WorldWideScience

Sample records for nuclear desalination utilizing

  1. Conceptual Design of a Nuclear Reactor Dedicated for Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Hun; Moon, Jang Sik; Jeong, Yong Hoon [Korea Adavanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The many advantages of nuclear desalination, the nuclear safety issues still remain a perennial problem today. To respond to such needs, the development of a desalination-dedicated nuclear reactor with maximized safety features was proposed. From the feasibility study, the desalination-dedicated reactor was found to be a good solution for meeting future water demand during the winter season in some countries like UAE by decoupling water and electricity supply. The economic analysis results indicated that under certain conditions, the desalination-dedicated reactor can produce freshwater at lower cost than the target nuclear cogeneration reactor using steam extraction technologies. A conceptual design of the desalination-dedicated nuclear reactor is in progress. The design features of the desalination-dedicated nuclear reactor could significantly enhance safety, reliability, and simplicity, and facilitate the extensive use of innovative passive safety systems. These maximized safety features of desalination-dedicated reactor could provide advanced capabilities for passive reactor shutdown and residual heat removal, and eventually prevent radioactivity release into the environment. The conceptual design achieved will provide a foothold for the future commercialization of the desalination-dedicated nuclear reactor and eventually help to address both a serious water crisis and nuclear safety issues.

  2. Specific contents of the SAR for a nuclear desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Doval, A.S. [Nuclear Projects Division, INVAP S.E., S.C. de Bariloche, R.N. (Argentina)]. E-mail: doval@invap.com.ar; Nestor A. Masriera, Claudio M. Mazufri [Nuclear Projects Division, INVAP S.E., S.C. de Bariloche, R.N. (Argentina)

    2004-07-01

    Although it is widely accepted that coupling a Desalination Plant (DP) to a Nuclear Power Plant (NPP) does not pose any significant additional hazard, it must clearly be considered as a major modification of the design and, therefore, requires issuing an ad hoc version of the Facility Safety Analysis Report (SAR). Documentation is already available covering general safety aspects of nuclear desalination, including standards and applicable requirements, as well as methodologies for assessing potential exposure. In this report, a specific analysis of the main features to be considered for producing the safety analysis report of a nuclear desalination plant will be presented. For the sake of clarity, it is assumed that there is an existing SAR of the NPP and only the additional information to be included in the SAR will be considered. The scope of this additional information is extremely dependent on the desalination technology and the coupling scheme. Therefore, the kind of nuclear desalination process coupling, i.e. thermal, mechanical or electrical, must be defined as a previous task. A thorough review of the main contents of the SAR is performed in order to identify the relevant points, if any, which need to be included in every chapter coping with the coupling. The SAR chapters' content and scope are considered in accordance with IAEA guidelines. As part of the safety report, possible accidental event analysis and their consequences must be included and, therefore, the deterministic analysis of an envelope case of contamination release through the DP must be assessed. The elaboration of this safety case is analysed, and the justified scope of the models needed to quantify the contamination transport mechanisms is presented. Finally, the most commonly accepted techniques and codes, used for the deterministic safety analysis of nuclear plants and effectively applicable to nuclear desalination plants, are presented by the use of the modelling tool DESNU

  3. Desalination

    Science.gov (United States)

    To cope with the rising demand for fresh water, desalination of brackish groundwater and seawater is increasingly being viewed as a pragmatic option for augmenting fresh water supplies. The large scale deployment of desalination is likely to demonstrably increase electricity use,...

  4. Desalination utilizing clathrate hydrates (LDRD final report).

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  5. Nuclear desalination for the northwest of Mexico; Desalacion nuclear para el noroeste de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R. F. [Instituto de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)

    2008-07-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic. It is evident that before the high cost of the hydrocarbons and its high environmental impact, the nuclear generation alternative of energy becomes extremely attractive, mainly for desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was revised the state of the art of the nuclear desalination on the world and it is simulated some couplings and operation forms of nuclear reactors and desalination units, from the thermodynamic and economic viewpoint with the purpose of identifying the main peculiarities of this technology. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be couple to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. It is used for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out an economic preliminary evaluation. Was found cost very competitive of 0.038-0.044 US$/kWh for the electric power production and 0.60 to 0.77 US$/m{sup 3} for the drink water produced, without including the water transport cost or the use of carbon certificates. (Author)

  6. Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND

    Directory of Open Access Journals (Sweden)

    Ho Sik Kim

    2015-04-01

    Full Text Available In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal–hydraulic and neutronic design requirements. In a thermal–hydraulic analysis using an analytical method based on the Wooton–Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MWth and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  7. Feasibility study of a dedicate nuclear desalination system: Low-pressure inherent heat sink nuclear desalination plant (LIND)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik; No, Hee Cheon; Jo, Yu Gwan; Wivisono, Andhika Feri; Park, Byung Ha; Choi, Jin Young; Lee, Jeong Ik; Jeong, Yong Hoon; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-04-15

    In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MW{sub th} and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  8. The nuclear energy in the seawater desalination; La energia nuclear en la desalacion de agua de mar

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J.; Flores E, R.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In general, the hydric resources of diverse regions of the world are insufficient for to satisfy the necessities of their inhabitants. Among the different technologies that are applied for the desalination of seawater are the distillation processes, the use of membranes and in particular recently in development the use of the nuclear energy (Nuclear Desalination; System to produce drinkable water starting from seawater in a complex integrated in that as much the nuclear reactor as the desalination system are in a common location, the facilities and pertinent services are shared, and the nuclear reactor produces the energy that is used for the desalination process). (Author)

  9. Performance Analysis of Thermal Vapour Compression Desalination System Coupled to Cogeneration Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    P. Asiedu-Boateng

    2012-04-01

    Full Text Available Nuclear desalination of seawater has been identified as one of the affordable means of fresh water production. However this can only be achieved by the design of energy efficient desalination systems. This study focused on cycle analysis of the cogeneration nuclear power plant. A theoretical model of the Thermo Vapour Compression (TVC desalination process was also developed and coupled to the cogeneration nuclear power plant. The modeled coupled system was developed on the computer code, NUCDES using FORTRAN language to investigate the effect of design and operating parameters on parameters controlling the cost of producing fresh water from TVC process. The results showed that the performance of the TVC desalination process and the efficiency of the cogeneration nuclear power improve with the motive steam pressure.

  10. Modeling and simulation of cogeneration nuclear power plant for seawater desalination

    Energy Technology Data Exchange (ETDEWEB)

    Asiedu-Boateng, P., E-mail: pierob79@yahoo.co.uk [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE1, Atomic Energy, Accra (Ghana); Akaho, E.H.K. [Department of Nuclear Engineering and Material Science, School of Nuclear and Allied Sciences (SNAS), University of Ghana, P.O. Box AE1, Atomic Energy, Accra (Ghana); Nyarko, B.J.B.; Yamoah, S. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG80, Legon (Ghana)

    2012-01-15

    Nuclear desalination of seawater remains a very viable option to solving the perennial fresh water shortage problem along the coast of Ghana especially as Ghana prepares to install the first nuclear power plant. There is, therefore, the need for research to be conducted into nuclear seawater desalination technology as part of the nuclear power program of Ghana so as to develop the needed human resources in Ghana. In this research, cycle analysis of the cogeneration nuclear power plant was conducted to determine its efficiency and desalination steam requirements. An analytical model of the thermo vapour compression (TVC) desalination process was also developed to investigate the effect of design and operating parameters on parameters controlling the cost of producing fresh water from TVC process. Steady state mass and energy balances as well as empirical correlations derived from experiments were used to model the TVC, which was coupled to a cogeneration nuclear power plant to supply the needed steam for the desalination. The model was developed on a computer code, using FORTRAN language. The results showed that the thermal performance of the TVC desalination process improves with the efficiency of the cogeneration nuclear power plant but decreases with increasing steam consumption rates.

  11. Water monitoring as a safety feature for nuclear desalination

    Energy Technology Data Exchange (ETDEWEB)

    Masriera, N.A. [Nuclear Engineering Department, INVAP, Bariloche, Rio Negro (Argentina)]. E-mail: masriera@invap.com.ar; Doval, A.S.; Di Tada, M.L. [Nuclear Engineering Department, INVAP, Bariloche, Rio Negro (Argentina)

    2006-07-01

    It is widely accepted that the general safety approach for nuclear facilities is valid for a Nuclear Desalination Plant (NDP), thus IAEA standards and guides are applicable. The coupling of a NDP should be designed with the safety objective of ensuring that it results in no adverse effect on the Nuclear Power Plant (NPP) safety. The first objective (provisions of barriers) is complied with by the known NDP design, so the relevant issue becomes the design features preventing the transfer of radioactive material to the product water, even in the event of system failures. This presentation drafts a coupling-system safety assessment, from fundamentals and general requirements down to specific design requirements. The state of the art of monitoring systems imposes constraints on the coupling design, in terms of hold-up capability and piping interconnection. This conceptual design shows the system's complexity implied in having monitoring of product water as a safety feature, and conclusions are extremely relevant when drafting general user requirements for a NDP project. (author)

  12. JEM spotlight: Nuclear desalination--environmental impacts and implications for planning and monitoring activities.

    Science.gov (United States)

    Anastasov, Vladimir; Khamis, Ibrahim

    2010-01-01

    Nuclear desalination has been identified as an option since the 1960s, but only recently, as climate change intensifies, has it gained interest again. Although environmental impacts of nuclear desalination have not been paid a lot of attention in the few implemented projects, now more than ever, it is essential to provide an overview of their nature and magnitude. The gathered information and basic analysis allow for a general comparison of a 200,000 m(3)/d nuclear desalination facility using a once-through cooling system as a reference case, with alternative co-location options. Results of the review indicate that the potential for marine impacts requires careful planning and monitoring. They also reveal that adverse coastal, atmospheric and socio-economic impacts are minor in comparison with other co-location alternatives. The issues regarding public health are discussed and experiences presented. Nuclear desalination facilities are expected to show a better environmental performance than other co-located power/desalination options. Environmental planning and monitoring activities are thus much simpler and their scope smaller, with the most important monitoring parameters listed. In conclusion, the application of nuclear desalination is recommended as a less environmentally harmful option.

  13. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  14. STUDY ON DISCHARGE HEAT UTILIZATION OF 250 MWe PCMSR TURBINE SYSTEM FOR DESALINATION USING MODIFIED MED

    Directory of Open Access Journals (Sweden)

    Andang Widiharto

    2015-03-01

    Full Text Available PCMSR (Passive Compact Molten Salt Reactor is one type of Advanced Nuclear Reactors. The PCMSR has benefit charasteristics of very efficient fuel use, high safety charecteristic as well as high thermodinamics efficiency. This is due to its breeding capability, inherently safe characteristic and totally passive safety system. The PCMSR design consists of three module, i.e. reactor module, turbine module and fuel management module. Analysis in performed by parametric calculation of the turbine system to calculate the turbine system efficiency and the hat available for desalination. After that the mass and energi balance of desalination process are calculated to calculate the amount of distillate produced and the amount of feed sea water needed. The turbine module is designed to be operated at maximum temperature cycle of 1373 K (1200 0C and minimum temperature cycle of 333 K (60 0K. The parametric calculation shows that the optimum turbine pressure ratio is 4.3 that gives the conversion efficiency of 56 % for 4 stages turbine and 4 stages compressor and equiped with recuperator. In this optimum condition, the 250 MWe PCMSR turbine system produces 196 MWth of waste heat with the temperature of cooling fluid in the range from 327 K (54 0C to 368 K (92 0C. This waste heat can be utilized for desalination. By using MMED desalination system, this waste heat can be used to produce fresh water (distillate from sea water feed. The amount of the destillate produced is 48663 ton per day by using 15 distillation effects. The performance ratio value is 2.8727 kg/MJ by using 15 distillation effects. Keywords: PCMSR, discharged heat, MMED desalination   PCMSR (Passive Compact Molten Salt Reactor merupakan salah satu tipe dari Reaktor Nuklir Maju. PCMSR memiliki keuntungan berupa penggunaan bahan bakar yang sangat efisisien, sifat keselamatan tinggi dan sekaligus efisiensi termodinamika yang tinggi. Hal ini disebabkan oleh kemampuan pembiakan bahan bakar, sifat

  15. Energy minimization strategies and renewable energy utilization for desalination: a review.

    Science.gov (United States)

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues.

  16. A nuclear option for power and desalination on Madura Island

    Energy Technology Data Exchange (ETDEWEB)

    Mursid Djokolelono; Soedyartomo Soentono; Hudi Hastowo [Badan Tenaga Nuklir Nasional (BATAN), Mampang Prapatan, Jakarta (Indonesia)]. E-mail: hastowo@rocketmail.com

    2004-07-01

    Madura Island, which comprises 5.3 thousand square kilometres and is inhabited by 3.1 million people, belongs to the East Java Province of Indonesia. Proximity to the congested Surabaya city-port makes Madura enticing as a place to accommodate the expansion of port facilities and industrial estates operating in Surabaya. Efforts to support industrial development have been made, e.g. in the construction plan for a 6 km connecting bridge as well as in respect of power and water reliance. Power demand has been predicted to reach 119 to 136 MW by 2007 and 221 to 292 MW by 2015. Since electricity to the island is connected to the Jawa-Bali grid, system expansion can be solved within the Jawa-Bali expansion-planning scheme. In 1998, however, the breakage of the submarine power cables resulted in a blackout of the whole island for forty days, which encouraged planners to launch the idea of a self-reliance scenario within the island. Fossil power plants (100 to 200 MW) are sought to become candidate solutions for 2007, whereas a nuclear alternative comes into consideration for 2015. Their are four water municipalities (Regencies), which in total produce clean water equivalent to 120 L/capita/day for only 5.8% of the inhabitants with a distribution loss of 18-35%. It is obvious that water demand is suppressed and that the quantity required, on which to base planned expansion, depends upon the amount of industrial development. The present water capacity required to meet the four Regencies' demands ranges from 18,000-23,000 m{sup 3}/day. However, since water supply solutions are limited to each locality (and not integrated for the whole of Madura), the expansion plan can only start by aiming for a modest capacity increase, which is sought to be around 4,000 m{sup 3}/day in 2007 growing over the years with unit additions. Should a power and desalination plant be built, the rejected brine would become a useful input to salt production, enabling traditional methods (used on

  17. A preliminary economic feasibility assessment of nuclear desalination in Madura Island

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.-H.; Hwang, Y.-D. [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Konishi, T. [International Atomic Energy Agency, Vienna (Austria); Hudi Hastowo [National Nuclear Energy Agency (BATAN), Jakarta (Indonesia)]. E-mail: hastowo@cbn.net.id

    2005-07-01

    A joint study between KAERI and BATAN, which is entitled 'A preliminary economic feasibility assessment of nuclear desalination in Madura Island', is being conducted under the framework of the Interregional Technical Cooperation Project of IAEA, signed on Oct. 10, 2001 at IAEA. The duration of the project is January 2002 to December 2004. An economic feasibility of nuclear desalination using system-integrated modular advanced reactor (SMART), which will provide Madura Island with electricity and potable water and also support industrialisation and tourism, will be assessed during the project. The scope of this joint study includes the analyses for the short- and long-term energy and water demand as well as the supply plan for Madura Island, evaluation of the site characteristics, environmental impacts and health aspects, technical and economic evaluation of SMART and its desalination system, including the feasibility of its being identified on the Madura Island. KAERI and BATAN are cooperating in conducting a joint study, and IAEA provides technical support and a review of the study products. This paper presents the interim results of the joint study by focussing on the technical and economic aspects of nuclear desalination using SMART in Madura Island. (author)

  18. Desalination of seawater with nuclear power reactors in cogeneration; Desalacion de agua de mar con reactores nucleares de potencia en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R.M

    2004-07-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  19. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Development policy on new generation of nuclear power combined with desalination in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The potential market for desalination industry is forecasted in China for a long term. A co-generation policy is proposed in power production and desalination. It has been predicted that the desalination would become a huge industry in China provided that the technology of desalination is improved and fresh water cost reduced to a certain level accepted by Chinese Residents.

  1. Energetic and economic cost of nuclear heat − impact on the cost of desalination

    Directory of Open Access Journals (Sweden)

    Dardour Saied

    2017-01-01

    Full Text Available An exploratory study has been carried out to evaluate the cost of heat supplied by a pressurized water reactor type of nuclear reactors to thermal desalination processes. In the context of this work, simplified models have been developed to describe the thermodynamics of power conversion, the energetics of multi-effect evaporation (MED, and the costs of electricity and heat cogenerated by the dual-purpose power plant. Application of these models show that, contrary to widespread belief, (nuclear-powered MED and seawater reverse osmosis are comparable in terms of energy effectiveness. Process heat can be produced, in fact, by a relatively small increase in the core power. As fuel represents just a fraction of the cost of nuclear electricity, the increase in fuel-related expenses is expected to have limited impact on power generation economics.

  2. Determination of the costs of the nuclear desalination using the DEEP code from IAEA; Determinacion de los costos de la desalacion nuclear utilizando el codigo DEEP del OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Palacios H, J.C.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2005-07-01

    The desalination of seawater is being an important solution to satisfy the demands of drinking water to population's centers that have hydric resources very limited, like it is the case of some Arab countries and arid regions of the planet, in where they have settled desalination plants that use as energy source to those fossil fuels or nuclear energy plants. Taking into account that the desalination of seawater is a process that consumes a lot of thermal and/or electric energy, it is necessary to quantify the costs of the supply and that of the desalination plant for different options and technologies, looking for this way the but appropriate for the specific conditions of the region where it has planned the desalination of seawater. In this report the three technologies but promising for the desalination are described and by means of the DEEP code the costs of production of water and energy are evaluated, using as thermal source different types of power nuclear reactors. It was obtained according to DEEP that the costs of the electricity generation for the considered reactors are around 40 USD/MWh. With these costs of electric power generation and using the DEEP code is obtained that the costs of production of drinking water are around 1 USD/m{sup 3}. (Author)

  3. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  4. Selection of Seawater Desalination Scheme for Nuclear Power Plant%核电厂海水淡化方案选择

    Institute of Scientific and Technical Information of China (English)

    王鹏

    2011-01-01

    As a trend,seawater desalination is used to settle out the problem of freshwater source for nuclear power plant.This article proposes a recommended seawater desalination scheme by comparison all of the seawater desalination schemes for Shandong Haiyang nuclear plant.%滨海核电采用海水淡化解决淡水来源,已经成为一个趋势。结合山东海阳核电工程,对海水淡化方式进行综合比选,提出滨海核电厂海水淡化的推荐方案。

  5. Energy analysis of a desalination process of sea water with nuclear energy; Analisis energetico de un proceso de desalinizacion de agua de mar con energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Martinez L, G.; Valle H, J., E-mail: julfi_jg@yahoo.com.mx [Universidad Politecnica Metropolitana de Hidalgo, Boulevard acceso a Tolcayuca No. 1009, Ex-hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2016-09-15

    In the present work, is theoretically proven that the residual heat, removed by the chillers in the stage prior to the compression of the recuperative Brayton cycle with which nuclear power plants operate with high temperature gas reactors (HTGR), can be used to produce stem and desalinate seawater. The desalination process selected for the analysis, based on its operating characteristics, is the Multi-Stage Distillation (Med). The Med process will use as energy source, for the flash evaporation process in the flash trap, the residual heat that the reactor coolant dissipates to the environment in order to increase the compression efficiency of the same; the energy dissipated depends on the operating conditions of the reactor. The Med distillation process requires saturated steam at low pressure which can be obtained by means of a heat exchanger, taking advantage of the residual heat, where the relative low temperatures with which the process operates make the nuclear plants with HTGR reactors ideal for desalination of sea water, because they do not require major modifications to their design of their operation. In this work the energy analysis of a six-stage Med module coupled to the chillers of an HTGR reactor of the Pebble Bed Modular Reactor type is presented. Mathematical modeling was obtained by differential equations of mass and energy balances in the system. The results of the analysis are presented in a table for each distillation stage, estimating the pure water obtained as a function of the heat supplied. (Author)

  6. Review of nuclear electricity generation and desalination plants and evaluation of SMART application

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Yoon, Ju Hyeon; Kim, Hwan Yeol; Lee, Young Jin; Kim, Joo Pyung; Lee, Doo Jeong; Chang, Moon Hee

    1998-03-01

    KAERI are developing a new advanced integral reactor named SMART for dual application purpose of the electric power generation and seawater desalination. This report are describing the general desalting methods with its technology development and the coupling schemes between electricity generation system and desalting system. Though MSF takes the most part of currently operating seawater desalination plants, MED and RO has been preferred in the past decade. MED has a advantage over MSF with the view to investment costs and energy efficiency. The coupling between electricity generation system and desalination system can be realized by using one of back pressure cycle, extraction cycle, and multi-shaft cycle. New design and operating strategy has to be established for various environment and load conditions. To evaluate the candidate desalination systems of SMART and the coupling method of it with other secondary systems, the desalted water and electricity were calculated through the several options. The result shows that back pressure cycle is preferred at the high water/power ratio and extraction cycle at the low value. If energy efficiency are only considered, RO will be best choice. (author). 17 refs., 12 tabs., 31 figs

  7. Feasibility analysis of the Primary Loop of Pool-Type Natural Circulating Nuclear Reactor Dedicated to Seawater Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woonho; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the feasibility of natural circulation was evaluated for the reference plant AHR400 (Advanced Heating Reactor 400MWth). AHR400 is a pool-type desalination-dedicated nuclear reactor. As a consequence, AHR400 has low operating pressure and temperature which provides large safety margin. Removal of the reactor coolant pump from the AHR400 will enforce integrity of the reactor vessel and passive safety feature. Therefore, the study also tried to find out optimized primary loop design to achieve total natural circulation of the coolant. Natural circulation capacity of the primary loop of the desalination dedicated nuclear reactor AHR400 was evaluated. It was concluded that to remove RCP from the AHR400 and operates the reactor only by natural circulation of the coolant is impossible. Decreased core power as half make removal of RCP possible with 15m central height difference between the core and IHXs. Furthermore, validation and modification of pressure loss coefficients by small-scaled natural circulation experiment at a pool-type reactor would provide more accurate results.

  8. Design concept and its requirements of the integrated SMART nuclear desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  9. Desalination plan with nuclear reactors as part of a sustainable development program in Mexico; Plan de desalinizacion con reactores nucleares como parte de un programa de desarrollo sustentable en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rojas A, O; Calleros M, G., E-mail: oziel.rojas.siimisa@gmail.com [Soluciones en Instrumentacion Integral y Mantenimiento Industrial y Servicios, S. A. de C. V. (Mexico)

    2016-09-15

    This paper presents a project for the desalination of seawater with nuclear reactors, in order to supply fresh water to the populations near to the nuclear power plant. A case study is proposed with the nuclear power plant of Laguna Verde, implementing a system that allows taking advantage of the residual heat of the seawater condensate stage and with this, to supply drinking water to the surrounding localities where the vital liquid is scarce. In addition, legislation is proposed to allow some of the thermal energy generated by reactors producing electrical energy in Mexico to be used for the desalination of seawater and/or hydrogen production. (Author)

  10. Contribution to the optimization of the coupling of nuclear reactors to desalination processes; Contribution a l'optimisation du couplage des reacteurs nucleaires aux procedes de dessalement

    Energy Technology Data Exchange (ETDEWEB)

    Dardour, S

    2007-04-15

    This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)

  11. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    Energy Technology Data Exchange (ETDEWEB)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan); Asano, Takashi; Tamata, Shin [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  12. Extraction of rubidium from the concentrated brine rejected by integrated nuclear desalination systems

    Energy Technology Data Exchange (ETDEWEB)

    Nisan, S.; Laffore, F. [CEA Cadarache, DEN DER SESI, 13 - Saint Paul lez Durance (France); Poletiko, C.; Simon, N. [CEA Cadarache, DTN STPA LPC, 13 - Saint Paul lez Durance (France)

    2009-07-01

    Rubidium is one of the elements present in the concentrated brine rejected by desalination systems. In view of the potentially high price of the pore metal, it is worthwhile to investigate its extraction, even though presently the available Rb resources are adequate enough to meet the current demands. Two methods have been reported. The first makes use of the ion-exchange resins and the second of the complexation of Rb with specific molecules (calixarenes) followed by one or more nano-filtration/reverse osmosis (NF/RO) stages. First results of calculations indicate that the two methods would be technically very attractive but much experimentation would still be required before an industrial scale extraction process can be evolved. (authors)

  13. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit...... and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water...

  14. Prospect on Desalination and Other Non-Electric Applications of Nuclear Energy In Indonesia

    Directory of Open Access Journals (Sweden)

    G.R. Sunaryo

    2007-01-01

    Full Text Available Molten-Salt Reactor (MSR is a design of an advanced reactor system from the GEN IV family working in thermal or epithermal neutron spectrum and using thorium or transuranium fuel in the form of molten fluorides. It is based on the experience with the development of the molten-salt reactor technology in the Oak-Ridge National Laboratory in the United States. The MSR fuel cycle with integrated reprocessing represents one of the potential ways both for significant decrease of total amount of radioactive wastes for final deposition and for utilization of nuclear energy for electricity and heat production as effectively as possible. There are two pyrochemical reprocessing techniques studied in NRI Rez plc which are considered to be applied both for reprocessing of already existing spent fuel and for preparation and „on-line“ reprocessing of MSR fuel: (i the Fluoride Volatility Method (FVM, which performs chemical conversion of spent thermal oxide fuel components into fluorides and their consequent separation by means of their different volatility, thermal stability and chemical affinity to various sorbents; and (ii electrochemical separation of the actinides (Ans and fission products (FP, represented mainly by lanthanides (Lns, from each other by electrolytic deposition method on solid cathode in molten fluoride media.

  15. Utilization of desalinated b rackish water resi dues for cultivation of the m a rine fish species, Dicentrarchus labra x, Sparus aurata, and Sciaenops ocellatus

    OpenAIRE

    Mutaz A. Al-Qutob; Ra'fat A. Qubaja; Tharwat S. Nashashibi

    2013-01-01

    The utilization of brackish water residues from desalination units for fish mariculture inPalestine could represent an environmental friendly alternative of disposing brine water which could havean adverse effect on wild life. In this study, three juvenile marine fish species (Gilt-head bream S. aurata, European sea bass D. labrax, and red drum S. ocellatus) with average weights of 0.7-4.9 g, wereacclimated and reared in brine brackish water residues collected from Jericho desalination units ...

  16. Economical analysis and study on a solar desalination unit

    DEFF Research Database (Denmark)

    Based on the calculation of the single-factor impact values of the parameters of a triple tower-type solar desalination unit on the cost of fresh water production by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs...... of desalination unit and electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful for the further investigation of solar desalination and for reducing the cost of fresh water...... production for solar desalination units....

  17. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit and y...

  18. Utilization of desalinated b rackish water resi dues for cultivation of the m a rine fish species, Dicentrarchus labra x, Sparus aurata, and Sciaenops ocellatus

    Directory of Open Access Journals (Sweden)

    Mutaz A. Al - Qutob

    2013-05-01

    Full Text Available The utilization of brackish water residues from desalination units for fish mariculture inPalestine could represent an environmental friendly alternative of disposing brine water which could havean adverse effect on wild life. In this study, three juvenile marine fish species (Gilt-head bream S. aurata, European sea bass D. labrax, and red drum S. ocellatus with average weights of 0.7-4.9 g, wereacclimated and reared in brine brackish water residues collected from Jericho desalination units withsalinities of 6.5 ‰ and 11 ‰ diluted sea water as control for 3-7 months. Fish were fed 56 % richprotein diet. Brine brackish water contained high levels of CL-1 (3369 mgL-1, Na+1(3735 mgL-1, K+1(300mgL-1, SO4 -2 (716 mgL-1 with the divalent ions Mg+2 (57.3 mgL-1 and Ca+2 (276 mgL-1.Theexperimental well showed more than the maximum allowable concentration of Cr (14.49 μgL-1, Ag (5.3μgL-1 and Mn (27.88 μgL-1 for water quality of fisheries use. The sea bass with an average weight of0.76 g (at a salinity of 6.5 ‰ showed an acceptable growth performance parameters and reached apercentage weight gain (% WG of 6345.23 % and a survival rate of 77.5 % compared to control groupsat 11 ‰ that reached at the same time a % WG of 6543.78 % and a survival rate of 82 % after 30weeks. The red drum juveniles reached a % WG of 2661.6 % and 2673.92 % after 15 weeks at 6.5 ‰and 11 ‰ respectively while sea bream reached a % WG of 241.63 % and 772.44 % after 15 weeks at6.5 ‰ and 11 ‰ respectively. Survival rate was only 5 % at both salinities for the two species. In afurther study sea bass fingerlings with an average weight of 20.5 g were reared in brackish water of 6.5‰ salinity for 7 weeks and were fed superior fish meal with fish oil. They received diets of 2.1 %, 3.0%, and 4.0 % of body weight. Sea bass fingerlings which received diets of 2.1 %, had the highest FCE(0.82 and PER (1.46 with the lowest FCR (1.22. These results confirm that the most

  19. Optimization of membrane stack configuration in enlarged microbial desalination cells for efficient water desalination

    Science.gov (United States)

    Chen, Xi; Sun, Haotian; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia

    2016-08-01

    Microbial desalination cells are considered a low-energy-consumption, clean technology to simultaneously purify wastewater and desalinate saline water by utilizing the in situ energy source contained in wastewater. To enhance desalination performance and achieve an optimal membrane stack configuration, an enlarged stacked microbial desalination cell (SMDC) has been developed and tested with 6-14 desalination cells. The cross-membrane area of the enlarged SMDC is 100 cm2. The anode and cathode volumes are both 200 mL. To reduce internal resistance, the width of desalination cells is kept as <0.5 mm. The optimal configuration with 10 desalination cells achieves the highest total desalination rate (TDR) of 423 mg/h and the highest charge transfer efficiency (CTE) of 836% when treating the 20 g/L NaCl solution. During this process, the junction potential across membranes increases from 0 to 374 mV, and occupies up to 74% of the total potential loss inside the SMDC. This shows that the SMDC used in this work achieves the highest TDR and CTE among the reported studies, and the junction potential should be effectively controlled to achieve the desired desalination performance in future practical applications.

  20. The sea water desalination by the nuclear reactors; Le dessalement de l'eau de mer par les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Nisan, S. [CEA Cadarache, Dir. du Developpement et de l' Innovation Nucleares DDIN, 13 - Saint-Paul-lez-Durance (France)

    2002-07-01

    This document underlines the importance of water shortage in many areas in the world in the future. The water sea desalination can be a efficient solution to this problem. The desalination methods are presented. In this context the desalination reactors appear as a competitive solution, facing the fossil energies systems not only for the simultaneous electric power and drinking water production, but also for the minimization of greenhouse gases. (A.L.B.)

  1. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination.

    Science.gov (United States)

    Luo, Haiping; Xu, Pei; Roane, Timberley M; Jenkins, Peter E; Ren, Zhiyong

    2012-02-01

    The low conductivity and alkalinity in municipal wastewater significantly limit power production from microbial fuel cells (MFCs). This study integrated desalination with wastewater treatment and electricity production in a microbial desalination cell (MDC) by utilizing the mutual benefits among the above functions. When using wastewater as the sole substrate, the power output from the MDC (8.01 W/m(3)) was four times higher than a control MFC without desalination function. In addition, the MDC removed 66% of the salts and improved COD removal by 52% and Coulombic efficiency by 131%. Desalination in MDCs improved wastewater characteristics by increasing the conductivity by 2.5 times and stabilizing anolyte pH, which therefore reduced system resistance and maintained microbial activity. Microbial community analysis revealed a more diverse anode microbial structure in the MDC than in the MFC. The results demonstrated that MDC can serve as a viable option for integrated wastewater treatment, energy production, and desalination.

  2. 海水淡化的发展与综合利用%The development and comprehensive utilization of seawater desalination

    Institute of Scientific and Technical Information of China (English)

    薛龙新

    2014-01-01

    海水淡化,就是利用海水脱盐生产淡水的技术过程。海水淡化已成为解决全球水资源紧缺问题的重要途径。文章介绍了海水淡化技术与分类,国内外海水淡化产业的发展现状及发展趋势,提出了降低海水淡化成本的有效途径。%Desalination is the technology process of using desalination to produce fresh water. The desalination has become an important way to solve the problems of global water shortages. This paper introduces the technology and classification of desalination, the current situation and development trend of desalination industry at home and abroad. At the same time, this paper proposed an effective way to reduce the cost of desalination.

  3. Economics and utilization of thorium in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information on thorium utilization in power reactors is presented concerning the potential demand for nuclear power, the potential supply for nuclear power, economic performance of thorium under different recycle policies, ease of commercialization of the economically preferred cases, policy options to overcome institutional barriers, and policy options to overcome technological and regulatory barriers.

  4. Economic evaluation of application of nuclear power, fossil and biomass for seawater desalination in the case of Mexico; Evaluacion economica de la aplicacion de la potencia nuclear, fosil y biomasa para desalar agua de mar en el caso de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, N.; Gomez A, R.; Vazquez R, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Depto. de Ingenieria de Procesos e Hidraulica, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: rvr@xanum.uam.mx

    2009-10-15

    In this work the fresh water production costs are compared on base to the seawater desalination, taking advantage of the heat or the electricity generated by means of the nuclear fission, the energy fossil result of the combustion of natural gas, fuel oil and coal, as well as the electricity generated by the bio-fuels combustion. The option of generating electricity and at the same time to produce drinking water is discussed. Using electricity, the best combination of technologies as for costs, the option more cheap, it is the distillation by means of a distillation combined process of multiple effects combined with reverse osmosis using nuclear energy coming from a gas cooled reactor using a cycle Brayton. While using direct heat was as the option more economic the use of nuclear vapor of low pressure exchanging heat in a vapor generator of low pressure, as energy source of a flash distillation process of several stages. In this last case, the energy source or nuclear vapor will be the result of the operation of a nuclear power plant cooled and moderate with water and operating in a cycle Rankine. (Author)

  5. Economical analysis and study on a solar desalination unit

    OpenAIRE

    Chen, Ziqian; He, Xiaorong; Wang, Tiezhu; Chen, Zhunling; Zheng, Hongfei

    2010-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple tower-type solar desalination unit on the cost of fresh water production by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit and electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are...

  6. Desalination Technologies: Hellenic Experience

    Directory of Open Access Journals (Sweden)

    Konstantinos Zotalis

    2014-04-01

    Full Text Available Beyond doubt, desalination is growing rapidly worldwide. However, there are still obstacles to its wider implementation and acceptance such as: (a high costs and energy use for fresh water production; (b environmental impacts from concentrate disposal; (c a complex, convoluted and time-consuming project permitting process; and (d limited public understanding of the role, importance, benefits and environmental challenges of desalination. In this paper, a short review of desalination in Greece is being made. Data on the cost of desalination shows a decrease in the future and the potential of water desalination in Greece. The paper summarizes the current status in southeastern Greece (e.g., Aegean islands and Crete, and investigates the possibility of production of desalinated water from brackish water.

  7. Material degradation - a nuclear utility's view

    Energy Technology Data Exchange (ETDEWEB)

    Spekkens, P. [Ontario Power Generation, Science and Technology Development, Toronto, Ontario (Canada)

    2007-07-01

    Degradation of nuclear plant materials has been responsible for major costs and unit outage time. As such, nuclear utilities are important end users of the information produced by R and D on material degradation. This plenary describes the significance of material degradation for the nuclear utilities, and how utilities use information about material degradation in their short, medium and long term planning activities. Utilities invest in R and D programs to assist them in their business objective of operating safely, reliably and cost competitively. Material degradation impacts all three of these business drivers. Utilities make decisions on life cycle planning, unit refurbishment and 'new build' projects on the basis of their understanding of the behaviour of a variety of materials in a broad range of environments. The R and D being carried out today will determine the future business success of the nuclear utilities. The R and D program needs to be broadly based to include a range of materials, environments and time-frames, particularly any new materials proposed for use in new units. The R and D community needs to help the utility managers make choices that will result in an optimized materials R and D program.

  8. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  9. Photocatalysis: Plasmonic solar desalination

    Science.gov (United States)

    Liu, Tianyu; Li, Yat

    2016-06-01

    The sustainability of many existing desalination technologies is questionable. Plasmon-mediated solar desalination has now been demonstrated for the first time, using an aluminium structure that absorbs photons spanning the 200 nm to 2,500 nm wavelength range, and is both cheap and 'clean'.

  10. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available.

  11. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  12. Present status of and subjects on the industrial utilization of polymer separation membranes. Japan`s first largest sea water desalination plant by RO; Kobunshi bunrimaku no sangyo riyo no genjo to kadai. Zosui bun`ya ni okeru maku riyo

    Energy Technology Data Exchange (ETDEWEB)

    Furuichi, M. [Kurita Water Industries Ltd., Tokyo (Japan)

    1998-07-05

    The utilization in Japan and abroad is discussed of desalination methods using evaporation, reverse osmosis (RO) membranes, and electrodialysis membranes, out of various desalination techniques for seawater and others containing more salt. A new seawater desalination plant built in Okinawa, Japan, is outlined, and the future trend of Japan`s efforts for desalination is predicted. The said plant in Okinawa is the largest ever built in this country, and occupies 4th or 5th place in terms of capacity among similar facilities across the world. It was completed in April, 1997, and produces pure water at a rate of 40,000m{sup 3}/day. This plant, operating on RO, comprises eight RO membrane units each capable of 5131{sup 3}/day. The membranes are of the spiral type, consisting of Toray`s crosslinked aramid-base composite membranes and Nitto Denko`s membranes composed totally of crosslinked aromatic polyamide. The greatest of the pending tasks is to reduce the desalination cost. As for the operating cost of the desalination facility at the current stage, it costs 120-130 yen/m{sup 3} on the 40,000m{sup 3}/day scale, and the power cost occupies approximately 60% of the total operating cost. It is concluded that the consumption of electric power and chemicals per pure water produced have to be reduced. 8 refs., 5 figs., 5 tabs.

  13. Building Foundations for Nuclear Security Enterprise Analysis Utilizing Nuclear Weapon Data.

    Energy Technology Data Exchange (ETDEWEB)

    Josserand, Terry Michael; Young, Leone; Chamberlin, Edwin Phillip,

    2017-10-01

    T he Nuclear Security Enterprise , managed by the National Nuclear Security Administration - a semiautonomous agency within the Department of Energy - has been associated with numerous assessments with respect to the estimating, management capabilities, and practices pertaining to nuclear weapon modernization efforts. This report identifies challenges in estimating and analyzing the N uclear S ecurity E nterprise through an analysis of analogous timeframe conditions utilizing two types of nuclear weapon data - (1) a measure of effort and (2) a function of time. The analysis of analogous timeframe conditions that utilizes only two types of nuclear weapon d ata yields four summary observations that estimators and analysts of the N uclear S ecurity E nterprise will find useful. This Page Intentionally Left Blank

  14. Progress in Seawater Desalination

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists from the CAS Changchun Institute of Applied Chemistry have made significant progress in developing advanced expertise of seawater desalination. Their work was recently appraised and confirmed by a panel of experts in northeast China's Jilin Province.

  15. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  16. Modeling and Simulation of Seawater Desalination Unit for Low Temperature Nuclear Heating Reactor%低温核供热堆海水淡化装置的建模与仿真

    Institute of Scientific and Technical Information of China (English)

    倪晓理; 张亚军; 黄晓津

    2013-01-01

    为了研究山东核能海水淡化高技术产业化示范工程的系统最优运行方案和控制策略,建立能正确、全面反映其特性的数学模型是重要的先决条件之一.本文通过对系统的热力性能分析,建立了可用于低温核供热堆的热压缩多效蒸馏与反渗透混合法海水淡化的数学模型,并计算了系统在不同工况下的运行结果.通过与反渗透设备厂商软件计算结果及工程技术方案设计参数比较,结果表明,该模型可正确反映海水淡化系统运行特性,满足进一步研究的需要.%In order to study the optimal system operation schemes and control strategy of hightech industrialization demonstration project for seawater desalination in Shandong Province,a mathematical model which reflects correctly and comprehensively the system characteristics is an important prerequisite.This paper introduced a mathematical model based on the thermal performance analysis of the system with hybrid desalination method suitable for low temperature nuclear heating reactor,including low temperature multi-effect distiller (LT-MED-TVC) and reverse osmosis (RO) systems,and showed the calculated results of the system operation under different conditions.By comparing with the engineering design parameters and commercial software calculation results provided by RO plant supplier,it is indicated that the model can correctly catch desalination system operating characteristics,and meet the need for further research.

  17. Stacked microbial desalination cells to enhance water desalination efficiency.

    Science.gov (United States)

    Chen, Xi; Xia, Xue; Liang, Peng; Cao, Xiaoxin; Sun, Haotian; Huang, Xia

    2011-03-15

    Microbial desalination cell (MDC) is a new method to obtain clean water from brackish water using electricity generated from organic matters by exoelectrogenic bacteria. Anions and cations, derived from salt solution filled in the desalination chamber between the anode and cathode, move to the anode and cathode chambers under the force of electrical field, respectively. On the basis of the primitive single-desalination-chambered MDC, stacked microbial desalination cells (SMDCs) were developed in order to promote the desalination rate in the present study. The effects of desalination chamber number and external resistance were investigated. Results showed that a remarkable increase in the total desalination rate (TDR) could be obtained by means of increasing the desalination cell number and reducing the external resistance, which caused the charge transfer efficiency increased since the SMDCs enabled more pairs of ions separated while one electron passed through the external circuit. The maximum TDR of 0.0252 g/h was obtained using a two-desalination-chambered SMDC with an external resistance of 10 Ω, which was 1.4 times that of single-desalination-chambered MDC. SMDCs proved to be an effective approach to increase the total water desalination rate if provided a proper desalination chamber number and external resistance.

  18. Energy Implications of Seawater Desalination (Invited)

    Science.gov (United States)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    Freshwater has traditionally come from rivers, lakes, streams, and groundwater aquifers. As demand increases and climate change alters the location and timing of water supply, these traditional sources are becoming unavailable, more difficult, or increasingly expensive to develop. As a result, many communities are switching to alternative sources of water. Interest in pursuing seawater desalination is high in many coastal communities. In California, for example, 17 plants are proposed for development along the California coast and two in Mexico. Water managers are pursing desalination because is a local supply that can help diversify the water supply portfolio. Additionally, it is a reliable supply, which can be especially valuable during a drought. But removing the salt from seawater is an energy-intensive process that consumes more energy per gallon than most other water supply and treatment options. These energy requirements are key factors that will impact the extent and success of desalination in California. Energy requirements for seawater desalination average about 4.0 kWh per cubic meter (m3) of water produced. By comparison, the least energy-intensive options of local sources of groundwater and surface water require 0 - 0.90 kWh per m3; wastewater reuse, depending on treatment levels, may require from 0.26 - 2.2 kWh per m3. Beyond the electricity required for the desalination facility itself, producing any new source of water, including through desalination, increases the amount of energy required to deliver and use the water produced as well as collect, treat, and dispose of the wastewater generated. Energy is the largest single variable cost for a desalination plant, varying from one-third to more than one-half the cost of produced water. Building a desalination plant may reduce a water utility's exposure to water reliability risks at the added expense of an increase in exposure to energy price risk. In dependent on hydropower, electricity prices tend to

  19. Reverse osmosis desalination thermo engine with waste heat and its utilization efficiency%基于余热利用的反渗透淡化热机及其效率

    Institute of Scientific and Technical Information of China (English)

    耿冬寒

    2015-01-01

    提出一种利用低品位余热驱动反渗透淡化的方法,以实现将低品位热能转换成为可驱动海水反渗透的机械能.对低品位余热驱动反渗透淡化的机理进行分析并建立系统的工艺模型,研究温敏淡化热机工作周期内的运动模式,并基于温熵图分析工质的热力循环过程.理论分析温敏淡化热机的能量传递和分配过程,建立基于显热法和焓差法的热机热功转换效率的计算公式.结果表明:以R143a为温敏工质的热机效率为13.6%,该方法拓展了反渗透淡化驱动方式,为其应用于太阳能、地热、工业余热在内的能源梯级利用系统奠定了基础.%A method of reverse osmosis desalination based on the power from low grade heat is put forward to achieve the conversion from low grade heat to mechanical energy. Firstly, the driving mechanism of reverse osmosis desalination by low grade heat is analyzed, based on which, system model is established. Then, the motion mode of thermo engine is discussed, and thermodynamic circle of working medium is analyzed based on tephigram. Finally, the energy transformation and allocation of thermo engine is theoretically analyzed, and the calculation formulas of thermo conversion efficiency based on sensible heat method and enthalpy potential method are constructed respectively. The result shows that the efficiency of thermo engine with working fluid R143a is 13.6%. This method extends the driving modes of reverse osmosis desalination, and provides technology support for cascade utilization of energy including solar energy, geothermal energy and industrial waste heat.

  20. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  1. Utility survey on nuclear power plant siting and nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Cope, D. F.; Bauman, H. F.

    1977-06-28

    Most of the large U.S. utilities were surveyed by telephone and mail on questions concerning nuclear power plant siting and nuclear energy centers (NECs). The main purpose of the survey was for guidance of ERDA's NEC program. The questions covered the following topics: availability of sites; impact of environmental and other restraints; plans for development of multi-unit sites; interest in NEC development; interest in including fuel-cycle facilities in NECs; and opinions on the roles desired for the state and Federal governments in power plant siting. The main conclusion of the survey was that, while many utilities were considering multiple-unit sites of 2 to 5 units, none were planning larger energy centers at the present time. However, several expressed interest in NECs as a long-range future development.

