WorldWideScience

Sample records for nuclear desalination activities

  1. Nuclear desalination activities in India

    International Nuclear Information System (INIS)

    Bhattacharjee, B.

    1999-01-01

    The main emphasis of this article is on utilization of nuclear energy for desalination. Nuclear desalination is cheaper, eco-friendly and assists in sustainable growth of total energy generation programme in a country. PHWR type reactors are the main stay of nuclear energy programme in India. Nuclear waste heat for desalination is available in the moderator system of the 220 MW(e) and 500 MW(e) PHWRs. The low temperature evaporation technology (LET) for producing pure water from sea water is also discussed

  2. IAEA activity related to safety of nuclear desalination

    International Nuclear Information System (INIS)

    Gasparini, M.

    2000-01-01

    The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. The current safety approach, based on the achievement of the fundamental safety functions and defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process. The protection of product water against radioactive contamination must be ensured. An effective infrastructure, including appropriate training, a legal framework and regulatory regime, is a prerequisite to considering use of nuclear power for desalination plants, also in those countries with limited industrial infrastructures and little experience in nuclear technology or safety. (author)

  3. Present and future activities of nuclear desalination in Japan

    International Nuclear Information System (INIS)

    Minato, A.; Hirai, M.

    2004-01-01

    Seawater desalination plants have been installed at several nuclear power plants in Japan in order to satisfy the regulations for nuclear plant installation. This has been done where there is a limited source of water due to the geological conditions. These desalination plants are being operated to ensure supplemental water by using thermal or electrical energy from the nuclear power plant. The desalination plant is not operated continuously during the year because the major function of the plant is to ensure the supply of supplemental water for the nuclear power plant. Regarding maintenance of the desalination plant, some piping was exchanged due to corrosion by high temperature seawater, however, the desalination plants are being operated without any trouble as of today. Recently, the development of innovative and/or small reactor designs, that emphasise safety features, has been promoted in Japan to use for seawater desalination and for installation in developing countries. An advanced RO system with lower energy consumption technology is also being developed. Furthermore, some Japanese industries and universities are now very interested in nuclear desalination. (author)

  4. Current activities on nuclear desalination in the Russian Federation

    International Nuclear Information System (INIS)

    Baranaev, Y.D.

    1996-01-01

    The goal of the RF desalination programme has been to develop small power floating nuclear seawater desalination complex based on KLT-40 reactor, originally developed for ship propulsion, as an energy source. Russia has sufficient fresh water resource rather evenly distributed over country territory (except for several specific conditions where sea or brackish water desalination is required for reliable long term potable water supply) and only limited internal deployment of this system is expected. Therefore, the development programme is mostly oriented to external market. Development of the floating nuclear desalination complex goes in parallel and is backed by the project of floating nuclear electricity and heat cogeneration plant using two KLT-40 reactors. This plant producing up to 70 MW(e) of electricity and up to 50 Gcal/of heat for district heating is now at the basic design stage and planned to be implemented around the year 2000 in Russia, at the Arctic Sea area

  5. IAEA's role in nuclear desalination

    International Nuclear Information System (INIS)

    Khamis, I.; )

    2010-01-01

    Currently, several Member States have shown interest in the utilization of the nuclear energy for seawater desalination not only because recent studies have demonstrated that nuclear desalination is feasible, but also economical and has been already demonstrated in several countries. Therefore, the article will provide a highlight on sea water desalination using nuclear energy as a potential for a sustainable development around the world and the IAEA role in this regards. Special emphasis is placed on past, present, and future nuclear desalination experience in various IAEA Member States. The International Atomic Energy Agency (IAEA) role could be summarized in facilitating cutting-edge developments in the area of seawater desalination using nuclear energy, and establishing a framework for facilitating activities in Member States through information exchange and provision of technical assistance. (author)

  6. Environmental impact assessment of nuclear desalination

    International Nuclear Information System (INIS)

    2010-03-01

    Nuclear desalination is gaining interest among the IAEA Member States, as indicated by the planned projects, and it is expected that the number of nuclear desalination plants will increase in the near future. The IAEA has already provided its Member States with reports and documents that disseminate information regarding the technical and economic feasibility of nuclear desalination. With the rising environmental awareness, in the scope of IAEA's activities on seawater desalination using nuclear power, a need was identified for a report that would provide a generic assessment of the environmental issues in nuclear desalination. In order to offer an overview of specific environmental impacts which are to be expected, their probable magnitude, and recommended mitigation measures, this publication encompasses information provided by the IAEA Member States as well as other specialized sources. It is intended for decision makers and experts dealing with environmental, desalination and water management issues, offering insight into the environmental aspects that are essential in planning and developing nuclear desalination

  7. Nuclear energy and water desalination

    International Nuclear Information System (INIS)

    Leprince-Ringuet, L.

    1976-01-01

    A short state-of-the-art survey is given of desalination methods, the involvement of nuclear power reactors in some desalination process, the cost of certain methods, and quantities produced and required in different parts of the world

  8. Desalination and nuclear energy

    International Nuclear Information System (INIS)

    Romeijn, A.A.

    1992-01-01

    The techniques for fresh water production from seawater have matured and capacities have increased considerably over the past decades. It is feasible to combine seawater desalination with the generation of electricity since power stations can provide energy and low grade heat during off peak periods for the purpose of fresh water production. A dual purpose installation, combining a seawater desalination facility with a light water reactor power generation station promises interesting possibilities. The case in South Africa, where nuclear power stations are most economically sited far from the inland coal fields, is discussed. 1 ill

  9. Use of nuclear reactors for seawater desalination

    International Nuclear Information System (INIS)

    1990-09-01

    The last International Atomic Energy Agency (IAEA) status report on desalination, including nuclear desalination, was issued nearly 2 decades ago. The impending water crisis in many parts of the world, and especially in the Middle East, makes it appropriate to provide an updated report as a basis for consideration of future activities. This report provides a state-of-the-art review of desalination and pertinent nuclear reactor technology. Information is included on fresh water needs and costs, environmental risks associated with alternatives for water production, and data regarding the technical and economic characteristics of immediately available desalination systems, as well as compatible nuclear technology. 68 refs, 60 figs, 11 tabs

  10. Nuclear Desalination Newsletter, No. 3, September 2011

    International Nuclear Information System (INIS)

    2011-09-01

    with updated and expanded information. The IAEA's activities on seawater desalination using nuclear energy have been conducted within the framework of the Technical Working Group on Nuclear Desalination (TWG-ND) in which countries are represented that have ongoing development programmes and are interested in the deployment of nuclear desalination. This technical working group will also continue to provide advice and guidance for implementation of the IAEA's programmatic activities in the area of nuclear desalination. This issue of the TWG-ND newsletter highlights some current activities of the IAEA and its Member States.

  11. Nuclear power for desalination

    International Nuclear Information System (INIS)

    Patil, Siddhanth; Lanjekar, Sanket; Jagdale, Bhushan; Srivastava, V.K.

    2015-01-01

    Water is one of the most important assets to mankind and without which the human race would cease to exist. Water is required by us right from domestic to industrial levels. As notified by the 'American Nuclear Society' and 'World Nuclear Association' about 1/5 th of the world population does not access to portable water especially in the Asian and African subcontinent. The situation is becoming adverse day by day due to rise in population and industrialization. The need of alternative water resource is thus becoming vital. About 97.5% of Earth is covered by oceans. Desalination of saline water to generate potable water is thus an important topic of research. Currently about 12,500 desalination plants are operating worldwide with a capacity of about 35 million m 3 /day using mainly fossil fuels for generation of large amount of energy required for processing water. These thermal power station release large amount of carbon dioxide and other green house gases. Nuclear reactors are capable of delivering energy to the high energy-intensive processes without any environmental concerns for climate change etc., giving a vision to sustainable growth of desalination process. These projects are currently employed in Kazakhstan, India, Japan, and Pakistan and are coupled to the nuclear reactor for generating electricity and potable water as well. The current climatic scenario favors the need for expanding dual purpose nuclear power plants producing energy and water at the same location. (author)

  12. Desalination of Seawater using Nuclear Energy

    International Nuclear Information System (INIS)

    Misra, B.M.

    2006-01-01

    Desalination technologies have been well established since the mid 20th century and are widely deployed in many parts of the world having acute water scarcity problems. The energy for these plants is generally supplied in the form of either steam or electricity largely using fossil fuels. The intensive fuels of fossil fuels raises environmental concerns especially in relation to greenhouse gas emissions. The depleting sources and future price uncertainty of the fossil fuels and their better use for other vital industrial applications is also a factor to be considered for sustainability. The desalination of sea water using nuclear energy is a feasible option to meet the growing demand of potable water. Over 150 reactor-years of operating experience of a nuclear desalination have been accumulated worldwide. Several demonstration programs of nuclear desalination are also in progress to confirm its technical and economic viability under country specific conditions, with the technical coordination or support of IAEA. Recent techno-economic feasibility studies carried out by some Member States indicate the competitiveness of nuclear desalination. This paper presents the salient activities on nuclear desalination in the Agency and in the interested Member states. Economic research on further water cost reduction includes investigation on utilization of waste heat from different reactor types for thermal desalination pre-heat reverse osmosis and hybrid desalination systems. The main challenge for the large scale deployment of nuclear seawater desalination is the lack of infrastructure and the resources in the countries affected by water scarcity problems which are however, interested in adoption of nuclear desalination for the sustainable water resources. Socio-economic and environmental aspects and the public perception are also important factors requiring greater information exchange. (author)

  13. World interest in nuclear desalination

    International Nuclear Information System (INIS)

    1969-01-01

    Nuclear power will be used in a desalination plant for the first time in a USSR plant now nearing completion. Studies are in progress to expand the concept of linking the power to chemical industries. These and other developing ideas were subjects of keen discussion by world experts at an Agency conference on nuclear desalination in Madrid. (author)

  14. Nuclear desalination newsletter, No. 1, September 2009

    International Nuclear Information System (INIS)

    2009-09-01

    This issue discusses the recent IAEA and Member States activities in the field of desalination. Reports about these activities in Algeria, China, Germany, India, Cuba, France, Indonesia, Kuwait, Libya, South Africa, Morocco, Saudi Arabia, Spain and USA are given. The new version of the DEEP software - DEEP 3.2 - is presented. A newly developed toolkit on nuclear desalination is also presented. The ongoing IAEA activities include organization and participation in meetings on nuclear desalination, or related topics, like Technical Meeting on Non Electric Applications, held in Daejeon, Rep. of Korea, 3-6 March 2009; Management of Water Use and Consumption in Water Cooled Nuclear Power; Joint ICTP/IAEA Training Workshop on Technology and Performance of Desalination Systems; Advances in Nuclear Power for Process Heat Applications. The plans for future activities and meetings are also presented

  15. Design concepts of nuclear desalination plants

    International Nuclear Information System (INIS)

    2002-11-01

    Interest in using nuclear energy for producing potable water has been growing worldwide in the past decade. This has been motivated by a variety of factors, including economic competitiveness of nuclear energy, the growing need for worldwide energy supply diversification, the need to conserve limited supplies of fossil fuels, protecting the environment from greenhouse gas emissions, and potentially advantageous spin-off effects of nuclear technology for industrial development. Various studies, and at least one demonstration project, have been considered by Member States with the aim of assessing the feasibility of using nuclear energy for desalination applications under specific conditions. In order to facilitate information exchange on the subject area, the IAEA has been active for a number of years in compiling related technical publications. In 1999, an inter regional technical co-operation project on Integrated Nuclear Power and desalination System Design was launched to facilitate international collaboration for the joint development by technology holders and potential end users of an integrated nuclear desalination system. This publication presents material on the current status of nuclear desalination activities and preliminary design concepts of nuclear desalination plants, as made available to the IAEA by various Member States. It is aimed at planners, designers and potential end-users in those Member States interested in further assessment of nuclear desalination. Interested readers are also referred to two related and recent IAEA publications, which contain useful information in this area: Introduction of Nuclear Desalination: A Guidebook, Technical Report Series No. 400 (2000) and Safety Aspects of Nuclear Plants Coupled with Seawater Desalination Units, IAEA-TECDOC-1235 (2001)

  16. Advances in nuclear desalination

    International Nuclear Information System (INIS)

    Misra, B.M.

    2003-01-01

    The Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam aims to demonstrate the safe and economic production of good quality water by desalination of seawater comprising 4,500 m 3 /d Multi-Stage Flash (MSF) and 1,800 m 3 /d Reverse Osmosis (RO) plant. The design of the hybrid MSF-RO plant to be set up at an existing nuclear power station is presented. The MSF plant based on long tube design requires less energy. The effect on performance of the MSF plant due to higher seawater intake temperature is marginal. The preheat RO system part of the hybrid plant uses reject cooling seawater from the MSF plant. This allows lower pressure operation, resulting in energy saving. The two qualities of water produced are usable for the power station as well as for drinking purposes with appropriate blending. The post treatment is also simplified due to blending of the products from MSF and RO plants. The hybrid plant has a number of advantages: part of high purity desalted water produced from the MSF plant will be used for the makeup demineralised water requirement (after necessary polishing) for the power station; blending of the product water from RO and MSF plants would provide requisite quality drinking water; and the RO plant will continue to be operated to provide water for drinking purposes during the shut down of the power station. Commissioning of the RO section is expected in 2002 and that of the MSF section in 2003. Useful design data are expected from the plant on the coupling of small and medium size reactors (SMR) based on PHWR. This will enable us to design a large size commercial plant up to 50,000 m 3 /d capacity. India will share the O and M experience of NDDP to member states of the International Atomic Energy Agency (IAEA) when the plant is commissioned. The development work for producing good quality water for power station from high salinity water utilizing low grade waste heat is presented. About 40 and 100 MWth low temperature waste heat is

  17. Nuclear Desalination Demonstration Project (NDDP) in India

    International Nuclear Information System (INIS)

    Tewari, P.K.; Misra, B.M.

    2001-01-01

    In order to gainfully employ the years of experience and expertise in various aspects of desalination activity, BARC (India) has undertaken installation of a hybrid nuclear desalination plant coupled to 170 MW(e) PHWR station at Kalpakkam, Chennai in the Southeast coast of India. The integrated system, called the Nuclear Desalination Demonstration Project (NDDP), will thus meet the dual needs of process water for nuclear power plant and drinking water for the neighbouring people. NDDP aims for demonstrating the safe and economic production of good quality water by nuclear desalination of seawater. It comprises a 4500 m 3 /d Multistage Flash (MSF) and a 1800 m 3 /d Reverse Osmosis (RO) plant. MSF section uses low pressure steam from Madras Atomic Power Station (MAPS), Kalpakkam. The objectives of the NDDP (Kalpakkam) are as follows: to establish the indigenous capability for the design, manufacture, installation and operation of nuclear desalination plants; to generate necessary design inputs and optimum process parameters for large scale nuclear desalination plant; to serve as a demonstration project to IAEA welcoming participation from interested member states. The hybrid plant is envisaged to have a number of advantages: a part of high purity desalted water produced from MSF plant will be used for the makeup demineralised water requirement (after necessary polishing) for the power station; blending of the product water from RO and MSF plants would provide requisite quality drinking water; the RO plant will continue to be operated to provide the water for drinking purposes during the shutdown of the power station

  18. Nuclear desalination for the northwest of Mexico

    International Nuclear Information System (INIS)

    Ortega C, R. F.

    2008-01-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic. It is evident that before the high cost of the hydrocarbons and its high environmental impact, the nuclear generation alternative of energy becomes extremely attractive, mainly for desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was revised the state of the art of the nuclear desalination on the world and it is simulated some couplings and operation forms of nuclear reactors and desalination units, from the thermodynamic and economic viewpoint with the purpose of identifying the main peculiarities of this technology. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be couple to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. It is used for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out an economic preliminary evaluation. Was found cost very competitive of 0.038-0.044 US$/kWh for the electric power production and 0.60 to 0.77 US$/m 3 for the drink water produced, without including the water transport cost or the use of carbon certificates. (Author)

  19. Seawater desalination with nuclear power

    International Nuclear Information System (INIS)

    2005-01-01

    Nuclear power helps reduce costs for energy-intensive processes such as seawater desalination. A new generation of innovative small and medium nuclear power plants could co-generate electricity and potable water from seawater, both safely and at competitive prices in today's market. The IAEA provides technical support to Member States facing water shortage problems, on assessing the viability of nuclear power in seawater desalination. The support, usually channelled through national Technical Cooperation (TC) projects, can take several forms, ranging from educational training and technical advice on feasibility studies to design and safety review of demonstration projects. The IAEA offers a software tool (DEEP) that can be used to evaluate the economics of the different desalination and heat source configurations, including nuclear and fossil options

  20. Nuclear power desalinating complex with IRIS reactor plant and Russian distillation desalinating unit

    International Nuclear Information System (INIS)

    Kostin, V. I.; Panov, Yu.K.; Polunichev, V. I.; Fateev, S. A.; Gureeva, L. V.

    2004-01-01

    This paper has been prepared as a result of Russian activities on the development of nuclear power desalinating complex (NPDC) with the IRIS reactor plant (RP). The purpose of the activities was to develop the conceptual design of power desalinating complex (PDC) and to evaluate technical and economical indices, commercial attractiveness and economical efficiency of PDC based on an IRIS RP with distillation desalinating plants. The paper presents the main results of studies as applied to dual-purpose PDC based on IRIS RP with different types of desalinating plants, namely: characteristics of nuclear power desalinating complex based on IRIS reactor plant using Russian distillation desalinating technologies; prospective options of interface circuits of the IRIS RP with desalinating plants; evaluations of NPDC with IRIS RP output based on selected desalinating technologies for water and electric power supplied to the grid; cost of water generated by NPDC for selected interface circuits made by the IAEA DEEP code as well as by the Russian TEO-INVEST code; cost evaluation results for desalinated water of PDC operating on fossil fuel and conditions for competitiveness of the nuclear PDC based on IRIS RP compared with analog desalinating complexes operating on fossil fuel.(author)

  1. The cost of nuclear desalination

    International Nuclear Information System (INIS)

    1966-01-01

    Full text: What would be the cost of fresh water obtained by desalination of sea or brackish water with the help of a nuclear reactor? What methods are being employed for such costing and evaluation? These are basic questions for the increasing number of countries which are considering water desalination for the production of drinking water or for industrial or agricultural purposes. Following the recommendations of a panel of experts convened by the IAEA in Vienna, Austria, in April 1965, the Agency is now preparing a report on the desalination methods used or developed in various countries. Another panel met in Vienna in April of the current year, to help the Agency with the final draft of this report which is due to be published this autumn. The panel, 20 experts from 7 countries, was chaired consecutively by Mr. N. Carrillo (Mexico) and Mr. V.N. Meckoni (India). (author)

  2. Canadian nuclear desalination/cogeneration technology development

    International Nuclear Information System (INIS)

    Humphries, J.R.

    1996-01-01

    The goal of the CANDESAL program has been to develop innovative applications of existing technologies that would offer an energy efficient, cost effective mechanism for the production of potable water and electricity. Large scale seawater desalination will be an important element in the solution of the global water shortage problem. For nuclear desalination to capture a significant share of this growing market, it must be economically competitive, as well as offer other advantages over more traditional fossil-fueled alternatives. The focus of activities in Canada has been on development of the technology in directions that would result in improved water production efficiency, reduced energy consumption, reduced environmental burden and reduced costs

  3. Costing methods for nuclear desalination

    International Nuclear Information System (INIS)

    1966-01-01

    The question of the methods used for costing desalination plants has been recognized as very important in the economic choice of a plant and its optimization. The fifth meeting of the Panel on the Use of Nuclear Energy in Saline Water Conversion, convened by the International Atomic Energy Agency in April 1965, noted this fact and recommended the preparation of a report on suitable methods for costing and evaluating nuclear desalination schemes. The Agency has therefore prepared this document, which was reviewed by an international panel of experts that met in Vienna from 18 to 22 April, 1966. The report contains a review of the underlying principles for costing desalination plants and of the various methods that have been proposed for allocating costs in dual-purpose plants. The effect of the different allocation methods on the water and power costs is shown at the end of the report. No attempt is made to recommend any particular method, but the possible limitations of each are indicated. It is hoped that this report will help those involved in the various phases of desalination projects

  4. Nuclear's potential role in desalination

    International Nuclear Information System (INIS)

    Kupitz, J.

    1992-01-01

    Motivated by the growing need for fresh water in developing countries, the International Atomic Energy Agency (IAEA) has promoted a study of the technical and economic viability of using nuclear energy for producing fresh water by desalination of seawater. The outcome of the study is summarized. The most promising desalination processes for large scale water production are outlined and possible energy sources considered. The main incentives for using nuclear energy rather than fossil fuelled plants include: overall energy supply diversification; conservation of limited fossil fuel resources; promotion of technological development; and in particular, environmental protection through the reduction of emissions causing climate change and acid rain. An economic analysis showed that the levelized costs of electricity generation by nuclear power are in general in the same range as those for fossil fuel. Competitiveness depends on the unit size of the plant and interest rates. (UK)

  5. Status and prospects of nuclear desalination

    International Nuclear Information System (INIS)

    Kupitz, J.; Konishi, T.

    2000-01-01

    While availability of potable water is an important prerequisite for socio-economic development, about 1/3 of the world's population is suffering from inadequate potable water supplies. Seawater desalination with nuclear energy could help to cope with the fresh water shortages and several countries are investigating nuclear desalination. Status and future prospects of nuclear desalination and the role of the IAEA in this area are discussed in this paper. (author)

  6. The nuclear energy in the seawater desalination

    International Nuclear Information System (INIS)

    Moreno A, J.; Flores E, R.M.

    2004-01-01

    In general, the hydric resources of diverse regions of the world are insufficient for to satisfy the necessities of their inhabitants. Among the different technologies that are applied for the desalination of seawater are the distillation processes, the use of membranes and in particular recently in development the use of the nuclear energy (Nuclear Desalination; System to produce drinkable water starting from seawater in a complex integrated in that as much the nuclear reactor as the desalination system are in a common location, the facilities and pertinent services are shared, and the nuclear reactor produces the energy that is used for the desalination process). (Author)

  7. Status of nuclear desalination in IAEA member states

    International Nuclear Information System (INIS)

    2007-01-01

    Some of the IAEA Member States have active nuclear desalination programmes and, during the last few years, substantial overall progress has been made in this field. As part of the ongoing activities within the IAEA's nuclear power programme, it was thus decided to prepare a status report, which would briefly describe the recent nuclear seawater desalination related developments and relevant IAEA activities. This status report briefly covers salient aspects of the new generation reactors and a few innovative reactors being considered for desalination and other non-electrical applications, the recent advances in the commonly employed desalination processes and their coupling to nuclear reactors. A summary of techno-economic feasibility studies carried out in interested Member States has been presented and the potable water cost reduction strategies from nuclear desalination plants have been discussed. The socio-economic and environmental benefits of nuclear power driven desalination plants have been elaborated. It is expected that the concise information provided in this report would be useful to the decision makers in the Member States and would incite them to consider or to accelerate the deployment of nuclear desalination projects in their respective countries

  8. Nuclear floating power desalination complexes

    International Nuclear Information System (INIS)

    Panov, Y.K.; Polunichev, V.I.; Zverev, K.V.

    1998-01-01

    Russia is a single country in the world which possesses a powerful ice-breaker transport fleet that allows a solution of important social-economic tasks of the country's northern regions by maintaining a year-round navigation along the Arctic sea route. A total operating record of the marine nuclear reactors up until till now exceeds 150 reactor-years, with their main equipment operating life reacting 120 thousand hours. Design and constructional progresses have been made continuously during forty years of nuclear-powered ships construction in Russia. Well proven technology of all components experienced in the marine nuclear reactors give grounds to recommend marine NSSSs of KLT-40 type as energy sources for the heat and power co-generation plants and the sea water desalination complexes, particularly as a floating installation. Co-generation stations are considered for deployment in the extreme Northern Region of Russia. Nuclear floating desalination complexes can be used for drinkable water production in the coastal regions of Northern Africa, the Near East, India etc. (author)

  9. Nuclear desalination of sea water. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    1997-01-01

    About 250 participants from 24 Member States and seven international organizations took part in the Symposium. A wide variety of topics related to nuclear desalination were reviewed and discussed. These covered the activities of some organizations and institutes, the experience gained in existing nuclear desalination plants and their facilities, national and bilateral programmes, including research, design and development, forecasts for the future and the challenges that lie ahead. It is hoped that the Proceedings will be of value to technical, financial and regulatory decision makers associated with nuclear desalination

  10. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2003-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy. 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques. 3) the heat normally lost at the heat sink could be used for desalination. And 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  11. Desalination of seawater with nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2001-01-01

    About 40 % of the world population is concerned with water scarcity. This article reviews the different techniques of desalination: distillation (MED and MSF), reverse osmosis (RO), and electrodialysis (ED). The use of nuclear energy rests on several arguments: 1) it is economically efficient compared to fossil energy; 2) nuclear reactors provide heat covering a broad range of temperature, which allows the implementation of all the desalination techniques; 3) the heat normally lost at the heat sink could be used for desalination; and 4) nuclear is respectful of the environment. The feedback experience concerning nuclear desalination is estimated to about 100 reactor-years, it is sufficient to allow the understanding of all the physical and technological processes involved. In Japan, 8 PWR-type reactors are coupled to MED, MSF, and RO desalination techniques, the water produced is used locally mainly for feeding steam generators. (A.C.)

  12. The nuclear desalination project in Morocco

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the seawater desalination demonstration plant in Morocco are to buildup the technical confidence in the utilization of nuclear heating reactor for seawater desalination; to establish a data base for reliable extrapolation of water production costs for a commercial nuclear plant; and to further strengthen the nuclear infrastructure in Morocco. The water production capacity of the demonstration plant would be about 8000 m 3 /d. The objectives of pre-project study are to establish a reliable basis for a decision on a nuclear desalination plant in Morocco, using a small Chinese heating reactor and to train the Morocco experts in reactor technology and licensing aspects

  13. Nuclear Desalination Newsletter, No. 2, September 2010

    International Nuclear Information System (INIS)

    2010-09-01

    Seawater desalination is increasingly becoming a vital option for alleviating severe water shortages around the world, and especially in developing countries. Worldwide seawater desalination capacity is expected to increase beyond the current contracted estimate of about 60 million m3/d. The need for an adequate supply of potable water for growing populations and complex problems is now globally recognized. Desalination using nuclear energy could play a vital role in supplying the much needed potable water for sustainable development and alleviate some of the environment impact of using fossil fuels for desalination. The IAEA programme on nuclear desalination continues to provide support to Member States through various forums of information exchange, technical cooperation projects, and publications. In the last year, the IAEA launched a new coordinated research programme which aims at investigating new technologies for seawater desalination using nuclear energy; updated and released a new version of the IAEA DEEP software; released a newly developed toolkit on nuclear desalination; and organized (jointly with the International Centre for Theoretical Physics ICTP) a training workshop on Technology and Performance of Desalination Systems

  14. Small nuclear reactors for desalination

    International Nuclear Information System (INIS)

    Goldsmith, K.

    1978-01-01

    Small nuclear reactors are considered to have an output of not more than 400MW thermal. Since they can produce steam at much higher conditions than needed by the brine heater of a multi-flash desalination unit, it may be economically advantageous to use small reactors for a dual-purpose installation of appropriate size, producing both electricity and desalted water, rather than for a single-purpose desalination plant only. Different combinations of dual-purpose arrangements are possible depending principally on the ratio of electricity to water output required. The costs of the installation as well as of the products are critically dependent on this ratio. For minimum investment costs, the components of the dual-purpose installation should be of a standardised design based on normal commercial power plant practice. This then imposes some restrictions on the plant arrangement but, on the other hand, it facilitates selection of the components. Depending on the electricity to water ratio to be achieved, the conventional part of the installation - essentially the turbines - will form a combination of back-pressure and condensing machines. Each ratio will probably lead to an optimum combination. In the economic evaluation of this arrangement, a distinction must be made between single-purpose and dual-purpose installations. The relationship between output and unit costs of electricity and water will be different for the two cases, but the relation can be expressed in general terms to provide guidelines for selecting the best dimensions for the plant. (author)

  15. Desalination of seawater with nuclear power reactors in cogeneration

    International Nuclear Information System (INIS)

    Flores E, R.M.

    2004-01-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  16. Nuclear desalination and electricity production for islands

    International Nuclear Information System (INIS)

    Tran Dai Nghiep

    2005-01-01

    Nuclear desalination is an established and commercially proven technology that is now available and has the potential of further improvement. The technology of a small-sized reactor for desalination and electricity production will be an economically viable option and will also be suitable for islands with geographic, climatic, ecological and hydrological specifics. The operating experiences and achieved safety should benefit the early stage of a national nuclear power programme in developing countries. (author)

  17. Sea water desalination using nuclear reactors

    International Nuclear Information System (INIS)

    Nisan, S.

    2003-01-01

    The paper first underlines the water shortage problem today and in the years to come when, around the time horizon 2020, two-thirds of the total world population would be without access to potable water. Desalination of sea-water (and, to a limited extent, that of brackish water) is shown to be an attractive solution. In this context, sea-water desalination by nuclear energy appears to be not only technically feasible and safe but also economically very attractive and a sustainable solution. Thus, compared to conventional fossil energy based sources, desalination costs by nuclear options could be 30 to 60% lower. The nuclear options are therefore expected to satisfy the fundamental water needs and electricity demands of human beings without in any way producing large amounts of greenhouse gases which any desalination strategy, based on the employment of fossil fuels, cannot fail to avoid. (author)

  18. Programme and activities on nuclear desalination in Morocco. Pre-project study on demonstration plant for seawater desalination using nuclear heating reactor in Morocco

    International Nuclear Information System (INIS)

    Righi, M.

    1998-01-01

    The first part of this paper gives the general information on the pre-project study of a demonstration plant for seawater desalination using a heating reactor being assessed jointly by Morocco and China. The progress of the pre-project study is elaborated in the second part. (author)

  19. Thermal coupling system analysis of a nuclear desalination plant

    International Nuclear Information System (INIS)

    Adak, A.K.; Srivastava, V.K.; Tewari, P.K.

    2010-01-01

    When a nuclear reactor is used to supply steam for desalination plant, the method of coupling has a significant technical and economic impact. The exact method of coupling depends upon the type of reactor and type of desalination plant. As a part of Nuclear Desalination Demonstration Project (NDDP), BARC has successfully commissioned a 4500 m 3 /day MSF desalination plant coupled to Madras Atomic Power Station (MAPS) at Kalpakkam. Desalination plant coupled to nuclear power plant of Pressurized Heavy Water Reactor (PHWR) type is a good example of dual-purpose nuclear desalination plant. This paper presents the thermal coupling system analysis of this plant along with technical and safety aspects. (author)

  20. Introduction of nuclear desalination. A guidebook

    International Nuclear Information System (INIS)

    2000-01-01

    Interest in using nuclear energy for producing potable water has been growing worldwide in the past decade. This has been motivated by wide varieties of reasons, inter alia, from economic competitiveness of nuclear energy to energy supply diversification, from conservation of limited fossil fuel resources to environmental protection, and by nuclear technology in industrial development. IAEA feasibility studies, which have been carried out with participation of interested Member States since 1989, have shown that nuclear desalination of seawater is technically and economically viable in many water shortage regions. In view of its perspectives, several Member States have, or are planning to launch, demonstration programmes on nuclear desalination. This guidebook has been prepared for the benefit of such Member States so that the development could be facilitated as well as their resources could be shared among such interested Member States. This guidebook comprises three major parts: Part I - Overview of nuclear desalination, Part II - Special aspects and considerations relevant to the introduction of nuclear desalination, and Part III - Steps to introduce nuclear desalination. In Part I, an overview of relevant technologies and pertinent experience accumulated in the past is presented. The global situation of the freshwater problem is reviewed and incentives for utilizing nuclear energy to contribute to solving the problems are briefly set forth. State-of-the-art relevant technologies and experience with them are summarized. Part II identifies special aspects to be considered in decision making process concerning nuclear desalination. There are technical, safety and environmental and economical aspects as well as national requirements. In Part III necessary steps to be taken once nuclear desalination has been selected are elaborated. Policy issues are discussed, and project planning is summarized. This point also elaborates on project implementation aspects, which

  1. Experience with nuclear desalination in Japan

    International Nuclear Information System (INIS)

    Shiota, Y.

    1996-01-01

    In Japan, the seawater desalination facilities were used mainly for potable water in remote islands and industrial water such as boiler feedwater. In order to produce potable water, distillation processes, Electrical Dialysis (ED) and Reverse Osmosis (RO) were used in the past. The distillation facilities were used to produce boiler feedwater, however, RO facilities are now used for this purpose, such as the nuclear desalination facilities with capacities of 2600 m 3 /d, 2000 m 3 /d and 1000 m 3 /d, in Kansai Electric Power Co., Ltd., Shikoku Electric Power Co., Inc. and Kyuhshu Electric Power Co., Inc., respectively. The RO process is becoming a main stream of desalination because the process has a low energy consumption. 6 tabs

  2. Economic Considerations of Nuclear Desalination in Korea

    International Nuclear Information System (INIS)

    Man-Ki, Lee; Seung-Su, Kim

    2006-01-01

    The objective of this study is to assess the economics of SMART (System-integrated Modular Advanced Reactor) desalination plant in Korea through DEEP (Devaluation Economic Evaluation Program). SMART is mainly designed for the dual purpose of producing water and electricity with the total capacity of 100 MWe which 10 MWe is used for water production and the remains for the electric generation. SMART desalination plant using MED (Multi-Effect Distillation) process is in the stage of the commercial development and its cost information is also being accumulated. In this circumstances, the economic assessment of nuclear desalination by SMART and the effect of water(or electric) supply price to the regional economy is meaningful to the policy maker. This study is focused on the case study analysis about the economics of SMART desalination plant and the meanings of the case study result. This study is composed of two parts. One is prepared to survey the methodology regarding cost allocation between electricity and water in DEEP and the other is for the economic assessment of SMART. The cost allocation methods that have been proposed or used can be classified into two main groups, one is the cost prorating method and the other is the credit method. The cost of an product item in the dual-purpose plant can be determined differently depending on the costing methods adopted. When it comes to applying credit method adopted in this thesis, the production cost of water depends on what kind of the power cost will be chosen in calculating the power credit. This study also analyses the changes of nuclear desalination economics according to the changes of the important factors such as fossil fuel price. I wish that this study can afford to give an insight to the policy maker about SMART desalination plant. (authors)

  3. Desalination demonstration plant using nuclear heat

    International Nuclear Information System (INIS)

    Hanra, M.S.; Misra, B.M.

    1998-01-01

    Most of the desalination plants which are operating throughout the world utilize the energy from thermal power station which has the main disadvantage of polluting the environment due to combustion of fossil fuel and with the inevitable rise in prices of fossil fuel, nuclear driven desalination plants will become more economical. So it is proposed to set up nuclear desalination demonstration plant at the location of Madras Atomic Power Station (MAPS), Kalpakkam. The desalination plant will be of a capacity 6300 m 3 /day and based on both Multi Stage Flash (MSF) and Sea Water Reverse Osmosis (SWRO) processes. The MSF plant with performance ratio of 9 will produce water total dissolved solids (TDS-25 ppm) at a rate of 4500 m 3 /day from seawater of 35000 ppm. A part of this water namely 1000 m 3 /day will be used as Demineralised (DM) water after passing it through a mixed bed polishing unit. The remaining 3500 m 3 /day water will be mixed with 1800 m 3 /day water produced from the SWRO plant of TDS of 400 ppm and the same be supplied to industrial/municipal use. The sea water required for MSF and SWRO plants will be drawn from the intake/outfall system of MAPS which will also supply the required electric power pumping. There will be net 4 MW loss of power of MAPS namely 3 MW for MSF and 1 MW for SWRO desalination plants. The salient features of the project as well as the technical details of the both MSF and SWRO processes and its present status are given in this paper. It also contains comparative cost parameters of water produced by both processes. (author)

  4. Prospects of nuclear desalination in Morocco

    International Nuclear Information System (INIS)

    Tabet, M.

    2005-01-01

    In the last few years, Morocco has faced a continuous series of dry seasons, which has put a great stress on its limited water resources. Hence, for some time now Morocco has been considering desalinating seawater to supply fresh water to some areas. In the early 1980's, due to limited energy resources, Morocco was obliged to consider other alternatives to meet its energy demands. A feasibility study for the introduction of a nuclear power plant into the national electrical grid was launched. Even though the study showed that the commercially proven, large size reactors could not be integrated into the grid due to their limited capacity, the national electrical utility continues to pursue its efforts to introduce nuclear energy into the country. Presently, the feasibility study is being updated and a bid invitation specification is being prepared with the help of the IAEA experts. In response to the increasing need for energy and water, Morocco and some North African countries participated in the IAEA regional project on the feasibility study on using nuclear energy for seawater desalination. Subsequently, Morocco carried out a feasibility study for the construction of a demonstration plant for seawater desalination using a 10 MW Nuclear Heating Reactor with China and IAEA. As part of its interest in nuclear energy, Morocco is setting up the nuclear infrastructure that could help in the implementation of the nuclear power programme. The construction of a nuclear research centre which is to be commissioned in a couple of years, and the establishment of the nuclear safety authority and the radiation protection authority are part of the programme. (author)

  5. Design of nuclear desalination concentrate plant by using zero discharge desalination concept for Bangka Island

    International Nuclear Information System (INIS)

    Erlan Dewita, Siti Alimah

    2015-01-01

    Nuclear desalination is a process to separate salt of seawater by using nuclear energy. Desalination concentrate is a problem in nuclear desalination. Desalination concentrate is sometimes discharged directly into the seawater, therefore it can affects the water quality of beach and rise negative effects on the biota in the vicinity of the output. ZDD (Zero Discharge Desalination) concept can be applied to minimized environment impact. This study is conducted by using PWR type NPP as nuclear heat source and using ZDD concept to process desalination waste. ZDD is a concept for processing of desalination concentrate into salt and chemical products which have economic values. Objectives of this study is to design nuclear desalination concentrate processing plant in Bangka Island. The methodology is literature assessment and calculation with excel programme. The results of this study shows that the main the products are NaCl (pharmaceutical salt) and cakes BaSO4, Mg(OH)2BaCO3 as by products. (author)

  6. Economic competitiveness of seawater desalinated by nuclear and fossil energy

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing; Guo Jilin; Liu Wei

    2001-01-01

    The levelized discounted production water cost method and the new desalination economic evaluation program (DEEP1.1) were used to compare the economics of desalination using nuclear or fossil energy. The results indicate that nuclear desalination is more economic than fossil desalination with reverse osmosis (RO), multi-effect distillation (MED) and multi-stage flash (MSF). The desalination water cost varies depending on the desalination technology and the water plant size from 0.52-1.98 USD·m -3 with the lowest water price by RO and the highest by MSF. The sensitivity factors for the economic competitiveness increases in order of the discounted rate, desalination plant scale, fossil fuel price, specific power plant investment, seawater temperature and total dissolve solid (TDS). The highest water cost is about 22.6% more than the base case

  7. Nuclear desalination for the northwest of Mexico; Desalacion nuclear para el noroeste de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R. F. [Instituto de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)

    2008-07-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic. It is evident that before the high cost of the hydrocarbons and its high environmental impact, the nuclear generation alternative of energy becomes extremely attractive, mainly for desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was revised the state of the art of the nuclear desalination on the world and it is simulated some couplings and operation forms of nuclear reactors and desalination units, from the thermodynamic and economic viewpoint with the purpose of identifying the main peculiarities of this technology. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be couple to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. It is used for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out an economic preliminary evaluation. Was found cost very competitive of 0.038-0.044 US$/kWh for the electric power production and 0.60 to 0.77 US$/m{sup 3} for the drink water produced, without including the water transport cost or the use of carbon certificates. (Author)

  8. Implication of dual-purpose nuclear desalination plants

    International Nuclear Information System (INIS)

    Kutbi, I.I.

    1983-01-01

    Available dual purpose nuclear desalination schemes are reviewed. Three specific issues namely, impact of availability and reliability of the desalination stage of the plant, integration of the desalination and power production stages and new safety concerns of dual system, relating to desalination schemes are discussed. Results of operational and reliability studies of nuclear power stations, reverse osmosis and multistage flash distillation desalination plants are considered. Operational aspects of nuclear-multistage flash distillation, nuclear-reverse osmosis and nuclear-multistage flash distillation-reverse osmosis are compared. Concludes that the combined nuclear-multistage flash distillation-reverse osmosis plant arrangement permits very large production capacity, high availability, improvement of plant reliability and proovision of savings on the cost of water and power produced. 23 Ref

  9. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  10. Alternatives of seawater desalination using nuclear power

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Vargas, Samuel; Valle, Edmundo del; Ramirez, Ramon

    2012-01-01

    Highlights: ► Cogeneration is economically assessed using two different size nuclear reactors. ► Mexican northwest region was the case for economical comparisons of cogeneration. ► Medium size nuclear reactors provide more flexibility to meet coupling demands. ► Although there is a higher overnight cost for medium size reactors, they are cost competitive. ► Cogeneration alternative using medium size reactors is less expensive. - Abstract: Nuclear power is a clean energy alternative that is already used to provide water and electricity and it helps to reduce concern of climate change. The new deployments of nuclear power are based on the Generation III reactors which come in sizes from 1100 to 1700 MWe, in addition there is a process in the very close future to provide a new generation of small and medium size reactors, less than 600 MWe. Thus, cogeneration of electricity and potable water from desalination can be based on big or small/medium reactors. This paper performs an economical comparison of nuclear desalination using two PWR (pressurized water reactor) reactor type, a big one, AP1000, against a medium reactor, IRIS. It assesses the electricity and potable water needs for the northwest region of Mexico and presents alternatives of supply based on cogeneration, using the three different single potable water processes, reverse osmosis (RO), multi-stage flash distillation (MSF) and multi-effect distillation (MED), and two hybrid methods for different potable water quality based on the amount of dissolved solids in the potable water. Investment results for the specific need are presented for all the alternatives assessed along with advantages and disadvantages.

  11. The application of nuclear energy for seawater desalination. The Candesal nuclear desalination system

    International Nuclear Information System (INIS)

    Humphries, J.R.; Sweeney, C.B.

    1997-01-01

    As the global consumption of water increases with growing population and rising levels of industrialization, major new sources of potable water production must be developed. Desalination of seawater is an energy intensive process which brings with it a demand for additional energy generation capacity. The Candesal nuclear desalination/cogeneration system has been developed to address both requirements, providing improved water production efficiency and lower costs. To meet large scale water production requirements the Candesal system integrates a nuclear energy source, such as the CANDU reactor, with a reverse osmosis (ro) desalination facility, capturing the waste heat from the electrical generation process to improve the efficiency of the ro process. By also using advanced feed water pre-treatment and sophisticated system design integration and optimization techniques, the net results is a substantial improvement in energy efficiency, economics, and environmental impact. The design is also applicable to a variety of conventional energy sources, and applies over the full range of desalination plant sizes. Since potable water production is based on membrane technology, brackish water and tertiary effluent from waste water treatment can also be used as feed streams to the system. Also considered to be a fundamental component of the Candesal philosophy is a technology transfer program aimed at establishing a complete local capability for the design, fabrication, operation and maintenance of these facilities. Through a well defined and logical technology transfer program, the necessary technologies are integrated into a nation's industrial capability and infrastructure, thus preparing local industry for the long term goal of manufacturing large scale, economical and environmentally benign desalination facilities. (author). 8 refs, 3 figs

  12. Safety aspects of nuclear plants coupled with seawater desalination units

    International Nuclear Information System (INIS)

    2001-08-01

    The purpose of this publication is to address the safety and licensing aspects of nuclear power plants for which a significant portion of the heat energy produced by the reactor is intended for use in heat utilization applications. Although intended to cover the broad spectrum of nuclear heat applications, the focus of the discussion will be the desalination of sea water using nuclear power plants as the energy source for the desalination process

  13. Feasibility study of a dedicate nuclear desalination system: Low-pressure inherent heat sink nuclear desalination plant (LIND)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik; No, Hee Cheon; Jo, Yu Gwan; Wivisono, Andhika Feri; Park, Byung Ha; Choi, Jin Young; Lee, Jeong Ik; Jeong, Yong Hoon; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-04-15

    In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MW{sub th} and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  14. Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND

    Directory of Open Access Journals (Sweden)

    Ho Sik Kim

    2015-04-01

    Full Text Available In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal–hydraulic and neutronic design requirements. In a thermal–hydraulic analysis using an analytical method based on the Wooton–Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MWth and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  15. New Technologies for Seawater Desalination Using Nuclear Energy

    International Nuclear Information System (INIS)

    2015-01-01

    As seawater desalination technologies are rapidly evolving and more States are opting for dual purpose integrated power plants (i.e. cogeneration), the need for advanced technologies suitable for coupling to nuclear power plants and leading to more efficient and economic nuclear desalination systems is obvious. The Coordinated Research Programme (CRP) New Technologies for Seawater Desalination using Nuclear Energy was organized in the framework of the Technical Working Group on Nuclear Desalination (TWG-ND). The TWGND was established in 2008 with the purpose of advising the IAEA Deputy Director General and promoting the exchange of technical information on national programmes in the field of seawater desalination using nuclear energy. This CRP project was conducted within the Nuclear Power Technology Development Section of the IAEA. It was launched in 2009 and completed by 2011, with research proposals received from nine Member States: Algeria, Egypt, France, India, Indonesia, Pakistan, the Syrian Arab Republic, the United Kingdom and the United States of America. The project aimed to review innovative technologies for seawater desalination which could be coupled to main types of existing nuclear power plant. Such coupling is expected to help making nuclear desalination safer and more economical, and hence more attractive for newcomer States interested in nuclear desalination. The project also aimed to collect ideas and suggestions necessary to update the IAEA desalination economic evaluation program (DEEP) software to become more robust and versatile. The specific objectives of the project were the introduction of innovative technologies and their economic viability, which could help make nuclear desalination a globally viable option for the safe and sustainable production of fresh water. The technologies under scrutiny in this CRP involve the low temperature horizontal tube multi-effect distillation, heat recovery systems using heat pipe based heat exchangers

  16. Technical and economic evaluation of nuclear seawater desalination systems

    International Nuclear Information System (INIS)

    Grechko, A.G.; Romenkov, A.A.; Shishkin, V.A.

