charcoal Adsorber, firstly, discussing the factors affecting the components performance and the potential aging parts, and then analyzing the effectiveness of In-place testing for performance surveillance. At last, analyzing the operation experience, and coming to the conclusion that the stable operation of NACS should consider design, initial acceptance testing, period in-place testing, proper maintenance, strict replace schedule, and so on. (authors)

  10. Die Energiewerke Nord GmbH. From operator of a decommissioned Russian nuclear power plant to one of Europe's leading decommissioning companies; Die Energiewerke Nord GmbH. Der Weg vom Betreiber eines stillgelegten russischen Kernkraftwerkes zu einem fuehrenden Stilllegungsunternehmen in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Marlies [Energiewerke Nord GmbH, Rubenow (Germany)

    2011-03-15

    EWN GmbH is a state-owned company with these duties: - decommissioning and demolition of the Greifswald and Rheinsberg nuclear power stations; - safe operation of the Zwischenlager Nord interim store; - development of the 'Lubminer Heide' industrial and commercial estate. Other projects for which EWN GmbH uses its know-how: - disposal of 120 decommissioned Russian nuclear submarines in Murmansk; - decommissioning and dismantling of the Juelich, NRW, AVR experimental reactor; - demolition of nuclear plants; running the Central Decontamination Operations Department at Karlsruhe, BW. Since 2008, EWN GmbH has held 25% of the shares of Deutsche Gesellschaft zum Bau- und Betrieb von Endlagern fuer Abfallstoffe mbH (DBE), a firm building and operating nuclear repositories. (orig.)

  11. Establishing a code of ethics for nuclear operating organizations

    International Nuclear Information System (INIS)

    2007-01-01

    The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel (TWG-T and Q) recommended that the IAEA develop a publication on improving the performance of nuclear facility operating organizations through focusing on the ethics and professionalism of personnel at all levels of such organizations. This publication has been prepared in response to that recommendation. The TWG-T and Q made its recommendation based upon an understanding that an organization's code of ethics should apply to behaviours at all levels of the organization; from the Board Room to the working level. The TWG-T and Q also recognized that having the technical competencies related to nuclear technology is not enough to ensure that an operating organization's performance is at the high standards needed for a sustainable nuclear industry. The values and ethics of individuals and organizational units play an equally important role. This publication is addressed primarily to senior managers of operating organizations, as experience has shown that, in order to succeed, such initiatives need to come from and be continually supported by the highest levels of the organization. This publication was developed under an IAEA project in its 2006-7 programme entitled Achieving Excellence in the Performance of Nuclear Power Plant Personnel. The principal objectives of this project were: - To enhance the capability of Member States to utilize proven practices accumulated, developed and transferred by the Agency for improving personnel performance and maintaining high standards, and - To demonstrate how positive attitudes and professionalism, appropriate performance management, adherence to a systematic approach to training, quality management and the use of effective information and knowledge management technologies contribute to the success in achieving organization objectives in a challenging business environment

  12. Safeguard management for operation security in nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Woo, Tae-Ho; Lee, Un-Chul

    2011-01-01

    Safeguard modeling is conducted for the successful operations in the nuclear power plants (NPPs). The characteristics of the secure operation in NPPs are investigated using the network effect method which is quantified by the Monte-Carlo algorithm. Fundamentally, it is impossible to predict the exact time of a terror incident. So, the random sampling for the event frequency is a reasonable method, including the characteristics of network effect method such as the zero-sum quantification. The performance of operation with safeguard is the major concern of this study. There are three kinds of considerations as the neutronics, thermo-hydraulics, and safeguard properties which are organized as an aspect of safeguard considerations. The result, therefore, can give the stability of the operations when the power is decided. The maximum value of secure operation is 12.0 in the third month and the minimum value is 1.0 in the 18th and 54th months, in a 10 years period. Thus, the stability of the secure power operation increases 12 times higher than the lowest value according to this study. This means that the secure operation is changeable in the designed NPPs and the dynamical situation of the secure operation can be shown to the operator.

  13. Future jobs in nuclear industry

    International Nuclear Information System (INIS)

    Asquier, S.

    2017-01-01

    CEA leads research on fast reactors in the framework of Generation-4 reactors, it also brings technical support to industrial partners like EDF or AREVA for today operating reactors. Computerized simulation is strongly developed in order to get reliable computers codes able to simulate mechanical behavior of new materials or neutron transport in new reactor cores. CEA is also in charge of the dismantling and remediation of its own nuclear facilities, today about 1000 people work on the dismantling of 35 facilities. CEA is also participating in fusion research programs. This broad range of activities makes CEA an important recruiter of competencies in a lot of domains from nuclear engineering to biological impact of radiations via computer sciences. (A.C.)