  2. Graphene and graphene oxide for desalination

    Science.gov (United States)

    You, Yi; Sahajwalla, Veena; Yoshimura, Masamichi; Joshi, Rakesh K.

    2015-12-01

    There is a huge scope for graphene-based materials to be used as membranes for desalination. A very recent study has confirmed that 100% salt rejection can be achieved for commonly used ions by utilizing single layer nonporous graphene. However, the cost effective fabrication procedure for graphene oxide membranes with precise control of pore size can offer a practical solution for filtration if one can achieve 100% percent salt rejection.

  3. Study of reliability for the electricity cogeneration and seawater desalination in the Northwest of Mexico; Estudio de factibilidad para la cogeneracion de electricidad y desalacion de agua de mar en el noroeste de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez U, G. O.; Ortega C, R. F. [UNAM, Instituto de Ingenieria, 04510 Mexico D.F. (Mexico)]. email: exergiovanni@gmail.com

    2008-07-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic by its characteristics of zero gas emissions of greenhouse effect, competitive costs in the generation, operative experience and safety of the nuclear reactors, resulting attractive mainly for the desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was analyzed from a thermodynamic viewpoint, mentioning the economic aspect, the nuclear desalination according to the world experience; they were simulated some couplings and operation forms of nuclear reactors and desalination units, was made emphasis in one particularly. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be coupled to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. Specially and topic of this article, it is studied a case of the IRIS reactor of 335 MW{sub e} coupled to a MED station of nominal capacity of 140,000 m{sup 3}/day. It is utilized for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out a thermodynamic and economic preliminary evaluation, as well as the THERMOFLEX simulator to reinforce and to compare the thermodynamic

  4. 宁德核电站项目海水淡化设计方案比选%Comparison of Design Schemes for Sea Water Desalination (SWD) in Ningde Nuclear Power Plant Project

    Institute of Scientific and Technical Information of China (English)

    周晶

    2011-01-01

    Draft comparison of sea water desalination (SWD) applied in Fujian Ningde nuclear power plant was introduced. The characters of current main SWD processes were analyzed in terms of technology and economy. According to the current operation condition, pretreatment processes of membrane system used in SWD in Fujian Ningde nuclear power plant were also discussed. The result shows that the traditional pretreatment process is more suitable for SWD in Fujian Ningde nuclear power plant.%介绍了海水淡化在福建宁德核电站设计中的方案选择,从技术经济角度分析当前主流的海水淡化工艺特点,并结合已建核电站的运行情况,对福建宁德核电站膜法海水淡化系统预处理工艺方案的比选进行了论述,表明传统预处理工艺更适合福建宁德核电站海水淡化系统.

  5. Water Desalination Using Geothermal Energy

    OpenAIRE

    Noreddine Ghaffour; , Hacene Mahmoudi; Mattheus Goosen

    2010-01-01

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only...

  6. Factors and uncertainties in the profitability of using nuclear energy in desalination of water; Facteurs et incertitudes de la rentabilite du recours a l'energie nucleaire dans le dessalement des eaux

    Energy Technology Data Exchange (ETDEWEB)

    Thiriet, L.; Lievre, P. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    One of the economic advantages of nuclear energy consists of the small proportional element in its cost structure. Economies of scale favour the nuclear station as compared with the conventional thermal one, and when the demand for electricity and heat, in particular for desalination, are sufficient, nuclear energy may, subject to certain conditions, prove advantageous. The object of this paper is to discuss the validity of the conclusions reached according to the hypotheses adopted. In the first part, the different kind of uncertainties connected with technical, economic and financial data (the various transmission coefficients, the life of equipment according to the choice of materials, changes in prices, the form of price functions and interest rates), and with the various constraints, are examined and discussed. In the second part the uncertainties connected with the method of optimisation used and the criterion of selection adopted are examined and discussed. It is shown thereby that it is usually extremely difficult to assume absolutely the competitiveness, or conversely the non-competitiveness, of using nuclear energy in the desalination of water, and that a large number of aspects have to be carefully examined. (author) [French] On sait que l'un des avantages economiques de l'energie nucleaire reside dans la faible part proportionnelle dans la structure de son cout. Les economies d'echelle favorisent le nucleaire par rapport au thermique classique, et lorsque les demandes d'electricite et de chaleur, notamment pour le dessalement, sont suffisantes on peut envisager favorablement, sous certaines hypotheses, le recours a l'energie nucleaire. L'objet de cette communication est de discuter la validite des conclusions auxquelles on parvient selon les hypotheses envisagees. Dans une premiere partie, on etudie et on discute les differentes sortes d'incertitudes, liees aux donnees techniques, economiques et financieres (les divers

  7. Desalination shocks in microstructures

    CERN Document Server

    Mani, Ali

    2011-01-01

    Salt transport in bulk electrolytes is limited by diffusion and convection, but in microstructures with charged surfaces (e.g. microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counter-ions are selectively removed by a membrane or electrode, a "desalination shock" can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of co-ions and colloidal impurities. We elucidate the basic physics of desalination shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that des...

  8. An exergy approach to efficiency evaluation of desalination

    KAUST Repository

    Ng, Kim Choon

    2017-05-02

    This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today\\'s combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.

  9. 太阳能雾化脱盐系统热能利用率的研究%Study on the heat energy utilization rate of the solar energy pulverization desalination system

    Institute of Scientific and Technical Information of China (English)

    张大帅; 费学宁; 苏润西; 苑宏英; 姜远光

    2016-01-01

    在构建太阳能雾化脱盐系统的基础上对该系统处理浓盐水的热能利用率进行了研究,考察了辐照值、空气流量、气水比等因素对系统热能利用率的影响。结果表明,系统的热能利用率随着辐照值的升高呈现减小趋势,随着气水比、空气流量的增大呈现先增大后减小的趋势。系统的热能利用率与空气流量存在二次抛物线关系。%Based on the esta blishment of solar energy pulverization desalination system ,the heat energy utilization rate of concentrated brine treated by this system has been studied. The influences of the factors ,such as irradiation values,air flow,gas water ratio,etc. on the heat energy utilization of the system are investigated. The results show that the heat energy utilization rate of the system presents a tendency of decrease with the increase of irradiation va-lues;and the heat energy utilization of the system also presents a tendency of increase first,and then decrease,with the increase of gas water ratio,and air flow. There is a quadratic parabolic relationship between the heat energy utilization rate of the system and the air flow.

  10. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  11. Microfluidic desalination techniques and their potential applications

    NARCIS (Netherlands)

    Roelofs, Susan Helena; van den Berg, Albert; Odijk, Mathieu

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination

  12. Microfluidic desalination techniques and their potential applications

    NARCIS (Netherlands)

    Roelofs, S.H.; Berg, van den A.; Odijk, M.

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination o

  13. Proximity Utilizing Biotinylation of Nuclear Proteins in vivo

    Directory of Open Access Journals (Sweden)

    Arman Kulyyassov

    2015-06-01

    Full Text Available Introduction. The human genome consists of roughly 30,000 genes coding for over 500,000 different proteins, of which more than 10,000 proteins can be produced by the cell at any given time (the cellular “proteome”. It has been estimated that over 80% of proteins do not operate alone, but in complexes. These protein-protein interactions (PPI are regulated by several mechanisms. For example, post-translational modifications (methylation, acetylation, phosphorylation, or ubiquitination or metal-binding can lead to conformational changes that alter the affinity and kinetic parameters of the interaction. Many PPIs are part of larger cellular networks of interactions or interactomes. Indeed, these interactions are at the core of the entire interactomics system of any living cell, and so, aberrant PPIs are the basis of multiple diseases, such as neurodegenerative diseases and cancer. The objective of this study was to develop a method of monitoring protein-protein interactions and proximity dependence in vivo.Methods. The biotin ligase BirA was fused to the protein of interest, and the Biotin Acceptor Peptide (BAP was fused to an interacting partner to make the detection of its biotinylation possible by western blot or mass spectrometry.Results. Using several experimental systems (BirA.A + BAP.B, we showed that the biotinylation is interaction/proximity dependent. Here, A and B are the next nuclear proteins used in the experiments – 3 paralogues of heterochromatin protein HP1a (CBX5, HP1b (CBX1, HP1g (CBX3, wild type and transcription mutant factor Kap1, translesion DNA polymerase PolH and E3, ubiquitin ligase RAD18, Proliferative Cell Nuclear Antigen (PCNA, ubiquitin Ub, SUMO-2/3, different types and isoforms of histones H2A, H2Az, H3.1, H3.3, CenpA, H2A.BBD, and macroH2A. The variant of this approach is termed PUB-NChIP (Proximity Utilizing Biotinylation with Native Chromatin Immuno-precipitation and is designed to purify and study the protein

  14. Nuclear waste disposal utilizing a gaseous core reactor

    Science.gov (United States)

    Paternoster, R. R.

    1975-01-01

    The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.

  15. Water Desalination Using Geothermal Energy

    Directory of Open Access Journals (Sweden)

    Noreddine Ghaffour

    2010-08-01

    Full Text Available The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting.

  16. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  17. A New Method for Water Desalination Using Microbial Desalination Cells

    KAUST Repository

    Cao, Xiaoxin

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shownhere that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Ω to 970 Ω at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria. © 2009 American Chemical Society.

  18. A new method for water desalination using microbial desalination cells.

    Science.gov (United States)

    Cao, Xiaoxin; Huang, Xia; Liang, Peng; Xiao, Kang; Zhou, Yingjun; Zhang, Xiaoyuan; Logan, Bruce E

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Omega to 970 Omega at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria.

  19. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4A/m2, which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology. © 2012 Elsevier B.V.

  20. Complex admixtures of clathrate hydrates in a water desalination method

    Science.gov (United States)

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  1. Nanostructured materials for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Humplik, T; Lee, J; O' Hern, S C; Fellman, B A; Karnik, R; Wang, E N [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (United States); Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T, E-mail: tlaoui@kfupm.edu.sa, E-mail: karnik@mit.edu, E-mail: enwang@mit.edu [Departments of Mechanical Engineering and Chemical Engineering and Research Institute, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. (topical review)

  2. Nanostructured materials for water desalination

    Science.gov (United States)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  3. Nanostructured materials for water desalination.

    Science.gov (United States)

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  4. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC)

    Science.gov (United States)

    Li, Yan; Styczynski, Jordyn; Huang, Yuankai; Xu, Zhiheng; McCutcheon, Jeffrey; Li, Baikun

    2017-07-01

    Simultaneous removal of nitrogen in municipal wastewater, metal in industrial wastewater and saline in seawater was achieved in an integrated microbial desalination cell-microbial electrolysis cell (MDC-MEC) system. Batch tests showed that more than 95.1% of nitrogen was oxidized by nitrification in the cathode of MDC and reduced by heterotrophic denitrification in the anode of MDC within 48 h, leading to the total nitrogen removal rate of 4.07 mg L-1 h-1. Combining of nitrogen removal and desalination in MDC effectively solved the problem of pH fluctuation in anode and cathode, and led to 63.7% of desalination. Power generation of MDC (293.7 mW m-2) was 2.9 times higher than the one without salt solution. The electric power of MDC was harvested by a capacitor circuit to supply metal reduction in a MEC, and 99.5% of lead (II) was removed within 48 h. A kinetic MDC model was developed to elucidate the correlation of voltage output and desalination efficiency. Ratio of wastewater and sea water was calculated for MDC optimal operation. Energy balance of nutrient removal, metal removal and desalination in the MDC-MEC system was positive (0.0267 kW h m-3), demonstrating the promise of utilizing low power output of MDCs.

  5. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  6. Energy issues in desalination processes.

    Science.gov (United States)

    Semiat, Raphael

    2008-11-15

    Water, energy, and environmental issues are closely related. New water techniques consume energy, and innovative renewable energy techniques using biofuels and biodiesel consume an incredible amount of water. Different desalination techniques that consume different energy levels from different sources are in use today. Some people, environmentalists, decision makers, and even scientists, mainly in nonscientific publications, consider energy consumption in desalination to be too high and are seeking new ways of reducing it, which often involves increasing capital investment. Efforts should be directed at reducing not only energy consumption but also total water cost. A competent grasp of thermodynamics and heat and mass transfer theory, as well as a proper understanding of current desalination processes, is essential for ensuring beneficial improvements in desalination processes. Thermodynamics sets the absolute minimum limit of the work energy required to separate water from a salt solution. Unavoidable irreversibilities augment the actual energy consumption, yet modern desalination techniques have succeeded in considerably narrowing the gap between actual and limiting energy levels. The implication of this smaller gap is that only marginal energy reductions are possible. The current energy consumption of different desalination processes is reviewed in this paper. A comparison with other common energy-consuming ventures leads to some interesting conclusions.

  7. Microfluidic desalination techniques and their potential applications.

    Science.gov (United States)

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-07

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  8. Osmotically-assisted desalination method and system

    Science.gov (United States)

    Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.

    2014-08-12

    Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.

  9. Human resource development for nuclear generation - from the perspective of a utility company

    Science.gov (United States)

    Kahar, Wan Shakirah Wan Abdul; Mostafa, Nor Azlan; Salim, Mohd Faiz

    2017-01-01

    Malaysia is currently in the planning phase of its nuclear power program, with the first unit targeted to be operational in 2030. Training of nuclear power plant (NPP) staffs are usually long and rigorous due to the complexity and safety aspects of nuclear power. As the sole electricity utility in the country, it is therefore essential that Tenaga Nasional Berhad (TNB) prepares early in developing its human resource and nuclear expertise as a potential NPP owner-operator. A utility also has to be prudent in managing its work force efficiently and effectively, while ensuring that adequate preparations are being made to acquire the necessary nuclear knowledge with sufficient training lead time. There are several approaches to training that can be taken by a utility company with no experience in nuclear power. These include conducting feasibility studies and benchmarking exercises, preparing long term human resource development, increasing the exposure on nuclear power technology to both the top management and general staff, and employing the assistance of relevant agencies locally and abroad. This paper discusses the activities done and steps taken by TNB in its human resource development for Malaysia's nuclear power program.

  10. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    Science.gov (United States)

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  11. Measurement of nuclear fuel pin hydriding utilizing epithermal neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Univ. of Missouri, Columbia, MO (United States); Farkas, D.M.; Lutz, D.R. [General Electric Co., Pleasanton, CA (United States)

    1996-12-31

    The measurement of hydrogen or zirconium hydriding in fuel cladding has long been of interest to the nuclear power industry. The detection of this hydrogen currently requires either destructive analysis (with sensitivities down to 1 {mu}g/g) or nondestructive thermal neutron radiography (with sensitivities on the order of a few weight percent). The detection of hydrogen in metals can also be determined by measuring the slowing down of neutrons as they collide and rapidly lose energy via scattering with hydrogen. This phenomenon is the basis for the {open_quotes}notched neutron spectrum{close_quotes} technique, also referred to as the Hysen method. This technique has been improved with the {open_quotes}modified{close_quotes} notched neutron spectrum technique that has demonstrated detection of hydrogen below 1 {mu}g/g in steel. The technique is nondestructive and can be used on radioactive materials. It is proposed that this technique be applied to the measurement of hydriding in zirconium fuel pins. This paper summarizes a method for such measurements.

  12. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy intensive. In many instances, they consumed electricity, chemicals for pre- and post-treatment of water. For each kWh of energy consumed, there is an unavoidable emission of Carbon Dioxide (CO2) at the power stations as well as the discharge of chemically-laden brine into the environment. Thus, there is a motivation to find new direction or methods of desalination that consumed less chemicals, thermal energy and electricity.This paper describes an emerging and yet low cost method of desalination that employs only low-temperature waste heat, which is available in abundance from either the renewable energy sources or exhaust of industrial processes. With only one heat input, the Adsorption Desalination (AD) cycle produces two useful effects, i.e., high grade potable water and cooling. In this article, a brief literature review, the theoretical framework for adsorption thermodynamics, a lumped-parameter model and the experimental tests for a wide range of operational conditions on the basic and the hybrid AD cycles are discussed. Predictions from the model are validated with measured performances from two pilot plants, i.e., a basic AD and the advanced AD cycles. The energetic efficiency of AD cycles has been compared against the conventional desalination methods. Owing to the unique features of AD cycle, i.e., the simultaneous production of dual useful effects, it is proposed that the life cycle cost (LCC) of AD is evaluated against the LCC of combined machines that are needed to deliver the same quantities of useful effects using a unified unit of $/MWh. In closing, an ideal desalination system with zero emission of CO2 is presented where geo-thermal heat is employed for powering a temperature-cascaded cogeneration plant.

  13. Drug and alcohol abuse: the bases for employee assistance programs in the nuclear-utility industry

    Energy Technology Data Exchange (ETDEWEB)

    Radford, L.R.; Rankin, W.L.; Barnes, V.; McGuire, M.V.; Hope, A.M.

    1983-07-01

    This report describes the nature, prevalence, and trends of drug and alcohol abuse among members of the US adult population and among personnel in non-nuclear industries. Analogous data specific to the nuclear utility industry are not available, so these data were gathered in order to provide a basis for regulatory planning. The nature, prevalence, and trend inforamtion was gathered using a computerized literature, telephone discussions with experts, and interviews with employee assistance program representatives from the Seattle area. This report also evaluates the possible impacts that drugs and alcohol might have on nuclear-related job performance, based on currently available nuclear utility job descriptions and on the scientific literature regarding the impairing effects of drugs and alcohol on human performance. Employee assistance programs, which can be used to minimize or eliminate job performance decrements resulting from drug or alcohol abuse, are also discussed.

  14. Exploratory study of nuclear reaction data utility framework of Japan charged particle reaction data group (JCPRG)

    Energy Technology Data Exchange (ETDEWEB)

    Masui, Hiroshi; Ohnishi, Akira; Kato, Kiyoshi [Hokkaido Univ., Graduate School of Science, Sapporo, Hokkaido (Japan); Ohbayasi, Yosihide [Hokkaido Univ., Meme Media Lab., Sapporo, Hokkaido (Japan); Aoyama, Shigeyoshi [Kitami Institute of Technology, Information Processing Center, Kitami, Hokkaido (Japan); Chiba, Masaki [Sapporo Gakuin Univ., Faculty of Social Information, Ebetsu, Hokkaido (Japan)

    2002-08-01

    Compilation, evaluation and dissemination are essential pieces of work for the nuclear data activities. We, Japan charged particle data group, have researched the utility framework for the nuclear reaction data on the basis of recent progress of computer and network technologies. These technologies will be not only for the data dissemination but for the compilation and evaluation assistance among the many corresponding researchers of all over the world. In this paper, current progress of our research and development is shown. (author)

  15. Development of a utility system for charged particle nuclear reaction data by using intelligentPad

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shigeyoshi; Ohbayashi, Yoshihide [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Masui, Hiroshi [Meme Media Laboratory, Hokkaido University, Sapporo, Hokkaido (Japan); Kato, Kiyoshi [Hokkaido University, Graduate School of Science, Sapporo, Hokkaido (Japan); Chiba, Masaki [Faculty of Social Information, Sapporo Gakuin Univ., Ebetsu, Hokkaido (Japan)

    2000-03-01

    We have developed a utility system, WinNRDF2, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on the IntelligentPad architecture. By using the system, we can search the experimental data of a charged particle reaction of NRDF. Furthermore, we also see the experimental data by using graphic pads which was made through the CONTIP project. (author)

  16. Desalination of painted brick vaults

    DEFF Research Database (Denmark)

    Larsen, Poul Klenz

    The subject of the thesis is salt and moisture movement that causes damage to wall paintings on church vaults. The deterioration was studied in the churches of Fanefjord, Kirkerup and Brarup. A desalination method was tested om location. The salt and moisture transfer was examined in detail...

  17. Desalination. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    This guide provides a review of the relevant literature on desalination within the collections of the Library of Congress. While not intended as a comprehensive bibliography, this guide is designed as a quick and ready reference source for the reader, and includes the following sections: (1) articles that provide introductions to the topic of…

  18. Water desalination via capacitive deionization

    NARCIS (Netherlands)

    Suss, M.E.; Porada, S.; Sun, X.; Biesheuvel, P.M.; Yoon, J.; Presser, V.

    2015-01-01

    Capacitive deionization (CDI) is an emerging technology for the facile removal of charged ionic species from aqueous solutions, and is currently being widely explored for water desalination applications. The technology is based on ion electrosorption at the surface of a pair of electrically charg

  19. Desalination of painted brick vaults

    DEFF Research Database (Denmark)

    Larsen, Poul Klenz

    The subject of the thesis is salt and moisture movement that causes damage to wall paintings on church vaults. The deterioration was studied in the churches of Fanefjord, Kirkerup and Brarup. A desalination method was tested om location. The salt and moisture transfer was examined in detail...

  20. Water desalination via capacitive deionization

    NARCIS (Netherlands)

    Suss, M.E.; Porada, S.; Sun, X.; Biesheuvel, P.M.; Yoon, J.; Presser, V.

    2015-01-01

    Capacitive deionization (CDI) is an emerging technology for the facile removal of charged ionic species from aqueous solutions, and is currently being widely explored for water desalination applications. The technology is based on ion electrosorption at the surface of a pair of electrically charg

  1. Development of a utility system for nuclear reaction data file: WinNRDF

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shigeyoshi [Information Processing Center, Kitami Inst. of Tech., Hokkaido (Japan); Ohbayasi, Yosihide; Masui, Hiroshi [Meme Media Lab., Hokkaido Univ., Sapporo (Japan); Chiba, Masaki [Graduate School of Science, Hokkaido Univ., Sapporo (Japan); Kato, Kiyoshi; Ohnishi, Akira [Faculty of Social Information, Sapporo Gakuin Univ., Ebetsu, Hokkaido (Japan)

    2000-03-01

    A utility system, WinNRDF, is developed for charged particle nuclear reaction data of NRDF (Nuclear Reaction Data File) on the Windows interface. By using this system, we can easily search the experimental data of a charged particle nuclear reaction in NRDF than old retrieval systems on the mainframe and also see graphically the experimental data on GUI (Graphical User Interface). We adopted a mechanism of making a new index of keywords to put to practical use of the time dependent properties of the NRDF database. (author)

  2. Utility of Social Modeling in Assessment of a State’s Propensity for Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

    2011-06-01

    This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

  3. Efficient thermal desalination technologies with renewable energy systems: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Esfahani, Iman Janghorban; Rashidi, Jouan; Ifaei, Pouya; Yoo, ChangKyoo [Center for Environmental Studies, Kyung Hee University, Yongin (Korea, Republic of)

    2016-02-15

    Due to the current fossil fuel crisis and associated adverse environmental impacts, renewable energy sources (RES) have drawn interest as alternatives to fossil fuels for powering water desalination systems. Over the last few decades the utility of renewable energy sources such as solar, geothermal, and wind to run desalination processes has been explored. However, the expansion of these technologies to larger scales is hampered by techno-economic and thermo-economic challenges. This paper reviews the state-of-the-art in the field of renewable energy-powered thermal desalination systems (RE-PTD) to compare their productivity and efficiency through thermodynamic, economic, and environmental analyses. We performed a comparative study using published data to classify RE-PTD systems technologies on the basis of the energy collection systems that they use. Among RE-PTD systems, solar energy powered-thermal desalination systems demonstrate high thermo-environ-economic efficiency to produce fresh water to meet various scales of demand.

  4. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. (comps.)

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  5. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  6. INVESTIGATION OF FACTORS INFLUENCING ON RADIATION SITUATION FORMING DURING UTILIZATION OF NUCLEAR OBJECTS OF MARINE EQUIPMENT

    Directory of Open Access Journals (Sweden)

    A. V. Ivanchenko

    2013-01-01

    Full Text Available The article contains the results of the radiation situation investigation during fulfilling operations of utilization of nuclear objects of marine equipment in the facilities of nuclear shipbuilding and ship repair of Murmansk and Archangelsk regions. The results of research had reviled main radiation indices, which determine the facilities staff working conditions. During the cutting of constructions of nuclear objects of marine equipment the levels of radioactive contamination of the surfaces and aerosols volumetric activity in a whole do not exceed permissible levels set in RSS-99/2009 and depend on the types of operations fulfilling in the utilized object. The determining radiation factor for classifying of working conditions in the facilities is the equivalent dose rate of gamma-exposure the values of which are in the range of 0.5 – 8700.0 μSv/h.

  7. A Grid-Connected Desalination Plant Operation

    Directory of Open Access Journals (Sweden)

    Won Ko

    2013-02-01

    Full Text Available In this paper, a grid-connected desalination plant operation approach is suggested. In desalination plant, large amount of energy is needed to operate pump and motor; hence most of energy is electricity. For this reason, the largest part of the operation cost is electricity charges. To demonstrate power usage, small size desalination measuring system mounted plant is used. Finally, to show the result of a grid-connected desalination plant operation, electric tariff rate of Korea is used. The result shows that total cost reduction rate is calculated about 1.6% of annual total electric plant operation cost.

  8. Thermal desalination in GCC and possible development

    KAUST Repository

    Darwish, Mohamed Ali

    2013-06-28

    The Water Desalination and Reuse Center in King Abdulla University of Science and Technology, in Saudi Arabia, held a workshop on thermal desalination on the 11th and 12th of March, 2013. This paper was presented as part of a lecture at the workshop. It presents the status and possible developments of the two main thermal desalination systems processing large quantities of seawater in the Gulf Cooperation Council, multi-stage flash, and thermal vapor compression systems. Developments of these systems were presented to show how these systems are competing with the more energy-efficient seawater reverse osmosis desalting. © 2013 © 2013 Balaban Desalination Publications. All rights reserved.

  9. Microbial desalination cell with capacitive adsorption for ion migration control.

    Science.gov (United States)

    Forrestal, Casey; Xu, Pei; Jenkins, Peter E; Ren, Zhiyong

    2012-09-01

    A new microbial desalination cell with capacitive adsorption capability (cMDC) was developed to solve the ion migration problem facing current MDC systems. Traditional MDCs remove salts by transferring ions to the anode and cathode chambers, which may prohibit wastewater beneficial reuse due to increased salinity. The cMDC uses adsorptive activated carbon cloth (ACC) as the electrodes and utilizes the formed capacitive double layers for electrochemical ion adsorption. The cMDC removed an average of 69.4% of the salt from the desalination chamber through electrode adsorption during one batch cycle, and it did not add salts to the anode or cathode chamber. It was estimated that 61-82.2mg of total dissolved solids (TDS) was adsorbed to 1g of ACC electrode. The cMDC provides a new approach for salt management, organic removal, and energy production. Further studies will be conducted to optimize reactor configuration and achieve in situ electrode regeneration.

  10. Energy portfolio of Iran: A case study of solar desalination

    Science.gov (United States)

    Besharati, Adib

    Energy plays a very important role in the economic development of a country such as Iran where industrial progress and higher living standards increase demand for energy. Iran is one of the countries in the world that simultaneously produces and consumes large amounts of energy. Because of its geographic latitude and weather conditions, Iran has the potential to develop and use of both fossil and renewable energy sources. In South Iran, there are huge oil and gas resources, and at the same time high potential of solar radiation. However, at the present large-scale utilization, solar energy is prohibitively expensive for Iran. Therefore, this study investigates an economical way to utilize solar energy in a meaningful way for Iran. One of the possible uses of solar energy that is both economical and technically feasible is desalination of water using solar energy. People in South Iran live in different areas with relatively low population density. One of the critical problems in those areas is a lack of clean drinking water. As a result, there is an urgent need to investigate ways to produce clean water from the saltwater. Therefore, the present study conducts a case study of solar desalination in south Iran using solar. Different desalination methods, such as humidification dehumidification by using a solar collector, and reverse osmosis, are discussed. In the case study, a prototype desalination plant was considered and both technical and economic aspects of the plant were investigated in details. The results showed higher productivity of drinking water in reverse osmosis method for south Iran.

  11. Using Solar Energy to Desalinate Water.

    Science.gov (United States)

    Tabor, Harry Z.

    1978-01-01

    Material presented is adapted from Desalination with Solar Energy, a paper presented before the International Symposium on Energy Sources and Development, held in Spain in 1977. Desalination systems energized by the sun, conditions governing their efficiency, and their costs are discussed. (HM)

  12. Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions

    Science.gov (United States)

    Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd

    2005-01-01

    Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.

  13. Electrokinetic desalination of glazed ceramic tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Ferreira, Celia; Christensen, Iben Vernegren

    2010-01-01

    Electrokinetic desalination is a method where an applied electric DC field is the driving force for removal of salts from porous building materials. In the present paper, the method is tested in laboratory scale for desalination of single ceramic tiles. In a model system, where a tile...... was contaminated with NaCl during submersion and subsequently desalinated by the method, the desalination was completed in that the high and problematic initial Cl(-) concentration was reduced to an unproblematic concentration. Further conductivity measurements showed a very low conductivity in the tile after...... renovation due to damage of the glazing from the presence of salts. These tiles were severely contaminated with both chlorides and nitrates, and one of the tiles also contained sulphates though at a low concentration. The charge transfer was too low in the experiments to obtain full desalination...

  14. Influenza polymerase encoding mRNAs utilize atypical mRNA nuclear export.

    Science.gov (United States)

    Larsen, Sean; Bui, Steven; Perez, Veronica; Mohammad, Adeba; Medina-Ramirez, Hilario; Newcomb, Laura L

    2014-08-28

    Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we

  15. Government, utilities, industry and universities: partners for nuclear development in Canada and abroad

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, D.G.; Woolston, J.E.

    1971-09-15

    In Canada, eleven power reactors installed or committed at four sites will provide 5 520 MW(e) for an investment of $1 800 million. Uranium production during the decade 1958-1967 totalled 79 700 tonnes U{sub 3}O{sub 8} worth $1 621 million. For nuclear research, development and control, the federal government employs about 6 000 people and spends about $80 million/year which includes the cost of operating three major research reactors (> 30 MW each). Aggregate commercial isotope production has reached 14 megacuries, and Canada has about 3 000 licensed users. Three power and two research reactors of Canadian design are or will be installed in developing countries overseas. Legislation in 1946 made atomic energy a federal responsibility and established an Atomic Energy Control Board. The Board's regulations, which deal primarily with health, safety and security, are administered with the co-operation of appropriate departments of the federal and provincial governments. Large-scale nuclear research began in 1941 and continued under the National Research Council until 1952 when the federal government created a public corporation, Atomic Energy of Canada Limited, to take over both research and the exploitation of atomic energy. Another public corporation, Eldorado Nuclear Limited, conducts research and development on the processing of uranium and operates Canada's only uranium refinery, but prospecting and mining is undertaken largely by private companies. The publicly owned electrical utilities of Ontario and Quebec operate nuclear power stations and participate, with governments, in their financing. Private industry undertakes extensive development and manufacturing, mainly under contract to Atomic Energy of Canada Limited and the utilities, and industry has formed its own Canadian Nuclear Association. Canadian universities undertake nuclear research, and receive significant government support; one has operated a research reactor since 1959. Canada

  16. Design and simulation of a process of seawater desalination (MED) using the residual heat of a PBMR nuclear power plant; Diseno y simulacion de un proceso de desalinizacion de agua de mar (MED) utilizando el calor residual de una planta nucleoelectrica PBMR

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, Julio; Morales S, J.B. [UNAM, DEPFI Campus Morelos, Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2008-07-01

    In the present work it is demonstrated as the thermodynamic recuperative Brayton cycle with which operates a nuclear power plant type PBMR (Pebble Bed Modular Reactor) it allows to use the residual heat, removed in the coolers of the compression stage of the system, to produce vapor and to desalt seawater. The desalination process selected, starting from its operation characteristics and the derived advantages of them using nuclear heat, it the one of Multi-Effect Distillation, MED for its abbreviations in English, which described and it is justified to detail. This distillation process widely studied, allows us to use water vapor pressurized to temperatures between 70 and 110 C like energy source to evaporate the seawater in the first stage or effect of the process. The relatively low temperatures with which the vapor takes place of feeding to the process is it makes to the plant PBMR ideal for desalination of seawater, since does not require majors modifications to its design its operation, and on the contrary it allows to use the heat that previously was rejected, to produce the vapor. In this work an unit MED of six effects is designed, which undergoes a successive fall of pressure in each of them. Once obtained the agreed design to the conditions of operation of PBMR plant, it was model mathematically the MED process, including the coupling stage with the reactor coolers. The mathematical model was obtained by means of differential equations of mass balance and energy in the system, and with this it was implemented in SIMULINK a model equivalent to the MED process which is interconnected to the simulator coolers of the PBMR plant, constructed previously. One ran the program being obtained the results that are reported at the end of this article. (Author)

  17. Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements

    KAUST Repository

    Missimer, Thomas M.

    2016-02-05

    A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development. © 2016 The Author(s). Published by Taylor & Francis

  18. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  19. IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

    2004-10-03

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region.

  20. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  1. Desalination with carbon aerogel electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  2. Energy system impacts of desalination in Jordan

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO) driven by electricity...... and Multi Stage Flash (MSF) desalination driven by Cogeneration of Heat and Power (CHP). The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts...

  3. Membrane Operations for Process Intensification in Desalination

    Directory of Open Access Journals (Sweden)

    Enrico Drioli

    2017-01-01

    Full Text Available Process intensification strategy (PIS is emerging as an interesting guideline to revolutionize process industry in terms of improved efficiency and sustainability. Membrane engineering has appeared as a strong candidate to implement PIS. The most significant progress has been observed in desalination where substantial reduction in overall energy demand, environmental footprint, and process hazards has already been accomplished. Recent developments in membrane engineering are shaping the desalination industry into raw materials and energy production where fresh water will be produced as a byproduct. The present study discusses the current and perspective role of membrane engineering in achieving the objectives of PIS in the field of desalination.

  4. Utilization Practice of the Concept Mapping Program for Nuclear Engineer Training

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bae Joo; Ko, Byung Moo; Heo, Yuk [Korea Hydro and Nuclear Power, Daejeon (Korea, Republic of)

    2009-05-15

    Knowledge is the most important factor in the safe and reliable operation of the NPP. Many methods are used to enhance the knowledge level of the personnel in the NPP. Generally, classroom lecture method is used for nuclear engineers. But this method has some pitfalls as an adult training method because students have already a lot of knowledge, so they want to participate actively in the learning process. KNPEI undertook a research project from March 2006 to September 2007 to capture the experience knowledge from senior staff and transfer it to junior staff. As part of the research activity KNPEI introduced a Concept Mapping Program and set up a Concept Mapping server to capture the experience knowledge of the senior staff. This Concept Mapping Program has some characteristics that can be used in learning about conceptual knowledge. The purpose of this report is to introduce the utilization method and practice at KNPEI for the nuclear engineer training using the Concept Mapping Program.

  5. Experimental benchmarks and simulation of GAMMA-T for overcooling and undercooling transients in HTGRs coupled with MED desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik, E-mail: hskim25@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, In Hun, E-mail: nuclea@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); NO, Hee Cheon, E-mail: hcno@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jin, Hyung Gon, E-mail: gonijin@gmail.com [Korea Advanced Institute of Science and Technology (KAIST), Department of Nuclear and Quantum Engineering, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2013-06-15

    Highlights: ► The GAMMA-T code was well validated through benchmark experiments. ► Based on the KAIST coupling scheme, the GTHTR300 + MED systems were made. ► Safety analysis was performed for overcooling and undercooling accidents. ► In all accidents, maximum peak fuel temperatures were well below than 1600 °C. ► In all accidents, the HTGR + MED system could be operated continuously. -- Abstracts: The nuclear desalination based on the high temperature gas-cooled reactor (HTGR) with gas turbomachinery and multi-effect distillation (MED) is attracting attention because the coupling system can utilize the waste heat of the nuclear power system for the MED desalination system. In previous work, KAIST proposed the new HTGR + MED coupling scheme, evaluated desalination performance, and performed cost analysis for the system. In this paper, in order to confirm the safety and the performance of the coupling system, we performed the transient analysis with GAMMA-T (GAs Multidimensional Multicomponent mixture Analysis–Turbomachinery) code for the KAIST HTGR + MED systems. The experimental benchmarks of GAMMA-T code were set up before the transient analysis for several accident scenarios. The GAMMA-T code was well validated against steady state and transient scenarios of the He–Water test loop such as changes in water mass flow rate and water inlet temperatures. Then, for transient analysis, the GTHTR300 was chosen as a reference plant. The GTHTR300 + MED systems were made, based on the KAIST HTGR + MED coupling scheme. Transient analysis was performed for three kinds of accidents scenarios: (1) loss of heat rejection through MED plant, (2) loss of heat rejection through heat sink, and (3) overcooling due to abnormal cold temperature of seawater. In all kinds of accident scenarios, maximum peak fuel temperatures were well below than the fuel failure criterion, 1600 °C and the GTHTR300 + MED system could be operated continuously and safely. Specially, in the

  6. Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production.

    Science.gov (United States)

    Kokabian, Bahareh; Gude, Veera Gnaneswar

    2013-12-01

    Current microbial desalination cell (MDC) performances are evaluated with chemical catalysts such as ferricyanide, platinum catalyzed air-cathodes or aerated cathodes. All of these methods improve power generation potential in MDCs, however, they are not preferable for large scale applications due to cost, energy and environmental toxicity issues. In this study, performance of microbial desalination cells with an air cathode and an algae biocathode (Photosynthetic MDC - PMDC) were evaluated, both under passive conditions (no mechanical aeration or mixing). The results indicate that passive algae biocathodes perform better than air cathodes and enhance COD removal and utilize treated wastewater as the growth medium to obtain valuable biomass for high value bioproducts. Maximum power densities of 84 mW m(-3) (anode volume) or 151 mW m(-3) (biocathode volume) and a desalination rate of 40% were measured with 0.9 : 1 : 0.5 volumetric ratios of anode, desalination and algae biocathode chambers respectively. This first proof-of-concept study proves that the passive mechanisms can be beneficial in enhancing the sustainability of microbial desalination cells.

  7. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    Science.gov (United States)

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  8. Offshore Desalination Using Wave Energy

    Directory of Open Access Journals (Sweden)

    Álvaro Serna

    2013-01-01

    Full Text Available This paper evaluates the design of an offshore desalination plant currently under preliminary development. The purpose is to test the feasibility of producing drinkable water using wave energy in out-of-sight installations, as an alternative for those locations where land use, civil engineering works, and/or environmental impact make a coast-based solution inadequate. After describing the components, a proposal for sizing them is studied, based on using buoy-measured data at the expected location and their mathematical models of the different sections of the plant. Finally, by using measured buoy data, the influence of sizing on the expected performance is studied for a specific location, and one of the designs is developed in detail.

  9. UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Lothar PhD

    2000-03-01

    The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

  10. Status of neutron beam utilization at the Dalat nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dien, Nguyen Nhi; Hai, Nguyen Canh [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  11. Volume 1: Survey of Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sheaffer, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brueske, Sabine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dollinger, Caroline [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Kevin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sarker, Prateeti [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ward, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cresko, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The U.S. Department of Energy (DOE) has set a goal to reduce the cost of seawater desalination systems to $0.50/ cubic meter (m3) through the development of technology pathways to reduce energy, capital, operating, soft, and system integration costs.1 In support of this goal and to evaluate the technology pathways to lower the energy and carbon intensity of desalination while also reducing the total water cost, DOE is undertaking a comprehensive study of the energy consumption and carbon dioxide (CO2) emissions for desalination technologies and systems. This study is being undertaken in two phases. Phase 1, Survey of Available Information in Support of the Energy-Water Bandwidth Study of Desalination Systems, collected the background information that will underpin Phase 2, the Energy Water Bandwidth Study for Desalination Systems. This report (Volume 1) summarizes the results from Phase 1. The results from Phase 2 will be summarized in Volume 2: Energy Water Bandwidth Study for Desalination Systems (Volume 2). The analysis effort for Phase 2 will utilize similar methods as other industry-specific Energy Bandwidth Studies developed by DOE,2 which has provided a framework to evaluate and compare energy savings potentials within and across manufacturing sectors at the macroscale. Volume 2 will assess the current state of desalination energy intensity and reduction potential through the use of advanced and emerging technologies. For the purpose of both phases of study, energy intensity is defined as the amount of energy required per unit of product water output (for example, kilowatt-hours per cubic meter of water produced). These studies will expand the scope of previous sectorial bandwidth studies by also evaluating CO2 intensity and reduction opportunities and informing a techno-economic analysis of desalination systems. Volume 2 is expected to be completed in 2017.

  12. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway.

    Science.gov (United States)

    Kang, WonKyung; Kurihara, Masaaki; Matsumoto, Shogo

    2006-06-20

    The BRO proteins of Bombyx mori nucleopolyhedrovirus (BmNPV) display a biphasic pattern of intracellular localization during infection. At early times, they reside in the nucleus but then show both cytoplasmic and nuclear localization as the infection proceeds. Therefore, we examined the possibility of nuclear export. Using inhibitors, we reveal that BmNPV BRO proteins shuttle between the nucleus and cytoplasm. Mutations on the leucine-rich region of BRO proteins resulted in nuclear accumulation of transiently expressed proteins, suggesting that this region functions as a CRM1-dependent nuclear export signal (NES). On the contrary, mutant BRO-D with an altered NES did not show nuclear accumulation in infected cells, although protein production seemed to be reduced. RT-PCR analysis showed that the lower level of protein production was due to a reduction in RNA synthesis. Taken together, our results suggest that BRO proteins are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway.

  13. Nuclear power and the market value of the shares of electric utilities

    Science.gov (United States)

    Lyons, Joseph T.

    The most basic principle of security valuation is that market prices are determined by investors' expectations of the firm's performance in the future. These expectations are generally understood to be related to the risk that investors will bear by holding the firm's equity. There is considerable evidence that financial statements prepared in accordance with accrual-based accounting standards consistent with Generally Accepted Accounting Principles (GAAP) have information content relevant to the establishment of market prices. In 2001, the Financial Accounting Standards Board (FASB) issued Statement of Financial Accounting Standard No. 143, "Accounting for Asset Retirement Obligations," changing the accounting standards that must be used to prepare financial statements. This paper investigates the effect that investment in nuclear power has on the market value of electric utilities and the impact on the securities markets of the significant changes in financial statement presentation mandated by this new standard.

  14. Desalination and sustainability - An appraisal and current perspective.

    Science.gov (United States)

    Gude, Veera Gnaneswar

    2016-02-01

    Desalination technologies have evolved and advanced rapidly along with increasing water demands around the world since 1950s. Many reviews have focused on the techno-economic and environmental and ecological issues of the desalination technologies and emphasized the feasibility of desalination industry as an alternative to meet the water demands in many water scarce regions. Despite these efforts, many perceptions about desalination processes hinder their applications for potential water supplies. This article has two specific aims: 1) provide an overview of the desalination trends around the world and discuss the sustainability components of desalination processes in comparison with other water supply alternatives; and 2) discuss case studies for desalination, and drivers and factors that influence sustainable desalination and other alternative water sources for desalination to increase our current understanding on the sensitive and futuristic issues of water supply and resource management options for drought facing regions. Although some of the facts and recent developments discussed here show that desalination can be affordable and potentially sustainable, contributions that meaningfully address socio-economic and ecological and environmental issues of desalination processes are urgently required in this critical era of severe water stress for the present context and the future development of desalination technologies.

  15. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.

  16. Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination.

    Science.gov (United States)

    Kim, Younggy; Logan, Bruce E

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs.

  17. Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.

    Science.gov (United States)

    Morel, Alexandre; Zuo, Kuichang; Xia, Xue; Wei, Jincheng; Luo, Xi; Liang, Peng; Huang, Xia

    2012-08-01

    A novel configuration of microbial desalination cell (MDC) packed with ion-exchange resin (R-MDC) was proposed to enhance water desalination rate. Compared with classic MDC (C-MDC), an obvious increase in desalination rate (DR) was obtained by R-MDC. With relatively low concentration (10-2 g/L NaCl) influents, the DR values of R-MDC were about 1.5-8 times those of C-MDC. Ion-exchange resins packed in the desalination chamber worked as conductor and thus counteracted the increase in ohmic resistance during treatment of low concentration salt water. Ohmic resistances of R-MDC stabilized at 3.0-4.7 Ω. By contrast, the ohmic resistances of C-MDC ranged from 5.5 to 12.7 Ω, which were 55-272% higher than those of R-MDC. Remarkable improvement in desalination rate helped improve charge efficiency for desalination in R-MDC. The results first showed the potential of R-MDC in the desalination of water with low salinity.

  18. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW{sub th} and an electricity generation mode of 100 kW{sub th}, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  19. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Directory of Open Access Journals (Sweden)

    Seung Hyun Nam

    2015-10-01

    Full Text Available Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER, for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MWth and an electricity generation mode of 100 kWth, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  20. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... and glaze, where salt crystals were clearly identified by SEM-EDX before desalination. The concentrations of chloride and especially nitrate were very high in the tiles (around 280 mmol Cl−/kg and 450 mmol NO3−/kg respectively). Both anions were successfully removed to below 6 mmol/kg during...... was initially very low, but nevertheless, sulfate removal started at the point where chloride and nitrate concentrations were very low in the tiles. Investigating the interface between biscuit and glaze after the treatment showed no signs of crystallized salts, so also in this important point, the desalination...

  1. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... and glaze, where salt crystals were clearly identified by SEM-EDX before desalination. The concentrations of chloride and especially nitrate were very high in the tiles (around 280 mmol Cl−/kg and 450 mmol NO3−/kg respectively). Both anions were successfully removed to below 6 mmol/kg during...... was initially very low, but nevertheless, sulfate removal started at the point where chloride and nitrate concentrations were very low in the tiles. Investigating the interface between biscuit and glaze after the treatment showed no signs of crystallized salts, so also in this important point, the desalination...