    1998-01-01

    The IAEA Cogeneration/Desalination Cost Model spreadsheets were used for the economic evaluation of sea water desalination plants coupled with small and medium size nuclear reactors developed in RDIPE. The results of calculations have shown that the cost of potable water is equal to or even below 1$/m 3 . This is very close to similar indices of the best fossil driven desalination plants. For remote and difficult-to-access regions, where the transportation share contributes significantly to the product water cost at fossil plants, the nuclear power sources of these reactor types are cost-efficient and can successfully compete with fossil power sources. (author)

  17. Tritium migration in nuclear desalination plants

    International Nuclear Information System (INIS)

    Muralev, E.D.

    2003-01-01

    Tritium transport, as one of important items of radiation safety assessment, should be taken into consideration before construction of a Nuclear Desalination Plant (NDP). The influence of tritium internal exposition to the human body is very dangerous because of 3 H associations with water molecules. The problem of tritium in nuclear engineering is connected to its high penetration ability (through fuel element cans and other construction materials of a reactor), with the difficulty of extracting tritium from process liquids and gases. Sources of tritium generation in NDP are: nuclear fuel, boron in control rods, and deuterium in heat carrier. Tritium passes easily through the walls of a reactor vessel, intermediate heat exchangers, steam generators and other technological equipment, through the walls of heat carrier pipelines. The release of tritium and its transport could be assessed, using mathematical models, based on the assumption that steady state equilibrium has been attained between the sources of tritium, produced water and release to the environment. Analysis of the model shows the tritium concentration dependence in potable water on design features of NDP. The calculations obtained and analysis results for NDP with BN-350 reactor give good convergence. According to the available data, tritium concentration in potable water is less than the statutory maximum concentration limit. The design of a NDP requires elaboration of technical solutions, capable of minimising the release of tritium to potable water produced. (author)

  18. Comparative study of economic competitive for nuclear seawater desalination

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing

    2001-01-01

    The method of levelized discounted production water cost and the new desalination economic evaluation program (DEEP1.1) are used. Many cases of seawater desalination by nuclear energy or fossil energy combined with reverse osmosis (RO), Multi-effect distillation (MED) or multi-stage flash (MSF) technology in south-east Asia is performed and their economic competitive is analyzed. Their results indicate, the nuclear desalination plants have stronger economic competitive comparing to the fossil in the RO, MED and MSF technology. The desalination water cost is very changeable depending on the difference of desalination technology and water plant size. Its range is 0.56 dollar · m -3 - 1.89 dollar · m -3 , the lowest desalination water cost is product by RO and the highest is by MSF. The sensitive factors of the economic competitive are orderly the discounted rate, desalination plant size, seawater temperature and total dissolved solids (TDS), fossil fuel price and specific power plant investment. The highest rate of water cost is about 19.3% comparing to base case

  19. Status and prospect of R and D aimed at application of nuclear reactors for seawater desalination in Russia

    International Nuclear Information System (INIS)

    Zverev, K.V.; Baranaev, Y.D.; Toshinsky, G.I.; Polunichev, V.I.; Romenkov, A.A.; Shamanin, V.G.; Podberezny, V.L.

    2004-01-01

    In the document 'Strategy of Nuclear Power Development in Russia for the First Half of XXI Century', approved by the Government of the RF, seawater desalination is considered as a prospective area of application of the small-sized nuclear power plants (SNPP). Taking into account vast water resources of Russia evenly distributed over the territory of the country, seawater desalination is not a vital domestic demand for this country. Therefore, the R and D activities of the RF MINATOM institutions on nuclear desalination are aimed mainly at the assessment of implementation of the SNPP based nuclear desalination system in the developing countries suffering from the lack of fresh water supply. Within these activities, analysis of engineering and economical problems related to optimisation of the use of different type nuclear reactors as a source of electricity and heat for seawater desalination plants has been performed. The objective of the work is to develop scientific and technological basis for comprehensive design studies required for practical implementation of the projects. An important factor stimulating the R and D on nuclear desalination is rather active involvement of the MINATOM's institutions in the various activities in this field organised and coordinated by the IAEA. Since 1998, SRC RF-IPPE, OKBM, ENTEK, MALAYA ENERGETIKA, JSC, and VNIPI PROMTECHNOLOGIYI etc. have been participants of the IAEA Coordinated Research Program (CRP) on 'Optimization of Coupling of Nuclear Reactor and Desalination System'. This work is being carried out within the framework of special Russian Project: 'Use of Small Size Russian Nuclear Reactors as Power Source for Nuclear Desalination Complexes: Optimization of Coupling Schemes, Design and Economical Characteristics'. The small nuclear reactors KLT-40C, NIKA and RUTA are considered in the study. In 2002, IAEA initiates new CRP 'Economic Research on, and Assessment of, selected Nuclear Desalination Projects and Case Studies

  20. Thermodynamic advantages of nuclear desalination through reverse osmosis

    International Nuclear Information System (INIS)

    Bhattacharyya, K.P.; Prabhakar, S.; Tewari, P.K.

    2009-01-01

    Seawater Reverse Osmosis (SWRO) integrated with nuclear power station has significant thermodynamic advantages since it can utilize the waste heat available in the condenser cooling circuit and electrical power from the nuclear power plant with provision for using grid power in case of exigencies and shared infrastructure. Coupling of RO plants to the reactor is simple and straightforward and power loss due to RO unit, resulting in the loss of load, does not impact reactor turbine. Product water contamination probability is also very less since it has in-built mechanical barrier. Preheat reverse osmosis desalination has many thermodynamic advantages and studies have indicated improved performance characteristics thereby leading to savings in operational cost. The significant advantages include the operational flexibility of the desalination systems even while power plant is non-operational and non-requirement of safety systems for resource utilization. This paper brings out a comprehensive assessment of reverse osmosis process as a stand-alone nuclear desalination system. (author)

  1. Nuclear energy for seawater desalination - options in future

    International Nuclear Information System (INIS)

    Yadav, M.K.; Murugan, V.; Balasubramaniyan, C.; Nagaraj, R.; Dangore, Y.

    2010-01-01

    Full text: With ever increasing water scarcity, many alternatives are being tried to supplement the existing water resources. There are regions where water is scarce and population is growing and is at the mercy of inadequate supplies. Seawater constitutes a practically unlimited source of saline water. When desalted, it can augment the existing potable water resources for the people in nearby area and also meet the increasing demand. BARC has been engaged in the field of desalination and developed expertise in both thermal and membrane technologies. It has setup 6300 M 3 /D Nuclear Desalination Demonstration Project (NDDP) at Kalpakkam, where both membrane and thermal technologies have been used for sea water desalination. Desalination process needs energy and nuclear energy is strong option in view of limited fossil fuels and environmental concerns. Multi Stage Flash (MSF) plant based on thermal technology has been coupled to MAPS Reactors and Sea Water Reverse Osmosis (SWRO) plant is based on membrane technology. This paper discusses various aspects of coupling of desalination plant with nuclear reactors and also discusses salient features of hybridization of thermal and membrane technologies

  2. Small and medium size nuclear power reactors for desalination

    International Nuclear Information System (INIS)

    Raisic, N.; Goodman, E.I.

    1976-01-01

    Taking the water needs, e.g. of some of the world's major towns, as a basis, it is investigated whether nuclear energy can be utilized economically for desalination. When a certain distance for the transport of water from other regions is exceeded it is quite possible that nuclear desalination becomes economical. Taking the example of Honkong, it is shown that this method can find application for other reasons, too, e.g. if the need exceeds the possibilities there are of meeting this need from natural sources. (UA) [de

  3. Nuclear desalination: harnessing the seas for development of coastal areas of Pakistan

    International Nuclear Information System (INIS)

    Ayub, M.S.; Butt, W.M.

    2005-01-01

    Pakistan has a population of 140 million with more than 30% of the population living in cities and towns. Karachi, the major port city of the country, is the most densely populated with a population crossing the 11 million mark. The city receives 435 MGD of drinking water from the River Indus and other sources. However, the net demand for the year 2000 was 594 MGD thus there is a gap of 159 MGD in demand and supply. Statistics show that the water demand in Karachi is increasing at the rate of 100 MGD every five years. The coastal belt of the country extends to 1046 sq. km. Of this, 930 km is from the Karachi to Gwader region in the province of Baluchistan. Most of the coastal areas lie outside the monsoon system of weather and therefore the climate is extremely dry. The annual rainfall in this belt is about 15 cms. Therefore, fresh water availability is a major factor for development of the coastal belt of Pakistan. In the wake of the looming water crisis it is becoming increasingly clear that all available and appropriate technologies, including nuclear and related technologies, have to be used for the sustainable development and management of freshwater resources in Pakistan. One particular approach is the desalination of seawater, and countries are increasing their capacity to harness the seas for tapping fresh water. The prospects of using nuclear energy for seawater desalination on a large scale are attractive since desalination is an energy intensive process. Pakistan Atomic Energy Commission (PAEC) is planning to actively participate in the activities of IAEA in the field of nuclear desalination by offering one of its nuclear power plants for coupling a demonstration nuclear desalination plant. Karachi Nuclear Power Plant (KANUPP), which is the country's first nuclear plant has been successfully operating for the last 30 years. This plant is proposed to be used as a potential site for installation of a demonstration nuclear desalination plant. KANUPP is

  4. Options identification programme for demonstration of nuclear desalination

    International Nuclear Information System (INIS)

    1996-08-01

    This report responds to Resolutions GC(XXXVIII)/RES/7 in 1994 and GC(XXXIX)/RES/15 in 1995 at the IAEA General Conference, which requested the Director General to initiate a two year Options Identification Programme to identify and define practical options for demonstration of nuclear desalination and to submit a report on this programme to the General Conference of 1996. This programme was implemented by a Working Group, consisting of experts from interested Member States and IAEA staff, through a combination of periodic meetings and individual work assignments. It resulted in identification of a few practical options, based on reactor and desalination technologies which are themselves readily available without further development being required at the time of demonstration. The report thus provides a perspective how to proceed with demonstration of nuclear desalination, which is expected to help solving the potable water supply problem in the next century. Refs, figs, tabs

  5. Prospect on desalination by using nuclear energy in Indonesia

    International Nuclear Information System (INIS)

    Sunaryo, G.R.; Rusli, A.; Nurdin, M.; Titiresmi; Prawiranata, H.; Theresia

    1997-01-01

    Due to the population growth and its effect on the environment and hydrological cycle make the need of water in drinking water, hydro power, household water etc., increase. Not only in eastern parts of Indonesia with low wetness level compare with other part, but also in many provinces with high population, the lack of water becomes a serious problem. Based on this, a suitable method of desalination plant that converts sea water into fresh water as a method with a good promising will be described. A probable future method of coupling a small nuclear power with desalination plants in Indonesia also will be explained. (author). 11 refs, 4 figs, 1 tab

  6. Optimum design of cogeneration system for nuclear seawater desalination - 15272

    International Nuclear Information System (INIS)

    Jung, Y.H.; Jeong, Y.H.

    2015-01-01

    A nuclear desalination process, which uses the energy released by nuclear fission, has less environmental impact and is generally cost-competitive with a fossil-fuel desalination process. A reference cogeneration system focused on in this study is the APR-1400 coupled with a MED (multi-effect distillation) process using the thermal vapor compression (TVC) technology. The thermal condition of the heat source is the most crucial factor that determines the desalination performance, i.e. energy consumption or freshwater production, of the MED-TVC process. The MED-TVC process operating at a higher motive steam pressure clearly shows a higher desalination performance. However, this increased performance does not necessarily translate to an advantage over processes operated at lower motive steam pressures. For instance, a higher motive steam pressure will increase the heat cost resulting from larger electricity generation loss, and thus may make this process unfavorable from an economic point of view. Therefore, there exists an optimum design point in the coupling configuration that makes the nuclear cogeneration system the most economical. This study is mainly aimed at investigating this optimum coupling design point of the reference nuclear cogeneration system using corresponding analysis tools. The following tools are used: MEE developed by the MEDRC for desalination performance analysis of the MED-TVC process, DE-TOP and DEEP developed by the IAEA for modeling of coupling configuration and economic evaluation of the nuclear cogeneration system, respectively. The results indicate that steam extraction from the MS exhaust and condensate return to HP FWHTR 5 is the most economical coupling design

  7. Safety aspects of the desalination of sea water using nuclear energy

    International Nuclear Information System (INIS)

    Carnino, A.; Gasparini, N.

    2001-01-01

    The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. Some specific characteristics of desalination plants such as siting and coupling require particular consideration from a safety point of view, and further safety studies will be needed when the type and size of the reactor are determined. The current safety approach, based on the defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process. The protection of product water against radioactive contamination must be ensured. An effective infrastructure, including appropriate training, a legal framework and regulatory regime, is a prerequisite to considering use of nuclear power for desalination plants, also in those countries with limited industrial infrastructures and little experience in nuclear technology or safety. (author)

  8. Summary of experience and practice in Japanese nuclear desalination plants at the interface between nuclear and desalination systems

    International Nuclear Information System (INIS)

    Shiota, Y.; Minato, A.

    1998-01-01

    The widely prevalent large scale desalination of seawater is accomplished by two primary methods: Distillation and reverse osmosis (RO). In any case, an external energy supply source is mandatory for the operation of the desalination plants. Reverse Osmosis is more energy efficient than distillation. The energy input for RO is usually supplied by electric power, whereas thermal energy is extracted from an electric power plant for the distillation processes (dual purpose plant). There are no impediments in using nuclear power plants to supply energy to desalination plants in an integral site. However, it is essential to eliminate the possibility of penetration of radioactive contamination into produced water. Besides, the investigation of possible back-up facilities is detrimental to meet the demand of electric power and water. In accordance with the Japanese regulations, a nuclear power plant cannot be operated if any amount of radioactive contamination resulted from the failure of fuel is detected in the cooling water. In our experience, we have found that no special provisions and no additional selection criteria are needed to install the desalination plants within the nuclear power plants, except for the carbon steel shell utilized for the RO module. (author)

  9. Selection of Nuclear Desalination Technology in East Kalimantan Province

    International Nuclear Information System (INIS)

    Siti Alimah; Sudi Ariyanto; Erlan Dewita; Budiarto; Geni R Sunaryo

    2009-01-01

    Nowadays, electricity demand in East Kalimantan increases with a rate of 12% per annum. Since the electricity supply produced by PT PLN increases 8,5% per annum, then it can consequently an occurrence of electricity shortage in the region. NPP may be regarded as one viable option to overcome the problem. In case of fresh water availability, the supply is also less than the demand. Therefore, a serious effort is necessary. Nuclear desalination, which is a process of separating dissolved salts of seawater or brackish water, can be coupled to the NPP to produce fresh water. There are some desalination technology commonly used in the world i.e. MSF (Multi-Stage Flash Distillation), MED (Multi-Effect Distillation) and RO (Reverse Osmosis). This paper shows the study result of selection for desalination technology to obtain the optimum solution. The selection is done based on the thirteen important parameters, which are estimated to affect on determine technology option on the nuclear desalination with a weighing factor with ranges from 1 to 4. The most favourable technology is that with the highest point. The result show that MED has highest weighing factor that is 39, followed 36 for RO and 33 for MSF. Since the water quality requirement to supply NPP is about 1 ppm and to supply public demand is below 1000 ppm, so a hybrid system of MED-RO is optimum option to produce fresh water. (author)

  10. Desalination of water using conventional and nuclear energy

    International Nuclear Information System (INIS)

    1964-01-01

    The purpose of the present publication is to outline the status of desalination of water at the end of 1963, and is intended as a general review of the subject. Since the International Atomic Energy Agency considers that nuclear energy may, in the near future, be important in the conversion of sea and brackish water into fresh water, the following pages will deal mainly with different aspects of desalination on a large scale. These aspects will be discussed in the light of progress made using demonstration plants as well as results obtained in recent design studies. But in no way is it intended to put forward definitive statements on the advantages or disadvantages of using one or another kind of energy or any particular desalination process. This publication should serve as a technical report intended to help in a preliminary evaluation of projects that may be considered. The scientific and technical aspects of desalination will be subject of further study by the Agency. 65 refs, 25 figs, 12 tabs

  11. Desalination by very low temperature nuclear heat

    International Nuclear Information System (INIS)

    Saari, Risto

    1977-01-01

    A new sea water desalination method has been developed: Nord-Aqua Vacuum Evaporation, which utilizes waste heat at a very low temperature. The requisite vacuum is obtained by the aid of a barometric column and siphon, and the dissolved air is removed from the vacuum by means of water flows. According to test results from a pilot plant, the process is operable if the waste heat exists at a temperature 7degC higher than ambient. The pumping energy which is then required is 9 kcal/kg, or 1.5% of the heat of vaporization of water. Calculations reveal that the method is economically considerably superior to conventional distilling methods. (author)

  12. Floating nuclear energy plants for seawater desalination. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-05-01

    Floating nuclear desalination facilities are one of the alternatives being considered. They may offer a particularly suitable choice for remote locations and small island or coastal communities where the necessary manpower and infrastructure to support desalination plants are not available. In the interest of focusing specific attention on the technology of floating nuclear desalination, the IAEA sponsored a Technical Committee Meeting on Floating Nuclear Plants for Seawater Desalination from 29 to 31 May 1995 in Obninsk, Russian Federation. This publication documents the papers and presentations given by experts from several countries at that meeting. It is hoped that the information contained in this report will be a valuable resource for those interested in nuclear desalination, and that it will stimulate further interest in the potential for floating nuclear desalination facilities. Refs, figs, tabs

  13. Sensitivity analysis and probabilistic assessment of seawater desalination costs fueled by nuclear and fossil fuel

    International Nuclear Information System (INIS)

    Kavvadias, K.C.; Khamis, I.

    2014-01-01

    The reliable supply of water and energy is an important prerequisite for sustainable development. Desalination is a feasible option that can solve the problem of water scarcity in some areas, but it is a very energy intensive technology. Moreover, the rising cost of fossil fuel, its uncertain availability and associated environmental concerns have led to a need for future desalination plants to use other energy sources, such as renewables and nuclear. Nuclear desalination has thus the potential to be an important option for safe, economic and reliable supply of large amounts of fresh water to meet the ever-increasing worldwide water demand. Different approaches to use nuclear power for seawater desalination have been considered including utilisation of the waste heat from nuclear reactors to further reduce the cost of nuclear desalination. Various options to implement nuclear desalination relay mainly on policy making based on socio-economic and environmental impacts of available technologies. This paper examines nuclear desalination costs and proposes a methodology for exploring interactions between critical parameters. - Highlights: • The paper demonstrated desalination costs under uncertainty conditions. • Uncertainty for nuclear power prevails only during the construction period. • Nuclear desalination proved to be cheaper and with less uncertainty

  14. Economy Aspect for Nuclear Desalination Selection in Muria Peninsula

    International Nuclear Information System (INIS)

    Sudi, Ariyanto; Alimah, Siti

    2011-01-01

    An assessment of economy aspect for nuclear desalination selection has been carried out. This study compares the costs of water production for the Multi Stage Flash Distillation (MSF), Multi Effect Distillation (MED) and Reverse Osmosis (RO) desalination process coupled to PWR. Economic analysis of water cost are performed using the DEEP-3.1. The results of the performed case study of Muria Peninsula showed that the water cost to desalination process coupled with PWR nuclear power plant (at 5% interest rate, 2750 m 3 /day capacity, 28 o C temperature, 28.700 ppm TDS) with MSF plant is the highest (1.353 $/m 3 ), compared to 0.885 $/m 3 and 0.791 $/m 3 with the MED and RO plants respectively. As for MSF process, water cost by RO are also sensitive to variables, such as the interest rate, temperature and total salinity. However, MED process is sensitive to interest rate and temperature based on the economic aspect. MSF and MED plants produce a high-quality product water with a range of 1.0 - 50 ppm TDS, while RO plants produce product water of 200 - 500 ppm TDS. Water requirements for reactor coolant system in PWR type is about 1 ppm. Based on economic aspect and water requirements for reactor coolant system in PWR type, so co-generation of PWR and MED may be a favourable option for being applied in Muria Peninsula. (author)

  15. Economic Aspect for Nuclear Desalination Selection in Muria Peninsula

    International Nuclear Information System (INIS)

    Sudi, Ariyanto; Alimah, Siti

    2011-01-01

    An assessment of economy aspect for nuclear desalination selection has been carried out. This study compares the costs of water production for the Multi Stage Flash Distillation (MSF), Multi Effect Distillation (MED) and Reverse Osmosis (RO) desalination process coupled to PWR. Economic analysis of water cost are performed using the DEEP-3.1. The results of the performed case study of Muria Peninsula showed that the water cost to desalination process coupled with PWR nuclear power plant (at 5% interest rate, 2750 m 3 /day capacity, 28 o C temperature, 28.700 ppm TDS) with MSF plant is the highest (1.353 $/m 3 ), compared to 0.885 $/m 3 and 0.791 $/m 3 with the MED and RO plants respectively. As for MSF process, water cost by RO are also sensitive to variables, such as the interest rate, temperature and total salinity. However, MED process is sensitive to interest rate and temperature based on the economic aspect. MSF and MED plants produce a high-quality product water with a range of 1.0 - 50 ppm TDS, while RO plants produce product water of 200 - 500 ppm TDS. Water requirements for reactor coolant system in PWR type is about 1 ppm. Based on economic aspect and water requirements for reactor coolant system in PWR type, so co-generation of PWR and MED may be a favourable option for being applied in Muria Peninsula. (author)

  16. Desalination of seawater with nuclear power reactors in cogeneration; Desalacion de agua de mar con reactores nucleares de potencia en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R M

    2004-07-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  17. Financing of an integrated nuclear desalination system in developing countries

    International Nuclear Information System (INIS)

    Bouzguenda, N.; Albouy, M.; Nisan, S.

    2007-01-01

    This paper focuses on a case study of financing a project of an integrated nuclear desalination system at la Skhira site in Tunisia. More specifically, it shows the financial characteristics of this project, known as TUNDESAL, the main financing mechanisms that can be used, and the principal actions required to attract the potential investors and lenders. The paper describes the basic requirements for the deployment of nuclear energy in a developing or an emerging country, with no previous experience of nuclear power; the specific financial considerations corresponding to the particular characteristics of nuclear desalination projects: high capital costs, high level of risks and uncertainties related in particular to long construction lead times and social and environmental concerns; the main risks of these projects; the profitability study of the TUNDESAL project: application of the discounted cash flow analysis; the main financing sources for the project; the financing schemes that can be used for project implementation and comparison between these schemes in terms of benefits generated, after covering project costs and repayment of lenders and investors; the main actions to be done for making the project financially attractive in order to gain the confidence of investors and international financial institutions (optimal allocation of project risks and uncertainties, a suitable and flexible energy and water tariffs policy, etc.). The analysis has shown that in particular conditions of Tunisia, the most attractive financial scheme could be the 'project financing + leasing'. (authors)

  18. Siting of nuclear desalination plants in Saudi Arabia: A seismic study

    International Nuclear Information System (INIS)

    Aljohani, M.S.; Abdul-Fattah, A.F.; Almarshad, A.I.

    2005-01-01

    This paper presents the selection criteria generally and seismic criteria specifically to select a suitable site in Saudi Arabia for a nuclear desalination plant. These criteria include geological, meteorological, cooling water supply discharge, transport infrastructure, population, electric grid, water network capacity, environmental impact and airport movement. The seismicity of the Arabian peninsula for the locations of seismic activity along the Red Sea and the Arabian Gulf coastlines from 1973 to 2000 was studied carefully. This study included towns and locations along the east and west coastlines and their distances from the seismic event site. The results showed that Rabigh City along the west coast of Saudi Arabia is a good site to build a nuclear desalination plant. This is because of the following reasons: good seismic stability; good weather statistics; no flooding; mild wave conditions; good supply and discharge; good transportation infrastructure; low population area; very close to the huge electric grid. (author)

  19. The nuclear energy in the seawater desalination; La energia nuclear en la desalacion de agua de mar

    Energy Technology Data Exchange (ETDEWEB)

    Moreno A, J.; Flores E, R.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    In general, the hydric resources of diverse regions of the world are insufficient for to satisfy the necessities of their inhabitants. Among the different technologies that are applied for the desalination of seawater are the distillation processes, the use of membranes and in particular recently in development the use of the nuclear energy (Nuclear Desalination; System to produce drinkable water starting from seawater in a complex integrated in that as much the nuclear reactor as the desalination system are in a common location, the facilities and pertinent services are shared, and the nuclear reactor produces the energy that is used for the desalination process). (Author)

  20. Economics of nuclear desalination: New developments and site specific studies. Final results of a coordinated research project 2002-2006

    International Nuclear Information System (INIS)

    2007-07-01

    Following successive General Conference Resolutions since the mid-eighties, the IAEA has continued to promote nuclear desalination and has been providing its Member States with the publication of guidebooks, technical documents and computer programs on nuclear desalination as well as the provision of technical assistance through the framework of technical cooperation programs. In 1997, the IAEA launched the International Nuclear Desalination Advisory Group (INDAG), with well known experts from 16 participating Member States. INDAG has not only been successful in its advisory role in all aspects dealing with nuclear desalination, but has also been extremely efficient in promoting exchange of information and creating contacts between technology providers and its end-users. A number of technical cooperation projects have assessed the feasibility of particular nuclear desalination projects. Under the IAEA inter-regional technical cooperation (TC) framework, several international collaboration activities were completed. For example: between China and Morocco; the Republic of Korea and Indonesia; France and Tunisia; and in Pakistan. TC national projects for the United Arab Emirates, Algeria and Jordan, for the techno-economic feasibility studies of nuclear desalination plants, are currently being considered. The Coordinated Research Project (CRP1) on Optimization of the Coupling of Nuclear Reactors and Desalination Systems was completed in 2003 with the participation of 11 Member States. The results of the CRP were published as IAEA-TECDOC-1444 (2005). Following recommendations from INDAG, a second CRP (CRP2) on Economic Research on, and Assessment of, Selected Nuclear Desalination Projects and Case Studies with the participation of ten Member States. It was started in 2002 and was completed in 2006. The scope of CRP2 was to enable the Member States to dispose of precise and well validated methods for desalination cost evaluations and to contribute to the IAEA's efforts

  1. Some interesting aspects of water, with special reference to nuclear desalination

    International Nuclear Information System (INIS)

    Inam-ur-Rahman

    2002-01-01

    A brief review is given of the formation, importance, resources and some unique characteristics of water. A reference has been made about the available water racecourse of Pakistan and urgent need of acquiring additional water resources in the county. Importance of water for energy production and energy for acquiring additional water resources is mentioned. Attractive features and feasibility of nuclear desalination, using dual purpose nuclear power plants are discussed. Criteria for selection of suitable reactor type and desalination process are discussed for desired water to power ratios. The world wide growth of desalination capacity, using various desalination processes are listed. (author)

  2. Environmental impact assessment of nuclear desalination plant at KANUPP

    International Nuclear Information System (INIS)

    Sleem, M.

    2010-01-01

    A Nuclear Desalination Demonstration Plant (NDDP) of 1600 m/sup 3//d capacity is being installed at Karachi Nuclear Power Plant (KANUPP). A Nuclear Desalination Plant (NDP) can impact the aquatic environment mainly by subjecting the aquatic life to possible temperature increase and salinity changes in the vicinity of the cooling water and brine discharges. Any wastewater effluent, which will be discharged from the NDDP, may have some adverse effects on the marine life and general environment. In order to protect the environment and comply with the requirement of the Pakistan Environmental Protection Agency (PEPA) an Environmental Impact Assessment (EIA) for the discharged effluent from NDDP was carried out. In the present work baseline study was carried out for project location, climate, water resources, and ecology. Checklist has been prepared for identification of possible environmental impacts of the project and marked as insignificant, small, moderate or major impact. Appropriate mitigation measures have been recommended that can be incorporated into the intended program to minimize environmental impacts identified during the assessment. Specific conclusions of the study and recommendations have also been provided in this paper.

  3. Desalination of seawater: a nuclear solution

    International Nuclear Information System (INIS)

    Basta, H.

    2003-01-01

    1,4 milliard human beings do not benefit of sufficient clean water supply. The desalting of seawater is a valid and tested solution in terms of technology but the 2 physical processes involved, evaporation and reverse osmosis are energy-greedy. Only rich countries like Kuwait or Saudi-Arabia can afford producing massive volumes of fresh water from seawater. Today the total world capacity of desalting reaches 30 milliard m 3 a day with 10.000 operating units, half of which installed in middle-east countries. The use of nuclear energy is a solution to lower costs. In Aktau (Kazakhstan) a BN-350 fast reactor has been producing a 135 MW electrical output and 80.000 m 3 of fresh water a day for 27 years. In Japan about 10 desalting units have been coupled to nuclear power plants. A company (Eskom) based in South-Africa is developing a new concept of high temperature reactor: the PBMR (pebble bed modular reactor). The suitability of this reactor has been assessed for desalting and it appears that its main assets are its size: 165 MW electrical output (400 MW thermal output) and its Brayton cycle. Other characteristics such as the coolant (helium), the type of fuel (8% enriched uranium encapsulated in carbon), the low design and maintenance costs, the short building time (2 years) are important when considering issues like nuclear safety, non-proliferation and profitability. (A.C.)

  4. Equipment and materials for coupling interfaces of a nuclear reactor with desalination and heating plants based on floating NHPS

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Polunichev, V.I.

    1998-01-01

    Intensive design activity is currently underway in Russia on floating nuclear installations, relying on proven marine NSSSs of KLT-40-type, which are capable of generating electricity, producing potable water and heat for industrial and district heating purposes. In particular, design work of the first floating power unit for a pilot nuclear co-generation station, which is due to be situated at the Pevek port area in the Chukotsky national district (extreme north-east of Russia), is approaching completion, and preparatory work is being carried out for fabrication of its most labour-intensive components. Work is also in progress together with 'CANDESAL Inc. (Canada)' on the conceptual design of a floating power-desalination complex. Most suitable options of floating power-desalination complexes are being sought, addressing requirements of potential customers. Earlier, at the IAEA technical committee meeting (1993) it was shown that a complex, which combines a highly effective condensation turbine and a modem reverse-osmosis desalination facility, could be considered as most preferable from the view point of efficient utilisation of thermal energy generated by nuclear reactors for co-production of potable water and electricity. The prospective technology for sea water desalination by a reverse-osmosis method is being developed in particular by 'CANDESAL Inc.'. It was also pointed out that another sufficiently efficient installation for potable water and electricity co-production is a dual-purpose complex which integrates both condensation and back-pressure turbines and a distillation desalination facility. Similar flow configurations were adopted for the nuclear desalination complex at Aktau (Kazakhstan) which has been in operation since 1972. 'SverdNIIKhimMash' institute (Ekaterinburg) is a Russian leading designer of modem distillation desalination facilities. This paper presents heat and fluid diagrams of floating complexes, brief description of their key

  5. Transient behaviour and coupling aspects of a hybrid MSF-RO nuclear desalination plant

    International Nuclear Information System (INIS)

    Tewari, P.K.; Misra, B.M.

    1998-01-01

    BARC is setting up a 6300 M 3 /day (1.4 MGD) hybrid MSF-RO nuclear desalination plant for sea water desalination at Madras Atomic Power Station (MAPS) coupled to a 170 MWe Pressurised Heavy Water Reactor (PHWR). The transient behaviour and coupling aspects of this dual purpose plant has been discussed. A hybrid desalination plant appears to offer high availability factor. (author)

  6. Potential for nuclear desalination as a source of low cost potable water in North Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    Based on the limited regional water resources and in recognizing the possible role of nuclear energy in seawater desalination, the five North African Countries (NACs): Algeria, Egypt, Libya, Morocco and Tunisia submitted a request to the IAEA in 1990 for assistance in carrying out a feasibility study on the use of nuclear energy for seawater desalination in some pre-selected sites in these countries to cover their medium- and long-term needs for economical potable water. The present report has been prepared and is presented to the NACs in response to their request. It contains an assessment of the regional specific aspects, the available technical options with respect to desalination processes and energy sources, the cost evaluation of various technical options for the production of desalinated water, as well as the financial constraints and options, and finally the necessary steps needed to ensure the successful implementation of a nuclear desalination programme. The report also complements other work of the IAEA in the field of nuclear desalination, carried out in response to various resolutions of the IAEA General Conferences since 1989, namely: ``Use of Nuclear Reactors for Seawater Desalination``, IAEA-TECDOC-574 (1990) and ``Technical and Economic Evaluation of Potable Water Production through Desalination of Seawater by using Nuclear Energy and Other Means``, IAEA-TECDOC-666 (1992). 105 refs, 39 figs, tabs.

  7. Potential for nuclear desalination as a source of low cost potable water in North Africa

    International Nuclear Information System (INIS)

    1996-11-01

    Based on the limited regional water resources and in recognizing the possible role of nuclear energy in seawater desalination, the five North African Countries (NACs): Algeria, Egypt, Libya, Morocco and Tunisia submitted a request to the IAEA in 1990 for assistance in carrying out a feasibility study on the use of nuclear energy for seawater desalination in some pre-selected sites in these countries to cover their medium- and long-term needs for economical potable water. The present report has been prepared and is presented to the NACs in response to their request. It contains an assessment of the regional specific aspects, the available technical options with respect to desalination processes and energy sources, the cost evaluation of various technical options for the production of desalinated water, as well as the financial constraints and options, and finally the necessary steps needed to ensure the successful implementation of a nuclear desalination programme. The report also complements other work of the IAEA in the field of nuclear desalination, carried out in response to various resolutions of the IAEA General Conferences since 1989, namely: ''Use of Nuclear Reactors for Seawater Desalination'', IAEA-TECDOC-574 (1990) and ''Technical and Economic Evaluation of Potable Water Production through Desalination of Seawater by using Nuclear Energy and Other Means'', IAEA-TECDOC-666 (1992). 105 refs, 39 figs, tabs

  8. A Feasibility Study of Optimal Nuclear Desalination Process for Industrial Water Supply in Korea

    International Nuclear Information System (INIS)

    Park, Hyunchul; Han, Kiin

    2013-01-01

    Seawater Desalination can be an alternative technology for water production based on salt separation from seawater. Seawater desalination can produce freshwater with necessary quality by choosing an appropriate desalination process and posttreatment methods of the product water. The commercial seawater desalination processes which are proven and reliable for large scale freshwater production are MSF and MED for evaporative desalination and RO for membrane desalination. Vapor compression plants based on thermal and mechanical compression are also employed for the small and medium capacity ranges. The aim of this study is to compare the characteristics and cost of each process methods and suggest the most efficient and effective method of desalination for an industrial water supply to the National Industrial Complex nearby Nuclear Power Plant. The costs associated with desalination depend on many factors such as capital, energy, labor, chemicals that are specific to the location, plant capacity, product salinity pre-treatment necessities, and other site-related costs for land, plant and brine disposal. A detailed analysis of each situation is thus required to estimate desalination costs. It could be stated that RO cost is lower than distillation one in energy and environmental terms. The optimal capacity(10,000 m 3 /day) was decided to analyze the estimated water usage in nuclear power plants. And then compared the availability of each process, energy consumption, O and M and economic aspects. In terms of economic feasibility study, RO is the most recommendable process in nuclear power plants in Korea

  9. Desalination processes and technologies

    International Nuclear Information System (INIS)

    Furukawa, D.H.

    1996-01-01

    Reasons of the development of desalination processes, the modern desalination technologies, such as multi-stage flash evaporation, multi-effect distillation, reverse osmosis, and the prospects of using nuclear power for desalination purposes are discussed. 9 refs

  10. The national project on nuclear desalination in India

    International Nuclear Information System (INIS)

    Misra, B.M.

    1996-01-01

    BARC (Bhabha Atomic Research Centre) has successfully developed both thermal and membrane desalination technologies for seawater and brackish water desalination. 425 m 3 /d Multi-Stage-Flash (MSF) desalination plant producing good quality water from seawater suitable for drinking and industrial water requirements operated. Knowhow developed for Low Temperature Vacuum Evaporation (LTVE) desalination plants utilizing waste heat. Reverse Osmosis (RO) technology developed at the centre has been successfully demonstrated. The experience obtained from the above plants has been utilized for designing a large scale hybrid desalination plant based on MSF and RO for augmenting the drinking water supply in water scarcity coastal areas

  11. Nuclear desalination in the Arab world. Part I: Relevant data

    International Nuclear Information System (INIS)

    Mekhemar, S.; Karameldin, A.

    2003-01-01

    Middle Eastern and North African countries suffer from a shortage of fresh water resources. Statistical analysis shows that fresh water resources in these countries constitute less than 13% of the average world resources per capita. In the Arab world, the rapid increase in population and an increase in living standards led to a greater demand for fresh water and electricity. Accordingly, the Arab world has assumed (a leading role in the) desalination industry, contributing about 60% of total world production. Desalination processes are highly power intensive. Thus, different types of energies are used to bridge the gap between these processes and the general increased demand in production. Projections for water and electricity demand in the Arab world, up to 2030, are made according to population and its growth rates. The present study (according to these projections) indicates that population in the Arab world will double by the year 2030. At that time, domestic and industrial water demand will be 360 million m 3 d -1 ; meanwhile, electrical power consumption will be 4.5 trillion kWh d -1 . Accordingly, the Advanced Inherent Safe Nuclear Power Plants adapted for water-electricity co-generation could meet the demand, as a clean energy source. (author)

  12. Design of a nuclear desalination facility for Bushehr, Iran

    International Nuclear Information System (INIS)

    Shiota, Y.

    1998-01-01

    Three options of coupling schemes were evaluated in order to integrate an MSF desalination plant of 200,000 m 3 /day with twin PWR units of 3728 MW(th) each for the Halileh Nuclear Power Station in Iran, which were under construction at the time of the investigation: (a) The exhaust steam from a back pressure turbine is fed to the brine heater; (b) The steam extracted downstream of a reheater of the NPP is fed to the brine heater; and (c) Hot water heated by the steam exiting the high pressure turbine of the NPP is fed to the brine heater. Technical and economic advantages and disadvantages of these three options are summarized. (author)

  13. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  14. Using decommissioned offshore oil/gas platforms for nuclear/RO desalination: the ONDP (Offshore Nuclear Desalination Platform)

    International Nuclear Information System (INIS)

    Nagar, Ankesh

    2010-01-01

    Oil platforms are manmade concrete and steel giant structures standing high on ocean floor weighing anywhere between 10,000 tonnes and 150,000 tonnes or more and designed to withstand cruel forces of nature, having an average life of 70 years. With the declining petrol reserves within next 30 years, hundreds of platforms will be scheduled for decommissioning. This issue is a hot topic as oil companies tussle with environmentalists and state lawmakers over the future. The cash strapped oil companies have a legal obligation to remove each rig entirely, returning the ocean floor to its original condition. Lean times in oil industry mean a tight cash flow. Safely removing massive structures from deep waters and shipping the pile to the shores for reuse and recycling presents a technological challenge for operators. Some conceptual applications investigated to reuse them are the conversion of offshore structures into fish farms, prisons, military outposts, hotels, for Search and Rescue operations or Centers for Waste Processing and Disposal. Decommissioning oil and gas installation is exorbitantly expensive. On an average, removing a complete platform with or without pipeline in sea waters with 'clean sea approach' costs $15 million to $ 6 billion depending on location. Global warming has adversely affected world climate. Water levels in ground and reservoirs have shown drastic decrement. In future there will be need for more and more water all over the world. Fossil fuel energy based desalination is expensive and not eco-friendly so is dismantling of oil platform with its pipeline. The oil platforms are far located from population, have sufficient tank capacity and pipeline structure to store and pump water to shore. When found economically unviable these mammoth structures with modifications can be installed with 02 or more small or medium sized nuclear reactors such as KLT 40S with required module to desalinate water and co generate electricity which can be sent to

  15. Optimization of the coupling of nuclear reactors and desalination systems. Final report of a coordinated research project 1999-2003

    International Nuclear Information System (INIS)

    2005-06-01

    Nuclear power has been used for five decades and has been one of the fastest growing energy options. Although the rate at which nuclear power has penetrated the world energy market has declined, it has retained a substantial share, and is expected to continue as a viable option well into the future. Seawater desalination by distillation is much older than nuclear technology. However, the current desalination technology involving large-scale application, has a history comparable to nuclear power, i.e. it spans about five decades. Both nuclear and desalination technologies are mature and proven, and are commercially available from a variety of suppliers. Therefore, there are benefits in combining the two technologies together. Where nuclear energy could be an option for electricity supply, it can also be used as an energy source for seawater desalination. This has been recognized from the early days of the two technologies. However, the main interest during the 1960s and 1970s was directed towards the use of nuclear energy for electricity generation, district heating, and industrial process heat. Renewed interest in nuclear desalination has been growing worldwide since 1989, as indicated by the adoption of a number of resolutions on the subject at the IAEA General Conferences. Responding to this trend, the IAEA reviewed information on desalination technologies and the coupling of nuclear reactors with desalination plants, compared the economic viability of seawater desalination using nuclear energy in various coupling configuration with fossil fuels in a generic assessment, conducted a regional feasibility study on nuclear desalination in the North African Countries and initiated in a two-year Options Identification Programme (OIP) to identify candidate reactor and desalination technologies that could serve as practical demonstrations of nuclear desalination, supplementing the existing expertise and experience. In 1998, the IAEA initiated a Coordinated Research

  16. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  17. Implementation of the dual-purpose principle in Iran, Bushehr desalination and nuclear power plants

    International Nuclear Information System (INIS)

    Edalat, M.; Mansoori, F.S.; Entessari, J.; Hamidi, H.

    1978-01-01

    The requirements for electrical power and fresh water and the past and present desalination projects in Iran are discussed. The different methods usually employed in coupling the desalination plants with power plants are outlined, and the interdependency of the two plants and the safety aspects due to radioactive contamination are considered. Finally, the method utilizing a pressurized hot water loop as a safety barrier for the two proposed desalination plants to be coupled with the Bushehr Nuclear Power Plants under construction in Iran is described. (author)

  18. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  19. Seawater desalination plant using nuclear heating reactor coupled with MED process

    International Nuclear Information System (INIS)

    Wu Shaorong; Dong Duo; Zhang Dafang; Wang Xiuzhen

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. this seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. the intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10-200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m 3 /d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented

  20. Optimisation of the coupling of nuclear reactors and desalination systems in Morocco

    International Nuclear Information System (INIS)

    Tabet, M.; Htet, A.; Alami, A.M.

    2006-01-01

    This study has been undertaken in the framework of IAEA CRP on 'Optimisation of the Coupling of Nuclear Reactors and Desalination Systems in Morocco'. Two sites have been selected to host nuclear desalination plants, and different combinations with nuclear reactors have been investigated. Other combinations with fossil fuel plants have been examined for comparison. The results obtained showed the competitiveness of nuclear energy, which could be a solution to supply the region that will suffer from water shortage. On the other hand, this study could help the decision makers in the management and planning of water, energy resources and supply. (author)

  1. Development of regulatory requirements/guides for desalination unit coupled with nuclear plant

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik

    2005-10-01

    The basic design of System-integrated Modular Advanced Reactor (SMART), a small-to-medium sized integral type pressurized water reactor (PWR) with the capacity of 330MWth, has been developed in Korea. In order to demonstrate the safety and performance of the SMART design, 'Development Project of SMART-P (SMART-Pilot Plant)' has been being performed as one of the 'National Mid and Long-term Atomic Energy R and D Programs', which includes design, construction, and start-up operation of the SMART-P with the capacity of 65MWth, a 1/5 scaled-down design of the SMART. At the same time, a study on the development of regulatory requirements/guides for the desalination unit coupled with nuclear plant has been carried out by KINS in order to prepare for the forthcoming SMART-P licensing. The results of this study performed from August of 2002 to October of 2005 can be summarized as follows: (1) The general status of desalination technologies has been survey. (2) The design of the desalination plant coupled with the SMART-P has been investigated. (3) The regulatory requirements/guides relevant to a desalination unit coupled with a nuclear plant have been surveyed. (4) A direction on the development of domestic regulatory requirements/guides for a desalination unit has been established. (5) A draft of regulatory requirements/guides for a desalination unit has been developed. (6) Expert technical reviews have been performed for the draft regulatory requirements/guides for a desalination unit. The draft regulatory requirements/guides developed in this study will be finalized and can be applied directly to the licensing of the SMART-P and SMART. Furthermore, it will be also applied to the licensing of the desalination unit coupled with the nuclear plant

  2. Technical and economic evaluation of potable water production through desalination of seawater by using nuclear energy and other means

    International Nuclear Information System (INIS)

    1992-09-01

    The present report contains an assessment of the need for desalination, information on the most promising desalination processes and energy sources, as well as on nuclear reactor systems proposed by potential suppliers worldwide. The main part of the report is devoted to evaluating the economic viability of seawater desalination by using nuclear energy, in comparison with fossil fuels. This evaluation encompasses a broad range of both nuclear and fossil plant sizes and technologies, and combinations with desalination processes. Finally, relevant safety and institutional aspects are briefly discussed. 27 refs, figs and tabs

  3. Determination of the costs of the nuclear desalination using the DEEP code from IAEA

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Palacios H, J.C.; Alonso V, G.