  14. Principles of nuclear safety and operation reliability upgrading

    International Nuclear Information System (INIS)

    Pnacek, I.

    2001-01-01

    Safe operation of Nuclear Power Plants in Jaslovske Bohunice is of the highest priority of NPPs employees and the management. The management decided to improve the power plant safety to the level acceptable by international institutions, such as IAEA, WENRA, etc. The power plant initiated a systematic programme preparation, its evaluation by international missions, design process and implementation stage, which was successfully completed in the first half of 2000. (author)

  15. Nuclear electromagnetic charge and current operators in Chiral EFT

    Energy Technology Data Exchange (ETDEWEB)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  16. Application of AI technology to nuclear plant operations

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1988-01-01

    In this paper, applications of Artificial Intelligence (AI) Technology to nuclear-power plant operation are reviewed. AI Technology is advancing rapidly and in the next five years is expected to enjoy widespread application to operation, maintenance, management and safety. Near term emphasis on a sensor validation, scheduling, alarm handling, and expert systems for procedural assistance. Ultimate applications are envisioned to culminate in autonomous control such as would be necessary for a power system in space, where automatic control actions are taken based upon reasoned conclusions regarding plant conditions, capability and control objectives

  17. Training of engineers for nuclear power station operation

    International Nuclear Information System (INIS)

    Myerscough, P.B.

    1980-01-01

    The requirements for staffing and training of a nuclear electric utility are described. Current training facilities at the Central Electricity Generating Board are applicable to gas-cooled technology with the possibility of the introduction of a thermal water system and fast reactors in the future. The CEGB training centres provide for the initial training of operational staff, revision training of experienced operational staff, and training of non-operational staff from the stations and supporting departments. Details are given of the content of the training courses which also provide simulation facilities of the basic dynamics of the CEGB stations. Further developments in simulation will include dynamics of the boiler and turbine plants in Magnox stations. The flexibility of the AGR simulations will enable the training exercises to be adjusted to meet changing operating patterns for each AGR station. (U.K.)

  18. A prototype nuclear power station multiterminal microsimulation for operator training

    International Nuclear Information System (INIS)

    Macbeth, M.; Brozzi, B.

    1988-01-01

    CIRENE is a prototype boiling light water, heavy water moderated, 40 MWe nuclear generating station under construction at Latina, approximately 70 km south of Rome. The first station systems chosen for simulation training were the main heat transport circuit and auxiliaries, reactor regulation, reactor protection and the conventional balance of plant. The main circuit microsimulation was completed in mid-December 1987 with the remaining systems following throughout 1988. The trainees will be able to practice and experience standard operations and abnormal events over the full operating range. This paper describes, with respect to the main circuit application: performance of the hardware configuration, within a training context; the extent of the graphics displays (55) provided for the trainee; operational scope of the training simulation; and anticipated benefits to commissioning, operations and training

  19. Spent Nuclear Fuel Project Cold Vacuum Drying Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, (Cold Vacuum Drying Facility Design Requirements), Rev. 4. and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  20. NERVA-Derived Nuclear Thermal Propulsion Dual Mode Operation

    Science.gov (United States)

    Zweig, Herbert R.; Hundal, Rolv

    1994-07-01

    Generation of electrical power using the nuclear heat source of a NERVA-derived nuclear thermal rocket engine is presented. A 111,200 N thrust engine defined in a study for NASA-LeRC in FY92 is the reference engine for a three-engine vehicle for which a 50 kWe capacity is required. Processes are described for energy extraction from the reactor and for converting the energy to electricity. The tie tubes which support the reactor fuel elements are the source of thermal energy. The study focuses on process systems using Stirling cycle energy conversion operating at 980 K and an alternate potassium-Rankine system operating at 1,140 K. Considerations are given of the effect of the power production on turbopump operation, ZrH moderator dissociation, creep strain in the tie tubes, hydrogen permeation through the containment materials, requirements for a backup battery system, and the effects of potential design changes on reactor size and criticality. Nuclear considerations include changing tie tube materials to TZM, changing the moderator to low vapor-pressure yttrium hydride, and changing the fuel form from graphite matrix to a carbon-carbide composite.