  2. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method

    KAUST Repository

    Shahzad, Muhammad Wakil

    2014-11-01

    This paper presents an advanced desalination cycle that hybridizes a conventional multi-effect distillation (MED) and an emerging yet low-energy adsorption cycle (AD). The hybridization of these cycles, known as MED + AD or MEDAD in short, extends the limited temperature range of the MED, typically from 65 °C at top-brine temperature (TBT) to a low-brine temperature (LBT) of 40 °C to a lower LBT of 5 °C, whilst the TBT remains the same. The integration of cycles is achieved by having vapor uptake by the adsorbent in AD cycle, extracting from the vapor emanating from last effect of MED. By increasing the range of temperature difference (DT) of a MEDAD, its design can accommodate additional condensation-evaporation stages that capitalize further the energy transfer potential of expanding steam. Numerical model for the proposed MEDAD cycle is presented and compared with the water production rates of conventional and hybridized MEDs. The improved MEDAD design permits the latter stages of MED to operate below the ambient temperature, scavenging heat from the ambient air. The increase recovery of water from the seawater feed may lead to higher solution concentration within the latter stages, but the lower saturation temperatures of these stages mitigate the scaling and fouling effects. © 2014 Elsevier Ltd. All rights reserved.

  3. Electrochemical desalination of bricks - Experimental and modeling

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Chlorides, nitrates and sulfates play an important role in the salt-decay of porous materials in buildings and monuments. Electrochemical desalination is a technology able to remove salts from such porous materials in order to stop or prevent the decay. In this paper, experimental and numerical......-contaminated bricks with respect to the monovalent ions is discussed. Comparison between the experimental and the simulation results showed that the proposed numerical model is able to predict electrochemical desalination treatments with remarkable accuracy, and it can be used as a predictive tool...

  4. Solarthermal seawater desalination systems for decentralised use

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Holst, H.; Engelhardt, M.; Herve, M.; Schoelkopf, W. [Bavarian Centre for Applied Energy Research, Munchen (Germany)

    1998-05-01

    The performance of a pilot solar Multi Effect Humidification (MEH) Desalination system in Fuerteventura, Canary Islands, has been measured and analysed in detail by the ZEA Bayern since 1992. The investigated distillation units showed constant performance over several years without extensive maintenance. However, the efforts towards further efficiency improvements by economic means points out the need for supplementing the system with a thermal storage tank. In April 1997 a desalination system with 24 hour thermal storage was built in Sfax/Tunisia. The results of a short term measuring campaign at this site are presented here. The simulation results of a combined laboratory distillation unit and storage system are presented. (author)

  5. The future of seawater desalination: energy, technology, and the environment.

    Science.gov (United States)

    Elimelech, Menachem; Phillip, William A

    2011-08-05

    In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.

  6. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO

    Directory of Open Access Journals (Sweden)

    William B. Krantz

    2013-07-01

    Full Text Available This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.

  7. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO).

    Science.gov (United States)

    Sim, Victor S T; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G; Krantz, William B

    2013-07-04

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%-20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.

  8. Apparatus and method for improved desalination

    KAUST Repository

    Ng, Kim Choon

    2009-12-30

    A water desalination system comprising an evaporator for evaporating saline water to produce water vapor; a condenser for condensing the water vapor; wherein the evaporator and the condenser are in heat transfer communication such that heat used by the evaporator is at least in part derived from the condenser.

  9. Algal blooms and Membrane Based Desalination Technology

    NARCIS (Netherlands)

    Villacorte, L.O.

    2014-01-01

    Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational pro

  10. Modeling of electrokinetic desalination of bricks

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2012-01-01

    . The system of equations includes the transport of water and the resulting advective flow of the aqueous species. The model takes into account transient change in porosity and its impact on transport. Test examples were performed and compared to experimental data for electrokinetic desalination treatment...

  11. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  12. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon

    2017-09-22

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination processes are required to meet future sustainable desalination goal and COP21 goal. In this paper, we proposed a multi-effect desalination system operated with ocean thermocline energy, thermal energy harnessed from seawater temperature gradient. It can exploit low temperature differential between surface hot water temperature and deep-sea cold-water temperature to produce fresh water. Detailed theoretical model was developed and simulation was conducted in FORTRAN using international mathematical and statistical library (IMSL). We presented four different cases with deep-sea cold water temperature varies from 5 to 13°C and MED stages varies from 3 to 6. It shows that the proposed cycle can achieve highest level of universal performance ratio, UPR = 158, achieving about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the proposed cycle is truly a “green desalination” method of low global warming potential (GWP), best suited for tropical coastal shores having bathymetry depths up to 300m or more.

  13. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo

    2016-10-27

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  14. Algal blooms and Membrane Based Desalination Technology

    NARCIS (Netherlands)

    Villacorte, L.O.

    2014-01-01

    Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational pro

  15. Desalination of Water Using ZVI (Fe0

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2015-07-01

    Full Text Available Batch treatment of water (0.2 to 240 L using Fe0 (44,000–77,000 nm in a diffusion environment operated (at −8 to 25 °C using: (a no external energy; (b pressurized (<0.1 MPa air; (c pressurized (<0.1 MPa acidic gas (CO2; (d pressurized (<0.1 MPa anoxic gas (N2; (e pressurized (<0.1 MPa anoxic, acidic, reducing gas (H2 + CO + CO2 + CH4 + N2, reduces the salinity of water. Desalination costs increase with increasing NaCl removal. The cost of reducing water salinity from: (i 2.65 to 1.55 g·L−1 (over 1–24 h is $0.002–$0.026 m−3; (ii 38.6 to 0.55 g·L−1 (over 210 days is $67.6–$187.2 m−3. Desalination is accompanied by the removal, from the water, of one or more of: nitrate, chloride, fluoride, sulphate, phosphate, As, B, Ba, Ca, Cd, Co, Cu, Fe, Mg, Mn, Na, Ni, P, S, Si, Sr, Zn. The rate of desalination is enhanced by increasing temperatures and increasing HCO3−/CO32− concentrations. The rate of desalination decreases with increasing SO42− removal under acidic, or pH neutral, operating conditions.

  16. Solar driven membrane pervaporation for desalination processes

    NARCIS (Netherlands)

    Zwijnenberg, H.J.; Koops, G.H.; Wessling, M.

    2005-01-01

    We describe details of a solar driven pervaporation process for the production of desalinated water from highly contaminated waters. The membrane material is a polyetheramide-based polymer film of 40 ¿m thickness. This Solar Dew® membrane is used in a tubular configuration in a direct solar membrane

  17. Solar powered desalination system using Fresnel lens

    Science.gov (United States)

    Sales, M. T. B. F.

    2016-11-01

    The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.

  18. Utility of multispectral imaging for nuclear classification of routine clinical histopathology imagery

    Directory of Open Access Journals (Sweden)

    Harvey Neal R

    2007-07-01

    Full Text Available Abstract Background We present an analysis of the utility of multispectral versus standard RGB imagery for routine H&E stained histopathology images, in particular for pixel-level classification of nuclei. Our multispectral imagery has 29 spectral bands, spaced 10 nm within the visual range of 420–700 nm. It has been hypothesized that the additional spectral bands contain further information useful for classification as compared to the 3 standard bands of RGB imagery. We present analyses of our data designed to test this hypothesis. Results For classification using all available image bands, we find the best performance (equal tradeoff between detection rate and false alarm rate is obtained from either the multispectral or our "ccd" RGB imagery, with an overall increase in performance of 0.79% compared to the next best performing image type. For classification using single image bands, the single best multispectral band (in the red portion of the spectrum gave a performance increase of 0.57%, compared to performance of the single best RGB band (red. Additionally, red bands had the highest coefficients/preference in our classifiers. Principal components analysis of the multispectral imagery indicates only two significant image bands, which is not surprising given the presence of two stains. Conclusion Our results indicate that multispectral imagery for routine H&E stained histopathology provides minimal additional spectral information for a pixel-level nuclear classification task than would standard RGB imagery.

  19. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  20. Nuclear R+D+I in Spanish utilities. Programs and strategies; I+D*+I Nuclear en sector electrico espanol. Programas y estrategias

    Energy Technology Data Exchange (ETDEWEB)

    Farmacia, L.; Casero, M.

    2003-07-01

    The Spanish Utilities have traditionally devoted important resources to Research. Development and Innovation in the nuclear field in order to improve the technology and the tools needed for its proper management, as well as to increase the knowledge on the phenomena associated to a safe and reliable operation of the Spanish NPPs. The purpose of this article is to show the continuous effort of the Spanish Utilities to get that the research results better meet the NPPs needs, to improve the coordination with other national and international agents with the aim of ensuring an optimum use of the resources and capabilities, and, most of all, to permanently incorporate the lessons learned. (Author)

  1. Potential health impacts of consuming desalinated bottled water.

    Science.gov (United States)

    Rowell, Candace; Kuiper, Nora; Shomar, Basem

    2015-06-01

    This study compared physicochemical properties, anion and carbon content and major and trace elements in desalinated and non-desalinated bottled water available in Qatar, and assessed the potential health risks associated with prolonged consumption of desalinated water. Results indicate that Qatar's population is not at elevated risk of dietary exposure to As (mean = 666 ng/L), Ba (48.0 μg/L), Be (9.27 ng/L), Cd (20.1 ng/L), Cr (874 ng/L), Pb (258 ng/L), Sb (475 ng/L) and U (533 ng/L) from consumption of both desalinated and non-desalinated bottled water types available in the country. Consumers who primarily consume desalinated water brands further minimize risk of exposure to heavy metals as levels were significantly lower than in non-desalinated bottled water. Desalinated bottled water was not a significant contributor to recommended daily intakes for Ca, Mg and F(-) for adults and children and may increase risk of deficiencies. Desalinated bottled water accounted for only 3% of the Institute of Medicine (IOM) adequate intake (AI) for Ca, 5-6% of the recommended daily allowance for Mg and 4% of the AI for F among adults. For children desalinated water contributed 2-3% of the IOM AICa, 3-10% of the RDA(Mg) and 3-9% of the AIF.

  2. A study on the enhancement of nuclear cooperation with African countries including utilization of radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Maeng Ho; Oh, K. B; Lee, H. M. and others

    2005-05-15

    In this study, potential countries for nuclear cooperation in African region and possible cooperation areas were investigated between Korea and African countries including radioisotopes and more fields were also analysed in depth in order to suggest the recommendations for future cooperation to be considered as follows; First, current status and perspectives of demand and supply of energy and electricity in the African countries, use and development of nuclear energy and international nuclear cooperation were analyzed. Second, current status of nuclear cooperation between Korea and African countries were investigated as well as analysis of future cooperation potential and countries having potential for nuclear cooperation and possible cooperative activities were suggested considering potential of nuclear market in mid- and long term base and step by step. Third, desirable strategies and directions for the establishment and promotion of nuclear cooperation relations between Korea and African developing countries were suggested in order to develope cooperative relations in efficient and effective manners with African developing countries.

  3. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    Science.gov (United States)

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  4. A desalination plant with solar and wind energy

    Science.gov (United States)

    Chen, H.; Ye, Z.; Gao, W.

    2013-12-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m2 per hour. Comparing with the

  5. Geophysical remote sensing of water reservoirs suitable for desalinization.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

    2009-12-01

    In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics

  6. International overview of seawater desalination plant by reverse osmosis technology

    OpenAIRE

    Kangwen, Shu

    2012-01-01

    In a world faced with increased urbanization, population growth, climate change and degradation of water supplies, the importance of a reliable source of technology to provide fresh water emphasizes the importance of seawater desalination. Over the years a variety of seawater desalination methods have been developed throughout the world. The most common technologies available for desalination around the world are membrane reverse osmosis (RO), thermal distillation (TD) and electrodialysis ...

  7. Nanoporous Carbon Nitride: A High Efficient Filter for Seawater Desalination

    OpenAIRE

    Weifeng LI; Yang, Yanmei; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2015-01-01

    The low efficiency of commercially-used reverse osmosis (RO) membranes has been the main obstacle in seawater desalination application. Here, we report the auspicious performance, through molecular dynamics simulations, of a seawater desalination filter based on the recently-synthesized graphene-like carbon nitride (g-C2N) [Nat. Commun., 2015, 6, 6486]. Taking advantage of the inherent nanopores and excellent mechanical properties of g-C2N filter, highly efficient seawater desalination can be...

  8. International overview of seawater desalination plant by reverse osmosis technology

    OpenAIRE

    Kangwen, Shu

    2012-01-01

    In a world faced with increased urbanization, population growth, climate change and degradation of water supplies, the importance of a reliable source of technology to provide fresh water emphasizes the importance of seawater desalination. Over the years a variety of seawater desalination methods have been developed throughout the world. The most common technologies available for desalination around the world are membrane reverse osmosis (RO), thermal distillation (TD) and electrodialysis ...

  9. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  10. Disinfection by-product formation during seawater desalination: A review.

    Science.gov (United States)

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water.

  11. Mild desalination of various raw water streams.

    Science.gov (United States)

    Groot, C K; van den Broek, W B P; Loewenberg, J; Koeman-Stein, N; Heidekamp, M; de Schepper, W

    2015-01-01

    For chemical industries, fresh water availability is a pre-requisite for sustainable operation. However, in many delta areas around the world, fresh water is scarce. Therefore, the E4 Water project (www.e4water.eu) comprises a case study at the Dow site in Terneuzen, The Netherlands, which is designed to develop commercial applications for mild desalination of brackish raw water streams from various origins to enable reuse in industry or agriculture. This study describes an effective two-stage work process, which was used to narrow down a broad spectrum of desalination technologies to a selection of the most promising techniques for a demonstration pilot at 2-4 m³/hour. Through literature study, laboratory experiments and multi-criteria analysis, nanofiltration and electrodialysis reversal were selected, both having the potential to attain the objectives of E4Water at full scale.

  12. Water Desalination Systems Powered by Solar Energy

    Science.gov (United States)

    Barseghyan, A.

    2015-12-01

    The supply of potable water from polluted rivers, lakes, unsafe wells, etc. is a problem of high priority. One of the most effective methods to obtain low cost drinking water is desalination. Advanced water treatment system powered by Solar Energy and based on electrodialysis for water desalination and purification, is suggested. Technological and economic evaluations and the benefits of the suggested system are discussed. The Advanced Water Treatment System proposed clears water not only from different salts, but also from some infections, thus decreasing the count of diseases which are caused by the usage of non-clear water. Using Solar Energy makes the system stand alone which is convenient to use in places where power supply is problem.

  13. Desalination with carbon aerogel electrodes. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V. [Lawrence Livermore National Lab., CA (United States); Thomson, S.L.; May, S.C. [Bechtel National, Inc., San Francisco, CA (United States)

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  14. Algal blooms and Membrane Based Desalination Technology

    OpenAIRE

    Villacorte, L.O.

    2014-01-01

    Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in seawater reverse osmosis (SWRO) plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of the plant to avoid irreversible fouling...

  15. Algal blooms and Membrane Based Desalination Technology

    OpenAIRE

    Villacorte, L.O.

    2014-01-01

    Seawater desalination is rapidly growing in terms of installed capacity (~80 million m3/day in 2013), plant size and global application. An emerging threat to this technology is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in seawater reverse osmosis (SWRO) plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of the plant to avoid irreversible fouling...

  16. Direct seawater desalination by ion concentration polarization.

    Science.gov (United States)

    Kim, Sung Jae; Ko, Sung Hee; Kang, Kwan Hyoung; Han, Jongyoon

    2010-04-01

    A shortage of fresh water is one of the acute challenges facing the world today. An energy-efficient approach to converting sea water into fresh water could be of substantial benefit, but current desalination methods require high power consumption and operating costs or large-scale infrastructures, which make them difficult to implement in resource-limited settings or in disaster scenarios. Here, we report a process for converting sea water (salinity approximately 500 mM or approximately 30,000 mg l(-1)) to fresh water (salinity water is divided into desalted and concentrated streams by ion concentration polarization, a phenomenon that occurs when an ion current is passed through ion-selective membranes. During operation, both salts and larger particles (cells, viruses and microorganisms) are pushed away from the membrane (a nanochannel or nanoporous membrane), which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods. To implement this approach, a simple microfluidic device was fabricated and shown to be capable of continuous desalination of sea water (approximately 99% salt rejection at 50% recovery rate) at a power consumption of less than 3.5 Wh l(-1), which is comparable to current state-of-the-art systems. Rather than competing with larger desalination plants, the method could be used to make small- or medium-scale systems, with the possibility of battery-powered operation.

  17. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  18. Energy system impacts of desalination in Jordan

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-02-01

    Full Text Available Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO driven by electricity and Multi Stage Flash (MSF desalination driven by Cogeneration of Heat and Power (CHP. The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts on energy system performance. Results indicate that RO and MSF are similar in fuel use. While there is no use of waste heat from condensing mode plants, efficiencies for CHP and MSF are not sufficiently good to results in lower fuel usage than RO. The Jordanian energy system is somewhat inflexible giving cause to Critical Excess Electricity Production (CEEP even at relatively modest wind power penetrations. Here RO assists the energy system in decreasing CEEP – and even more if water storage is applied.

  19. Tunable water desalination across Graphene Oxide Frameworks

    Science.gov (United States)

    Nicolai, Adrien; Meunier, Vincent

    2014-03-01

    ``Water, water, everywhere, nor any drop to drink.'' wrote Samuel Taylor Coleridge in 1798. Today's scientific advances in water desalination promise to change the second part of the sentence into ``and every drop to drink,'' by transforming sea water into fresh water and quench the thirst of 1.2B people facing shortages of water. To achieve this, the design of nanoporous materials with high water permeability and coupled with high salt rejection capacity is crucial. Graphene Oxide Frameworks (GOF) materials are a class of porous materials consisting of layers of graphene oxide sheets interconnected by linear boronic acid linkers. Water desalination across GOF is studied using classical Molecular Dynamics simulations. We used quantum mechanically obtained boron-related force field parameters to study the diffusion of water molecules inside bulk GOF. Properties, such as the self-diffusion coefficient of water molecules increases linearly with linker concentration n. Further, the desalination performance of GOF membranes reveals that the water permeability of GOF is several orders of magnitude higher than conventional membranes and an high water permeability can be coupled with a 100% efficiency of salt rejection by choosing the appropriate concentration n and thickness h.

  20. A new desalination technique using capacitive deionization

    Science.gov (United States)

    Rostamy, Mohammad Sajjad; Khashechi, Morteza; Pipelzadeh, Ehsan; desalination Team

    2016-11-01

    Capacitive deionization (CDI) is an emerging energy efficient, low pressure and low capital intensive desalination process where ions are separated by a pure electrostatic force imposed by a small bias potential as low as 1 V That funded by an external Renewable (Solar) power supply to materials with high specific surface area. The main objective of this configuration is to separate the cation and anions on oppositely charged electrodes. Various electrode materials have been developed in the past, which have suffered from instability and lack of performance. Preliminary experimental results using carbon black, graphite powder, graphene ∖graphite ∖PTFE (Active ∖Conductive ∖binder), show that the graphene reduced via urea method is a suitable method to develop CDI electrode materials with capacitance as high as 52.2 mg/g for free standing graphene electrode. The focus of these studies has been mainly on developing electrodes with high specific surface area, high capacitance, excellent electronic conductivity and fast charge discharge cycles for desalination. Although some progress has been made, production of efficient and stable carbon based electrode materials for large scale desalination has not been fully realized.

  1. Exploring the utility of three nuclear regions to reconstruct reticulate evolution in the fern genus Asplenium

    Institute of Scientific and Technical Information of China (English)

    Harald SCHNEIDER; Adriana NAVARRO-GOMEZ; Stephen J.RUSSELL; Stephen ANSELL; Michal GRUNDMANN; Johannes VOGEL

    2013-01-01

    Three nuclear regions nuclear ribosomal internal transcribed spacer (nrITS) and intron regions of two nuclear low-copy genes-gapCp,and pgiC,in combination with one chloroplast genome region were employed to explore patterns of reticulate evolution in the fern genus Asplenium.This is the one of the first studies using DNA sequences of multiple nuclear markers in ferns.All three nuclear markers amplified well with PCR and several copies were recovered by cloning PCR products.All three nuclear regions showed congruent results by recovering the neo-allotetraploid Asplenium adulterinum as the hybrid of diploid A.trichomanes and diploid A.viride.Conflicting results were obtained for several nodes.First,gapCp did not discriminate between A.aethiopicum and A.praegracile whereas the other markers recovered these two taxa as distinct.Conflicts among gene-trees were found in respect to A.monanthes,chloroplast and pgiC suggested a sister relationship ofA.monanthes and A.trichomanes but gapCp and nrITS nested A.monanthes within A.normale.Our results confirm:(i) the usefulness of several nuclear regions,in particular gapCp and pgiC,to unravel reticulate evolution in ferns and species differentiation and (ii) highlights the need to employ more than one nuclear region to obtain reliable hypotheses on reticulate events versus incomplete lineage sorting.Especially,if one assumes that the reticulation event might have occurred in the more distant past.Considering the expected high frequency of reticulate evolution in ferns,the establishment of robust and informative nuclear genomic markers is critical to achieve further progress in our efforts to elucidate fern evolution.

  2. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  3. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-01

    Chloride ion, the majority salt in nature, is ˜52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10-9m2s-1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ˜(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ˜50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  4. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-09

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10(-9)m(2)s(-1)]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  5. Solar Desalination System Model for Sizing of Photovoltaic Reverse Osmosis (PVRO)

    KAUST Repository

    Habib, Abdulelah

    2015-06-28

    The focus of this paper is to optimize the solar energy utilization in the water desalination process. Due to variable nature of solar energy, new system design is needed to address this challenge. Here, reverse osmosis units, as the electrical loads, are considered as an ON/OFF units to track these solar energy variations. Reverse osmosis units are different in sizes and numbers. Various combinations of reverse osmosis units in size and capacity provide different water desalination system performances. To assess each scenario of reverse osmosis units, the total capital cost and operation and maintenance (O&M) cost are considered. The implemented optimization algorithm search all of the possible scenarios to find the best solution. This paper deploys the solar irradiance data which is provided from west coast (Red Sea) of Saudi Arabia for model construction and optimization algorithm implementation.

  6. Sharing product data of nuclear power plants across their lifecycles by utilizing a neutral model

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Duhwan [WIG Craft Research Division, Maritime and Ocean Engineering Research Institute, KORDI, 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)], E-mail: dhmun@moeri.re.kr; Hwang, Jinsang [Department of Mechanical Engineering, KAIST (Korea, Republic of)], E-mail: mars@icad.kaist.ac.kr; Han, Soonhung [Department of Mechanical Engineering, KAIST (Korea, Republic of)], E-mail: shhan@kaist.ac.kr; Seki, Hiroshi [Hitachi Research Laboratory, Hitachi, Ltd. (Japan)], E-mail: hiroshi.seki.mf@hitachi.com; Yang, Jeongsam [Industrial and Information Systems Engineering, Ajou University (Korea, Republic of)], E-mail: jyang@ajou.ac.kr

    2008-02-15

    Many public and private Korean organizations are involved during the lifecycle of a domestic nuclear power plant. Korea Plant Engineering Co. (KOPEC) participates in the design stage, Korea Hydraulic and Nuclear Power (KHNP) operates and manages all nuclear power plants in Korea, Doosan Heavy Industry and Construction Co. manufactures the main equipment, and a construction company constructs the plant. Even though each organization has its own digital data management system and obtains a certain level of automation, data sharing among organizations is poor. KHNP obtains drawings and technical specifications from KOPEC in the form of paper. This results in manual re-work of definitions, and errors can potentially occur in the process. In order to establish an information bridge between design and operation and maintenance (O and M) phases, a generic product model (GPM), a data model from Hitachi, is extended for constructing a neutral data warehouse and the Korean Nuclear Power Plant Information Sharing System (KNPISS) is implemented.

  7. The utilization of LANDSAT imagery in nuclear power plant siting. [in Pakistan, South Carolina, and Spain

    Science.gov (United States)

    Eggenberger, A. J.; Rowlands, D.; Rizzo, P. C.

    1975-01-01

    LANDSAT imagery was used primarily to map geologic features such as lineaments, linears, faults, and other major geologic structures which affect site selection for a nuclear power plant. Areas studied include Pakistan, the South Carolina Piedmont, and Huelva, Spain.

  8. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  9. Desalination of aqueous solutions by LTA and MFI zeolite membranes using pervaporation method

    Directory of Open Access Journals (Sweden)

    A. Malekpour

    2011-12-01

    Full Text Available LTA and MFI zeolite membranes were hydrothermally grown on the surface of an α-alumina porous support. The synthesized membranes were used for removal of cationic and anionic species from aqueous solutions by the pervaporation method. The perfection of the membranes was improved by employing the multi-stage synthesis method. The membranes were characterized by XRD, SEM and IR methods. The membranes were initially evaluated by the pervaporation separation of water from aqueous 2-propanol mixtures. The separation factors obtained were 7081 and 105 for NaA and ZSM-5 membranes, respectively. The ability of membranes for desalination of some aqueous solutions containing I-, Cs+ and Sr2+ ions was examined in various conditions. These ionic species were chosen because of their importance in the nuclear sciences. Both membranes effectively removed (more than 99 wt% I-, Cs+ and Sr2+ from their singlesalt solutions (0.001mol dm-3 over a temperature range of 298-338 K. The effects of parameters such as time and temperature on the separation factors and fluxes were investigated. This work shows that, due to their excellent chemical, thermal and mechanical stability, the zeolitic membranes are useful for desalination of aqueous solutions and treating saline wastewaters by pervaporation. Therefore, this method has the ability to desalinate harsh environment solutions involving strong solvent and radioactive components.

  10. Economic evaluation of seawater desalination by using SMART in the MENA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Sung; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This paper show the economic evaluation of seawater desalination in the MENA(Middle East and North Africa) by using nuclear source. Especially the evaluation of economics is performed based on comparing the SMART(System integrated Modular Advanced Reactor) developed in Korea with general Combined Cycle Gas Turbine. Taken the economic analysis together, the most important issues for economic feasibility are the management of the construction cost. SMART have a competitive when the construction cost is 3,000$/kWe. Thus plan for the management of the target construction cost will be reflected in the design process like a notion of modularity and mass production methods. Another way is the design optimization of SMART and facility of desalination in a view of the mechanical properties. In other words, it is a way to design improvements for eliminating or sharing of duplicate functions between SMART and desalination facility and maximization the efficiency of energy use. Finally, construction cost can be rationalized by reduce the construction lead time. The potential weakness of SMART is the long construction lead time as compared with alternative. Moreover considering the SMART is suitable for the country which is expected to have the most rapid economic growth in the near future, the construction lead time should be shorten. Managing these concepts to reduce the construction cost is enough to compensate for a disadvantage in power cost and water cost comparing with combined cycle.

  11. NHR-5 and research on its comprehensive utilization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yajun; Zheng Wenxiang; Su Qingshan; Zhang Dafang [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    The nuclear heating reactor (NHR) has been developed by the Institute of Nuclear Energy Technology, Tsinghua University. A series of advanced features are adopted in the design for the NHR to achieve a higher standard of safety. Therefore any off-site emergency actions such as sheltering, evacuation, relocation and decontamination are not needed. The NHR can be used in district heating, seawater desalination, providing low-pressure steam for industrial process and as a heat source for agriculture and breed aquatics. The main design features and safety concepts of the NHR will be described. The main experimental results carried on the NHR-5 will be discussed and the study on the comprehensive utilization of NHR and relative experiments will be presented. (author)

  12. Desalination and Water Recycling by Air Gap Membrane Distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; de Haan, A.B.

    2006-01-01

    Membrane distillation (MD) is an emerging technology for desalination. Membrane distillation differs from other membrane technologies in that the driving force for desalination is the difference in vapour pressure of water across the membrane, rather than total pressure. The membranes for MD are

  13. Wireless desalination using inductively powered porous carbon electrodes

    NARCIS (Netherlands)

    Kuipers, J.; Porada, S.

    2013-01-01

    Water desalination by capacitive deionization (CDI) uses electrochemical cell pairs formed of porous carbon electrodes, which are brought in contact with the water that must be desalinated. Upon applying a cell voltage or current between the electrodes, ions are electrosorbed and water is produced

  14. Water recycling and desalination by air gap membrane distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; Haan, de A.B.

    2005-01-01

    Because salt and other small components are the most common compounds in wastewater from the process industry, desalination techniques are likely to be suitable as treatment processes in many cases. Although membrane distillation (MD) is a well-known technology for desalination and water treatment,

  15. Wireless desalination using inductively powered porous carbon electrodes

    NARCIS (Netherlands)

    Kuipers, J.; Porada, S.

    2013-01-01

    Water desalination by capacitive deionization (CDI) uses electrochemical cell pairs formed of porous carbon electrodes, which are brought in contact with the water that must be desalinated. Upon applying a cell voltage or current between the electrodes, ions are electrosorbed and water is produced o

  16. Desalination and water recycling by air gap membrane distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; Haan, de A.B.

    2006-01-01

    Membrane distillation (MD) is an emerging technology for desalination. Membrane distillation differs from other membrane technologies in that the driving force for desalination is the difference in vapour pressure of water across the membrane, rather than total pressure. The membranes for MD are hyd

  17. Molten-salt reactors for efficient nuclear fuel utilization without plutonium separation

    Energy Technology Data Exchange (ETDEWEB)

    Engel, J.R.; Grimes, W.R.; Rhoades, W.A.; Dearing, J.F.

    1978-08-01

    Research and development studies of molten-salt reactors (MSRs) for special purposes have been under way since 1947 and for possible application as possible commercial nuclear electric power generators since 1956. For the latter, the previous emphasis has been on breeding performance and low fissile inventory to help limit the demand on nonrenewable natural resources (uranium) in an expanding nuclear economy; little or no thought has been given to alternative uses of nuclear fuels such as proliferation of nuclear explosives. As a consequence, the conceptual designs that evolved (e.g., the ORNL reference design MSBR) all favored enriched /sup 233/U as fuel with an on-site chemical processing facility from which portions of that fuel could be diverted fairly easily. With the current interest in limiting the proliferation potential of nuclear electric power systems, a redirected study of MSRs was undertaken in an effort to identify conceptual systems that would be attractive in this situation. It appears that practical proliferation-resistant MSRs could be designed and built, and the report describes a particularly attractive break-even breeder that includes an on-site chemical reprocessing facility within the reactor primary containment.

  18. Adsorption Characteristics of Water and Silica Gel System for Desalination Cycle

    KAUST Repository

    Cevallos, Oscar R.

    2012-07-01

    An adsorbent suitable for adsorption desalination cycles is essentially characterized by a hydrophilic and porous structure with high surface area where water molecules are adsorbed via hydrogen bonding mechanism. Silica gel type A++ possesses the highest surface area and exhibits the highest equilibrium uptake from all the silica gels available in the market, therefore being suitable for water desalination cycles; where adsorbent’s adsorption characteristics and water vapor uptake capacity are key parameters in the compactness of the system; translated as feasibility of water desalination through adsorption technologies. The adsorption characteristics of water vapor onto silica gel type A++ over a temperature range of 30 oC to 60 oC are investigated in this research. This is done using water vapor adsorption analyzer utilizing a constant volume and variable pressure method, namely the Hydrosorb-1000 instrument by Quantachrome. The experimental uptake data is studied using numerous isotherm models, i. e. the Langmuir, Tóth, generalized Dubinin-Astakhov (D-A), Dubinin-Astakhov based on pore size distribution (PSD) and Dubinin-Serpinski (D-Se) isotherm for the whole pressure range, and for a pressure range below 10 kPa, proper for desalination cycles; isotherms type V of the International Union of Pure and Applied Chemistry (IUPAC) classification were exhibited. It is observed that the D-A based on PSD and the D-Se isotherm models describe the best fitting of the experimental uptake data for desalination cycles within a regression error of 2% and 6% respectively. All isotherm models, except the D-A based on PSD, have failed to describe the obtained experimental uptake data; an empirical isotherm model is proposed by observing the behavior of Tóth and D-A isotherm models. The new empirical model describes the water adsorption onto silica gel type A++ within a regression error of 3%. This will aid to describe the advantages of silica gel type A++ for the design of

  19. Diagnostic utility of hepatocyte nuclear factor 1-beta immunoreactivity in endometrial carcinomas: lack of specificity for endometrial clear cell carcinoma.

    Science.gov (United States)

    Fadare, Oluwole; Liang, Sharon X

    2012-12-01

    Hepatocyte nuclear factor 1-beta (HNF1β) has recently emerged as a relatively sensitive and specific marker for ovarian clear cell carcinoma. The purpose of this study is to assess the diagnostic utility of this marker for endometrial clear cell carcinoma. Immunohistochemical analysis was performed on 75 endometrial tissues using a goat polyclonal antibody raised against a peptide mapping at the C-terminus of human HNF1β protein. The 75 cases included 15 clear cell carcinomas, 20 endometrioid carcinomas, 15 endometrial serous carcinomas/uterine papillary serous carcinomas, 20 cases of normal endometrium, 2 cases of clear cell metaplasia, and 3 cases of Arias Stella reaction. Staining interpretations were based on a semiquantitative scoring system, a 0 to 12+ continuous numerical scale that was derived by multiplying the extent of staining (0 to 4+ scale) by the intensity of staining (0 to 3+ scale) for each case. HNF1β expression was found to be present in a wide spectrum of tissues. Twenty-seven (54%) of the 50 carcinomas displayed at least focal nuclear HNF1β expression, including 11 (73%) of 15, 9 (60%) of 15, and 7 (35%) of 20 clear cell, serous, and endometrioid carcinomas, respectively. The average nuclear staining scores for clear cell carcinomas, endometrioid carcinomas, and serous carcinomas were 5.2, 1.4, and 4.1, respectively. Clear cell carcinomas and endometrioid carcinomas displayed statistically significant differences regarding their nuclear staining scores (P = 0.0027), but clear cell carcinomas and endometrial serous carcinomas did not (P = 0.45). The calculated sensitivity of any nuclear HNF1β expression in classifying a carcinoma as being of the clear cell histotype was 73%, whereas the specificity was 54%. Nineteen of 20 normal endometrium samples displayed at least focal nuclear expression of HNF1β, and this expression was often diffuse. The 5 cases of benign histologic mimics of clear cell carcinomas (Arias Stella reaction and clear

  20. Electro-desalination of glazed tile panels - discussion of possibilities

    DEFF Research Database (Denmark)

    Dias-Ferreira, Célia; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2016-01-01

    Glaze is lost from tiles in tile panels due to presence of soluble salts and this means loss of important heritage. The present paper discusses the possibility to apply electro-desalination. An in-situ test has not been performed yet, but encouraging results have been obtained with different parts...... of the system. Single tiles, a variety of porous stones and the mortar on the back of a tile have all been electro-desalinated successfully in laboratory scale. Thus individually, all parts of the wall with tile panel can be electro-desalinated. The interface between mortar and tile can be problematic....... In the few experiments conducted on tiles with attached mortar, the mortar was desalinated to a higher degree than the biscuit and successful desalination of the biscuit through the mortar requires further research. In-situ pilot scale tests were performed on highly salt-contaminated walls without tiles...

  1. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel.

    Science.gov (United States)

    Meng, Fanyu; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Guodong; Fan, Qingxin; Wei, Liangliang; Ding, Jing; Zheng, Zhen

    2014-04-01

    Microbial desalination cells (MDCs) with common liquid anodic substrate exhibit a slow startup and destructive pH drop, and abiotic cathodes have high cost and low sustainability. A biocathode MDC with dewatered sludge as fuel was developed for synergistic desalination, electricity generation and sludge stabilization. Experimental results indicated that the startup period was reduced to 3d, anodic pH was maintained between 6.6 and 7.6, and high stability was shown under long-term operation (300d). When initial NaCl concentrations were 5 and 10g/L, the desalinization rates during stable operation were 46.37±1.14% and 40.74±0.89%, respectively. The maximum power output of 3.178W/m(3) with open circuit voltage (OCV) of 1.118V was produced on 130d. After 300d, 25.71±0.15% of organic matter was removed. These results demonstrated that dewatered sludge was an appropriate anodic substrate to enhance MDC stability for desalination and electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.

    Science.gov (United States)

    Luo, Haiping; Jenkins, Peter E; Ren, Zhiyong

    2011-01-01

    The versatility of bioelectrochemical systems (BESs) makes them promising for various applications, and good combinations could make the system more applicable and economically effective. An integrated BES called microbial electrolysis and desalination cell (MEDC) was developed to concurrently desalinate salt water, produce hydrogen gas, and potentially treat wastewater. The reactor is divided into three chambers by inserting a pair of ion exchange membranes, with each chamber serving one of the three functions. With an added voltage of 0.8 V, lab scale batch study shows the MEDC achieved the highest H(2) production rate of 1.5 m(3)/m(3) d (1.6 mL/h) from the cathode chamber, while also removing 98.8% of the 10 g/L NaCl from the middle chamber. The anode recirculation alleviated pH and high salinity inhibition on bacterial activity and further increased system current density from 87.2 to 140 A/m(3), leading to an improved desalination rate by 80% and H(2) production by 30%. Compared to slight changes in desalination, H(2) production was more significantly affected by the applied voltage and cathode buffer capacity, suggesting cathode reactions were likely affected by the external power supply in addition to the anode microbial activity.

  3. Integrated experimental investigation and mathematical modeling of brackish water desalination and wastewater treatment in microbial desalination cells.

    Science.gov (United States)

    Ping, Qingyun; Huang, Zuyi; Dosoretz, Carlos; He, Zhen

    2015-06-15

    Desalination of brackish water can provide freshwater for potable use or non potable applications such as agricultural irrigation. Brackish water desalination is especially attractive to microbial desalination cells (MDCs) because of its low salinity, but this has not been well studied before. Herein, three brackish waters prepared according to the compositions of actual brackish water in three locations in Israel were examined with domestic wastewater as an electron source in a bench-scale MDC. All three brackish waters could be effectively desalinated with simultaneous wastewater treatment. The MDC achieved the highest salt removal rate of 1.2 g L(-1) d(-1) with an initial salinity of 5.9 g L(-1) and a hydraulic retention time (HRT) of 0.8 d. The desalinated brackish water could meet the irrigation standard of both salinity (450 mg L(-1) TDS) and the concentrations of major ionic species, given a sufficient HRT. The MDC also accomplished nearly 70% removal of organic compounds in wastewater with Coulombic efficiency varied between 5 and 10%. A previously developed MDC model was improved for brackish water desalination, and could well predict salinity variation and the concentrations of individual ions. The model also simulated a staged operation mode with improved desalination performance. This integrated experiment and mathematical modeling approach provides an effective method to understand the key factors in brackish water desalination by MDCs towards further system development.

  4. Needs and processes for the sea water desalination; Besoins et Procedes pour le dessalement de l'eau de mer

    Energy Technology Data Exchange (ETDEWEB)

    Livet, F. [Institut National Polytechnique (INPG-UJF), SIMaP, UMR CNRS 5266, 38 - Grenoble (France)

    2007-11-15

    The author shows the needs of the sea water desalination for the dry countries. The main technique is the reverse osmosis. It requires electricity and its development needs big electric power plants. For economical and ecological reasons, the nuclear energy seems well appropriate. Libya is for instance very interested in this technique, because of their water shortage problem. (A.L.B.)

  5. Bioelectricity inhibits back diffusion from the anolyte into the desalinated stream in microbial desalination cells.

    Science.gov (United States)

    Ping, Qingyun; Porat, Oded; Dosoretz, Carlos G; He, Zhen

    2016-01-01

    Microbial desalination cells (MDCs) taking advantage of energy in wastewater to drive desalination represent a promising approach for energy-efficient desalination, but concerns arise whether contaminants in wastewater could enter the desalinated stream across ion exchange membranes. Such back diffusion of contaminants from the anolyte into the desalinated stream could be controlled by two mechanisms, Donnan effect and molecule transport. This study attempted to understand those mechanisms for inorganic and organic compounds in MDCs through two independently conducted experiments. Donnan effect was found to be the dominant mechanism under the condition without current generation. Under open circuit condition, the MDC fed with 5 g L(-1) salt solution exhibited 1.9 ± 0.7%, 10.3 ± 1.3%, and 1.8 ± 1.2% back diffusion of acetic, phosphate, and sulfate ions, respectively. Current generation effectively suppressed Donnan effect from 68.2% to 7.2%, and then molecule transport became more responsible for back diffusion. A higher initial salt concentration (35 g L(-1)) and a shorter HRT (1.0 d) led to the highest concentration gradient, resulting in the most back diffusion of 7.1 ± 1.2% and 6.8 ± 3.1% of phosphate and sulfate ions, respectively. Three representative organic compounds were selected for test, and it was found that organic back diffusion was intensified with a higher salt concentration gradient and molecular weight played an important role in compound movement. Principal component analysis confirmed the negative correlation between Donnan effect and current, and the positive correlation between molecule transport and concentration gradient related conditions.

  6. Strategies for merging microbial fuel cell technologies in water desalination processes: Start-up protocol and desalination efficiency assessment

    Science.gov (United States)

    Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel

    2017-07-01

    Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: treatment method combined with other well established desalination technologies such as reverse osmosis (RO) or reverse electrodialysis.

  7. Numerical simulation and performance investigation of an advanced adsorption desalination cycle

    KAUST Repository

    Thu, Kyaw

    2013-01-01

    Low temperature waste heat-driven adsorption desalination (AD) cycles offer high potential as one of the most economically viable and environmental-friendly desalination methods. This article presents the development of an advanced adsorption desalination cycle that employs internal heat recovery between the evaporator and the condenser, utilizing an encapsulated evaporator-condenser unit for effective heat transfer. A simulation model has been developed based on the actual sorption characteristics of the adsorbent-adsorbate pair, energy and mass balances applied to the components of the AD cycle. With an integrated design, the temperature in the evaporator and the vapor pressurization of the adsorber are raised due to the direct heat recovery from the condenser, resulting in the higher water production rates, typically improved by as much as three folds of the conventional AD cycle. In addition, the integrated design eliminates two pumps, namely, the condenser cooling water and the chilled water pumps, lowering the overall electricity consumption. The performance of the cycle is analyzed at assorted heat source and cooling water temperatures, and different cycle times as well as the transient heat transfer coefficients of the evaporation and condensation. © 2012 Elsevier B.V.

  8. State of the environment in the arrangement area of the enterprises for repairing and utilization of nuclear-powered submarines.

    Science.gov (United States)

    Dovgusha; Bychenkov; Blekher; Belyaev; Krupkin; Kovygin; Puzikov; Ryabchikov; Stepanov; Toropov

    2001-01-01

    The influence of nuclear-powered utilization (disjunction) upon the state of health of the soil, vegetation and atmospheric air was studied. It was stated that the concentration of hazardous metals in the air of an industrial site did not exceed the permissible levels. In the residential area the cases of increased concentrations of manganese and chromium were noted. The major pollutants of vegetation are manganese, titanium, copper and nickel. The authors propose a complex of anthropogenic factors to be the cause of the environmental contamination by hard metals. The volume activity of radioactive aerosols in the studied site is confined to the local hum.

  9. Desalination using low grade heat sources

    Science.gov (United States)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  10. Utilization of spent PWR fuel-advanced nuclear fuel cycle of PWR/CANDU synergism

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-Dong; XIE Zhong-Sheng

    2004-01-01

    High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexibility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nuclear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (~22.5%), increase the energy output (~41%), decrease the quantity of spent fuels to be disposed (~2/3) and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modification of the reactor core structure and operation mode. It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.

  11. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  12. Why do local communities support or oppose seawater desalination?

    Science.gov (United States)

    Mirza Ordshahi, B.; Heck, N.; Faraola, S.; Paytan, A.; Haddad, B.; Potts, D. C.

    2016-12-01

    Freshwater shortages have become a global problem due to increasing water consumption and environmental changes which are reducing the reliability of traditional water resources. One option to address water shortages in coastal areas is the use of seawater desalination. Desalination technology is particularly valued for the production of high quality drinking water and consistent production. However, seawater desalination is controversial due to potential environmental, economic, and societal impacts and lack of public support for this water supply method. Compared to alternative potable water production methods, such as water recycling, little is known about public attitudes towards seawater desalination and factors that shape local support or rejection. Our research addresses this gap and explores variables that influence support for proposed desalination plants in the Monterey Bay region, where multiple facilities have been proposed in recent years. Data was collected via a questionnaire-based survey among a random sample of coastal residents and marine stakeholders between June-July, 2016. Findings of the study identify the influence of socio-demographic variables, knowledge about desalination, engagement in marine activities, perception of the environmental context, and the existence of a National Marine Sanctuary on local support. Research outcome provide novel insights into public attitudes towards desalination and enhances our understanding of why communities might support or reject this water supply technology.

  13. Utilization of Minor Actinides (Np, Am, Cm) in Nuclear Power Reactor

    Science.gov (United States)

    Gerasimov, A.; Bergelson, B.; Tikhomirov, G.

    2014-06-01

    Calculation research of the utilization process of minor actinides (transmutation with use of power released) is performed for specialized power reactor of the VVER type operating on the level of electric power of 1000 MW. Five subsequent cycles are considered for the reactor with fuel elements containing minor actinides along with enriched uranium. It was shown that one specialized reactor for the one cycle (900 days) can utilize minor actinides from several VVER-1000 reactors without any technological and structural modifications. Power released because of minor actinide fission is about 4% with respect to the total power

  14. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  15. Projected world market for seawater desalination equipment

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    A forecast is presented of the market for seawater desalination plants. The conclusions presented herein are based on a number of sources of information, of which the most important are: responses to questionnaires mailed to 300 cognizant water agencies in 61 countries; the published market growth trend over the period 1971 to 1983; and an analysis of the geography, rainfall, population, industrial growth, and energy availability in the respective countries. Analysis suggests the possibility that financing, although currently a major stumbling block to the purchase of desalting plants, may be effected by an exchange program in which the purchaser of plants will offer some exportable product(s) in exchange. The forecast suggests the likelihood that the seawater desalination market is becoming saturated. A plateau is expected to develop in new plant sales of additional capacity in the immediate future, followed by a downturn by the end of the century. This report, however, emphasizes the importance of the replacement market, which will involve substantial sales to replace worn-out and obsolescent equipment. The combined new-plus-replacement annual sales can be expected to reach 1.25 million m/sup 3//d (330 Mgd) by the year 2000. Seawater reverse osmosis (SWRO) is expected to represent 270,000 m/sup 3//d (70 Mgd) by the end of the century because of technological improvements in membrane systems and components.