    2005-01-01

    The desalination of seawater is being an important solution to satisfy the demands of drinking water to population's centers that have hydric resources very limited, like it is the case of some Arab countries and arid regions of the planet, in where they have settled desalination plants that use as energy source to those fossil fuels or nuclear energy plants. Taking into account that the desalination of seawater is a process that consumes a lot of thermal and/or electric energy, it is necessary to quantify the costs of the supply and that of the desalination plant for different options and technologies, looking for this way the but appropriate for the specific conditions of the region where it has planned the desalination of seawater. In this report the three technologies but promising for the desalination are described and by means of the DEEP code the costs of production of water and energy are evaluated, using as thermal source different types of power nuclear reactors. It was obtained according to DEEP that the costs of the electricity generation for the considered reactors are around 40 USD/MWh. With these costs of electric power generation and using the DEEP code is obtained that the costs of production of drinking water are around 1 USD/m 3 . (Author)

  4. Preliminary geological study in kabupaten Pamekasan area to support the selection of candidate site of nuclear desalination plant

    International Nuclear Information System (INIS)

    Ngadenin; Lilik Subiantoro; Kurnia Setiawan Widana

    2014-01-01

    The area around the southern coast Pamekasan is one of the candidates for the alternatives location of nuclear desalination plant site. In 1949 around Sampang Madura ever tectonic earthquake measuring 5 on the Richter scale with its epicenter on land. Tectonic earthquake with epicenter on land is likely related to the presence of active faults on the Madura island. Location prospective nuclear desalination plant site should be away or free of active faults. The study aimed to obtain geological information and find out the characteristics of tectonics including active fault to support site studies of nuclear desalination plant on the island of Madura. The method used is the geological mapping scale, 1 : 50,000. Lithology in the area along the south coast district Pamekasan is alluvium Holocene age and conglomerate units of Pleistocene age. There were no indications of active faults in the region. Candidates site at this location is less attractive in terms of geotechnical foundation as can be ascertained bedrock will be found sufficient in that building construction will require expensive. (author)

  5. Desalination plan with nuclear reactors as part of a sustainable development program in Mexico

    International Nuclear Information System (INIS)

    Rojas A, O; Calleros M, G.

    2016-09-01

    This paper presents a project for the desalination of seawater with nuclear reactors, in order to supply fresh water to the populations near to the nuclear power plant. A case study is proposed with the nuclear power plant of Laguna Verde, implementing a system that allows taking advantage of the residual heat of the seawater condensate stage and with this, to supply drinking water to the surrounding localities where the vital liquid is scarce. In addition, legislation is proposed to allow some of the thermal energy generated by reactors producing electrical energy in Mexico to be used for the desalination of seawater and/or hydrogen production. (Author)

  6. Present status of seawater desalination and problems of nuclear utilization. Aiming at coping with global shortage of water

    International Nuclear Information System (INIS)

    2006-07-01

    With recent global population increase and economic and life level improvement, water demand increases tremendously and in 2025 water scarcity will occur in almost the half of countries and regions in the world. Nuclear desalination is highly expected to cope with this issue. The Japan Atomic Industrial Forum (JAIF) established special committee on seawater desalination problems to discuss possibilities of nuclear desalination introduction. Present status of seawater desalination and problems of nuclear utilization were reviewed and the committee recommended the necessity of establishing medium and long-term plan on international business development of nuclear desalination and also the start of basic research on problems of nuclear utilization such as technical and institutional limits and efficient applicability of nuclear energy. (T. Tanaka)

  7. Experience in the application of nuclear energy for desalination and industrial use in Kazakhstan

    International Nuclear Information System (INIS)

    Muralev, E.D.

    1998-01-01

    Key design features of the Aktau complex in Kazakhstan with a 1000 MWth fast breeder nuclear reactor are outlined. The experience gained over 20 years of operation and maintenance is briefed. The water costs, the impact on the environment and the water and steam quality have confirmed the efficiency and the reliability of nuclear energy application for seawater desalination and industrial use. (author)

  8. Risk management strategy for initiating nuclear desalination in the Gulf Cooperation Council (GCC)

    International Nuclear Information System (INIS)

    Hakami, Saeed

    2009-01-01

    Full text:The Gulf countries are one of the most water short regions in the world, classified from the arid and semiarid regions. The average precipitation received is 100 mm/year which indicate very limited renewable water resources per capita and per hectare of irrigated land. The water resources in gulf countries not only continued under pressure, but also it drought from other factors such as increasing population and water demand for irrigation and industrial use. Furthermore, Rain is considered the only source of recharging the ground water in the gulf countries and its fall depends upon the storms that occur irregularly in respect of quantity or distribution year-round. While the countries of the Gulf region have the capacity to rapidly expand their economic growth and gross domestic product (GDP). Also, one may observe that their growth rate is very high. For solving their limitation to use fresh water and to develop and sustain their economy and development, they need to nuclear desalinations. Risk management strategy helps to reduce issues in initiating nuclear desalination plants. There are vast theories, strategies and tools that have discussed in regards to risk management strategy in the nuclear desalinations. However, this paper chiefly provides and introduces a new risk management methodology in the Gulf countries This methodology helps to highlight the critical factors and their consequences at nuclear desalinations. This paper is intended to reduce risks in using nuclear desalinations and increase opportunities. Also, the objectives of this paper are how to plan and initiate nuclear desalination plants in Gulf Countries. Consequently, the new methodology helps their sustainable water industry.

  9. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  10. Prospect of floating desalination facilities using nuclear energy in Indonesia

    International Nuclear Information System (INIS)

    Rusli, A.; Rina, G.; Gunandjar; Subki, I.R.

    1997-01-01

    This paper summarizes studies on the water demand and supply problems in Indonesia in the last few years. During the dry season in 1990, it was reported that lack of fresh drinking water in Java and Bali amounted to 2.4 x 10 6 ton/month. Since Indonesia consists of more than 13,000 islands, more problems are faced by other islands. The studies are focused on certain regions (groups of islands) which may have a potential for using a floating desalination facility. Water reservoirs in each island and delivery systems from the floating desalination facilities need to be assessed to see the prospective uses of the systems. Cheap, self-forgiving and easily operated systems, using transportable ship mounted desalination facilities, may be required as a solution to the water supply shortages for these islands. Conclusions based on current problems in water demand and supply and comments on the prospective future market using floating desalination facilities in Indonesia are also given. (author). 9 refs, 10 tabs

  11. Economic evaluation of nuclear seawater desalination in an Algerian site: La Macta

    International Nuclear Information System (INIS)

    Belkaid, Abderrahmane; Amzert, Sid Ahmed; Arbaoui, Fahd; Bouaichaoui, Youcef

    2010-01-01

    As the needs for fresh water and electricity increases rapidly in Algeria, the Algerian authorities launched a study to assess the potentialities of the introduction of nuclear energy for the production of electricity and potable water. This study which started in 2007, is held under the framework of an IAEA Project untitled: 'techno-economic feasibility study of seawater desalination using nuclear energy' and its objective is to provide a document which will be used to support the government's decision to introduce the nuclear desalination in Algeria. To that end, one site has been selected to host nuclear desalination plant. This site is located in North West region of the country. In this study, we present the results achieved under this project and which corresponds to the economical evaluation of coupling several nuclear reactors: GT-MHR, PBMR, AP1000 and PWR900, with two desalination processes MED and RO. The results are compared with those obtained with fossil energy sources: Natural Gas Turbine and Natural Gas Combined Cycle. (author)

  12. Coupling of RO-MSF hybrid desalination plants with nuclear reactors

    International Nuclear Information System (INIS)

    Al-Sulaiman, Khalil; Al-Mutaz, Ibrahim S.

    1999-01-01

    Full text.Reverse osmosis (RO) and multistage flash (MSF) desalination are the most widely commercial available processes. MSF utilizes stream in the brine heater as a primary source of energy. RO is derived mainly by electricity that pumps the feed water against the mambranes. Steam and electricity and be produced easily by nuclear reactors. Nuclear reactors may be coupled with deslination plants (MSF, RO or combined (hybrid) RO/MSF configuration). This integrated plant will be capable of producing power and water at reasonable cost. The capital and operating cost will be reduced and the excess power can be efficiently utilized. Maintenance and operating cost will drop significantly. In this paper, a techno-economic study of hybrid reverses osmosis /multistage flash desalination will be carried. The proposed configuration (hybrid RO/MSF) coupled with nuclear reactor is considered the most appropriate candidate system for the application of dual-purpose nuclear desalination plants. the design parameters for such a desalination hybrid system will be the applied pressure and recovery for reverse osmosis plant and the number of stages and the heat transfer areas for multistage flash plant

  13. Optimum size determination of nuclear dual-purpose desalination plants

    International Nuclear Information System (INIS)

    Gaussens, J.

    1966-01-01

    The economics of dual-purpose desalination plants is presented from a general standpoint. The concept of demand curves for water and electricity is introduced, which leads to a rational sharing of production costs between both commodities within the framework of a market. The purpose of the study, which is based upon the principles of classical economics, is to develop objective criteria for the design of desalination plants and to derive from these a normative method for pricing both joint products, water and electricity, following as much as possible the structure of the demand. Such criteria are in particular either the maximization of benefit for the operator or the maximum welfare for the community. They involve either equality between marginal costs and revenues, or equality between marginal costs and marginal satisfactions (theory of surplus). As the size of the plant is often the predominant factor in selecting the process to be used, it follows from the above considerations that this selection is closely related to: (a) The shape of the demand curve for water; (b) The economic criterion selected and the relevant constraints (public or private ownership, limitation of the investments, etc). This makes market surveys and a rather refined economic analysis indispensable before any decision is taken on the desalination technique to be adopted. (author). Abstract only

  14. Contribution to the optimization of the coupling of nuclear reactors to desalination processes

    International Nuclear Information System (INIS)

    Dardour, S.

    2007-04-01

    This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)

  15. A preliminary economic feasibility assessment of nuclear desalination in Madura Island

    International Nuclear Information System (INIS)

    Kim, S.-H.; Hwang, Y.-D.; Konishi, T.; Hudi Hastowo

    2005-01-01

    A joint study between KAERI and BATAN, which is entitled 'A preliminary economic feasibility assessment of nuclear desalination in Madura Island', is being conducted under the framework of the Interregional Technical Cooperation Project of IAEA, signed on Oct. 10, 2001 at IAEA. The duration of the project is January 2002 to December 2004. An economic feasibility of nuclear desalination using system-integrated modular advanced reactor (SMART), which will provide Madura Island with electricity and potable water and also support industrialisation and tourism, will be assessed during the project. The scope of this joint study includes the analyses for the short- and long-term energy and water demand as well as the supply plan for Madura Island, evaluation of the site characteristics, environmental impacts and health aspects, technical and economic evaluation of SMART and its desalination system, including the feasibility of its being identified on the Madura Island. KAERI and BATAN are cooperating in conducting a joint study, and IAEA provides technical support and a review of the study products. This paper presents the interim results of the joint study by focussing on the technical and economic aspects of nuclear desalination using SMART in Madura Island. (author)

  16. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    Today, nuclear power plants contribute about 16% to the world's electricity generation. Because electricity represents less than one third of the primary energy uses, nuclear energy provides only about 6% of total energy consumption in the world. If nuclear energy were used for purposes other than electricity generation, it could play a more significant role in global energy supply. This could have also a significant impact on global goals for reduced greenhouse gas emissions for a cleaner environment. Nuclear power is the only large-scale carbon-free energy source that, in the near and medium term, has the potential to significantly displace limited and uncertain fossil fuels. To do this, however, nuclear power must move beyond its historical role as solely a producer of electricity to other non-electric applications. These applications include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production among others. These applications have tremendous potential in ensuring future worldwide energy and water security for sustainable development. In recent years, various agencies involved in nuclear energy development programmes have carried out studies on non-electric applications of nuclear power and useful reports have been published. The IAEA launched a programme on co-generation applications in the 1990's in which a number of Member States have been and continue to be actively involved. This programme, however is primarily concerned with seawater desalination, and district and process heating, utilizing the existing reactors as a source of heat and electricity. In recent years the scope of the Agency's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. OECD/NEA (OECD Nuclear Energy Agency), EURATOM (European Atomic Energy Community) and GIF (Generation IV International Forum) have also evinced

  17. Status of CEA studies on desalination on July 1, 1967

    International Nuclear Information System (INIS)

    Huyghe, J.; Vignet, P.; Courvoisier, P.; Frejacques, M.; Coriou, M.; Agostini, M.; Lackme, C.; CORPEL, M.; Thiriet, L.

    1967-01-01

    This publication contains a set of articles reporting studies on desalination performed within the CEA: preliminary draft of a desalination plant coupled with a nuclear reactor; the reverse osmosis; corrosion problems in seawater desalination plants; optimisation program of a distillation-based seawater desalination plant; activities of the department of analysis and applied chemistry in the field of desalination; abstract of a lecture on studies on price functions; studies of the department of steady isotopes on the formation of tartar depositions and their prevention; studies performed within the thermal transfer department

  18. Multi-stage-flash desalination plants of relative small performance with integrated pressurized water reactors as a nuclear heat source

    International Nuclear Information System (INIS)

    Petersen, G.; Peltzer, M.

    1977-01-01

    In the Krupp-GKSS joint study MINIPLEX the requirements for seawater-desalination plants with a performance in the range of 10 000 to 80 000 m 3 distillate per day heated by a nuclear reactor are investigated. The reactor concept is similar to the Integrated Pressurized Water Reactor (IPWR) of the nuclear ship OTTO HAHN. The design study shows that IPWR systems have specific advantages up to 200 MWth compared to other reactor types at least being adapted for single- and dual-purpose desalination plants. The calculated costs of the desalinated water show that due to fuel cost advantages of reactors small and medium nuclear desalination plants are economically competetive with oil-fired plants since the steep rise of oil price in autumn 1973. (author)

  19. Fouling and cleaning of seawater reverse osmosis membranes in Kalpakkam Nuclear Desalination Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Rajanbabu, K.; Tiwari, S.A.; Balasubramanian, C.; Yadav, Manoj Kumar; Dangore, A.Y.; Prabhakar, S.; Tewari, P.K.

    2005-01-01

    Seawater reverse osmosis plant of 1800 m 3 /day capacity is a part of 6300 m 3 /day capacity Nuclear Desalination Demonstration Project, at Kalpakkam. The plant was commissioned in October 2002 and is in continuous operation. This paper deals with types of foulants, membrane cleaning procedures and the improvement in the reverse osmosis system after cleaning. This paper also describes analysis of foulants which may consist of adsorbed organic compounds, particulate matter, microorganisms, metallic oxides and chemical cleaning procedure to be adopted, which is characteristics of sea water used as the membrane foulant is very much specific with respect to the sea water constituents. The cleaning of the membranes in Kalpakkam Nuclear Desalination plant were taken up as the quality of permeate deteriorated and differential pressure across membrane had gone-up. This paper essentially deals with selection of cleaning chemicals, the experience gained in cleaning procedure adopted and effects of cleaning for the membrane system. (author)

  20. Application of nuclear steam supply system of NIKA series for seawater desalination

    International Nuclear Information System (INIS)

    Adamovich, L.A.; Achkasov, A.N.; Grechko, G.I.; Pavlov, V.L.; Shishkin, V.A.

    1998-01-01

    The nuclear steam supply system (NSSS) NIKA has been developed on the basis of experience available in Russia in designing, construction and operation of similar systems for ship propulsion reactors. Major systems and equipment of the NSSS are designed to take advantage of the proven engineering features and to meet Russian regulations, standards, practices and up-to-date safety philosophy. NSSS NIKA-75 has been designed for arrangement on barge. This permits to manufacture all NSSS equipment at the factory and to deliver it to the exploitation area ready for operation. NSSS NIKA-300 is designed for erection on land. It seems very interesting to use those NSSS types for seawater desalination. The main technical solutions, concept statements, technical and economical evaluations of NIKA series nuclear steam supply systems for seawater desalination are described. (author)

  1. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    International Nuclear Information System (INIS)

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan; Lim, ChaeYoung

    2004-01-01

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. The total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)

  2. Safety analysis of coupling system of hybrid (MED-RO) nuclear desalination system utilising waste heat from HTGR

    International Nuclear Information System (INIS)

    Raha, Abhijit; Kishore, G.; Rao, I.S.; Adak, A.K.; Srivastava, V.K.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    To meet the generation IV goals, High Temperature Gas Cooled Reactors (HTGRs) are designed to have relatively higher thermal efficiency and enhanced safety and environmental characteristics. It can provide energy for combined production of hydrogen, electricity and other industrial applications. The waste heat available in the HTGR power cycle can also be utilized for the desalination of seawater for producing potable water. Desalination is an energy intensive process, so use of waste heat from HTGR certainly makes desalination process more affordable to create fresh water resources. So design of the coupling system, as per the safety design requirement of nuclear desalination plant, of desalination plant with HTGR is very crucial. In the first part of this paper, design of the coupling system between hybrid Multi Effect Desalination-Reverse Osmosis (MED-RO) nuclear desalination plant and HTGR to utilize the waste heat in HTGR are discussed. In the next part deterministic safety analysis of the designed coupling system of are presented in detail. It was found that all the coupling system meets the acceptance criteria for all the Postulated Initiating Events (PIE's) limited to DBA. (author)

  3. Nuclear desalination in the Arab world - Part II: Advanced inherent and passive safe nuclear reactors

    International Nuclear Information System (INIS)

    Karameldin, A.; Samer S. Mekhemar

    2004-01-01

    Rapid increases in population levels have led to greater demands for fresh water and electricity in the Arab World. Different types of energies are needed to contribute to bridging the gap between increased demand and production. Increased levels of safeguards in nuclear power plants have became reliable due to their large operational experience, which now exceeds 11,000 years of operation. Thus, the nuclear power industry should be attracting greater attention. World electricity production from nuclear power has risen from 1.7% in 1970 to 17%-20% today. This ratio had increased in June 2002 to reach more than 30%, 33% and 42% in Europe, Japan, and South Korea respectively. In the Arab World, both the public acceptance and economic viability of nuclear power as a major source of energy are greatly dependent on the achievement of a high level of safety and environmental protection. An assessment of the recent generation of advanced reactor safety criteria requirements has been carried out. The promising reactor designs adapted for the Arab world and other similar developing countries are those that profit from the enhanced and passive safety features of the new generation of reactors, with a stronger focus on the effective use of intrinsic characteristics, simplified plant design, and easy construction, operation and maintenance. In addition, selected advanced reactors with a full spectrum from small to large capacities, and from evolutionary to radical types, which have inherent and passive safety features, are discussed. The relevant economic assessment of these reactors adapted for water/electricity cogeneration have been carried out and compared with non-nuclear desalination methods. This assessment indicates that, water/electricity cogeneration by the nuclear method with advanced inherent and passive safe nuclear power plants, is viable and competitive. (author)

  4. A nuclear desalination complex with a VK-300 boiling type reactor facility

    International Nuclear Information System (INIS)

    Kuznetzov, Y.N.; Mishanina, Y.A.; Romenkov, A.A.

    2004-01-01

    RDIPE has developed a detailed design of an enhanced safety nuclear steam supply system (NSSS) with a VK-300 boiling water reactor for combined heat and power generation. The thermal power of the reactor is 750 MW. The maximum electrical power in the condensation mode is 250 MWe. The maximum heat generation capacity of 400 Gcal/h is reached at 150 MWe. This report describes, in brief, the basic technical concepts for the VK-300 NSSS and the power unit, with an emphasis on enhanced safety and good economic performance. With relatively small power, good technical and economic performance of the VK-300 reactor that is a base for the desalination complex is attained through: reduced capital costs of the nuclear plant construction thanks to technical approaches ensuring maximum simplicity of the reactor design and the NSSS layout; a single-circuit power unit configuration (reactor-turbine) excluding expensive equipment with a lot of metal, less pipelines and valves; reduced construction costs of the basic buildings thanks to reduced construction volumes due to rational arrangement concepts; higher reliability of equipment and reduced maintenance and repair costs; longer reactor design service life of up to 60 years; selection of the best reactor and desalination equipment interface pattern. The report considers the potential application of the VK-300 reactor as a source of energy for distillation desalination units. The heat from the reactor is transferred to the desalination unit via an intermediate circuit. Comparison is made between variants of the reactor integration with desalination units of the following types: multi-stage flash (MSF technology); multi-effect distillation horizontal-tube film units of the DOU GTPA type (MED technology). The NDC capacity with the VK-300 reactor, in terms of distillate, will be more than 200,000 m 3 /day, with the simultaneous output of electric power from the turbine generator buses of around 150 MWe. The variants of the

  5. The Economic Pre-feasibility Study of Madura Nuclear Desalination System

    International Nuclear Information System (INIS)

    Djoko-Birmanto, Moch; Suparman

    2004-01-01

    The feasibility study is needed in the planning of construction of NPPs SMART type coupled with desalination technology of MED tpe to produce clean water in Madura island. One important part of the feasibility study is the economical and financial analysis. The feasibility criteria of nuclear desalination project is analyzed by using the general parameters that is commonly used in evaluating a project, which is Financial Net Present Value (FNPV), Financial Internal Rate of Return (FIRR) and Payback Period. The calculation result shows that with the electricity selling price of 54.17 mills/KWh, for entirely project funded by the foreign loan, local loan and equity, it could be obtained FIRR 12.73 %, FNPV US$ 75.29 million and Payback Period is 8 years. By seeing from the project feasibility criteria, this nuclear desalination project can be feasible and the investment aspect shows that this project is beneficial because the capital return rate is rather high, the benefit in the end of the economic life-time is rather big and the capital payback period is fast. (author)

  6. Energy analysis of a desalination process of sea water with nuclear energy

    International Nuclear Information System (INIS)

    Martinez L, G.; Valle H, J.

    2016-09-01

    In the present work, is theoretically proven that the residual heat, removed by the chillers in the stage prior to the compression of the recuperative Brayton cycle with which nuclear power plants operate with high temperature gas reactors (HTGR), can be used to produce stem and desalinate seawater. The desalination process selected for the analysis, based on its operating characteristics, is the Multi-Stage Distillation (Med). The Med process will use as energy source, for the flash evaporation process in the flash trap, the residual heat that the reactor coolant dissipates to the environment in order to increase the compression efficiency of the same; the energy dissipated depends on the operating conditions of the reactor. The Med distillation process requires saturated steam at low pressure which can be obtained by means of a heat exchanger, taking advantage of the residual heat, where the relative low temperatures with which the process operates make the nuclear plants with HTGR reactors ideal for desalination of sea water, because they do not require major modifications to their design of their operation. In this work the energy analysis of a six-stage Med module coupled to the chillers of an HTGR reactor of the Pebble Bed Modular Reactor type is presented. Mathematical modeling was obtained by differential equations of mass and energy balances in the system. The results of the analysis are presented in a table for each distillation stage, estimating the pure water obtained as a function of the heat supplied. (Author)

  7. Nuclear water desalination technology as a tool for achieving Millennium Development Goals (MDGs)

    International Nuclear Information System (INIS)

    Dahunsi, S. O. A.; Ala, A.

    2011-01-01

    Potable water is regarded as one of the essential needs for the attainment of the target of the Millennium Development Goals (MDGs), but every year new countries are affected by growing water problems and Climate change is likely to further stress regions already facing dire water shortages. Recent statistics also shown that 2.3 billion people currently live in water-stressed areas and among them 1.7 billion live in water-scarce areas where the water availability per person is less than 1000 m 3 /year. Only large-scale commercially available desalination processes will be a solution to the menace of this water shortage. This paper therefore focuses on the results and applications of results of research and development in water desalination using nuclear technology which is evolving as an important option for safe, economic and sustainable supply of large amounts of portable water to meet the ever-increasing worldwide water demand.

  8. Simulation on the start-up of MED seawater desalination system coupled with nuclear heating reactor

    International Nuclear Information System (INIS)

    Ge Zhihua; Du Xiaoze; Yang Lijun; Yang Yongping; Wu Shaorong

    2008-01-01

    The mathematical control model for dynamic start-up process of the VTE-MED seawater desalination system was established employing the previous developed non-linear differential equations for system design and performance analysis. The influences on the start-up process of the operating parameters, such as the initial feed brine flow rate and the top brine temperature were analyzed. The relationships among the feed brine flow rate, the gained output ratio (GOR) and the start-up time were also investigated, which can be evidence to determine the optimal initial feed brine flow rate. The results also indicate that the system can consume the total heat rating generated by the low temperature nuclear heating reactor (LT-NHR) even at the most initial start-up stage, implying the present desalination system has excellent coupling characteristics with the LT-NHR. With necessary experiments verifications, the start-up control model developed in this paper can be the theoretical base for the analysis of dynamic performances of the seawater desalination system

  9. Design precautions for coupling interfaces between nuclear heating reactor and heating grid or desalination plant

    International Nuclear Information System (INIS)

    Zheng Wenxiang

    1998-01-01

    Nuclear heating reactor (NHR) has been developed by INET since the early eighties. To achieve its economic viability and safety goal, the NHR is designed with a number of advanced and innovative features, including integrated arrangement, natural circulation, self-pressurized performance, dynamically hydraulic control rod drive and passive safety systems. As a new promising energy system, the NHR can serve for district heating, air conditioning, sea-water desalination and other industrial processes. For all of these applications, it is vital that the design and performance of the coupling interfaces shall insure protection of user ends against radioactive contamination. Therefore, an intermediate circuit is provided in the NHR as a physical barrier, and the operating pressure in the intermediate circuit is higher than that in the primary system. In addition, the radioactivity in the intermediate circuit is monitored continuously, and there are also other protection measures in the design for isolating the intermediate circuit and the heating grid or desalination plant under some emergency conditions. The excellent performance of the above design precautions for the coupling interfaces has been demonstrated by operational practice from the NHR-5, a 5 MW(thermal) experimental NHR, which was put into operation in 1989. This paper presents the main design features of the NHR as well as the special provisions taken in the design for coupling the NHR to the heating grid or desalination plant and some operating experience from the NHR-5. (author)

  10. Factors and uncertainties in the profitability of using nuclear energy in desalination of water

    International Nuclear Information System (INIS)

    Thiriet, L.; Lievre, P.

    1969-01-01

    One of the economic advantages of nuclear energy consists of the small proportional element in its cost structure. Economies of scale favour the nuclear station as compared with the conventional thermal one, and when the demand for electricity and heat, in particular for desalination, are sufficient, nuclear energy may, subject to certain conditions, prove advantageous. The object of this paper is to discuss the validity of the conclusions reached according to the hypotheses adopted. In the first part, the different kind of uncertainties connected with technical, economic and financial data (the various transmission coefficients, the life of equipment according to the choice of materials, changes in prices, the form of price functions and interest rates), and with the various constraints, are examined and discussed. In the second part the uncertainties connected with the method of optimisation used and the criterion of selection adopted are examined and discussed. It is shown thereby that it is usually extremely difficult to assume absolutely the competitiveness, or conversely the non-competitiveness, of using nuclear energy in the desalination of water, and that a large number of aspects have to be carefully examined. (author) [fr

  11. The UK approach to desalination and nuclear power dual purpose operation

    International Nuclear Information System (INIS)

    Pugh, O.

    1974-01-01

    Nuclear desalination is a particular example of dual purpose operation and the majority of desalting units installed around the world are operated in this way. A nuclear dual purpose concept has to be very large if present economic reactor designs are utilised. It is the size which has defeated the concept to date. Present fossil fired dual purpose installations are either in an economic situation (generally low fuel cost) where the inefficiencies introduced by operating away from the optimum water/power ratio are acceptable or, if optimised, the water and power blocks are small enough to allow introduction into the existing utility networks. As part of the United Kingdom, Water Resources Board (WRB) report 'Desalination 1972' the Central Electricity Generating Board (CEGB) and WRB identified nine coastal sites in the United Kingdom where nuclear power stations might be built during the next 15 years. The difficulties of dual purpose operation were recognised in the report, including additional water storage to cover the summer shutdown (turbine overhaul) period, modification of station design to facilitate the extraction of steam, etc. More seriously, as a given power station had higher fuelling costs relative to the newer station, the electrical utility might require compensation for continuing to operate it because of the associated desalting plant. Taking account of these factors and the replacement of the lost electricity production from other, maybe less efficient stations on the system

  12. Financial study of an integrated nuclear desalination system in Tunisia: the Tundesal Project

    International Nuclear Information System (INIS)

    Bouzguenda Benzarti, Neila; Albouy, Michel; Nisan, Simon

    2006-01-01

    This paper focuses on a case study of financing an integrated nuclear desalination system at la Skhira site in Tunisia. More specifically, it shows the financial characteristics of the study, known as the TUNDESAL project, the main financing mechanisms that can be used, and the principal actions required to attract the potential investors and lenders. The paper describes: - The specific financial considerations corresponding to the particular characteristics of nuclear desalination projects: high capital costs, high level of risks and uncertainties, relatively long construction lead times and social and environmental concerns; - The main risks involved in nuclear energy projects; - The profitability study of the TUNDESAL project with the application of the Discounted Cash Flow Analysis; - The main financing sources for the project; - The financing schemes that can be used for project implementation and comparison between these schemes in terms of benefits generated, after covering project costs and repayment of lenders and investors; - The main actions to be done for making the project financially attractive in order to gain the confidence of investors and international financial institutions (optimal allocation of project risks and uncertainties, a suitable and flexible energy and water tariffs policy). Analysis has shown that in particular conditions of Tunisia, the most attractive financial scheme could be the 'project financing + leasing'. (authors)

  13. Analysis of the nuclear heating reactor and its possible application in seawater desalination

    International Nuclear Information System (INIS)

    Zhang Yajun; Zhang Dafang; Dong Duo

    1998-01-01

    In order to mitigate the problems of the energy shortage, environmental pollution caused by coal burning and the transport burden in China, the Institute of Nuclear Energy Technology (INET), Tsinghua University, under the support of the state, began the research and development (R and D) of nuclear heating reactor (NHR), which is one of the national key R and D projects in China since the 1980's. Since a 5MW test NHR was completed in November 1989, a lot of experiments have been carried on the NHR-5. The NHR-200 is developed on the experience gained from the design, construction, start-up and operation of the NHR-5. It is designed with a number of advanced and inherent safety features. The main technical and safety features of NHR-200 are: a vessel type light water reactor with the integrated arrangement, full power natural circulation, self-pressurized performance and dual vessel structure. The hydraulic driving system of the control rods is adopted. The design of the NHR-200 insures that the reactor core can be always covered by coolant at any LOCA conditions and the possibility of rods ejection event is excluded by using hydraulic control rods driving system. The excellent performance of the NHR-200 shows that it is suitable to the coupling with a seawater desalination plant from both technical and economic stand. According to the systematic analysis and comparison of economy, technology and safety, the selected coupling design of desalination plant with the NHR-200 are: the steam generator plus multi-effect distillation (MED) process for single water production and the steam generator plus turbine system plus MED process for cogeneration of water-electricity. The economic analysis based on the above mentioned two coupling designs has be conducted. The desalinated water price and its influential factors are determined under present technological circumstances. And some specific proposals of which system to select are given. (author)

  14. Energetic and economic cost of nuclear heat − impact on the cost of desalination

    Directory of Open Access Journals (Sweden)

    Dardour Saied

    2017-01-01

    Full Text Available An exploratory study has been carried out to evaluate the cost of heat supplied by a pressurized water reactor type of nuclear reactors to thermal desalination processes. In the context of this work, simplified models have been developed to describe the thermodynamics of power conversion, the energetics of multi-effect evaporation (MED, and the costs of electricity and heat cogenerated by the dual-purpose power plant. Application of these models show that, contrary to widespread belief, (nuclear-powered MED and seawater reverse osmosis are comparable in terms of energy effectiveness. Process heat can be produced, in fact, by a relatively small increase in the core power. As fuel represents just a fraction of the cost of nuclear electricity, the increase in fuel-related expenses is expected to have limited impact on power generation economics.

  15. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    International Nuclear Information System (INIS)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode

  16. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  17. Suitability of second pass RO as a substitute for high quality MSF product water in Nuclear Desalination Demonstration Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Venkatesh, P.; Balasubramanian, C.; Nagaraj, R.; Yadav, Manoj Kumar; Prabhakar, S.; Tewari, P.K.

    2012-01-01

    Nuclear Desalination Demonstration Plant at Kalpakkam consists of both Multi Stage Flash Distillation (MSF) and Seawater Reverse Osmosis (SWRO) process to produce desalinated water. It supplies part of highly pure water from MSF to Madras Atomic Power Station for its boiler feed requirements and remaining water is blend with SWRO product water and sent to other common facilities located inside Kalpakkam campus. A critical techno-economic analysis is carried out to find out the suitability of second pass RO to sustain the availability of highly pure water in case of MSF plant shutdown. (author)

  18. A small floating seawater desalination plant by using a nuclear heating reactor coupled with the MED process

    Energy Technology Data Exchange (ETDEWEB)

    Xue Dazhi; Zhang Dafang; Dong Duo [Institute of Nuclear Energy Technology, Tsinghua University, Beijing (China)

    2000-03-01

    Based on the experience of development of nuclear district heating reactor (NHR) a seawater desalination plant using NHR coupled with the multi-effect distillation (MED) process is being designed. With the same technology a floating desalination plant was proposed to supply potable water to remote areas or islands. With a 10 MWth NHR the floating plant could produce 4000 m{sup 3}/d of potable water and 750 kW of electricity. The design of NHR-10 and the safety features are described. The coupling scheme and parameters are given. Some special considerations for using in ship condition are also presented in this paper. (author)

  19. Determination of the costs of the nuclear desalination using the DEEP code from IAEA; Determinacion de los costos de la desalacion nuclear utilizando el codigo DEEP del OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Palacios H, J.C.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2005-07-01

    The desalination of seawater is being an important solution to satisfy the demands of drinking water to population's centers that have hydric resources very limited, like it is the case of some Arab countries and arid regions of the planet, in where they have settled desalination plants that use as energy source to those fossil fuels or nuclear energy plants. Taking into account that the desalination of seawater is a process that consumes a lot of thermal and/or electric energy, it is necessary to quantify the costs of the supply and that of the desalination plant for different options and technologies, looking for this way the but appropriate for the specific conditions of the region where it has planned the desalination of seawater. In this report the three technologies but promising for the desalination are described and by means of the DEEP code the costs of production of water and energy are evaluated, using as thermal source different types of power nuclear reactors. It was obtained according to DEEP that the costs of the electricity generation for the considered reactors are around 40 USD/MWh. With these costs of electric power generation and using the DEEP code is obtained that the costs of production of drinking water are around 1 USD/m{sup 3}. (Author)

  20. The role of nuclear desalination in the Kingdom of Saudi Arabia

    International Nuclear Information System (INIS)

    Aljohani, M.S.; Abdul-Rahman A.F.; Almarshad, A.I.

    2004-01-01

    In this study, the role of nuclear desalination in Saudi Arabia is investigated. A water demand forecast between the years 2000 and 2025 was established for the Eastern region of Saudi Arabia as part of the collected input data for the DEEP computer code. The DEEP computer code was run for several options of energy sources such as PWR (600 MWe), SPWR (160 MWth), PHWR (450 MWe), HR (200 MWth) and GT (125 MWe or 175 MWe). These energy sources were investigated for different desalination plants such as RO, MSF, MED and the hybrid MED-RO. The levelised power cost, average daily water production, net saleable power and levelised water cost are presented for all cases. Two scenarios were investigated, the first assumes no interest and discount rates and the second assumes interest and discount rates equal to 8%. The first scenario assumes that the water utility will continue under the control of the government and the second assumes that the water utility will be privatised. (author)

  1. Prospects of water desalination in conjunction with nuclear power stations in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.

    1978-01-01

    The paper reviews Pakistan's land and water resources vis-a-vis the present and projected demand of water to sustain its economy which is predominantly based on irrigated agriculture. As expected, the per capita agricultural land and the corresponding diversion of irrigation supplies per capita are all along declining due to increasing population pressure, however, it is shown that further development of irrigated agriculture will be increasingly constrained by water availability rather than the land resources. A glance at the nation's culturable land potential and the projected water budget would fully demonstrate this fact. In this context the paper discusses the likely role which the desalination technology can be called upon to play in supplementing the existing means of fresh water supply. Studies have also indicated fast-growing demands both for electric power and potable water in the Karachi area, on the sea coast, where the possibility of having dual-purpose nuclear power-cum-seawater desalination plant(s) in the late 1980's is being investigated. (author)

  2. A multi-stage-flash desalination plant of relative small performance with an integrated pressurized water reactor as a nuclear heat source

    International Nuclear Information System (INIS)

    Peltzer, M.; Petersen, G.

    1976-01-01

    In the Krupp-GKSS joint study MINIPLEX the requirements for seawater-desalination-plants with a performance in the range of 10,000 to 80,000 m 3 /d heated by a nuclear reactor are investigated. The reactor concept is similar to the integrated pressurized water reactor (IPWR) of the nuclear ship OTTO HAHN. The calculated costs of the desalinated water show, that due to the fuel cost advantages of reactors small and medium nuclear desalination plants are economically competetive with oil-fired plants since the steep rise of oil price in autumn 1973. (orig.) [de

  3. Impact of Nuclear Power and Desalination Plant Construction Toward National and East Java Economic

    International Nuclear Information System (INIS)

    Ratya-Anindita; Sriyana; M-Nasrullah

    2006-01-01

    The objective of this study is to determine the economic impacts of the construction of the nuclear power plant 2 x 100 MW(e) SMART type with desalination 4 x 10,000 m 3 which would conduct in years 2008 to 2017 in Madura Island, East Java. The predicted IO tables of 2008-2017 have been created by the application of dynamic IO projection. The economic impact was estimated through multiplier effect which covers direct impact and indirect impact as well as the induced effect. The expenditures of SMART nuclear power and desalination plant to the domestic contractors is estimated to amount to 88.2 million US dollar or 25.6 % of the whole expenditures. The total impact of the project to the national economy would be Rp. 6,329,347 million, Rp. 8,439,130 million, and Rp. 12,658,695 million for each scenario of the exchange rate as high as Rp. 7,500/US dollar, Rp. 10,000/US dollar, Rp. 15,000/US dollar, respectively for the scenario of dynamic growth. The total impact of the project to the provincial economy of East Java would be as much as Rp. 3,253,498 million, Rp. 4,337,997 million, and Rp. 6,506,995 million for each scenario of the exchange rate as high as Rp. 7,500/US dollar, Rp. 10,000/US dollar, Rp. 15,000/US dollar, respectively under the former scenario. Cumulative direct impact since pre-construction to construction period had been calculated as much as US dollar 101.8 million for sectors number 48.52 and 62. This have brought much impact on other sectors in national or provincial levels of economy. (author)

  4. A technical and economic evaluation of reverse osmosis nuclear desalination as applied at the Muria site in Indonesia

    International Nuclear Information System (INIS)

    Humphries, J.R.; Davies, K.; Vu, T.D.; Aryono, N.A.; Peryoga, Y.

    1998-01-01

    In many regions of the world, the supply of renewable water resources is inadequate to meet current needs, and that from non-renewable sources is being rapidly depleted. Since the worldwide demand for potable water is steadily growing, the result is water shortages that are already reaching serious proportions in many regions. This is particularly true in Indonesia where there is an increasing reliance on bottled water due to shortage of safe, fresh drinking water. To mitigate the stress being placed on water resources, additional fresh water production capability must be developed. Because of Indonesia's long coastline, seawater desalination is a good alternative. The main drawback of desalination, however, is that it is an energy intensive process. Therefore, the increasing global demand for desalted water creates a tremendous collateral demand for new sources of electrical power. In addition to providing a means of meeting regional electricity demand, the CANDU nuclear reactor can also serve as an energy source for a reverse osmosis (RO) seawater desalination plant. In conjunction with the use of electrical energy, waste heat from the reactor is used in the desalination plant to improve the efficiency of the RO process. This is done by using condenser cooling water being discharged from the CANDU reactor as a source of preheated feedwater for the RO system. The system design also makes use of advanced feedwater pretreatment and sophisticated design optimization analyses. The net result is improved efficiency of energy utilization, increased potable water production capability, reduced product water cost and reduced environmental burden. This approach to the integration of a seawater desalination plant with a CANDU nuclear reactor has the advantage of maximizing the benefits of system integration while at the same time minimizing the impacts of physical interaction between the two systems. Consequently, transients in one plant do not necessarily have adverse

  5. A small floating seawater desalination plant using a nuclear heating reactor coupled with the MED process

    International Nuclear Information System (INIS)

    Dong Duo; Wu Shaorong; Zhang Dafang; Wu Zongxin

    1997-01-01

    A small floating seawater desalination plant using a nuclear heating reactor coupled with a multi-effect distillation (MED) process was designed by the Institute of Nuclear Energy Technology, Tsinghua University of China. It was intended to supply potable water to remove coastal areas or islands where both fresh water and energy are severely lacking, and also to serve as a demonstration and training facility. The design of a small floating plant coupled two proven technologies in the cogeneration mode: a nuclear heating reactor (NHR-10), with inherent, passive safety features based on NHR-5 experience, and a low temperature MED process. The secondary loop was designed as a safety barrier between the primary loop and the steam loop. With a 10 MW(th) heating reactor, the floating plant could provide 4,000 m 3 /d of potable water and 750 kW of electricity. The design concept and parameters, safety features, coupling scheme and floating plant layout are presented in the paper. (author). 3 refs, 4 figs, 3 tabs

  6. A comprehensive economic evaluation of integrated desalination systems using fossil fuelled and nuclear energies and including their environmental costs

    International Nuclear Information System (INIS)

    Nisan, S.; Benzarti, N.

    2008-01-01

    Seawater desalination is now widely accepted as an attractive alternative source of freshwater for domestic and industrial uses. Despite the considerable progress made in the relevant technologies desalination, however, remains an energy intensive process in which the energy cost is the paramount factor. This Study is a first of a kind in that we have integrated the environmental costs into the power and desalination costs. The study has focused on the seawater desalination cost evaluation of the following systems. It is supposed that they will be operating in the co-generation mode (Simultaneous production of electrical power and desalted water) in 2015: Fossil fuelled based systems such as the coal and oil fired plants and the gas turbine combined cycle plant, coupled to MED, and RO; Pressurised water reactors such as the PWR-900 and the AP-600, coupled to MED, and RO; High temperature reactors such as the GT-MHR, the PBMR, coupled to MED, with the utilisation of virtually free waste-heat provided by these reactors. The study is made in real site-specific conditions of a site In Southern Europe. Sensitivity studies for different parameters such as the fossil fuel prices, interest and discount rates, power costs etc., have also been undertaken. The results obtained are then used to evaluate the financial interest of selected integrated desalination systems in terms of a detailed cash flow analysis, providing the net present values, pay back periods and the internal rate of returns. Analysis of the results shows that among the fossil fuelled systems the power and desalination costs by circulating fluidized bed coal fired plant would be the lowest with current coal prices. Those by oil fired plants would be highest. In all cases, integrated nuclear energy systems would lead to considerably lower power and water costs than the corresponding coal based systems. When external costs for different energies are internalized in power and water costs, the relative cost

  7. Coupling of copper-chloride hybrid thermochemical water splitting cycle with a desalination plant for hydrogen production from nuclear energy

    International Nuclear Information System (INIS)

    Orhan, Mehmet F.; Dincer, Ibrahim; Naterer, Greg F.; Rosen, Marc A.

    2010-01-01

    Energy and environmental concerns have motivated research on clean energy resources. Nuclear energy has the potential to provide a significant share of energy supply without contributing to environmental emissions and climate change. Nuclear energy has been used mainly for electric power generation, but hydrogen production via thermochemical water decomposition provides another pathway for the utilization of nuclear thermal energy. One option for nuclear-based hydrogen production via thermochemical water decomposition uses a copper-chloride (Cu-Cl) cycle. Another societal concern relates to supplies of fresh water. Thus, to avoid causing one problem while solving another, hydrogen could be produced from seawater rather than limited fresh water sources. In this study we analyze a coupling of the Cu-Cl cycle with a desalination plant for hydrogen production from nuclear energy and seawater. Desalination technologies are reviewed comprehensively to determine the most appropriate option for the Cu-Cl cycle and a thermodynamic analysis and several parametric studies of this coupled system are presented for various configurations. (author)

  8. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    Science.gov (United States)

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Water and nuclear power cogeneration with desalination: the U.S. projects and prospects

    International Nuclear Information System (INIS)

    Faibish, Ron S.

    2004-01-01

    Recent dramatic increases in water shortages across the globe necessitate exploring innovative and practical methods for increasing the world's ever-depleting water and energy supplies. One proposed solution to alleviate water shortage, which is gaining popularity around the world, is to desalt seawater and produce potable water, i.e., via seawater desalination. Indeed, the basic technological know-how is readily available from extensive previous experience, especially in the Middle East and Arabian Gulf regions. However, new proposals for coupling desalination plants with power plants for the convenient cogeneration of water and power are rapidly emerging and requiring re-evaluation of process technology and economics

  10. Review of nuclear electricity generation and desalination plants and evaluation of SMART application

    International Nuclear Information System (INIS)

    Kang, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Yoon, Ju Hyeon; Kim, Hwan Yeol; Lee, Young Jin; Kim, Joo Pyung; Lee, Doo Jeong; Chang, Moon Hee

    1998-03-01

    KAERI are developing a new advanced integral reactor named SMART for dual application purpose of the electric power generation and seawater desalination. This report are describing the general desalting methods with its technology development and the coupling schemes between electricity generation system and desalting system. Though MSF takes the most part of currently operating seawater desalination plants, MED and RO has been preferred in the past decade. MED has a advantage over MSF with the view to investment costs and energy efficiency. The coupling between electricity generation system and desalination system can be realized by using one of back pressure cycle, extraction cycle, and multi-shaft cycle. New design and operating strategy has to be established for various environment and load conditions. To evaluate the candidate desalination systems of SMART and the coupling method of it with other secondary systems, the desalted water and electricity were calculated through the several options. The result shows that back pressure cycle is preferred at the high water/power ratio and extraction cycle at the low value. If energy efficiency are only considered, RO will be best choice. (author). 17 refs., 12 tabs., 31 figs

  11. Energy analysis of a desalination process of sea water with nuclear energy; Analisis energetico de un proceso de desalinizacion de agua de mar con energia nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Martinez L, G.; Valle H, J., E-mail: julfi_jg@yahoo.com.mx [Universidad Politecnica Metropolitana de Hidalgo, Boulevard acceso a Tolcayuca No. 1009, Ex-hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2016-09-15

    In the present work, is theoretically proven that the residual heat, removed by the chillers in the stage prior to the compression of the recuperative Brayton cycle with which nuclear power plants operate with high temperature gas reactors (HTGR), can be used to produce stem and desalinate seawater. The desalination process selected for the analysis, based on its operating characteristics, is the Multi-Stage Distillation (Med). The Med process will use as energy source, for the flash evaporation process in the flash trap, the residual heat that the reactor coolant dissipates to the environment in order to increase the compression efficiency of the same; the energy dissipated depends on the operating conditions of the reactor. The Med distillation process requires saturated steam at low pressure which can be obtained by means of a heat exchanger, taking advantage of the residual heat, where the relative low temperatures with which the process operates make the nuclear plants with HTGR reactors ideal for desalination of sea water, because they do not require major modifications to their design of their operation. In this work the energy analysis of a six-stage Med module coupled to the chillers of an HTGR reactor of the Pebble Bed Modular Reactor type is presented. Mathematical modeling was obtained by differential equations of mass and energy balances in the system. The results of the analysis are presented in a table for each distillation stage, estimating the pure water obtained as a function of the heat supplied. (Author)

  12. Feasibility analysis of the Primary Loop of Pool-Type Natural Circulating Nuclear Reactor Dedicated to Seawater Desalination

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woonho; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the feasibility of natural circulation was evaluated for the reference plant AHR400 (Advanced Heating Reactor 400MWth). AHR400 is a pool-type desalination-dedicated nuclear reactor. As a consequence, AHR400 has low operating pressure and temperature which provides large safety margin. Removal of the reactor coolant pump from the AHR400 will enforce integrity of the reactor vessel and passive safety feature. Therefore, the study also tried to find out optimized primary loop design to achieve total natural circulation of the coolant. Natural circulation capacity of the primary loop of the desalination dedicated nuclear reactor AHR400 was evaluated. It was concluded that to remove RCP from the AHR400 and operates the reactor only by natural circulation of the coolant is impossible. Decreased core power as half make removal of RCP possible with 15m central height difference between the core and IHXs. Furthermore, validation and modification of pressure loss coefficients by small-scaled natural circulation experiment at a pool-type reactor would provide more accurate results.

  13. Design concept and its requirements of the integrated SMART nuclear desalination plant

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements

  14. Design concept and its requirements of the integrated SMART nuclear desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  15. Contribution to the optimization of the coupling of nuclear reactors to desalination processes; Contribution a l'optimisation du couplage des reacteurs nucleaires aux procedes de dessalement

    Energy Technology Data Exchange (ETDEWEB)

    Dardour, S

    2007-04-15

    This work deals with modelling, simulation and optimization of the coupling between nuclear reactors (PWR, modular high temperature reactors) and desalination processes (multiple effect distillation, reverse osmosis). The reactors considered in this study are PWR (Pressurized Water Reactor) and GTMHR (Gas Turbine Modular Helium Reactor). The desalination processes retained are MED (Multi Effect Distillation) and SWRO (Sea Water Reverse Osmosis). A software tool: EXCELEES of thermodynamic modelling of coupled systems, based on the Engineering Algebraic Equation Solver has been developed. Models of energy conversion systems and of membrane desalination processes and distillation have been developed. Based on the first and second principles of thermodynamics, these models have allowed to determine the optimal running point of the coupled systems. The thermodynamic analysis has been completed by a first economic evaluation. Based on the use of the DEEP software of the IAEA, this evaluation has confirmed the interest to use these types of reactors for desalination. A modelling tool of thermal processes of desalination in dynamic condition has been developed too. This tool has been applied to the study of the dynamics of an existing plant and has given satisfying results. A first safety checking has been at last carried out. The transients able to jeopardize the integrated system have been identified. Several measures aiming at consolidate the safety have been proposed. (O.M.)

  16. International Conference on water reuse and desalination

    International Nuclear Information System (INIS)

    1984-01-01

    The International conference on water reuse and desalination was held on the 13 November 1984 in Johannesburg, South Africa. Papers delivered on this conference covered the following aspects: desalination technology, industrial effluent control, economics of desalination of wastewaters, consumable supplies in desalination, the world market for seawater desalination equipment, reverse osmosis, evaporation and ultrafiltration, treatment of hazardous wastes, role of reverse osmosis in waste water treatment, as well as the desalination, recovery and recycle of water with high efficiency. A paper was also delivered on the mechanical vapour compression process applied to seawater desalination - as an example the paper presents the largest unit so far constructed by SIDEM using this process: a 1,500 mz/day unit installed in the Nuclear power plant of Flamanville in France

  17. Desalination plan with nuclear reactors as part of a sustainable development program in Mexico; Plan de desalinizacion con reactores nucleares como parte de un programa de desarrollo sustentable en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rojas A, O; Calleros M, G., E-mail: oziel.rojas.siimisa@gmail.com [Soluciones en Instrumentacion Integral y Mantenimiento Industrial y Servicios, S. A. de C. V. (Mexico)

    2016-09-15

    This paper presents a project for the desalination of seawater with nuclear reactors, in order to supply fresh water to the populations near to the nuclear power plant. A case study is proposed with the nuclear power plant of Laguna Verde, implementing a system that allows taking advantage of the residual heat of the seawater condensate stage and with this, to supply drinking water to the surrounding localities where the vital liquid is scarce. In addition, legislation is proposed to allow some of the thermal energy generated by reactors producing electrical energy in Mexico to be used for the desalination of seawater and/or hydrogen production. (Author)

  18. Economic evaluation of application of nuclear power, fossil and biomass for seawater desalination in the case of Mexico

    International Nuclear Information System (INIS)

    Palacios G, N.; Gomez A, R.; Vazquez R, R.; Espinosa P, G.

    2009-10-01

    In this work the fresh water production costs are compared on base to the seawater desalination, taking advantage of the heat or the electricity generated by means of the nuclear fission, the energy fossil result of the combustion of natural gas, fuel oil and coal, as well as the electricity generated by the bio-fuels combustion. The option of generating electricity and at the same time to produce drinking water is discussed. Using electricity, the best combination of technologies as for costs, the option more cheap, it is the distillation by means of a distillation combined process of multiple effects combined with reverse osmosis using nuclear energy coming from a gas cooled reactor using a cycle Brayton. While using direct heat was as the option more economic the use of nuclear vapor of low pressure exchanging heat in a vapor generator of low pressure, as energy source of a flash distillation process of several stages. In this last case, the energy source or nuclear vapor will be the result of the operation of a nuclear power plant cooled and moderate with water and operating in a cycle Rankine. (Author)

  19. Nuclear Heat Application: Desalination as an Alternative Process for Potable Water Production in Indonesia (part 2)

    International Nuclear Information System (INIS)

    Amir-Rusli

    2000-01-01

    A survey of water supply and demand system and identification of desalination process need for Indonesia has been carried out. Even Indonesia is located in tropical zone of equator; it is still reported lack of water resources, especially during 6 months dry season. Due to miss-water management and bad attitude of the people itself occurred in the past; most of conventional water resources of river, lake and reservoir were damaged during development period of industrial and agriculture sectors. A half of 200 millions peoples of Indonesian population are still scarce of potable drinking water during the year of 1997. Jakarta as the capital has a population of 10 millions people which is the worse water availability in capita per year in the world at present. Seawater intrusion problem to about more than 11 km away is also detected in big cities of the main islands of Indonesia, and these same conditions are faced to other thousands of small islands. Therefore it is an urgent situation to develop a total integrated water management system in order to improve the performance of water resources. Desalination system of seawater/brackish water is considered and showed a good alternative for potable water production for domestic or industrial purposes. But in the long-term, water management system of the effectiveness cycle use of water should be implemented at sites. (author)

  20. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    Energy Technology Data Exchange (ETDEWEB)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan); Asano, Takashi; Tamata, Shin [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)

    2013-07-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it

  1. Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126

    International Nuclear Information System (INIS)

    Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke; Asano, Takashi; Tamata, Shin

    2013-01-01

    Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K d s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K d s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K d s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K d s and it was used for

  2. Technical aspects of coupling a 6300 m3/day MSF-RO desalination plant to a PHWR nuclear power plant

    International Nuclear Information System (INIS)

    Verma, R.K.

    1998-01-01

    Presently, eight pressurised Heavy Water Reactors (PHWRs) each of 235 MWe capacity are operational in India. Four more units of similar capacity are expected to be commissioned soon. Work on two units each of 500 MWe capacity is also initiated. Extensive engineering development work has also been carried out in India, both on the MSF process and the membrane process. Based on the experience obtained from the presently operating 425 m 3 /d MSF plant and from the R and D work on the RO process, a 6300 m 3 /d MSF-RO plant (4500 m 3 /d MSF and 1800 m 3 /d RO) has been designed and the work for setting up this plant is undertaken. The steam for the heating duty in the brine heater as well as the steam for the evacuation purpose for the MSF plant is proposed to be obtained from the nuclear plant steam cycle. Sea water feed for the MSF plant as well as for the RO plant will be derived from the sea water discharge system of the nuclear power plant. Provision is made for supply of electrical power also from the power plant. The details of the heating steam supply circuit starting from the steam tapping point on the nuclear plant side to the MSF plant brine heater inlet and the arrangement for the return of condensate to the nuclear plant has been described with component requirement and various technical considerations. All the liquid streams and the steam supplied from the nuclear plant to the desalination plant as well as the product water will be monitored to ensure that there is no radioactive contamination. (author)

  3. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible, and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in the research contract CNEA - IAEA to evaluate projects of nuclear desalination. The objective and scope of this work is to know the advantages and disadvantages of each desalination technology, distinctive characteristics of each of them, that make them adapt better to different uses and outline conditions and analysis of related antecedents of its use in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations found in the last years for the different technologies are also included. (author)

  4. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in a research contract between CNEA and the IAEA to evaluate projects of nuclear desalination. This paper analyses the benefits and drawbacks of each desalination technology, the distinctive characteristics of the technology that fit better the different uses, and outlines the related antecedents of its application in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations made in the last years for the different technologies are also described. (author)

  5. Development of an active solar humidification-dehumidification (HDH) desalination system integrated with geothermal energy

    International Nuclear Information System (INIS)

    Elminshawy, Nabil A.S.; Siddiqui, Farooq R.; Addas, Mohammad F.

    2016-01-01

    Highlights: • Productivity increases with increasing geothermal water flow rate up to 0.15 kg/s. • Geothermal energy increases productivity by 187–465% when used with solar energy. • Daytime experimental productivity (8AM-5PM) up to 104 L/m"2 was achieved. • Daily experimental productivity (24 h) up to 192 L/m"2 was achieved. • Fresh potable water can be produced at 0.003 USD/L using this desalination setup. - Abstract: This paper investigates the technical and economic feasibility of using a hybrid solar-geothermal energy source in a humidification-dehumidification (HDH) desalination system. The newly developed HDH system is a modified solar still with air blower and condenser used at its inlet and outlet respectively. A geothermal water tank in a temperature range 60–80 °C which imitates a low-grade geothermal energy source was used to supply heat to water inside the humidification chamber. The experiments were conducted in January 2015 under the climatological conditions of Madinah (latitude: 24°33′N, longitude: 39°36′0″E), Saudi Arabia to study the effect of geothermal water temperature and flow rate on the performance and productivity of proposed desalination system. Analytical model was also developed to compare the effect of solar energy and combined solar-geothermal energy on accumulated productivity. Daytime experimental accumulated productivity up to 104 L/m"2 and daily average gained output ratio (GOR) in the range 1.2–1.58 was achieved using the proposed desalination system. Cost of fresh water produced using the presented desalination system is 0.003 USD/L.

  6. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Kourachenkov, A.V.

    1998-01-01

    The general issues regarding NHR and desalination facility joint operation for potable water production are briefly considered. AST-500 reactor plant and DOU GTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. Similarity of NHR operation for a heating grid and a desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author)

  7. Coupling of AST-500 heating reactors with desalination facilities

    International Nuclear Information System (INIS)

    Gureyeva, L.V.; Egorov, V.V.; Podberezniy, V.L.

    1997-01-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab

  8. Coupling of AST-500 heating reactors with desalination facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gureyeva, L V; Egorov, V V [OKBM, Nizhny Novgorod (Russian Federation); Podberezniy, V L [Scientific Research Inst. of Machine Building, Ekaterinburg (Russian Federation)

    1997-09-01

    The general issues regarding the joint operation of a NHR and a desalination facility for potable water production are briefly considered. The AST-500 reactor plant and the DOUGTPA-type evaporating desalination facilities, both relying on proven technology and solid experience of construction and operation, are taken as a basis for the design of a large-output nuclear desalination complex. Its main design characteristics are given. The similarity of NHR operation for heating grid and desalination facility in respect of reactor plant operating conditions and power regulation principles is pointed out. The issues of nuclear desalination complexes composition are discussed briefly as well. (author). 2 refs, 1 fig., 1 tab.

  9. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4A/m2, which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology. © 2012 Elsevier B.V.

  10. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    Science.gov (United States)

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Desalination for a thirsty world

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    Shortages of fresh water for some, unbridled consumption by others create intolerable planetary imbalances. The treatment of seawater and brackish water can really be effective in readjusting this inequality. Because they are reliable and efficient and their output is stable, the techniques preferred by the desalination industry are thermal distillation and reverse osmosis. Because thermal distillation processes consume considerable energy, they are often paired with gas-, coal- or fuel oil-fired heating plant to take advantage of the steam produced. More than three-quarters of this energy is effectively used to preheat the seawater. In the nuclear option (fresh water + electric power), the reactors simultaneously produce fresh water and electric power, ensuring a stable, continuous supply of energy. A portion of the steam produced by the turbine of the plant's secondary circuit is customarily used to run the alternator to generate electricity. The other portion can be fed to a desalination installation, which may be composed of a combination of several systems (hybrid installations). Highly competitive, this type of cogeneration is particularly appropriate for large scale desalination installations. This is the case for some of the Gulf Emirates and for Jordan: both are investigating the nuclear option to cover their electric power and fresh water requirements. The first nuclear desalination plant dedicated to producing fresh water was built for the city of Aktau (170,000 inhabitants) in Kazakhstan on the Caspian Sea in 1963 and continued operation through 1999. Experiments for producing potable water are taking place in India, Pakistan, Egypt and Libya. In Japan, around ten small desalination units coupled with nuclear power plants produce fresh water for industrial use, and nuclear-run district heating projects are currently being developed in Russia and China. The problem of what to do with the hyper-saline brine produced by desalination and its affect on

  12. Sea water desalination by horizontal tubes evaporator

    International Nuclear Information System (INIS)

    Mohammadi, H.K.; Mohit, M.

    1986-01-01

    Desalinated water supplies are one of the problems of the nuclear power plants located by the seas. This paper explains saline water desalination by a Horizontal Tube Evaporator (HTE) and compares it with flash evaporation. A thermo compressor research project using HTE method has been designed, constructed, and operated at the Esfahan Nuclear Technology Center ENTC. The poject's ultimate goal is to obtain empirical formulae based on data gathered during operation of the unit and its subsequent development towards design and construction of desalination plants on an industrial scale

  13. Efficient Desalination of Brackish Ground Water via a Novel Capacitive Deionization Cell Using Nanoporous Activated Carbon Cloth Electrodes

    Directory of Open Access Journals (Sweden)

    K. Laxman

    2015-12-01

    Full Text Available Sea water intrusion in ground water sources has made brackish water desalination a necessity in Oman. The application of capacitive deionization (CDI for the deionization of ground water samples from wells in Al-Musanaah Wilayat is proposed and demonstrated. A CDI cell is fabricated using nanoporous activated carbon cloth (ACC as the electrodes and is shown to be power efficient for desalting ground water samples with total dissolved solids (TDS of up to 4,000 mg/l. The CDI cell was able to remove up to 73% of the ionic scaling and fouling contaminants from brackish water samples. The power consumption for deionization of brackish water was estimated to be 1 kWh/m3 of desalinated water, which is much lower than the power required to process water with equivalent TDS by the reverse osmosis processes. The CDI process is elaborated, and observations and analysis of the ion adsorption characteristics and electrical properties of the capacitive cell are elucidated.

  14. Joint Russian-Canadian project of creation of floating nuclear - desalinating complex

    International Nuclear Information System (INIS)

    Zelenskij, D.I.; Shamanin, V.G.; Polunichev, V.I.; Khamfris, D.R.; Davis, K.

    2002-01-01

    A concourse of low-power NPP was conducted in Russia in 1994. It was conducted under the aegis of Nuclear Association of Russia. The projects of three reactor power groups were considered: less than 10 MW (t), from 10 to 50 MW (t) and more than 50 MW (t). More than 20 projects were presented. In the third power group the best was the project KLT-40. The reactor is manufactured production-run for nuclear-powered icebreakers, and underwent public and international examination. It was recommended to give preference to floating power units (FPU) at selecting of a location option for a definite Customer under other equal conditions for remote state regions. Simultaneously with the concourse the market for low-power NPP was researched. Technical-economical reports on Chukotski autonomous region, Primorski and Khabarovski regions and other remote regions of the North and North East of the state were made. At considering of an issue of low-power NPP usage for the North of Russia more than 250 points were examined. As a result of conducted analysis were selected 26 promising points for location of low-power NPP. Preliminary analysis of low-power NPP development projects efficiency earnestly showed their high competitiveness in comparison with standard power-suppliers in remote regions of Russia, even at presence of proper energy carriers. (author)

  15. Pre-project study on a demonstration plant for seawater desalination using a nuclear heating reactor in Morocco

    International Nuclear Information System (INIS)

    Achour, M.

    2000-01-01

    This paper gives in the first part detailed information on the pre-project study on a demonstration plant for seawater desalination using heating reactor implemented by both Moroccan and Chinese sides. The main findings of the pre-project study are given in the second part. (author)

  16. Prospect on Desalination and Other Non-Electric Applications of Nuclear Energy In Indonesia

    Directory of Open Access Journals (Sweden)

    G.R. Sunaryo

    2007-01-01

    Full Text Available Molten-Salt Reactor (MSR is a design of an advanced reactor system from the GEN IV family working in thermal or epithermal neutron spectrum and using thorium or transuranium fuel in the form of molten fluorides. It is based on the experience with the development of the molten-salt reactor technology in the Oak-Ridge National Laboratory in the United States. The MSR fuel cycle with integrated reprocessing represents one of the potential ways both for significant decrease of total amount of radioactive wastes for final deposition and for utilization of nuclear energy for electricity and heat production as effectively as possible. There are two pyrochemical reprocessing techniques studied in NRI Rez plc which are considered to be applied both for reprocessing of already existing spent fuel and for preparation and „on-line“ reprocessing of MSR fuel: (i the Fluoride Volatility Method (FVM, which performs chemical conversion of spent thermal oxide fuel components into fluorides and their consequent separation by means of their different volatility, thermal stability and chemical affinity to various sorbents; and (ii electrochemical separation of the actinides (Ans and fission products (FP, represented mainly by lanthanides (Lns, from each other by electrolytic deposition method on solid cathode in molten fluoride media.

  17. Recent development in thermally activated desalination methods: achieving an energy efficiency less than 2.5 kWhelec/m3

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-05-19

    Water-Energy-Environment nexus is a crucial consideration when designing seawater desalination processes, particularly for the water-stressed countries where the annual water availability is less than 250 m3 per capita. Despite the thermodynamics limit for seawater desalination at normal conditions is about 0.78 to 1.09 kWhelec/m3, the specific energy consumption of desalination of real plants is found to operate at several folds higher. Today’s technological advancement in membranes, namely the reverse osmosis processes, has set an energy consumption of around 3.5–5 kWhelec/m3, while the conventional perception of thermally activated processes such as MSF and MED tends to be higher. Although the higher energetic specific consumption of MED or MSF processes appeared to be higher at 60–100 kWhthermal/m3, their true electricity equivalent has been converted, hitherto, using the energetic analyses where the work potential of working steam of the processes cannot be captured adequately. Thermally activated processes, such as MED and MSF, form the bottoming cycle of a cogeneration plant where both electricity and desalination processes operate in tandem in a cascaded manner. Only the bled-steam at lower exergy is extracted for the desalination processes. In this presentation, we demonstrate that in a cogen plant with 30% bled-steam for MED processes, the exergy destruction ratio is found to be less than 7% of the total available exergy that emanated from the boilers. By the exergetic approach, the equivalent electricity consumption of an average 75 kWhthermal/m3 would result in an electrical equivalent of less than 2.5 kWhelec/m3. Also in this presentation, the authors will elaborate the latest developments in the use of hybridization concept where the MED and the AD cycles are thermodynamically integrated and enhancing the overall efficiency of desalination. © 2015 Balaban Desalination Publications. All rights reserved.

  18. Advances in desalination technology

    International Nuclear Information System (INIS)

    Pankratz, T.M.

    2005-01-01

    Seawater desalination has been the cornerstone of the Middle East's water supply strategy since the mid-1950s, and most of the installed desalination capacity is still provided by multistage flash evaporators. But, desalination is changing. In fact, the term 'desalination' is no longer limited to seawater applications; desalination technologies are now routinely employed to desalinate brackish groundwater and repurify municipal effluents. Recent advances in desalination technology have simultaneously reduced costs while dramatically improving performance and reliability to the point where desalination technologies now compete with 'conventional' treatment processes in many applications. New commercial strategies and a realisation of the economies-of-scale have led to further improvements in plant economics, and an increase in the size of plants now being developed and constructed. This presentation reviews advances in membrane and membrane pretreatment systems, energy recovery devices, materials of construction, hybrid process configurations, increased unit capacities, and the use of public-private partnerships; all of which have led to reduced capital and operating costs, enabling desalination to be economically competitive with traditional treatment options. Advances in desalination technology have resulted in better performances, lower capital and operating costs, and increased application of desalination systems. In the face of increased water shortages and growing costs of 'conventional treatment', this trend will certainly continue. (author)

  19. Examining the economics of seawater desalination using the DEEP code

    International Nuclear Information System (INIS)

    2000-11-01

    This Technical Document presents analysis of the results of the study initiated by the IAEA on comparison of costs of nuclear and fossil fuel energy sources coupled with selected seawater desalination processes, including regional studies and sensitivity analysis. The economical modelling was performed with use of the Desalination Economic Evaluation Program code (DEEP) released in 1998 which incorporated the latest advances in economic modelling and technological changes in both desalination and reactor technologies

  20. Microbial desalination cells for energy production and desalination

    KAUST Repository

    Kim, Younggy; Logan, Bruce E.

    2013-01-01

    Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving

  1. Study of reliability for the electricity cogeneration and seawater desalination in the Northwest of Mexico

    International Nuclear Information System (INIS)

    Hernandez U, G. O.; Ortega C, R. F.

    2008-01-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic by its characteristics of zero gas emissions of greenhouse effect, competitive costs in the generation, operative experience and safety of the nuclear reactors, resulting attractive mainly for the desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was analyzed from a thermodynamic viewpoint, mentioning the economic aspect, the nuclear desalination according to the world experience; they were simulated some couplings and operation forms of nuclear reactors and desalination units, was made emphasis in one particularly. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be coupled to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. Specially and topic of this article, it is studied a case of the IRIS reactor of 335 MW e coupled to a MED station of nominal capacity of 140,000 m 3 /day. It is utilized for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out a thermodynamic and economic preliminary evaluation, as well as the THERMOFLEX simulator to reinforce and to compare the thermodynamic part. They

  2. Approach for smart application to desalination and power generation

    International Nuclear Information System (INIS)

    Chang Moon Hee; Kim Si-Hwan

    1998-01-01

    A 330 MWt integral reactor, SMART, and an integrated nuclear seawater desalination system coupled with SMART are currently under conceptual development at KAERI. The SMART will provide energy to the desalination system either in the form of heat or electricity, or both. The integrated nuclear desalination system aims to produce about 40,000 m 3 /day potable water from seawater for demonstration purposes. The remaining energy produced by SMART will be converted into electrical energy. Several important factors are especially considered in the process of SMART and its application system development. The development emphasizes the adoption of technically proven and advanced technology, measures to secure the safety and reliability of the reactor system, consideration of the desalination process for coupling with SMART, a licensing strategy for SMART and the integrated nuclear desalination system, and international cooperation for promoting nuclear desalination with the SMART development program. The current effort to establish the concept of SMART and its application for desalination is being pursued intensively to secure the safety and reliability of SMART, to prove the implemented concepts/technology considering the coupling with the desalination process, and to formulate an optimum licensing approach. This paper aims to present the technical and strategic approach of SMART and its application system. (author)

  3. The sea water desalination by the nuclear reactors; Le dessalement de l'eau de mer par les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Nisan, S. [CEA Cadarache, Dir. du Developpement et de l' Innovation Nucleares DDIN, 13 - Saint-Paul-lez-Durance (France)

    2002-07-01

    This document underlines the importance of water shortage in many areas in the world in the future. The water sea desalination can be a efficient solution to this problem. The desalination methods are presented. In this context the desalination reactors appear as a competitive solution, facing the fossil energies systems not only for the simultaneous electric power and drinking water production, but also for the minimization of greenhouse gases. (A.L.B.)

  4. Use of reactor plants of enhanced safety for sea water desalination, industrial and district heating

    International Nuclear Information System (INIS)

    Panov, Yu.; Polunichev, V.; Zverev, K.

    1997-01-01

    Russian designers have developed and can deliver nuclear complexes to provide sea water desalination, industrial and district heating. This paper provides an overview of these designs utilizing the ABV, KLT-40 and ATETS-80 reactor plants of enhanced safety. The most advanced nuclear powered water desalination project is the APVS-80. This design consists of a special ship equipped with the distillation desalination plant powered at a level of 160 MW(th) utilizing the type KLT-40 reactor plant. More than 20 years of experience with water desalination and reactor plants has been achieved in Aktau and Russian nuclear ships without radioactive contamination of desalinated water. Design is also proceeding on a two structure complex consisting of a floating nuclear power station and a reverse osmosis desalination plant. This new technology for sea water desalination provides the opportunity to considerably reduce the specific consumption of power for the desalination of sea water. The ABV reactor is utilized in the ''Volnolom'' type floating nuclear power stations. This design also features a desalinator ship which provides sea water desalination by the reverse osmosis process. The ATETS-80 is a nuclear two-reactor cogeneration complex which incorporates the integral vessel-type PWR which can be used in the production of electricity, steam, hot and desalinated water. (author). 9 figs

  5. Small and medium reactor development and its application to seawater desalination

    International Nuclear Information System (INIS)

    Kupitz, Juergen; Konishi, Toshio; Breidenbach, Lothar

    1996-01-01

    The work done within framework of the IAEA's nuclear desalination programme over the past seven years has shown what can be achieved through cooperative approaches involving active national participation and financial support. All the results so far illustrate that the application of nuclear to seawater declination is a realistic option. The challenge ahead is to demonstrate its use by proceeding with effective development and practical applications

  6. Worker in nuclear activity

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de; Associacao Brasileira de Direito Nuclear, Rio de Janeiro)

    1984-01-01

    Juridical aspects with respect to the workers in nuclear activity are presented. Special emphasis is given to the clauses of the statute of workers (Consolidacao das Leis do Trabalho) the rules of the Ministerio do Trabalho and the rules of the Comissao Nacional de Energia Nuclear. The performance of the international authorities is also emphasized such as the International Labour Organization, the International Atomic Energy Agency and the International Radiological Protection Commission. (Author) [pt

  7. Seawater desalination using small and medium light water reactors

    International Nuclear Information System (INIS)

    Shimamura, Kazuo

    2000-01-01

    Water is an essential substance for sustaining human life. As Japan is an island country, surrounded by the sea and having abundant rainfall, there is no scarcity of water in daily life except during abnormally dry summers or after disasters such as earthquakes. Consequently, there is hardly any demand for seawater desalination plants except on remote islands, Okinawa and a part of Kyushu. However, the IAEA has forecast a scarcity of drinking water in developing countries at the beginning of the 21st century. Further, much more irrigation water will be required every year to prevent cultivated areas from being lost by desertification. If developing countries were to produce such water by seawater desalination using current fossil fuel energy technology, it would cause increased air pollution and global warming. This paper explains the concept of seawater desalination plants using small and medium water reactors (hereinafter called 'nuclear desalination'), as well as important matters regarding the export nuclear desalination plants to developing countries. (author)

  8. A Desalination Battery

    KAUST Repository

    Pasta, Mauro; Wessells, Colin D.; Cui, Yi; La Mantia, Fabio

    2012-01-01

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  9. A desalination battery.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Cui, Yi; La Mantia, Fabio

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na(2-x)Mn(5)O(10) nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l(-1) for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (~ 0.2 Wh l(-1)), the most efficient technique presently available. © 2012 American Chemical Society

  10. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  11. Prospects for the utilization of small nuclear plants for civil ships, floating heat and power stations and power seawater desalination complexes

    International Nuclear Information System (INIS)

    Polunichev, V.I.

    2000-01-01

    Small power nuclear reactor plants developed by OKB Mechanical Engineering are widely used as propulsion plants in various civil ships. Russia is the sole country in the world that possesses a powerful icebreaker and transport fleet which offers effective solution for vital socio-economic tasks of Russia's northern regions by maintaining a year-round navigation along the Arctic sea route. In the future, intensification of freighting volumes is expected in Arctic seas and at estuaries of northern rivers. Therefore, further replenishment of nuclear-powered fleet is needed by new generation ice-breakers equipped with advanced reactor plants. Adopted progressive design and technology solutions, reliable equipment and safety systems being continuously perfected on the basis of multi year operation experience feedback, addressing updated safety codes and achievement of science and technology, allow the advanced propulsion reactor plants of this type to be recommended as energy sources for floating heat and power co-generation stations and power-seawater desalination complexes. (author)

  12. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.; Thu, Kyaw; Kim, Youngdeuk; Chakraborty, Anutosh; Amy, Gary L.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy

  13. Influence of fuel costs on seawater desalination options

    International Nuclear Information System (INIS)

    Methnani, Mabrouk

    2007-01-01

    Reference estimates of seawater desalination costs for recent mega projects are all quoted in the range of US$0.50/m 3 . This however does not reflect the recent trends of escalating fossil fuel costs. In order to analyze the effect of these trends, a recently updated version of the IAEA Desalination Economic Evaluation Program, DEEP-3, has been used to compare fossil and nuclear seawater desalination options, under varied fuel cost and interest rate scenarios. Results presented for a gas combined-cycle and a modular high-temperature gas-cooled reactor design, show clear cost advantages for the latter, for both Multi-Effect Distillation (MED) and Reverse Osmosis (RO). Water production cost estimates for the Brayton cycle nuclear option are hardly affected by fuel costs, while combined cycle seawater desalination costs show an increase of more than 40% when fuel costs are doubled. For all cases run, the nuclear desalination costs are lower and if the current trend in fossil fuel prices continues as predicted by pessimist scenarios and the carbon tax carried by greenhouse emissions is enforced in the future, the cost advantage for nuclear desalination will be even more pronounced. Increasing the interest rate from 5 to 8% has a smaller effect than fuel cost variations. It translates into a water cost increase in the range of 10-20%, with the nuclear option being the more sensitive. (author)

  14. Economic evaluation of application of nuclear power, fossil and biomass for seawater desalination in the case of Mexico; Evaluacion economica de la aplicacion de la potencia nuclear, fosil y biomasa para desalar agua de mar en el caso de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, N.; Gomez A, R.; Vazquez R, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Depto. de Ingenieria de Procesos e Hidraulica, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: rvr@xanum.uam.mx

    2009-10-15

    In this work the fresh water production costs are compared on base to the seawater desalination, taking advantage of the heat or the electricity generated by means of the nuclear fission, the energy fossil result of the combustion of natural gas, fuel oil and coal, as well as the electricity generated by the bio-fuels combustion. The option of generating electricity and at the same time to produce drinking water is discussed. Using electricity, the best combination of technologies as for costs, the option more cheap, it is the distillation by means of a distillation combined process of multiple effects combined with reverse osmosis using nuclear energy coming from a gas cooled reactor using a cycle Brayton. While using direct heat was as the option more economic the use of nuclear vapor of low pressure exchanging heat in a vapor generator of low pressure, as energy source of a flash distillation process of several stages. In this last case, the energy source or nuclear vapor will be the result of the operation of a nuclear power plant cooled and moderate with water and operating in a cycle Rankine. (Author)

  15. NDDP multi-stage flash desalination process simulator design

    International Nuclear Information System (INIS)

    Chatterjee, M.; Sashi Kumar, G.N.; Mahendra, A.K.; Sanyal, A.; Gouthaman, G.

    2006-05-01

    A majority of large-scale desalination plants all over the world employ multi-stage flash (MSF) distillation process. Many of these MSF desalination plants have been set up near to nuclear power plants (generally called as nuclear desalination plants) to effectively utilize the low-grade steam from the power plants as the source of energy. A computer program called MSFSIM has been developed to simulate the MSF desalination plant operation both for steady state and various transients including start up. This code predicts the effect of number of stages, flashing temperature, velocity of brine flowing through the tubes of brine heater and evaporators, temperature of the condensing thin film etc. on the plant performance ratio. Such a code can be used for the design of a new plant and to predict its operating and startup characteristics. The code has been extensively validated with available start up data from the pilot MSF desalination plant of 425-m3/day capacity at Trombay, Mumbai. A MSF desalination plant of 4500-m3/day capacity is under construction by BARC at Kalpakkam, which will utilize the steam from Madras Atomic Power Station (MAPS). In this present work extensive parametric study of the 4500-m3/day capacity desalination plant at Kalpakkam has been done using the code MSFSIM for optimizing the operating parameters in order to maximize the performance ratio for stable plant operation. The aim of the work is prediction of plant performance under different operating conditions. (author)

  16. Desalination of brackish and sea water

    International Nuclear Information System (INIS)

    Shukla, Dilip R.

    2005-01-01

    In Pali, Rajasthan, a population of 4 lacs gets about 6 million liters of water. Only 34 out of 116 municipalities in AP get regular water. Desalination found acceptance because of the decreasing water table leading to high salinity and making conventional treatment methods irrelevant. While choosing amongst the competitive desalination techniques that are available today for conversion of large quantities of saline water, Reverse Osmosis (RO) and distillation techniques stand out. RO rules the brackish water market where feed salinity is over 700 mg/L. Waste heat is nowadays a non-entity in power plants due to the developments of waste heat recovery systems in power plant technology. Most of the large plants tend to choose thermal desalination. Improved RO economics have in turn increased the attractiveness and use of seawater reverse osmosis (SWRO) technology for many large drinking water projects through out the world. Energy cost is the single largest factor in the cost of Sea Water System (usually 20 to 30% of total cost of water). Nuclear Power Corporation, Kudankulam proposed to build a SW desalination system based on RO technology to meet the water requirement of the Anu Vijay Nagar township and Nuclear Power Station. Energy recovery turbine helps reduce the overall system energy requirement. (author)

  17. Nuclear Activities (Prohibitions) Act 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The purpose of this Act is to protect the health and safety of the people of Victoria and its environment by prohibiting nuclear activities from being carried out and regulating the possession of certain nuclear material in a manner consistent with assisting Australia in meeting its international nuclear non-proliferation objectives. (NEA) [fr

  18. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  19. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  20. ENERGY EFFICIENT DESALINATOR

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop a thin-film semiconductor thermoelectric heat pump of cylindrical shape for the desalination of sea water.Methods. To improve the efficiency of the desalination device, a  special thin-film semiconductor thermoelectric heat pump of  cylindrical shape is developed. The construction of the thin-film  semiconductor thermoelectric heat pump allows the flow rates of  incoming sea water and outflowing fresh water and brine to be  equalised by changing the geometric dimensions of the desalinator.  The cross-sectional area of the pipeline for incoming sea water is equal to the total area of outflowing fresh water and brine.Results. The use of thin-film semiconductor p- and n-type branches  in a thermo-module reduces their electrical resistance virtually to  zero and completely eliminates Joule's parasitic heat release. The  Peltier thermoelectric effect on heating and cooling is completely  preserved, bringing the efficiency of the heat pump to almost 100%, improving the energy-saving characteristics of the  desalinator as a whole. To further increase the efficiency of the  proposed desalinator, thermoelectric modules with radiation can be  used as thermoelectric devices.Conclusion. As a consequence of the creation of conditions of high rarefaction under which water will be converted to steam, which, at  20° C, is cold (as is the condensed distilled water, energy costs can  be reduced. In this case, the energy for heating and cooling is not  wasted; moreover, sterilisation is also achieved using the ultraviolet  radiation used in the thermoelectric devices, which, on the one hand, generate electromagnetic ultraviolet radiation, and, on the other, cooling. Such devices operate in optimal mode without heat  release. The desalination device can be used to produce fresh water and concentrated solutions from any aqueous solutions, including wastewater from industrial

  1. Seawater desalination using an advanced small integral reactor - SMART

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Chang, Moon Hee; Lee, Man Ki

    1999-01-01

    A concept of a dual-purpose integrated nuclear desalination plant coupled with the advanced small integral reactor SMART was established. The design concept of the plant aims to produce 40,000m 5 /day of water with the MED process and to generate about 90 MWe of electricity. In order to examine the technical, economic, and safety considerations in coupling SMART with desalination, a preliminary analysis on water production costs and a safety review of potential disturbances of the integrated nuclear desalination plant have been performed. The results of economic evaluation show that the use of SMART for seawater desalination is either comparative to or more economical, with respect to the water production cost, than the use of fossil fuels in comparison with the data published by the IAEA. It was also found that any possible transient event of the desalination plant does not impact on the reactor safety. The key safety parameters of the transient events induced by the potential disturbances of the desalination plant are bounded by the limits of safety analysis of SMART

  2. ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers

    Science.gov (United States)

    Antia, David D. J.

    2018-05-01

    Globally, salinization affects between 100 and 1000 billion m3 a-1 of irrigation water. The discovery that zero valent iron (ZVI, Fe0) could be used to desalinate water (using intra-particle catalysis in a diffusion environment) raises the possibility that large-scale in situ desalination of aquifers could be undertaken to support agriculture. ZVI desalination removes NaCl by an adsorption-desorption process in a multi-stage cross-coupled catalytic process. This study considers the potential application of two ZVI desalination catalyst types for in situ aquifer desalination. The feasibility of using ZVI catalysts when placed in situ within an aquifer to produce 100 m3 d-1 of partially desalinated water from a saline aquifer is considered.

  3. Why do local communities support or oppose seawater desalination?

    Science.gov (United States)

    Mirza Ordshahi, B.; Heck, N.; Faraola, S.; Paytan, A.; Haddad, B.; Potts, D. C.

    2016-12-01

    Freshwater shortages have become a global problem due to increasing water consumption and environmental changes which are reducing the reliability of traditional water resources. One option to address water shortages in coastal areas is the use of seawater desalination. Desalination technology is particularly valued for the production of high quality drinking water and consistent production. However, seawater desalination is controversial due to potential environmental, economic, and societal impacts and lack of public support for this water supply method. Compared to alternative potable water production methods, such as water recycling, little is known about public attitudes towards seawater desalination and factors that shape local support or rejection. Our research addresses this gap and explores variables that influence support for proposed desalination plants in the Monterey Bay region, where multiple facilities have been proposed in recent years. Data was collected via a questionnaire-based survey among a random sample of coastal residents and marine stakeholders between June-July, 2016. Findings of the study identify the influence of socio-demographic variables, knowledge about desalination, engagement in marine activities, perception of the environmental context, and the existence of a National Marine Sanctuary on local support. Research outcome provide novel insights into public attitudes towards desalination and enhances our understanding of why communities might support or reject this water supply technology.

  4. Nuclear Activities in Argentina, 2010

    International Nuclear Information System (INIS)

    Ferreri, J.C.; Ferreri, J.C.; Clausse, A.; Clausse, A.; Clausse, A.; Ordonez, J.P.; Mazzantini, O.A.

    2011-01-01

    Nuclear activities in Argentina are restarted. After almost two decades of near stagnation, the governments political decision of August 2006 regarding electrical energy production, considered the nuclear option as a valid one to solve the problems of the growing demand of electrical energy. This decision triggered again the activities related to the finalization of the third nuclear power reactor (Atucha-II), now actively progressing, the construction of a prototype of the CAREM integral advanced reactor, the life extension of the Embalse CANDU nuclear power plant (NPP) and the studies for the emplacement of a fourth NPP in an appropriate site. In all those years of near stagnation, there were notable exceptions related to the design and construction of experimental and radioisotope production reactors, led by INVAP, a state-owned industry, which exported its production. The accompanying industries of nuclear fuel elements production also remained active, given the demand of the two active NPPs. Meanwhile, the National Atomic Energy Commission of Argentina continued the efforts on research and development that were at the base of the technological achievements of the nuclear activities in Argentina. Nuclear safety studies associated with Atucha II and Embalse NPPs and radiological safety were also a substantive part of the continued efforts by Nucleo-Electrica de Argentina SA and the Nuclear Regulatory Authority of Argentina

  5. Public acceptance in nuclear activities

    International Nuclear Information System (INIS)

    Paunescu, A.; Stiopol, M.; Manole, F.; Petran, C.; Chiper, L.

    1998-01-01

    All over the world the most part of population considers nuclear power as the energy of the future. To reinforce this opinion some fundamental requirements should be met, namely: - nuclear facilities and power plants should be safe and competitive in point of costs; - nuclear activity should record no severe accidents; - to make actual progress in the field of radwaste management and disposal; - to actually witness and increase of electric power demands. In Romania the activities related to the nuclear research and power sum-up about 40 years of experience and these can be structured as per the following directions: - nuclear power and related activities (industrial, mining, processing, storage); - research reactors; - nuclear sciences and techniques and their applications. Public opinion information is aimed at assisting such activities and make the public familiar with the concepts typical for the nuclear field. Generally, there is a feeling of fear on the part of the officials in supporting the nuclear. The basic cause would be application of on incomplete and obsolete model when educating the public opinion. That model leads to the conclusion that the open expression of one's support in favour of nuclear is a political risk. A new, more, comprehensive model leading to different conclusions was conceived and finalized lately. The two models are different from each other by 3 characteristic elements: - influence of perception; - approach of the opinion; - definition of the support. The paper describes the actions undertaken in Romania in order to fulfill these requirements

  6. PBMR desalination options: An economic study - HTR2008-58212

    International Nuclear Information System (INIS)

    De Bruyn, R.; Van Ravenswaay, J. P.; Hannink, R.; Kuhr, R.; Bhagat, K.; Zervos, N.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR), under development in South Africa, is an advanced helium-cooled graphite moderated high-temperature gas-cooled nuclear reactor. The heat output of the PBMR is primarily suited for process applications or power generation. In addition, various desalination technologies can be coupled to the PBMR to further improve the overall efficiency and economics, where suitable site opportunities exist. Several desalination application concepts were evaluated for both a cogeneration configuration as well as a waste heat utilization configuration. These options were evaluated to compare the relative economics of the different concepts and to determine the feasibility of each configuration. The cogeneration desalination configuration included multiple PBMR units producing steam for a power cycle, using a back-pressure steam turbine generator exhausting into different thermal desalination technologies. These technologies include Multi-Effect Distillation (MED), Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC) as well as Multi-Stage Flash (MSF) with all making use of extraction steam from back-pressure turbines. These configurations are optimized to maximize gross revenue from combined power and desalinated water sales using representative economic assumptions with a sensitivity analysis to observe the impact of varying power and water costs. Increasing turbine back pressure results in a loss of power output but a gain in water production. The desalination systems are compared as incremental investments. A standard MED process with minimal effects appears most attractive, although results are very sensitive with regards to projected power and water values. (authors)

  7. Water desalination using different capacity reactors options

    International Nuclear Information System (INIS)

    Alonso, G.; Vargas, S.; Del Valle, E.; Ramirez, R.