  16. Yeast fuel cell: Application for desalination

    Science.gov (United States)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  17. Nanoporous Carbon Nitride: A High Efficient Filter for Seawater Desalination

    CERN Document Server

    Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2015-01-01

    The low efficiency of commercially-used reverse osmosis (RO) membranes has been the main obstacle in seawater desalination application. Here, we report the auspicious performance, through molecular dynamics simulations, of a seawater desalination filter based on the recently-synthesized graphene-like carbon nitride (g-C2N) [Nat. Commun., 2015, 6, 6486]. Taking advantage of the inherent nanopores and excellent mechanical properties of g-C2N filter, highly efficient seawater desalination can be achieved by modulating the nanopores under tensile strain. The water permeability can be improved by two orders of magnitude compared to RO membranes, which offers a promising approach to the global water shortage solution.

  18. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2010-01-01

    softeners. This paper describes potential economic consequences of diluting Copenhagen's drinking water with desalinated water. With a mineral content at 50% of current levels, dental caries and cardiovascular diseases are expected to increase by 51 and 23% respectively. Meanwhile, the number of dish...... going from fresh water based to desalinated water supply. Large uncertainties prevent the current results from being used for or against desalination as an option for Copenhagen's water supply. In the future, more impacts and an uncertainty analysis will be added to the assessment....

  19. Rotating carbon nanotube membrane filter for water desalination

    Science.gov (United States)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-05-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology.

  20. Rotating carbon nanotube membrane filter for water desalination.

    Science.gov (United States)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-05-18

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology.

  1. A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination.

    Science.gov (United States)

    Zuo, Kuichang; Cai, Jiaxiang; Liang, Shuai; Wu, Shijia; Zhang, Changyong; Liang, Peng; Huang, Xia

    2014-08-19

    The architecture and performance of microbial desalination cell (MDC) have been significantly improved in the past few years. However, the application of MDC is still limited in a scope of small-scale (milliliter) reactors and high-salinity-water desalination. In this study, a large-scale (>10 L) stacked MDC packed with mixed ion-exchange resins was fabricated and operated in the batch mode with a salt concentration of 0.5 g/L NaCl, a typical level of domestic wastewater. With circulation flow rate of 80 mL/min, the stacked resin-packed MDC (SR-MDC) achieved a desalination efficiency of 95.8% and a final effluent concentration of 0.02 g/L in 12 h, which is comparable with the effluent quality of reverse osmosis in terms of salinity. Moreover, the SR-MDC kept a stable desalination performance (>93%) when concentrate volume decreased from 2.4 to 0.1 L (diluate/concentrate volume ratio increased from 1:1 to 1:0.04), where only 0.875 L of nonfresh water was consumed to desalinate 1 L of saline water. In addition, the SR-MDC achieved a considerable desalination rate (95.4 mg/h), suggesting a promising application for secondary effluent desalination through deriving biochemical electricity from wastewater.

  2. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    Science.gov (United States)

    Zubrin, Robert M.

    1991-01-01

    The following paper reports on a design study of a novel space transportation concept known as a 'NIMF' (Nuclear rocket using Indigenous Martian Fuel). The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO2. This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34,000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface.

  3. Mathematical model of dynamic behavior of microbial desalination cells for simultaneous wastewater treatment and water desalination.

    Science.gov (United States)

    Ping, Qingyun; Zhang, Chenyao; Chen, Xueer; Zhang, Bo; Huang, Zuyi; He, Zhen

    2014-11-04

    Microbial desalination cells (MDCs) are an emerging concept for simultaneous wastewater treatment and water desalination. This work presents a mathematical model to simulate dynamic behavior of MDCs for the first time through evaluating multiple factors such as organic supply, salt loading, and current generation. Ordinary differential equations were applied to describe the substrate as well as bacterial concentrations in the anode compartment. Local sensitivity analysis was employed to select model parameters that needed to be re-estimated from the previous studies. This model was validated by experimental data from both a bench- and a large-scale MDC system. It could fit current generation fairly well and simulate the change of salt concentration. It was able to predict the response of the MDC with time under various conditions, and also provide information for analyzing the effects of different operating conditions. Furthermore, optimal operating conditions for the MDC used in this study were estimated to have an acetate flow rate of 0.8 mL·min(-1), influent salt concentration of 15 g·L(-1) and salt solution flow rate of 0.04 mL·min(-1), and to be operated with an external resistor less than 30 Ω. The MDC model will be helpful with determining operational parameters to achieve optimal desalination in MDCs.

  4. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)

    2006-07-01

    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  5. Formulation and utilization of choline based samples for dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bowen, Sean; Ardenkjær-Larsen, Jan Henrik

    2013-01-01

    Hyperpolarization by the dissolution dynamic nuclear polarization (DNP) technique permits the generation of high spin polarization of solution state. However, sample formulation for dissolution-DNP is often difficult, as concentration and viscosity must be optimized to yield a dissolved sample...... with sufficient concentration, while maintaining polarization during the dissolution process. The unique chemical properties of choline permit the generation of highly soluble salts as well as deep eutectic mixtures with carboxylic acids and urea. We describe the formulation of these samples and compare...... their performance to more traditional sample formulations. Choline yields stable samples with exceptional polarization performance while simultaneously offering the capability to easily remove the choline after dissolution, perform experiments with the hyperpolarized choline, or anything in between....

  6. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Collette, R.; Douglas, J.; Patterson, L.; Bahun, G. [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); Keiser, D.; Schulthess, J. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2015-07-15

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellular measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.

  7. Can the Adoption of Desalination Technology Lead to Aquifer Preservation? A Case Study of a Sociotechnical Water System in Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Jamie McEvoy

    2015-09-01

    Full Text Available There is growing concern about the sustainability of groundwater supplies worldwide. In many regions, desalination—the conversion of saline water to freshwater—is viewed as a way to increase water supplies and reduce pressure on overdrawn aquifers. Using data from reports, articles, interviews, a survey, and a focus group, this paper examines if, and how, the adoption of desalination technology can lead to aquifer preservation in Baja California Sur (BCS, Mexico. The paper outlines existing institutional arrangements (i.e., laws, rules, norms, or organizations surrounding desalination in BCS and concludes that there are currently no effective mechanisms to ensure aquifer preservation. Four mechanisms that could be implemented to improve groundwater management are identified, including: 1 integrated water-and land-use planning; 2 creation of an institute responsible for coordinated and consistent planning; 3 improved groundwater monitoring; and 4 implementation of water conservation measures prior to the adoption of desalination technology. This paper concludes that viewing water technologies, including desalination, as sociotechnical systems—i.e., a set of technological components that are embedded in complex social, political, and economic contexts—has the potential to create a more sustainable human–environment–technology relationship. By assessing desalination technology as a sociotechnical system, this study highlights the need to focus on institutional development and capacity building, especially within local water utilities and urban planning agencies.

  8. 船舶海水淡化技术现状及研究进展%THE RESEARCH OF SITUATION AND DEVELOPMENT FOR SHIP SEAWATER DESALINATION TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    史林海; 王晓娟; 王银涛

    2012-01-01

    This paper summarizes the current situation of China's seawater utilization. According to the principles and characteristics of the different ship desalination technologies, the article analyzed current situation research and newest progresses in the ship desalination. The new methods in the seawater desalination, theoretical and experimental study of seawater desalination device and the development and application of membrane material had been overviewed and analyzed. At last, the article indicated the problem of our ship seawater desalination and put forward proposals for its development trend.%总结了我国海水利用现状,针对不同船舶海水淡化技术的原理和特点,分析了船舶海水淡化的研究现状和最新进展.在新的海水淡化方法、装置的理论及实验研究、膜材料的发展和应用方面作了阐述和分析,对我国船舶海水淡化技术目前存在的问题和发展方向提出了建议.

  9. Algal blooms: an emerging threat to seawater reverse osmosis desalination

    KAUST Repository

    Villacorte, Loreen O.

    2014-08-04

    Seawater reverse osmosis (SWRO) desalination technology has been rapidly growing in terms of installed capacity and global application over the last decade. An emerging threat to SWRO application is the seasonal proliferation of microscopic algae in seawater known as algal blooms. Such blooms have caused operational problems in SWRO plants due to clogging and poor effluent quality of the pre-treatment system which eventually forced the shutdown of various desalination plants to avoid irreversible fouling of downstream SWRO membranes. This article summarizes the current state of SWRO technology and the emerging threat of algal blooms to its application. It also highlights the importance of studying the algal bloom phenomena in the perspective of seawater desalination, so proper mitigation and preventive strategies can be developed in the near future. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  10. Electrokinetic desalination of sandstones for NaCl removal

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben V.

    2012-01-01

    of reliable methods to remove the damaging salts in order to stop the decay. Electrokinetic desalination of fired clay bricks have previously shown efficient in laboratory scale and in the present work the method is tested for desalination of Cotta and Posta sandstones, which both have lower porosity than...... the bricks studied. The stones were contaminated with NaCl by submersion prior to the desalination experiments, where an electric DC field was applied to the stones from electrodes placed in clay poultice. Two poultice types were tested: calcareous clay used brick production and a mixture of kaolinite...... surface) applied. At the end of all desalination experiments the water content in the poultice at the cathode was higher than in the poultice at the anode, revealing electroosmotic water transport. The water profiles in the stones, however, did not indicate electoosmosis as they were quite uniform within...

  11. Desalination by biomimetic aquaporin membranes: Review of status and prospects

    DEFF Research Database (Denmark)

    Tang, C.Y.; Zhao, Y.; Wang, R.

    2013-01-01

    Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review is to prov......Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review...... is to provide an overview of the properties of aquaporins, their preparation and characterization. We discuss the challenges in exploiting the remarkable properties of aquaporin proteins for membrane separation processes and we present various attempts to construct aquaporin in membranes for desalination......; including an overview of our own recent developments in aquaporin-based membranes. Finally we outline future prospects of aquaporin based biomimetic membrane for desalination and water reuse....

  12. Desalination leading to Salinity Variations in Kuwait Marine Waters

    Directory of Open Access Journals (Sweden)

    Ahmad E. Al-Dousari

    2009-01-01

    Full Text Available Problem statements: The salinity of seawater is a critical issue for desalination process. Approach: The salinity changes in the coastal waters of Kuwait due to large scale power and desalination activity were evaluated. Results: Systematic sampling campaigns were planned to cover the uptake and outfall of the desalination plant spreading evenly the sampling points to cover the freshwater input zone of Arabian Gulf in north. The salinity observations are critical both for the desalination process and for integrity of the marine environment, which is critical in case of Kuwait. Conclusion/Recommendations: The results showed compliance of Kuwait EPA salinity standard in the area with a difference of around 4 ppt salinity increase at outfall compared to uptake zone.

  13. Solar-Powered Desalination: A Modelling and Experimental Study

    Science.gov (United States)

    Leblanc, Jimmy; Andrews, John

    2007-10-01

    Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger

  14. Improvement of water desalination technologies in reverse osmosis plants

    Science.gov (United States)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  15. An innovative psychometric solar-powered water desalination system

    OpenAIRE

    Shatat, Mahmood; Riffat, Saffa; Gan, Guohui

    2016-01-01

    Important advances have been made in solar water desalination technology but their wide application is restricted by relatively high capital and running costs. Until recently, solar concentrator collectors had usually been employed to distill water in compact desalination systems. Currently, it is possible to replace these collectors by the more efficient evacuated tube collectors, which are now widely available on the market at lower prices. This paper describes the results of experimental a...

  16. Tunable C2N Membrane for High Efficient Water Desalination

    OpenAIRE

    Yanmei Yang; Weifeng Li; Hongcai Zhou; Xiaoming Zhang; Mingwen Zhao

    2016-01-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently re...

  17. Development and Extension of Seawater Desalination by Reverse Osmosis

    Institute of Scientific and Technical Information of China (English)

    高从堦

    2003-01-01

    Seawater desalination has been people's fond dream since ancient times, the dream isnow becoming a reality. This paper presents a brief development history of reverse osmosis. Muchattention was paid to innovative development in membranes, modules, equipments and appliedtechnology, including asymmetric and composite membranes, spiral-wound element and hollow fibermodule, energy recovery equipments and different technological processes. The extension of reverseosmosis, such as desalination, pre-concentration, integrated processes and nanofiltration, is alsobriefly mentioned.

  18. Solar membrane distillation: desalination for the Navajo Nation.

    Science.gov (United States)

    Karanikola, Vasiliki; Corral, Andrea F; Mette, Patrick; Jiang, Hua; Arnoldand, Robert G; Ela, Wendell P

    2014-01-01

    Provision of clean water is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. One clear example is the Navajo Nation. The reservation covers 27,000 square miles, mainly in northeastern Arizona. Low population density coupled with water scarcity and impairment makes provision of clean water particularly challenging. The Navajos rely primarily on ground water, which is often present in deep aquifers or of brackish quality. Commonly, reverse osmosis (RO) is chosen to desalinate brackish ground water, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies demand technical experience for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling sources of heat and does not require extensive operational experience. This presentation discusses a project on the Navajo Nation, Arizona (Native American tribal lands) that is designed to investigate and deploy an autonomous (off-grid) system to pump and treat brackish groundwater using solar energy. Βench-scale, hollow fiber MD experiment results showed permeate water fluxes from 21 L/m2·d can be achieved with transmembrane temperature differences between 40 and 80˚C. Tests run with various feed salt concentrations indicate that the permeate flux decreases only about 25% as the concentration increases from 0 to 14% (w/w), which is four times seawater salt

  19. Operational strategy of adsorption desalination systems

    KAUST Repository

    Thu, Kyaw

    2009-03-01

    This paper presents the performances of an adsorption desalination (AD) system in two-bed and four-bed operational modes. The tested results are calculated in terms of key performance parameters namely, (i) specific daily water production (SDWP), (ii) cycle time, and (iii) performance ratio (PR) for various heat source temperatures, mass flow rates, cycle times along with a fixed heat sink temperature. The optimum input parameters such as driving heat source and cycle time of the AD cycle are also evaluated. It is found from the present experimental data that the maximum potable water production per tonne of adsorbent (silica gel) per day is about 10 m3 whilst the corresponding performance ratio is 0.61, and a longer cycle time is required to achieve maximum water production at lower heat source temperatures. This paper also provides a useful guideline for the operational strategy of the AD cycle. © 2008 Elsevier Ltd. All rights reserved.

  20. Deionization and desalination using electrostatic ion pumping

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O& #x27; Brien, Kevin C.; Cussler, Edward

    2013-06-11

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  1. Deionization and desalination using electrostatic ion pumping

    Science.gov (United States)

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O'Brien, Kevin C.; Cussler, Edward

    2011-07-19

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  2. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  3. Predicting the Specific Energy Consumption of Reverse Osmosis Desalination

    Directory of Open Access Journals (Sweden)

    Ashlynn S. Stillwell

    2016-12-01

    Full Text Available Desalination is often considered an approach for mitigating water stress. Despite the abundance of saline water worldwide, additional energy consumption and increased costs present barriers to widespread deployment of desalination as a municipal water supply. Specific energy consumption (SEC is a common measure of the energy use in desalination processes, and depends on many operational and water quality factors. We completed multiple linear regression and relative importance statistical analyses of factors affecting SEC using both small-scale meta-data and municipal-scale empirical data to predict the energy consumption of desalination. Statistically significant results show water quality and initial year of operations to be significant and important factors in estimating SEC, explaining over 80% of the variation in SEC. More recent initial year of operations, lower salinity raw water, and higher salinity product water accurately predict lower values of SEC. Economic analysis revealed a weak statistical relationship between SEC and cost of water production. Analysis of associated greenhouse gas (GHG emissions revealed important considerations of both electricity source and SEC in estimating the GHG-related sustainability of desalination. Results of our statistical analyses can aid decision-makers by predicting the SEC of desalination to a reasonable degree of accuracy with limited data.

  4. Reverse osmosis desalination: water sources, technology, and today's challenges.

    Science.gov (United States)

    Greenlee, Lauren F; Lawler, Desmond F; Freeman, Benny D; Marrot, Benoit; Moulin, Philippe

    2009-05-01

    Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.

  5. Economics of Renewable Energy for Water Desalination in Developing Countries

    Directory of Open Access Journals (Sweden)

    Enas R. Shouman

    2015-12-01

    Full Text Available The aim of this study is to investigate the economics of renewable energy- powered desalination, as applied to water supply for remote coastal and desert communities in developing countries. In this paper, the issue of integration of desalination technologies and renewable energy from specified sources is addressed. The features of Photovoltaic (PV system combined with reverse osmosis desalination technology, which represents the most commonly applied integration between renewable energy and desalination technology, are analyzed. Further, a case study for conceptual seawater reverse osmosis (SW-RO desalination plant with 1000 m3 /d capacity is presented, based on PV and conventional generators powered with fossil fuel to be installed in a remote coastal area in Egypt, as a typical developing country. The estimated water cost for desalination with PV/ SW-RO system is about $1.25 m3 , while ranging between $1.22-1.59 for SW-RO powered with conventional generator powered with fossil fuel. Analysis of the economical, technical and environmental factors depicts the merits of using large scale integrated PV/RO system as an economically feasible water supply relying upon a renewable energy source.

  6. Emerging desalination technologies for water treatment: a critical review.

    Science.gov (United States)

    Subramani, Arun; Jacangelo, Joseph G

    2015-05-15

    In this paper, a review of emerging desalination technologies is presented. Several technologies for desalination of municipal and industrial wastewater have been proposed and evaluated, but only certain technologies have been commercialized or are close to commercialization. This review consists of membrane-based, thermal-based and alternative technologies. Membranes based on incorporation of nanoparticles, carbon nanotubes or graphene-based ones show promise as innovative desalination technologies with superior performance in terms of water permeability and salt rejection. However, only nanocomposite membranes have been commercialized while others are still under fundamental developmental stages. Among the thermal-based technologies, membrane distillation and adsorption desalination show the most promise for enhanced performance with the availability of a waste heat source. Several alternative technologies have also been developed recently; those based on capacitive deionization have shown considerable improvements in their salt removal capacity and feed water recovery. In the same category, microbial desalination cells have been shown to desalinate high salinity water without any external energy source, but to date, scale up of the process has not been methodically evaluated. In this paper, advantages and drawbacks of each technology is discussed along with a comparison of performance, water quality and energy consumption.

  7. Future sustainable desalination using waste heat: kudos to thermodynamic synergy

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-12-02

    There has been a plethora of published literature on thermally-driven adsorption desalination (AD) cycles for seawater desalination due to their favorable environmentally friendly attributes, such as the ability to operate with low-temperature heat sources, from either the renewable or the exhaust gases, and having almost no major moving parts. We present an AD cycle for seawater desalination due to its unique ability to integrate higher water production yields with the existing desalination methods such as reverse osmosis (RO), multi-stage flashing (MSF) and multi-effect distillation (MED), etc. The hybrid cycles exploit the thermodynamic synergy between processes, leading to significant enhancement of the systems\\' performance ratio (PR). In this paper, we demonstrate experimentally the synergetic effect between the AD and MED cycles that results in quantum improvement in water production. The unique feature is in the internal latent heat recovery from the condenser unit of AD to the top-brine stage of MED, resulting in a combined, or simply termed as MEAD, cycle that requires no additional heat input other than the regeneration of an adsorbent. The batch-operated cycles are simple to implement and require low maintenance when compared with conventional desalination methods. Together, they offer a low energy and environmentally friendly desalination solution that addresses the major issues of the water-energy-environment nexus. © 2016 The Royal Society of Chemistry.

  8. Water quality assessment of solar-assisted adsorption desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    This study focuses on the water quality assessment (feed, product and brine) of the pilot adsorption desalination (AD) plant. Seawater from the Red Sea is used as feed to the AD plant. Water quality tests are evaluated by complying the Environmental Protection Agency (EPA) standards with major primary and secondary inorganic drinking water pollutants and other commonly tested water quality parameters. Chemical testing of desalinated water at the post desalination stage confirms the high quality of produced fresh water. Test results have shown that the adsorption desalination process is very effective in eliminating all forms of salts, as evidenced by the significant reduction of the TDS levels from approximately 40,000. ppm in feed seawater to less than 10. ppm. Test results exhibit extremely low levels of parameters which are generally abundant in feed seawater. The compositions of seawater and process related parameters such as chloride, sodium, bromide, sulfate, calcium, magnesium, and silicate in desalinated water exhibit values of less than 0.1. ppm. Reported conductivity measurements of desalinated water are comparable to distilled water conductivity levels and ranged between 2 and 6. μS/cm while TOC and TIC levels are also extremely low and its value is less than 0.5. ppm. © 2014 Elsevier B.V.

  9. Method for Non-Intrusively Identifying a Contained Material Utilizing Uncollided Nuclear Transmission Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, John L.; Stephens, Alan G.; Grover Blaine S.

    1999-02-26

    An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.

  10. A sex-specific metabolite identified in a marine invertebrate utilizing phosphorus-31 nuclear magnetic resonance.

    Directory of Open Access Journals (Sweden)

    Robert A Kleps

    Full Text Available Hormone level differences are generally accepted as the primary cause for sexual dimorphism in animal and human development. Levels of low molecular weight metabolites also differ between men and women in circulating amino acids, lipids and carbohydrates and within brain tissue. While investigating the metabolism of blue crab tissues using Phosphorus-31 Nuclear Magnetic Resonance, we discovered that only the male blue crab (Callinectes sapidus contained a phosphorus compound with a chemical shift well separated from the expected phosphate compounds. Spectra obtained from male gills were readily differentiated from female gill spectra. Analysis from six years of data from male and female crabs documented that the sex-specificity of this metabolite was normal for this species. Microscopic analysis of male and female gills found no differences in their gill anatomy or the presence of parasites or bacteria that might produce this phosphorus compound. Analysis of a rare gynandromorph blue crab (laterally, half male and half female proved that this sex-specificity was an intrinsic biochemical process and was not caused by any variations in the diet or habitat of male versus female crabs. The existence of a sex-specific metabolite is a previously unrecognized, but potentially significant biochemical phenomenon. An entire enzyme system has been synthesized and activated only in one sex. Unless blue crabs are a unique species, sex-specific metabolites are likely to be present in other animals. Would the presence or absence of a sex-specific metabolite affect an animal's development, anatomy and biochemistry?

  11. Economic Analysis in Series-Distillation Desalination

    Directory of Open Access Journals (Sweden)

    Mirna Rahmah Lubis

    2010-06-01

    Full Text Available The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO and multi-stage flash (MSF cost more than potable water produced from fresh water resources. Therefore, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas the outgoing salt concentration was 1.5% and 7%, respectively. Distillation was performed at 439 K and 722 kPa for both brackish water feed and seawater feed. Water costs of the various conditions were calculated for brackish water and seawater feeds using optimum conditions considered as 25 and 20 stages, respectively. For brackish water at a temperature difference of 0.96 K, the energy requirement is 2.0 kWh/m3. At this condition, the estimated water cost is $0.39/m3 achieved with 10,000,000 gal/day distillate, 30-year bond, 5% interest rate, and $0.05/kWh electricity. For seawater at a temperature difference of 0.44 K, the energy requirement is 3.97 kWh/m3 and the estimated water cost is $0.61/m3. Greater efficiency of the vapor compression system is achieved by connecting multiple evaporators in series, rather than the traditional parallel arrangement. The efficiency results from the gradual increase of salinity in each stage of the series arrangement in comparison to parallel. Calculations using various temperature differences between boiling brine and condensing steam show the series arrangement has the greatest improvement at lower temperature differences. Keywords: desalination, dropwise condensation, mechanical-vapor compression

  12. The Utilization of Gleason Grade as the Primary Criterion for Ordering Nuclear Bone Scan in Newly Diagnosed Prostate Cancer Patients

    Directory of Open Access Journals (Sweden)

    Chad W. M. Ritenour

    2009-01-01

    Full Text Available Utilization of nuclear bone scans for staging newly diagnosed prostate cancer has decreased dramatically due to PSA-driven stage migration. The current criteria for performing bone scans are based on limited historical data. This study evaluates serum PSA and Gleason grade in predicting positive scans in a contemporary large series of newly diagnosed prostate cancer patients. Eight hundred consecutive cases of newly diagnosed prostate cancer over a 64-month period underwent a staging nuclear scan. All subjects had histologically confirmed cancer. The relationship between PSA, Gleason grade, and bone scan was examined by calculating series of crude, stratified, and adjusted odds ratios with corresponding 95% confidence intervals. Four percent (32/800 of all bone scans were positive. This proportion was significantly lower in patients with Gleason score ≤7 (1.9% vs. Gleason score ≥8 (18.8%, p 30 ng/ml compared to ≤30 ng/ml (p 10 ng/ml compared to ≤10 ng/ml (p = 0.002. The combination of Gleason score and PSA enhances predictability of bone scans in newly diagnosed prostate cancer patients. The PSA threshold for ordering bone scans should be adjusted according to Gleason score. For patients with Gleason scores ≤7, we recommend a bone scan if the PSA is >30 ng/ml. However, for patients with a high Gleason score (8–10, we recommend a bone scan if the PSA is >10 ng/ml.

  13. Utility of nuclear stress imaging for detecting coronary artery bypass graft disease

    Directory of Open Access Journals (Sweden)

    Al Aloul Basel

    2012-08-01

    Full Text Available Abstract Background The value of Single Photon Emission Computed Tomography stress myocardial perfusion imaging (SPECT-MPI for detecting graft disease after coronary artery bypass surgery (CABG has not been studied prospectively in an unselected cohort. Methods Radial Artery Versus Saphenous Vein Graft Study is a Veterans Affairs Cooperative Study to determine graft patency rates after CABG surgery. Seventy-nine participants agreed to SPECT-MPI within 24 hours of their coronary angiogram, one-year after CABG. The choice of the stress protocol was made at the discretion of the nuclear radiologist and was either a symptom-limited exercise test (n = 68 or an adenosine infusion (n = 11. The SPECT-MPI results were interpreted independent of the angiographic results and estimates of sensitivity, specificity and accuracy were based on the prediction of a graft stenosis of ≥70% on coronary angiogram. Results A significant stenosis was present in 38 (48% of 79 patients and 56 (22% of 251 grafts. In those stress tests with an optimal exercise heart rate response (>80% maximum predicted heart rate (n = 26 sensitivity, specificity and accuracy of SPECT-MPI for predicting the graft stenosis was 77%, 69% and 73% respectively. With adenosine (n = 11 it was 75%, 57% and 64%, respectively. Among participants with a suboptimal exercise heart rate response, the sensitivity of SPECT-MPI for predicting a graft stenosis was Conclusions Under optimal stress conditions, SPECT-MPI has a good sensitivity and accuracy for detecting graft disease in an unselected patient population 1 year post-CABG.

  14. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions.

    Science.gov (United States)

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong

    2012-02-21

    By combining the microbial electrolysis cell and the microbial desalination cell, the microbial electrolysis desalination cell (MEDC) becomes a novel device to desalinate salty water. However, several factors, such as sharp pH decrease and Cl(-) accumulation in the anode chamber, limit the MEDC development. In this study, a microbial electrolysis desalination and chemical-production cell (MEDCC) was developed with four chambers using a bipolar membrane. Results showed that the pH in the anode chamber of the MEDCC always remained near 7.0, which greatly enhanced the microbial activities in the cell. With applied voltages of 0.3-1.0 V, 62%-97% of Coulombic efficiencies were achieved from the MEDCC, which were 1.5-2.0 times of those from the MEDC. With 10 mL of 10 g/L NaCl in the desalination chamber, desalination rates of the MEDCC reached 46%-86% within 18 h. Another unique feature of the MEDCC was the simultaneous production of HCl and NaOH in the cell. With 1.0 V applied voltage, the pH values at 18 h in the acid-production chamber and cathode chamber were 0.68 and 12.9, respectively. With the MEDCC, the problem with large pH changes in the anode chamber was resolved, and products of the acid and alkali were obtained.

  15. Increasing Desalination by Mitigating Anolyte pH Imbalance Using Catholyte Effluent Addition in a Multi-Anode Bench Scale Microbial Desalination Cell

    KAUST Repository

    Davis, Robert J.

    2013-09-03

    A microbial desalination cell (MDC) uses exoelectrogenic bacteria to oxidize organic matter while desalinating water. Protons produced from the oxidation of organics at the anode result in anolyte acidification and reduce performance. A new method was used here to mitigate anolyte acidification based on adding non-buffered saline catholyte effluent from a previous cycle to the anolyte at the beginning of the next cycle. This method was tested using a larger-scale MDC (267 mL) containing four anode brushes and a three cell pair membrane stack. With an anolyte salt concentration increased by an equivalent of 75 mM NaCl using the catholyte effluent, salinity was reduced by 26.0 ± 0.5% (35 g/L NaCl initial solution) in a 10 h cycle, compared to 18.1 ± 2.0% without catholyte addition. This improvement was primarily due to the increase in buffering capacity of the anolyte, although increased conductivity slightly improved performance as well. There was some substrate loss from the anolyte by diffusion into the membrane stack, but this was decreased from 11% to 2.6% by increasing the anolyte conductivity (7.6 to 14 mS/cm). These results demonstrated that catholyte effluent can be utilized as a useful product for mitigating anolyte acidification and improving MDC performance. © 2013 American Chemical Society.

  16. Design of a process for supercritical water desalination with zero liquid discharge

    NARCIS (Netherlands)

    Odu, Samuel Obarinu; van der Ham, Aloysius G.J.; Metz, S.; Kersten, Sascha R.A.

    2015-01-01

    Conventional desalination methods have a major drawback; the production of a liquid waste stream which must be disposed. The treatment of this waste stream has always presented technical, economic, and environmental challenges. The supercritical water desalination (SCWD) process meets these

  17. Marine monitoring surveys for desalination plants-A critical review

    KAUST Repository

    Lattemann, Sabine

    2013-01-01

    Environmental impact assessment (EIA) studies are standard practice and a regulatory requirement for most new desalination projects today. However, most of the EIA studies are limited to predictive information; that is, they gather information on the project and the project\\'s environment before project implementation to make predictions about likely impacts. The EIAs may involve comprehensive studies, such as field monitoring, laboratory toxicity testing, and modeling studies. Consequently, the"surprising paucity of useful experimental data, either from laboratory tests or from field monitoring studies", which was observed by the US National Research Council in 2008, has been gradually decreasing. However, there is still a long-term research need on the site-specific effects of desalination plants after project commissioning has taken place. A main challenge of field research is the adequate design of the monitoring studies, which have to adequately distinguish the effects of the desalination project from natural processes over long periods of time. The existing monitoring studies have so far used a wide range of approaches and methods to investigate the environmental impacts of desalination plant discharges. Shortfalls are often that they are limited in scope, short-term, or localized. In essence, many studies fall short of recognizing the potentially synergetic effects of the single waste components of the discharges on marine organisms and the complexity of the potential responses by the ecosystem. While the possible risk of damage arising from the concentrate discharge to the marine environment in close proximity to the outfall is at hand, no conclusive evidence can yet be provided concerning the long-term impacts of desalination plant discharges, let alone the cumulative impacts on certain sea areas. This paper conducts a critical review of existing monitoring programs for desalination plants. Shortcomings of current practices are identified and relevant

  18. Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties

    NARCIS (Netherlands)

    Lubelli, B.A.; Hees, R.P.J. van

    2010-01-01

    Desalination is a relatively new intervention in the field of conservation of architectural heritage. Especially the desalination of immovable objects, such as masonry structures, is still a trial-error practice. In the field, different desalination materials and methods are used, sometimes with

  19. Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties

    NARCIS (Netherlands)

    Lubelli, B.A.; Hees, R.P.J. van

    2010-01-01

    Desalination is a relatively new intervention in the field of conservation of architectural heritage. Especially the desalination of immovable objects, such as masonry structures, is still a trial-error practice. In the field, different desalination materials and methods are used, sometimes with uns

  20. The Control System of Heat and Electricity Cogeneration with Seawater Desalination%海水淡化热电联产控制系统

    Institute of Scientific and Technical Information of China (English)

    程晓婷

    2015-01-01

    Heat and electricity power cogeneration is an effective systematic means to save energy and can greatly increase the comprehensive utilization rate of energy. Different from other power plants, the cogeneration device directly connects sea water desalination ap-paratus with the steam turbine exhaust port, to closely correlate the two systems. The sea water desalination system utilizes the low quality steam turbine negative pressure exhaust, highly reducing desalination cost. Operation of desalination cogeneration significantly reduces energy consumption and improves economic performance of enterprises.%热电联产是一种卓有成效的系统节能手段,能大幅度提高能源综合利用率。与其他电厂不同,热电联产装置直接将海水淡化与汽轮机排汽口相连接,两者高度相关。海水淡化利用低品质汽轮机负压排汽,极大的降低了海水淡化生产成本。海水淡化热电联产系统的运行,使企业能耗降低、效益提高。

  1. 海水反渗透淡化技术的分析与探讨%Analysis and discussion on seawater desalination by reverse osmosis technology

    Institute of Scientific and Technical Information of China (English)

    李赞忠; 乔子荣

    2011-01-01

    反渗透海水淡化技术是一种高效、节能、先进的液体分离技术.论述了目前国内外海水反渗透淡化技术的应用现状,着重介绍了反渗透膜材料及特点、膜污染及清洗、典型的海水反渗透淡化流程,探讨了反渗透海水淡化技术目前存在的问题及未来发展趋势.%Seawater desalination utilizing reverse osmosis technology is an efficient, energy saving, advanced liquid separation technology. The application and the current situation of seawater desalination by reverse osmosis technology in China and abroad are discussed,focusing on the materials and characteristics of membranes,fouling and cleaning of membranes, and typical seawater desalination process. Meanwhile the existing problems and future trends of seawater desalination utilizing reverse osmosis technology are also discussed.

  2. Membrane-based seawater desalination: Present and future prospects

    KAUST Repository

    Amy, Gary L.

    2016-10-20

    Given increasing regional water scarcity and that almost half of the world\\'s population lives within 100 km of an ocean, seawater represents a virtually infinite water resource. However, its exploitation is presently limited by the significant specific energy consumption (kWh/m) required by conventional desalination technologies, further exasperated by high unit costs ($/m) and environmental impacts including GHG emissions (g CO-eq/m), organism impingement/entrainment through intakes, and brine disposal through outfalls. This paper explores the state-of-the-art in present seawater desalination practice, emphasizing membrane-based technologies, while identifying future opportunities in step improvements to conventional technologies and development of emerging, potentially disruptive, technologies through advances in material science, process engineering, and system integration. In this paper, seawater reverse osmosis (RO) serves as the baseline conventional technology. The discussion extends beyond desalting processes into membrane-based salinity gradient energy production processes, which can provide an energy offset to desalination process energy requirements. The future membrane landscape in membrane-based desalination and salinity gradient energy is projected to include ultrahigh permeability RO membranes, renewable-energy driven desalination, and emerging processes including closed-circuit RO, membrane distillation, forward osmosis, pressure retarded osmosis, and reverse electrodialysis according various niche applications and/or hybrids, operating separately or in conjunction with RO.

  3. Saline Groundwater from Coastal Aquifers As a Source for Desalination.

    Science.gov (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yoseph; Rahav, Eyal; Oren, Yoram; Kasher, Roni

    2016-02-16

    Reverse osmosis (RO) seawater desalination is currently a widespread means of closing the gap between supply and demand for potable water in arid regions. Currently, one of the main setbacks of RO operation is fouling, which hinders membrane performance and induces pressure loss, thereby reducing system efficiency. An alternative water source is saline groundwater with salinity close to seawater, pumped from beach wells in coastal aquifers which penetrate beneath the freshwater-seawater interface. In this research, we studied the potential use of saline groundwater of the coastal aquifer as feedwater for desalination in comparison to seawater using fieldwork and laboratory approaches. The chemistry, microbiology and physical properties of saline groundwater were characterized and compared with seawater. Additionally, reverse osmosis desalination experiments in a cross-flow system were performed, evaluating the permeate flux, salt rejection and fouling propensities of the different water types. Our results indicated that saline groundwater was significantly favored over seawater as a feed source in terms of chemical composition, microorganism content, silt density, and fouling potential, and exhibited better desalination performance with less flux decline. Saline groundwater may be a better water source for desalination by RO due to lower fouling potential, and reduced pretreatment costs.

  4. Economic evaluation of dual purpose desalination plants by fuel type in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seung-Su, Kim; Man-Ki, Lee [Korea Atomic Energy Research Institute, Dae-jeon city (Korea, Republic of)

    2007-07-01

    In light of the recent rapid increase in the fossil fuel prices it is meaningful to evaluate the impact of these price changes in the economics of dual-purpose desalination projects producing electricity and fresh water simultaneously. The price of crude oil and LNG (Liquefied Natural Gas) has increased by about 200% and 100% during the past three or four years. The uranium price has also increased by nearly 500% during the same period. The purpose of this paper is to analyze and compare the economics of SMART (System-integrated Modular Advanced ReacTor) which is being developed as a small size PWR type and the LNG Combine Cycle coupled with MED (Multi-Effect Distillation) which are being acknowledged as promising energy sources for the future in Korea. The methods of analysis used in this paper are the lifetime leveled cost method for the power and water cost calculation and the power credit method for the total cost allocation. DEEP (Devaluation Economic Evaluation Program) developed by IAEA was used to perform an economic comparison between the two dual-purpose desalination projects. From the results of the analysis it is found that the desalination by SMART-MED is much superior to that of LNG CC-MED under the current economic and technical situations. It is also shown that the relative superiority of SMART-MED to LNG CC-MED will be maintained even in case where an increase in the uranium price and the SMART construction cost would reach a maximum in the sensitivity analysis. In the case that the discount rate declines to 5% per year, the relative attractiveness of SMART-MED which is a capital intensive plant will be enhanced when compared to that for a 7% discount rate. In addition to this, it is thought that a nuclear energy source will be favored much more than now in the field of desalination if the regulations for the emission of greenhouse gases are to be strengthened. (authors)

  5. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  6. Performance investigation of an advanced multi-effect adsorption desalination (MEAD) cycle

    KAUST Repository

    Thu, Kyaw

    2015-12-01

    This article presents the development of an advanced adsorption desalination system with quantum performance improvement. The proposed multi-effect adsorption desalination (MEAD) cycle utilizes a single heat source i.e., low-temperature hot water (as low as 55°C). Passive heating of the feed water (no direct heating) is adopted using total internal heat recovery from the kinetic energy of desorbed vapor and water vapor uptake potential of the adsorbent. Thus, the evaporation in the MEAD cycle ensues at low temperatures ranging from 35°C to 7°C yet providing significantly high performance ratio. The energy from the regenerated vapor is recovered for multiple evaporation/condensation of saline water by a water-run-around circuit between the top brine temperature (TBT) effect and the AD condenser. The adsorbent material is the hydrophilic mesoporous silica gel with high pore surface area. Numerical simulation for such a cycle is developed based on experimentally verified model extending to multi-effect cycle. The system is investigated under several operation conditions such as cycle time allocation, heat source temperature and the number of intermediate effects. It is observed that most of the evaporating-condensing effects operate at low temperature i.e., below 35°C as opposed to conventional multi-effect distillation (MED) cycle. For a MEAD cycle with 7 intermediate effects, the specific water production rate, the performance ratio and the gain output ratio are found to be 1.0m3/htonne of silica gel, 6.3 and 5.1, respectively. Low scaling and fouling potentials being evaporation at low temperatures yet high recovery ratio makes the cycle suitable for effectively and efficiently handling highly concentrated feed water such as produced water, brine rejected from other desalination plants and zero liquid discharge (ZLD) system. © 2015 Elsevier Ltd.

  7. Nuclear microsatellite markers for the date palm (Phoenix dactylifera L.): characterization and utility across the genus Phoenix and in other palm genera.

    NARCIS (Netherlands)

    Billotte, N.; Marseillac, P.; Brottier, P.; Noyer, J.L.; Jacquemoud, J.P.; Moreau, C.; Couvreur, T.L.P.; Chavallier, M.H.; Pintaud, J.C.; Risterucci, A.M.

    2004-01-01

    A (GA)n microsatellite-enriched library was constructed and 16 nuclear simple sequence repeat (SSR) loci were characterized in Phoenix dactylifera. Across-taxa amplification and genotyping tests showed the utility of most SSR markers in 11 other Phoenix species and the transferability of some of the

  8. Understanding transport in model water desalination membranes

    Science.gov (United States)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  9. Desalination plant aids Australian water shortage

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, A.W.

    2010-09-15

    This article described a reverse-osmosis desalination plant that was commissioned for Adelaide, South Australia, which operates under permanent water restrictions. The plant will supplement the freshwater supply, reduce the pressure on the existing rainwater catchment system, and allow water levels to regenerate. The company that won the bid on the project used 3-dimensional modelling to get accurate cost estimates and visualize the plant impact on the environment, the community, and a culturally important site. A detailed diffusion plan was devised to mitigate the effects of saline concentrate release. As reverse osmosis is so energy intensive that it can be difficult to justify a plant on sustainability grounds. Energy recovery devices were included in the process building and outfall shaft, and solar energy panels will be installed on the process building roof. The energy recovery devices use energy stored in the brine to increase the output of the high-pressure pumps that feed the reverse osmosis units. Energy recovery units in the outfall shaft will produce electricity and provide power to the grid for the process plant to use. The 3-dimensional model was credited as a key factor in winning the bid, and the many advantages of 3-dimensional modelling were described. 3 figs.

  10. Solar field control for desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Roca, Lidia [Convenio Universidad de Almeria, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain); Berenguel, Manuel [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, 04120 Almeria (Spain); Yebra, Luis; Alarcon-Padilla, Diego C. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain)

    2008-09-15

    This paper presents the development and application of a feedback linearization control strategy for a solar collector field supplying process heat to a multi-effect seawater distillation plant. Since one objective is to use as much as possible the solar resource, control techniques can be used to produce the maximum heat process in the solar field. The main purpose of the controller presented in this paper is to manipulate the water flow rate to maintain an outlet-inlet temperature gradient in the collectors, thereby ensuring continuous process heating, or in other words, continuous production of fresh water in spite of disturbances. The dynamic behaviour of this solar field was approximated by a simplified lumped-parameters nonlinear model based on differential equations, validated with real data and used in the feedback linearization control design. Experimental results in the seawater desalination plant at the Plataforma Solar de Almeria (Spain) show good agreement of the model and real data despite the approximations included. Moreover, by using feedback linearization control it is possible to track a constant gradient temperature reference in the solar field with good results. (author)

  11. Nanotechnology applications to desalination : a report for the joint water reuse & desalination task force.

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Patrick Vane; Mayer, Tom; Cygan, Randall Timothy

    2011-01-01

    Nanomaterials and nanotechnology methods have been an integral part of international research over the past decade. Because many traditional water treatment technologies (e.g. membrane filtration, biofouling, scale inhibition, etc.) depend on nanoscale processes, it is reasonable to expect one outcome of nanotechnology research to be better, nano-engineered water treatment approaches. The most immediate, and possibly greatest, impact of nanotechnology on desalination methods will likely be the development of membranes engineered at the near-molecular level. Aquaporin proteins that channel water across cell membranes with very low energy inputs point to the potential for dramatically improved performance. Aquaporin-laced polymer membranes and aquaporin-mimicking carbon nanotubes and metal oxide membranes developed in the lab support this. A critical limitation to widespread use of nanoengineered desalination membranes will be their scalability to industrial fabrication processes. Subsequent, long-term improvements in nanoengineered membranes may result in self-healing membranes that ideally are (1) more resistant to biofouling, (2) have biocidal properties, and/or (3) selectively target trace contaminants.

  12. Technology development and application of solar energy in desalination: MEDRC contribution

    KAUST Repository

    Ghaffour, Noreddine

    2011-12-01

    Desalination has become one of the sources for water supply in several countries especially in the Middle East and North Africa region. There is a great potential to develop solar desalination technologies especially in this region where solar source is abundantly available. The success in implementing solar technologies in desalination at a commercial scale depends on the improvements to convert solar energy into electrical and/or thermal energies economically as desalination processes need these types of energies. Since desalination is energy intensive, the wider use of solar technologies in desalination will eventually increase the demand on these technologies, making it possible to go for mass production of photovoltaic (PV) cells, collectors and solar thermal power plants. This would ultimately lead to the reduction in the costs of these technologies. The energy consumed by desalination processes has been significantly reduced in the last decade meaning that, if solar technologies are to be used, less PV modules and area for collectors would be needed. The main aspects to be addressed to make solar desalination a viable option in remote location applications is to develop new materials or improve existing solar collectors and find the best combinations to couple the different desalination processes with appropriate solar collector. In the objective to promote solar desalination in MENA, the Middle East Desalination Research Center has concentrated on various aspects of solar desalination in the last twelve years by sponsoring 17 research projects on different technologies and Software packages development for coupling desalination and renewable energy systems to address the limitations of solar desalination and develop new desalination technologies and hybrid systems suitable for remote areas. A brief description of some of these projects is highlighted in this paper. The full details of all these projects are available the Centers website. © 2011 Elsevier

  13. Energy-water-environment nexus underpinning future desalination sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-03-11

    Energy-water-environment nexus is very important to attain COP21 goal, maintaining environment temperature increase below 2°C, but unfortunately two third share of CO2 emission has already been used and the remaining will be exhausted by 2050. A number of technological developments in power and desalination sectors improved their efficiencies to save energy and carbon emission but still they are operating at 35% and 10% of their thermodynamic limits. Research in desalination processes contributing to fuel World population for their improved living standard and to reduce specific energy consumption and to protect environment. Recently developed highly efficient nature-inspired membranes (aquaporin & graphene) and trend in thermally driven cycle\\'s hybridization could potentially lower then energy requirement for water purification. This paper presents a state of art review on energy, water and environment interconnection and future energy efficient desalination possibilities to save energy and protect environment.

  14. Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes

    CERN Document Server

    Biesheuvel, P M

    2009-01-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes wi...

  15. Public acceptance of the utilization of nuclear technology. Necessity of using the system which is similar to that of the ISO14001

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Kenji; Kanda, Keiji [Graduate School of Energy Science, Kyoto University, Kyoto (Japan)

    2001-05-01

    Safety itself is a key factor in enhancing public acceptance of the utilization of nuclear technology. At the same time, it is indispensable for businesses using nuclear technology to foster public trust by being regarded as 'companies which are making serious efforts to attain higher level of safety'. However, recent nuclear accidents related to the MONJU plant and JCO have seriously hampered this trust. Based on the above understanding, this paper uses the ISO14001 framework to consider a possible solution to recover public trust. An examination of the ISO14001 shows that it is seen as a framework to prove to the outside world that the party in question is reliable in terms of behaving in an environmentally sound manner. Accordingly, their must be a possibility for businesses using a nuclear technology to be able to use the ideas of the framework in terms of safety instead of the environment. (author)

  16. 我国核能利用与能源可持续发展探讨%Approach on Nuclear Power Utilization and Energy Sustainable Development in China

    Institute of Scientific and Technical Information of China (English)

    谭衢霖; 邵芸

    2001-01-01

    Description on the status quo of energy utilization, com parison of the impacts of coal power and nuclear power on environment, and treatment technique of nuclear waste and safty of nuclear electricity were presented and indicated that development of efficient and cleaner nuclear electricity greatly is an inevitable necessity for implementing sustainable development strategy in China.%阐述了我国目前的能源利用状况,火电与核电对环境影响的比较,核废物的处理技术及核电的安全性等,指出大力发展高效清洁的核电是我国实施可持续发展战略的必然要求。

  17. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  18. Exploiting interfacial water properties for desalination and purification applications.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu (Los Alamos National Laboratory, Los Alamos, NM); Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo (University of New Mexico Albuquerque, NM); Xomeritakis, George K. (University of New Mexico Albuquerque, NM); Frankamp, Benjamin L.; Siepmann, J. Ilja (University of Minnesota, Minneapolis, MN); Cygan, Randall Timothy; Hartl, Monika A. (Los Alamos National Laboratory, Los Alamos, NM); Travesset, Alex (Iowa State University, Ames, IA); Anderson, Joshua A. (Iowa State University, Ames, IA); Huber, Dale L.; Kissel, David J. (University of New Mexico Albuquerque, NM); Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C. (University of Minnesota, Minneapolis, MN); McGrath, Matthew J. (University of Minnesota, Minneapolis, MN); Farrow, Darcie; Cecchi, Joseph L. (University of New Mexico Albuquerque, NM); van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu (University of New Mexico Albuquerque, NM); Zhu, Xiaoyang (University of Minnesota, Minneapolis, MN); Dunphy, Darren Robert (University of New Mexico Albuquerque, NM); Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L. (Los Alamos National Laboratory, Los Alamos, NM); Gerung, Henry (University of New Mexico Albuquerque, NM); Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  19. Development of a poultice for electrochemical desalination of porous building materials: desalination effect and pH changes

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, I.

    2013-01-01

    vaults two different techniques are applied: poultices or establishment of climate chambers. Both techniques can result in ion transport away from the valuable surfaces with murals, but satisfying desalination has not been obtained according to conservators from the Danish National Museums mural...... experiment with a traditional poultice significant pH changes and an absence of satisfying high desalination effect was measured. The new idea in the present paper was to introduce a calculated amount of buffer components corresponding to the productions during the electrode processes to a poultice (a solid......) to minimize the adverse effects and to optimize on the effects. The results showed good ability to retain neutral pH values in the substrate which is of major importance when the method should be applied on existing structures. Also the desalination process continued until a very low and harmless salt content...

  20. Life Cycle Assessment for desalination: a review on methodology feasibility and reliability.

    Science.gov (United States)

    Zhou, Jin; Chang, Victor W-C; Fane, Anthony G

    2014-09-15

    As concerns of natural resource depletion and environmental degradation caused by desalination increase, research studies of the environmental sustainability of desalination are growing in importance. Life Cycle Assessment (LCA) is an ISO standardized method and is widely applied to evaluate the environmental performance of desalination. This study reviews more than 30 desalination LCA studies since 2000s and identifies two major issues in need of improvement. The first is feasibility, covering three elements that support the implementation of the LCA to desalination, including accounting methods, supporting databases, and life cycle impact assessment approaches. The second is reliability, addressing three essential aspects that drive uncertainty in results, including the incompleteness of the system boundary, the unrepresentativeness of the database, and the omission of uncertainty analysis. This work can serve as a preliminary LCA reference for desalination specialists, but will also strengthen LCA as an effective method to evaluate the environment footprint of desalination alternatives.

  1. Submerged membrane distillation for seawater desalination

    KAUST Repository

    Francis, Lijo

    2014-08-11

    A submerged membrane distillation (SMD) process for fresh water production from Red Sea water using commercially available hollow fiber membranes has been successfully employed and compared with the conventional direct contact membrane distillation (DCMD) process. The hollow fiber membranes have been characterized for its morphology using field effect scanning electron microscope. In SMD process, a bunch of hollow fiber membranes are glued together at both ends to get a simplified open membrane module assembly submerged into the coolant tank equipped with a mechanical stirrer. Hot feed stream is allowed to pass through the lumen side of the membrane using a feed pump. Continuous stirring at the coolant side will reduce the temperature and concentration polarization. During the conventional DCMD process, using feed-coolant streams with co-current and counter-current flows has been tested and the results are compared in this study. In SMD process, a water vapor flux of 10.2 kg m-2 h-1 is achieved when using a feed inlet temperature of 80°C and coolant temperature of 20°C. Under the same conditions, during conventional DCMD process, a water vapor flux of 11.6 and 10.1 kg m-2 h-1 were observed during counter-current and co-current flow streams, respectively. Results show that the water production in the SMD process is comparable with the conventional DCMD process, while the feed-coolant flow streams are in the co-current direction. During conventional DCMD operation, a 15% increase in the water production is observed when feed-coolant streams are in the counter-current direction compared to the co-current direction. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  2. Optimization study of small-scale solar membrane distillation desalination systems (s-SMDDS).

    Science.gov (United States)

    Chang, Hsuan; Chang, Cheng-Liang; Hung, Chen-Yu; Cheng, Tung-Wen; Ho, Chii-Dong

    2014-11-24

    Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m(2) and 23 m(2) are analyzed. The lowest water production costs are $5.92/m(3) and $5.16/m(3) for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction.

  3. Optimization Study of Small-Scale Solar Membrane Distillation Desalination Systems (s-SMDDS

    Directory of Open Access Journals (Sweden)

    Hsuan Chang

    2014-11-01

    Full Text Available Membrane distillation (MD, which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS is a potential technology for resolving energy and water resource problems. Small-scale SMDDS (s-SMDDS is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo-steady-state approach for equipment sizing and dynamic optimization using overall system mathematical models. Two s-SMDDS employing an air gap membrane distillation module with membrane areas of 11.5 m2 and 23 m2 are analyzed. The lowest water production costs are $5.92/m3 and $5.16/m3 for water production rates of 500 kg/day and 1000 kg/day, respectively. For these two optimal cases, the performance ratios are 0.85 and 0.91; the recovery ratios are 4.07% and 4.57%. The effect of membrane characteristics on the production cost is investigated. For the commercial membrane employed in this study, the increase of the membrane mass transfer coefficient up to two times is beneficial for cost reduction.

  4. Influence of vapor absorption cooling on humidification-dehumidification (HDH desalination

    Directory of Open Access Journals (Sweden)

    C. Chiranjeevi

    2016-09-01

    Full Text Available The desalination yield in humidification-dehumidification (HDH process is increased by proposing cooling plant integration with two stage operation. The current work is targeted on the investigation of vapor absorption refrigeration (VAR parameters on overall energy utilization factor (EUF. The dephlegmator heat is recovered internally in VAR instead of rejecting to environment. This work can be used to control the operational conditions of VAR to enhance the desalination and cooling together. The studied process parameters in VAR are strong solution concentration, separator or generator temperature, dephlegmator effectiveness, circulating water inlet temperature and evaporator temperature. Out of these five variables, lower limit of separator temperature, upper limit of dephlegmator effectiveness and lower limit of circulating water temperature are fixed in the specified range to attain the optimum strong solution concentration and optimum evaporator temperature. At the specified boundaries of three variables, the optimized strong solution concentration and evaporator temperature are 0.47 and 10 °C respectively. At this condition, the maximized cycle EUF is 0.358.

  5. New search progress and development trend of seawater desalinization technology%海水淡化技术研究新进展和发展趋势

    Institute of Scientific and Technical Information of China (English)

    满曰南; 王晓娟; 王银涛; 房雅娟

    2014-01-01

    介绍了当前国内外海水淡化技术的研究现状及未来发展趋势,针对海水淡化对能源消耗较大的特点,阐述了风能、太阳能、核能、波浪能、潮汐能等作为新能源海水淡化技术的应用进展,最后简单介绍了以液化天然气(LNG)为深冷源的海水淡化等一些新技术的应用进展,指出了今后海水淡化在新能源利用和对环境友好方面的研究将得到快速发展。%Th e existing research and development of the seawater desalination technology in China and abroad are introduced. According to the big energy consumption characteristics of seawater desalination ,the progress in the new energy sources,such as wind,solar,nuclear,wave and tides applied to seawater desalinization technology are ex-pounded. At the end,some application progress in liquid natural gas(LNG) as an advanced cold source for seawater desalination is introduced briefly. It is indicated that the research on the application of new energy sources to seawa-ter desalinization and environment-friendly aspects will be developed rapidly.

  6. Conservation of complex nuclear localization signals utilizing classical and non-classical nuclear import pathways in LANA homologs of KSHV and RFHV.

    Directory of Open Access Journals (Sweden)

    Lidia Cherezova

    Full Text Available ORF73 latency-associated nuclear antigen (LANA of the Kaposi's sarcoma-associated herpesvirus (KSHV is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV, the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an

  7. Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes

    NARCIS (Netherlands)

    Porada, S.; Weinstein, L.; Dash, R.; Wal, van der A.F.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P.M.

    2012-01-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrost

  8. Mathematical model development for a new solar desalination system (SDS)

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Fath, H.E. [Alexandria Univ., Alexandria (Egypt). Dept. of Mechanical Engineering

    2007-07-01

    Desalination, as a non-conventional water resource, has become one of the most promising alternative water sources to address the fresh water shortage in the near future. Desalination technologies are constrained in that they are driven almost entirely by the combustion of fuels which are still of finite supply, pollute the air, and contribute to the risk of global climate change. Solar distillation is preferred to other processes of distillation because of the low operating cost, low maintenance, lack of moving parts, and clean energy offered. The development of solar distillation has demonstrated its suitability for saline water desalination when weather conditions are favorable and when demand is not large. Solar energy in the Arab region is available at relatively high intensity during most of the year. This paper presented a general mathematical model for a newly developed solar still that uses a parabolic reflector-tube absorber desalination technology. A computer program was developed to simulate the still operation and to solve the governing heat and mass transfer action which occurred during the operation. The program was used to study the still production in different cases. The paper provided a description of the mathematical model and discussed the governing equations. It was concluded that unit productivity improved by increasing the solar intensity, ambient temperature, efficiency of reflector material, reflector aperture area and evaporation area. In addition, increasing the wind velocity, saline water depth, condenser emissivity and condenser thickness had only a small effect on the productivity. 3 refs., 1 tab., 14 figs.

  9. Application of Delphi method in site selection of desalination plants

    Directory of Open Access Journals (Sweden)

    M. Sepehr

    2017-12-01

    Full Text Available Given the reduced freshwater supplies across the world, seawater desalination is one of the appropriate methods available for producing freshwater. Selecting an optimal location is crucial in the installation of these plants owing to the environmental problems they cause. The present study was conducted to identify optimal locations for installing desalination Plants in the coastal areas of southern Iran (Hormozgan Province with application of Delphi method. To implement this technique and identify, screen and prioritize effective criteria and sub-criteria, ten experts were surveyed through questionnaires and eight criteria and 18 sub-criteria were identified. All these sub-criteria were evaluated and classified in ArcGIS into five classes as input layers. The maps were then integrated based on the modulation importance coefficient and the identified priorities using a linear Delphi model and the final map was reclassified into five categories. Environmentally sensitive areas and seawater quality were respectively the criterion and sub-criterion that received the highest importance. After combining the layers and obtaining the final map, 63 locations were identified for installing desalination plants in the coastal areas on the Persian Gulf and Oman Sea in Hormozgan Province.  At the end, 27 locations were high important and had optimal environmental conditions for establishing desalination plants. Of the 27 locations, six were located in the coastal area of the Oman Sea, one in the coastal area of the Strait of Hormuz and 20 others in the coastal area of the Persian Gulf.

  10. Microfluidic desalination. Capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  11. Pre-desalination with electro-membranes for SWRO

    NARCIS (Netherlands)

    Post, J.W.; Huiting, H.; Cornelissen, E.R.; Hamelers, H.V.M.

    2011-01-01

    Although seawater reverse osmosis (SWRO) is currently the only non-thermal desalination process in practical use, its characteristics make it difficult to approach the ideal reversible process. SWRO has a low water recovery (determined by the osmotic pressure) and relatively high energy consumption.

  12. Modelling of a transmembrane evaporation module for desalination of seawater

    NARCIS (Netherlands)

    Guijt, Caroliene M.; Rácz, Imre G.; Heuven, van Jan Willem; Reith, Tom; Haan, de André B.

    1999-01-01

    Transmembrane evaporation (often called membrane distillation) carried out in a countercurrent flow module, in which incoming cold seawater is heated by the condensing product water flow, is a promising technology for low-cost seawater desalination. This paper presents a model for preliminary design

  13. Overview of village scale, renewable energy powered desalination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.E.

    1997-04-01

    An overview of desalination technologies is presented, focusing on those technologies appropriate for use in remote villages, and how they can be powered using renewable energy. Technologies are compared on the basis of capital cost, lifecycle cost, operations and maintenance complexity, and energy requirements. Conclusions on the appropriateness of different technologies are drawn, and recommendations for future research are given.

  14. Properties of Hydrophilic Mineral Wool for Desalination of Historical Masonry

    Directory of Open Access Journals (Sweden)

    Iñigo ANTEPARA

    2016-05-01

    Full Text Available Hydrophilic mineral wool (HMW is considered as a possible alternative to the commonly used cellulose in desalination of historical masonry. HMW also allows water and salt solutions transport along the hydrophilic fibres, which is the necessary condition for its possible application for desalination measures, but contrary to cellulose it is inorganic material, which reduces maintenance of the poultice. On this account, the hygric transport and storage properties of newly developed HMW is determined in the paper. In order to get detailed information on HMW performance, its thermal properties are measured as well. For its basic characterization, bulk density, matrix density, saturation moisture and salt content, and apparent total open porosity are accessed. The results are in good agreement with those published in literature for similar types of HMW. The process of drying of three different types of sandstone, as typical materials frequently used in historical buildings, using HMW board is monitored to analyse the practical applicability of the proposed desalination treatment. The obtained results show that HMW slows the drying process. However, the final level of drying is the same as without the HMW, which indicates the possible applicability of studied HMW for desalination purposes.

  15. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2010-01-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salin

  16. A framework for planning sustainable seawater desalination water supply.

    Science.gov (United States)

    Shahabi, Maedeh P; McHugh, Adam; Anda, Martin; Ho, Goen

    2017-01-01

    A quantitative framework for sustainable desalination planning in metropolitan areas, which integrates the tools of mixed integer linear programming and life cycle assessment, is presented. The life cycle optimisation framework allows for optimal desalination planning by considering choices over intake type, staging and location of the infrastructure under different land-use, environmental and economic policies. Optimality is defined by the decision maker's selected objective function, being either an environmental impact or a levelised cost indicator. The framework was tested for future desalination planning scenarios in the northern metropolitan area of Perth, Western Australia. Results indicate that multi-staged construction and decentralised planning solutions may produce lower life cycle environmental impacts (58%) and at a lower levelised cost (24%) than a centralised desalination solution currently being considered by Western Australian water planners. Sensitivity analysis results suggest that the better environmental and economic performance of decentralised planning over centralised planning is highly sensitive to the proportion of land that can be made available for the siting of decentralised plants near the demand zone. Insight into land use policies is a critical factor to the initiation and success of decentralised solution in developed metropolitan areas.

  17. Precipitation softening: a pretreatment process for seawater desalination.

    Science.gov (United States)

    Ayoub, George M; Zayyat, Ramez M; Al-Hindi, Mahmoud

    2014-02-01

    Reduction of membrane fouling in reverse osmosis systems and elimination of scaling of heat transfer surfaces in thermal plants are a major challenge in the desalination of seawater. Precipitation softening has the potential of eliminating the major fouling and scaling species in seawater desalination plants, thus allowing thermal plants to operate at higher top brine temperatures and membrane plants to operate at a reduced risk of fouling, leading to lower desalinated water costs. This work evaluated the use of precipitation softening as a pretreatment step for seawater desalination. The effectiveness of the process in removing several scale-inducing materials such as calcium, magnesium, silica, and boron was investigated under variable conditions of temperature and pH. The treatment process was also applied to seawater spiked with other known fouling species such as iron and bacteria to determine the efficiency of removal. The results of this work show that precipitation softening at a pH of 11 leads to complete elimination of calcium, silica, and bacteria; to very high removal efficiencies of magnesium and iron (99.6 and 99.2 %, respectively); and to a reasonably good removal efficiency of boron (61 %).

  18. Desalinated water hygiene and scientific bases for its investigation.

    Science.gov (United States)

    Sidorenko, G I; Rakhmanin YuA

    1978-01-01

    In view of the increasing scarcity of fresh water reserves in many countries of the world, a thorough hygienic evaluation of the different methods of desalinating highly mineralized underground and sea waters for economic and drinking purpose becomes indispensable. In addition to generally accepted hygienic criteria (favourable organoleptic properties, innocuous chemical composition and epidemiological safety), introduction of supplementary criteria for the assessment of the characteristic of the quality of freshened drinking water is necessary, i.e., its full value in the physiological sense and stability of drinking properties. The necessity of hygienic tests concerned with the study and regulation of the mineral and microelement composition of desalinated drinking water as well as of its microbial composition, structural peculiarities, the so-called "deuterium number" and the presence of various organic substances in desalinated water was pointed out. A certain degree of priority should be given to the study of the mentioned indices in hygienic assessment of the different methods of water desalination (distillation, freezing out, ion exchange, electrodialysis, inverse osmosis and others).

  19. Pre-desalination with electro-membranes for SWRO

    NARCIS (Netherlands)

    Post, J.W.; Huiting, H.; Cornelissen, E.R.; Hamelers, H.V.M.

    2011-01-01

    Although seawater reverse osmosis (SWRO) is currently the only non-thermal desalination process in practical use, its characteristics make it difficult to approach the ideal reversible process. SWRO has a low water recovery (determined by the osmotic pressure) and relatively high energy consumption.

  20. A bio-thermic seawater desalination system using halophytes

    NARCIS (Netherlands)

    Finck, C.

    2014-01-01

    A bio-thermic seawater desalination system using halophytes was developed and successfully tested. A greenhouse as part of a test rig, with different sorts of mangroves, was installed. Measurements showed promising results concerning fresh water relative yielding rates up to 1.4 kg/h/m2 (leaf surfac

  1. Economic evaluation of the integrated SMART desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m{sup 3}) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources.

  2. Seawater desalination and serum magnesium concentrations in Israel.

    Science.gov (United States)

    Koren, Gideon; Shlezinger, Meital; Katz, Rachel; Shalev, Varda; Amitai, Yona

    2017-04-01

    With increasing shortage of fresh water globally, more countries are consuming desalinated seawater (DSW). In Israel >50% of drinking water is now derived from DSW. Desalination removes magnesium, and hypomagnesaemia has been associated with increased cardiac morbidity and mortality. Presently the impact of consuming DSW on body magnesium status has not been established. We quantified changes in serum magnesium in a large population based study (n = 66,764), before and after desalination in regions consuming DSW and in regions where DSW has not been used. In the communities that switched to DSW in 2013, the mean serum magnesium was 2.065 ± 0.19 mg/dl before desalination and fell to 2.057 ± 0.19 mg/dl thereafter (p < 0.0001). In these communities 1.62% of subjects exhibited serum magnesium concentrations ≤1.6 mg/dl between 2010 and 2013. This proportion increased by 24% between 2010-2013 and 2015-2016 to 2.01% (p = 0.0019). In contrast, no such changes were recorded in the communities that did not consume DSW. Due to the emerging evidence of increased cardiac morbidity and mortality associated with hypomagnesaemia, it is vital to consider re-introduction of magnesium to DSW.

  3. Comparison of Configurations for High-Recovery Inland Desalination Systems

    Directory of Open Access Journals (Sweden)

    Philip A. Davies

    2012-09-01

    Full Text Available Desalination of brackish groundwater (BW is an effective approach to augment water supply, especially for inland regions that are far from seawater resources. Brackish water reverse osmosis (BWRO desalination is still subject to intensive energy consumption compared to the theoretical minimum energy demand. Here, we review some of the BWRO plants with various system arrangements. We look at how to minimize energy demands, as these contribute considerably to the cost of desalinated water. Different configurations of BWRO system have been compared from the view point of normalized specific energy consumption (SEC. Analysis is made at theoretical limits. The SEC reduction of BWRO can be achieved by (i increasing number of stages, (ii using an energy recovery device (ERD, or (iii operating the BWRO in batch mode or closed circuit mode. Application of more stages not only reduces SEC but also improves water recovery. However, this improvement is less pronounced when the number of stages exceeds four. Alternatively and more favourably, the BWRO system can be operated in Closed Circuit Desalination (CCD mode and gives a comparative SEC to that of the 3-stage system with a recovery ratio of 80%. A further reduction of about 30% in SEC can be achieved through batch-RO operation. Moreover, the costly ERDs and booster pumps are avoided with both CCD and batch-RO, thus furthering the effectiveness of lowering the costs of these innovative approaches.

  4. Forward osmosis niches in seawater desalination and wastewater reuse

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-12-01

    This review focuses on the present status of forward osmosis (FO) niches in two main areas: seawater desalination and wastewater reuse. Specific applications for desalination and impaired-quality water treatment and reuse are described, as well as the benefits, advantages, challenges, costs and knowledge gaps on FO hybrid systems are discussed. FO can play a role as a bridge to integrate upstream and downstream water treatment processes, to reduce the energy consumption of the entire desalination or water recovery and reuse processes, thus achieving a sustainable solution for the water-energy nexus. FO hybrid membrane systems showed to have advantages over traditional membrane process like high pressure reverse osmosis and nanofiltration for desalination and wastewater treatment: (i) chemical storage and feed water systems may be reduced for capital, operational and maintenance cost, (ii) water quality is improved, (iii) reduced process piping costs, (iv) more flexible treatment units, and (v) higher overall sustainability of the desalination and wastewater treatment process. Nevertheless, major challenges make FO systems not yet a commercially viable technology, the most critical being the development of a high flux membrane, capable of maintaining an elevated salt rejection and a reduced internal concentration polarization effect, and the availability of appropriate draw solutions (cost effective and non-toxic), which can be recirculated via an efficient recovery process. This review article highlights the features of hybrid FO systems and specifically provides the state-of-the-art applications in the water industry in a novel classification and based on the latest developments toward scaling up these systems.

  5. Reasons for the Fast Growing Seawater Desalination Capacity in Algeria

    KAUST Repository

    Drouiche, Nadjib

    2011-05-24

    Seawater/brackish water desalination has been widely adopted by the Algerian Government in the last few years to supply potable water to municipality for various purposes mainly for domestic and industrial uses especially in areas where demand is high due to shortage of fresh water resources, rapid population growth and development of industry and tourism. Ten years ago, desalination was confined to the industrial use only especially in oil and gas industry as the country was relying on rain water and other available sources to supply fresh water to municipalities. Due to chronic drought conditions, the Ministry of Water Resources reviewed the national water strategy and a strong option for desalination was adopted where an ambitious program was thus put into action. Sixteen mega-plants, with capacities ranging from 100,000 to 500,000 m3 per day, primarily based on Reverse Osmosis technology, were launched in the last few years making the Algerian desalination program one of the world\\'s fastest growing markets. Five desalination plants, including the Africa\\'s largest seawater reverse osmosis project with a total capacity of 200,000 m3 per day, are already in operation and the remaining projects are either under construction or in commissioning. An integrated water resources management was also adopted as additional option to cuter the increasing water demand as there is also a great potential for water reuse and conventional water treatment. An additional benefit of this would be reducing the volume of treated wastewater disposed into the environment. © 2011 Springer Science+Business Media B.V.

  6. ZVI (Fe0 Desalination: Stability of Product Water

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-03-01

    Full Text Available A batch-operated ZVI (zero valent iron desalination reactor will be able to partially desalinate water. This water can be stored in an impoundment, reservoir or tank, prior to use for irrigation. Commercial development of this technology requires assurance that the partially-desalinated product water will not resalinate, while it is in storage. This study has used direct ion analyses to confirm that the product water from a gas-pressured ZVI desalination reactor maintains a stable salinity in storage over a period of 1–2.5 years. Two-point-three-litre samples of the feed water (2–10.68 g (Na+ + Cl−·L−1 and product water (0.1–5.02 g (Na+ + Cl−·L−1 from 21 trials were placed in storage at ambient (non-isothermal temperatures (which fluctuated between −10 and 25 °C, for a period of 1–2.5 years. The ion concentrations (Na+ and Cl− of the stored feed water and product water were then reanalysed. The ion analyses of the stored water samples demonstrated: (i that the product water salinity (Na+ and Cl− remains unchanged in storage; and (ii the Na:Cl molar ratios can be lower in the product water than the feed water. The significance of the results is discussed in terms of the various potential desalination routes. These trial data are supplemented with the results from 122 trials to demonstrate that: (i reactivity does not decline with successive batches; (ii the process is catalytic; and (iii the process involves a number of steps.

  7. Technical and economic assessment of photovoltaic-driven desalination systems

    Energy Technology Data Exchange (ETDEWEB)

    Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L. [National Renewable Energy Laboratory, 1617 Cole Blvd. Golden, CO 80401 (United States)

    2010-02-15

    Solar desalination systems are approaching technical and cost viability for producing fresh-water, a commodity of equal importance to energy in many arid and coastal regions worldwide. Solar photovoltaics (PV) represent an ideal, clean alternative to fossil fuels, especially for remote communities such as grid-limited villages or isolated islands. These applications for water production in remote areas are the first to be nearing cost-competitiveness due to decreasing PV prices and increasing fossil fuel prices over the last five years. The electricity produced from PV systems for desalination applications can be used for electro-mechanical devices such as pumps or in direct-current (DC) devices. Reverse osmosis (RO) and electrodialysis (ED) desalination units are the most favorable alternatives to be coupled with PV systems. RO usually operates on alternating current (AC) for the pumps, thus requiring a DC/AC inverter. In contrast, electrodialysis uses DC for the electrodes at the cell stack, and hence, it can use the energy supplied from the PV panels with some minor power conditioning. Energy storage is critical and batteries are required for sustained operation. In this paper, we discuss the operational features and system designs of typical PV-RO and PV-ED systems in terms of their suitability and optimization for PV operation. For PV-RO and PV-ED systems, we evaluate their electricity need, capital and operational costs, and fresh-water production costs. We cover ongoing and projected research and development activities, with estimates of their potential economics. We discuss the feasibility of future solar desalination based on expected (or predicted) improvements in technology of the desalination and PV systems. Examples are provided for Middle East and other parts of the World. (author)

  8. A seawater desalination scheme for global hydrological models

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Kakinuma, Kaoru; Kanae, Shinjiro

    2016-10-01

    Seawater desalination is a practical technology for providing fresh water to coastal arid regions. Indeed, the use of desalination is rapidly increasing due to growing water demand in these areas and decreases in production costs due to technological advances. In this study, we developed a model to estimate the areas where seawater desalination is likely to be used as a major water source and the likely volume of production. The model was designed to be incorporated into global hydrological models (GHMs) that explicitly include human water usage. The model requires spatially detailed information on climate, income levels, and industrial and municipal water use, which represent standard input/output data in GHMs. The model was applied to a specific historical year (2005) and showed fairly good reproduction of the present geographical distribution and national production of desalinated water in the world. The model was applied globally to two periods in the future (2011-2040 and 2041-2070) under three distinct socioeconomic conditions, i.e., SSP (shared socioeconomic pathway) 1, SSP2, and SSP3. The results indicate that the usage of seawater desalination will have expanded considerably in geographical extent, and that production will have increased by 1.4-2.1-fold in 2011-2040 compared to the present (from 2.8 × 109 m3 yr-1 in 2005 to 4.0-6.0 × 109 m3 yr-1), and 6.7-17.3-fold in 2041-2070 (from 18.7 to 48.6 × 109 m3 yr-1). The estimated global costs for production for each period are USD 1.1-10.6 × 109 (0.002-0.019 % of the total global GDP), USD 1.6-22.8 × 109 (0.001-0.020 %), and USD 7.5-183.9 × 109 (0.002-0.100 %), respectively. The large spreads in these projections are primarily attributable to variations within the socioeconomic scenarios.

  9. Forward osmosis niches in seawater desalination and wastewater reuse.

    Science.gov (United States)

    Valladares Linares, R; Li, Z; Sarp, S; Bucs, Sz S; Amy, G; Vrouwenvelder, J S

    2014-12-01

    This review focuses on the present status of forward osmosis (FO) niches in two main areas: seawater desalination and wastewater reuse. Specific applications for desalination and impaired-quality water treatment and reuse are described, as well as the benefits, advantages, challenges, costs and knowledge gaps on FO hybrid systems are discussed. FO can play a role as a bridge to integrate upstream and downstream water treatment processes, to reduce the energy consumption of the entire desalination or water recovery and reuse processes, thus achieving a sustainable solution for the water-energy nexus. FO hybrid membrane systems showed to have advantages over traditional membrane process like high pressure reverse osmosis and nanofiltration for desalination and wastewater treatment: (i) chemical storage and feed water systems may be reduced for capital, operational and maintenance cost, (ii) water quality is improved, (iii) reduced process piping costs, (iv) more flexible treatment units, and (v) higher overall sustainability of the desalination and wastewater treatment process. Nevertheless, major challenges make FO systems not yet a commercially viable technology, the most critical being the development of a high flux membrane, capable of maintaining an elevated salt rejection and a reduced internal concentration polarization effect, and the availability of appropriate draw solutions (cost effective and non-toxic), which can be recirculated via an efficient recovery process. This review article highlights the features of hybrid FO systems and specifically provides the state-of-the-art applications in the water industry in a novel classification and based on the latest developments toward scaling up these systems.

  10. An Applied Research Program on Water Desalination with Renewable Energies

    Directory of Open Access Journals (Sweden)

    S. M. Alcocer

    2008-01-01

    Full Text Available The use of renewable energy for desalination might be quite different in many places of the world. In Mexico, specifically in Baja California, there is an abundance of “traditional” renewable resources like sun and wind but also some others like hot springs at the coast, tidal currents and tidal amplitudes of over six meters in the upper part of the Gulf of California associated with a severe scarcity of fresh water. The National University of Mexico (UNAM started two years ago a well organized research program to assess the amount of these resources and to find the way to use them for desalinating sea water. Very exiting results have being obtained: The abundance of hot springs at the shore, some of them over 84°C, lead to the design of thermal desalinating prototype plants with very little energy consumption. It was found by geochemistry that at a few meters deep, some 50 m, very high temperature can be obtained, easy to use in binary geothermal power plants to generate electricity for desalination. During the survey it was found that the amount of electrical power that can be generated with tidal storage and from deep sea hydrothermal vents is of the order of several thousands of MW. A special approach is also presented for the use of solar energy and the tidal currents of the Gulf. The IMPULSA research group at UNAM has been already consolidated with more than 30 students, dedicated to the design of appropriate equipment to make use of these resources and to characterize and quantify this huge amount of renewable energies that will permit to desalinate sea water.

  11. Impact of socio-economic growth on desalination in the US.

    Science.gov (United States)

    Ziolkowska, Jadwiga R; Reyes, Reuben

    2016-02-01

    In 2013, around 1336 desalination plants in the United States (US) provided purified water mainly to municipalities, the industry sector and for power generation. In 2013 alone, ∼200 million m(3) of water were desalinated; the amount that could satisfy annual municipal water consumption of more than 1.5 million people in the US. Desalination has proven to be a reliable water supply source in many countries around the world, with the total global desalination capacity of ∼60 million m(3)/day in 2013. Desalination has been used to mitigate water scarcity and lessen the pressure on water resources. Currently, data and information about desalination are still limited, while extensive socio-economic analyses are missing. This paper presents an econometric model to fill this gap. It evaluates the impact of selected socio-economic variables on desalination development in the US in the time span 1970-2013. The results show that the GDP and population growth have significantly impacted the desalination sector over the analyzed time period. The insights into the economics of desalination provided with this paper can be used to further evaluate cost-effectiveness of desalination both in the US and in other countries around the world.

  12. Utilization of niching methods of genetic algorithms in nuclear reactor problems optimization; A utilizacao dos metodos de nichos dos algoritmos geneticos na otimizacao de problemas de reatores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Wagner Figueiredo; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to test existing niching techniques and two methods introduced herein, bearing in mind their eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. Tests are performed using widely known test functions and their results show that the new methods are quite promising, specially in real world problems like the nuclear reactor core reload. (author)

  13. Preliminary Thermohydraulic Analysis of a New Moderated Reactor Utilizing an LEU-Fuel for Space Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The Korea Advanced NUclear Thermal Engine Rocket utilizing an LEU fuel (KANUTER-LEU) is a non-proliferative and comparably efficient NTR engine with relatively low thrust levels of 40 - 50 kN for in-space transportation. The small modular engine can expand mission versatility, when flexibly used in a clustered engine arrangement, so that it can perform various scale missions from low-thrust robotic science missions to high-thrust manned missions. In addition, the clustered engine system can enhance engine redundancy and ensuing crew safety as well as the thrust. The propulsion system is an energy conversion system to transform the thermal energy of the reactor into the kinetic energy of the propellant to produce the powers for thrust, propellant feeding and electricity. It is mainly made up of a propellant Feeding System (PFS) comprising a Turbo-Pump Assembly (TPA), a Regenerative Nozzle Assembly (RNA), etc. For this core design study, an expander cycle is assumed to be the propulsion system. The EGS converts the thermal energy of the EHTGR in the idle operation (only 350 kW{sub th} power) to electric power during the electric power mode. This paper presents a preliminary thermohydraulic design analysis to explore the design space for the new reactor and to estimate the referential engine performance. The new non-proliferative NTR engine concept, KANUTER-LEU, is under designing to surmount the nuclear proliferation obstacles on allR and Dactivities and eventual commercialization for future generations. To efficiently implement a heavy LEU fuel for the NTR engine, its reactor design innovatively possesses the key characteristics of the high U density fuel with high heating and H{sub 2} corrosion resistances, the thermal neutron spectrum core and also minimizing non-fission neutron loss, and the compact reactor design with protectively cooling capability. To investigate feasible design space for the moderated EHTGR-LEU and resultant engine performance, the

  14. Treatment and desalination of domestic wastewater for water reuse in a four-chamber microbial desalination cell.

    Science.gov (United States)

    Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen

    2016-09-01

    Microbial desalination cells (MDCs) have been studied for contaminant removal from wastewater and salinity reduction in saline water. However, in an MDC wastewater treatment and desalination occurs in different streams, and high salinity of the treated wastewater creates challenges for wastewater reuse. Herein, a single-stream MDC (SMDC) with four chambers was developed for simultaneous organic removal and desalination in the same synthetic wastewater. This SMDC could achieve a desalination rate of 12.2-31.5 mg L(-1) h(-1) and remove more than 90 % of the organics and 75 % of NH4 (+)-N; the pH imbalance between the anode and cathode chambers was also reduced. Several strategies such as controlling catholyte pH, increasing influent COD concentration, adopting the batch mode, applying external voltage, and increasing the alkalinity of wastewater were investigated for improving the SMDC performance. Under a condition of 0.4 V external voltage, anolyte pH adjustment, and a batch mode, the SMDC decreased the wastewater salinity from 1.45 to below 0.75 mS cm(-1), which met the salinity standard of wastewater for irrigation. Those results encourage further development of the SMDC technology for sustainable wastewater treatment and reuse.

  15. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-27

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (α, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (α,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (α,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were tested on a

  16. 淡化海水产业化的投融资模式初探%Preliminary Discussion on Investment and Financing of Industrialization of Seawater Desalination Projects:Using Beijing as an Example

    Institute of Scientific and Technical Information of China (English)

    刘家沂

    2008-01-01

    海水淡化是解决我国沿海地区淡水资源短缺的重要途径.中国高度重视海水淡化工作,海水淡化作为重要内容已被列入国家规划中.目前,我国海水淡化技术已经取得重大突破,并日趋完善,且随着装置规模的扩大和技术进步,及水价机制的改革,利用淡化海水已具备大力发展的经济条件.本文从投融资模式的角度分析海水淡化进入市场的可行性.%Seawater desalination is an important means to solve the shortage of freshwater resources along the coastal areas of China,and it has already been included in the national planning.Currently,the seawater desalination technology in China has made a major breakthrough.With the expansion of the scale of these desalination projects,and the reform in the water pricing mechanism,utilization of desalinated seawater has already met the necessary economic conditions for large scale development and industrialization.This article analyzes the feasibility of seawater desalination market from the point of capitals investment and financing.

  17. Economical Analysis of a Solar Desalination System%太阳能海水淡化系统经济性分析与研究

    Institute of Scientific and Technical Information of China (English)

    陈子乾; 王铁柱; 何小荣; 陈俊岭; 郑宏飞

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water production.%利用单因素分析方法,计算三效塔式太阳能海水淡化系统各个参数对太阳能海水淡化系统淡水生产成本的单因素影响值,分别给出太阳能集热系统成本、储热水箱成本、海水淡化装置成本、装置运行年消耗动力费用、设备使用年限和淡水年生产总量等参数对淡水生产成本影响的程度,明确降低淡水生产成本的方向,有助于太阳能海水淡化装置的深入研究。

  18. Organizational analysis and safety for utilities with nuclear power plants: an organizational overview. Volume 1. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Scott, W.G.; Connor, P.E.

    1983-08-01

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. A model is introduced for the purposes of organizing the literature review and showing key relationships among identified organizational factors and nuclear power plant safety. Volume I of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety.

  19. [Utilization of radionuclide therapy facility and assembly-temporary type therapeutic facility for medical treatment of radioactivity contaminated patients in nuclear emergency].

    Science.gov (United States)

    Watanabe, Naoyuki; Satro, Hiroyuki; Kawahara, Hiroshi; Sasaki, Yasuhito

    2011-05-01

    Medical management of patients internally contaminated in nuclear emergency needs, in addition to general medical treatment, to evaluate doses due to intakes of radioactive materials, to conduct effective treatment with stable isotopes and chelating agents and to keep public away from radioactive materials in and excreted from patients. The idea of medical treatment for internal contamination is demonstrated in the general principles on medical management of victims in nuclear emergency issued by the Cabinet Office in Japan. However, if impressive number patients with internal contamination are generated, the current medical management scheme in nuclear emergency is not able to admit them. The utilization of radionuclide therapy facilities where patients with thyroid diseases are treated with radioisotope and assembly-temporary housing type treatment facilities dedicated for internal contaminated patients may be expected to complement the medical management scheme in nuclear emergency. The effect or more medical management system for patients internally contaminated may become one of the safety nets in the contemporary society that inclines to use nuclear energy on account of accessibility.

  20. Cytoplasmic utilization of human immunodeficiency virus type 1 genomic RNA is not dependent on a nuclear interaction with gag.

    Science.gov (United States)

    Grewe, Bastian; Hoffmann, Bianca; Ohs, Inga; Blissenbach, Maik; Brandt, Sabine; Tippler, Bettina; Grunwald, Thomas; Uberla, Klaus

    2012-03-01

    In some retroviruses, such as Rous sarcoma virus and prototype foamy virus, Gag proteins are known to shuttle between the nucleus and the cytoplasm and are implicated in nuclear export of the viral genomic unspliced RNA (gRNA) for subsequent encapsidation. A similar function has been proposed for human immunodeficiency virus type 1 (HIV-1) Gag based on the identification of nuclear localization and export signals. However, the ability of HIV-1 Gag to transit through the nucleus has never been confirmed. In addition, the lentiviral Rev protein promotes efficient nuclear gRNA export, and previous reports indicate a cytoplasmic interaction between Gag and gRNA. Therefore, functional effects of HIV-1 Gag on gRNA and its usage were explored. Expression of gag in the absence of Rev was not able to increase cytoplasmic gRNA levels of subgenomic, proviral, or lentiviral vector constructs, and gene expression from genomic reporter plasmids could not be induced by Gag provided in trans. Furthermore, Gag lacking the reported nuclear localization and export signals was still able to mediate an efficient packaging process. Although small amounts of Gag were detectable in the nuclei of transfected cells, a Crm1-dependent nuclear export signal in Gag could not be confirmed. Thus, our study does not provide any evidence for a nuclear function of HIV-1 Gag. The encapsidation process of HIV-1 therefore clearly differs from that of Rous sarcoma virus and prototype foamy virus.

  1. Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype

    KAUST Repository

    Thu, Kyaw

    2013-10-01

    This paper discusses the performance analysis of an advanced adsorption desalination (AD) cycle with an internal heat recovery between the condenser and the evaporator. The AD cycle employs the adsorption-desorption principles to convert sea or brackish water into high-grade potable water with total dissolved solids (TDS) less than 10 ppm (mg/L) utilizing low-temperature heat source. The salient features of the AD cycle are the utilization of low temperature waste heat (typically 55 C to 85 C) with the employment of an environment-friendly silica gel/water pair and the low maintenance as it has no major moving parts other than the pumps and valves. For improved performance of the AD pilot plant, the internal heat recovery scheme between the condenser and evaporator has been implemented with a run-about water circuit between them. The efficacy of the scheme is analyzed in terms of key performance indicators such as the specific daily water production (SDWP) and the performance ratio (PR). Extensive experiments were performed for assorted heat source temperatures ranging from 70 C to 50 C. From the experiments, the SDWP of the AD cycle with the proposed heat recovery scheme is found to be 15 m3 of water per ton of silica gel that is almost twice that of the yield obtained by a conventional AD cycle for the same operation conditions. Another important finding of AD desalination plant is that the advanced AD cycle could still be operational with an inlet heat source temperature of 50 C and yet achieving a SDWP of 4.3 m3 - a feat that never seen by any heat-driven cycles. © 2013 Elsevier Ltd. All rights reserved.

  2. The performance investigation of a temperature cascaded cogeneration system equipped with adsorption desalination unit

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper presents the performance investigation of a temperature cascaded cogeneration plant, shortly in TCCP, equipped with an efficient waste heat recovery system. The TCCP or cogeneration system produces four types of useful energy namely (i) electricity, (ii) steam, (iii) cooling, and (iv) dehumidification and distilled water by utilizing single energy source. The TCCP comprises a Capstone C30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heatactivated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption desalination system, and (iv) a multi-bed desiccant dehumidifier. The analysis is performed under different operation conditions such as heat source temperatures, flow rates of heat transfer fluids and chilled water inlet temperatures. The only single heat source for TCCP is obtained from exhaust gas of micro-turbine and it is channeled to a series of waste heat recovery heat exchangers to steam and hot water at different temperatures. Hot water produced by such a compact heat exchangers is the driving heat source to produce steam of 15 kg/h, cooling of 2 Rton, dehumidification of 2 Rton, and distilled water of 0.7 m3/day. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor could achieve as high as 70% while fuel energy saving ratio is found to be 28%. © 2013 Desalination Publications. All rights reserved.

  3. Desalination of Walls and Façades

    Science.gov (United States)

    Wedekind, W.; Jáuregui Arreola, K.; Siegesmund, S.

    2012-04-01

    For large monumental objects like walls and façades, the common technique of applying poultices for desalination often are not effective. This practice is neither cost effective nor does it lead to the desired result of desalination. To manage the conservation and desalination of these kinds of objects, several sprinkling techniques are known and have been applied on historical objects. For example, in the wooden warship Vasa, which was excavated from the sea bottom in Stockholm/Sweden, a sprinkling method was applied in 1961 for conservation and desalination. A sprinkling method to desalinate porous mineral materials will be presented using three different case studies: the rock cut monument no. 825 in Petra/Jordan, the medieval monastary church of the former Franziscan convent in Zeitz/Germany and the baroque monastary church Santa Monica in Guadalajara/Mexico. Before to start with practical conservation, the material- and petropysical properties, focoussed on water transport properties, like porosity, pore size distribution, water uptake and drying rate were investigadet. Diagnostic investigations on the objects included the mapping of deterioration, moister content measurements and salt accumulation determined by borehole cuts samples at depth. In the sprinkling method water is sprayed onto the wall surface through nozzels arranged in a modular grid. Depending on the sprinkling duration, a small or a large amount of water seeps into the porous materials, whereby the depth penetration can be adjusted accordingly. The water not absorbed by the stone runs off the facade and can be collected in liter amounts and tested by electrical conductivity with respect to the dissolved substances. After the drying of the wall's surface and the accumulation of salt at the material's surface, the procedure is repeated. For each subsequent washing a lower content of salt should be brought to the surface. Step by step the salt concentration will eventually decrease to almost

  4. Improved aquifer characterization and the optimization of the design of brackish groundwater desalination systems

    KAUST Repository

    Malivaa, Robert G.