    2010-01-01

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity, cogeneration of potable water production and nuclear electricity is an option to be assessed. In this paper we will perform an economical comparison for cogeneration using a big reactor, the AP1000, and a medium size reactor, the IRIS, both of them are PWR type reactors and will be coupled to the desalination plant using the same method. For this cogeneration case we will assess the best reactor option that can cover both needs using the maximum potable water production for two different desalination methods: Multistage Flash Distillation and Multi-effect Distillation. (authors)

  8. Recent development in thermally activated desalination methods: achieving an energy efficiency less than 2.5 kWhelec/m3

    KAUST Repository

    Shahzad, Muhammad Wakil; Thu, Kyaw; Ng, Kim Choon; WonGee, Chun

    2015-01-01

    Water-Energy-Environment nexus is a crucial consideration when designing seawater desalination processes, particularly for the water-stressed countries where the annual water availability is less than 250 m3 per capita. Despite the thermodynamics

  9. Military nuclear activities. Strategic prospects

    International Nuclear Information System (INIS)

    Coldefy, Alain; Wodka-Gallien, Philippe; Tertrais, Bruno; Rouillard, Gwendal; Widemann, Thierry; Guillaume, Louis-Michel; Steininger, Philippe; Guillemette, Alain; Amabile, Jean-Christophe; Granger-Veyron, Nicolas; Carbonnieres, Hubert de; Roche, Nicolas; Guillou, Herve; Bouvier, Antoine; Pastre, Bertrand; Baconnet, Alexis; Monsonis, Guillem; Brisset, Jean-Vincent; Hemez, Remy; Tchernega, Vladimir; Wedin, Lars; Dumoulin, Andre; Razoux, Pierre; Migault, Philippe; Wilson, Ward; Maillard, Benjamin de; Aichi, Leila; Charvoz, Ivan; Rousset, Valery; Lespinois, Jerome de; Kempf, Olivier; Dufourcq, Jean; Gere, Francois; Mauro, Frederic; Delort Laval, Gabriel; Charaix, Patrick; Norlain, Bernard; Collin, Jean-Marie; Jourdier, Francois

    2015-01-01

    This special dossier aims at providing some key articles about France's deterrence doctrine. It provides a comprehensive overview of the challenges and questions about military nuclear activities and opens up some future prospects about this question. The dossier comprises 37 papers dealing with: 1 - Military nuclear activities: yesterday, today, tomorrow (Coldefy, A.); 2 - Deterrence according to French President Francois Hollande: continuation, precision and inflexions (Tertrais, B.); 3 - French deterrence warrantor of our independence in the 21. century (Rouillard, G.); 4 - The deterrence concept prior to the nuclear weapon era (Widemann, T.); 5 - France: the strategic marine force in operation (Guillaume, L.M.); 6 - Relevance of the airborne component in the nuclear deterrence strategy (Steininger, P.); 7 - Deterrence stakes for the Directorate General of Armaments (Guillemette, A.); 8 - The Charles-de-Gaulle aircraft carrier: the deterrence voice from the sea (Wodka-Gallien, P.); 9 - Deterrence: missions of the army's radiation protection department (Amabile, J.C.; Granger-Veyron, N.; Carbonnieres, H. de); 10 - The French Atomic Energy Commission (CEA) and the French defense strategy (Roche, N.); 11 - DCNS, general contractor in the service of deterrence (Guillou, H.); 12 - The airborne nuclear component for MBDA (Bouvier, A.); 13 - Ballistic missile of the marine nuclear component: industrial stakes (Pastre, B.); 14 - Beyond defense against missiles: a US anti-deterrence strategy (Baconnet, A.); 15 - Deterrence dynamics in South Asia (Monsonis, G.); 16 - Military nuclear activities in East Asia (Brisset, J.V.); 17 - North Korea would own nuclear weapons, so what? (Hemez, R.); 18 - About the risk of nuclear warfare in Europe (Tchernega, V.); 19 - Present day nuclear activities: deterrence and gesticulation (Wedin, L.); 20 - Belgian F-16 replacement: nuclear dimension (Dumoulin, A.); 21 - Israel and nuclear deterrence (Razoux, P.); 22 - Nuclear

  10. Exergy Evaluation of Desalination Processes

    Directory of Open Access Journals (Sweden)

    Veera Gnaneswar Gude

    2018-06-01

    Full Text Available Desalination of sea or brackish water sources to provide clean water supplies has now become a feasible option around the world. Escalating global populations have caused the surge of desalination applications. Desalination processes are energy intensive which results in a significant energy portfolio and associated environmental pollution for many communities. Both electrical and heat energy required for desalination processes have been reduced significantly over the recent years. However, the energy demands are still high and are expected to grow sharply with increasing population. Desalination technologies utilize various forms of energy to produce freshwater. While the process efficiency can be reported by the first law of thermodynamic analysis, this is not a true measure of the process performance as it does not account for all losses of energy. Accordingly, the second law of thermodynamics has been more useful to evaluate the performance of desalination systems. The second law of thermodynamics (exergy analysis accounts for the available forms of energy in the process streams and energy sources with a reference environment and identifies the major losses of exergy destruction. This aids in developing efficient desalination processes by eliminating the hidden losses. This paper elaborates on exergy analysis of desalination processes to evaluate the thermodynamic efficiency of major components and process streams and identifies suitable operating conditions to minimize exergy destruction. Well-established MSF, MED, MED-TVC, RO, solar distillation, and membrane distillation technologies were discussed with case studies to illustrate the exergy performances.

  11. General Overview of Desalination Technology

    International Nuclear Information System (INIS)

    Ari-Nugroho

    2004-01-01

    Desalination, as discussed in this journal, refers to a water treatment process that removes salts from water. Desalination can be done in a number of ways, but the result is always the same : fresh water is produced from brackish or seawater. The quality of distillate water is indicated by the contents of Total Dissolved Solid (TDS) in it, the less number of TDS contents in it, the highest quality of distillate water it has. This article describes the general analysis of desalination technologies, the varies of water, operation and maintenance of the plant, and general comparison between desalination technologies. Basically, there are two common technologies are being used, i.e. thermal and membrane desalination, which are Multi Effect Distillation (MED), Multi Stage Flash (MSF) and Reverse Osmosis (RO), respectively. Both technologies differ from the energy source. Thermal desalination needs heat source from the power plant, while membrane desalination needs only the electricity to run the pumps. In thermal desalination, the vapour coming from boiling feedwater is condensate, this process produces the lowest saline water, about 10 part per million (ppm). The membrane technology uses semipermeable membrane to separate fresh water from salt dissolve. This technology produces the fresh water about 350-500 ppm. (author)

  12. Geological Mapping and Identification of Active Fault in Site Candidate of Nuclear Power Plant Installation at Ketapang Area and Its Surroundings, Madura

    International Nuclear Information System (INIS)

    Ngadenin; Lilik-Subiantoro; Kurnia-Setiawan-W; Agus-Sutriyono; P Widito

    2004-01-01

    The result of economical study about demand of electric and water supply in Madura Island in 2015 will increase double for domestic or support industry in Madura Island which have to be solved sooner. One way which is considered to solve the problem is Desalination with nuclear electrical plant. In order to support the installation of nuclear Desalination plant, it is needed site free or far from active fault. Active fault is mainly factor to reject the area on site selection process. Aim of the research is to get geological information and identify of active fault in the site candidate of nuclear Desalination plant at Ketapang area and its surrounding by interpretation of air photos and Landsat imagery, geological and structure geological mapping as well as trenching. The lithology of Ketapang and Sokobana site candidate consists of reef and chalky limestone with form of morphology is undulating hills. Structurally, research areas forms a mono cline with east-westerly trending axis, plunging 10 o to E, the direction of strike is W-E, dip 10 o -30 o to the north. This research concludes that an active fault was not found in the area. (author)

  13. Microfluidic desalination techniques and their potential applications

    NARCIS (Netherlands)

    Roelofs, Susan Helena; van den Berg, Albert; Odijk, Mathieu

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination

  14. Handbook on nuclear activation data

    International Nuclear Information System (INIS)

    1987-01-01

    This Handbook is being issued for the particular benefit of scientists working in the fields of education and industrial applications using nuclear activation methods, as well as in basic research. The content of the report is divided into four parts: standard reference data, neutron activation data, charged particle activation data and photonuclear activation data. The emphasis is on evaluated or recommended values rather than on an exhaustive presentation of all experimental results

  15. Transparency of nuclear regulatory activities

    International Nuclear Information System (INIS)

    2007-01-01

    One of the main missions of nuclear regulators is to protect the public, and this cannot be completely achieved without public confidence. The more a regulatory process is transparent, the more such confidence will grow. Despite important cultural differences across countries, a number of common features characterise media and public expectations regarding any activity with an associated risk. A common understanding of transparency and main stakeholders' expectations in the field of nuclear safety were identified during this workshop, together with a number of conditions and practices aimed at improving the transparency of nuclear regulatory activities. These conditions and practices are described herein, and will be of particular interest to all those working in the nuclear regulatory field. Their implementation may, however, differ from one country to another depending on national context. (authors)

  16. Membraneless seawater desalination

    Science.gov (United States)

    Crooks, Richard A.; Knust, Kyle N.; Perdue, Robbyn K.

    2018-04-03

    Disclosed are microfluidic devices and systems for the desalination of water. The devices and systems can include an electrode configured to generate an electric field gradient in proximity to an intersection formed by the divergence of two microfluidic channels from an inlet channel. Under an applied bias and in the presence of a pressure driven flow of saltwater, the electric field gradient can preferentially direct ions in saltwater into one of the diverging microfluidic channels, while desalted water flows into second diverging channel. Also provided are methods of using the devices and systems described herein to decrease the salinity of water.

  17. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  18. Organization of nuclear regulatory activities

    International Nuclear Information System (INIS)

    Blidaru, Valentin

    2008-01-01

    The paper presents the structure, missions and organizational aspects of the CNCAN, the National Commission for the control of nuclear activities in Romania. The paper addresses the following main issues: 1.General aspects; 2.Organizational structure of the NRA in Romania; 3.General description of the Division for Nuclear Safety Assessments; 4.Specific activities; 5.Regulatory approaches and practices. Under the title of 'General aspects' the following three basic statements are highlighted: 1.CNCAN is a governmental organization responsible for the development of the regulatory framework, the control of its implementation and the licensing of nuclear facilities; 2.CNCAN is the national authority competent in exercising the regulatory activity, authorization and control in the nuclear field provided by the law No. 111/ 1996 republished in 1998; 3.The Commission exercises its functions independently of the ministries and other authorities of the public control administration being subordinated to the Romanian Government. The organizational structure is as follows: - President, the Managerial Council and the Advisory Council coordinating the four General Divisions that are responsible for: - Nuclear Safety with Division of Nuclear Safety Assessment and Division of Nuclear Objectives Surveillance; - Radiological Safety with Division of Radiological Safety Assessment and Division of Operational Radiation Protection; - Surveillance of Environmental Radioactivity with Division of Assessment and Analysis and Division of National Network; - Development and Resource with the Division of Economy and Division of Human Resources. In addition under direct coordination of the President operate the Division of Radiation Protection, Transport and Radioactive Waste and the Division of International Cooperation and Communication. Specific activities are listed describing among others the issues of: - Safety of nuclear installation; - Evaluation relating to licensing of nuclear

  19. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  20. Needs and processes for the sea water desalination

    International Nuclear Information System (INIS)

    Livet, F.

    2007-11-01

    The author shows the needs of the sea water desalination for the dry countries. The main technique is the reverse osmosis. It requires electricity and its development needs big electric power plants. For economical and ecological reasons, the nuclear energy seems well appropriate. Libya is for instance very interested in this technique, because of their water shortage problem. (A.L.B.)

  1. A New Method for Water Desalination Using Microbial Desalination Cells

    KAUST Repository

    Cao, Xiaoxin

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shownhere that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Ω to 970 Ω at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria. © 2009 American Chemical Society.

  2. Study of reliability for the electricity cogeneration and seawater desalination in the Northwest of Mexico; Estudio de factibilidad para la cogeneracion de electricidad y desalacion de agua de mar en el noroeste de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez U, G. O.; Ortega C, R. F. [UNAM, Instituto de Ingenieria, 04510 Mexico D.F. (Mexico)]. email: exergiovanni@gmail.com

    2008-07-01

    The IMPULSA project of the Engineering Institute of UNAM, it has dedicated from the year 2005 to the study and development of new desalination technologies of seawater with renewable energies. The objective is to form a group of expert engineers and investigators in the desalination topics able to transform their scientific knowledge in engineering solutions, with a high grade of knowledge of the environment and the renewable energies. In the middle of 2007 was took the initiative in the IMPULSA project to study the nuclear desalination topic by its characteristics of zero gas emissions of greenhouse effect, competitive costs in the generation, operative experience and safety of the nuclear reactors, resulting attractive mainly for the desalination projects of seawater of great size. The Northwest of Mexico is particularly attractive as the appropriate site for one nuclear desalination plant of great size given its shortage of drink water and the quick growth of its population; as well as its level of tourist, agricultural and industrial activity. In this study was analyzed from a thermodynamic viewpoint, mentioning the economic aspect, the nuclear desalination according to the world experience; they were simulated some couplings and operation forms of nuclear reactors and desalination units, was made emphasis in one particularly. The objective of the study was to characterize several types and sizes of nuclear reactors of the last generation that could be coupled to a desalination technology as multi-stage distillation, type flash distillation or inverse osmosis. Specially and topic of this article, it is studied a case of the IRIS reactor of 335 MW{sub e} coupled to a MED station of nominal capacity of 140,000 m{sup 3}/day. It is utilized for this effect the DEEP 3.1 program of the IAEA to simulate the coupling and to carry out a thermodynamic and economic preliminary evaluation, as well as the THERMOFLEX simulator to reinforce and to compare the thermodynamic

  3. Civil liability on nuclear activities

    International Nuclear Information System (INIS)

    Bittar, C.A.

    1982-01-01

    The civil liability theory in the actual context is shown in the first and second part of this thesis, including some considerations about concepts and types of liability in dangerous and not dangerous activities. In the third part, the legal aspects of civil liability for the nuclear activities are analyzed, with a brief description of the history evolution, standard systems, inspection corporation and juridical regulation. (C.G.C.). 239 refs

  4. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.; Mahmoudi, H.; Ghaffour, NorEddine

    2010-01-01

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability

  5. Nanostructured materials for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Humplik, T; Lee, J; O' Hern, S C; Fellman, B A; Karnik, R; Wang, E N [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge (United States); Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T, E-mail: tlaoui@kfupm.edu.sa, E-mail: karnik@mit.edu, E-mail: enwang@mit.edu [Departments of Mechanical Engineering and Chemical Engineering and Research Institute, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. (topical review)

  6. Nanostructured materials for water desalination

    International Nuclear Information System (INIS)

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Karnik, R; Wang, E N; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T

    2011-01-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. (topical review)

  7. Nanostructured materials for water desalination

    Science.gov (United States)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  8. Proceedings of the Trombay symposium on desalination and water reuse: technology interventions in water purification and management - challenges and opportunities

    International Nuclear Information System (INIS)

    Tewari, P.K.; Saurabh; Tiwari, S.A.; Kaza, Saikiran

    2015-01-01

    This conference deals with the issues relevant to water security, desalination processes and water reuse. The topics covered in the symposium include: water scenario, integrated water resource management, innovative desalination technologies, nuclear and renewable energy based desalination, intake and out fall systems, advances in water purification technologies, advanced water treatment, nanotechnologies in water purification, innovations in desalination technologies, reject brine management, drinking water in rural and remote areas, water quality monitoring and assurance, emerging membrane technologies, spent membrane management, environment and health, techno-economic evaluation and financial models etc. Papers relevant to INIS are indexed separately

  9. Factors and uncertainties in the profitability of using nuclear energy in desalination of water; Facteurs et incertitudes de la rentabilite du recours a l'energie nucleaire dans le dessalement des eaux

    Energy Technology Data Exchange (ETDEWEB)

    Thiriet, L; Lievre, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    One of the economic advantages of nuclear energy consists of the small proportional element in its cost structure. Economies of scale favour the nuclear station as compared with the conventional thermal one, and when the demand for electricity and heat, in particular for desalination, are sufficient, nuclear energy may, subject to certain conditions, prove advantageous. The object of this paper is to discuss the validity of the conclusions reached according to the hypotheses adopted. In the first part, the different kind of uncertainties connected with technical, economic and financial data (the various transmission coefficients, the life of equipment according to the choice of materials, changes in prices, the form of price functions and interest rates), and with the various constraints, are examined and discussed. In the second part the uncertainties connected with the method of optimisation used and the criterion of selection adopted are examined and discussed. It is shown thereby that it is usually extremely difficult to assume absolutely the competitiveness, or conversely the non-competitiveness, of using nuclear energy in the desalination of water, and that a large number of aspects have to be carefully examined. (author) [French] On sait que l'un des avantages economiques de l'energie nucleaire reside dans la faible part proportionnelle dans la structure de son cout. Les economies d'echelle favorisent le nucleaire par rapport au thermique classique, et lorsque les demandes d'electricite et de chaleur, notamment pour le dessalement, sont suffisantes on peut envisager favorablement, sous certaines hypotheses, le recours a l'energie nucleaire. L'objet de cette communication est de discuter la validite des conclusions auxquelles on parvient selon les hypotheses envisagees. Dans une premiere partie, on etudie et on discute les differentes sortes d'incertitudes, liees aux donnees techniques, economiques et financieres (les divers coefficients de transmission, les

  10. Nuclear data activities in Korea

    International Nuclear Information System (INIS)

    Chang, Jonghwa; Lee, Young-Ouk

    2002-01-01

    The situation of the nuclear data project in Korea is reviewed in this paper. The results of the first stage from 1997 - 2000 are reviewed with associated application projects such as a test reactor HANARO, a light water reactor project SMART, a liquid metal reactor project KALIMER, an ADS project KOMAC, a waste project, medial application, and electron linac application. The strategy for setting up the second stage, during 2001 - 2004, are introduced. The user requirement, quality assurance, nuclear data processing, service, and measurement activity are reviewed. (author)

  11. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  12. Status of nuclear data activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa [Nuclear Data Evaluation Lab., Korea Atomic Energy Research Inst., Yusung, Taejon 305-600 (Korea, Republic of)

    1998-03-01

    Although nuclear data activities in Korea are still in the early stage, considerable demands for more accurate and wide-range nuclear data from nuclear R and D fields activated a new nuclear data project titled as `Development of Nuclear Data System`. It was launched this year as one of nation-wide long-term nuclear R and D programs in Korea for the next decade. Its main goals are (1) to establish nuclear data system, (2) to build up the infra-structure for utilization of nuclear data and (3) to develop highly reliable nuclear data system. To achieve these goals, international cooperation and cultivation of human resource as well as construction of measurement facilities will be indispensable. This report briefly describes the demands of nuclear data from the nuclear R and D programs, current nuclear data activities and future plan with its strategy. (author)

  13. Status of nuclear data activities in Korea

    International Nuclear Information System (INIS)

    Lee, Young-Ouk; Chang, Jonghwa

    1998-01-01

    Although nuclear data activities in Korea are still in the early stage, considerable demands for more accurate and wide-range nuclear data from nuclear R and D fields activated a new nuclear data project titled as 'Development of Nuclear Data System'. It was launched this year as one of nation-wide long-term nuclear R and D programs in Korea for the next decade. Its main goals are 1) to establish nuclear data system, 2) to build up the infra-structure for utilization of nuclear data and 3) to develop highly reliable nuclear data system. To achieve these goals, international cooperation and cultivation of human resource as well as construction of measurement facilities will be indispensable. This report briefly describes the demands of nuclear data from the nuclear R and D programs, current nuclear data activities and future plan with its strategy. (author)

  14. Global development of advanced nuclear power plants, and related IAEA activities

    International Nuclear Information System (INIS)

    2006-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is underlining the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies deployable in the near term as well as in the longer term. For applications in the medium to longer term, with rising expectations for the role of nuclear energy in the future, technological innovation has become a strong focus of nuclear power technology developments by many Member States. To meet Member States' needs, the IAEA conducts activities to foster information exchange and collaborative research and development in the area of advanced nuclear reactor technologies. These activities include coordination of collaborative research, organization of international information exchange, and analyses of globally available technical data and results, with a focus on reducing nuclear power plant capital costs and construction periods while further improving performance, safety and proliferation resistance. In other activities, evolutionary and innovative advances are catalyzed for all reactor lines such as advanced water cooled reactors, high temperature gas cooled reactors, liquid metal cooled reactors and accelerator driven systems, including small and medium sized reactors. In addition, there are activities related to other applications of nuclear energy such as seawater desalination, hydrogen production, and other process heat applications. This brochure summarizes the worldwide status and the activities related to advanced nuclear power technology development and related IAEA activities. It includes a list of the collaborative research and development projects conducted by the IAEA, as well as of the status reports and other publications produced

  15. A floating desalination/co-generation system using the KLT-40 reactor and Canadian RO desalination technology

    International Nuclear Information System (INIS)

    Humphries, J.R.; Davies, K.

    2000-01-01

    As the global consumption of water increases with growing populations and rising levels of industrialization, major new sources of potable water production must be developed. To address this issue efficiently and economically, a new approach has been developed in Canada for the integration of reverse osmosis (RO) desalination systems with nuclear reactors as an energy source. The resulting nuclear desalination/cogeneration plant makes use of waste heat from the electrical generation process to preheat the RO feedwater, advanced feedwater pre-treatment and sophisticated system design integration and optimization techniques. These innovations have led to improved water production efficiency, lower water production costs and reduced environmental impact. The Russian Federation is developing the KLT-40 reactor for application as a Floating Power Unit (FPU). The reactor is ideally suited for such purposes, having bad many years of successful operation as a marine propulsion reactor aboard floating nuclear powered icebreakers and other nuclear propelled vessels. Under the terms of a cooperation agreement with the Russian Federation Ministry of Atomic Energy, CANDESAL Enterprises Ltd has evaluated the FPU, containing two KLT-40 reactors, as a source of electrical energy and waste heat for RO desalination. A design concept for a floating nuclear desalination complex consisting of the FPU and a barge mounted RO desalination unit has been analyzed to establish preliminary performance characteristics for the complex. The FPU, operating as a barge mounted electrical generating station, provides electricity to the desalination barge. In addition, the condenser cooling water from the FPU is used as a source of preheated feedwater for the RO system on the desalination barge. The waste heat produced by the electrical generating process is sufficient to provide RO feedwater at a temperature of about 10 deg. C above ambient seawater temperature. Preliminary design studies have

  16. Activity of Armenian Nuclear Authority

    International Nuclear Information System (INIS)

    Martirosyan, A.; Kurghinyan, V.

    2001-01-01

    The activities of the Armenian regulatory body (ANRA) during 2000 includes: development of normative documents in the field of the peaceful use of atomic energy; supervision for nuclear and radiation safety; personnel training and international co-operation. In the field of nuclear legislation a project of a decree of RA Government 'About making scientific and technical center on nuclear and radiation safety' and 'Requirements to a format and content of the safety analysis report for the unit 2 of ANPP' are prepared. During the year 13 inspections have been carried out in the following direction: modernization, performance of measures re-apprising of seismic safety; performance of the operational control of metal of equipment and tubes, observation of radiation safety, safety control of radioactive waste, emergency preparedness. A statistics of the incidents after the starting-up with INES rating (1995) is presented. In 2000 3 events (2 of level 0 and 1 of level 1) took place. The training activities include the set-up of a new multifunctional simulator, personnel training and examinations. The international co-operation activities connected with IAEA, NRC, European Commission and other countries are presented

  17. Activities report in nuclear physics

    NARCIS (Netherlands)

    Jansen, J. F. W.; Scholten, O.

    1987-01-01

    Experimental studies of giant resonances, nuclear structure, light mass systems, and heavy mass systems are summarized. Theoretical studies of nuclear structure, and dynamics are described. Electroweak interactions; atomic and surface physics; applied nuclear physics; and nuclear medicine are

  18. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon; Shahzad, Muhammad Wakil

    2017-01-01

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination

  19. The water desalination complex based on ABV-type reactor plant

    International Nuclear Information System (INIS)

    Panov, Yu.K.; Fadeev, Yu.P.; Vorobiev, V.M.; Baranaev, Yu.D.

    1997-01-01

    A floating nuclear desalination complex with two barges, one for ABV type reactor plant, with twin reactor 2 x 6 MW(e), and one for reverse osmosis desalination plant, was described. The principal specifications of the ABV type reactor plant and desalination barge were given. The ABV type reactor has a traditional two-circuit layout using an integral type reactor vessel with all mode natural convection of primary coolant. The desalted water cost was estimated to be around US $0.86 per cubic meter. R and D work has been performed and preparations for commercial production are under way. (author)

  20. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  1. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  2. R and D areas for next generation desalination and water purification technologies

    International Nuclear Information System (INIS)

    Raha, A.; Rao, I.S.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    By 2020, desalination and water purification technologies are expected to contribute significantly to ensure a safe, sustainable, affordable and adequate water supply. The cost of producing water from the current generation desalination technologies has declined over time at a rate of only approximately 4% per year. So we need to accelerate our research and development (R and D) activities with a near and long term objective for evolution of current generation desalination technology and to create revolutionary next generation advanced desalination and water purification technologies which will offer a promise of step reduction in cost of producing water. There are five broad technological areas-thermal technologies, membrane technologies, alternate technologies, concentrate management technologies, reuse and recycle technologies that encompass the spectrum of desalination technology. In this paper high priority research areas in all the above technologies areas are discussed to make decision about research direction that will help to mitigate our nation's future water supply challenges. (author)

  3. Sea water desalination utilizing waste heat by low temperature evaporation

    International Nuclear Information System (INIS)

    Raha, A.; Srivastava, A.; Rao, I.S.; Majumdar, M.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Economics of a process is controlled by management of energy and resources. Fresh water has become most valued resource in industries. Desalination is a process by which fresh water resource is generated from sea water or brackish water, but it is an energy intensive process. The energy cost contributes around 25-40% to the total cost of the desalted water. Utilization of waste heat from industrial streams is one of the ecofriendly ways to produce low cost desalted water. Keeping this in mind Low Temperature Evaporation (LTE) desalination technology utilizing low quality waste heat in the form of hot water (as low as 50 deg C) or low pressure steam (0.13 bar) has been developed for offshore and land based applications to produce high purity water (conductivity < 2μS/cm) from sea water. The probability of the scale formation is practically eliminated by operating it at low temperature and controlling the brine concentration. It also does not require elaborate chemical pretreatment of sea water except chlorination, so it has no environmental impact. LTE technology has found major applications in nuclear reactors where large quantity of low quality waste heat is available to produce high quality desalted water for make up water requirement replacing conventional ion exchange process. Successful continuous operation of 30 Te/day LTE desalination plant utilizing waste heat from nuclear research reactor has demonstrated the safety, reliability, extreme plant availability and economics of nuclear desalination by LTE technology. It is also proposed to utilize waste heat from Main Heat Transport (MHT) purification circuit of Advanced Heavy Water Reactor (AHWR) to produce about 250 Te/ day high quality desalinated water by Low Temperature Evaporation (LTE) process for the reactor make up and plant utilization. Recently we have commissioned a 50 Te/day 2-effect low temperature desalination plant with cooling tower where the specific energy and cooling water requirement are

  4. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit...... and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water...

  5. Adsorption desalination: An emerging low-cost thermal desalination method

    KAUST Repository

    Ng, K. C.

    2013-01-01

    Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy intensive. In many instances, they consumed electricity, chemicals for pre- and post-treatment of water. For each kWh of energy consumed, there is an unavoidable emission of Carbon Dioxide (CO2) at the power stations as well as the discharge of chemically-laden brine into the environment. Thus, there is a motivation to find new direction or methods of desalination that consumed less chemicals, thermal energy and electricity.This paper describes an emerging and yet low cost method of desalination that employs only low-temperature waste heat, which is available in abundance from either the renewable energy sources or exhaust of industrial processes. With only one heat input, the Adsorption Desalination (AD) cycle produces two useful effects, i.e., high grade potable water and cooling. In this article, a brief literature review, the theoretical framework for adsorption thermodynamics, a lumped-parameter model and the experimental tests for a wide range of operational conditions on the basic and the hybrid AD cycles are discussed. Predictions from the model are validated with measured performances from two pilot plants, i.e., a basic AD and the advanced AD cycles. The energetic efficiency of AD cycles has been compared against the conventional desalination methods. Owing to the unique features of AD cycle, i.e., the simultaneous production of dual useful effects, it is proposed that the life cycle cost (LCC) of AD is evaluated against the LCC of combined machines that are needed to deliver the same quantities of useful effects using a unified unit of $/MWh. In closing, an ideal desalination system with zero emission of CO2 is presented where geo-thermal heat is employed for powering a temperature-cascaded cogeneration plant.

  6. Utility/user requirements for the MHTGR desalination plant

    International Nuclear Information System (INIS)

    Brown, S.J.; Snyder, G.M.

    1989-01-01

    This paper describes the approach used by Gas-Cooled Reactor Associates (GCRA) and the Metropolitan Water District of Southern California (MWD) in developing Utility/User (U/U) Requirements for the Modular High Temperature Gas-cooled Reactor (MHTGR) Desalination Plant. This is a cogeneration plant that produces fresh water from seawater, and electricity. The U/U requirements for the reference MHTGR plant are used except for those changes necessary to: provide low-grade heat to a seawater desalination process, enable siting in a Southern California coastal area, take advantage of reduced weather extremes where substantial cost reductions are expected, and use seawater cooling instead of a cooling tower. The resulting requirements and the differences from the reference MHTGR requirements are discussed. The nuclear portion of the design is essentially the same as that for the reference MHTGR design. The major differences occur in the turbine-generator and condenser, and for the most part, the design parameters for the reference plant are found to be conservative for the desalination plant. The most important difference in requirements is in the higher seismic levels required for a Southern California site, which requires reassessment and possible modification of the design of some reference plant equipment for use in the desalination plant. (author). 5 refs, 1 tab

  7. General overview of nuclear activities in Morocco

    International Nuclear Information System (INIS)

    Karouani, K.

    1998-01-01

    Nuclear activities have been introduced in Morocco since the early seventies. These activities concern the utilization of nuclear techniques in medicine, food and agriculture as well as training and research in nuclear physics. In 1984, Morocco decided to undertake a technical and economic feasibility study as well as the site study of the first nuclear power plant. Two years after, he decided to create the ''Centre National de l'Energie des Sciences et des Techniques Nucleaires'' as a technical and research support for the nuclear power program and as a promoting institute of nuclear techniques. Obviously, he also decided to set up a regulatory framework. (author)

  8. Termination of past nuclear activities at the nuclear research institute

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  9. Nuclear energy Division - 2011 Activity report

    International Nuclear Information System (INIS)

    2012-01-01

    This document reports the activity of the Nuclear Energy Department (DEN) within the CEA. It evokes its international relationship (participation to international initiatives, cooperation with different countries), describes the scientific activity within the DEN, presents the Advanced Material Program, and the activities undertaken in different fields: future nuclear industrial systems (fourth generation reactors, downstream part of the future fuel cycle, fundamental scientific and technological research), optimization of the present nuclear industrial activity (second and third generation reactors, nuclear security, upstream and downstream part of the present fuel cycle), tools for nuclear development (numerical simulation, Jules Horowitz reactor), cleaning up and nuclear dismantling (dismantling strategy, the Passage project in Grenoble, works in Marcoule, the Aladin project in Fontenay, waste and material flow management, nuclear support installations, transports). It finally addresses the specific activities of the Marcoule, Cadarache and Saclay centres

  10. Desalination of painted brick vaults

    DEFF Research Database (Denmark)

    Larsen, Poul Klenz

    The subject of the thesis is salt and moisture movement that causes damage to wall paintings on church vaults. The deterioration was studied in the churches of Fanefjord, Kirkerup and Brarup. A desalination method was tested om location. The salt and moisture transfer was examined in detail...

  11. Potential of desalination in India

    International Nuclear Information System (INIS)

    Tewari, P.K.

    2007-01-01

    It has been well recognized in India that the availability of water for domestic, agricultural and industrial requirement is going to be a serious constraint in the coming years. It may adversely effect economic development and human health. Hence the growing need for developing and introducing science and technology based desalination system, which are economically and environmentally sustainable, is very important

  12. Nuclear power development and nuclear data activities in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Gui Ah Auu [Malaysian Institute for Nuclear Technology Research, Ministry of Science, Technology and the Environment, Selangor (Malaysia)

    1999-03-01

    In this paper, research activities on nuclear power requirement carried out jointly by MINT and other organizations are described. Also discussed are activities on neutronics such as TRIGA reactor fuel management, storage pool criticality, and reactor fuel transfer cask calculations. In addition, recent work on radiation transport activities in MINT such as skyshine and photon phantom dose calculations using the MCNP and MRIPP computer codes are presented. Finally, nuclear data measurement works by researchers in Malaysian universities are described. (author)

  13. Nuclear power development and nuclear data activities in Malaysia

    International Nuclear Information System (INIS)

    Gui Ah Auu

    1999-01-01

    In this paper, research activities on nuclear power requirement carried out jointly by MINT and other organizations are described. Also discussed are activities on neutronics such as TRIGA reactor fuel management, storage pool criticality, and reactor fuel transfer cask calculations. In addition, recent work on radiation transport activities in MINT such as skyshine and photon phantom dose calculations using the MCNP and MRIPP computer codes are presented. Finally, nuclear data measurement works by researchers in Malaysian universities are described. (author)

  14. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Heeringa, W.; Voss, F.

    1988-02-01

    This report surveys the activities in basic research from July 1, 1986 to June 30, 1987 at the Institute for Nuclear Physics (IK) of the Nuclear Research Center Karlsruhe. The research program of this institute comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and high energy physics, as well as detector technology. (orig.) [de

  15. Activities planning of Nuclear Data Center - 1980

    International Nuclear Information System (INIS)

    Nair, R.P.K.

    1980-01-01

    The main process systems of nuclear data files and the actual nuclear data processing implantation in the Instituto de Estudos Avancados, are presented. The research activities of Nuclear Data Center during 1980 in relation to the implantation of file process systems for multigroup cross sections, and the calculations of integral reactor parameters, are described. (M.C.K.) [pt

  16. Desalination Economic Evaluation Program (DEEP-3.0). User's manual

    International Nuclear Information System (INIS)

    2006-01-01

    DEEP is a Desalination Economic Evaluation Program developed by the International Atomic Energy Agency (IAEA) and made freely available for download, under a license agreement (www.iaea.org/nucleardesalination). The program is based on linked Microsoft Excel spreadsheets and can be useful for evaluating desalination strategies by calculating estimates of technical performance and costs for various alternative energy and desalination technology configurations. Desalination technology options modelled, include multi-stage flashing (MSF), multi-effect distillation (MED), reverse osmosis (RO) and hybrid options (RO-MSF, RO-MED) while energy source options include nuclear, fossil, renewables and grid electricity (stand-alone RO). Version 3 of DEEP (DEEP 3.0) features important changes from previous versions, including upgrades in thermal and membrane performance and costing models, the coupling configuration matrix and the user interface. Changes in the thermal performance model include a revision of the gain output ratio (GOR) calculation and its generalization to include thermal vapour compression effects. Since energy costs continue to represent an important fraction of seawater desalination costs, the lost shaft work model has been generalized to properly account for both backpressure and extraction systems. For RO systems, changes include improved modelling of system recovery, feed pressure and permeate salinity, taking into account temperature, feed salinity and fouling correction factors. The upgrade to the coupling technology configuration matrix includes a re-categorization of the energy sources to follow turbine design (steam vs. gas) and cogeneration features (dual-purpose vs. heat-only). In addition, cost data has also been updated to reflect current practice and the user interface has been refurbished and made user-friendlier

  17. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method

    KAUST Repository

    Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Saha, Bidyut Baran; Chun, Wongee

    2014-01-01

    This paper presents an advanced desalination cycle that hybridizes a conventional multi-effect distillation (MED) and an emerging yet low-energy adsorption cycle (AD). The hybridization of these cycles, known as MED + AD or MEDAD in short, extends

  18. Activity transport in nuclear reactors

    International Nuclear Information System (INIS)

    Narasimhan, S.V.

    2000-01-01

    The chemistry of the primary coolant is such that the general material loss is immeasurably low. However, the generation of radioactive corrosion products in the coolant, their transportation and distribution to different out of core surfaces occur irrevocably through the life cycle of the reactor. This phenomena leading to the build up of radiation field, which is unique to the nuclear reactor systems, is the only major problem of any significance. Minimization of this phenomenon can be done by many ways. The processes involved in the mechanism of activity transport are quite complex and are not at all thoroughly understood. The codes that have been developed so far use many empirical coefficients for some of the rate processes, which are either partially justified by simulated experimental studies or supported theoretically. In a multi-metal system like that of the reactor, the corrosion rates or release rates need not be similar especially in reactors like PHWRs. The mechanisms involved in the formation of protective oxide coating are quite complex to model in a simplified manner. The paper brings out some these features involved in the activity transport modeling and analyses the need for extensive field related experimental work to substantiate the model. (author)

  19. Nuclear Energy Division. 2009 Activity report

    International Nuclear Information System (INIS)

    2009-01-01

    After a presentation of the future investment programme of the nuclear energy department at the French national Nuclear Research Center (CEA), this report proposes a description of tomorrow's industrial nuclear systems (back-end of future fuel cycle, fourth generation systems, basic scientific and technological research), describes how current nuclear industrial systems are optimized (front-end and back-end of fuel cycle, second and third generation reactors). It presents the main tools for nuclear development: simulation programme, the Jules Horowitz reactor project, maintenance of specific facilities, research valorisation. It reports the activities related to the clean-up and dismantling in different nuclear sites, presents the activities of CEA's nuclear research centres (Saclay, Cadarache, Marcoule), briefly presents the transverse material programme, recalls some events, and gives some key figures

  20. The juridical issues of nuclear activities

    International Nuclear Information System (INIS)

    Guillaume, M.; Kerever, A.; Pasquier, J.L.; Brillanceau, F.; Besson, J.P.; Chaumette, L.; Niel, J.C.; Reculeau, Y.; Treflez, M.; Pezennec, D.; Cochaud, J.F.; Phan Van, L.; Cormis, F. de; Galmot, Y.; Saint-Raymond, P.; Blanchard, P.; Robert, J.H.

    1997-01-01

    This issue is dedicated to the juridical aspects of civil nuclear activities. It comprises 3 parts and 16 papers. Radiation protection law is dealt with in part 1: prevention of risks due to ionizing radiations in occupational environment; sources and men; the regulation of radioactive materials transport; the regulation of the rejection of gaseous and liquid radioactive effluents. Part 2 tackles the question of checking the pacific uses of nuclear energy, that is the juridical consequences of the non-proliferation and physical protection policies are reviewed: international efforts that aim to limit the military uses of nuclear energy; the juridical and practical aspects of non-proliferation rules and international controls; the national control of radioactive materials. The juridical framing of nuclear activities, nuclear civil liability and infraction of the law are gathered in part 3: the CIINB and its contribution to the safety of nuclear installations; the mining law; the control of nuclear installations safety; the influence of the realization of the nuclear program on the evolution of the French law; the intervention of the administrative judge in nuclear affairs; the protection of population against nuclear risk - statement of existing provisions and new trends; the special regime of the civil nuclear responsibility - at the time of change; the penal infractions of the nuclear law. (J.S.)

  1. Application of nuclear activation analysis

    International Nuclear Information System (INIS)

    Mamonov, E.I.; Khlystova, A.F.

    1979-01-01

    Consideration is given to the applications of nuclear-activation analysis (NAA) as discussed at the International Conference of 1977. One of the new results in the present-day NAA practices is the growing number of elements detected in samples without using a destructive radiochemical separation. An essential feature in this context is the development of the system automation of control and information NAA operations through the use computers. In biological medicine a multicomponent NAA is employed to determine the concentration of elements in various human organs and objects, in metabolic studies and for diagnostic purposes. In agriculture NAA finds applications in the evaluation of grain protein, analysis of element feed composition, soil and fertilizers. The application of this method to the environmental monitoring is considered with particular reference to the element analysis of water (especially drinking water), air, plant residues. Data are presented for the use of NAA in metallurgy, geology, archaeology and criminal law. Tables are provided to illustrate the uses of NAA in various fields

  2. Thermal desalination in GCC and possible development

    KAUST Repository

    Darwish, Mohamed Ali

    2013-01-01

    The Water Desalination and Reuse Center in King Abdulla University of Science and Technology, in Saudi Arabia, held a workshop on thermal desalination on the 11th and 12th of March, 2013. This paper was presented as part of a lecture at the workshop. It presents the status and possible developments of the two main thermal desalination systems processing large quantities of seawater in the Gulf Cooperation Council, multi-stage flash, and thermal vapor compression systems. Developments of these systems were presented to show how these systems are competing with the more energy-efficient seawater reverse osmosis desalting. © 2013 © 2013 Balaban Desalination Publications. All rights reserved.

  3. Thermal desalination in GCC and possible development

    KAUST Repository

    Darwish, Mohamed Ali

    2013-06-28

    The Water Desalination and Reuse Center in King Abdulla University of Science and Technology, in Saudi Arabia, held a workshop on thermal desalination on the 11th and 12th of March, 2013. This paper was presented as part of a lecture at the workshop. It presents the status and possible developments of the two main thermal desalination systems processing large quantities of seawater in the Gulf Cooperation Council, multi-stage flash, and thermal vapor compression systems. Developments of these systems were presented to show how these systems are competing with the more energy-efficient seawater reverse osmosis desalting. © 2013 © 2013 Balaban Desalination Publications. All rights reserved.

  4. Argentine nuclear energy standardization activities

    International Nuclear Information System (INIS)

    Boero, Norma; Corcuera, Roberto; Palacios, Tulio A.; Hey, Alfredo M.; Berte, G.; Trama, L.

    2004-01-01

    The International Organization for Standardization (ISO) has more than 200 Technical Committees that develop technical standards. During April 2004 took place in Buenos Aires the 14th Plenary of the ISO/TC 85 Nuclear Energy Committee. During this Plenary issues as Nuclear Terminology, Radiation Protection, Nuclear Fuels, Nuclear Reactors and Irradiation Dosimetry was dealt with. 105 International delegates and 45 National delegates (belonging to CNEA, ARN, NASA, INVAP, CONUAR, IONICS and other organizations) attended the meetings. During this meeting ISO/TC 85 changed its scope; the new scope of the Committee is 'Standardization in the fields of peaceful applications of nuclear energy and of the protection of individuals against all sources of ionizing radiations'. This work summarizes the most important advances and resolutions about the development of standards taken during this meeting as well as the main conclusions. (author) [es

  5. Dual-purpose LWR supplying heat for desalination

    International Nuclear Information System (INIS)

    Waplington, G.; Fitcher, H.

    1977-01-01

    A number of desalination processes are at present in various stages of development but distillation is the only serious choice for a large-scale project. The distillation process temperature requirement is low compared with the temperature of steam normally delivered to the turbine in a power generation plant. This gives the possibility for combining the functions of electricity generation with water distillation. The brine heater of the multi-stage flash distillation plant can be supplied with steam after partial expansion through a turbine. Such an arrangement allows the use of a standard nuclear steam supply system and makes fuller use of the energy output than would either single purpose role. The LWR represents a safe, reliable and economic system, and is easily able to provide heat of a quality adequate for the desalination process. (M.S.)

  6. Desalination - an alternative freshwater resource

    International Nuclear Information System (INIS)

    Shakaib, M.

    2005-01-01

    Global water constitutes 94 percent salt water that is from the oceans and 6% is in the form of freshwater. Out of this 6% freshwater approximately 27% is trapped in glaciers and 72% is underground. The sea water is important for transportation, fisheries. Oceans regulate climate through air sea interaction. However direct consumption of sea water is too salty to sustain human life. Water with a dissolved solids (salt) content generally below about 1000 milligrams per liter (mg/L) is considered acceptable for human consumption. The application of desalting technologies over the past 50 years have been in many of the arid zone where freshwater is available. Pakistan lies in the Sun Belt. It is considered a wide margin coastal belt (990 km), having an Exclusive Economic Zone of 240,000 km/sup 2/, that strokes trillion cubic meters of sea water that can be made available as freshwater source to meet the shortfall in the supply of domestic water through desalination along the coastal belt of Pakistan. The freshwater obtained from the other desalination processes is slightly expensive, but the cost of desalination can be considerably reduced provided that the available inexpensive or free waste energy is utilized mainly. (author)

  7. Nuclear information: An overview of IAEA's activities

    International Nuclear Information System (INIS)

    Marchesi, I.H.; Konstantinov, L.V.

    1986-01-01

    As stated in this overview of IAEA nuclear information activities the Agency's role in information services is rapidly evolving and multifaceted. The Agency maintains more than 200 computerized files of information. Some 60 of these are part of systems directly related to nuclear activities. Some of these are briefly profiled in this overview such as INIS, the IAEA Nuclear Data Programme, the IAEA Incident Reporting System, the IAEA Energy and Economic Databank, the IAEA Power Reactor Information System, the Nuclear Fuel Cycle Information System, and the International Uranium Geology Information System. Future directions are pointed out. Different ways to upgrade information systems are listed

  8. Nuclear data: IAEA activity overview

    International Nuclear Information System (INIS)

    Marchezi, A.Kh.; Konstantinov, L.V.

    1986-01-01

    The IAEA data banks, aimed at expanding information exchange and maintaining science and technology development in the whole world are briefly described. The following items are are considered: INIS; power reactor information system (PRIS); NPP incident information system (IRS); research reactor data base (RRDB); nuclear fuel cycle information system (NFCIS); nuclear data system (NDS); International uranium geology information system (INTURGEO); power engineering and economy data bank (PEEDB); radioactive material shipment data base; isotopic hydrology data base

  9. Recent Activities on Global Nuclear Safety Regime

    International Nuclear Information System (INIS)

    Cho, Kun-Woo; Park, Jeong-Seop; Kim, Do-Hyoung

    2006-01-01

    Recently, rapid progress on the globalization of the nuclear safety issues is being made in IAEA (International Atomic Energy Agency) and its member states. With the globalization, the need for international cooperation among international bodies and member states continues to grow for resolving these universal nuclear safety issues. Furthermore, the importance of strengthening the global nuclear safety regime is emphasized through various means, such as efforts in application of IAEA safety standards to all nuclear installations in the world and in strengthening the code of conduct and the convention on nuclear safety. In this regards, it is important for us to keep up with the activities related with the global nuclear safety regime as an IAEA member state and a leading country in nuclear safety regulation

  10. Activities of the Nuclear Data Center

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1978-01-01

    The present status of international cooperation system for the nuclear data activities is introductorily explained in outline. The Nuclear Data Center of Japan Atomic Energy Research Institute is presently the only public data center in the field of nuclear data in Japan, and it has the following scope of the works: evaluation of the nuclear data, compilation of the Japanese Evaluated Nuclear Data Library (JENDL), application of the data including benchmark tests, development of the data storage, retrieval and processing systems, data service to the users, secretariat of the Japanese Nuclear Data Committee, and international cooperation. An introduction to the use of nuclear data is given with a brief information on the availability of the data and with some matters that demand special attention. (auth.)

  11. Technical and economic assessment of photovoltaic-driven desalination systems

    International Nuclear Information System (INIS)

    Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L.

    2010-01-01

    Solar desalination systems are approaching technical and cost viability for producing fresh-water, a commodity of equal importance to energy in many arid and coastal regions worldwide. Solar photovoltaics (PV) represent an ideal, clean alternative to fossil fuels, especially for remote communities such as grid-limited villages or isolated islands. These applications for water production in remote areas are the first to be nearing cost-competitiveness due to decreasing PV prices and increasing fossil fuel prices over the last five years. The electricity produced from PV systems for desalination applications can be used for electro-mechanical devices such as pumps or in direct-current (DC) devices. Reverse osmosis (RO) and electrodialysis (ED) desalination units are the most favorable alternatives to be coupled with PV systems. RO usually operates on alternating current (AC) for the pumps, thus requiring a DC/AC inverter. In contrast, electrodialysis uses DC for the electrodes at the cell stack, and hence, it can use the energy supplied from the PV panels with some minor power conditioning. Energy storage is critical and batteries are required for sustained operation. In this paper, we discuss the operational features and system designs of typical PV-RO and PV-ED systems in terms of their suitability and optimization for PV operation. For PV-RO and PV-ED systems, we evaluate their electricity need, capital and operational costs, and fresh-water production costs. We cover ongoing and projected research and development activities, with estimates of their potential economics. We discuss the feasibility of future solar desalination based on expected (or predicted) improvements in technology of the desalination and PV systems. Examples are provided for Middle East and other parts of the World. (author)

  12. Activities of IPEN Nuclear Metrology Laboratory

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Pocobi, E.; Silva, C.A.M.; Machado, R.R.

    1987-01-01

    The activities of IPEN Nuclear Metrology Laboratory, which the principal objective is radionuclides activities determination for supplying sources and standard radioactive solutions in activity are presented. The systems installed, the activity bands and some of standards radionuclides are shown. (C.G.C.) [pt

  13. Defining the Strategy of Nuclear Activity

    International Nuclear Information System (INIS)

    Racana, R.

    2006-01-01

    This article presents nuclear activity as defined within the field of the nuclear industry, which is studied from its capacity to generate electric power to its application in industry and medicine as well as a source for weapons of mass destruction. These fields of analysis introduce some problems that the nuclear activity itself must know how to confront employing action strategies aimed at becoming an activity to be kept in mind when making use of the benefits that its peaceful use contributes to human life. (Author)

  14. Prospects of solar desalination in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Saif-ur-Rehman, M; Bhatti, M R; Malik, M A

    1973-01-01

    This paper deals with the present state-of-the-art of solar desalination and evaluates the possibility of using solar stills in Pakistan. Along with the world survey of solar desalination units a brief description of the process and solar still is described. The areas of prospective users, i.e., having acute shortage of freshwater, even for drinking, are outlined.

  15. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Borie, E.; Doll, P.; Rebel, H.

    1982-11-01

    This report surveys the activities in fundamental research from July 1, 1981 to June 30, 1982 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions, neutron physics, neutrino physics and physics at medium and higher energies. (orig.) [de

  16. Annual report on nuclear physics activities

    International Nuclear Information System (INIS)

    Beck, R.; Bueche, G.; Fluegge, G.

    1982-02-01

    This report surveys the activities in fundamental research from July 1, 1980 to June 30, 1981 at the three institutes of the KfK which are concerned with nuclear physics. The research program comprises laser spectroscopy, nuclear reactions with light ions and physics at medium and higher energies. (orig.) [de

  17. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  18. Methodology for the economic evaluation of cogeneration/desalination options: A user's manual

    International Nuclear Information System (INIS)

    1997-01-01

    The Methodology for the Economic Evaluation of Cogeneration/Desalination Options is suitable for economic evaluations and screening analyses of various desalination and energy source options. The methodology, based on the spreadsheet, includes simplified models of several types of nuclear/fossil power plants, nuclear/fossil heat sources, and both distillation and membrane desalination plants. Current cost and performance data have already been incorporated so that the spreadsheet can be quickly adapted to analyze a large variety of options with very little new input data required. The spreadsheet output includes the levelized cost of water and power, breakdowns of cost components, energy consumption and net saleable power for each selected option. Specific power plants can be modeled by adjustment of input data including design power, power cycle parameters and costs

  19. Design and development of solar desalination plant

    Directory of Open Access Journals (Sweden)

    Marimuthu Thaneissha a/p

    2017-01-01

    Full Text Available Direct sunlight has been utilized long back for desalination of water. The desalination process takes place in solar still. Solar still is a device that converts saline water to potable water. This process requires seawater and sunlight which are widely available on Earth. However, the current solar desalination generation capacity is generally low and has high installation cost. Hence, there is a need for the enhancement of the productivity which can be achieved through few modifications. This paper explores the challenges and opportunities of solar water desalination worldwide. It presents a comprehensive review of solar desalination technologies that have been developed in recent years which covers the economic and environmental aspects.

  20. Electrode placement during electro-desalination of

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Andersson, Lovisa C. H.

    2017-01-01

    Carved stone sculptures and ornaments can be severely damaged by salt induced decay. Often the irregular surfaces are decomposed, and the artwork is lost. The present paper is an experimental investigation on the possibility for using electro-desalination for treatment of stone with irregular shape....... Electro-desalination experiments were made with different duration to follow the progress. Successful desalination of the whole stone piece was obtained, showing that also parts not being placed directly between the electrodes were desalinated. This is important in case of salt damaged carved stones......, where the most fragile parts thus can be desalinated without physically placing electrodes on them. The Cl removal rate was higher in the areas closest to the electrodes and slowest in the part, which was not placed directly between the electrodes. This is important to incorporate in the monitoring...

  1. CEA nuclear energy Directorate - Activity report 2012

    International Nuclear Information System (INIS)

    2013-01-01

    After an overview of the activities of the Directorate at the international level, of its scientific activities, and of the consideration given to quality, and a presentation of the transverse program on advanced materials, this report proposes presentations of activities in different domains: future nuclear industrial systems (reactors of 4. generation, back-end of the future cycle, sustainable management of nuclear materials, fundamental scientific and technological research), optimization of the present industrial nuclear activity (reactors of 2. and 3. generation, front-end and back-end of the fuel cycle), the main tools for nuclear development (numerical simulation, the Jules Horowitz reactor), valorisation, economic support of Haute-Marne and Meuse territories (the Syndiese project), nuclear dismantling and decontamination (dismantling projects, projects and works in Fontenay-aux-Roses, Grenoble and Saclay, waste and material flow management, nuclear service facilities, transports). It also presents the activities of some specific CEA centres like Marcoule (R and D in fuel cycle), Cadarache (future energies) and Saclay (nuclear sciences and simulation of reactors and fuel cycle)

  2. Future financial liabilities of nuclear activities

    International Nuclear Information System (INIS)

    1996-01-01

    This report deals with future financial liabilities arising from nuclear activities, in particular electricity generation. Future financial liabilities are defined as costs which an organisation or company is expected to meet beyond some five years as a consequence of its current and past activities. The study provides a comprehensive picture on policies for recognizing and funding future financial liabilities arising from nuclear activities and their implementation schemes in Nea Member countries. Mechanisms for reporting and funding future financial liabilities are described, analysed and compared. The report offers some findings, conclusions and recommendations for consideration by Member countries. The nuclear activities considered in the report include nuclear research and development, nuclear industry sectors such as uranium mining and milling, conversion and enrichment, nuclear fuel fabrication, nuclear power plant operation and maintenance, and radioisotopes production. Future financial liabilities arising from these activities cover management and disposal of radioactive wastes, reprocessing of spent fuels when applicable and decommissioning of facilities at the end of their life time. 12 refs., 14 figs., 16 tabs

  3. Economical analysis and study on a solar desalination unit

    DEFF Research Database (Denmark)

    of desalination unit and electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful for the further investigation of solar desalination and for reducing the cost of fresh water...

  4. Determination of sodium and organic substances for quality control in the full-desalination plant of the Biblis nuclear power plant

    International Nuclear Information System (INIS)

    Brunner, R.E.; Doerr, A.

    1977-01-01

    After four years of operation of the make up water treatment plant of nuclear POWER STATION BIBLIS an examination was made concerning the total through put, the eluation of ions and organic matters, and further concerning the efficiency of a special regeneration technique for the counter current regenerated ion exchange beds. In order to determine the efficiency of the applied regeneration methods analisis were carried out on a great number of water samples for sodium, chloride, COD and humic acids as well. A comparison was made between the anialytical determination of Sodium with an automatic analyser and the method used in the laboratory by means of flame photometry respectively ion potential measurement. (orig.) [de

  5. Nuclear activities and the Pacific islanders

    International Nuclear Information System (INIS)

    Dyke, J. Van; Smith, K.R.; Siwatibau, S.

    1984-01-01

    Although to outsiders the Pacific islands may seem far removed from the center of activities and controversies related to nuclear energy, this area has had more direct and negative experiences with nuclear issues than any other area in the world. These experiences have led to a deep-rooted skepticism of all nuclear activities in which distinctions between civilian and military activities, weapons and power, and low-and high-level waste bear little relation to the important Pacific concerns. Antinuclear sentiments are intimately linked to anticolonialism, growing regionalism and emerging cultural pride. Opposition and concern have been expressed in a number of international, regional, national and nongovernmental forums. In this climate, arguments about the relative safety of various waste disposal operations and other nuclear activities are not likely to be meaningful. (author)

  6. Direction of Nuclear Energy. Activity report 2010

    International Nuclear Information System (INIS)

    2011-11-01

    This report proposes an overview of the research activities performed by the French DEN (Direction de l'Energie Nucleaire, Direction of Nuclear Energy) within the CEA. These activities address the future nuclear industrial systems (4. generation reactors, back-end of the future fuel cycle, basic scientific and technological research), the optimization of the industrial nuclear power (fuel cycle front end, second and third generation reactors, back-end of the present fuel cycle), major tools for the development of nuclear energy (simulation tools, Jules Horowitz reactor, value creation), clean up and dismantling of nuclear facilities (present status, the Passage project in Grenoble, the Aladin project in Fontenay-aux-Roses, projects at Marcoule, flow management of radioactive wastes, materials and disused fuels, transport). Three research centres are presented: Marcoule, Cadarache and Saclay

  7. Ignition properties of nuclear grade activated carbons

    International Nuclear Information System (INIS)

    Freeman, W.P.; Hunt, J.R.; Kovach, J.L.

    1983-01-01

    The ignition property of new activated carbons used in air cleaning systems of nuclear facilities has been evaluated in the past, however very little information has been generated on the behavior of aged, weathered carbons which have been exposed to normal nuclear facility environment. Additionally the standard procedure for evaluation of ignition temperature of carbon is performed under very different conditions than those used in the design of nuclear air cleaning systems. Data were generated evaluating the ageing of activated carbons and comparing their CH 3 131 I removal histories to their ignition temperatures. A series of tests were performed on samples from one nuclear power reactor versus use time, a second series evaluated samples from several plants showing the variability of atmospheric effects. The ignition temperatures were evaluated simulating the conditions existing in nuclear air cleaning systems, such as velocity, bed depth, etc., to eliminate potential confusion resulting from artifically set current standard conditions

  8. Status of solar desalination in India

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, T.V. [Mechanical Engineering Department, Adhiyamaan College of Engineering, Hosur, Krishnagiri 635109, Tamilnadu (India); Aybar, H.S. [Mechanical Engineering Department, Eastern Mediterranean University, G. Magosa, KKTC, Mersin 10 (Turkey); Nedunchezhian, N. [Automobile Engineering, Institute of Road and Transport Technology, Erode, Tamilnadu (India)

    2009-12-15

    The work was motivated by the increasing awareness of the need for enhancing water supplies schemes in arid lands featuring an appropriate technology for solar energy use in the desalination field in India. The fresh water crisis is already evident in many parts of India, varying in scale and intensity at different times of the year. India's rapidly rising population and changing lifestyles also increases the need for fresh water. Fresh water is increasingly taking centre stage on the economic and political agenda, as more and more disputes between and within states, districts, regions, and even at the community level arises. The conventional desalination technologies like multi stage flash, multiple effect, vapor compression, iron exchange, reverse osmosis, electro dialysis are expensive for the production of small amount of fresh water, also use of conventional energy sources has a negative impact on the environment. Solar distillation represents a most attractive and simple technique among other distillation processes, and it is especially suited to small-scale units at locations where solar energy is considerable. India, being a tropical country is blessed with plenty of sunshine. The average daily solar radiation varies between 4 and 7 kWh per square meter for different parts of the country. There are on an average 250-300 clear sunny days in a year, thus it receives about 5000 trillion kWh of solar energy in a year. In spite of the limitations of being a dilute source and intermittent in nature, solar energy has the potential for meeting and supplementing various energy requirements. Solar energy systems being modular in nature could be installed in any capacity as per the requirement. This paper consists of an overall review and technical assessments of various passive and active solar distillation developments in India. This review also recommended some research areas in this field leading to high efficiency are highlighted. (author)

  9. Civil liability on nuclear activities; Responsabilidade civil nas atividades nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Bittar, C A

    1983-12-31

    The civil liability theory in the actual context is shown in the first and second part of this thesis, including some considerations about concepts and types of liability in dangerous and not dangerous activities. In the third part, the legal aspects of civil liability for the nuclear activities are analyzed, with a brief description of the history evolution, standard systems, inspection corporation and juridical regulation. (C.G.C.). 239 refs.

  10. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  11. Globalization of nuclear activities and global governance

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    1997-01-01

    The safe production of nuclear energy as well as the disarmament of nuclear weapons and the peaceful utilization of nuclear materials resulting from dismantling of such weapons are some of the formidable problems of global governance. The Commission on Global Governance was established in 1992 in the belief that international developments had created a unique opportunity for strengthening global co-operation to meet the challenge of securing peace, achieving sustainable development, and universalizing democracy. Here a summary of their proposals on the globalization of nuclear activities to face challenges of the coming century is given. To follow up their activities by the worlds community in general. The research Centre for Global Governance (RCGG) at the Federal University of Rio Grande do Sul was established. Already a great number of researchers from many different countries have adhered to the Centre. Here the program of the RCGG is described. (author)

  12. Globalization of nuclear activities and global governance

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Nuclear

    1997-07-01

    The safe production of nuclear energy as well as the disarmament of nuclear weapons and the peaceful utilization of nuclear materials resulting from dismantling of such weapons are some of the formidable problems of global governance. The Commission on Global Governance was established in 1992 in the belief that international developments had created a unique opportunity for strengthening global co-operation to meet the challenge of securing peace, achieving sustainable development, and universalizing democracy. Here a summary of their proposals on the globalization of nuclear activities to face challenges of the coming century is given. To follow up their activities by the worlds community in general. The research Centre for Global Governance (RCGG) at the Federal University of Rio Grande do Sul was established. Already a great number of researchers from many different countries have adhered to the Centre. Here the program of the RCGG is described. (author)

  13. Fusion Nuclear Data activities at FNL, IPR

    OpenAIRE

    P. M. Prajapati; B. Pandey; S. Jakhar; C.V. S. Rao; T. K. Basu; B. K. Nayak; S. V. Suryanarayana; A. Saxena

    2015-01-01

    This paper briefly describes the current fusion nuclear data activities at Fusion Neutronics Laboratory, Institute for Plasma Research. It consist of infrastructure development for the cross-section measurements of structural materials with an accelerator based 14 MeV neutron generator and theoretical study of the cross-section using advanced nuclear reaction modular codes EMPIRE and TALYS. It will also cover the proposed surrogate experiment to measure 55Fe (n, p) 55Mn using BARC-TIFR Pel...

  14. Water Desalination Studies Using Forward Osmosis Technology, A Review

    International Nuclear Information System (INIS)

    Abou El-Nour, F.H.

    2016-01-01

    Fresh water and energy shortage represent a great challenge facing the whole world now. To cover the global water demand, an energy-efficient approach is required to be applied in the suitable technology to achieve the shortage in the fresh water demand. Different techniques are used to solve this problem. A mong the different methods applied to desalinate seawater is the osmosis technologies . Although reversible osmosis (RO) is the most familiar method used for this purpose, forward osmosis (FO) represents a more suitable technique due to several arguments including low energy cost. The present study represents the use of FO technique for water desalination with adsorption regeneration. In this respect, a self-prepared granular active carbon produced from dates is to be used as an adsorbent agent. The physical characteristics of the active carbon are studied such as BET specific surface area, pore size, particle size and the structure using scanning electron microscope (SEM). Different advanced apparatus are used for such measurements. In addition, the adsorption is otherms (Langmuier and Freundlich) are established to explain the adsorption mechanism of the process. Accordingly, the review includes essential information and sufficient backgrounds in the field of desalination using FO or simply direct osmosis, which overcome the different difficulties present in reversible RO

  15. The mechanical vapour compression process applied to seawater desalination

    International Nuclear Information System (INIS)

    Murat, F.; Tabourier, B.

    1984-01-01

    The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day

  16. Med-Ro Hybrid desalination as option to supply fresh water in BABEL Islands Province

    International Nuclear Information System (INIS)

    Siti Alimah; Sudi Ariyanto; June Mellawati; Budiarto

    2011-01-01

    Med-Ro hybrid desalination systems are combining both thermal (Med) and membrane (Ro) desalination processes with power generation systems. This configuration has more economical and operational benefits in comparison with single desalination plant. Hybrid configurations are characterized by flexibility in operation, specific energy consumption (33.50 kWh/m 3 ) is lower than Med (36.54 kWh/m 3 ) and high plant availability. The objective of study is to analyze the Med-Ro hybrid desalination as an option to add supply fresh water in Babel Islands Province, in terms of technology and economy aspects. The result of study showed that adopting nuclear power plants as dual-purpose for power generation and producing fresh water is has economic competitiveness than fossil-fired generation plants. Med-Ro hybrid configuration, with feed Ro from heat rejection of Med system is suitable as fresh water supply add option because increase of Ro feed temperature will increase flux. Economic analysis of water cost are performed using the Deep-3.2. Water cost of hybrid Med-Ro desalination with energy of NPP (0.581 $/m ) is lower than that of Med water cost (0.752 $/m ) . Water cost of hybrid Med-Ro with energy of NPP (0.581 $/m ) is lower than that of water cost of energy with fossil-fired generation plants (0.720 $/m 3 ). (author)

  17. Nuclear science and technology: perspective prospects for Philippine development

    International Nuclear Information System (INIS)

    Aleta, C.R.

    1996-01-01

    The paper provides some historical perspectives on nuclear energy utilization and development in the Philippines. Highlights on applications in agriculture, medicine, industry, environment and regulations are mentioned. Current activities include gamma sterilization, food irradiation, sterile insect technique for pest eradication, medical applications, isotope techniques, radiation protection activities and nuclear power. Prospective contribution of national development through the use of radiation and nuclear techniques include those for water resources assessment, environmental and pollution studies, electricity generation and nuclear desalination. The regulatory aspects in support of the nuclear energy development are also discussed. (author)

  18. IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

    International Nuclear Information System (INIS)

    Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

    2004-01-01

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region

  19. IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

    2004-10-03

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region.

  20. Drinking water in Cuba and seawater desalination

    International Nuclear Information System (INIS)

    Meneses-Ruiz, E.; Turtos-Carbonell, L.M.; Oviedo-Rivero, I.

    2004-01-01

    The lack of drinking water has become a problem at world level because, in many places, supplies are very limited and, in other places, their reserves have been drained. At the present time there are estimated to be around two thousand million people that don't have drinking water for several reasons, such as drought, contamination and the presence of saline waters not suitable for human consumption. Because of the human need for water, they have always taken residence in areas where the supply was guaranteed, sometimes impeding the exploitation of other areas that can be economically very interesting. However, this resource is usually very close and in abundance in the form of seawater but its salinity makes it unusable for many basic requirements. Humanity has been forced, therefore, to take into consideration the possibilities of the economic treatment of seawater. Cuba has regions where the supplies of drinking water are scarce and others where the lack of this resource limits economic exploitation. The present work is approached with regard to the situation of hydro resources in Cuba, it includes: a description of the main hydrographic basins of the country; the contamination levels of the waters and the measures for mitigation; analysis of the supplies and demand for drinking water and its quality; regulatory aspects. The state of seawater desalination in Cuba is also included and the possibility of its realisation using nuclear energy and the advantages that this would bring is evaluated. (author)

  1. Managing Siting Activities for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world''. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The introduction of nuclear power brings new challenges to States - one of them being the selection of appropriates sites. It is a project that needs to begin early, be well managed, and deploy good communications with all stakeholders; including regulators. This is important, not just for those States introducing nuclear power for the first time, but for any State looking to build a new nuclear power plant. The purpose of the siting activities goes beyond choosing a suitable site and acquiring a licence. A large part of the project is about producing and maintaining a validated

  2. Managing Siting Activities for Nuclear Power Plants

    International Nuclear Information System (INIS)

    2012-01-01

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world''. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The introduction of nuclear power brings new challenges to States - one of them being the selection of appropriates sites. It is a project that needs to begin early, be well managed, and deploy good communications with all stakeholders; including regulators. This is important, not just for those States introducing nuclear power for the first time, but for any State looking to build a new nuclear power plant. The purpose of the siting activities goes beyond choosing a suitable site and acquiring a licence. A large part of the project is about producing and maintaining a validated

  3. Electrokinetic desalination of glazed ceramic tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Ferreira, Celia; Christensen, Iben Vernegren

    2010-01-01

    Electrokinetic desalination is a method where an applied electric DC field is the driving force for removal of salts from porous building materials. In the present paper, the method is tested in laboratory scale for desalination of single ceramic tiles. In a model system, where a tile...... was contaminated with NaCl during submersion and subsequently desalinated by the method, the desalination was completed in that the high and problematic initial Cl(-) concentration was reduced to an unproblematic concentration. Further conductivity measurements showed a very low conductivity in the tile after...... treatment, indicating that supply of ions from the poultice at the electrodes into the tile was limited. Electroosmotic transport of water was seen when low ionic content was reached. Experiments were also conducted with XVIII-century tiles, which had been removed from Palacio Centeno (Lisbon) during...

  4. Apparatus and method for improved desalination

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Hideharu, Yanagi; Saha, Bidyut Baran; Chakraborty, Anutosh; Al-Ghasham, Tawfiq

    2009-01-01

    A water desalination system comprising an evaporator for evaporating saline water to produce water vapor; a condenser for condensing the water vapor; wherein the evaporator and the condenser are in heat transfer communication such that heat used

  5. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    Science.gov (United States)

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  6. Nuclear activated cw chemical laser

    International Nuclear Information System (INIS)

    Roberts, T.G.

    1982-01-01

    A cw chemical laser which uses processed radioactive waste to produce active atoms from a chemically inactive gas before being mixed with another molecule such as hydrogen or deuterium is disclosed. This laser uses no toxic or corrosive fuels and does not require any electrical or other type of auxiliary power supply. The energy released by the radioactive material is used to produce the active atoms such as fluorine. This is accomplished by using the radiation products from processed radioactive waste to dissociate the inert gas in the plenum of the laser. The radioactive material is held in the passageway walls of a device similar to a heat exchanger. The exchanger device may be located in the gas generator section of a chemical laser. The inactive gas is passed through the exchanger device and while passing through it the radiation from the radioactive material dissociates the gas, producing a concentration of free active atoms. This active atom generator then feeds the nozzle bank or mixing section of a laser to produce a lasing action

  7. Carbon electrode for desalination purpose in capacitive deionization

    International Nuclear Information System (INIS)

    Endarko,; Fadilah, Nurul; Anggoro, Diky

    2016-01-01

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m 2 /g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  8. Carbon electrode for desalination purpose in capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky [Physics Department, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS, Sukolilo Surabaya 60111, Jawa Timur (Indonesia)

    2016-03-11

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consisted of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.

  9. Nuclear data for proton activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhammedov, S; Vasidov, A [Institute of Nuclear Physics of Academy of Sciences of Uzbekistan, 702132 Ulugbek, Tashkent (Uzbekistan); Comsan, M N.H. [Nuclear Research Centre, Inshas Cyclotron Facility, AEA 13759 Cairo (Egypt)

    2000-11-15

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy.

  10. Status of nuclear data activities at Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan)

    1997-03-01

    This is a brief introduction to nuclear data activity at Karlsruhe Research Center. Some URLs concerned are given. Topics mentioned here are, the FENDL and JEF/EFF project at INR, and measurements of neutron capture cross sections at IK III. (author)

  11. Nuclear data for proton activation analysis

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Vasidov, A.; Comsan, M.N.H.

    2000-01-01

    The activation analysis with charged particles (ChPAA), as well as proton activation analysis (PAA), mainly requires separately irradiation of thick (thicker than the range of particles) samples and standard. Therefore for simplicity of determination of traces of chemical elements by instrumental PAA the absolute activity of the radionuclides must be known. Consequently we compilated data for nuclear decays (half life, radiation energy and intensity, type of decay, saturation factor), for nuclear reactions (excitation function, threshold energy, Q-value, yields of radionuclides), for the element under study (natural isotopic abundance of the nuclide, which yields the nuclear reaction considered, molar mass), stopping power of the irradiated material and the range of the particle that are used in the calculation of the absolute activity of the radionuclides and for the resolution of a nuclear interference problems of PAA. These data are tabulated. The tables of the radionuclides are presented in dependence on increasing atomic number and radiation energy as well as on methods of the radionuclide formation. The thick target yields of analytical radionuclides are presented versus particle energy

  12. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  13. OECD Nuclear Energy Agency. 5 activity report. 1976

    International Nuclear Information System (INIS)

    1977-01-01

    The main activities of the Agency are reviewed: nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation; gas-cooled fast reactors, isotopic batteries; nuclear data Centers

  14. OECD Nuclear Energy Agency. 3. Activity report, 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The main activities of the Agency are reviewed: study of nuclear power trends; regulatory aspects of nuclear power; technical developments: Eurochemic, Halden, Dragon, food irradiation, gas-cooled fast reactors, direct conversion, isotopic batteries; nuclear energy information

  15. Advancing capabilities for detecting undeclared nuclear activities

    International Nuclear Information System (INIS)

    Baute, J.

    2013-01-01

    When a country presents a consistent, transparent and predictable picture of its nuclear programme that is supported by the analysis of all information, IAEA inspectors do not need to go there as frequently for routine verification activities. Rather IAEA can redirect those resources to addressing safeguards issues in the state posing real proliferation concerns. The point is how to establish a coherent picture of a nuclear program and how to identify early warnings of safeguard breaches. A key element is the exploitation of all the information available (open sources, inspection report, satellite imagery, state declarations,...) through effective and quick information analysis. This document is made up of the slides of the presentation

  16. Activation Analysis and Nuclear Research in Burma

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R. W.

    1971-07-01

    Research endeavours in the field of Nuclear Sciences in Burma appear to be concentrated in three main Institutions. These are the Chemistry and Physics Departments of the Rangoon Arts & Science University and the Union of Burma Applied Research Institute (UBARI). In view of possible forthcoming developments an expanded research programme, which is to be implemented on the basis of a five year plan, has been drawn up. Research topics included in this programme are predominantly of practical interest and aimed at a contribution by nuclear methods, in particular activation analysis, to the technological and industrial needs of the country.

  17. Fields of nuclear power application

    International Nuclear Information System (INIS)

    Laue, H.J.

    1975-01-01

    The paper deals with nuclear power application in fields different from electricity generation, i.e. district heating, sea water desalination, coal gasification and nuclear splitting of water. (RW) [de

  18. Future sustainable desalination using waste heat: kudos to thermodynamic synergy

    KAUST Repository

    Shahzad, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw

    2015-01-01

    There has been a plethora of published literature on thermally-driven adsorption desalination (AD) cycles for seawater desalination due to their favorable environmentally friendly attributes, such as the ability to operate with low-temperature heat

  19. An experimental investigation on MEDAD hybrid desalination cycle

    KAUST Repository

    Shahzad, Muhammad Wakil; Thu, Kyaw; Kim, Yong-deuk; Ng, Kim Choon

    2015-01-01

    This paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the conventional multi-effect distillation (MED) and an adsorption cycle (AD). The combined cycles allow some of MED stages to operate below ambient

  20. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    2012-05-01

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  1. Design and simulation of a process of seawater desalination (MED) using the residual heat of a PBMR nuclear power plant; Diseno y simulacion de un proceso de desalinizacion de agua de mar (MED) utilizando el calor residual de una planta nucleoelectrica PBMR

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, Julio; Morales S, J.B. [UNAM, DEPFI Campus Morelos, Jiutepec, Morelos (Mexico)]. e-mail: jms0620@yahoo.com

    2008-07-01

    In the present work it is demonstrated as the thermodynamic recuperative Brayton cycle with which operates a nuclear power plant type PBMR (Pebble Bed Modular Reactor) it allows to use the residual heat, removed in the coolers of the compression stage of the system, to produce vapor and to desalt seawater. The desalination process selected, starting from its operation characteristics and the derived advantages of them using nuclear heat, it the one of Multi-Effect Distillation, MED for its abbreviations in English, which described and it is justified to detail. This distillation process widely studied, allows us to use water vapor pressurized to temperatures between 70 and 110 C like energy source to evaporate the seawater in the first stage or effect of the process. The relatively low temperatures with which the vapor takes place of feeding to the process is it makes to the plant PBMR ideal for desalination of seawater, since does not require majors modifications to its design its operation, and on the contrary it allows to use the heat that previously was rejected, to produce the vapor. In this work an unit MED of six effects is designed, which undergoes a successive fall of pressure in each of them. Once obtained the agreed design to the conditions of operation of PBMR plant, it was model mathematically the MED process, including the coupling stage with the reactor coolers. The mathematical model was obtained by means of differential equations of mass balance and energy in the system, and with this it was implemented in SIMULINK a model equivalent to the MED process which is interconnected to the simulator coolers of the PBMR plant, constructed previously. One ran the program being obtained the results that are reported at the end of this article. (Author)

  2. Trombay symposium on desalination and water reuse: proceedings

    International Nuclear Information System (INIS)

    2007-02-01

    Trombay Symposium on Desalination and Water Reuse (TSDWR-07) addresses the issues related to desalination and water reuse including integrated water resource management. It aims to bring together the desalination and water purification technologists from government R and D, academia, industry and representatives from NGOs and user groups including policy makers. The papers received cover a wide range of topics from water resource management to different aspects of desalination and water purification. Papers relevant to INIS are indexed separately

  3. Scientific activities 1980 Nuclear Research Center ''Democritos''

    International Nuclear Information System (INIS)

    1982-01-01

    The scientific activities and achievements of the Nuclear Research Center Democritos for the year 1980 are presented in the form of a list of 76 projects giving title, objectives, responsible of each project, developed activities and the pertaining lists of publications. The 16 chapters of this work cover the activities of the main Divisions of the Democritos NRC: Electronics, Biology, Physics, Chemistry, Health Physics, Reactor, Scientific Directorate, Radioisotopes, Environmental Radioactivity, Soil Science, Computer Center, Uranium Exploration, Medical Service, Technological Applications, Radioimmunoassay and Training. (N.C.)

  4. Outreach activity by using three-dimensional nuclear chart. Understanding nuclear physics and nuclear energy

    International Nuclear Information System (INIS)

    Koura, Hiroyuki

    2015-01-01

    A three-dimensional nuclear chart is constructed with toy blocks for usage of outreach activity related on nuclear physics and atomic energy. The height of each block represents quantities like atomic mass per nucleon, the total half-life, etc. The bulk properties of the nuclei can be easily understood by using these charts. Explanations for the energy generation of nuclear fusion and fission are visually given. In addition, we newly set another chart with blocks of fission fragment mass distribution from U-235 + a thermal neutron. As an example, the origin of abundances of rather radioactive isotopes like Sr-90 and Cs-137 is explained which created in nuclear reactor and also distributed in the eastern side of Fukushima prefecture due to the accident of Fukushima-Daiichi Nuclear Power Plant. Using our charts, lectures entitled 'Alchemy of the Universe' were delivered to high schools and public places. (author)

  5. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.

    Science.gov (United States)

    Guo, Zhaowei; Ma, Yuanyuan; Dong, Xiaoli; Hou, Mengyan; Wang, Yonggang; Xia, Yongyao

    2018-06-11

    Ever-increasing freshwater scarcity and energy crisis problems require efficient seawater desalination and energy storage technologies; however, each target is generally considered separately. Herein, a hybrid sodium-ion supercapacitor, involving a carbon-coated nano-NaTi 2 (PO 4 ) 3 -based battery anode and an activated-carbon-based capacitive cathode, is developed to combine desalination and energy storage in one device. On charge, the supercapacitor removes salt in a flowing saltwater electrolyte through Cl - electrochemical adsorption at the cathode and Na + intercalation at the anode. Discharge delivers useful electric energy and regenerates the electrodes. This supercapacitor can be used not only for energy storage with promising electrochemical performance (i.e., high power, high efficiency, and long cycle life), but also as a desalination device with desalination capacity of 146.8 mg g -1 , much higher than most reported capacitive and battery desalination devices. Finally, we demonstrate renewables to usable electric energy and desalted water through combining commercial photovoltaics and this hybrid supercapacitor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Experimental Nuclear Physics Activity in Italy

    Science.gov (United States)

    Chiavassa, E.; de Marco, N.

    2003-04-01

    The experimental Nuclear Physics activity of the Italian researchers is briefly reviewed. The experiments, that are financially supported by the INFN, are done in strict collaboration by more than 500 INFN and University researchers. The experiments cover all the most important field of the modern Nuclear Physics with probes extremely different in energy and interactions. Researches are done in all the four National Laboratories of the INFN even if there is a deeper involvement of the two national laboratories expressly dedicated to Nuclear Physics: the LNL (Laboratorio Nazionale di Legnaro) and LNS (Laboratorio Nazionale del Sud) where nuclear spectroscopy and reaction dynamics are investigated. All the activities with electromagnetic probes develops in abroad laboratories as TJNAF, DESY, MAMI, ESFR and are dedicated to the studies of the spin physics and of the nucleon resonance; hypernuclear and kaon physics is investigated at LNF. A strong community of researchers work in the relativistic and ultra-relativistic heavy ions field in particular at CERN with the SPS Pb beam and in the construction of the ALICE detector for heavy-ion physics at the LHC collider. Experiments of astrophysical interest are done with ions of very low energy; in particular the LUNA accelerator facility at LNGS (Laboratorio Nazionale del Gran Sasso) succeeded measuring cross section at solar energies, below or near the solar Gamow peak. Interdisciplinary researches on anti-hydrogen atom spectroscopy and on measurements of neutron cross sections of interest for ADS development are also supported.

  7. Nuclear activation techniques in the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-08-15

    The analysis of the elemental composition of biological materials is presently undertaken on a large scale in many countries around the world One recent estimate puts the number of such analyses at six thousand million single-element determinations per year, of which about sixteen million are for the so-called trace elements. Since many of these elements are known to play an important role in relation to health and disease, there is considerable interest in learning more about the ways in which they function in living organisms. Nuclear activation techniques, generally referred to collectively as 'activation analysis' constitute an important group of methods for the analysis of the elemental composition of biological materials. Generally they rely on the use of a research nuclear reactor as a source of neutrons for bombarding small samples of biological material, followed by a measurement of the induced radioactivity to provide an estimate of the concentrations of elements. Other methods of activation with Bremsstrahlung and charged particles may also be used, and have their own special applications. These methods of in vitro analysis are particularly suitable for the study of trace elements. Another important group of methods makes use of neutrons from isotopic neutron sources or neutron generators to activate the whole body, or a part of the body, of a living patient. They are generally used for the study of major elements such as Ca, Na and N. All these techniques have previously been the subject of two symposia organised by the IAEA in 1967 and 1972. The present meeting was held to review some of the more recent developments in this field and also to provide a viewpoint on the current status of nuclear activation techniques vis-a-vis other competing non-nuclear methods of analysis.

  8. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung

    2017-09-21

    New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.

  9. Mechanical vapor compression Desalination plant at Trombay

    International Nuclear Information System (INIS)

    Adak, A.K.; Kishore, G.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Desalination plants based on Mechanical Vapour Compression (MVC) technology are inherently the most thermodynamically efficient. The thermodynamic efficiency of the MVC process is derived from the application of the heat pump principle. A single unit of two-effect MVC desalination pilot plant of capacity 50 m3/day has recently been commissioned at Trombay, Mumbai. The desalination unit is very compact and unique of its kind in the seawater desalination technologies and is being operated by using electricity only. Horizontal tube thin film spray desalination evaporators are used for efficient heat transfer. It is suitable for a site, where feed water is highly saline and condenser cooling water is absent and where a thermal heat source is not available. The unit produces high quality water, nearly demineralized (DM) quality directly from seawater. There is no need of polishing unit and product water can be utilized directly as make up of boiler feed and for other high quality process water requirements in the industries. This paper includes the design and highlights the technical features of this unit. (author)

  10. Desalination - A solution to water shortage

    International Nuclear Information System (INIS)

    Shakaib, M.

    2005-01-01

    Pakistan as well as neighbouring countries are faced with critical water shortage for the last few decades. The demand for water has outstripped its supply making the availability of safe water sources an issue Also conflicts over water sharing are expected in many regions of the world. Thus, because of this looming crisis water problems are getting increasing attention all over the world. With the advancement of desalination technology many countries had resorted removal of salts from brackish and sea water as an alternative water supply and they are now viewing desalination as a future solution to problems of lack of water. Today, over 100 countries use desalting requirement. A total of 12,451 desalting units (of a unit size of 100 m/sup 3//d or more) with a total capacity of 22,735,000 m /d had been installed or contracted worldwide. Brackish water desalination plants contribute with 9,400,000 m3/d, whereas the capacity of the sea water plants had reached up to 13,300,000 m3/d. This paper will discuss the use of desalination to produce potable water from saline water for domestic or municipal purposes and also the available desalination techniques that have been developed over the years and have achieved commercial success. (author)

  11. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.

  12. Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate.

    Science.gov (United States)

    Morel, Alexandre; Zuo, Kuichang; Xia, Xue; Wei, Jincheng; Luo, Xi; Liang, Peng; Huang, Xia

    2012-08-01

    A novel configuration of microbial desalination cell (MDC) packed with ion-exchange resin (R-MDC) was proposed to enhance water desalination rate. Compared with classic MDC (C-MDC), an obvious increase in desalination rate (DR) was obtained by R-MDC. With relatively low concentration (10-2 g/L NaCl) influents, the DR values of R-MDC were about 1.5-8 times those of C-MDC. Ion-exchange resins packed in the desalination chamber worked as conductor and thus counteracted the increase in ohmic resistance during treatment of low concentration salt water. Ohmic resistances of R-MDC stabilized at 3.0-4.7 Ω. By contrast, the ohmic resistances of C-MDC ranged from 5.5 to 12.7 Ω, which were 55-272% higher than those of R-MDC. Remarkable improvement in desalination rate helped improve charge efficiency for desalination in R-MDC. The results first showed the potential of R-MDC in the desalination of water with low salinity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Nuclear Forensics' role in analyzing nuclear trafficking activities

    International Nuclear Information System (INIS)

    Hrnecek, E.; Mayer, K.; Schubert, A.; Wallenius, M.

    2010-01-01

    Nuclear forensics aims at identifying origin and intended use of nuclear material using information inherent to the nuclear material.The information gathered in nuclear forensics include isotopic composition, elemental composition, impurities and age of the material, macroscopic appearance and microstructure. The information so collected helps to solve criminal cases and put the individuals involved in nuclear trafficking in jails. The information also helps to improve safeguards and physical protection measures at place of theft or diversion to prevent future thefts or diversions.

  14. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. [comps.

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  15. Applied nuclear physics group - activities report. 1977-1997

    International Nuclear Information System (INIS)

    Appoloni, Carlos Roberto

    1998-06-01

    This report presents the activities conducted by the Applied Nuclear Physics group of the Londrina State University - Applied Nuclear Physics Laboratory - Brazil, from the activities beginning (1977) up to the end of the year 1997

  16. Energy system impacts of desalination in Jordan

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    and Multi Stage Flash (MSF) desalination driven by Cogeneration of Heat and Power (CHP). The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts......Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst...... others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO) driven by electricity...

  17. Nuclear Power and Safety Division activity

    International Nuclear Information System (INIS)

    Pazdera, F.

    1991-01-01

    History of the Division is briefly described. Present research is centered on reliability analyses and thermal hydraulic analyses of transients and accidents. Some results of the safety analyses have been applied at nuclear power plants. A characterization is presented of computer codes for analyzing the behavior of fuel in normal and accident conditions. Research activities in the field of water chemistry and corrosion are oriented to the corrosion process at high temperatures and high pressures, and the related mass and radioactivity transfer; the effect of some chemical processes on primary coolant circuit materials; optimization of PWR filtration systems; and the development of the requisite monitoring instrumentation. A computerized operator support system has been developed, and at present it is tested at the Dukovany nuclear power plant. A program of nuclear fuel cycle strategy and economy has been worked out for nuclear fuel performance evaluation. Various options for better fuel exploitation, alternatives for advanced fuelling, and fuel cycle costs are assessed, and out-of-reactor fuel cycle options are compared. (M.D.). 7 refs., 32 refs

  18. Regulation of nuclear and radiological activities; Reglementarea activitatilor nucleare si radiologice

    Energy Technology Data Exchange (ETDEWEB)

    Sidorencu, Angela; Vasilieva, Natalia; Buzdugan, Artur; Balan, Ionel [Agentia Nationala de Reglementare a Activitatilor Nucleare si Radiologice, Alecu Russo, 1, MD 2068, Chisinau (Moldova, Republic of)

    2012-08-15

    The paper presents a review of the Moldovan regulatory framework regarding nuclear and radiological activities and of the competence of state regulatory authority - the National Agency for the Regulation of Nuclear and Radiological Activities.

  19. Multi effect desalination and adsorption desalination (MEDAD): A hybrid desalination method

    KAUST Repository

    Shahzad, Muhammad Wakil

    2014-11-01

    This paper presents an advanced desalination cycle that hybridizes a conventional multi-effect distillation (MED) and an emerging yet low-energy adsorption cycle (AD). The hybridization of these cycles, known as MED + AD or MEDAD in short, extends the limited temperature range of the MED, typically from 65 °C at top-brine temperature (TBT) to a low-brine temperature (LBT) of 40 °C to a lower LBT of 5 °C, whilst the TBT remains the same. The integration of cycles is achieved by having vapor uptake by the adsorbent in AD cycle, extracting from the vapor emanating from last effect of MED. By increasing the range of temperature difference (DT) of a MEDAD, its design can accommodate additional condensation-evaporation stages that capitalize further the energy transfer potential of expanding steam. Numerical model for the proposed MEDAD cycle is presented and compared with the water production rates of conventional and hybridized MEDs. The improved MEDAD design permits the latter stages of MED to operate below the ambient temperature, scavenging heat from the ambient air. The increase recovery of water from the seawater feed may lead to higher solution concentration within the latter stages, but the lower saturation temperatures of these stages mitigate the scaling and fouling effects. © 2014 Elsevier Ltd. All rights reserved.

  20. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... the electrochemical treatment. The removal rate was similar for the two anions so the chloride concentration reached the lowest concentration level first. At this point the electric resistance increased, but the removal of nitrate continued unaffected till similar low concentration. The sulfate concentration...... was successful. Based on the obtained results an important step is taken towards development of an electrochemical technique for desalination of tile panels....

  1. Electrochemical desalination of bricks - Experimental and modeling

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Chlorides, nitrates and sulfates play an important role in the salt-decay of porous materials in buildings and monuments. Electrochemical desalination is a technology able to remove salts from such porous materials in order to stop or prevent the decay. In this paper, experimental and numerical......-contaminated bricks with respect to the monovalent ions is discussed. Comparison between the experimental and the simulation results showed that the proposed numerical model is able to predict electrochemical desalination treatments with remarkable accuracy, and it can be used as a predictive tool...

  2. Sustainable desalination using solar energy

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Nirmalakhandan, Nagamany

    2010-01-01

    Global potable water demand is expected to grow, particularly in areas where freshwater supplies are limited. Production and supply of potable water requires significant amounts of energy, which is currently being derived from nonrenewable fossil fuels. Since energy production from fossil fuels also requires water, current practice of potable water supply powered by fossil fuel derived energy is not a sustainable approach. In this paper, a sustainable phase-change desalination process is presented that is driven solely by solar energy without any reliance on grid power. This process exploits natural gravity and barometric pressure head to maintain near vacuum conditions in an evaporation chamber. Because of the vacuum conditions, evaporation occurs at near ambient temperature, with minimal thermal energy input for phase change. This configuration enables the process to be driven by low-grade heat sources such as solar energy or waste heat streams. Results of theoretical analysis and prototype scale experimental studies conducted to evaluate and demonstrate the feasibility of operating the process using solar energy are presented. Predictions made by the theoretical model correlated well with measured performance data with r 2 > 0.94. Test results showed that, using direct solar energy alone, the system could produce up to 7.5 L/day of freshwater per m 2 of evaporator area. With the addition of a photovoltaic panel area of 6 m 2 , the system could produce up to 12 L/day of freshwater per m 2 of evaporator area, at efficiencies ranging from 65% to 90%. Average specific energy need of this process is 2930 kJ/kg of freshwater, all of which can be derived from solar energy, making it a sustainable and clean process.