    2011-07-01

    Many water scarce regions possess brackish-water resources that can be desalted to provide alternative water supplies. Brackish groundwater desalination by reverse osmosis (RO) is less expensive than seawater systems because of reduced energy and pretreatment requirements and lesser volumes of concentrate that require disposal. Development of brackish groundwater wellfields include the same hydraulic issues that affect conventional freshwater wellfields. Managing well interference and prevention of adverse impacts such as land subsidence are important concerns. RO systems are designed to treat water whose composition falls within a system-specific envelope of salinities and ion concentrations. A fundamental requirement for the design of brackish groundwater RO systems is prediction of the produced water chemistry at both the start of pumping and after 10-20 years of operation. Density-dependent solute-transport modeling is thus an integral component of the design of brackish groundwater RO systems. The accuracy of groundwater models is dependent upon the quality of the hydrogeological data upon which they are based. Key elements of the aquifer characterization are the determination of the three-dimensional distribution of salinity within the aquifer and the evaluation of aquifer heterogeneity with respect to hydraulic conductivity. It is necessary to know from where in a pumped aquifer (or aquifer zone) water is being produced and the contribution of vertical flow to the produced water. Unexpected, excessive vertical migration (up-coning) of waters that are more saline has adversely impacted some RO systems because the salinity of the water delivered to the system exceeded the system design parameters. Improved aquifer characterization is possible using advanced geophysical techniques, which can, in turn, lead to more accurate solute-transport models. Advanced borehole geophysical logs, such as nuclear magnetic resonance, were run as part of the exploratory test

  5. Combined System of Organic Rankine Cycle and Brackish Water Desalination for Industrial Gas Flue Waste Heat Recycling Utilization%利用烟气余热的有机朗肯循环与苦咸水淡化联合系统

    Institute of Scientific and Technical Information of China (English)

    刘乙成; 闫广; 高传昌; 王为术

    2013-01-01

    Aimint at the problems of industrial flue gas waste heat emissions and shortage of fresh water in coastal and the northwest areas, a system combined with organic rankine cycle (ORC) and brackish water desalination was designed to reclaim industrial gas flue waste heat and produce fresh water and electricity. The thermal process of the system was dynamic integrated with ORC and flash evaporation. The pentane as working medium was promoted to calculate cycle efficiency of the ORC system with variable parameter method. And then the optimal parameters of the system operation was determined. Compared with water rankine cycle, the advantage of this system was proved.%针对沿海和西北内陆地区淡水紧缺和工业烟气余热的排放问题,设计了一种有机朗肯循环与苦咸水淡化的联合系统对工业烟气余热进行有效回收,以生产淡水和电能.该联合系统将闪蒸法与有机朗肯循环进行有机结合,通过变参数法计算采用戊烷作为工质的有机朗肯循环的循环效率,确定该系统运行的最佳参数,并与水工质朗肯循环进行对比,证明了联合系统的优越性.

  6. Influence of the Chemical Interactions on the Removal Rate of Different Salts in Electrokinetic Desalination Processes

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2011-01-01

    Electrokinetic desalination techniques have been successfully applied for the prevention of salt-induced deterioration problems of masonry and other construction materials. A mathematical model for electrochemical desalination treatments is described, based on the Poisson-Nernst-Planck system...... and sculptures. Simulations of the desalination treatment of brick samples contaminated with these target contaminants are shown. The influence of the chemical interactions on the efficiency is highlighted in the results....

  7. EXPERIMENTAL RESEARCH OF THE INFLUENCE OF VARIOUS TYPES OF SOLAR COLLECTORS FOR PERFORMANCE SOLAR DESALINATION PLANT

    OpenAIRE

    Rakhmatulin I.R.

    2014-01-01

    The article discusses the possibility of using renewable energy for water purification. Results of analysis of a preferred energy source for a water purification using installed in places where fresh water shortages and a lack of electrical energy. The possibility of desalination of salt water using solar energy for regions with temperate climate. Presented desalination plant working on energy vacuum solar collectors, principles of action developed by the desalination plant. The experimental ...

  8. Capacity building strategies and policy for desalination using renewable energies in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Hacene; Abdellah, Ouagued [Laboratory of Water and Environment, Hassiba Ben Bouali University, Chlef, BP151 (Algeria); Ghaffour, Noreddine [Middle East Desalination Research Center, P.O. Box 21, P.C. 133, Muscat (Oman)

    2009-05-15

    The integration of renewable resources in desalination and water purification is becoming increasingly attractive. This is justified by the fact that areas of fresh water shortages have plenty of solar energy and these technologies have low operating and maintenance costs. In this paper, an overview of capacity building strategy and policy for desalination in Algeria is presented. Importance of training and education on renewable energies is also outlined. The contribution of the Middle East Desalination Research Center in capacity building and research and development in desalination in Algeria is also presented. (author)

  9. Drivers of an urban community's acceptance of a large desalination scheme for drinking water

    Science.gov (United States)

    Gibson, Fiona L.; Tapsuwan, Sorada; Walker, Iain; Randrema, Elodie

    2015-09-01

    Changing climates and growing populations have prompted policy makers to shift to more climate resilient, technology-driven water sources, such as seawater desalination. Desalination is a prominent water resource in the Middle East but countries in other parts of the world with similar scarcity issues and good access to sea water, such as Australia, have been comparatively slow to adopt it. This paper explores attitudes to desalination in Perth, Western Australia, and the factors that influence its acceptance. We compared individuals' acceptance of desalination over two time periods by using identical surveys administered in 2007 and 2012. We then examined the attitudinal factors - attitudes towards desalination and attitudes towards the environment - that influence acceptance. Acceptance of desalination was reasonably high and stable at both times (74% and 73% in 2007 and 2012 respectively). We found that respondents' attitudes to perceived outcomes and benefits, fairness, environmental obligation and risk were important predictors of their acceptance of desalination in both surveys. However the weight given to these aspects varied over time. The findings show that there is still mixed community sentiment towards desalination, which helps to explain why acceptance has not increased since desalination was introduced in 2006.

  10. Hybrid membrane operations in water desalination and industrial process rationalisation.

    Science.gov (United States)

    Drioli, E; Di Profio, G; Curcio, E

    2005-01-01

    Membrane science and technology are recognized today as powerful tools in resolving some important global problems, and developing newer industrial processes, needed from the imperative of sustainable industrial growth. In seawater desalination, for resolving the dramatic increase of freshwater demand in many regions of the world, membrane unitary operations or the combination of some of them in integrated systems are already a real means for producing water from the sea, at lower costs and minimum environmental impact, with a very interesting prospective in particular for poor economy countries. However, membranes are used or are becoming used in some important industrial fields, for developing more efficient productive cycles, with reduced waste of raw-material, reducing the polluting charge by controlling byproduct generation, and reducing overall costs. In the present paper, other than for seawater desalination applications, some industrial applications where membrane technology has led already to match the goal of process intensification are discussed.

  11. High performance hydrophilic pervaporation composite membranes for water desalination

    KAUST Repository

    Liang, Bin

    2014-08-01

    A three-layer thin film nanofibrous pervaporation composite (TFNPVC) membrane was prepared by sequential deposition using electrospraying/electrospinning. The poly(vinyl alcohol) (PVA) top barrier layer was first electrosprayed on aluminum foil and its thickness can be easily controlled by adjusting the collecting time. Next a polyacrylonitrile (PAN) nanofibrous scaffold was deposited by electrospinning as a mid-layer support. A nonwoven PET layer is used to complete the composite membrane. The pervaporation desalination performance of TFNPVC membranes was tested using NaCl solutions at 100. Pa and at room temperature. The TFNPVC membranes show excellent desalination performance (high water flux and salt rejection >. 99.5%) for different salt concentrations with virtually no change in performance after 50. h of operation. © 2014 Elsevier B.V.

  12. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  13. Computational nanomaterials for novel desalination membrane design: Nanoporous graphene

    Science.gov (United States)

    Cohen-Tanugi, David; Grossman, Jeffrey C.

    2012-02-01

    We describe a novel approach for desalination based on nanoporous graphene. Our molecular dynamics calculations show that freestanding graphene patterned with nanometer-sized pores can act as an ultra-thin filtration membrane. Due to size exclusion and chemical interactions with the confining pores, salt ions can be blocked from permeating the membrane at sufficiently small pore diameters. Notably, the pore diameter and the chemical interactions at the water-membrane interface are most important criteria for this system's desalination performance. We will share insights from Molecular Dynamics calculations regarding the theoretical performance of this membrane system and the effects of chemical passivation of the graphene pores on the filtration dynamics. Although the narrow range of acceptable pore sizes suggests that further design innovations will be necessary at the molecular scale before large-scale applications are possible, our existing results predict that pressure requirements for this system can be made roughly competitive with commercial Reverse Osmosis.

  14. Mechanical strength of nanoporous graphene as a desalination membrane.

    Science.gov (United States)

    Cohen-Tanugi, David; Grossman, Jeffrey C

    2014-11-12

    Recent advances in the development of nanoporous graphene (NPG) hold promise for the future of water supply by reverse osmosis (RO) desalination. But while previous studies have highlighted the potential of NPG as an RO membrane, there is less understanding as to whether NPG is strong enough to maintain its mechanical integrity under the high hydraulic pressures inherent to the RO desalination process. Here, we show that an NPG membrane can maintain its mechanical integrity in RO but that the choice of substrate for graphene is critical to this performance. Using molecular dynamics simulations and continuum fracture mechanics, we show that an appropriate substrate with openings smaller than 1 μm would allow NPG to withstand pressures exceeding 57 MPa (570 bar) or ten times more than typical pressures for seawater RO. Furthermore, we demonstrate that NPG membranes exhibit an unusual mechanical behavior in which greater porosity may help the membrane withstand even higher pressures.

  15. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    Science.gov (United States)

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m(-2) (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  16. Thermoeconomic Analysis and Multiobjective Optimization of a Solar Desalination Plant

    Directory of Open Access Journals (Sweden)

    Hamid Mokhtari

    2014-01-01

    Full Text Available A solar desalination plant consisting of solar parabolic collectors, steam generators, and MED unit was simulated technoeconomically and optimized using multiobjective genetic algorithm. A simulation code was developed using MATLAB language programming. Indirect steam generation using different thermal oils including THERMINOL VP1, THERMINOL66, and THERMINOL59 was also investigated. Objective function consisted of 17 essential parameters such as diameter of heat collector element, collector width, steam generator pinch, approach temperatures, and MED number of effects. Simulation results showed that THERMINOL VP1 had superior properties and produced more desalinated water than other heat transfer fluids. Performance of the plant was analyzed on four characteristic days of the year to show that multiobjective optimization technique can be used to obtain an optimized solution, in which the product flow rate increased, while total investment and O&M costs decreased compared to the base case.

  17. Materials for next-generation desalination and water purification membranes

    Science.gov (United States)

    Werber, Jay R.; Osuji, Chinedum O.; Elimelech, Menachem

    2016-05-01

    Membrane-based separations for water purification and desalination have been increasingly applied to address the global challenges of water scarcity and the pollution of aquatic environments. However, progress in water purification membranes has been constrained by the inherent limitations of conventional membrane materials. Recent advances in methods for controlling the structure and chemical functionality in polymer films can potentially lead to new classes of membranes for water purification. In this Review, we first discuss the state of the art of existing membrane technologies for water purification and desalination, highlight their inherent limitations and establish the urgent requirements for next-generation membranes. We then describe molecular-level design approaches towards fabricating highly selective membranes, focusing on novel materials such as aquaporin, synthetic nanochannels, graphene and self-assembled block copolymers and small molecules. Finally, we highlight promising membrane surface modification approaches that minimize interfacial interactions and enhance fouling resistance.

  18. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  19. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    Energy Technology Data Exchange (ETDEWEB)

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented.

  20. Financializing Desalination: Rethinking the Returns of Big Infrastructure

    OpenAIRE

    Loftus, Alex; March, Hug

    2016-01-01

    Against the trend prevalent during the 1990s and 2000s, large-scale infrastructural projects have made a comeback in the water sector. Although sometimes framed as part of a broader sustainable transition, the return of big infrastructure is a much more complicated story in which finance has played a crucial role. In the following article, we explore this encounter between finance and water infrastructure using the case of Britain's first experiment in desalination technologies, the Thames Wa...

  1. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien

    2015-03-01

    The aim of this study was to assess the formation and the behavior of halogenated byproducts (regulated THMs and HAAs, as well as nitrogenous, brominated and iodinated DBPs including the emerging iodo-THMs) along the treatment train of full-scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF or RO). Desalination plants fed with good seawater quality and using intermittent chlorine injection did not show high DBP formation and discharge. One RO plant with a lower raw water quality and using continuous chlorination at the intake formed more DBPs. In this plant, some non-regulated DBPs (e.g., dibromoacetonitrile and iodo-THMs) reached the product water in low concentrations (< 1.5 μg/L). Regulated THMs and HAAs were far below their maximum contamination levels set by the US Environmental Protection Agency. Substantial amounts of DBPs are disposed to the sea; low concentrations of DBPs were indeed detected in the water on shore of the desalination plants.

  2. Freeze desalination of seawater using LNG cold energy.

    Science.gov (United States)

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Tai-Shung

    2016-10-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around -8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  3. Biodesalination-On harnessing the potential of nature's desalination processes.

    Science.gov (United States)

    Taheri, Reza; Razmjou, Amir; Szekely, Gyorgy; Hou, Jingwei; Ghezelbash, Gholam Reza

    2016-07-08

    Water scarcity is now one of the major global crises, which has affected many aspects of human health, industrial development and ecosystem stability. To overcome this issue, water desalination has been employed. It is a process to remove salt and other minerals from saline water, and it covers a variety of approaches from traditional distillation to the well-established reverse osmosis. Although current water desalination methods can effectively provide fresh water, they are becoming increasingly controversial due to their adverse environmental impacts including high energy intensity and highly concentrated brine waste. For millions of years, microorganisms, the masters of adaptation, have survived on Earth without the excessive use of energy and resources or compromising their ambient environment. This has encouraged scientists to study the possibility of using biological processes for seawater desalination and the field has been exponentially growing ever since. Here, the term biodesalination is offered to cover all of the techniques which have their roots in biology for producing fresh water from saline solution. In addition to reviewing and categorizing biodesalination processes for the first time, this review also reveals unexplored research areas in biodesalination having potential to be used in water treatment.

  4. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian

    2016-06-23

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  5. Entropy Generation of Desalination Powered by Variable Temperature Waste Heat

    Directory of Open Access Journals (Sweden)

    David M. Warsinger

    2015-10-01

    Full Text Available Powering desalination by waste heat is often proposed to mitigate energy consumption and environmental impact; however, thorough technology comparisons are lacking in the literature. This work numerically models the efficiency of six representative desalination technologies powered by waste heat at 50, 70, 90, and 120 °C, where applicable. Entropy generation and Second Law efficiency analysis are applied for the systems and their components. The technologies considered are thermal desalination by multistage flash (MSF, multiple effect distillation (MED, multistage vacuum membrane distillation (MSVMD, humidification-dehumidification (HDH, and organic Rankine cycles (ORCs paired with mechanical technologies of reverse osmosis (RO and mechanical vapor compression (MVC. The most efficient technology was RO, followed by MED. Performances among MSF, MSVMD, and MVC were similar but the relative performance varied with waste heat temperature or system size. Entropy generation in thermal technologies increases at lower waste heat temperatures largely in the feed or brine portions of the various heat exchangers used. This occurs largely because lower temperatures reduce recovery, increasing the relative flow rates of feed and brine. However, HDH (without extractions had the reverse trend, only being competitive at lower temperatures. For the mechanical technologies, the energy efficiency only varies with temperature because of the significant losses from the ORC.

  6. Tunable C2N Membrane for High Efficient Water Desalination

    Science.gov (United States)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  7. Carbon electrode for desalination purpose in capacitive deionization

    Science.gov (United States)

    Endarko, Fadilah, Nurul; Anggoro, Diky

    2016-03-01

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 - 1400 m2/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  8. Tunable C2N Membrane for High Efficient Water Desalination.

    Science.gov (United States)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-07

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the "open" and "closed" states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  9. Knowledge, attitudes and practice of desalinated water among professionals in health and water departments in Shengsi, China: a qualitative study.

    Science.gov (United States)

    Chen, Tao; Wang, Qiqi; Qin, Yu; Chen, Xi; Yang, Xiaoxiong; Lou, Wei; Zhou, Mikang; He, Guangxue; Lu, Kai

    2015-01-01

    Desalination has been considered as an essential way to solve water stress all over the world. Most of previous studies focused on its environmental impacts, energy consumption and desalination technologies rather than human health. However, the safety of desalinated water remains unclear. This study was undertaken to investigate the knowledge, attitude and practice (KAP) of the residents in an island county in eastern China to desalinated water. Seventeen people working in medical and water industries were recruited, and focus group discussion and in-depth interview were conducted among them. Our results showed that the majority of people interviewed knew the definition and local supply pattern of desalinated water, while some of them showed some concern about the safety and nutrition of desalinated water. Current drinking water standard has no specific item for desalination, so we strongly suggest issuing a standard for desalinated water.

  10. Knowledge, attitudes and practice of desalinated water among professionals in health and water departments in Shengsi, China: a qualitative study.

    Directory of Open Access Journals (Sweden)

    Tao Chen

    Full Text Available Desalination has been considered as an essential way to solve water stress all over the world. Most of previous studies focused on its environmental impacts, energy consumption and desalination technologies rather than human health. However, the safety of desalinated water remains unclear. This study was undertaken to investigate the knowledge, attitude and practice (KAP of the residents in an island county in eastern China to desalinated water. Seventeen people working in medical and water industries were recruited, and focus group discussion and in-depth interview were conducted among them. Our results showed that the majority of people interviewed knew the definition and local supply pattern of desalinated water, while some of them showed some concern about the safety and nutrition of desalinated water. Current drinking water standard has no specific item for desalination, so we strongly suggest issuing a standard for desalinated water.

  11. The utility of internally transcribed spacer 2 DNA sequences of the nuclear ribosomal gene for distinguishing sibling species of Trichogramma

    NARCIS (Netherlands)

    Stouthamer, R.; Hu, J.; Kan, van F.J.P.M.; Platner, G.R.; Pinto, J.D.

    1999-01-01

    The usefulness of the internally transcribed spacer 2 (ITS2) of the nuclear ribosomal gene complex is tested for providing taxonomic characters to identify Trichogramma species. The ITS2 sequences of a group of sibling species of the T. deion/T. pretiosum complexes were determined. A simple and prec

  12. Utility of Social Modeling for Proliferation Assessment - Enhancing a Facility-Level Model for Proliferation Resistance Assessment of a Nuclear Enegry System

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Garill A.; Brothers, Alan J.; Gastelum, Zoe N.; Olson, Jarrod; Thompson, Sandra E.

    2009-10-26

    The Utility of Social Modeling for Proliferation Assessment project (PL09-UtilSocial) investigates the use of social and cultural information to improve nuclear proliferation assessments, including nonproliferation assessments, Proliferation Resistance (PR) assessments, safeguards assessments, and other related studies. These assessments often use and create technical information about a host State and its posture towards proliferation, the vulnerability of a nuclear energy system (NES) to an undesired event, and the effectiveness of safeguards. This objective of this project is to find and integrate social and technical information by explicitly considering the role of cultural, social, and behavioral factors relevant to proliferation; and to describe and demonstrate if and how social science modeling has utility in proliferation assessment. This report describes a modeling approach and how it might be used to support a location-specific assessment of the PR assessment of a particular NES. The report demonstrates the use of social modeling to enhance an existing assessment process that relies on primarily technical factors. This effort builds on a literature review and preliminary assessment performed as the first stage of the project and compiled in PNNL-18438. [ T his report describes an effort to answer questions about whether it is possible to incorporate social modeling into a PR assessment in such a way that we can determine the effects of social factors on a primarily technical assessment. This report provides: 1. background information about relevant social factors literature; 2. background information about a particular PR assessment approach relevant to this particular demonstration; 3. a discussion of social modeling undertaken to find and characterize social factors that are relevant to the PR assessment of a nuclear facility in a specific location; 4. description of an enhancement concept that integrates social factors into an existing, technically

  13. Knowledge, Attitudes and Practice of Desalinated Water among Professionals in Health and Water Departments in Shengsi, China: A Qualitative Study

    OpenAIRE

    Tao Chen; Qiqi Wang; Yu Qin; Xi Chen; Xiaoxiong Yang; Wei Lou; Mikang Zhou; Guangxue He; Kai Lu

    2015-01-01

    Desalination has been considered as an essential way to solve water stress all over the world. Most of previous studies focused on its environmental impacts, energy consumption and desalination technologies rather than human health. However, the safety of desalinated water remains unclear. This study was undertaken to investigate the knowledge, attitude and practice (KAP) of the residents in an island county in eastern China to desalinated water. Seventeen people working in medical and water ...

  14. Performance study of a heat recovery tower with synthetic (polyurethane) flow channels to operate in a solar desalination unit

    OpenAIRE

    Frederico Pinheiro Rodrigues

    2010-01-01

    Because of the lack of drinkable water in various semi-arid regions and the necessary use of renewable energies, the present work presents a performance study of a heat recovery tower to operate in a solar desalination unit for decentralized water production. The solar desalination unit has two parts: a heating unit and a desalination unit.This work presents the field results with a desalination tower with synthetic (polyurethane) flow channels. The tower operation consists of the heating ...

  15. Use of geothermal energy for desalination in New Mexico: a feasibility study. Final report, January 1, 1977-May 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.; Gupta, Y.F.; Davis, R.J.

    1979-06-01

    The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)

  16. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes.

    Science.gov (United States)

    Hancock, Nathan T; Black, Nathan D; Cath, Tzahi Y

    2012-03-15

    The purpose of this study was to determine the comparative environmental impacts of coupled seawater desalination and water reclamation using a novel hybrid system that consist of an osmotically driven membrane process and established membrane desalination technologies. A comparative life cycle assessment methodology was used to differentiate between a novel hybrid process consisting of forward osmosis (FO) operated in osmotic dilution (ODN) mode and seawater reverse osmosis (SWRO), and two other processes: a stand alone conventional SWRO desalination system, and a combined SWRO and dual barrier impaired water purification system consisting of nanofiltration followed by reverse osmosis. Each process was evaluated using ten baseline impact categories. It was demonstrated that from a life cycle perspective two hurdles exist to further development of the ODN-SWRO process: module design of FO membranes and cleaning intensity of the FO membranes. System optimization analysis revealed that doubling FO membrane packing density, tripling FO membrane permeability, and optimizing system operation, all of which are technically feasible at the time of this publication, could reduce the environmental impact of the hybrid ODN-SWRO process compared to SWRO by more than 25%; yet, novel hybrid nanofiltration-RO treatment of seawater and wastewater can achieve almost similar levels of environmental impact.

  17. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile

    DEFF Research Database (Denmark)

    Amlacher, Stefan; Sarges, Phillip; Flemming, Dirk;

    2011-01-01

    Despite decades of research, the structure and assembly of the nuclear pore complex (NPC), which is composed of ~30 nucleoporins (Nups), remain elusive. Here, we report the genome of the thermophilic fungus Chaetomium thermophilum (ct) and identify the complete repertoire of Nups therein. The the......Despite decades of research, the structure and assembly of the nuclear pore complex (NPC), which is composed of ~30 nucleoporins (Nups), remain elusive. Here, we report the genome of the thermophilic fungus Chaetomium thermophilum (ct) and identify the complete repertoire of Nups therein....... The thermophilic proteins show improved properties for structural and biochemical studies compared to their mesophilic counterparts, and purified ctNups enabled the reconstitution of the inner pore ring module that spans the width of the NPC from the anchoring membrane to the central transport channel. This module...... of a thermophilic eukaryote for studying complex molecular machines....

  18. Hybrid membrane system for desalination and wastewater treatment: Integrating forward osmosis and low pressure reverse osmosis

    NARCIS (Netherlands)

    Valladares Linares, R.

    2014-01-01

    Since more than 97% of the water in the world is seawater, desalination technologies have the potential to solve the fresh water crisis. The most used desalination technology nowadays is seawater reverse osmosis (SWRO), where a membrane is used as a physical barrier to separate the salts from the wa

  19. Development of an environmental impact assessment and decision support system for seawater desalination plants

    NARCIS (Netherlands)

    Lattemann, S.

    2010-01-01

    Seawater desalination is a rapidly growing coastal-based industry. The combined production capacity of all seawater desalination plants worldwide has increased by 30% over the last two years: from 28 million cubic meters per day in 2007—which is the equivalent of the average discharge of the River

  20. Design of a process for supercritical water desalination with zero liquid discharge

    NARCIS (Netherlands)

    Odu, S.O.; Ham, van der A.G.J.; Metz, S.; Kersten, S.R.A.

    2015-01-01

    Conventional desalination methods have a major drawback; the production of a liquid waste stream which must be disposed. The treatment of this waste stream has always presented technical, economic, and environmental challenges. The supercritical water desalination (SCWD) process meets these challeng

  1. Hybrid membrane system for desalination and wastewater treatment: Integrating forward osmosis and low pressure reverse osmosis

    NARCIS (Netherlands)

    Valladares Linares, R.

    2014-01-01

    Since more than 97% of the water in the world is seawater, desalination technologies have the potential to solve the fresh water crisis. The most used desalination technology nowadays is seawater reverse osmosis (SWRO), where a membrane is used as a physical barrier to separate the salts from the

  2. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.

    Science.gov (United States)

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong; Hou, Yanping

    2012-07-01

    The microbial electrolysis desalination and chemical-production cell (MEDCC) is a device to desalinate seawater, and produce acid and alkali. The objective of this study was to enhance the desalination and chemical-production performance of the MEDCC using two types of stack structure. Experiments were conducted with different membrane spacings, numbers of desalination chambers and applied voltages. Results showed that the stack construction in the MEDCC enhanced the desalination and chemical-production rates. The maximal desalination rate of 0.58 ± 0.02 mmol/h, which was 43% higher than that in the MEDCC, was achieved in the four-desalination-chamber MEDCC with the AEM-CEM stack structure and the membrane spacing of 1.5mm. The maximal acid- and alkali-production rates of 0.079 ± 0.006 and 0.13 ± 0.02 mmol/h, which were 46% and 8% higher than that in the MEDCC, respectively, were achieved in the two-desalination-chamber MEDCC with the BPM-AEM-CEM stack structure and the membrane spacing of 3mm.

  3. Development of an environmental impact assessment and decision support system for seawater desalination plants

    NARCIS (Netherlands)

    Lattemann, S.

    2010-01-01

    Seawater desalination is a rapidly growing coastal-based industry. The combined production capacity of all seawater desalination plants worldwide has increased by 30% over the last two years: from 28 million cubic meters per day in 2007—which is the equivalent of the average discharge of the River S

  4. GIS-based assessment of combined CSP electric power and seawater desalination plant for Duqum - Oman

    Energy Technology Data Exchange (ETDEWEB)

    Gastli, Adel [Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, P.O. 33, Al-Khodh, Muscat-123 (Oman); Charabi, Yassine [Department of Geography, College of Arts, Sultan Qaboos University, P.O. 42, Al-Khodh, Muscat-123 (Oman); Zekri, Slim [Department of Natural Resource Economics, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. 34, Al-Khodh, Muscat-123 (Oman)

    2010-02-15

    This paper investigates the potential of implementing combined electric power and seawater desalination plant using concentrated solar power technologies for Wilayat Duqum in Oman. Duqum is going through a considerable urban, touristic and industrial expansion and development. GIS solar radiation tools are used to select the most appropriate site for the plant location. There are basically two different options to combine concentrated solar electric power with seawater desalination. The first option is to combine a CSP plant with a thermal desalination unit, exploiting the exhaust heat of the steam cycle to drive a thermal desalination unit. The second option is to exploit only the electricity output of the CSP plant with a reverse osmosis desalination unit. The paper deals with both options and shows where each of the concepts has advantages considering local conditions: the quality of the input water, the demand of freshwater and/or potable water, social and economic aspects, the environment and others. (author)

  5. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    Science.gov (United States)

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors.

  6. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Wang, Jingyang; Xu, Weichao; Yuan, Ye; Cai, Wenshan; Zhu, Shining; Zhu, Jia

    2016-06-01

    Plasmonics has generated tremendous excitement because of its unique capability to focus light into subwavelength volumes, beneficial for various applications such as light harvesting, photodetection, sensing, catalysis and so on. Here we demonstrate a plasmon-enhanced solar desalination device, fabricated by the self-assembly of aluminium nanoparticles into a three-dimensional porous membrane. The formed porous plasmonic absorber can float naturally on water surface, efficiently absorb a broad solar spectrum (>96%) and focus the absorbed energy at the surface of the water to enable efficient (˜90%) and effective desalination (a decrease of four orders of magnitude). The durability of the devices has also been examined, indicating a stable performance over 25 cycles under various illumination conditions. The combination of the significant desalination effect, the abundance and low cost of the materials, and the scalable production processes suggest that this type of plasmon-enhanced solar desalination device could provide a portable desalination solution.

  7. EXPERIMENTAL RESEARCH OF THE INFLUENCE OF VARIOUS TYPES OF SOLAR COLLECTORS FOR PERFORMANCE SOLAR DESALINATION PLANT

    Directory of Open Access Journals (Sweden)

    Rakhmatulin I.R.

    2014-04-01

    Full Text Available The article discusses the possibility of using renewable energy for water purification. Results of analysis of a preferred energy source for a water purification using installed in places where fresh water shortages and a lack of electrical energy. The possibility of desalination of salt water using solar energy for regions with temperate climate. Presented desalination plant working on energy vacuum solar collectors, principles of action developed by the desalination plant. The experimental results of a constructed distiller when working with vacuum glass tubes and vacuum tubes with copper core inside. Conclusions about the possibility of using solar collectors for water desalination, are tips and tricks to improve the performance of solar desalination plant.

  8. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  9. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  10. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater.

    Science.gov (United States)

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-05-15

    Bioelectrochemical desalination is potentially advantageous because of bioenergy production and integrated wastewater treatment and desalination. In this work, the performance and energy benefits of a liter-scale upflow microbial desalination cell (UMDC) were evaluated. The UMDC desalinated both salt solution (NaCl) and artificial seawater, and the removal rate of total dissolved solid (TDS) increased with an increased hydraulic retention time, although TDS reduction in artificial seawater was lower than that in salt solution. Our analysis suggested that electricity generation was a predominant factor in removing TDS (more than 70%), and that other factors, like water osmosis and unknown processes, also contributed to TDS reduction. It was more favorable given the high energy efficiency, when treating salt solution, to operate the UMDC under the condition of high power output compared with that of high current generation because of the amount of energy production; while high current generation was more desired with seawater desalination because of lower salinity in the effluent. Under the condition of the high power output and the assumption of the UMDC as a predesalination in connection with a reversal osmosis (RO) system, the UMDC could produce electrical energy that might potentially account for 58.1% (salt solution) and 16.5% (artificial seawater) of the energy required by the downstream RO system. Our results demonstrated the great potential of bioelectrochemical desalination.

  11. Solar energy for desalination in the Arab world

    Energy Technology Data Exchange (ETDEWEB)

    El-Nashar, Ali M.; Al Gobaisi, Darwish; Makkawi, Bushara [International Centre for Water and Energy Systems (ICWES), Abu Dhabi (United Arab Emirates)

    2008-07-01

    The Arab World (AW) stretches across well over 12.9 million square kilometers of area including North Africa and the part of Western Asia known as the Arab Region. This is a region of highest water scarcity and arid climate with annual precipitation ranging from 100 mm to 400 mm. The total annual renewable water resources (TARWR) vary tremendously between the different Arab countries ranging between 0.1 billion m{sup 3}/yr for Qatar and 75 billion m{sup 3}/yr for Iraq. With a current total population of around 325 million people and a very high growth rate of 2.7%, the per capita share of TARWR has dropped well below the UN threshold for water poverty (1000 m{sup 3} per year) with most of the Gulf Arab countries reaching per capita TARWR below 200 m{sup 3}/yr. In order to meet the rising water demand required by an expanding population and developing economy and to fill the gap between supply and demand, it was found that desalination of seawater and brackish water could provide a portion of the shortfall in water supply. Desalination processes, however, are energy intensive and are responsible for a good portion of GHG emissions in the region. Fortunately, the AW is blessed with a renewable energy resource that is matched only in very few areas of the world, namely, Solar Energy. The aim of the paper is to outline the water supply and demand situation in the region and to estimate the economics of the current commercially available solar desalination technologies. (orig.)

  12. Photocatalytic Treatment of Desalination Concentrate Using Optical Fibers Coated With Nanostructured Thin Films: Impact of Water Chemistry and Seasonal Climate Variations.

    Science.gov (United States)

    Lin, Lu; Wang, Huiyao; Luo, Hongmei; Xu, Pei

    2016-05-01

    Treatment of desalination concentrate can reduce concentrate volume for disposal, increase water recovery and convert waste to resource. However, concentrate treatment is costly and energy intensive due to high concentrations of salt and recalcitrant organic matter in concentrate. Photocatalytic oxidation provides a novel energy neutral technology for concentrate treatment by degrading organic contaminants. Polymer-assisted hydrothermal deposition method was used to synthesize innovative pure and Fe-doped TiO2 mixed-phase nanocomposite thin films on side-glowing optical fibers (SOFs). The properties of the photocatalysts-coated SOF were characterized by surface morphology, nanostructure, crystallite size and phase and zeta potential. Photodegradation efficiency and durability of the photocatalysts treating different types of desalination concentrate was studied under natural sunlight. Synthetic solutions and reverse osmosis (RO) concentrates from brackish water and municipal wastewater desalination facilities were tested to elucidate the impact of water chemistry, operating conditions and seasonal climate variations (solar irradiation intensity and temperature) on photocatalytic efficiency. High ionic strength and divalent electrolyte ions in RO concentrate accelerated photocatalytic process, whereas the presence of carbonate species and organic matter hindered photodegradation. Outdoor testing of immobilized continuous-flow photoreactors suggested that the catalyst-coated SOFs can utilize a wide spectrum of natural sunlight and achieved durable photocatalytic performance. © 2016 The American Society of Photobiology.

  13. Forward osmosis :a new approach to water purification and desalination.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and

  14. Using mesoporous carbon electrodes for brackish water desalination.

    Science.gov (United States)

    Zou, Linda; Li, Lixia; Song, Huaihe; Morris, Gayle

    2008-04-01

    Electrosorptive deionisation is an alternative process to remove salt ions from the brackish water. The porous carbon materials are used as electrodes. When charged in low voltage electric fields, they possess a highly charged surface that induces adsorption of salt ions on the surface. This process is reversible, so the adsorbed salt ions can be desorbed and the electrode can be reused. In the study, an ordered mesoporous carbon (OMC) electrode was developed for electrosorptive desalination. The effects of pore arrangement pattern (ordered and random) and pore size distribution (mesopores and micropores) on the desalination performance was investigated by comparing OMC and activated carbon (AC). It were revealed from X-ray diffraction and N(2) sorption measurements that AC has both micropores and mesopores, whereas ordered mesopores are dominant in OMC. Their performance as potential electrodes to remove salt was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests at a range of electrolyte concentrations and sweep rates. It is deduced that under the same electrochemical condition the specific capacitance values of OMC electrode (i.e. 133 F/g obtained from CV at a sweep rate of 1 mV/s in 0.1M NaCl solution) are larger than those of AC electrode (107 F/g), suggesting that the former has a higher desalting capacity than the latter. Furthermore, the OMC electrode shows a better rate capacity than the AC electrode. In addition, the desalination capacities were quantified by the batch-mode experiment at low voltage of 1.2V in 25 ppm NaCl solution (50 micros/cm conductivity). It was found that the adsorbed ion amounts of OMC and AC electrodes were 11.6 and 4.3 micromol/g, respectively. The excellent electrosorptive desalination performance of OMC electrode might be not only due to the suitable pore size (average of 3.3 nm) for the propagation of the salt ions, but also due to the ordered mesoporous structure that facilitates desorption of the

  15. An Applied Research Program on Water Desalination with Renewable Energies

    OpenAIRE

    2008-01-01

    The use of renewable energy for desalination might be quite different in many places of the world. In Mexico, specifically in Baja California, there is an abundance of traditional renewable resources like sun and wind but also some others like hot springs at the coast, tidal currents and tidal amplitudes of over six meters in the upper part of the Gulf of California associated with a severe scarcity of fresh water. The National University of Mexico (UNAM) started two years ago a well organize...

  16. Developments in solar still desalination systems: A critical review

    KAUST Repository

    Ayoub, George M.

    2012-10-01

    Solar still desalination uses a sustainable and pollution-free source to produce high-quality water. The main limitation is low productivity and this has been the focus of intensive research. A major concern while increasing productivity is to maintain economic feasibility and simplicity. The authors present a critical review of the research work conducted on solar stills development. Studies addressing each parameter of concern are grouped together and results compared. Novelty in design and newly introduced features are presented. Modeling efforts of flow circulation within the still and methods to estimate internal heat transfer coefficients are discussed and future research needs are outlined. © 2012 Taylor & Francis Group, LLC.

  17. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    Science.gov (United States)

    Ilham, Muhammad; Su’ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  18. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    Science.gov (United States)

    Ballard, RIchard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  19. Survey of potential process-heat and reject-heat utilization at a Green River nuclear-energy center

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M.; Sandquist, G.M.

    1982-03-01

    Potential uses of process heat and reject heat from a nuclear-energy center at Green River, Utah have been investigated. The remoteness of the Green River site would preclude many potential industrial uses for economical reasons such as transportation costs and lack of local markets. Water-consumption requirements would also have serious impact on some applications due to limitations imposed by other contractual agreements upon the water in the region. Several processes were identified which could be considered for the Green River site; including the use of heat to separate bitumens from tar sands, district heating, warming of greenhouses and soil, and the production of fish for game and commercial sales. The size of these industries would be limited and no single process or industry can be identified at this time which could use the full amount of low-temperature reject heat that would be generated at a NEC.

  20. New type of ocean thermal energy desalination device%一种新型海洋温差能海水淡化装置

    Institute of Scientific and Technical Information of China (English)

    周奇; 张吉光; 刘伟民; 王义强

    2012-01-01

    Water and energy are two important resources for the development of modern society.The most abundant water resource on the earth is sea water,so the desalination technology has been an important way to solve the global freshwater resource crisis,however,in the future of increasing energy shortage,the development and utilization of new energy sources will attract much more attention.This article describes the development of ocean thermal energy and the main desalination technology,proposes a new idea to use a new renewable energy-ocean thermal energy to desalinate and gives the system diagram of desalination system.%水源与能源是现代社会发展必不可少的两种重要资源.地球上最充足的水资源是海水,海水淡化技术已是解决全球淡水资源危机的重要途径,而在能源日趋紧张的将来,开发利用新能源将倍加受人瞩目.介绍了海洋温差能的发展及主要海水淡化技术,提出了一种利用可再生能源——海洋温差能进行海水淡化的新型海水淡化装置,给出了海水淡化系统的系统图.

  1. Simultaneous Desalination of Sea Water and Electricity Production with New Membrane Technology, Air-Cathode Microbial Desalination Cells

    Directory of Open Access Journals (Sweden)

    Mahdi Asadi-Ghalhari

    2015-04-01

    Full Text Available Water and energy shortages, has increased the need for methods that can provide low energy for desalination of sea water. Microbial desalination cell is one of the most important of these methods. In this study we use air cathode MDC for desalination of seawater. The maximum voltage, power and current density was 607mV, 521mW/m2 and 858mA/m2 (25mM PBS and 701mV, 695mW/m2 and 992mA/m2 (50mM PBS respectively. During the period of the voltage generation in 50mM PBS was about 1.5 times of 25mM PBS. Under this situation, EC of seawater with initial electrical conductivity declined by 48.31±3% (25mM PBS and 46.71±2.73% (50mM PBS. As well as decrease of salt from sea water in the middle chamber, EC in synthetic wastewater and catholyte slightly increased. So that Change percent of EC in synthetic wastewater was 44.20 ± 11.94(25mM PBS and 27.94 ± 3 (50 mM PBS and in catholyte was 211.66 ± 22.41(25mM PBS and 119.24 ± 11.25 (50 mM PBS respectively. These results show that the MDC can also be used as a pretreatment to reverse osmosis; simultaneously the energy required in this process is also partly meet.

  2. Improved sample utilization in thermal ionization mass spectrometry isotope ratio measurements: refined development of porous ion emitters for nuclear forensic applications

    Energy Technology Data Exchange (ETDEWEB)

    Baruzzini, Matthew Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-08

    The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical e orts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization e ciency, often less than tenths of a percent; the majority of a sample is not measured. This represents a growing challenge in addressing nextgeneration nuclear detection needs by limiting the ability to analyze ultratrace quantities of high priority elements that could potentially provide critical nuclear forensic signatures. Porous ion emitter (PIE) thermal ion sources were developed in response to the growing need for new TIMS ion source strategies for improved ionization e ciency, PIEs have proven to be simple to implement, straightforward approach to boosting ion yield. This work serves to expand the use of PIE techniques for the analysis of trace quantities of plutonium and americium. PIEs exhibited superior plutonium and americium ion yields when compared to direct lament loading and the resin bead technique, one of the most e cient methods for actinide analysis, at similar mass loading levels. Initial attempts at altering PIE composition for the analysis of plutonium proved to enhance sample utilization even further. Preliminary investigations of the instrumental fractionation behavior of plutonium and uranium analyzed via PIE methods were conducted. Data collected during these initial trial indicate that PIEs fractionate in a consistent, reproducible manner; a necessity for high precision isotope ratio measurements. Ultimately, PIEs methods were applied for

  3. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  4. Integrated processes for desalination and salt production: A mini-review

    Science.gov (United States)

    Wenten, I. Gede; Ariono, Danu; Purwasasmita, Mubiar; Khoirudin

    2017-03-01

    The scarcity of fresh water due to the rapid growth of population and industrial activities has increased attention on desalination process as an alternative freshwater supply. In desalination process, a large volume of saline water is treated to produce freshwater while a concentrated brine is discharged back into the environment. The concentrated brine contains a high concentration of salt and also chemicals used during desalination operations. Due to environmental impacts arising from improper treatment of the brine and more rigorous regulations of the pollution control, many efforts have been devoted to minimize, treat, or reuse the rejected brine. One of the most promising alternatives for brine handling is reusing the brine which can reduce pollution, minimize waste volume, and recover valuable salt. Integration of desalination and salt production can be implemented to reuse the brine by recovering water and the valuable salts. The integrated processes can achieve zero liquid discharge, increase water recovery, and produce the profitable salt which can reduce the overall desalination cost. This paper gives an overview of desalination processes and the brine impacts. The integrated processes, including their progress and advantages in dual-purpose desalination and salt production are discussed.

  5. A multi evaporator desalination system operated with thermocline energy for future sustainability

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    All existing commercial seawater desalination processes, i.e. thermally-driven and membrane-based reverse osmosis (RO), are operated with universal performance ratios (UPR) varying up to 105, whilst the UPR for an ideal or thermodynamic limit (TL) of desalination is at 828. Despite slightly better UPRs for the RO plants, all practical desalination plants available, hitherto, operate at only less than 12% of the TL, rendering them highly energy intensive and unsustainable for future sustainability. More innovative desalination methods must be sought to meet the needs of future sustainable desalination and these methods should attain an upper UPR bound of about 25 to 30% of the TL. In this paper, we examined the efficacy of a multi-effect distillation (MED) system operated with thermocline energy from the sea; a proven desalination technology that can exploit the narrow temperature gradient of 20°C all year round created between the warm surface seawater and the cold-seawater at depths of about 300–600m. Such a seawater thermocline (ST)-driven MED system, simply called the ST-MED process, has the potential to achieve up to 2 folds improvement in desalination efficiency over the existing methods, attaining about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the ST-MED is truly a “green desalination” method of low global warming potential, best suited for tropical coastal shores having bathymetry depths of 300m or more.

  6. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  7. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.

    Science.gov (United States)

    Jacobson, Kyle S; Drew, David M; He, Zhen

    2011-01-01

    Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC--upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDSL(-1)d(-1) (salt solution volume) or 5.25 g TDSL(-1)d(-1) (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4d. The UMDC produced a maximum power density of 30.8 W/m(3). The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes.

  8. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-22

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  9. Synergies of solar energy use in the desalination of seawater: A case study in northern Chile

    Science.gov (United States)

    Servert, Jorge F.; Cerrajero, Eduardo; Fuentealba, Edward L.