  3. Building Public Confidence in Nuclear Activities

    International Nuclear Information System (INIS)

    Isaacs, T

    2002-01-01

    Achieving public acceptance has become a central issue in discussions regarding the future of nuclear power and associated nuclear activities. Effective public communication and public participation are often put forward as the key building blocks in garnering public acceptance. A recent international workshop in Finland provided insights into other features that might also be important to building and sustaining public confidence in nuclear activities. The workshop was held in Finland in close cooperation with Finnish stakeholders. This was most appropriate because of the recent successes in achieving positive decisions at the municipal, governmental, and Parliamentary levels, allowing the Finnish high-level radioactive waste repository program to proceed, including the identification and approval of a proposed candidate repository site. Much of the workshop discussion appropriately focused on the roles of public participation and public communications in building public confidence. It was clear that well constructed and implemented programs of public involvement and communication and a sense of fairness were essential in building the extent of public confidence needed to allow the repository program in Finland to proceed. It was also clear that there were a number of other elements beyond public involvement that contributed substantially to the success in Finland to date. And, in fact, it appeared that these other factors were also necessary to achieving the Finnish public acceptance. In other words, successful public participation and communication were necessary but not sufficient. What else was important? Culture, politics, and history vary from country to country, providing differing contexts for establishing and maintaining public confidence. What works in one country will not necessarily be effective in another. Nonetheless, there appear to be certain elements that might be common to programs that are successful in sustaining public confidence and some of

  4. Building Public Confidence in Nuclear Activities

    International Nuclear Information System (INIS)

    Isaacs, T

    2002-01-01

    Achieving public acceptance has become a central issue in discussions regarding the future of nuclear power and associated nuclear activities. Effective public communication and public participation are often put forward as the key building blocks in garnering public acceptance. A recent international workshop in Finland provided insights into other features that might also be important to building and sustaining public confidence in nuclear activities. The workshop was held in Finland in close cooperation with Finnish stakeholders. This was most appropriate because of the recent successes in achieving positive decisions at the municipal, governmental, and Parliamentary levels, allowing the Finnish high-level radioactive waste repository program to proceed, including the identification and approval of a proposed candidate repository site Much of the workshop discussion appropriately focused on the roles of public participation and public communications in building public confidence. It was clear that well constructed and implemented programs of public involvement and communication and a sense of fairness were essential in building the extent of public confidence needed to allow the repository program in Finland to proceed. It was also clear that there were a number of other elements beyond public involvement that contributed substantially to the success in Finland to date. And, in fact, it appeared that these other factors were also necessary to achieving the Finnish public acceptance. In other words, successful public participation and communication were necessary but not sufficient. What else was important? Culture, politics, and history vary from country to country, providing differing contexts for establishing and maintaining public confidence. What works in one country will not necessarily be effective in another. Nonetheless, there appear to be certain elements that might be common to programs that are successful in sustaining public confidence, and some of

  5. Energy Implications of Seawater Desalination (Invited)

    Science.gov (United States)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    Freshwater has traditionally come from rivers, lakes, streams, and groundwater aquifers. As demand increases and climate change alters the location and timing of water supply, these traditional sources are becoming unavailable, more difficult, or increasingly expensive to develop. As a result, many communities are switching to alternative sources of water. Interest in pursuing seawater desalination is high in many coastal communities. In California, for example, 17 plants are proposed for development along the California coast and two in Mexico. Water managers are pursing desalination because is a local supply that can help diversify the water supply portfolio. Additionally, it is a reliable supply, which can be especially valuable during a drought. But removing the salt from seawater is an energy-intensive process that consumes more energy per gallon than most other water supply and treatment options. These energy requirements are key factors that will impact the extent and success of desalination in California. Energy requirements for seawater desalination average about 4.0 kWh per cubic meter (m3) of water produced. By comparison, the least energy-intensive options of local sources of groundwater and surface water require 0 - 0.90 kWh per m3; wastewater reuse, depending on treatment levels, may require from 0.26 - 2.2 kWh per m3. Beyond the electricity required for the desalination facility itself, producing any new source of water, including through desalination, increases the amount of energy required to deliver and use the water produced as well as collect, treat, and dispose of the wastewater generated. Energy is the largest single variable cost for a desalination plant, varying from one-third to more than one-half the cost of produced water. Building a desalination plant may reduce a water utility's exposure to water reliability risks at the added expense of an increase in exposure to energy price risk. In dependent on hydropower, electricity prices tend to

  6. Nuclear data project evaluation activity report. October 1998 - October 2000

    International Nuclear Information System (INIS)

    Akovali, Y.; Blackmon, J.; Radford, D.; Smith, M.

    2001-01-01

    This report summarizes the activities of the ORNL Nuclear Data Project since the IAEA Advisory Group meeting in December 1998. The group's future plans are also included. The ORNL Nuclear Data Project's responsibility includes the compilation/evaluation of astrophysics data, as well as the evaluation and compilation of nuclear structure data. The Nuclear Data Project, therefore, is composed of two groups. The Nuclear Data Project staff through September 2000 is listed below. Accomplishments for the period of October 1998 through September 2000 of the nuclear structure data group and the nuclear astrophysics group are submitted in this Nuclear Data Project report

  7. Nuclear data project evaluation activity report. October 1998 - October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Akovali, Y; Blackmon, J; Radford, D; Smith, M [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2001-02-01

    This report summarizes the activities of the ORNL Nuclear Data Project since the IAEA Advisory Group meeting in December 1998. The group's future plans are also included. The ORNL Nuclear Data Project's responsibility includes the compilation/evaluation of astrophysics data, as well as the evaluation and compilation of nuclear structure data. The Nuclear Data Project, therefore, is composed of two groups. The Nuclear Data Project staff through September 2000 is listed below. Accomplishments for the period of October 1998 through September 2000 of the nuclear structure data group and the nuclear astrophysics group are submitted in this Nuclear Data Project report.

  8. A review of environmental governance and its effects on concentrate discharge from desalination plants in the Kingdom of Saudi Arabia

    KAUST Repository

    Van Der Merwe, Riaan

    2013-01-01

    The most likely environmental impact of concentrate discharges (in most instances twice the concentration of the ambient environment) leaking from desalination plants on local marine ecosystems has been controversially discussed for many years. Increasing water demand and lack of renewable natural water resources in Saudi Arabia also result in greater dependence on desalination and consequently amplify the impact on marine environment and multifactorial ecosystems in near-field areas of desalination discharges. Accurate scientific baseline data should furnish information on various factors such as intake- and outfall locality, brine (concentrate) discharge and chemical characteristics (i.e. effluent concentration, mass flow rates (flux)), local effects, and even cumulative effects of desalination activities, at least on a regional and even on a national scale. Even if such data were available, in many cases they are non-transparent and are not even accessible, or tend to be overlooked as a result of ambiguous desalination-related policies. This paper focuses on national environmental regulations in the Kingdom of Saudi Arabia (KSA) and how such regulations help control the flow of concentrate discharge into the receiving waters. © 2013 Desalination Publications.

  9. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Luxembourg

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General; 2. Mining; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency measures); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. General Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister of Labour; Other Ministers competent); 2. Advisory bodies (Higher Health Council)

  10. Energy-efficient architecture of industrial facilities associated with the desalination of sea water

    Directory of Open Access Journals (Sweden)

    Gazizov Timur

    2016-01-01

    Full Text Available The article offers an actual solution of a problem of drinking water shortage in the territory of the Crimean coast, in the city of Sudak, Autonomous Republic of Crimea, Russia. The project includes a development of energy-efficient architecture, its implementation in industrial facilities, such as stations for seawater desalination and an active use of alternative energy sources.

  11. New activities in nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Mico, F.; Specht, J.

    2006-01-01

    This article addresses the consequences of the progressive deregulation of the electricity market of several key countries on the maintenance practices and techniques face to the growing pressures on O and M costs. The responses of the nuclear maintenance industry to make maintenance activities more efficient maintaining if not enhancing the safety of NPP's are briefly described. The article also analyses the potential impact of shortage of experience maintenance personnel to serve the NPP's in the future as some countries are already experiencing. (Author)

  12. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem

    2016-01-01

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  13. Desalination and the commons : tragedy or triumph?

    NARCIS (Netherlands)

    David, Zetland

    2016-01-01

    A policy is more likely to be economically efficient when its costs and benefits fall on the same group, but politicians can allocate costs and benefits to different groups within their jurisdictional commons. This article examines the distribution of costs and benefits from desalination projects

  14. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung; Gorski, Christopher A.; Logan, Bruce

    2017-01-01

    capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes

  15. Submerged membrane distillation for desalination of water

    KAUST Repository

    Francis, Lijo

    2016-10-27

    Submerged membrane modules for use for desalination of water are disclosed. In one or more aspects, the membrane modules can be submerged either in a feed solution tank or the feed solution can pass through the lumen side of the membrane submerged within the tank. The feed solution can be a water-based feed stream containing an amount of salt.

  16. Electrochemical acidification of milk by whey desalination

    NARCIS (Netherlands)

    Balster, J.H.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Lammers, H.; Verver, A.B.; Wessling, Matthias

    2007-01-01

    We describe a process configuration for the electrochemical acidification of milk using the desalination function and the acid/base production function of a bipolar membrane process. First, the milk is acidified by the acid produced in the bipolar membrane stack. The precipitate is removed by a

  17. Sustainable desalination using ocean thermocline energy

    KAUST Repository

    Ng, Kim Choon

    2017-09-22

    The conventional desalination processes are not only energy intensive but also environment un-friendly. They are operating far from thermodynamic limit, 10–12%, making them un-sustainable for future water supplies. An innovative desalination processes are required to meet future sustainable desalination goal and COP21 goal. In this paper, we proposed a multi-effect desalination system operated with ocean thermocline energy, thermal energy harnessed from seawater temperature gradient. It can exploit low temperature differential between surface hot water temperature and deep-sea cold-water temperature to produce fresh water. Detailed theoretical model was developed and simulation was conducted in FORTRAN using international mathematical and statistical library (IMSL). We presented four different cases with deep-sea cold water temperature varies from 5 to 13°C and MED stages varies from 3 to 6. It shows that the proposed cycle can achieve highest level of universal performance ratio, UPR = 158, achieving about 18.8% of the ideal limit. With the major energy input emanated from the renewable solar, the proposed cycle is truly a “green desalination” method of low global warming potential (GWP), best suited for tropical coastal shores having bathymetry depths up to 300m or more.

  18. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  19. Apparatus and method for improved desalination

    KAUST Repository

    Ng, Kim Choon

    2009-12-30

    A water desalination system comprising an evaporator for evaporating saline water to produce water vapor; a condenser for condensing the water vapor; wherein the evaporator and the condenser are in heat transfer communication such that heat used by the evaporator is at least in part derived from the condenser.

  20. Activities of the USSR Nuclear Data Center

    International Nuclear Information System (INIS)

    Usachev, L.M.; Popov, V.J.

    1972-01-01

    In any activity, one must start with the determination of its usefulness: in the field of nuclear data, this consists in the compilation of request lists, analogous to the RENDA list, issued in cooperation by the CCDN and the Nuclear Data Center of the N. D. S. At Obninsk, we have a somewhat different approach for our RENDA entries. We do not ask our reactor physicists to formulate their requests for concrete microscopic measurements or to share the requested accuracies between the different needed cross sections, because they are not really specialists in this field. We ask them to formulate their requirements, based on technical and economical considerations, for the tolerable uncertainties on the reactor parameters which are, of course, linked to the uncertainties on nuclear data. In addition, we ask them to give us the sensitivity coefficients for the values of reactor parameters as a function of modifications of the nuclear data. These sensitivity coefficients include all the needed information concerning the reactor in view of the determination of the requirements on nuclear data. The problem of the determination of the set of measurements necessary to obtain the reactor parameters with the required accuracies must, from our point of view be treated mathematically by specialists of the planification theory, working in close connection with specialists of microscopic data measurements and of integral experiments. In order to work out an optimal planing, it is necessary to evaluate the relative costs of the experiments; it is also essential to evaluate correctly the correlations between the uncertainties of the measurements and the estimation of their costs. Moreover, we may know all the information concerning the present accuracy on the measurements of a given type, first of all for a comparative evaluation of the costs of the experiments and, secondly, for drawing conclusions on the possible necessity for more accurate values by comparing the accuracies which

  1. Requirement and prospect of nuclear data activities for nuclear safety

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    2000-01-01

    Owing to continuous efforts by the members of JNDC (Japanese Nuclear Data Committee) and Nuclear Data Center in JAERI (Japan Atomic Energy Research Institute), several superb evaluated nuclear data files, such as JENDL, FP (fission product) yields and decay heat, have been compiled in Japan and opened to the world. However, they are seldom adopted in safety design and safety evaluation of light water reactors and are hardly found in related safety regulatory guidelines and standards except the decay heat. In this report, shown are a few examples of presently used nuclear data in the safety design and the safety evaluation of PWRs (pressurized water reactors) and so forth. And then, several procedures are recommended in order to enhance more utilization of Japanese evaluated nuclear data files for nuclear safety. (author)

  2. Activities of nuclear human resource development in nuclear industry

    International Nuclear Information System (INIS)

    Tsujikura, Yonezo

    2010-01-01

    Since 2007, the JAIF (Japan Atomic Industrial Forum) had established the nuclear energy human resource development council to make analysis of the issue on nuclear human resource development. The author mainly contributed to develop its road map as a chairman of working group. Questionnaire survey to relevant parties on issues of nuclear human resource development had been conducted and the council identified the six relevant issues and ten recommendations. Both aspects for career design and skill-up program are necessary to develop nuclear human resource at each developing step and four respective central coordinating hubs should be linked to each sector participating in human resource development. (T. Tanaka)

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Poland

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Licensing; Registration and monitoring of nuclear materials and radioactive sources; High activity sources); 4. Nuclear facilities (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (The President of the National Atomic Energy Agency - Prezes Panstwowej Agencji Atomistyki (President of the PAA); Minister of Health; Minister of the Environment); 2. Advisory bodies (Council for Nuclear Safety and Radiological Protection); 3. Public and semi-public bodies (Radioactive Waste Management Plant); 4. Research institutes (Central Laboratory for Radiological Protection; National Centre for Nuclear Research; Institute of Nuclear Physics; Institute of Nuclear Chemistry and Technology; Institute of Plasma Physics and Laser Microfusion)

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - New Zealand

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive Substances and Equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities - National Radiation Laboratory - NRL; 2. Advisory bodies - Radiation Protection Advisory Council; 3. Public and semi-public agencies - Research institutes

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Iceland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health and Social Security; Icelandic Radiation Protection Institute)

  6. A neutron irradiator to perform nuclear activation

    International Nuclear Information System (INIS)

    Zamboni, C. B.; Zahn, G.S.; Figueredo, A. M. G.; Madi, T. F.; Yoriyaz, H.; Lima, R. B.; Shtejer, K.; Dalaqua Jr, L.

    2001-01-01

    The development of appropriate nuclear instrumentation to perform neutron activation analyze (NAA), using thermal and fast neutrons, can be useful to investigate materials outside the reactor premises. Considering this fact, a small size neutron irradiator prototype was developed at IPEN facilities (Instituto de Pesquisas Energeticas e Nucleares - Brazil). Basically, this prototype consists of a cylinder of 1200 mm long and 985 mm diameter (filled with paraffin) with two Am-Be sources (600GBq each) arranged in the longitudinal direction of its geometric center. The material to be irradiated is positioned at a radial direction of the cylinder between the two Am-Be sources. The main advantage of this irradiator is a very stable neutron flux eliminating the use of standard material (measure of the induced activity in the sample by comparative method). This way the process became agile, practical and economic, but quantities at mg levels of samples are necessary to achieve good sensitivity, when the material has a low microscopy neutron cross section. As fast and thermal neutron can be used, the flux distribution, for both, were calculated and the prototype performance is discussed

  7. Reviewing surveillance activities in nuclear power plants

    International Nuclear Information System (INIS)

    1989-03-01

    This document provides guidance to Operational Safety Review Teams (OSARTs) for reviewing surveillance activities at a nuclear power plant. In addition, the document contains reference material to support the review of surveillance activities, to assist within the Technical Support area and to ensure consistency between individual reviews. Drafts of the document have already been used on several OSART missions and found to be useful. The document first considers the objectives of an excellent surveillance programme. Investigations to determine the quality of the surveillance programme are then discussed. The attributes of an excellent surveillance programme are listed. Advice follows on how to phrase questions so as to obtain an informative response on surveillance features. Finally, specific equipment is mentioned that should be considered when reviewing functional tests. Four annexes provide examples drawn from operating nuclear power plants. They were selected to supplement the main text of the document with the best international practices as found in OSART reviews. They should in no way limit the acceptance and development of alternative approaches that lead to equivalent or better results. Refs, figs and tabs

  8. State-of-art report on the seawater desalination process

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Kim, Young In; Lee, Doo Jung; Chang, Moon Hee

    2000-11-01

    Desalination technologies have been developed over the last 40 years and become a reliable industrial process for water production from sea or blackish water. At present, various desalination processes are available for the effective use of seawater or blackish water as valuable water resources. Since a large amount of energy is required for seawater desalination, the cost of energy is important for desalination. For the regions of severe water shortage, however, desalination is the most economical way of water supply compare to any other alternatives. Currently, water supply by seawater desalination is being increased in the areas of the Caribbean, North African and Middle East. Also, desalination of blackish water is being increased in the south-east region of USA. In general, the distillation process and the membrane technology are used for seawater esalination and the membrane and the electric-dialysis for blackish water. However, the selection of the desalination process is highly dependent on the use of produced water and the local environmental conditions where the desalination plant installed. The local condition is the most important parameters for the selection of the desalination process

  9. State-of-art report on the seawater desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Lee, Doo Jung; Chang, Moon Hee

    2000-11-01

    Desalination technologies have been developed over the last 40 years and become a reliable industrial process for water production from sea or blackish water. At present, various desalination processes are available for the effective use of seawater or blackish water as valuable water resources. Since a large amount of energy is required for seawater desalination, the cost of energy is important for desalination. For the regions of severe water shortage, however, desalination is the most economical way of water supply compare to any other alternatives. Currently, water supply by seawater desalination is being increased in the areas of the Caribbean, North African and Middle East. Also, desalination of blackish water is being increased in the south-east region of USA. In general, the distillation process and the membrane technology are used for seawater esalination and the membrane and the electric-dialysis for blackish water. However, the selection of the desalination process is highly dependent on the use of produced water and the local environmental conditions where the desalination plant installed. The local condition is the most important parameters for the selection of the desalination process.

  10. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Greece

    International Nuclear Information System (INIS)

    2015-01-01

    In Greece, there are no nuclear power plants and nuclear energy is not considered as an option in the foreseeable future. There is, however, one nuclear research reactor (in extended shutdown since 2014) and one sub-critical assembly. Radioactive waste originating from medicine, research and industry is classified as low level. Although there is no framework act dealing comprehensively with the different aspects of nuclear energy, there are various laws, decrees and regulations of a more specific nature governing several aspects of nuclear activities. This paper gives information on the general regulatory regime (mining regime, radioactive substances, nuclear fuel and equipment, nuclear installations (licensing and inspection, including nuclear safety, emergency response, trade in nuclear materials and equipment, radiation protection, radioactive waste management, nuclear security, transport, nuclear third party liability) and on the institutional framework with the regulatory and supervisory authorities (Greek Atomic Energy Commission (EEAE))

  11. Summary of nuclear fuel reprocessing activities around the world

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  12. Applications of nuclear energy in future

    International Nuclear Information System (INIS)

    Sitek, J.; Necas, V.

    2012-01-01

    Concepts and international frames of generation IV nuclear reactors. A review of use of nuclear energy for non electric applications especially in areas such as seawater desalination, hydrogen production, district heating and other industrial applications. (Author)

  13. 1984 Act on nuclear activities (1984:3)

    International Nuclear Information System (INIS)

    1984-01-01

    This 1984 Act on Nuclear Activities (1984:3) replaces the 1956 Atomic Energy Act as well as the 1977 Act on special permits to charge nuclear reactors with nuclear fuel and the 1980 Act on Public Insight into the Safety Work at Nuclear Power Plants. Like the 1956 Act, the 1984 Act in a safety legislation, which is based on a system of licensing conditions and supervision. According to the fundamental provisions of the 1984 Act, nuclear activities should be conducted in such a way as to meet safety requirements and fulfil the obligations that follow from Sweden's international agreements for the purpose of preventing the proliferation of nuclear weapons. (NEA) [fr

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Finland

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Trade and Industry - KTM; Ministry of Social Affairs and Health; Ministry of the Interior; Ministry of the Environment; Ministry of Foreign Affairs); 2. Advisory bodies (Advisory Committee on Nuclear Energy; Advisory Committee on Nuclear Safety); 3. Public and semi-public agencies (Finnish Radiation and Nuclear Safety Authority - STUK; State Nuclear Waste Management Fund)

  15. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Czech Republic

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear items and spent fuel (Ionising radiation sources; Nuclear items; Spent fuel); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response; Decommissioning); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (State Office for Nuclear Safety - SUJB; Ministry of Industry and Trade; Ministry of the Interior; Ministry of the Environment); 2. Public and semi-public agencies (CEZ, a.s.; National Radiation Protection Institute - NRPI; Radioactive Waste Repository Authority - RAWRA; Diamo; Nuclear Physics Institute - NPI; National Institute for Nuclear, Chemical and Biological Protection; Nuclear Research Institute Rez, a.s. - NRI)

  16. Nuclear safety regulation on nuclear safety equipment activities in relation to human and organizational factors

    International Nuclear Information System (INIS)

    Li Tianshu

    2013-01-01

    Based on years of knowledge in nuclear safety supervision and experience of investigating and dealing with violation events in repair welding of DFHM, this paper analyzes major faults in manufacturing and maintaining activities of nuclear safety equipment in relation to human and organizational factors. It could be deducted that human and organizational factors has definitely become key features in the development of nuclear energy and technology. Some feasible measures to reinforce supervision on nuclear safety equipment activities have also been proposed. (author)

  17. An overview on the activities of Pacific Nuclear Council

    International Nuclear Information System (INIS)

    Akiyama, Mamoru

    2003-01-01

    Pacific Nuclear Council (PNC) is a non-governmental organization (NGO) for cooperation and exchange of information on the nuclear science and technologies and its use in the Pacific basin countries to be established in November, 1989. The charter members are Canadian Nuclear Society, Canada Nuclear Association, Atomic Energy Society of Japan, Japan Atomic Industrial Forum, Inc., Korea Atomic Industrial Forum, Inc., and Mexico Nuclear Society. The activities of PNC are stated as followings; a charter, rules, objects, construction, management, activities for a member organization, Pacific Basin Nuclear Conference, foreign activities, social trend as back ground and future activities. As the activities for a member organization, eight working groups such as training of people, nuclear safety, public acceptances, reorganization of system, control of radioactive waste, public information and out reach, next generation reactor and rules and standards had been worked and the last four groups are working now. (S.Y.)

  18. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon

    2017-01-01

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven

  19. Nuclear Research Centre of Maamora Morocco

    International Nuclear Information System (INIS)

    Marfak, T.; Boufraqech, A.

    2010-01-01

    Morocco has a long and rich history in nuclear technology which began in the 1950s with the development of nuclear techniques in several important socio-economic fields such as medicine, agriculture and industrial applications. The development of nuclear technology evolved over various organizations, primarily within the Ministry of Education. However, with the formation of the National Centre for Nuclear Energy and Technology (CNESTEN) the development of nuclear technology in Morocco has been reinforced. Morocco is looking forward and actively pursuing alternative sources of energy and has a very strong interest in nuclear power generation and associated technologies such as nuclear desalination. Entry into these new technologies is required since there are no natural sources of energy, Morocco currently imports most of its energy needs from abroad and has a rapidly expanding energy need. In this paper, we present CNESTEN and its main facilities, missions, research programmes, human resources, training, education, national and international cooperation, etc

  20. Basic principles for regulating nuclear activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The AECB has developed as its mission statement: `To ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment`. This report proposes eleven qualitative principles for regulating nuclear activities whose achievement would satisfy the broad policy enunciated in the statement. They would further provide a basis for the specific regulatory requirements expressed by the AECB in its Regulations and other documents. They would thus represent a connecting link between the policy enunciated in the mission statement and the requirements. The proposed principles are largely concerned with how the allowable risk should be set for members of the public, for industry workers, for society as a whole, and for the environment. In making these recommendations the risks from normal operation of the licensed facility and those from a possible serious accident are considered separately. The distribution of risk between geographic communities and between generations is also addressed in the proposed principles. These are listed in the final section of the report. 23 refs.

  1. Basic principles for regulating nuclear activities

    International Nuclear Information System (INIS)

    1996-03-01

    The AECB has developed as its mission statement: 'To ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment'. This report proposes eleven qualitative principles for regulating nuclear activities whose achievement would satisfy the broad policy enunciated in the statement. They would further provide a basis for the specific regulatory requirements expressed by the AECB in its Regulations and other documents. They would thus represent a connecting link between the policy enunciated in the mission statement and the requirements. The proposed principles are largely concerned with how the allowable risk should be set for members of the public, for industry workers, for society as a whole, and for the environment. In making these recommendations the risks from normal operation of the licensed facility and those from a possible serious accident are considered separately. The distribution of risk between geographic communities and between generations is also addressed in the proposed principles. These are listed in the final section of the report. 23 refs

  2. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Australia

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Bilateral safeguards agreements; International Atomic Energy Agency Safeguards Agreement; The South Pacific Nuclear Free Zone Treaty Act; The Comprehensive Nuclear Test-Ban Treaty Act; The Nuclear Non-Proliferation (Safeguards) Act); 9. Transport; 10. Nuclear third party liability; II) - Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Health and Ageing; Minister for Foreign Affairs; Minister for the Environment, Heritage and the Arts; Minister for, Resources, Energy and Tourism); 2. Advisory bodies (Radiation Health and Safety Advisory Council; Advisory Committees); 3. Public and semi-public agencies (Australian Radiation Protection and Nuclear Safety Agency (ARPANSA); Australian Safeguards and Non-Proliferation Office; Australian Nuclear Science and Technology Organisation (ANSTO); Supervising Scientist)

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities. Japan

    International Nuclear Information System (INIS)

    2017-01-01

    The NEA has updated, in coordination with the Permanent Delegation of Japan to the OECD, the report on the Regulatory and Institutional Framework for Nuclear Activities in Japan. This country report provides comprehensive information on the regulatory and institutional framework governing nuclear activities in Japan. It provides a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. Content: I - General Regulatory Regime: Introduction; Mining regime; Radioactive substances and equipment; Nuclear installations (Reactor Regulation, Emergency response); Trade in nuclear materials and equipment; Radiological protection; Radioactive waste management; Nuclear safeguards and nuclear security; Transport; Nuclear third party liability. II - Institutional Framework: Regulatory and supervisory authorities (Cabinet Office, Nuclear Regulation Authority (NRA), Ministry of Economy, Trade and Industry (METI), The Agency for Natural Resources and Energy (ANRE), Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Ministry of Education, Culture, Sports, Science and Technology (MEXT)); Advisory bodies (Atomic Energy Commission (AEC), Reactor Safety Examination Committee, Nuclear Fuel Safety Examination Committee, Radiation Council, Other advisory bodies); Public and semi-public agencies (Japan Atomic Energy Agency (JAEA), National Institutes for Quantum and Radiological Science and Technology (QST), Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF), Nuclear Waste Management Organisation (NUMO))

  5. Nuclear air cleaning activities in Germany

    International Nuclear Information System (INIS)

    Wilhelm, J.

    1991-01-01

    The discussion is limited to nuclear air cleaning activities in the Federal Republic of Germany. Work is underway on containment venting with regard to filtration based on a combination of stainless steel roughing and fine filters with a decontamination factor similar to or better than that achieved with high-efficiency particulate air filters. The main point of interest is the development of relatively small filter units that can be located inside the containment. The concept of a new design for double containment having annular rooms between the steel containment and the concrete containment is discussed. Work related to the dismantling of decommissioned reactors and limited research for fuel reprocessing facilities are also noted

  6. Provision of Desalinated Irrigation Water by the Desalination of Groundwater within a Saline Aquifer

    Directory of Open Access Journals (Sweden)

    David D. J. Antia

    2016-12-01

    Full Text Available Irrigated land accounts for 70% of global water usage and 30% of global agricultural production. Forty percent of this water is derived from groundwater. Approximately 20%–30% of the groundwater sources are saline and 20%–50% of global irrigation water is salinized. Salinization reduces crop yields and the number of crop varieties which can be grown on an arable holding. Structured ZVI (zero valent iron, Fe0 pellets desalinate water by storing the removed ions as halite (NaCl within their porosity. This allows an “Aquifer Treatment Zone” to be created within an aquifer, (penetrated by a number of wells (containing ZVI pellets. This zone is used to supply partially desalinated water directly from a saline aquifer. A modeled reconfigured aquifer producing a continuous flow (e.g., 20 m3/day, 7300 m3/a of partially desalinated irrigation water is used to illustrate the impact of porosity, permeability, aquifer heterogeneity, abstraction rate, Aquifer Treatment Zone size, aquifer thickness, optional reinjection, leakage and flow by-pass on the product water salinity. This desalination approach has no operating costs (other than abstraction costs (and ZVI regeneration and may potentially be able to deliver a continuous flow of partially desalinated water (30%–80% NaCl reduction for $0.05–0.5/m3.

  7. Karlsruhe nuclear research center. Main activities

    International Nuclear Information System (INIS)

    The article reports on problems of securing the fuel supply for nuclear power generation, on reprocessing and ultimate storage of radioactive material, on the safety of nuclear facilities, on new technologies and basic research, and on the infrastructure of the Karlsruhe nuclear research center, as well as finance and administration. (HK) [de

  8. BATAN Activities in Developing Nuclear Knowledge Management

    International Nuclear Information System (INIS)

    Darmawati, S.

    2016-01-01

    Full text: BATAN (National Atomic Energy Agency of Indonesia) was established in 1964, and after the issuance of Law 10 of 1997 it become National Nuclear Energy Agency. During the last seven years, BATAN has suffered the loss of many of its valuable human resources due to the zero-growth policy of the government in recruiting new staffs. The uncertain future of nuclear power programme in Indonesia has also reduced the interest of young generation to study nuclear related subjects, resulting in the closing of several departments in universities that once offered nuclear sciences as subject of studies. These situations triggered management of BATAN to develop various efforts to keep nuclear knowledge exist and disseminate among BATAN itself, university students, and public as a whole. BATAN has in recent years established higher school of nuclear technology and organized various nuclear related training programmes, and also in cooperation with other governmental organizations establish nuclear zones, nuclear information centres and nuclear corners in public as well as in high school areas throughout Indonesia. All these efforts are aimed to transfer and preserve nuclear knowledge for the better future of the applications of nuclear science and technology in Indonesia. (author

  9. Public acceptance (PA) activities of nuclear power in Japan

    International Nuclear Information System (INIS)

    Yamada, Masafumi; Iguchi, Tatsuro

    1993-10-01

    At the first part of presentation present status of nuclear power development in Japan is described. Then results of poll on nuclear energy acceptance by population are analyzed. Further, current activities and future efforts directed to broad understanding by people benefits of nuclear energy are described. 6 figs

  10. Reorganization and redimensioning of nuclear activities in Venezuela

    International Nuclear Information System (INIS)

    1984-02-01

    This paper is of a self-critical nature, beginning with a retrospective look at nuclear activities in Venezuela. An inventory of human resources, materials and existing techniques is also made. National nuclear policies and developments are examined pointing out failures and successes. Finally, conclusions are presented about the technical assistance received from international organizations in research, nuclear safety and technological development

  11. Corrosion and Protection of Metal in the Seawater Desalination

    Science.gov (United States)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  12. Nuclear technology for sustainable development and FNCA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    2004-01-01

    Nuclear techniques have been contributing to sustainable development and human welfare through their applications in agriculture, health care, food supply, industry, water resources and environmental conservation. Nuclear techniques are more advantageous and/or complementary with other techniques to achieve goals. For many applications nuclear technique is more environmentally friendly because it does not need chemical agents to induce necessary reactions. This paper also illustrates successful applications of nuclear techniques and activities of the regional nuclear cooperation in Asia, FNCA (Forum for Nuclear Cooperation in Asia) to achieve common goals with limited resources. (author)

  13. Thermodynamic cycles of adsorption desalination system

    International Nuclear Information System (INIS)

    Wu, Jun W.; Hu, Eric J.; Biggs, Mark J.

    2012-01-01

    Highlights: ► Thermodynamic cycles of adsorption desalination (AD) system have been identified all possible evaporator temperature scenarios. ► Temperature of evaporator determines the cycle. ► Higher evaporator temperature leads to higher water production if no cooling is required. -- Abstract: The potential to use waste heat to co-generate cooling and fresh water from saline water using adsorption on silica is attracting increasing attention. A variety of different thermodynamic cycles of such an adsorption desalination (AD) system arise as the temperature of the saline water evaporator is varied relative to temperature of the water used to cool the adsorbent as it adsorbs the evaporated water. In this paper, all these possible thermodynamic cycles are enumerated and analysed to determine their relative performances in terms of specific energy consumption and fresh water productivity.

  14. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Sweden

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects (The Environmental Code, Environmental impact statement, Permit under the Environmental Code)); 5. Trade in nuclear materials and equipment; 6. Radiological protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability (The Nuclear Liability Act; Chernobyl legislation); II. Institutional Framework: 1. Ministries with responsibilities concerning nuclear activities (Ministry of the Environment; Ministry of Enterprise, Energy and Communications; Ministry of Justice; Ministry of Foreign Affairs); 2. Swedish Radiation Safety Authority

  15. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Mexico

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Nuclear terrorism; II. Institutional Framework - The federal government: 1. Regulatory and supervisory authorities (Ministry of Energy; Ministry of Health; Ministry of Labour and Social Security; Ministry of the Environment and Natural Resources; Ministry of Communications and Transport); 2. Public and semi-public agencies: (National Nuclear Safety and Safeguards Commission; National Nuclear Research Institute)

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Slovenia

    International Nuclear Information System (INIS)

    2013-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Safeguards for nuclear material; 7. Radiation protection; 8. Radioactive waste management; 9. Nuclear security; 10. Transport; 11. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Slovenian Nuclear Safety Administration - SNSA; Slovenian Radiation Protection Administration - SRPA); 2. Advisory bodies; 3. Public and semi-public agencies; 4. Technical support organisations - approved experts

  17. Energy system impacts of desalination in Jordan

    OpenAIRE

    Poul Alberg Østergaard; Henrik Lund; Brian Vad Mathiesen

    2014-01-01

    Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigatesa Jordanian energy sc...

  18. Desalination and Water Purification Technology Roadmap

    Science.gov (United States)

    2003-01-01

    Environmental Protection Agency EPS Extra-cellular Polymeric Substances M&E Materials and Energy MF Microfiltration MTBE Methyl Tertiary Butyl Ether NASA...and bays. On a regional scale, therefore, desalination could aid in restoring the balance between fresh water needs and fresh water supplies that has... Microfiltration (MF) membranes—used for turbidity reduction, removal of suspended solids and bacteria • Ultrafiltration (UF) membranes—used for color, odor

  19. Identified Natural Hazards May Cause Adverse Impact on Sustainability of Desalination Plants in Red Sea

    Science.gov (United States)

    Aburizaiza, O. S.; Zaigham, N. A.; Nayyar, Z. A.; Mahar, G. A.; Siddique, A.; Eusufi, S. N.

    2011-12-01

    The Red Sea and its surrounding countries have harsh arid climatic conditions where fast growth of the socio-economic activities and rapid change of lifestyle have caused tremendous stress on water to the level of acute crisis. To meet the water demands, the Red Sea countries have adopted seawater desalination giving priority against their land-based resources. Saudi Arabia is the largest desalinated-water producers in the Red Sea and has practically no adequate backup plan in case of sudden unforeseen emergency. Out of about 3.64 million m3/day, Saudi Arabia is alone being desalinated about 3.29 m3/day seawater from Red Sea and more projects are in progress. Present integrated research study has identified some of natural and anthropogenic hazards, which may be major threats to the quality of the seawater as well as to the desalination plants themselves. Results of present study reveal that the submarine complex morphologic features may cause the isolation of Red Sea from any of the open sea, the increase in the seismicity trends, the active volcanism causing unique longitudinal as well as transverse deformations of the axial trough particularly in the southern part of the Red Sea, the consistently generating enormous hot-brine tectonic-factory all along the deeper parts of the Red Sea rifting trough and other related issues. Considering the identified odd conditions, the total dependence on seawater desalination may not be worthwhile for sustainable water management strategy and consequent socio-economic developments in future. It is recommended that the priority should also be given mainly in three main disciplines to meet the future water challenges - one, developing reliable backup water management; second, alternate options for the supplementary resources of water; and third, the development and immediate implementation of the water-use conservation strategy plan.

  20. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  1. Energy system impacts of desalination in Jordan

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-02-01

    Full Text Available Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO driven by electricity and Multi Stage Flash (MSF desalination driven by Cogeneration of Heat and Power (CHP. The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts on energy system performance. Results indicate that RO and MSF are similar in fuel use. While there is no use of waste heat from condensing mode plants, efficiencies for CHP and MSF are not sufficiently good to results in lower fuel usage than RO. The Jordanian energy system is somewhat inflexible giving cause to Critical Excess Electricity Production (CEEP even at relatively modest wind power penetrations. Here RO assists the energy system in decreasing CEEP – and even more if water storage is applied.

  2. Direct seawater desalination by ion concentration polarization

    Science.gov (United States)

    Kim, Sung Jae; Ko, Sung Hee; Kang, Kwan Hyoung; Han, Jongyoon

    2010-04-01

    A shortage of fresh water is one of the acute challenges facing the world today. An energy-efficient approach to converting sea water into fresh water could be of substantial benefit, but current desalination methods require high power consumption and operating costs or large-scale infrastructures, which make them difficult to implement in resource-limited settings or in disaster scenarios. Here, we report a process for converting sea water (salinity ~500 mM or ~30,000 mg l-1) to fresh water (salinity water is divided into desalted and concentrated streams by ion concentration polarization, a phenomenon that occurs when an ion current is passed through ion-selective membranes. During operation, both salts and larger particles (cells, viruses and microorganisms) are pushed away from the membrane (a nanochannel or nanoporous membrane), which significantly reduces the possibility of membrane fouling and salt accumulation, thus avoiding two problems that plague other membrane filtration methods. To implement this approach, a simple microfluidic device was fabricated and shown to be capable of continuous desalination of sea water (~99% salt rejection at 50% recovery rate) at a power consumption of less than 3.5 Wh l-1, which is comparable to current state-of-the-art systems. Rather than competing with larger desalination plants, the method could be used to make small- or medium-scale systems, with the possibility of battery-powered operation.

  3. Overview of nuclear data activities at the OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Michel-Sendis, F.; Dupont, E.; Gulliford, J.; Nordborg, G.

    2011-01-01

    The Nuclear Energy Agency (NEA) is a specialised agency within the Organisation for Economic Co-operation and Development (OECD). The mission of the NEA is to assist its member countries in maintaining and further developing, through international co-operation, the scientific, technological and legal bases required for the safe, environmentally friendly and economical use of nuclear energy for peaceful purposes. All activities relevant to nuclear data measurements, evaluations and applications are managed by the NEA Nuclear Science Committee through the Nuclear Science section and the Data Bank, which work closely together. This paper gives an overview of current and planned nuclear data activities at the Nuclear Energy Agency through the program of work of the Data Bank in general and of the NEA Working Party on international nuclear data Evaluation Co-operation (WPEC) in particular. (authors)

  4. The Current Status and Implications of Nuclear Energy Cultural Activities

    International Nuclear Information System (INIS)

    Kim, Dong Won

    2006-01-01

    The Korean nuclear energy community paid a high price in terms of the tremendous social costs incurred in the process of securing a site for mid-to-low radioactive waste disposal facility, indicating that interest in the technical danger of nuclear energy has spread to the realm of people's daily lives. Under the circumstances it is important to raise rational public awareness of nuclear science as a foundation of everyday life through nuclear cultural activities. This study examines the various types of public relations activities of the Korea Nuclear Energy Foundation, an organization in charge of promoting nuclear energy, and explores what activities are required to ensure efficient promotion in accordance with development of nuclear culture

  5. Nuclear power company activity based costing management analysis

    International Nuclear Information System (INIS)

    Xu Dan

    2012-01-01

    With Nuclear Energy Industry development, Nuclear Power Company has the continual promoting stress of inner management to the sustainable marketing operation development. In view of this, it is very imminence that Nuclear Power Company should promote the cost management levels and built the nuclear safety based lower cost competitive advantage. Activity based costing management (ABCM) transfer the cost management emphases from the 'product' to the 'activity' using the value chain analysis methods, cost driver analysis methods and so on. According to the analysis of the detail activities and the value chains, cancel the unnecessary activity, low down the resource consuming of the necessary activity, and manage the cost from the source, achieve the purpose of reducing cost, boosting efficiency and realizing the management value. It gets the conclusion from the detail analysis with the nuclear power company procedure and activity, and also with the selection to 'pieces analysis' of the important cost related project in the nuclear power company. The conclusion is that the activities of the nuclear power company has the obviously performance. It can use the management of ABC method. And with the management of the procedure and activity, it is helpful to realize the nuclear safety based low cost competitive advantage in the nuclear power company. (author)

  6. Status of non-electric nuclear heat applications: Technology and safety

    International Nuclear Information System (INIS)

    2000-11-01

    Nuclear energy plays an important role in electricity generation, producing 16% of the world's electricity at the beginning of 1999. It has proven to be safe, reliable, economical and has only a minimal impact on the environment. Most of the world's energy consumption, however, is in the form of heat. The market potential for nuclear heat was recognized early. Some of the first reactors were used for heat supply, e.g. Calder Hall (United Kingdom), Obninsk (Russian Federation), and Agesta (Sweden). Now, over 60 reactors are supplying heat for district heating, industrial processes and seawater desalination. But the nuclear option could be better deployed if it would provide a larger share of the heat market. In particular, seawater desalination using nuclear heat is of increasing interest to some IAEA Member States. In consideration of the growing experience being accumulated, the IAEA periodically reviews the progress and new developments in the field of nuclear heat applications. This publication summarizes the recent activities among Member States presented at a Technical Committee meeting in April 1999. The purpose of the meeting was to provide a forum for the exchange of up to date information on the prospect, design, safety and licensing aspects, and development of non-electrical applications of nuclear heat for industrial use. This mainly included seawater desalination and hydrogen production

  7. Nuclear knowledge portal for supporting licensing and controlling nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, E.; Braga, F.

    2005-01-01

    The knowledge economy is pivotal for moving the wealth and development of traditional industrial sectors - abundant in manual labour, raw materials and capital - to areas whose products, processes and services are rich in technology and knowledge. Even in research areas such as nuclear energy, where goods are based on high technology, the ability to transform information into knowledge, and knowledge into decisions and actions, is extremely important. Therefore, the value of products from these areas depends more and more on the degree of innovation, technology and intelligence incorporated by them. Thus, it has become increasingly important and relevant to acquire strategic knowledge and make it available to the organisation. Therefore, the objective of this paper is to present the construction of a Nuclear Knowledge Portal for aiding and streamlining the Licensing and Management activities of the CNEN. (author)

  8. Nuclear knowledge portal to support licensing and control nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, M.E.; Braga, M.F.