    2016-05-01

    The mining industry is a great consumer of water for hydrometallurgical processes. Despite the efforts in minimizing the use of fresh water through reuse, recycling and process intensification, water demand for mining is expected to rise a 40% from 2013 to 2020. For seawater to be an alternative to groundwater, it must be pumped up to the mine (thousands of meters uphill) and desalinated. These processes require intensive energy and investment in desalination and piping/pumping facilities. A conventional solution for this process would be desalination by reverse osmosis at sea level, powered by electricity from the grid, and further pumping of the desalinated water uphill. This paper compares the feasibility of two solar technologies versus the "conventional" option. LCOW (Levelized Cost of Water) was used as a comparative indicator among the studied solutions, with values for a lifetime of 10, 15, 20 and 25 years, calculated using a real discount rate equal to 12%. The LCOW is lower in all cases for the RO + grid solution. The cost of desalination, ignoring the contribution of pumping, is similar for the three technologies from twenty years of operation. The use of solar energy to desalinate sea water for consumption in the mines of the Atacama region is technically feasible. However, due to the extra costs from pumping whole seawater, and not just the desalinated water, solar solutions are less competitive than the conventional process.

  10. A Multi-Attribute Utility Decision Analysis for Treatment Alternatives for the DOE/SR Aluminum-Based Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Davis, F.; Kuzio, K.; Sorenson, K.; Weiner, R.; Wheeler, T.

    1998-11-01

    A multi-attribute utility analysis is applied to the decision to select a treatment method for the management of aluminum-based spent nuclear i%el (A1-SNF) owned by the United States Department of Energy (DOE). DOE will receive, treat, and temporarily store Al- SNF, most of which is composed of highly enriched uranium, at its Savannah River Site in South Carolina. DOE intends ultimately to send the treated Al-SNJ? to a geologic repository for permanent disposal. DOE initially considered ten treatment alternatives for the management of A1-SNF, and has narrowed the choice to two of these the direct disposal and melt and dilute alternatives. The decision analysis presented in this document focuses on a decision between these two remaining alternatives.

  11. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  12. Life-cycle cost analysis of adsorption cycles for desalination

    KAUST Repository

    Thu, Kyaw

    2010-08-01

    This paper presents the thermo-economic analysis of the adsorption desalination (AD) cycle that is driven by low-temperature waste heat from exhaust of industrial processes or renewable sources. The AD cycle uses an adsorbent such as the silica gel to desalt the sea or brackish water. Based on an experimental prototype AD plant, the life-cycle cost analysis of AD plants of assorted water production capacities has been simulated and these predictions are translated into unit cost of water production. Our results show that the specific energy consumption of the AD cycle is 1.38 kWh/m3 which is the lowest ever reported. For a plant capacity of 1000 m3/d, the AD cycle offers a unit cost of $0.457/m3 as compared to more than $0.9 for the average RO plants. Besides being cost-effective, the AD cycle is also environment-friendly as it emits less CO2 emission per m3 generated, typically 85% less, by comparison to an RO process. © 2010 Desalination Publications.

  13. Bioindicators as metrics for environmental monitoring of desalination plant discharges.

    Science.gov (United States)

    de-la-Ossa-Carretero, J A; Del-Pilar-Ruso, Y; Loya-Fernández, A; Ferrero-Vicente, L M; Marco-Méndez, C; Martinez-Garcia, E; Giménez-Casalduero, F; Sánchez-Lizaso, J L

    2016-02-15

    Development of desalination projects requires simple methodologies and tools for cost-effective and environmentally-sensitive management. Sentinel taxa and biotic indices are easily interpreted in the perspective of environment management. Echinoderms are potential sentinel taxon to gauge the impact produced by brine discharge and the BOPA index is considered an effective tool for monitoring different types of impact. Salinity increase due to desalination brine discharge was evaluated in terms of these two indicators. They reflected the environmental impact and recovery after implementation of a mitigation measure. Echinoderms disappeared at the station closest to the discharge during the years with highest salinity and then recovered their abundance after installation of a diffuser reduced the salinity increase. In the same period, BOPA responded due to the decrease in sensitive amphipods and the increase in tolerant polychaete families when salinities rose. Although salinity changes explained most of the observed variability in both indicators, other abiotic parameters were also significant in explaining this variability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mathematical model development for a new solar desalination system (SDS)

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Amer, A.M. [Mechanical and Marine Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria (Egypt); Fath, H.E. [Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt)

    2008-11-15

    Supply of adequate quantities of fresh potable water is one of the most serious problems confronting human especially when we know that one third of the world population are suffering from water shortage and it is expected to reach two thirds in the near future. Therefore, desalination, as a non-conventional water resource, has become one of the most interesting alternative water sources to partially face the fresh water shortage in the near future. The objective of this study is to obtain a general mathematical model for a newly developed solar still that uses parabolic reflector-tube absorber desalination technology. A computer program has been developed to simulate the still operation and to solve the governing heat and mass transfer action, which occurs during the operation. The program will then be used to study the still production in different cases. The study revealed that increasing the solar intensity, ambient temperature, efficiency of reflector material, reflector aperture area, and evaporation area increases the unit productivity. On the other hand, increasing wind velocity, saline water depth, condenser emissivity, and condenser thickness have a small effect on the productivity. (author)

  15. BELL PEPPER CULTIVATION WITH BRINE FROM BRACKISH WATER DESALINATION

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO DE MOURA ARRUDA

    2011-01-01

    Full Text Available In desalination process, besides the potable water, highly salty and pollutant water (brine is generated, which can be used for producing crops since it is carefully monitored. In order to test this hypothesis, bell pepper plants, cv. 'Margarita', were grown in coconut fiber substrate under greenhouse and were irrigated with nutrient solutions prepared with tap water, brine from desalination plant, and its dilution with tap water at 75, 50 and 25%, giving a range of electrical conductivities of the nutrient solution (ECs of 2.6, 3.1, 6.6, 10.0 and 12.2 dS m-1 after the dilutions and fertilizers addition. Completely randomized blocks design was used with 5 treatments (salinity levels of the nutrient solutions and six replications. Leaf area, number of marketable fruit, total and marketable yield were reduced with ECs increase. The marketable yield of bell pepper 'Margarita' reduced 6.3% for each unitary increase of ECs above 2.6 dS m-1 (threshold salinity and the results suggest that in hydroponic system, the reduction of marketable yield with increasing ECs is promoted by reduction of the number of fruits per plant instead of a reduction of fruit mean weight.

  16. The calculation of desalination of mineralized porous ice at thawing

    Directory of Open Access Journals (Sweden)

    A. V. Sosnovsky

    2016-01-01

    Full Text Available The results obtained in this work demonstrate that dynamics of desalination of porous ice depends on a mobility of ions of salts, and the mobility is determined by the diffusion coefficient. The ice was made by freezing of mineralized water of different chemical composition. Model calculations of average mineralization of the porous ice at its thawing were made, and the ion concentrations of different salts were defined. Values of the diffusion coefficients of the salt ions in the film of brine ice pellets were obtained by means of comparison of results of measurements and calculations of dynamics of content of the salt ions in a porous ice at its thawing. The diffusion coefficient of ions Na+, Cl−, SO4 2− is by order of magnitude larger than that of Ca2+ and by two orders of magnitudethan HCO3 −. This results in that the content of ions Na+, Cl−, SO42− decreases in porous ice at its thawing 3 times faster than the content of the ions Ca2+. Basing on analysis of chemical composition of drainage water in some regions in Russia a possibility to desalinate the porous ice formed during the winter sprinkling is demonstrated.

  17. Desalination of brackish groundwater by direct contact membrane distillation.

    Science.gov (United States)

    Hou, D Y; Wang, J; Qu, D; Luan, Z K; Zhao, C W; Ren, X J

    2010-01-01

    The direct contact membrane distillation (DCMD) applied for desalination of brackish groundwater with self-made polyvinylidene fluoride (PVDF) membranes was presented in the paper. The PVDF membrane exhibited high rejection of non-volatile inorganic salt solutes and a maximum permeate flux 24.5 kg m(-2) h(-1) was obtained with feed temperature at 70 degrees C. The DCMD experimental results indicated that the feed concentration had no significant influence on the permeate flux and the rejection of solute. When natural groundwater was used directly as the feed, the precipitation of CaCO(3) would be formed and clog the hollow fibre inlets with gradual concentration of the feed, which resulted in a rapid decline of the module efficiency. The negative influence of scaling could be eliminated by acidification of the feed. Finally, a 250 h DCMD continuous desalination experiment of acidified groundwater with the concentration factor at constant 4.0 was carried out. The permeate flux kept stable and the permeate conductivity was less than 7.0 microS cm(-1) during this process. Furthermore, there was no deposit observed on the membrane surface. All of these demonstrated that DCMD could be efficiently used for production of high-quality potable water from brackish groundwater with water recovery as high as 75%.

  18. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    Science.gov (United States)

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air.

  19. Self-Powered Desalination of Geothermal Saline Groundwater: Technical Feasibility

    Directory of Open Access Journals (Sweden)

    Philip A. Davies

    2014-11-01

    Full Text Available This theoretical study shows the technical feasibility of self-powered geothermal desalination of groundwater sources at <100 °C. A general method and framework are developed and then applied to specific case studies. First, the analysis considers an ideal limit to performance based on exergy analysis using generalised idealised assumptions. This thermodynamic limit applies to any type of process technology. Then, the analysis focuses specifically on the Organic Rankine Cycle (ORC driving Reverse Osmosis (RO, as these are among the most mature and efficient applicable technologies. Important dimensionless parameters are calculated for the ideal case of the self-powered arrangement and semi-ideal case where only essential losses dependent on the RO system configuration are considered. These parameters are used to compare the performance of desalination systems using ORC-RO under ideal, semi-ideal and real assumptions for four case studies relating to geothermal sources located in India, Saudi Arabia, Tunisia and Turkey. The overall system recovery ratio (the key performance measure for the self-powered process depends strongly on the geothermal source temperature. It can be as high as 91.5% for a hot spring emerging at 96 °C with a salinity of 1830 mg/kg.

  20. Aridity, desalination plants and tourism in the eastern Canary Islands

    Directory of Open Access Journals (Sweden)

    José-León García-Rodríguez

    2016-05-01

    Full Text Available The islands of Lanzarote and Fuerteventura are the easternmost of the Canary Islands, and are located on the southern edge of the temperate zone, in the subtropical anticyclone belt. With less than 150 mm of rainfall a year, they are classified as an arid zone. Their inhabitants have devised original agricultural systems to combat the aridity, although low yields have historically limited socio-economic development and population growth. These systems were used until the introduction of seawater desalination plants and the arrival of tourism in the last third of the twentieth century, which improved living standards for the local population but also led to a cultural transition. Nevertheless, these farming systems have left behind an important regional heritage, with an environmental and scenic value that has played an integral role in the latest phase of development. The systems have become a tourist attraction and have been central to the two islands being designated biosphere reserves by UNESCO. This article aims to analyse the main socioeconomic and land-use changes that have come about as a result of desalination technology.

  1. Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination

    Science.gov (United States)

    El-Gendi, Ayman; Abdallah, Heba; Amin, Ashraf; Amin, Shereen Kamel

    2017-10-01

    The pollution of water resources, severe climate changes, rapid population growth, increasing agricultural demands, and rapid industrialization insist the development of innovative technologies for generating potable water. Polyvinylchloride/cellulose acetate (PVC/CA) membranes were prepared using phase inversion technique for seawater reverse osmosis (SWRO). The membrane performance was investigated using Red Sea water (El-Ein El-Sokhna-Egypt). The membrane performance indicated that the prepared membranes were endowed to work under high pressure; increasing in feeding operating pressure led to increase permeate flux and rejection. Increasing feed operating pressure from zero to 40 bar led to increase in the salt rejection percent. Salt rejection percent reached to 99.99% at low feed concentration 5120 ppm and 99.95% for Red Sea water (38,528 ppm). The prepared membranes were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, and mechanical properties. SEM, FTIR and mechanical results were used to distinguish the best membrane for desalination. According to characterization results, one prepared membrane was selected to run performance test in desalination testing unit. The membrane (M3) showed excellent performance and stability under different operating conditions and during the durability test for 36 days.

  2. Tunable water desalination across Graphene Oxide Framework membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Adrien [Rensselaer Polytechnic Institute (RPI); Sumpter, Bobby G [ORNL; Meunier, V. [Rensselaer Polytechnic Institute (RPI)

    2014-01-01

    The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure DP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from 5 (n = 32 and h = 6.5 nm) to 400 L/cm2/day/MPa (n = 64 and h = 2.5 nm) and follows the law Cnh an . For a given pore size (n = 16 or 32), water permeability of GOF membranes increases when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (DP 10 MPa and h 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL/cm2/day/MPa to a few L/cm2/day/MPa.

  3. Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Zeng, Xiao Cheng; Wang, E. G.; Meng, Sheng

    2014-03-01

    The shortage of clean and fresh water is one of most pervasive problems afflicting human being's life in the world. Desalination is one viable solution to produce clean water, since 98% of the available water in the form of salty water. Using molecular dynamics simulations, we demonstrate that graphyne sheet exhibits promising potential for nanoscale desalination to achieve both high water permeability and salt rejection rate. In addition, Graphyne sheets also are mechanically robust with high tolerance to deformation. Especially, γ-graphyne-4 has the best performance with 100% slat rejection and an unprecedented water permeability of ~ 13L/cm2/day/MPa. 3 orders of magnitude higher than prevailing commercial membranes based on reverse osmosis, and ~ 10 times higher than the state-of-the-art nanoporous graphene. Strikingly, water permeability across graphyne exhibits unexpected nonlinear dependence on the pore area. This counter-intuitive behavior is attributed to the quantized nature of water flow at the nanoscale, which has wide implications in controlling nanoscale water transport and designing highly effective membrane.

  4. Hydrodynamic Model of Desalination by "Overlimiting" Electrodialysis with Electroconvective Vortices

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Han, Jongyoon

    2016-11-01

    In 1968, Sonin and Probstein developed a hydrodynamic theory of desalination by electrodialysis. Under a laminar flow between ion exchange membranes, linear ion concentration gradients are developed near the membranes by ion concentration polarization (ICP) in Ohmic-limiting current regimes. This linear ICP determines the relations between current, voltage, and desalting performance. Here, we revisit the hydrodynamic model with nonlinear ICP phenomenon at overlimiting currents. In this regime, electroconvective vortices on the membrane induce flat and extremely low concentration zones. Based on the previous prediction of the vortex height under shear flow, we verify that the height directly represents the amount of the removed salt because there is almost no ion in the vortices. Next, from the mass continuity of ions, the amount of the removed salts is equal to the ion flux through the membrane (i.e. current); as a result, we can develop the relations between current, voltage, and salt removal. Lastly, from these relations, power consumption and desalination cost can be calculated to find the optimal operating condition of overlimiting electrodialysis.

  5. Tailor-made polyamide membranes for water desalination.

    Science.gov (United States)

    Choi, Wansuk; Gu, Joung-Eun; Park, Sang-Hee; Kim, Seyong; Bang, Joona; Baek, Kyung-Youl; Park, Byoungnam; Lee, Jong Suk; Chan, Edwin P; Lee, Jung-Hyun

    2015-01-27

    Independent control of the extrinsic and intrinsic properties of the polyamide (PA) selective layer is essential for designing thin-film composite (TFC) membranes with performance characteristics required for water purification applications besides seawater desalination. Current commercial TFC membranes fabricated via the well-established interfacial polymerization (IP) approach yield materials that are far from ideal because their layer thickness, surface roughness, polymer chemistry, and network structure cannot be separately tailored. In this work, tailor-made PA-based desalination membranes based on molecular layer-by-layer (mLbL) assembly are presented. The mLbL technique enables the construction of an ultrathin and highly cross-linked PA selective layer in a precisely and independently controlled manner. The mLbL-assembled TFC membranes exhibit significant enhancements in performance compared to their IP-assembled counterparts. A maximum sodium chloride rejection of 98.2% is achieved along with over 2.5 times higher water flux than the IP-assembled counterpart. More importantly, this work demonstrates the broad applicability of mLbL in fabricating a variety of PA-based TFC membranes with nanoscale control of the selective layer thickness and roughness independent of the specific polyamide chemistry.

  6. New solar desalination system using humidification/ dehumidification process

    Directory of Open Access Journals (Sweden)

    Adel M. Abdel Dayem

    2013-01-01

    Full Text Available An innovative solar desalination system is successfully designed, manufactured and experimentally tested at Makkah, 21.4 ºN. The system consists of 1.15 m2 flat-plate collector as a heat source and a desalination unit. The unit is about 400 liter vertical cylindrical insulated tank. It includes storage, evaporator and condenser of hot salt-water that is fed from the collector. The heated water in the collector is raised naturally to the unit bottom at which it is used as storage. A high pressure pump is used to inject the water vertically up through 1-mm three nozzles inside the unit. The hot salt-water is atomized inside the unit where the produced vapor is condensed on the inner surfaces of the unit outer walls to outside. The system was experimentally tested under different weather conditions. It is obtained that the system can produce about 9 liter a day per quadratic meter of collector surface area. By that it can produce about 1.6 liters per kWh of solar energy. Moreover the water temperature has a great effect on the system performance although the scaling possibility is becoming significant. By that way the cost of a liter water production is relatively high and is obtained as 0.5 US$.

  7. New solar desalination system using humidification/ dehumidification process

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Dayem, Adel M. [Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, 5555 Makah (Saudi Arabia)

    2013-07-01

    An innovative solar desalination system is successfully designed, manufactured and experimentally tested at Makkah, 21.4 °N. The system consists of 1.15 m2 flat-plate collector as a heat source and a desalination unit. The unit is about 400 liter vertical cylindrical insulated tank. It includes storage, evaporator and condenser of hot salt-water that is fed from the collector. The heated water in the collector is raised naturally to the unit bottom at which it is used as storage. A high pressure pump is used to inject the water vertically up through 1-mm three nozzles inside the unit. The hot salt-water is atomized inside the unit where the produced vapor is condensed on the inner surfaces of the unit outer walls to outside. The system was experimentally tested under different weather conditions. It is obtained that the system can produce about 9 liter a day per quadratic meter of collector surface area. By that it can produce about 1.6 liters per kWh of solar energy. Moreover the water temperature has a great effect on the system performance although the scaling possibility is becoming significant. By that way the cost of a liter water production is relatively high and is obtained as 0.5 US$.

  8. An experimental investigation on MEDAD hybrid desalination cycle

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-04-02

    This paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the conventional multi-effect distillation (MED) and an adsorption cycle (AD). The combined cycles allow some of MED stages to operate below ambient temperature, as low as 5. °C in contrast to the conventional MED. The MEDAD cycle results in a quantum increase of distillate production at the same top-brine condition. Being lower than the ambient temperature for the bottom stages of hybrid cycle, ambient energy can now be scavenged by the MED processes whilst the AD cycle is powered by low temperature waste heat from exhaust or renewable sources. In this paper, we present the experiments of a 3-stage MED and MEDAD plants. These plants have been tested at assorted heat source temperatures from 15. °C to 70. °C and with portable water as a feed. All system states are monitored including the distillate production and power consumption and the measured results are expressed in terms of performance ratio (PR). It is observed that the synergetic matching of MEDAD cycle led to a quantum increase in distillate production, up to 2.5 to 3 folds vis-a-vis to a conventional MED of the same rating. © 2015 Elsevier Ltd.

  9. Fundamental and application aspects of adsorption cooling and desalination

    KAUST Repository

    Saha, Bidyut Baran

    2015-10-23

    Adsorption (AD) cycle is recently pioneered for cooling and desalination applications. For water treatment, the cycle can be used to treat highly concentrated feed water, ranging from seawater, ground water and chemically-laden waste water. This paper presents a review of the recent development of AD cycle and its hybridization with known conventional cycles such as the MED and MSF. We begin by looking at the basic sorption theory for different adsorbent-adsorbate pairs, namely (i) silica gel-water, (ii) the zeolite-water, (iii) parent Maxsorb III/ethanol, (iv) KOH-H2 surface treated Maxsorb III/ethanol, and (v) a metal organic framework (MOF) material namely, MIL-101Cr/ethanol. We also present the basic AD cycle for seawater desalination as well as its hybridization with known conventional thermally-driven cycles for efficiency improvement. We demonstrate the water production improvement by 2-3 folds by hybridization in a pilot comprising a 3-stage MED and AD plant and the top-brine temperature 50oC.

  10. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination

    Science.gov (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni

    2015-04-01

    In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and

  11. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation.

    Science.gov (United States)

    Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia

    2012-09-01

    A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity.

  12. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control

    KAUST Repository

    Qu, Youpeng

    2012-02-01

    A recirculation microbial desalination cell (rMDC) was designed and operated to allow recirculation of solutions between the anode and cathode chambers. This recirculation avoided pH imbalances that could inhibit bacterial metabolism. The maximum power density was 931±29mW/m 2 with a 50mM phosphate buffer solution (PBS) and 776±30mW/m 2 with 25mM PBS. These power densities were higher than those obtained without recirculation of 698±10mW/m 2 (50mM PBS) and 508±11mW/m 2 (25mM PBS). The salt solution (20g/L NaCl) was reduced in salinity by 34±1% (50mM) and 37±2% (25mM) with recirculation (rMDC), and by 39±1% (50mM) and 25±3% (25mM) without recirculation (MDC). These results show that electrolyte recirculation using an rMDC is an effective method to increase power and achieve efficient desalination by eliminating pH imbalances. © 2011 Elsevier Ltd.

  13. Environmental concerns of desalinating seawater using reverse osmosis.

    Science.gov (United States)

    Tularam, Gurudeo Anand; Ilahee, Mahbub

    2007-08-01

    This Critical Review on environmental concerns of desalination plants suggests that planning and monitoring stages are critical aspects of successful management and operation of plants. The site for the desalination plants should be selected carefully and should be away from residential areas particularly for forward planning for possible future expansions. The concerning issues identified are noise pollution, visual pollution, reduction in recreational fishing and swimming areas, emission of materials into the atmosphere, the brine discharge and types of disposal methods used are the main cause of pollution. The reverse osmosis (RO) method is the preferred option in modern times especially when fossil fuels are becoming expensive. The RO has other positives such as better efficiency (30-50%) when compared with distillation type plants (10-30%). However, the RO membranes are susceptible to fouling and scaling and as such they need to be cleaned with chemicals regularly that may be toxic to receiving waters. The input and output water in desalination plants have to be pre and post treated, respectively. This involves treating for pH, coagulants, Cl, Cu, organics, CO(2), H(2)S and hypoxia. The by-product of the plant is mainly brine with concentration at times twice that of seawater. This discharge also includes traces of various chemicals used in cleaning including any anticorrosion products used in the plant and has to be treated to acceptable levels of each chemical before discharge but acceptable levels vary depending on receiving waters and state regulations. The discharge of the brine is usually done by a long pipe far into the sea or at the coastline. Either way the high density of the discharge reaches the bottom layers of receiving waters and may affect marine life particularly at the bottom layers or boundaries. The longer term effects of such discharge concentrate has not been documented but it is possible that small traces of toxic substances used in the

  14. Study on solar sea water desalination; Studie ueber solare Meerwasserentsalzung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, G.K.

    1995-09-01

    The state of the art of solar sea water desalination is discussed based on the example of simple solar distillation. Reasons are given for the relatively reserved use of this technique in the past. The increasing shortage of fresh water (drinking water) due to increasing water consumption, the deforestation of (rain) forests, and increasing environmental pollution reveals the urgency of sea water desalination. However, the fossil energy sources that are needed for desalination cause a further increase in carbon dioxide emissions and aggravate the global-warming problem. This study suggests to multiply the relatively low economic efficiency and low cost efficiency of simple solar distillers by vacuum-controlled ground cooling and to operate pumps that convey sea water and distilled water by means of solar energy or solar cogeneration. Model calculations and a pilot project are recommended for a closer quantification of the data. General intercultural and socioeconomic aspects that must be considered when installing solar sea water (waste water) distillation plants, e.g. in Africa, are discussed. (orig.) [Deutsch] In dieser Studie wird der Stand der Technik der solaren Wasserentsalzung, basierend auf der einfachen solaren Destillation, untersucht sowie die Gruende fuer den bisher relativ geringen Einsatz dieser Technik erlaeutert. Die zunehmende Verknappung von Suesswasser (Trinkwasser), durch steigenden Wasserverbrauch, durch die Abholzung von (Regen)-Waeldern und durch die zunehmende Umweltverschmutzung ruecken aber die Notwendigkeit der Meerwasserentsalzung immer staerker in den Vordergrund. Der hohe Energiebedarf dafuer traegt aber bei der Verwendung von fossiler Primaerenergie zu einer weiteren Verstaerkung des CO{sub 2}-Ausstosses und damit zur weiteren Verschaerfung der Klimaproblematik bei. Deshalb wird hier nicht nur vorgeschlagen, den relativ geringen Wirkungsgrad und die relativ geringe Kosteneffizienz einfacher solarer Destillatoren durch

  15. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification

    National Research Council Canada - National Science Library

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications...

  16. Constructive measures for handling submarine desalination plants. Konstruktive Massnahmen zur Handhabung submariner Entsalzungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Drude, B.C.; Klapp, E.; Peters, T.

    1978-11-23

    The erection and the periodical repair works of a submarine desalination plant are made easier by the separate construction of the main components, as such a membrane body for the desalination and the fresh water conveying device, both in pressure-proof vessels and by the light-weight construction method. Considerable membrane surfaces for the desalination by reverse osmosis are wound spirally around a collecting vessel of fresh water. The vessel is made of glass-fiber reinforced plastics or another light material. The main components are connected by sufficiently long and flexible pipes by which the handling of the parts is simplified during erection. This is particularly advantageous if several desalination aggregates are fed by one conveyor system.

  17. Preservation of murals with electrokinetic - with focus on desalination of single bricks

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge

    2009-01-01

    Salt induced deterioration of murals is in several cases ongoing in Danish churches. The murals are one of the main objects of our Danish Cultural Heritage. Existing applied methods for desalination of salt contaminated church vaults are based on indirect affection of the dissolved salts (ions...... was developed to optimize the desalination effect. After improvement of the poultice, desalination from high and problematic ion content could be reduced to low and unproblematic ion content in single bricks. A patent application was handed in April 2008 and an international PCT patent application has recently...... followed. Besides the experiments on optimized laboratory setups the very first desalination of a wall section with murals was documented. In addition it was shown that the specific brick type and its pore system influences the electrochemical iontransport and coherence between the ion content in the pore...

  18. Electrokinetic desalination of protruded areas of stone avoiding the direct contact with electrodes

    DEFF Research Database (Denmark)

    Feijoo, J.; Matyscák, O.; Ottosen, Lisbeth M.

    2017-01-01

    Soluble salts are considered one of the main deterioration factors of porous building materials such as rocks, bricks or granites. The desalination treatments currently used in order to mitigate this alteration process are usually applied directly on the affected areas, which have often a low...... degree of cohesion precisely due to the deteriorating effect of the salts. The present study aimed to investigate the evaluation of a new approach based on electrokinetic techniques to desalinate rocks in monuments, specifically to desalinate carved reliefs. The procedure avoids the direct contact...... with the areas highly affected by salts, which usually show loss of cohesion due to salt crystallization processes, by placing the electrodes on adjacent areas less contaminated with salts. This fact represents another difficulty in the desalination process because the electric field must be adapted to the shape...

  19. Electrochemical desalination of salt infected limestone masonry of a historic warehouse

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Christensen, Iben Vernegren; Rörig-Dalgaard, Inge

    2012-01-01

    plant for electrochemical desalination, a method where the driving force is an applied electrical potential. The test plant covered about 25 m2 surface of a limestone wall of a historic warehouse. It consisted of 72 electrode units which were placed in two rows; the one above the other and the mutual...... was successfully desalinated; however, the Cl concentration was in the same level as initially in samples taken just between sets of anodes and cathodes. The desalination was thus not completed during the test. The removal rate for Cl into the anodes was constant all through the test revealing...... that the desalination could have continued if the test had lasted longer. The test showed that the overall method works, but it also underlined the necessity for development of a new design, which allow for shorter distance between the electrodes in order to shorten the duration of the treatment....

  20. State of the reverse osmosis membrane of sea water corso plant desalination (Algiers)

    Science.gov (United States)

    Abdessemed, D.; Hamouni, S.; Nezzal, G.

    2009-11-01

    Seawater reverse osmosis (SWRO) desalination is being increasingly emphasized as a strategy for conservation of limited resources of freshwater. Although desalination has been developed for the last few decades, the SWRO operation is still affected by membrane fouling. The membrane fouling of SWRO has a significant impact on operation of desalination plants. We follow the evolution of the permeate conductivity during three months of the sea water Corso (Algiers) plant desalination. The purpose of this work is to conduct an autopsy of fouled membranes in seawater using the scanning electron microscopy (SEM) coupled by an analysis EDX. This membrane shows a change of the surface morphology, which justifies the abrupt increase in the conductivity of the permeate in May 2006. In order to identify the nature of the fouling deposit, we analysed this deposit by Xrays diffraction (XRD).

  1. USE OF REJECT BRINE FROM DESALINATION ON DIFFERENT DEVELOPMENT STAGES OF HYDROPONIC LETTUCE

    National Research Council Canada - National Science Library

    NILDO DA SILVA DIAS; FRANCISCO AÉCIO DE LIMA; CLÁUDIO RICARDO DA SILVA; OSVALDO NOGUEIRA DE SOUSA NETO; HANS RAJ GHEYI

    2011-01-01

    In order to evaluated the impact of the high salinity reject brine from reverse osmosis desalination on hydroponics lettuce cultivated in greenhouse an investigation was carried out in Mossoro, Northeast of Brazil (5º11...

  2. The Winddrinker. Brackish water desalination in Somalia by means of wind energy; De Winddrinker. Brak water ontzilting in Somaliland door middel van windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Generaal, C. [Faculteit Luchtvaart- en Ruimtetechniek, Technische Universiteit Delft TUD, Delft (Netherlands)

    2011-04-15

    The Winddrinker turns salt water into clean drinking water utilizing solely wind energy. It is a promising solution to solve water problems in dry coastal areas of developing countries. The Winddrinker combines a windmill and a desalination pump in the most efficient way. A mechanical coupling ensures a cheap, simple and reliable technology. [Dutch] De Winddrinker kan brak water ontzouten en veranderen in drinkwater met behulp van wind energie. Het is een veelbelovende oplossing voor het drinkwaterprobleem in droge kustgebieden in ontwikkelingslanden. De Winddrinker is een zeer efficient systeem bestaande uit een windmolen en een ontziltingspomp. Een mechanische koppeling zorgt voor een goedkope, eenvoudige en betrouwbare technologie.

  3. Composition and Variability of Biofouling Organisms in Seawater Reverse Osmosis Desalination Plants ▿ †

    OpenAIRE

    Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M. V.; Cai, Baoli

    2011-01-01

    Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the desalination industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a desalination pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Ce...

  4. Further developments of a poultice for electrochemical desalination of porous building materials

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge

    2015-01-01

    and should be avoided. Previously, an electrochemical method has been adapted and optimized for desalination of brick masonry and a high efficiency was obtained. Unfortunately, an accelerated weathering was seen among others in shape of crumbling of mortar below the cathode poultice and further developments...... desalination was maintained. Possible side effects were examined with SEM-EDX, water saturation coefficient, saturation coefficient, open porosity, water and acid soluble calcium content, pH and electrical conductivity. © 2014 RILEM....

  5. Forward Osmosis in India: Status and Comparison with Other Desalination Technologies

    OpenAIRE

    Mehta, Dhruv; Gupta, Lovleen; Dhingra, Rijul

    2014-01-01

    With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be desalinated to make it drinkable. While desalination technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. Th...

  6. Experimental study of a solar desalinator driven by thermal oil circuit

    OpenAIRE

    JoÃo Vitor Goes Pinheiro

    2014-01-01

    A solar desalination system basically has two components: the heating unit (solar collectors) and the desalination unit (tower). Among its main advantages, this device does not need electrical power to operate, since it is driven by thermosiphon. In its operation, brackish water is heated and it evaporates. The evaporated vapor rises and hits the coller walls of the above tray, where it condensates and drains through a specially designed geometry, structure to be finally by in a set of gut...

  7. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)

    OpenAIRE

    Krantz, William B.; Anthony G. Fane; Tzyy Haur Chong; Chuyang Y. Tang; Sim, Victor S.T.; Qianhong She

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water...

  8. Thermodynamic optimisation of a boiler feed water desalination plant / Philippus Johannes van der Walt

    OpenAIRE

    Van der Walt, Philippus Johannes

    2014-01-01

    In the process of electricity generation, water is used as the working fluid to transport energy from the fuel to the turbine. This water has to be ultrapure in order to reduce maintenance cost on the boilers. For the production of ultrapure water, a desalination process is used. This process consists of an ultrafiltration pretreatment section, two reverse osmosis stages and a continuous electrodeionisation stage. Reverse osmosis desalination plants are, however, inherently inefficient wit...

  9. Composition and Variability of Biofouling Organisms in Seawater Reverse Osmosis Desalination Plants ▿ †

    OpenAIRE

    Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M. V.; Cai, Baoli

    2011-01-01

    Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the desalination industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a desalination pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Ce...

  10. Desalinated drinking water in the GCC countries - The need to address consumer perceptions.

    Science.gov (United States)

    Shomar, Basem; Hawari, Jalal

    2017-10-01

    The Gulf Cooperation Council (GCC) countries consist of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates. These countries depend mainly on seawater desalination to meet their water needs. Although great emphasis is given to characterize desalinated water for its physicochemical and microbial properties, e.g. presence of metals, other organic contaminants and for bacteria, sensorial characteristics including smell, taste and color have not received the same attention. This is possibly attributed to the fact that inhabitants of GCC States do not use desalinated tap water for drinking consumption, rather they depend on locally produced or imported bottled water where color, taste and odor are not problematic. To address the consumer needs and perceptions of drinking desalinated water in GCC countries, water quality standards and guidelines, should respond to the public concern about other sensorial characteristics (organoleptic properties) including taste, odor, and trigeminal sensations. Often the root causes of color and smell in water are attributed to the presence of organic and inorganic contaminants and to bacterial growth which is frequently accompanied by the production of metabolites and byproducts that are obnoxious. The unpleasant sensorial problems associated with desalinated drinking tap water may constitute the driving force for most people in GCC countries to depend on bottled water. To encourage people in the GCC countries to consume desalinated tap water, it is essential that water testing include measurements of physicochemical properties, biofilm presence and organoleptic parameters to improve overall water quality. This review highlights the contribution of organoleptics for consumers of desalinated tap water. It extends water quality research to be addressed by standards for organoleptic parameters in desalinated drinking water. Accordingly, consumer awareness and outreach campaigns should be implemented to encourage people

  11. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

    KAUST Repository

    Zuo, Jian

    2015-09-26

    The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

  12. Assessment of Silt Density Index (SDI) as Fouling Propensity Parameter in Reverse Osmosis Desalination

    KAUST Repository

    Rachman, Rinaldi

    2011-07-01

    Reverse osmosis operations are facing persistent fouling phenomenon that has challenged the integrity of these processes. Prediction of fouling potential by measuring a fouling index toward feed water is essential to ensure robust operation. Moreover, employing a reliable fouling index with good reproducibility and precision is necessary. Silt density index (SDI) is considered insufficient in terms of reliability and empirical theory, among other limitations. Nevertheless due its simplicity, SDI measurement is utilized extensively in RO desalination systems. The aim of this research is to assess the reliability of SDI. Methods include the investigation of different SDI membranes and study of the nature of the SDI filtration. Results demonstrate the existence of the membrane properties\\' variation within manufacturers, which then causes a lack of accuracy in fouling risk estimation. The nature of particles during SDI filtration provides information that particle concentration and size play a significant role on SDI quantification with substantial representation given by particles with size close to membrane nominal pore size. Moreover, turbidity assisted SDI measurements along with determination of UF pretreated and clean water fouling potential, establishes the indication of non-fouling related phenomena involved on SDI measurement such as a natural organic matter adsorption and hydrodynamic condition that alters during filtration. Additionally, it was found that the latter affects the sensitivity of SDI by being represented by some portions of SDI value. Keywords: Reverse Osmosis, Fouling index, Particulate Fouling, Silt Density Index (SDI), and Assessment of SDI.

  13. Thin Film Nanofibrous Composite Membrane for Dead-End Seawater Desalination

    Directory of Open Access Journals (Sweden)

    Baturalp Yalcinkaya

    2016-01-01

    Full Text Available The aim of the study was to prepare a thin film nanofibrous composite membrane utilized for nanofiltration technologies. The composite membrane consists of a three-layer system including a nonwoven part as the supporting material, a nanofibrous scaffold as the porous surface, and an active layer. The nonwoven part and the nanofibrous scaffold were laminated together to improve the mechanical properties of the complete membrane. Active layer formations were done successfully via interfacial polymerization. A filtration test was carried out using solutions of MgSO4, NaCl, Na2SO4, CaCl2, and real seawater using the dead-end filtration method. The results indicated that the piperazine-based membrane exhibited higher rejection of divalent salt ions (>98% with high flux. In addition, the m-phenylenediamine-based membrane exhibited higher rejection of divalent and monovalent salt ions (>98% divalent and >96% monovalent with reasonable flux. The desalination of real seawater results showed that thin film nanofibrous composite membranes were able to retain 98% of salt ions from highly saline seawater without showing any fouling. The electrospun nanofibrous materials proved to be an alternative functional supporting material instead of the polymeric phase-inverted support layer in liquid filtration.

  14. Optimal Design of a Solar Desalination Unit with Heliostats

    Directory of Open Access Journals (Sweden)

    M. Abidi

    2017-01-01

    Full Text Available The objective is to improve the yield of a solar desalination cell using concentration of solar rays by means of automatically controlled heliostats. The vertical cell is orientated towards the north. It is mainly composed of two plates; the one being heated by the solar rays reflected by the mirrors is used for evaporation of a falling water film; the other one is used for water vapor condensation. Each heliostat consists of an altitude-azimuth mount having two degrees of freedom and supporting a plane mirror. The heliostat permanently follows the sun trajectory and reflects the solar rays on the cell by means of automatic control implemented in a control card based on a microcontroller. Model predictive control allows us to maximize the distilled water production.

  15. Effectiveness of water desalination by membrane distillation process.

    Science.gov (United States)

    Gryta, Marek

    2012-07-17

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  16. Effectiveness of Water Desalination by Membrane Distillation Process

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2012-07-01

    Full Text Available The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  17. Effectiveness of Water Desalination by Membrane Distillation Process

    Science.gov (United States)

    Gryta, Marek

    2012-01-01

    The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered. PMID:24958289

  18. Partial desalination and concentration of glyphosate liquor by nanofiltration.

    Science.gov (United States)

    Xie, Ming; Xu, Yanhua

    2011-02-15

    Partial desalination and concentration of glyphosate liquor by nanofiltration under different operation modes were investigated experimentally in this study. These operation modes were direct nanofiltration, diafiltration, dilute-diafiltration and interval washing-nanofiltration. The four different operation modes were evaluated and compared in terms of glyphosate recovery and NaCl removal. Diafiltration and dilute-diafiltration performed better than direct nanofiltration. The glyphosate loss was between 11.5% and 18.8% when the dilution factor varied from 0.4 to 0.8. Interval washing-nanofiltration alleviated the concentration polarization and membrane fouling to a certain extent. Dilute-diafiltration may be the best operation mode in terms of glyphosate recovery, salt removal and cost.

  19. Thermodynamical research of using solar energy for desalination of seawater

    Directory of Open Access Journals (Sweden)

    Arsović Marjan R.

    2015-01-01

    Full Text Available Many regions of the world face the problem of saline water. Water desalination processes, which require significant energy consumption, are a common solution to produce drinking water. This study evaluated the influence of the following process operational parameters on the energy consumption of seawater RO systems: water salinity, permeate recovery ratio, membrane performance and feed water temperature. Optimal operational conditions for the theoretical minimum energy consumption were determined with experiments by varying water qualities and operational parameters. In order to further reduce energy consumption a RO system was integrated with a PV solar system and a pilot PVRO system was built and tested. The results obtained from this study indicated that even though a Solar PV system incurs a huge initial capital investment, it will yield significant benefits in the long run of the RO operational period.

  20. A study of desalination using CO{sub 2} hydrate technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D.; Kim, Y.S. [Korea Inst. of Industrial Technology, Busan (Korea, Republic of); Lee, H.J.; Kim, Y.D. [Pusan National Univ., Busan (Korea, Republic of). School of Materials Science and Engineering

    2008-07-01

    Desalination processes use distillation or reverse osmosis methods to produce drinking water from sea water. However, conventional desalination processes are costly. This paper described a gas hydrate desalination process based on a liquid-to-solid phase change coupled with a physical process designed to separate solids from the remaining liquid phase. The kinetics of carbon dioxide (CO{sub 2}) hydrates in an sodium chloride (NaC1) solution were investigated to show the potential application of the CO{sub 2} hydrate formation and decomposition process for seawater desalination. The apparatus consisted of a reactor and supply vessel with temperature and pressure control systems. The decomposition process was conducted after the solution had been drained from the reactor using a squeeze method. The NaC1 ions were trapped in the cavities built by water molecules as well as on the hydrate surface. Results of the study suggested that additional drain processes are needed to increase the desalination efficiency of seawater. Initial CO{sub 2} hydrate formation rates were higher than rates observed in seawater. It was concluded that the method can be used for seawater desalination as well in other purification processes. 7 refs., 2 tabs., 5 figs.

  1. Forward Osmosis in India: Status and Comparison with Other Desalination Technologies.

    Science.gov (United States)

    Mehta, Dhruv; Gupta, Lovleen; Dhingra, Rijul

    2014-01-01

    With an increase in demand of freshwater and depleting water sources, it is imperative to switch to seawater as a regular source of water supply. However, due to the high total dissolved solid content, it has to be desalinated to make it drinkable. While desalination technologies have been used for many years, mass deployment of such technologies poses a number of challenges like high energy requirements as well as high negative environmental impact through side products and CO2 emissions. The purpose of this paper is to present a sustainable technology for desalination. Forward osmosis, an emerging technology, is compared with the other commonly used technologies worldwide, namely, multieffect distillation, multistage flash distillation, and reverse osmosis as well as other emerging technologies like vapour compression, solar humidification dehumidification, nanofiltration, and freezing desalination. As energy consumption and associated greenhouse gas emissions are one of the major concerns of desalination, this paper concludes that forward osmosis is an emerging sustainable technology for seawater desalination. This paper then presents the challenges involved in the application of forward osmosis in India and presents a plant setup. In the end, the cost comparison of a forward osmosis and reverse osmosis plant has been done and it was concluded that forward osmosis is economically better as well.

  2. The salinity gradient power generating system integrated into the seawater desalination system

    Science.gov (United States)

    Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua

    2017-01-01

    Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.

  3. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.

    Science.gov (United States)

    Pugazhenthiran, Nalenthiran; Sen Gupta, Soujit; Prabhath, Anupama; Manikandan, Muthu; Swathy, Jakka Ravindran; Raman, V Kalyan; Pradeep, Thalappil

    2015-09-16

    We describe a simple and inexpensive cellulose-derived and layer-by-layer stacked carbon fiber network electrode for capacitive deionization (CDI) of brackish water. The microstructure and chemical composition were characterized using spectroscopic and microscopic techniques; electrochemical/electrical performance was evaluated by cyclic voltammetry and 4-probe electrical conductivity and surface area by Brunauer-Emmett-Teller analysis, respectively. The desalination performance was investigated using a laboratory batch model CDI unit, under fixed applied voltage and varying salt concentrations. Electro-adsorption of NaCl on the graphite reinforced-cellulose (GrC) electrode reached equilibrium quickly (within 90 min) and the adsorbed salts were released swiftly (in 40 min) back into the solution, during reversal of applied potential. X-ray photoelectron spectroscopic studies clearly illustrate that sodium and chloride ions were physisorbed on the negative and positive electrodes, respectively during electro-adsorption. This GrC electrode showed an electro-adsorption capacity of 13.1 mg/g of the electrode at a cell potential of 1.2 V, with excellent recyclability and complete regeneration. The electrode has a high tendency for removal of specific anions, such as fluoride, nitrate, chloride, and sulfate from water in the following order: Cl->NO3->F->SO4(2-). GrC electrodes also showed resistance to biofouling with negligible biofilm formation even after 5 days of incubation in Pseudomonas putida bacterial culture. Our unique cost-effective methodology of layer-by-layer stacking of carbon nanofibers and concurrent reinforcement using graphite provides uniform conductivity throughout the electrode with fast electro-adsorption, rapid desorption, and extended reuse, making the electrode affordable for capacitive desalination of brackish water.

  4. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT TO SAFELY AND EFFECTIVELY COMPLETE NUCLEAR CONSTRUCTION WORK

    Energy Technology Data Exchange (ETDEWEB)

    LESO KF; HAMILTON HM; FARNER M; HEATH T

    2010-01-14

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business construction subcontractors while performing high hazard work in a safe and productive manner. Previous to the Washington River Protection Solutions, LLC contract, Construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipment and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper describes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method. This method was implemented in the first quarter of Fiscal Year (FY) 2009, where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by DRS personnel. Each small

  5. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels

    Directory of Open Access Journals (Sweden)

    Ma Hong

    2010-02-01

    Full Text Available Abstract Background Although the overwhelming majority of genes found in angiosperms are members of gene families, and both gene- and genome-duplication are pervasive forces in plant genomes, some genes are sufficiently distinct from all other genes in a genome that they can be operationally defined as 'single copy'. Using the gene clustering algorithm MCL-tribe, we have identified a set of 959 single copy genes that are shared single copy genes in the genomes of Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa. To characterize these genes, we have performed a number of analyses examining GO annotations, coding sequence length, number of exons, number of domains, presence in distant lineages, such as Selaginella and Physcomitrella, and phylogenetic analysis to estimate copy number in other seed plants and to demonstrate their phylogenetic utility. We then provide examples of how these genes may be used in phylogenetic analyses to reconstruct organismal history, both by using extant coverage in EST databases for seed plants and de novo amplification via RT-PCR in the family Brassicaceae. Results There are 959 single copy nuclear genes shared in Arabidopsis, Populus, Vitis and Oryza ["APVO SSC genes"]. The majority of these genes are also present in the Selaginella and Physcomitrella genomes. Public EST sets for 197 species suggest that most of these genes are present across a diverse collection of seed plants, and appear to exist as single or very low copy genes, though exceptions are seen in recently polyploid taxa and in lineages where there is significant evidence for a shared large-scale duplication event. Genes encoding proteins localized in organelles are more commonly single copy than expected by chance, but the evolutionary forces responsible for this bias are unknown. Regardless of the evolutionary mechanisms responsible for the large number of shared single copy genes in diverse flowering plant lineages, these

  6. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels

    Science.gov (United States)

    2010-01-01

    Background Although the overwhelming majority of genes found in angiosperms are members of gene families, and both gene- and genome-duplication are pervasive forces in plant genomes, some genes are sufficiently distinct from all other genes in a genome that they can be operationally defined as 'single copy'. Using the gene clustering algorithm MCL-tribe, we have identified a set of 959 single copy genes that are shared single copy genes in the genomes of Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa. To characterize these genes, we have performed a number of analyses examining GO annotations, coding sequence length, number of exons, number of domains, presence in distant lineages, such as Selaginella and Physcomitrella, and phylogenetic analysis to estimate copy number in other seed plants and to demonstrate their phylogenetic utility. We then provide examples of how these genes may be used in phylogenetic analyses to reconstruct organismal history, both by using extant coverage in EST databases for seed plants and de novo amplification via RT-PCR in the family Brassicaceae. Results There are 959 single copy nuclear genes shared in Arabidopsis, Populus, Vitis and Oryza ["APVO SSC genes"]. The majority of these genes are also present in the Selaginella and Physcomitrella genomes. Public EST sets for 197 species suggest that most of these genes are present across a diverse collection of seed plants, and appear to exist as single or very low copy genes, though exceptions are seen in recently polyploid taxa and in lineages where there is significant evidence for a shared large-scale duplication event. Genes encoding proteins localized in organelles are more commonly single copy than expected by chance, but the evolutionary forces responsible for this bias are unknown. Regardless of the evolutionary mechanisms responsible for the large number of shared single copy genes in diverse flowering plant lineages, these genes are valuable for

  7. (Radiopharmacokinetics: Utilization of nuclear medicine)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W.

    1989-01-01

    The work performed in the 1986/1989 period can be characterized as one of testing and documenting that the Radiopharmacokinetic technique is both feasible and applicable to human studies, as well as developing spectroscopic methods for undertaking noninvasive human studies. Main accomplishments include studies which: show that drug targeting can be monitored noninvasively using radiolabeled drugs. The study that documented this finding involved an analysis of the comparative kinetics of biodistribution of {sup 195m}Pt-cisplatin to brain tumors, when administered intravenously and intra-arterially; show that such differential targeting of Platinum represents a differential quantity of drug and a differential amount of the active component reaching the target site; show that in vivo NMRS studies of drugs are possible, as documented by our studies of 5-fluorouracil; show that 5-fluorouracil can be trapped in tumors, and that such trapping may be directly correlatable to patient response; show that the radiopharmacokinetic technique can also be used effectively for the study of radiopharmaceuticals used for imaging, as documented in our studies with {sup 99m}T{sub c}-DMSA.

  8. Economic and Policy Drivers of Agricultural Water Desalination in California's Central Valley

    Science.gov (United States)

    Welle, P.; Medellin-Azuara, J.; Viers, J. H.; Mauter, M.

    2016-12-01

    Agriculture in arid regions is threatened by the twin stresses of soil salinity and uncertain water availability. Recently, water desalination has been a proposed solution for mitigating the effects of drought, soil salinization, and the ecological impacts of agricultural drainage. In this study, we combine data from earth observing systems with auxiliary information on prices, yields, and farmer behavior in order to create a decision framework which assesses the public and private costs and benefits of distributed desalination in the Central Valley (CV) of California. The use of remotely sensed crop classifiers allows us to resolve our analysis at the 30m pixel scale across the CV, a feature that allows us to characterize regional differences in technology effectiveness. We employ environmental and economic modeling to estimate the value of lower salinity irrigation water; the value of augmented water supply under present and future climate scenarios; and the human health, environmental, and climate change damages associated with generating power to desalinate water. We find that water desalination is only likely to be profitable in 4% of the CV during periods of severe drought, and that current costs would need to decrease by 70-90% for adoption to occur on the median acre. Fossil-fuel powered desalination technologies also generate air emissions that impose significant public costs in the form of human health and climate change damages, although these damages vary greatly depending on technology. The ecosystem service benefits of reduced agricultural drainage would need to be valued between 800 and 1200 per acre-foot, or nearly the full capital and operational costs of water desalination, for the net benefits of water desalination to be positive from a societal perspective.

  9. Solar and wind opportunities for water desalination in the Arab regions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L. [National Renewable Energy Laboratory, Golden, CO 80401 (United States)

    2009-12-15

    Despite the abundance of renewable energy resources in the Arab region, the use of solar thermal, solar photovoltaics, and wind is still in its technological and economic infancy. Great potential exists, but economic constraints have impeded more rapid growth for many applications. These technologies have certainly advanced technically over the last quarter century to the point where they should now be considered clean-energy alternatives to fossil fuels. For the Arab countries and many other regions of the world, potable water is becoming as critical a commodity as electricity. As renewable energy technologies advance and environmental concerns rise, these technologies are becoming more interesting partners for powering water desalination projects. We evaluate the current potential and viability of solar and wind, emphasizing the strict mandate for accurate, reliable site-specific resource data. Water desalination can be achieved through either thermal energy (using phase-change processes) or electricity (driving membrane processes), and these sources are best matched to the particular desalination technology. Desalination using solar thermal can be accomplished by multistage flash distillation, multi-effect distillation, vapor compression, freeze separation, and solar still methods. Concentrating solar power offers the best match to large-scale plants that require both high-temperature fluids and electricity. Solar and wind electricity can be effective energy sources for reverse osmosis, electrodialysis, and ultra- and nano-filtration. All these water desalination processes have special operational and high energy requirements that put additional requisites on the use of solar and wind to power these applications. We summarize the characteristics of the various desalination technologies. The effective match of solar thermal, solar photovoltaics, and wind to each of these is discussed in detail. An economic analysis is provided that incorporates energy consumption

  10. An Interactive Computer Tool for Teaching About Desalination and Managing Water Demand in the US

    Science.gov (United States)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    This paper presents an interactive tool to geospatially and temporally analyze desalination developments and trends in the US in the time span 1950-2013, its current contribution to satisfying water demands and its future potentials. The computer tool is open access and can be used by any user with Internet connection, thus facilitating interactive learning about water resources. The tool can also be used by stakeholders and policy makers for decision-making support and with designing sustainable water management strategies. Desalination technology has been acknowledged as a solution to a sustainable water demand management stemming from many sectors, including municipalities, industry, agriculture, power generation, and other users. Desalination has been applied successfully in the US and many countries around the world since 1950s. As of 2013, around 1,336 desalination plants were operating in the US alone, with a daily production capacity of 2 BGD (billion gallons per day) (GWI, 2013). Despite a steady increase in the number of new desalination plants and growing production capacity, in many regions, the costs of desalination are still prohibitive. At the same time, the technology offers a tremendous potential for `enormous supply expansion that exceeds all likely demands' (Chowdhury et al., 2013). The model and tool are based on data from Global Water Intelligence (GWI, 2013). The analysis shows that more than 90% of all the plants in the US are small-scale plants with the capacity below 4.31 MGD. Most of the plants (and especially larger plants) are located on the US East Coast, as well as in California, Texas, Oklahoma, and Florida. The models and the tool provide information about economic feasibility of potential new desalination plants based on the access to feed water, energy sources, water demand, and experiences of other plants in that region.

  11. Desalination of Saline and Brackish Waters using Carbon Aerogel Technology

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Massoudinejad

    2012-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: The increasing demand for drinking water has led scientists to the use of saline waters, but existing desalinating processes are very expensive. carbon aerogel is a type of organic aerogel that is suitable for desalination owing to its unique porous structure. Low potential of fouling and deposits, very low wastewater production, electrostatic regeneration of aerogels and, in turn, no need to acid consumption, and lower power consumption are some of this technology benefits.Materials and Method: In this experimental- analytical study, the purpose was survey of saline and brackish water desalination using carbon aerogel technology and its comparison with electrolysis.The community studied was synthetic salt water samples, using of TDS and EC indicators. The minimum synthetic samples were 243. In this regard, after polymerization of Resorsinol and Formaldehyde compounds under ambient pressure conditions and then its pyrolysis, we fabricated plates of carbon aerogel.Result: With manufacturing in the pilot-scale, the effect of different parameters, including input salt concentration, current, water flow, distance of between electrodes and pH, on NaCl sorption amount of carbon aerogel electrodes were studied. Generally, adsorption amount increased with increasing of current and NaCl concentration and decreased with increasing of distance electrodes, flow and pH.  Results: Fabricating reactor at pilot-scale, we studied the effect of different parameters, including input salt concentration, current, water flow, intra-distance of electrodes, and pH on the NaCl sorption using carbon aerogel electrodes. Generally, adsorption capacity increased with increasing of current and NaCl concentration in the inlet flow, and it decreased with increasing intra-distance of electrodes, flow, and pH.Conclusion: Under the most optimal

  12. 利用可再生能源的反渗透膜法海水淡化方案探讨%Discussion of Seawater Desalination Schemes through RO Process with Renewable Energy Sources

    Institute of Scientific and Technical Information of China (English)

    叶华; 陈斌伟

    2014-01-01

    The optimization of system function,seawater treatment and storage capacity,equipment selection,operation and management for conventional reverse osmosis seawater desalination system were suggested in this paper. The optimization could not only solve the contradiction between the fluctuation of electric production from renewable energy and desalination load,but also increase utilization hours of generating set,which improves the adaption of desalination system for the fluctuation of renewable energy to secure working. The integration of reverse osmosis seawater desalination with renewable energy could guarantee fresh water production and also create a novel mode of circular economy on utilization of renewable energy and seawater resource in China.%该文对常规膜法海水淡化系统的系统功能、设备出力、蓄水能力、设备选型、运行管理等方面提出了优化调整意见,使之在安全运行的前提下,适应可再生能源电力波动的特点,如此不但能解决可再生能源发电量不稳定、发电量与用电负荷不匹配等问题,大幅提高可再生能源发电设备的利用小时数,还能解决我国淡水资源紧缺问题,创造利用可再生能源和海水资源的新循环经济模式。

  13. Economic Investigation of Different Configurations of Inclined Solar Water Desalination Systems

    Directory of Open Access Journals (Sweden)

    O. Phillips Agboola

    2014-02-01

    Full Text Available This study empirically investigated the performance of four configurations of inclined solar water desalination (ISWD system for parameters such as daily production, efficiency, system cost, and distilled water production cost. The empirical findings show that in terms of daily productivity improved inclined solar water desalination (IISWD performed best with 6.41 kg/m2/day while improved inclined solar water desalination with wire mesh (IISWDWM produced the least with 3.0 kg/m2/day. In terms of cost price of the systems, the control system inclined solar water desalination (ISWD is the cheapest while IISWDWM is the most expensive system. Distilled water cost price ranges from 0.059 TL/kg, for IISWDW, to 0.134 TL/kg, for IISWDWM system. All the systems are economically and technically feasible as a solar desalination system for potable water in northern Cyprus. Potable water from vendors/hawkers ranges from 0.2 to 0.3 TL/kg.

  14. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production.

    Science.gov (United States)

    Mehanna, Maha; Kiely, Patrick D; Call, Douglas F; Logan, Bruce E

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m(3) H(2)/m(3) d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements.

  15. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes

    Science.gov (United States)

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-01

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.

  16. Simultaneous Removal of Phenol and Dissolved Solids from Wastewater Using Multichambered Microbial Desalination Cell.

    Science.gov (United States)

    Pradhan, Harapriya; Jain, Sumat Chand; Ghangrekar, Makarand M

    2015-12-01

    Microbial desalination cell (MDC) has great potential toward direct electricity generation from wastewater and concurrent desalination through potential difference developed due to microbial activity. Degradation of phenol by isolate Pseudomonas aeruginosa in anodic chamber and simultaneous desalination of water in middle desalination chamber of multichamber MDC is demonstrated in this study. Performance of the MDCs with different anodic inoculum conditions, namely pure culture of P. aeruginosa (MDC-1), 50 % v/v mixture of P. aeruginosa and anaerobic mixed consortia (MDC-2) and anaerobic mixed consortia (MDC-3), was evaluated to compare the phenol degradation in anodic chamber, bioelectricity generation, and simultaneous total dissolved solids (TDS) removal from saline water in desalination chamber. Synergistic effect between P. aeruginosa and mixed anaerobic consortia as inoculum was evident in MDC-2 demonstrating phenol degradation of 90 %, TDS removal of 75 % in 72 h of reaction time along with higher power generation of 27.5 mW/m(2) as compared to MDC-1 (95 %, 64 %, 12.8 mW/m(2), respectively) and MDC-3 (58 %, 52 %, 4.8 mW/m(2), respectively). The results illustrate that the multichamber MDC-2 is effective for simultaneous removal of phenol and dissolved solids contained in industrial wastewaters.

  17. Electrokinetic desalination using honeycomb carbon nanotubes (HC-CNTs): a conceptual study by molecular simulation.

    Science.gov (United States)

    Chen, Qile; Kong, Xian; Li, Jipeng; Lu, Diannan; Liu, Zheng

    2014-09-21

    A new concept of electrokinetic desalination using a CNT honeycomb is presented through molecular dynamics simulation. The preferential translocation of ions towards the outlets near two electrodes was realized by applying an electric field perpendicular to bulk fluid flow in a CNT network, which, in the meantime, generated deionized water flux discharged from the central outlets. The effects of the major factors such as electric field strength, numbers of separation units, diameter of CNT, and ion concentration on the desalination were examined. It was shown that over 95% salt rejection and around 50% fresh water recovery were achieved by the presented module by applying an electric field of 0.8 V nm(-1). CNT diameter, which is critical to ion rejection without the electric field, had a marginal effect on the desalination of this new module when a strong electric field was applied. The desalination was also not sensitive to ion concentration, indicating its excellent workability for a wide range of water salinity, e.g. from brackish water to seawater. A potential of mean force profile revealed a free energy barrier as large as 2.0-6.0 kcal mol(-1) for ions to move opposite to the implemented electrical force. The simulation confirmed the high potential of the CNT honeycomb in water desalination.

  18. Use of simulated evaporation to assess the potential for scale formation during reverse osmosis desalination

    Science.gov (United States)

    Huff, G.F.

    2004-01-01

    The tendency of solutes in input water to precipitate efficiency lowering scale deposits on the membranes of reverse osmosis (RO) desalination systems is an important factor in determining the suitability of input water for desalination. Simulated input water evaporation can be used as a technique to quantitatively assess the potential for scale formation in RO desalination systems. The technique was demonstrated by simulating the increase in solute concentrations required to form calcite, gypsum, and amorphous silica scales at 25??C and 40??C from 23 desalination input waters taken from the literature. Simulation results could be used to quantitatively assess the potential of a given input water to form scale or to compare the potential of a number of input waters to form scale during RO desalination. Simulated evaporation of input waters cannot accurately predict the conditions under which scale will form owing to the effects of potentially stable supersaturated solutions, solution velocity, and residence time inside RO systems. However, the simulated scale-forming potential of proposed input waters could be compared with the simulated scale-forming potentials and actual scale-forming properties of input waters having documented operational histories in RO systems. This may provide a technique to estimate the actual performance and suitability of proposed input waters during RO.

  19. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes.

    Science.gov (United States)

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-08

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.

  20. Integration of solar process heat into an existing thermal desalination plant in Qatar

    Science.gov (United States)

    Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.

    2016-05-01

    The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.

  1. Bioelectricity generation and dewatered sludge degradation in microbial capacitive desalination cell.

    Science.gov (United States)

    Meng, Fanyu; Zhao, Qingliang; Na, Xiaolin; Zheng, Zhen; Jiang, Junqiu; Wei, Liangliang; Zhang, Jun

    2016-05-18

    Microbial desalination cell (MDC) is a new approach for the synergy in bioelectricity generation, desalination and organic waste treatment without additional power input. However, current MDC systems cause salt accumulation in anodic wastewater and sludge. A microbial capacitive desalination cell (MCDC) with dewatered sludge as anodic substrate was developed to address the salt migration problem and improve the sludge recycling value by special designed-membrane assemblies, which consisted of cation exchange membranes (CEMs), layers of activated carbon cloth (ACC), and nickel foam. Experimental results indicated that the maximum power output of 2.06 W/m(3) with open circuit voltage (OCV) of 0.942 V was produced in 42 days. When initial NaCl concentration was 2 g/L, the desalinization rate was about 15.5 mg/(L·h) in the first 24 h, indicating that the MCDC reactor was suitable to desalinize the low concentration salt solution rapidly. The conductivity of the anodic substrate decreased during the 42-day operation; the CEM/ACC/Ni assemblies could effectively restrict the salt accumulation in MCDC anode and promote dewatered sludge effective use by optimizing the dewatered sludge properties, such as organic matter, C/N, pH value, and electric conductivity (EC).

  2. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven technologies 33%, but in Gulf Cooperation Council (GCC) countries their shares are 42% and 56% respectively due to severe feed water quality. In RO processes, intake, pretreatment and brine disposal cost 25% of total desalination cost at 30–35% recovery. We proposed a tri-hybrid system to enhance overall recovery up to 81%. The conditioned brine leaving from RO processes supplied to proposed multi-evaporator adsorption cycle driven by low temperature industrial waste heat sources or solar energy. RO membrane simulation has been performed using WinFlow and IMSDesign commercial softwares developed by GE and Nitto. Detailed mathematical model of overall system is developed and simulation has been conducted in FORTRAN. The final brine reject concentration from tri-hybrid cycle can vary from 166,000ppm to 222,000ppm if RO retentate concentration varies from 45,000ppm to 60,000ppm. We also conducted economic analysis and showed that the proposed tri-hybrid cycle can achieve highest recovery, 81%, and lowest energy consumption, 1.76kWhelec/m3, for desalination reported in the literature up till now.

  3. Economic feasibility of a solar still desalination system with enhanced productivity

    KAUST Repository

    Ayoub, George M.

    2014-02-01

    Solar still desalination systems offer sustainable tools for fresh water production. However, their widespread application is often hindered by their relatively low production rates compared to other desalination methods. In this study, a simple amendment, in the form of a slowly-rotating hollow cylinder, was introduced within the solar still, significantly increasing the evaporative surface area. This new modified still was analyzed in terms of both operation and economic feasibility. The introduced cylinder resulted in a 200-300% increase in water output relative to a control, which did not include the cylinder. The resulting percent improvement far exceeds that obtained by other modifications. Unit production cost estimates varied between 6 and 60$/m3 depending on discount rates, productivity, service lifetime and initial capital costs. These projections are well within reported cost ranges for renewable-based technologies. In order to evaluate the system\\'s feasibility in real market value, different scenarios that introduce carbon-trading schemes and environmental degradation costs for fuel-based desalination, were performed. Reported costs for fuel-based brackish water and seawater desalination were thus adjusted to include unaccounted-for costs related to environmental damage. This analysis yielded results that further justify the economic feasibility of the new modified solar still, particularly for seawater desalination. © 2013 Elsevier B.V.

  4. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  5. Bioluminescence-based method for measuring assimilable organic carbon in pretreatment water for reverse osmosis membrane desalination.

    Science.gov (United States)

    Weinrich, Lauren A; Schneider, Orren D; LeChevallier, Mark W

    2011-02-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment.

  6. Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination

    Science.gov (United States)

    Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.

    2011-01-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685

  7. Vapor transport through short hydrophobic nanopores for desalination

    Science.gov (United States)

    Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Rahman, Faizur; Karnik, Rohit

    2011-11-01

    We propose a concept for desalination of water by reverse osmosis (RO) using a vapor-trapping membrane composed of short hydrophobic nanopores and separates the salt water (feed) and the fresh water (permeate) on each side. The feed water is vaporized by applied pressure and the water vapor condenses on the permeate side accompanied by recovery of latent heat. A probabilistic model based on rarified gas conditions predicted 3-5 times larger mass flux by the proposed membrane than conventional RO membranes at temperatures in the range of 30-50C. To realize the short hydrophobic nanopores, gold was deposited at the entrance of alumina pores followed by SAM formation. The fraction of leaking pores was confirmed to be less than 0.2% using a calcium ion indicator (Fluo-4). Finally, a microfluidic flow cell was fabricated for characterizing the transport properties of the membranes. The authors would like to thank the King Fahd University of Petroleum and Minerals in Dhahran, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM.

  8. Does hindered transport theory apply to desalination membranes?

    Science.gov (United States)

    Dražević, Emil; Košutić, Krešimir; Kolev, Vesselin; Freger, Viatcheslav

    2014-10-07

    As reverse osmosis (RO) and nanofiltration polyamide membranes become increasingly used for water purification, prediction of pollutant transport is required for membrane development and process engineering. Many popular models use hindered transport theory (HTT), which considers a spherical solute moving through an array of fluid-filled rigid cylindrical pores. Experiments and molecular dynamic simulations, however, reveal that polyamide membranes have a distinctly different structure of a "molecular sponge", a network of randomly connected voids widely distributed in size. In view of this disagreement, this study critically examined the validity of HTT by directly measuring diffusivities of several alcohols within a polyamide film of commercial RO membrane using attenuated total reflection-FTIR. It is found that measured diffusivities deviate from HTT predictions by as much as 2-3 orders of magnitude. This result indicates that HTT does not adequately describe solute transport in desalination membranes. As a more adequate alternative, the concept of random resistor networks is suggested, with resistances described by models of activated transport in "soft" polymers without a sharp size cutoff and with a proper address of solute partitioning.

  9. Seawater reverse osmosis desalination and (harmful) algal blooms

    KAUST Repository

    Villacorte, Loreen O.

    2015-03-01

    This article reviews the occurrence of HABs in seawater, their effects on the operation of seawater reverse osmosis (SWRO) plants, the indicators for quantifying/predicting these effects, and the pretreatment strategies for mitigating operational issues during algal blooms. The potential issues in SWRO plants during HABs are particulate/organic fouling of pretreatment systems and biological fouling of RO membranes, mainly due to accumulation of algal organic matter (AOM). The presence of HAB toxins in desalinated water is also a potential concern but only at very low concentrations. Monitoring algal cell density, AOM concentrations and membrane fouling indices is a promising approach to assess the quality of SWRO feedwater and performance of the pretreatment system. When geological condition is favourable, subsurface intake can be a robust pretreatment for SWRO during HABs. Existing SWRO plants with open intake and are fitted with granular media filtration can improve performance in terms of capacity and product water quality, if preceded by dissolved air flotation or sedimentation. However, the application of advanced pretreatment using ultrafiltration membrane with in-line coagulation is often a better option as it is capable of maintaining stable operation and better RO feed water quality during algal bloom periods with significantly lower chemical consumption.

  10. Water desalination using nanoporous single-layer graphene.

    Science.gov (United States)

    Surwade, Sumedh P; Smirnov, Sergei N; Vlassiouk, Ivan V; Unocic, Raymond R; Veith, Gabriel M; Dai, Sheng; Mahurin, Shannon M

    2015-05-01

    By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a desalination membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 10(6) g m(-2) s(-1) at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m(-2) s(-1) atm(-1).

  11. Permeability of uncharged organic molecules in reverse osmosis desalination membranes.

    Science.gov (United States)

    Dražević, Emil; Košutić, Krešimir; Svalina, Marin; Catalano, Jacopo

    2017-06-01

    Reverse osmosis (RO) membranes are primarily designed for removal of salts i.e. for desalination of brackish and seawater, but they have also found applications in removal of organic molecules. While it is clear that steric exclusion is the dominant removal mechanism, the fundamental explanation for how and why the separation occurs remains elusive. Until recently there was no strong microscopic evidences elucidating the structure of the active polyamide layers of RO membranes, and thus they have been conceived as "black boxes"; or as an array of straight capillaries with a distribution of radii; or as polymers with a small amount of polymer free domains. The knowledge of diffusion and sorption coefficients is a prerequisite for understanding the intrinsic permeability of any organic solute in any polymer. At the same time, it is technically challenging to accurately measure these two fundamental parameters in very thin (20-300 nm) water-swollen active layers. In this work we have measured partition and diffusion coefficients and RO permeabilities of ten organic solutes in water-swollen active layers of two types of RO membranes, low (SWC4+) and high flux (XLE). We deduced from our results and recent microscopic studies that the solute flux of organic molecules in polyamide layer of RO membranes occurs in two domains, dense polymer (the key barrier layer) and the water filled domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Water desalination using nanoporous single-layer graphene

    Science.gov (United States)

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon M.

    2015-05-01

    By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a desalination membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 106 g m-2 s-1 at 40 °C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m-2 s-1 atm-1.

  13. Simulation insights for graphene-based water desalination membranes.

    Science.gov (United States)

    Konatham, Deepthi; Yu, Jing; Ho, Tuan A; Striolo, Alberto

    2013-09-24

    Molecular dynamics simulations were employed to study the transport of water and ions through pores created on the basal plane of one graphene sheet (GS). Graphene pore diameters ranged from 7.5 to 14.5 Å. Different pore functionalities were considered, obtained by tethering various functional groups to the terminal carbon atoms. The ease of ion and water translocation across the pores was monitored by calculating the potential of mean force along the direction perpendicular to the GS pore. The results indicate that effective ion exclusion can be achieved only using nonfunctionalized (pristine) pores of diameter ~7.5 Å, whereas the ions can easily penetrate pristine pores of diameters ~10.5 and 14.5 Å. Carboxyl functional groups can enhance ion exclusion for all pores considered, but the effect becomes less pronounced as both the ion concentration and the pore diameter increase. When compared to a carbon nanotube of similar pore diameter, our results suggest that GS pores functionalized with COO(-) groups are more effective in excluding Cl(-) ions from passing through the membrane. Our results suggest that narrow graphene pores functionalized with hydroxyl groups remain effective at excluding Cl(-) ions even at moderate solution ionic strength. The results presented could be useful for the design of water desalination membranes.

  14. Electrodialysis desalination of fish sauce: electrodialysis performance and product quality.

    Science.gov (United States)

    Chindapan, Nathamol; Devahastin, Sakamon; Chiewchan, Naphaporn

    2009-09-01

    Fish sauce has a unique, pleasant flavor, but contains high levels of sodium chloride, which is nowadays not desirable for health-conscious consumers. Although many researchers have attempted to solve this problem by substituting sodium with potassium in fish sauce, potassium-based products are still unsuitable for patients with kidney disease. Thus, electrodialysis (ED) desalination of fish sauce was carried out. The rate of salt removal, evolution of total soluble solids, and electrical conductivity of the electrodialysis-treated fish sauce were investigated. Moreover, the system performance in terms of yield, energy consumption, and current efficiency were examined. Density, viscosity, ion concentrations (that is, Na(+), K(+)), total nitrogen, amino nitrogen, and color were investigated at various values of input voltage (6, 7, and 8 V) and remaining salt concentration (22%, 18%, 14%, 10%, 6%, and 2%[w/w]). The results indicated that an increase in the input voltage led to an increase in the rates of salt removal, electrical conductivity, and total soluble solids. The energy consumption increased whereas current efficiency and yield decreased significantly with an increase in input voltage and the salt removal level. Physicochemical properties of the treated fish sauce, in terms of the total soluble solids, density, viscosity, ion concentrations (that is, Na(+), K(+)), total nitrogen, and color were significantly affected by the input voltage and the salt-removal level.

  15. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  16. Desalination and water recovery: Control of membrane fouling

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.V.R.; Jagan Mohan, D.; Buch, P.R.; Joshi, S.V.; Pushpito Kumar Ghosh [Reverse Osmosis Discipline, Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat (India)]. E-mail: salt@csir.res.in

    2006-07-01

    Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) technologies are widely used for the production of safe drinking water, and for the recovery of reusable water from various industrial effluent streams. The most commonly encountered phenomenon in these processes, especially in water recovery application, is membrane fouling, and control of membrane fouling is regarded as a significant challenge. Membranes with charged and hydrophilic surfaces are reported to be less susceptible to fouling and often reversible. UF/RO membranes containing negatively charged and/or neutral hydrophilic functional groups on the surface were prepared by surface modification of suitable membranes. The surface modified membranes exhibited separations of 68%-85% for Na{sub 2}SO{sub 4}, 19%-31% for MgSO{sub 4}, 10%-26% for NaCl and 2%-12% for CaCl{sub 2} with water permeation rates of 9-50 l/m{sup 2}-h at the operating pressure of 4 kg/cm{sup 2}. The UF membranes were tested for water recovery from reactive dye effluents containing solutes with molecular sizes in the range of 600-1000 Da along with inorganic solutes. Surface-modified RO membranes were utilised for desalination of brackish water. (author)

  17. A process and assembly for desalinating and dehydrating crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Popp, V.V.; Fotescu, L.; Mihalache, I.; Neagu, R.; Suditu, I.N.; Tirboiu, D.

    1981-08-05

    A process is patented for desalinating and dehydrating crude oils by washing them with hot water (the assembly contains a demulsifier) for several stages depending on the salt content and a free water separating stage, after which an optimum dose of demulsifier is injected into the oil; the oil is heated up and injected into a settling tank where a coalescent layer if formed (depending on the type of oil). Coalescence can be conducted in the heat exchanger which is located before the settling tank and from which the hot water recirculates for washing. The treated oil, which may contain water and volatile components, can be injected into the stripper in a heated or unheated state. In the stripper, the oil makes contact with heated gas in a counterflow, which extracts the steam and the volatile hydrocarbons. The dehydrated oil is removed from the bottom of the stripper; steam and hydrocarbons move to the top of the stripper where they condense. The hydrocarbons are passed on for further use. The corresponding device which operates in the described manner is also patented.

  18. Simulation of Evaporator for Two-phase Flow in the New Plate-fin Desalination Unit

    Directory of Open Access Journals (Sweden)

    Shu Xu

    2013-04-01

    Full Text Available In this study a new desalination unit is established. It has four cells such as cooling cell, heating cell, evaporation cell and condensation cell. Seawater is pumped into cooling cell to be preheated and then goes to evaporation cell. In the new desalination unit the evaporation and condensation cell is heated and cooled by the heating and cooling cells respectively. The heating of the evaporation cell is ensured by hot water flowing upward along heating cells. The cooling of the condensation cell is ensured by seawater in cooling cell. Fluent 6.3 is used to simulate gas-liquid two-phase flow of boiling evaporation numerically. A simulation calculation to get fluid in a new desalination unit under the influence of the flow, pressure distribution and heat transfer performance of the evaporator.

  19. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification.

    Science.gov (United States)

    Yang, Hui Ying; Han, Zhao Jun; Yu, Siu Fung; Pey, Kin Leong; Ostrikov, Kostya; Karnik, Rohit

    2013-01-01

    Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties.

  20. First experiences with electrochemical in-situ desalination of bricks in a church vault construction

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge

    2012-01-01

    Deterioration of surfaces on building constructions and especially historical constructions caused by presence of salts is a well known problem in Europe and on other continents as well, however there is still a lack of an efficient desalination method. Salt induced deterioration is especially...... problematic in relation to church vault constructions with murals as the surface deterioration can result in loss of valuable cultural heritage. An electrochemical method has been investigated with focus on possible use for desalination of salt loaded vault constructions with murals in laboratory scale....... In the present paper all necessary considerations were made and described prior to electrochemical in-situ desalination. Experiences in getting started with experiments on cultural heritage has been obtained, it needs some extra time and should therefore be considered as an extra step during the preparation...

  1. Effect of Desalination on Physicochemical and Functional Properties of Duck (Anas plotyrhyncus Egg Whites

    Directory of Open Access Journals (Sweden)

    Mhamadi Mmadi

    2014-06-01

    Full Text Available Desalted Duck Egg Whites (DDEW was prepared by electrodialysis desalination using Salted Duck Egg Whites (SDEW. DDEW and SDEW (used as control were subjected to freeze drying process. Freeze Dried Desalted and Salted Duck Egg Whites (FDDEW and FSDEW, respectively were assessed for functional properties (turbidity, foaming, emulsifying and gelation and some physicochemical characteristics. Among the physicochemical parameters, the proximate composition, amino acid composition, pH, particle sizes, microstructure and color attributes were studied. The electrodialysis desalination process had significant effect on the physicochemical characteristics of FDDEW and FSDEW except for amino acids composition. Thus, the pH decreased from 8.07 to 7.40 while the NaCl content decreased from 3.76 to 0.18%. The same trend was observed for protein and ash contents. The functional properties were variable among the two samples. For instance, the gel characteristics decreased sharply after electrodialysis desalination treatment.

  2. Desalination of Red Sea water using both electrodialysis and reverse osmosis as complementary methods

    Directory of Open Access Journals (Sweden)

    E.A. Abdel-Aal

    2015-03-01

    Full Text Available Desalination process separates nearly salt free water from sea or brackish water. So, desalination process is becoming a solution for water scarcity all over the world. Two membrane methods of water desalination namely electrodialysis (ED and reverse osmosis (RO are used in this study as complementary methods. The results show that both ED and RO can be used as integrated system. This system is economic and cost effective compared with each individual method provided using the ED system before the RO. In this study, it was approved that seawater can be used as it is an electrolyte. TDS of Red Sea water was decreased from 42070 ppm to 2177 ppm achieving 94.8% removal efficiency using ED for half of its optimum time. Total removal efficiency of 99.4% can be obtained using the combined system of ED and RO.

  3. Shale gas produced water treatment using innovative microbial capacitive desalination cell.

    Science.gov (United States)

    Stoll, Zachary A; Forrestal, Casey; Ren, Zhiyong Jason; Xu, Pei

    2015-01-01

    The rapid development of unconventional oil and gas production has generated large amounts of wastewater for disposal, raising significant environmental and public health concerns. Treatment and beneficial use of produced water presents many challenges due to its high concentrations of petroleum hydrocarbons and salinity. The objectives of this study were to investigate the feasibility of treating actual shale gas produced water using a bioelectrochemical system integrated with capacitive deionization-a microbial capacitive desalination cell (MCDC). Microbial degradation of organic compounds in the anode generated an electric potential that drove the desalination of produced water. Sorption and biodegradation resulted in a combined organic removal rate of 6.4 mg dissolved organic carbon per hour in the reactor, and the MCDC removed 36 mg salt per gram of carbon electrode per hour from produced water. This study is a proof-of-concept that the MCDC can be used to combine organic degradation with desalination of contaminated water without external energy input.

  4. Performance Measurement of Water Desalination Supply Chain Using Balanced Scorecard Model

    Directory of Open Access Journals (Sweden)

    Hasan Balfaqih

    2016-02-01

    Full Text Available The purpose of this study is to propose a theoretical framework based on a balanced scorecard (BSC for performance measurement in the water desalination supply chain (WDSC. The reason for choosing this context is that the supply chain (SC of water desalination has received a great amount of attention, due to issues related to the increased need of fresh water for agricultural, industrial and human consumptions. The research methodology is based on literature analysis concerning performance measurement and metrics, the water desalination industry and the BSC model. Different SC performance measures which related to WDSC have been reviewed and distributed into four BSC perspectives: financial, customer, internal business, and learning & growth. The article provides a structured theoretical framework specific for WDSC. This is the first developed framework in WDSC which could serve as a reference to develop applicable performance indicators, and it is expected that both researchers and practitioners would benefit from the proposed framework.

  5. CSP cogeneration of electricity and desalinated water at the Pentakomo field facility

    Science.gov (United States)

    Papanicolas, C. N.; Bonanos, A. M.; Georgiou, M. C.; Guillen, E.; Jarraud, N.; Marakkos, C.; Montenon, A.; Stiliaris, E.; Tsioli, E.; Tzamtzis, G.; Votyakov, E. V.

    2016-05-01

    The Cyprus Institute's Pentakomo Field Facility (PFF) is a major infrastructure for research, development and testing of technologies relating to concentrated solar power (CSP) and solar seawater desalination. It is located at the south coast of Cyprus near the sea and its environmental conditions are fully monitored. It provides a test facility specializing in the development of CSP systems suitable for island and coastal environments with particular emphasis on small units (electricity and desalinated seawater from CSP. Specifically, the experimental plant consists of a heliostat-central receiver system for solar harvesting, thermal energy storage in molten salts followed by a Rankine cycle for electricity production and a multiple-effect distillation (MED) unit for desalination.

  6. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    Science.gov (United States)

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that it is predisposed to…

  7. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    Science.gov (United States)

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that…

  8. Elements of an Alternative to Nuclear Power as a Response to the Energy-Environment Crisis in India: Development as Freedom and a Sustainable Energy Utility

    Science.gov (United States)

    Mathai, Manu V.

    2009-01-01

    Even as the conventional energy system is fundamentally challenged by the "energy-environment crisis," its adherents have presented the prospect of "abundant" and purportedly "green" nuclear power as part of a strategy to address the crisis. Surveying the development of nuclear power in India, this article finds that…

  9. A Plan to Develop a Red Tide Warning System for Seawater Desalination Process Management

    Science.gov (United States)

    Kim, Tae Woo; Yun, Hong Sik

    2017-04-01

    The holt of the seawater desalination process for fifty five days due to the eight-month long red tide in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red tide that threatens the stable operation of the seawater desalination facility. A red tide warning system can offer the seawater desalination facility manager customized services on red tide information and potential red tide inflow to the water intake. This study aimed to develop a red tide warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red tide forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red tide. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).

  10. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac; Turchi, Craig

    2017-05-01

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalination technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.

  11. Ruled-based control of off-grid desalination powered by renewable energies

    Directory of Open Access Journals (Sweden)

    Alvaro Serna

    2015-08-01

    Full Text Available A rule-based control is presented for desalination plants operating under variable, renewable power availability. This control algorithm is based on two sets of rules: first, a list that prioritizes the reverse osmosis (RO units of the plant is created, based on the current state and the expected water demand; secondly, the available energy is then dispatched to these units following this prioritized list. The selected strategy is tested on a specific case study: a reverse osmosis plant designed for the production of desalinated water powered by wind and wave energy. Simulation results illustrate the correct performance of the plant under this control.

  12. Today's and future challenges in applications of renewable energy technologies for desalination

    KAUST Repository

    Goosen, Mattheus F A

    2013-08-28

    Recent trends and challenges in applications of renewable energy technologies for water desalination are critically reviewed with an emphasis on environmental concerns and sustainable development. After providing an overview of wind, wave, geothermal, and solar renewable energy technologies for fresh water production, hybrid systems are assessed. Then scale-up and economic factors are considered. This is followed with a section on regulatory factors, environmental concerns, and globalization, and a final segment on selecting the most suitable renewable energy technology for conventional and emerging desalination processes. © 2014 Copyright Taylor & Francis Group, LLC.

  13. Desalination of brackish water and concentration of industrial effluents by electrodialysis

    Directory of Open Access Journals (Sweden)

    J. J. Schoeman

    1983-03-01

    Full Text Available Electrodialysis (ED is, at present, used mainly for the desalination of brackish drinking-water. Brackish water with a high scaling potential can be successfully treated, using the electrodialysis reversal (EDR process without the addition of chemicals. The reliability of the ED process makes it very attractive for water treatment. Although used mainly for brackish water desalination, ED also has certain industrial applications. Plating wash waters, cooling tower recirculation water and glass etching effluents have been treated successfully with ED for water recovery and effluent volume reduction, while ED treatment of nickel plating wash waters is an established industrial process.

  14. New Development of Membrane Technology in Seawater Desalination and Multipurpose Use%膜技术在海水淡化和综合利用中的新进展

    Institute of Scientific and Technical Information of China (English)

    俞三传; 高从增

    2001-01-01

    主要论述了膜技术在海水淡化和海水综合利用中的新进晨。包括各种新开发的反渗透海水淡化新技术,将淡化、制盐、电解和吸附相结合的海水综合利用新工艺,以及海水综合利用的资源和节能集成技术。为膜技术在海水淡化和海水综合利用等方面的应用提供借鉴和理论指导。%New development of membrane technology in seawater desalination and multipurpose use is reviewed in this paper. Recently-developed seawater reverse osmosis ( SWRO ) desalination technologies ( SWRO + Energy exchanger, SWRO + Interstage turbine, NF + SWRO + MSF ) and new processes of deepgoing development and utilization of marine resources with the membrane technology are discussed in detail. This review will provide some guide for the seawater desalination and multipurpose use through the membrane technology.

  15. Energy supply technologies. Nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, Bent.; Nonboel, E. [Risoe National Lab. - DTU (Denmark); Vuori, S. [VTT (Finland)

    2007-11-15

    Nuclear power has long been controversial, especially in Europe, with concerns over the safety of nuclear installations, radioactive waste, and proliferation of nuclear weapon materials. Globally, however, renewed interest in nuclear energy has been sparked by concerns for energy security, economic development, and commitment to reduce CO{sub 2} emissions. Nuclear fission is a major source of energy that is free from CO{sub 2} emissions. It provides 15 % of the world's electricity and 7 % of total primary energy consumption. Around 440 nuclear reactors are currently generating power in 31 countries, with largest capacity in Europe, the USA and Southeast Asia. Non-electricity applications are few at present, but include process heat, hydrogen production, ship propulsion, and desalination. Nuclear power is characterised by high construction costs and a relatively long construction period, but low operating and maintenance expenses, including fuel. Most nuclear power plants in the USA and Europe have second-generation light water reactors (LWRs), while the plants now being built in Southeast Asia are of third-generation design. The Evolutionary Power Reactor (EPR) under construction in Finland, and the Pebble Bed Modular Reactor (PBMR) being developed in South Africa, are both of types referred to as Generation III+. From 2020-30 onwards fourth-generation reactors are expected to provide improved fuel utilisation and economics. Nuclear power does not form part of the Danish energy mix and at present there seems to be little political will to change this position. As a result Denmark has relatively little expertise in nuclear power. However, since nuclear power provides a substantial share of Europe's electricity, Denmark should ensure that it has expertise to advise the government and the public on nuclear issues. (BA)

  16. Accurate measurement of phase equilibria and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl for potential application in desalination

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongyoung; Lee, Yohan; Choi, Wonjung; Seo, Yongwon [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Seungmin [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-04-15

    Phase equilibria, structure identification, and dissociation enthalpies of HFC-134a hydrates in the presence of NaCl are investigated for potential application in desalination. To verify the influence of NaCl on the thermodynamic hydrate stability of the HFC-134a hydrate, the three-phase (hydrate (H) - liquid water (L{sub W}) - vapor (V)) equilibria of the HFC-134a+NaCl (0, 3.5, and 8.0 wt%)+water systems are measured by both a conventional isochoric (pVT) method and a stepwise differential scanning calorimeter (DSC) method. Both pVT and DSC methods demonstrate reliable and consistent hydrate phase equilibrium points of the HFC-134a hydrates in the presence of NaCl. The HFC- 134a hydrate is identified as sII via powder X-ray diffraction. The dissociation enthalpies (ΔH{sub d}) of the HFC-134a hydrates in the presence of NaCl are also measured with a high pressure micro-differential scanning calorimeter. The salinity results in significant thermodynamic inhibition of the HFC-134a hydrates, whereas it has little effect on the dissociation enthalpy of the HFC-134a hydrates. The experimental results obtained in this study can be utilized as foundational data for the hydrate-based desalination process.

  17. Nuclear fuel activity with minor actinides after their useful life in a BWR; Actividad del combustible nuclear con actinidos menores despues de su vida util en un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10{sup 15} Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  18. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems

    KAUST Repository

    Ghaffour, Noreddine

    2015-01-01

    Despite the tremendous improvements in conventional desalination technologies, its wide use is still limited due primarily to high energy requirements which are currently met with expensive fossil fuels. The use of alternative energy sources is essential to meet the growing demand for water desalination. In the last few decades a lot of effort has being directed in the use of different renewable energy (RE) sources to run desalination processes. However, the expansion of these efforts towards larger scale plants is hampered by several techno-economic challenges. Several medium-scale RE-driven desalination plants have been installed worldwide. Nevertheless, most of these plants are connected to the electrical grid to assure a continuous energy supply for stable operation. Furthermore, RE is mostly used to produce electric power which can be used to run desalination systems. This review paper focuses on an integrated approach in using RE-driven with an emphasis on solar and geothermal desalination technologies. Innovative and sustainable desalination processes which are suitable for integrated RE systems are presented. An assessment of the benefits of these technologies and their limitations are also discussed.

  19. Comparison of environmental impact and energy efficiency of desalination processes by LCA

    NARCIS (Netherlands)

    Tarnacki, K.M.; Melin, T.; Jansen, A.E.; Medevoort, J. van

    2011-01-01

    In this study two desalination technologies have been compared by means of LCA with the focus on energy supply with a variety of scenarios based on different assumptions. The studied technologies are reverse osmosis and the newly developed technology Memstill where electrical energy demand is reduce

  20. Desalination of salt damaged Obernkirchen sandstone by an applied DC field

    DEFF Research Database (Denmark)

    Matyščák, Ondřej; Ottosen, Lisbeth M.; Rörig-Dalgaard, Inge

    2014-01-01

    Soluble salts are considered as one of the most common causes for decay of building materials. In the present work, an electrokinetic method for desalination of sandstones from a historic warehouse was tested. The sandstones claddings were removed from the warehouse during a renovation action as ...