    2004-01-01

    The Knowledge Economy is pivotal for moving the wealth and development of traditional industrial sectors - abundant in manual labor, raw materials and capital - to areas whose products, processes and services are rich in technology and knowledge. Even in research areas such as nuclear energy, where goods are based on high technology, the ability to transform information into knowledge, and knowledge into decisions and actions, is extremely important. Therefore, the value of products from these areas depends more and more on the degree of innovation, technology and intelligence incorporated by them. Thus, it has become increasingly important and relevant to acquire strategic knowledge and make it available to the organization. Therefore, the objective of this article is to present the construction of a Nuclear Knowledge Portal for aiding and streamlining the Licensing and Management activities of the CNEN. (author)

  9. IAEA activities in nuclear safety: future perspectives. Spanish Nuclear Safety Council, Madrid, 28 May 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document represents the conference given by the Director General of the IAEA at the Spanish Nuclear Safety Council in Madrid, on 28 May 1998, on Agency's activities in nuclear safety. The following aspects are emphasized: Agency's role in creating a legally binding nuclear safety regime, non-binding safety standards, services provided by the Agency to assist its Member States in the Application of safety standards, Agency's nuclear safety strategy, and future perspective concerning safety aspects related to radioactive wastes, residues of past nuclear activities, and security of radiological sources

  10. Nuclear knowledge portal to support licensing and control nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, Elizabeth; Braga, Fabiane

    2004-01-01

    importance of keeping the intellectual capital in the organizations that is to work with the knowledge from the collaborators. In Brazil still have many authors that discusses this concept and we adopt for this paper the definition form Cavalcanti where is the concept 'intellectual capital' refers either to the capacity, ability or experience, as well as to the formal education that the collaborators members have and add to the Organization. The 'intellectual capital' is an intangible asset, which belongs to the individual himself, thus it might be utilized by the organizations in order to generate value. The development and preservation of this intellectual capital is made through the implementation of forums of discussion, workshops or knowledge portals where the organization's collaborators share their experiences. Nevertheless, to assimilate and to develop the 'intellectual capital' does not add value to the organization: It is necessary to keep it. And one way to do so is to create desirable and encouraging work environments, to promote a sharing management and to offer programs of profits sharing. The objective of this paper is to describe how Brazilian Nuclear Energy Commission - CNEN has been developing a nuclear knowledge portal, focused in the Radiation and Safety Nuclear area. The Brazilian Nuclear Energy Commission (CNEN) is a federal autarchy created in October 10 of 1956, as a superior agency of planning, guiding, supervision and inspection in nuclear area being also the body entitled to establish standards and regulations on radiological protection, to issue licenses (permissions) and to survey and control the nuclear activities in Brazil. CNEN also develops researches related to the use of nuclear techniques in benefit of the society. The Radiation and Safety Nuclear directorate of CNEN acts, mainly, in the licensing of nuclear and radioactive installations. The people who work at this area recognize the importance of management and sharing the accumulated

  11. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Japan

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Cabinet Office; Minister of Economy, Trade and Industry - METI; Minister of Land, Infrastructure and Transport - MLIT; Minister of Education, Culture, Sports, Science and Technology - MEXT); 2. Advisory bodies (Atomic Energy Commission - AEC; Nuclear Safety Commission - NSC; Radiation Council; Special Committee on Energy Policy; Other advisory bodies); 3. Public and Semi-Public Agencies (Japan Atomic Energy Agency - JAEA)

  12. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Norway

    International Nuclear Information System (INIS)

    2001-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment (Trade governed by nuclear energy legislation; Trade governed by radiation protection legislation; Trade governed by export/import control legislation); 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Ministerial Level (Ministry of Health and Social Affairs; Ministry of Trade and Industry; Ministry of Foreign Affairs; Other Ministries); B. Subsidiary Level: (The Norwegian Radiation Protection Authority - NRPA; The Norwegian Nuclear Emergency Organisation); 2. Public and Semi-Public Agencies - Institute for Energy Technology - IFE

  13. Batteryless photovoltaic reverse-osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, M.; Miranda, M.; Gwillim, J.; Rowbottom, A.; Draisey, I.

    2001-07-01

    The aim of this project was to design an efficient cost-effective batteryless photovoltaic-powered seawater reverse-osmosis desalination system, to deliver in the order of 3 m{sup 3} of fresh drinking water per day. The desalination of seawater to produce fresh drinking water is extremely valuable on islands and in coastal regions wherever natural freshwater is scarce. Existing small-scale desalination equipment, suitable for areas of medium and low population density, often requires a copious and constant supply of energy, either electricity or diesel. If supply of these fuels is expensive or insecure, but the area has a good solar resource, the use of photovoltaic power is an attractive option. Existing demonstrations of photovoltaic-powered desalination generally employ lead-acid batteries, which allow the equipment to operate at a constant flow, but are notoriously problematic in practice. The system developed in this project runs at variable flow, enabling it to make efficient use of the naturally varying solar resource, without need of batteries. In a sense, the freshwater tank is providing the energy storage. In this project, we have reviewed the merits of a wide variety of reverse-osmosis system configurations and component options. We have completed extensive in-house testing and characterisation of major hardware components and used the results to construct detailed software models. Using these, we have designed a system that meets the above project aim, and we have predicted its performance in detail. Our designs show that a system costing 23,055 pounds stirling will produce 1424 m{sup 3} of fresh drinking water annually - an average of just over 3.9 m{sup 3}/day. The system has no fuel costs and no batteries. The overall cost of water, including full maintenance, is 2.00 pounds stirling per m{sup 3}. The energy consumption (photovoltaic-electricity) is typically between 3.2 and 3.7 kWh/m{sup 3} depending on the solar irradiance and feed water

  14. Nuclear power plants - active environment protection|

    International Nuclear Information System (INIS)

    Aegerter, I.

    1987-01-01

    The Federal Commission, which is studying energy scenarios, will doubtlessly come to the conclusion that a withdrawal from nuclear energy is technically and economically feasible. Feasibility alone however is no justification for action. Have the questions been asked correctly by the parliamentarians? Are the real problems being bypassed? Is the demand for a withdrawal from nuclear energy soundly based? Is it not oversimplified? Many people are afraid of nuclear energy because they do not understand it. It is necessary that specialists formulate their ideas so that the layman can easily understand them. The broad public can be educated to lose their fear of nuclear power plants which they compare with the nuclear bombs. They can also be educated to lose their fear of radioactivity. The public should also realize that the CO 2 problem is actual and very serious, and that nuclear energy can in fact help to alleviate this particular problem. 7 refs., 2 figs., 1 tab

  15. Nuclear power plant construction activity, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - France

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Framework: 1. General (The French nuclear power programme and its main players; French nuclear law); 2. Mining Regime; 3. Radioactive Substances and Nuclear Equipment (Regulatory diversity; Radioactive sources; Medical activities); 4. Trade in Nuclear Materials and Equipment (Basic nuclear installations - INB; Tax on basic nuclear installations, Additional taxes, Funding nuclear costs; Installations classified for environmental protection purposes (ICPE) using radioactive substances; Nuclear pressure equipment - ESPN; Defence-related nuclear installations and activities - IANID; Emergency plans); 5. Trade in Nuclear Materials and Equipment (General provisions; Patents); 6. Radiation protection (Protection of the public; Protection of workers; Radiation protection inspectors; Labour inspectors; Protection of individuals in a radiological emergency); 7. Radioactive Waste Management (General regulations; Radioactive waste regulations; Discharge of effluents); 8. Non-proliferation and physical protection (Materials not used for the nuclear deterrent; Materials used for the nuclear deterrent); 9. Transport (Licensing and notification regime: Transport of radioactive materials, Transport of nuclear materials, Transport of radioactive substances between member states of the European Union; Methods of transport: Land transport, Sea transport, Air transport, Transport by post); 10

  17. Instituto de Asuntos Nucleares. Report of Activities 1989

    International Nuclear Information System (INIS)

    1989-01-01

    It is a summary of the technical activities carried out by the Instituto de Asuntos Nucleares, Bogota, Colombia, during 1989. It includes activities in topics as: research projects, transfer of technology, scientific information, qualification and training programs, mainly, which were done in areas like: agriculture, industrial applications, medicine, radiation protection, hydrology, nuclear technology development, radiochemistry and physics, among others

  18. Safety surveillance of activities on nuclear pressure components in China

    International Nuclear Information System (INIS)

    Li Ganjie; Li Tianshu; Yan Tianwen

    2005-01-01

    The nuclear pressure components, which perform the nuclear safety functions, are one of the key physical barriers for nuclear safety. For the national strategy on further development of nuclear power and localization of nuclear pressure components, there still exist some problems in preparedness on the localization. As for the technical basis, what can not be overlooked is the management. Aiming at the current problems, National Nuclear Safety Administration (NNSA) has taken measures to strengthen the propagation and popularization of nuclear safety culture, adjust the review and approval policies for nuclear pressure components qualification license, establish more stringent management requirements, and enhance the surveillance of activities on nuclear pressure equipment. Meanwhile, NNSA has improved the internal management and the regulation efficiency on nuclear pressure components. At the same time, with the development and implementation of 'Rules on the Safety Regulation for Nuclear Safety Important Components' to be promulgated by the State Council of China, NNSA will complete and improve the regulation on nuclear pressure components and other nuclear equipment. (authors)

  19. Nuclear public information activities in Chile

    International Nuclear Information System (INIS)

    Munoz Quintana; R

    1995-01-01

    Nuclear plans and developing programs in developing and developed countries are facing-in a higher or lower degree- opposition from public opinion. The objectives and contents of the public education program on nuclear energy in Chile are dealt with in this paper

  20. CNEN activities and brazilian nuclear power policy

    International Nuclear Information System (INIS)

    Costa, E.M. da

    1989-01-01

    The goal of the brazilian policy in nuclear power is to provide its use in a pacific way to promote the well being of our people. It is intended, as well, to finish the construction of Angra II and III and proceed with the implementation of the nuclear fuel cycle, progressively fomenting its nationalization. (A.C.A.S.)

  1. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Netherlands

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Fissionable materials, ores, radioactive materials and equipment (Fissionable materials and ores; Radioactive materials and equipment); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection (Protection of workers; Protection of the public; Protection of individuals undergoing medical exposure); 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for Housing, Spatial Planning and the Environment; Minister for Economic Affairs; Minister for Social Affairs and Employment; Minister for Health, Welfare and Sports; Minister for Finance; Minister for Foreign Affairs); 2. Advisory body - Health Council of the Netherlands; 3. Public and semi-public agencies (Nuclear Research and Consultancy Group - NRG; Central Organisation for Radioactive Waste - COVRA)

  2. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Spain

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trading in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection (Safeguards and non-proliferation; Physical protection); 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Industry, Tourism and Trade - MITYC; Ministry of the Interior - MIR; Ministry of Economy and the Exchequer - MEH; Ministry of the Environment and Rural and Marine Affairs - MARM); 2. Public and semi-public agencies (Nuclear Safety Council - CSN; Centre for Energy-related, Environmental and Technological Research - CIEMAT; National Energy Commission - CNE; 3. Public capital companies (Enusa Industrias Avanzadas, s.a. - ENUSA; Empresa Nacional de Residuos Radiactivos, s.a. - ENRESA)

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Portugal

    International Nuclear Information System (INIS)

    2011-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Ministry of Health; Minister of Science, Technology and Higher Education; Ministry of Economy and Innovation; Ministry of Environment and Territorial Planning; Other authorities); 2. Advisory bodies (Independent Commission for Radiological Protection and Nuclear Safety - CIPRSN; National Radiation Protection Commission - CNPCR; National Commission for Radiological Emergencies - CNER; Other advisory bodies); 3. Public and semi-public agencies

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction (Licensing system; Offences, compliance and enforcement; Regulatory documents; Other relevant legislation); 2. Mining regime; 3. Nuclear substances and radiation devices; 4. Nuclear facilities; 5. Trade in nuclear materials and equipment (Exports, Other imports); 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Governor in council; Minister of natural resources; Other Ministerial authorities; Canadian Nuclear Safety Commission - CNSC); 2. Public and semi-public agencies (National Research Council - NRC; Natural Sciences and Engineering Research Council; Atomic Energy of Canada Ltd. - AECL)

  5. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Hungary

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Atomic Energy Co-ordination Council; Hungarian Atomic Energy Authority - HAEA; Minister for Health; Minister for Local Government and Regional Development and Minister for Justice and Law Enforcement; Minister for Agriculture and Rural Development; Minister for Economy and Transport; Minister of Environment Protection and Water Management; Minister for Defence; Minister for Education; President of the Hungarian Mining and Geological Authority; Governmental Co-ordination Committee); 2. Advisory bodies (Scientific Board); 3. Public and semi-public agencies (Institute for Electric Power Research - VEIKI; Atomic Energy Research Institute - AEKI; Institute of Isotopes; Department of Physical Chemistry of the University of Pannon; Hungarian Power Companies Ltd - MVM Zrt.)

  6. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Denmark

    International Nuclear Information System (INIS)

    2015-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister of Health; Minister for the Environment/Minister of Transport and Energy; Minister of Justice; Minister of Defence; National Board of Health; Emergency Management Agency); 2. Advisory bodies (The Danish Ministry of Energy, Supply and Climate and the Danish Energy Agency); 3. Public and semi-public agencies (Risoe National Laboratory)

  7. Experience and Prospects of Nuclear Heat Application

    International Nuclear Information System (INIS)

    Woite, G.; Konishi, T.; Kupitz, J.

    1998-01-01

    Relevant technical characteristics of nuclear reactors and heat application facilities for district heating, process heat and seawater desalination are presented and discussed. The necessity of matching the characteristics of reactors and heat applications has consequences for their technical and economic viability. The world-wide operating experience with nuclear district heating, process heating, process heat and seawater desalination is summarised and the prospects for these nuclear heat applications are discussed. (author)

  8. Decommissioning of nuclear facilities: a growing activity in the world

    International Nuclear Information System (INIS)

    Anasco, Raul

    2001-01-01

    Nuclear power plants and nuclear facilities are no different from normal buildings and factories. Eventually, they become worn-out or old fashioned, too expensive to maintain or remodel. Decommissioning a nuclear facility is different from retiring other types because of the radioactivity involved. The most important consideration in nuclear decommissioning is to protect workers and the public from exposure to harmful levels of radiation. General criteria and strategies for the decommissioning of nuclear facilities are described as well as the present decommissioning activities of the Argentine CNEA (author)

  9. Wireless desalination using inductively powered porous carbon electrodes

    NARCIS (Netherlands)

    Kuipers, J.; Porada, S.

    2013-01-01

    Water desalination by capacitive deionization (CDI) uses electrochemical cell pairs formed of porous carbon electrodes, which are brought in contact with the water that must be desalinated. Upon applying a cell voltage or current between the electrodes, ions are electrosorbed and water is produced

  10. Water quality assessment of solar-assisted adsorption desalination cycle

    KAUST Repository

    Kim, Youngdeuk; Thu, K.; Masry, Moawya Ezet; Ng, Kim Choon

    2014-01-01

    in desalinated water exhibit values of less than 0.1. ppm. Reported conductivity measurements of desalinated water are comparable to distilled water conductivity levels and ranged between 2 and 6. μS/cm while TOC and TIC levels are also extremely low and its

  11. Desalination and water recycling by air gap membrane distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; Haan, de A.B.

    2006-01-01

    Membrane distillation (MD) is an emerging technology for desalination. Membrane distillation differs from other membrane technologies in that the driving force for desalination is the difference in vapour pressure of water across the membrane, rather than total pressure. The membranes for MD are

  12. Water recycling and desalination by air gap membrane distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; de Haan, A.B.

    2005-01-01

    Because salt and other small components are the most common compounds in wastewater from the process industry, desalination techniques are likely to be suitable as treatment processes in many cases. Although membrane distillation (MD) is a well-known technology for desalination and water treatment,

  13. Desalination and Water Recycling by Air Gap Membrane Distillation

    NARCIS (Netherlands)

    Meindersma, G.W.; Guijt, C.M.; de Haan, A.B.

    2006-01-01

    Membrane distillation (MD) is an emerging technology for desalination. Membrane distillation differs from other membrane technologies in that the driving force for desalination is the difference in vapour pressure of water across the membrane, rather than total pressure. The membranes for MD are

  14. Science Communication and Desalination Research: Water Experts' Views

    Science.gov (United States)

    Schibeci, R. A.; Williams, A. J.

    2014-01-01

    Access to clean drinking water is a major problem for many people across the world. Desalination is being increasingly used in many countries to provide this important resource. Desalination technology has received varying degrees of support in the communities in which this technology has been adopted. Productive communication suggests we…

  15. A Study of the Impacts of Npp-Desalination Development in Madura on Sectoral Regional Economy

    International Nuclear Information System (INIS)

    Bambang Eko-Afiatno; Mochammad Nasrullah; Sriyana

    2006-01-01

    This study aims to assess the economic impact of construction and early operation of the nuclear power plant (NPP)-desalination project in the island of Mad Lira until the year 2018. Long-term projection on economic output (X) of Madura uses Leo ntiefdynamic 1-0 (input-output) model, and for GRDP- final demand (Y) uses time series model with random growth adjustment based on autoregressive model. Since the Madura 1-0 Table is not available, then it is necessary to construct it for 2000 using RAS method and some modifications. The NPP project will use SMART technology with 2 units of power generators (100 MWe capacity per unit, total output 200 MWe), but to be built sequentially with one year lag. As for the desalination will use 4 units MED with each unit capacity of 10.000 m'/day. The construction stage will take 5 years to be completed (2014-2018), preceded by the pre-project stage along 2010-2013. Total investment requirements of the project is amounted to US$ 357,87 million (in 2002). At the time when the contract (turn key contract) is signed in 2009, the value will become US$ 397.18 million, and in 2014 (early construction) will be US$ 427.87 million. At the end of the project (2018), total investment requirements will amount to US$ 440.79 million. To include land make up payment and licenses costs the project will be worth US$ 476. In the pre-project stage (2010-2013), cumulatively, land make up payment and licenses management activities as much as Rp 114.11 billion (US$ 10.69 million) has indirect effect--transmiUed through private and government consumption -- onto Madura economy. Dynamic 1-0 simulation results (2000 Madura 1-0 Table, 1Ox10) show that the rise in consumption generate increases in output, GRDP and employment respectively in cumulative as much as Rp 146.39 billion, Rp79.20 billion, and 7,428 men. In overall, project activities in construction stage (2014-2017) estimated to Rp 231.37 billion (US$19.36 million) which has direct effect on

  16. Nuclear fear and children: the impact of parental nuclear activism, responsivity, and fear

    Energy Technology Data Exchange (ETDEWEB)

    LaGuardia, M.R.

    1986-01-01

    This study examines the extent to which parental nuclear fear, parental activism, and parental responsivity is associated with children's (age 10) nuclear fear. Other associated variables investigated include: nuclear denial, general anxiety and fear, and the personal characteristics of sex, socio-economic status, and academic aptitude. Findings indicate that children attend to nuclear issues when their parents attend to a significant degree. Children's hopelessness about the arms race is increased as parents' worry about nuclear war increases. Children's fear about not surviving a nuclear war increases as parents' worry about survivability decreases. Children who have more general fears also indicated that they have a high level of hopelessness, pervasive worry, and much concern about being able to survive a nuclear war. Children with a high degree of general anxiety did not indicate high degrees of nuclear fears. Children with high academic aptitude were more knowledgeable about nuclear issues and expressed more fears about the nuclear threat. Boys demonstrated more knowledge about nuclear issues than girls, and girls expressed much more frequent fear and worry about the nuclear threat than boys. Parents of lower socio-economic statues (SES) expressed more denial about the nuclear threat and were more pro-military than the higher SES parents.

  17. Recent activities on nuclear codes and standards

    International Nuclear Information System (INIS)

    Minematsu, Akiyoshi; Ishimoto, Shozaburo; Honjin, Masao

    2000-01-01

    The technical codes and standards relating to the nuclear power stations in Japan are prepared by shapes of laws (ministerial ordinances and bulletins) issued by the government and obliged to comply with by 'the Law concerning the Regulations of Nuclear Material Substances, Nuclear Fuel Substances and Nuclear Reactors' and 'the Electricity Business Act' and of guides defined by the Nuclear Safety Commission, and further some private standards have been issued at a shape of complement of these laws and guides by receiving national recommendation. On the other hand, in the fields of electricity and heat facilities except atomic energy, simplification and feature stipulation of the national technical codes and standards was recently carried out, by which a system usable for the private standards in and out of Japan were prepared through approval of the private Japan Electrotechnical Standards and Codes Committee (JESC). As the nuclear field was now excepted from simultaneous transfer to the private standard and the standard application system, it is expected in future to realize similar transfer if possible and preparation of the private standards is now being advanced. Here were introduced on present state on technical codes and standards relating to the nuclear power generation facilities and recent trends on their private standardization. (G.K.)

  18. Brackish Water Desalination Coupled With Wastewater Treatment and Electricity Generation

    Directory of Open Access Journals (Sweden)

    Zainab Ziad Ismail

    2015-05-01

    Full Text Available A new bio-electrochemical system was proposed for simultaneous removal of organic matters and salinity from actual domestic wastewater and synthetically prepared saline water, respectively. The performance of a three-chambered microbial osmotic fuel cell (MOFC provided with forward osmosis (FO membrane and cation exchange membrane (CEM was evaluated with respect to the chemical oxygen demand (COD removal from wastewater, electricity generation, and desalination of saline water. The MOFC wasinoculated with activated sludge and fueled with actual domestic wastewater. Results revealed that maximum removal efficiency of COD from wastewater, TDS removal efficiency from saline water, power density, and current density were 96%, 90%, 30.02 mW/m2, and 107.20 mA/m2, respectively.

  19. Educational activity on nuclear energy in Aomori region

    International Nuclear Information System (INIS)

    Abe, Katsunori

    2008-01-01

    There are many nuclear industries and research facilities in Aomori Prefecture, Japan. Fuel cycle facilities and a LWR power station are now in operation. Another fuel cycle facilities and power stations will soon be under construction. Fusion research activity, ITER-BA, has started last year. We have launched nuclear-related education and research programs to teach nuclear engineering knowledge and skills to the local students. Hachinohe Institute of Technology is located on Pacific ocean side of Aomori Prefecture close to Rokkasho area, and has six undergraduate departments and three graduate courses. Hitherto, many alumni have engaged in nuclear-related companies in the area. In addition to previous subject on nuclear engineering, a new activity 'Challenge Nuclear-site Experience Program' started in 2007, as one of nuclear educational promotion programs in Japan. The students from various engineering departments learned the status and role of nuclear industries and researches. A curriculum course for nuclear engineering will be ready in 2009 for undergraduate students through various departments. In the summer of 2007, the introductory lesson on nuclear power generation and the technical tour to the power station were carried out for two days. In the autumn, the introductory lesson on nuclear fuel cycle and the tour to fuel cycle facilities were performed for three days, including one day tour to research facilities in the area. Its aim was to let the students recognize the role of regional nuclear activities and the attractiveness of nuclear-related industries. The program was supported by Ministry of Economy, Trade and Industry and was performed in cooperation with Tohoku Electric Power Company, Japan Nuclear Fuel Limited and Japan Atomic Energy Agency. (author)

  20. Status and future plan of nuclear data activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Soo-Youl; Chang, Jonghwa [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1997-03-01

    It was reviewed the nuclear data related activities in Korea, and was explained a 15-year term nation-wide R and D project that had been launched at 1996. The experiences up to now show, as a whole, that the nuclear data field in Korea is in the early stage. Through the long term project, however, it is expected that a firm foundation be established. Then it would be possible to contribute actively to the international nuclear data community as well as to meet domestic requests for nuclear data. Also it was pointed out the necessity of the international collaboration such as consultings and co-works. (author)

  1. A desalination plant with solar and wind energy

    International Nuclear Information System (INIS)

    Chen, H; Ye, Z; Gao, W

    2013-01-01

    The shortage of freshwater resources has become a worldwide problem. China has a water shortage, although the total amount of water resources is the sixth in the world, the per capita water capacity is the 121th (a quarter of the world's per capita water capacity), and the United Nations considers China one of the poorest 13 countries in the world in terms of water. In order to increase the supply of fresh water, a realistic way is to make full use of China's long and narrow coastline for seawater desalination. This paper discusses a sea water desalination device, the device adopts distillation, uses the greenhouse effect principle and wind power heating principle, and the two-type start is used to solve the problem of vertical axis wind turbine self-starting. Thrust bearings are used to ensure the stability of the device, and to ensure absorbtion of wind energy and solar energy, and to collect evaporation of water to achieve desalination. The device can absorb solar and wind energy instead of input energy, so it can be used in ship, island and many kinds of environment. Due to the comprehensive utilization of wind power and solar power, the efficiency of the device is more than other passive sea water desalting plants, the initial investment and maintenance cost is lower than active sea water desalting plant. The main part of the device cannot only be used in offshore work, but can also be used in deep sea floating work, so the device can utilise deep sea energy. In order to prove the practicability of the device, the author has carried out theory of water production calculations. According to the principle of conservation of energy, the device ais bsorbing solar and wind power, except loose lost part which is used for water temperature rise and phase transition. Assume the inflow water temperature is 20 °C, outflow water temperature is 70 °C, the energy utilization is 60%, we can know that the water production quantity is 8 kg/ m 2 per hour. Comparing

  2. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Slovak Republic

    International Nuclear Information System (INIS)

    2013-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances and Equipment; 4. Nuclear Installations (Licensing and Inspection, including Nuclear Safety; Emergency Response); 5. Trade in Nuclear Materials and Equipment; 6. Radiological Protection; 7. Radioactive Waste Management; 8. Non-proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Nuclear Regulatory Authority of the Slovak Republic - UJD; Ministry of Health; Ministry of the Environment; Ministry of the Interior; Ministry of Economy; Ministry of Labour and National Labour Inspectorate); 2. Public and Semi-Public Agencies

  3. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Turkey

    International Nuclear Information System (INIS)

    2008-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Nuclear security; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Prime Minister; Ministry of Energy and Natural Resources; Ministry of Health; Ministry of the Environment and Forestry); 2. Public and semi-public agencies (Turkish Atomic Energy Authority - TAEK; General Directorate for Mineral Research and Exploration - MTA; ETI Mine Works General Management; Turkish Electric Generation and Transmission Corporation - TEAS; Turkish Electricity Distribution Corporation - TEDAS)

  4. Water desalination using capacitive deionization with microporous carbon electrodes.

    Science.gov (United States)

    Porada, S; Weinstein, L; Dash, R; van der Wal, A; Bryjak, M; Gogotsi, Y; Biesheuvel, P M

    2012-03-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2-1.4 V. The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorption. The charge efficiency, being the ratio of equilibrium salt adsorption over charge, does not depend much on the type of material, indicating that materials that have been identified for high charge storage capacity can also be highly suitable for CDI. This work shows the potential of materials with well-defined sub-nanometer pore sizes for energy-efficient water desalination. © 2012 American Chemical Society

  5. Nuclear power planning study for Saudi Arabia

    International Nuclear Information System (INIS)

    Kutbi, I.I.; Matin, Abdul.

    1984-05-01

    The prospects of application of nuclear energy for production of electricity and desalinated water in the Kingdom are evaluated. General economic development of the country and data on reserves, production and consumption of oil and natural gas are reviewed. Electrical power system is described with data on production and consumption. Estimates of future power demand are made using Aoki method. Costs of production of electricity from 600 MW, 900 MW and 1200 MW nuclear and oil-fired power plants are calculated along with the costs of production of desalinated water from dual purpose nuclear and oil-fired plants. The economic analysis indicates that the cost of production of electricity and desalinated water are in general cheaper from the nuclear power plants. Suggests consideration of the use of nuclear energy for production of both electricity and desalinated water from 1415 H. Further detailed studies and prepartory organizational steps in this direction are outlined. 38 Ref

  6. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Switzerland

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment (Nuclear fuels; Radioactive substances and equipment generating ionising radiation); 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment; 6. Radiation protection; 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; 11. Environmental protection; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Council; Federal Assembly; Federal Department of the Environment, Transport, Energy and Communications - DETEC; Federal Office of Energy - SFOE; Swiss Federal Nuclear Safety Inspectorate - IFSN; Federal Department of Home Affairs - FDHA; Federal Office of Public Health - FOPH; State Secretariat for Education and Research - SER; Other authorities); 2. Advisory bodies (Swiss Federal Nuclear Safety Commission - KNS; Federal Commission for Radiological Protection and Monitoring of the Radioactivity in the Environment; Federal Emergency Organisation on Radioactivity); 3. Public and semi-public agencies (Paul-Scherrer Institute - PSI; Fund for the decommissioning of nuclear installations and for the waste disposal; National Co-operative for the

  7. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Belgium

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining regime; 3. Nuclear facilities (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response; Decommissioning); 4. Trade in nuclear materials and equipment; 5. Radiological protection; 6. Radioactive waste management; 7. Non-proliferation of nuclear weapons and physical protection of nuclear material (International aspects; National control and security measures); 8. Transport; 9. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Federal Agency for Nuclear Control - FANC; Federal Public Service for Home Affairs; Federal Public Service for Economy, SME's, Self-Employed and Energy; Federal Public Service for Employment, Labour and Social Dialogue; Federal Public Service for Defence; Federal Public Service for Foreign Affairs, Foreign Trade and Development Co-operation; Federal Public Planning Service for Science Policy); 2. Advisory bodies (Scientific Council for Ionizing Radiation of the Federal Agency for Nuclear Control; Superior Health Council; Superior Council for Safety, Hygiene and Enhancement of Workplaces; Advisory Committee for the Non-Proliferation of Nuclear Weapons; Commission for Electricity and Gas Regulation - CREG)

  8. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Italy

    International Nuclear Information System (INIS)

    2010-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in nuclear materials and equipment (General provisions; Patents); 6. Radiation Protection (Protection of workers; Protection of the public; Protection of the environment); 7. Radioactive Waste Management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Interdepartmental Committee for Economic Planning; Nuclear Safety Agency; Prime Minister; Minister for Economic Development; Minister for Labour and Social Security; Minister for Health; Minister for the Environment; Minister for the Interior; Minister for Transport and Navigation; Minister for Foreign Trade (now incorporated in Ministry for Economic Development); Minister for Education; Treasury Minister; Minister for Universities and for Scientific and Technical Research; Minister for Foreign Affairs; State Advocate General); 2. Advisory bodies (Inter-ministerial Council for Consultation and Co-ordination; Coordinating Committee for Radiation Protection of Workers and the Public; Regional and Provincial Commissions for Public Health Protection

  9. Economic evaluation of seawater desalination by using SMART in the MENA

    International Nuclear Information System (INIS)

    Lee, Hyo Sung; Roh, Myung Sub

    2013-01-01

    This paper show the economic evaluation of seawater desalination in the MENA(Middle East and North Africa) by using nuclear source. Especially the evaluation of economics is performed based on comparing the SMART(System integrated Modular Advanced Reactor) developed in Korea with general Combined Cycle Gas Turbine. Taken the economic analysis together, the most important issues for economic feasibility are the management of the construction cost. SMART have a competitive when the construction cost is 3,000$/kWe. Thus plan for the management of the target construction cost will be reflected in the design process like a notion of modularity and mass production methods. Another way is the design optimization of SMART and facility of desalination in a view of the mechanical properties. In other words, it is a way to design improvements for eliminating or sharing of duplicate functions between SMART and desalination facility and maximization the efficiency of energy use. Finally, construction cost can be rationalized by reduce the construction lead time. The potential weakness of SMART is the long construction lead time as compared with alternative. Moreover considering the SMART is suitable for the country which is expected to have the most rapid economic growth in the near future, the construction lead time should be shorten. Managing these concepts to reduce the construction cost is enough to compensate for a disadvantage in power cost and water cost comparing with combined cycle

  10. Economic evaluation of seawater desalination by using SMART in the MENA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Sung; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This paper show the economic evaluation of seawater desalination in the MENA(Middle East and North Africa) by using nuclear source. Especially the evaluation of economics is performed based on comparing the SMART(System integrated Modular Advanced Reactor) developed in Korea with general Combined Cycle Gas Turbine. Taken the economic analysis together, the most important issues for economic feasibility are the management of the construction cost. SMART have a competitive when the construction cost is 3,000$/kWe. Thus plan for the management of the target construction cost will be reflected in the design process like a notion of modularity and mass production methods. Another way is the design optimization of SMART and facility of desalination in a view of the mechanical properties. In other words, it is a way to design improvements for eliminating or sharing of duplicate functions between SMART and desalination facility and maximization the efficiency of energy use. Finally, construction cost can be rationalized by reduce the construction lead time. The potential weakness of SMART is the long construction lead time as compared with alternative. Moreover considering the SMART is suitable for the country which is expected to have the most rapid economic growth in the near future, the construction lead time should be shorten. Managing these concepts to reduce the construction cost is enough to compensate for a disadvantage in power cost and water cost comparing with combined cycle.

  11. Progress report on nuclear data activities in Sweden for 1980

    International Nuclear Information System (INIS)

    Conde, H.

    1981-04-01

    This report contains information from laboratories in Sweden about measurements and compilations which are relevant to obtain nuclear data for research and development in different applied fields of nuclear physics. Reports relevant to the nuclear energy field are given of neutron cross section measurements and studies of the fission process. Reports are also given of nuclear structure and decay data measurements especially fission product nuclear data measurements of importance for the research on reactor safety and nuclear waste handling. Charged particle and photonuclear cross section measurements with applications in e.g. activation analysis and the production of radioisotopes for medical use are reported as well. In some cases reports are also given of measurements aiming to test nuclear models which are commonly used for the calculation of the above type of data. The report also contains short information about changes of existing experimental facilities. (Auth.)

  12. Prospects for non-electric applications of nuclear energy in Korea

    International Nuclear Information System (INIS)

    Kim Si-Hwan; Chang Moon-Hee

    1997-01-01

    Nuclear power technology and related infrastructures are already well established in Korea. Intensive efforts for technology advancements and new technology development are continuously being pursued through various R and D activities. Along with these efforts, the expansion of peaceful utilization of nuclear energy technology for non-electric applications has also been sought and related R and D program is currently underway particularly for nuclear seawater desalination. The program is mainly focused on the development of an integral advanced reactor of 330 MWt for supplying the energy for seawater desalination as well as for power generation. Approximately 40,000 m 3 /d water production facility will be coupled with the reactor to compose an integrated nuclear desalination system. In order to incorporate advanced technologies such an intrinsic and passive safety features into the reactor as a way for enhancing the safety and performance, various R and D activities are concurrently in progress along with the conceptual development of the reactor. Five years are planned for the completion of system development and the construction of a demonstration plant will follow. (author). 4 figs, 2 tabs

  13. Enhancing forward osmosis water recovery from landfill leachate by desalinating brine and recovering ammonia in a microbial desalination cell.

    Science.gov (United States)

    Iskander, Syeed Md; Novak, John T; He, Zhen

    2018-05-01

    In this work, a microbial desalination cell (MDC) was employed to desalinate the FO treated leachate for reduction of both salinity and chemical oxygen demand (COD). The FO recovered 51.5% water from a raw leachate and the recovery increased to 83.5% from the concentrated leachate after desalination in the MDC fed with either acetate or another leachate as an electron source and at a different hydraulic retention time (HRT). Easily-degraded substrate like acetate and a long HRT resulted in a low conductivity desalinated effluent. Ammonia was also recovered in the MDC cathode with a recovery efficiency varying from 11 to 64%, affected by current generation and HRT. Significant COD reduction, as high as 65.4%, was observed in the desalination chamber and attributed to the decrease of both organic and inorganic compounds via diffusion and electricity-driven movement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Solar photovoltaic power for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J. R.; Crutcher, J. L.; Norbedo, A. J.; Cummings, A. B.

    1980-07-01

    There is a considerable global need for systems which can meet the drinking water requirements of small communities (7000 people or less) from brackish water or from seawater. Solar photovoltaic panels are an ideal source of power for the purpose, primarily because they produce electricity, which can be used to power a membrane type desalting unit, i.e., either a reverse osmosis plant or an electrodialysis unit. In addition, electricity is most convenient for feedwater pumping. This paper addresses considerations which arise in the design and construction of a complete solar powered water desalination system which requires no supply of fuel nor any form of backup power (grid connection or engine generator).

  15. Modeling of electrokinetic desalination of bricks

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2012-01-01

    A model for the reactive transport of matter through porous media induced by an externally applied electric field is discussed. The Nernst–Planck–Poisson system of equations is used for modeling multi-species electro-diffusion transport phenomena, assuming chemical equilibrium during the process....... The system of equations includes the transport of water and the resulting advective flow of the aqueous species. The model takes into account transient change in porosity and its impact on transport. Test examples were performed and compared to experimental data for electrokinetic desalination treatment...

  16. The floating desalination complex GEYSER-1

    International Nuclear Information System (INIS)

    Vorobyov, V.M.

    1997-01-01

    A conventional floating desalination complex, GEYSER-1, is presented which is capable of producing 40,000 cubic meters per day (m 3 /d) of fresh water from brackish water or seawater. The complex includes a water intake system, a preliminary water preparation system, a high-pressure pump house and a power installation based on diesel or a gas turbines with service equipment. GEYSER-1 can be transported to the place of operation either by a heavy lift ship or by towing. (author)

  17. Desalination Economic Evaluation Program (DEEP). User's manual

    International Nuclear Information System (INIS)

    2000-01-01

    DEEP (formerly named ''Co-generation and Desalination Economic Evaluation'' Spreadsheet, CDEE) has been developed originally by General Atomics under contract, and has been used in the IAEA's feasibility studies. For further confidence in the software, it was validated in March 1998. After that, a user friendly version has been issued under the name of DEEP at the end of 1998. DEEP output includes the levelised cost of water and power, a breakdown of cost components, energy consumption and net saleable power for each selected option. Specific power plants can be modelled by adjustment of input data including design power, power cycle parameters and costs

  18. 1984 Ordinance on nuclear activities (1984:14)

    International Nuclear Information System (INIS)

    1984-01-01

    This Supplementary Ordinance on Nuclear Activities (1984:14) sets out a regulatory regime for the conveyance out of Sweden of equipment or material that has been specially designed or prepared for the processing, use or production of nuclear substances or which is otherwise of essential importance for the production of nuclear devices. The Annex to the Ordinance sets out the list of such equipment or material whose export is subject to Government authorisation. (NEA) [fr

  19. Activities report 1991-1992: Nuclear Research Center of Strasbourg

    International Nuclear Information System (INIS)

    1993-01-01

    This activities report of the Nuclear Research Centre of Strasbourg for the years 1991 and 1992, presents nine research axis: theoretical physics, mechanisms of reactions and nuclear structure, extreme forms of nuclei, exotic nuclei, hot and dense nuclear matter, ultra-relativistic heavy ions, physics of LEP (European Large Electron-Positron storage ring) at 'DELPHI', chemistry and physics of radiations, physics and applications of semi-conductors

  20. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Austria

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I) - General Regulatory Regime - General Outline: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances, Nuclear Fuel and Equipment; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II) - Institutional Framework: 1. Regulatory and Supervisory Authorities: A. Federal Authorities - Bund (The Federal Chancellery; The Federal Minister for Women's Affairs and Consumer Protection; The Federal Minister of the Interior; The Federal Minister for Economic Affairs; The Federal Minister of Finance; The Federal Minister of Labour, Health and Social Affairs; The Federal Minister of Science and Transport; The Federal Minister of Justice; The Federal Minister for the Environment; The Federal Minister for Foreign Affairs) B. Regional Authorities - Laender; C. District Authorities - Bezirksverwaltungsbehorden; 2. Advisory Bodies (Forum for Nuclear Questions, Radiation Protection Commission - SSK); 3. Public and Semi-Public Agencies (The Seibersdorf Austrian Research Centre; The Graz Nuclear Institute; The Nuclear Institute of the Austrian Universities; The Institute of Risk Research, University of Vienna)

  1. Managing nuclear knowledge: IAEA activities and international coordination. Asian Network for Education in Nuclear Technology (ANENT)

    International Nuclear Information System (INIS)

    2007-07-01

    This CD-ROM is attached to the booklet 'Managing nuclear knowledge: IAEA activities and international coordination. Asian Network for Education in Nuclear Technology (ANENT)'. It contains the background material with regard to ANENT in full text, including policy level papers, reports, presentation material made by Member States, and meeting summaries during the period 2002-2005. Further information on the current ANENT activities and related IAEA activities is available at 'http://anent-iaea.org' and 'http://iaea.org/inisnkm'

  2. Synergism in regulation of nuclear and radiological activities

    International Nuclear Information System (INIS)

    Buzdugan, A.

    2009-01-01

    In 2006 the reform of nuclear activity regulation in Moldova was initiated. On May 11, 2006, the Parliament of the Republic of Moldova passed the law Nr 111-XVI 'About Safe Accomplishment of Nuclear and Radiological Activity'. On the 23rd of March, 2007 the National Agency for Regulation of Nuclear and Radiological Activities (NARNRA) was founded due to the decree of the Government under the Ministry of Ecology and Natural Resources. Its first objective was elaboration of necessary regulation documents in this field

  3. The monopoly of the nuclear activities in Brazil

    International Nuclear Information System (INIS)

    Santanna, Luciano Portal

    2009-01-01

    The difficulty in dealing with some technical and legal concepts related to use of radioactivity and nuclear energy, combined with a confusing law silent and many respects outdated, doubts arise and often, misconceptions about scope of the monopoly of the Federal Government on activities with nuclear ores and minerals and derivatives. With an interdisciplinary approach, the aim of this work address key aspects of the legal regime of nuclear activities and facilities in Brazil, distinguishing it from that applicable to the activities and radiative facilities

  4. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - Ireland

    International Nuclear Information System (INIS)

    2009-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General regulatory regime: 1. Introduction; 2. Mining regime; 3. Radioactive substances, nuclear fuel and equipment; 4. Nuclear installations; 5. Trade in nuclear materials and equipment; 6. Radiation protection (Radiation protection standards; Emergency response); 7. Radioactive waste management; 8. Non-proliferation and physical protection; 9. Transport; 10. Nuclear third party liability; II. Institutional Framework: 1. Regulatory and supervisory authorities (Minister for the Environment, Heritage and Local Government; Minister for Agriculture and Food; Minister for Communications, Marine and Natural Resources; Minister for Finance; Minister for Health and Children; Minister for Defence); 2. Public and semi-public agencies (Radiological Protection Institute of Ireland; Food Safety Authority of Ireland)

  5. Peaceful nuclear energy to Saudi Arabia

    International Nuclear Information System (INIS)

    Melibary, A.R.; Wirtz, K.

    1980-11-01

    The argument for and against the application of peaceful nuclear energy in Saudi Arabia is discussed in terms of the country's industrial development and power requirement for electricity and desalination. The discussion leads to the conclusion that due to its large oil reserve, Saudi Arabia may tolerate a considerate approach to nuclear energy up to the year 2000. Beyond this date, nuclear energy should be used in order to achieve the desired industrial maturity in the country. The introduction of nuclear energy, however, will be faced with three constraints, namely man power availability, cooling water requirement, and the size of the electrical grid. The period 1980-2000 is thus most suitable for important preparation steps, among which are the adoption of regulatory provisions, establishment of nuclear facilities with necessary equipments, and staff training for regulatory, organizational, and technical activities. The paper outlines a scheme for the initiation steps and efforts to meet these requirements. (orig.) [de

  6. Activities on covariance estimation in Japanese Nuclear Data Committee

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Described are activities on covariance estimation in the Japanese Nuclear Data Committee. Covariances are obtained from measurements by using the least-squares methods. A simultaneous evaluation was performed to deduce covariances of fission cross sections of U and Pu isotopes. A code system, KALMAN, is used to estimate covariances of nuclear model calculations from uncertainties in model parameters. (author)

  7. Activity report 2006 - INB - Brazilian Nuclear Industries Inc

    International Nuclear Information System (INIS)

    2006-01-01

    This document reports the activities of Brazilian Nuclear Industry company during 2006 as follows: uranium isotope enrichment; production of nuclear fuel; mineral resources; finance and administration; planning and sales; quality, safety and environment, communication and social action; economic and financial management

  8. Report of activities of the Japanese Nuclear Data Committee

    International Nuclear Information System (INIS)

    1977-01-01

    A progress report of the Japanese Nuclear Data Committee for the period of April 1, 1975 to March 31, 1977 is presented with emphasis on the topics of Japanese Evaluated Nuclear Data Library, version I(JENDL-1). Activities of working groups are also reported briefly. (auth.)

  9. Regulatory and institutional framework for nuclear activities

    International Nuclear Information System (INIS)

    1996-01-01

    This study is part of a series of analytical studies on nuclear legislation in OECD Member countries, prepared with the co-operation of the countries concerned. Each study has been organised on the basis of a standardised format for all countries, thus facilitating the comparison of information. The studies are intended to be updated periodically, taking into account modifications to the nuclear legislation in each country. This is the first update to the 1995 Edition. Unfortunately, due to the constraints of the OECD Publications Service, it covers only those legislative and institutional changes which, in our view, are of the greatest significance for our readers. Thus, you will find new chapters on Finland, Greece, Italy, Japan, Mexico, the Netherlands, Portugal and the United States. Changes to the nuclear legislation and institutions of the remaining countries will be incorporated into the next Update which is expected to be published at the end of 1997. (author)

  10. The monopoly of the nuclear activities in Brazil; O monopolio das atividades nucleares no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santanna, Luciano Portal

    2009-07-01

    The difficulty in dealing with some technical and legal concepts related to use of radioactivity and nuclear energy, combined with a confusing law silent and many respects outdated, doubts arise and often, misconceptions about scope of the monopoly of the Federal Government on activities with nuclear ores and minerals and derivatives. With an interdisciplinary approach, the aim of this work address key aspects of the legal regime of nuclear activities and facilities in Brazil, distinguishing it from that applicable to the activities and radiative facilities.

  11. Legislation on and regulation of nuclear activities

    International Nuclear Information System (INIS)

    1984-05-01

    This work is a compilation of legislative texts and regulations published by the Atomic Energy Commission's Legal Affairs Department (CEA). It provides a comprehensive source of knowledge and information on nuclear energy law. Legislative texts published over the last forty years, are collected and analytically indexed. The publication covers both French regulations and regulations of international organisations such as the International Atomic Energy Agency and Euratom. It is divided into eight different chapters, dealing with regulations relevant to international and national institutions, nuclear installations, third party liability, protection of persons and the environment, etc. A chronological table of the texts of international and national laws is also included in this work. (NEA) [fr

  12. Military nuclear activities. The simulation program

    International Nuclear Information System (INIS)

    Delpuech, A.

    2000-01-01

    The durability of the French nuclear weapon dissuasion has to integrate two kind of problems: the geopolitical situation with the comprehensive nuclear test ban treaty (CTBT) and the aging of weapons. The replacement of decayed weapons requires a complete safety and reliability validation of the new weapons which is performed using simulation. This paper gives a brief presentation of the simulation program and of the technical means developed by the military division of the French atomic energy commission (CEA-DAM): the Airix X-ray radiography installation and the 'megajoule' laser facility. (J.S.)

  13. Activities of Brazilian Nuclear Energy Commission in the field of nuclear power plant licesing

    International Nuclear Information System (INIS)

    Alves, R.N.

    1986-01-01

    The objectives, the procedures and the ways of implementation of measures aiming at safety use of nuclear energy are presented. The juridical aspects in the licensing area and the regulatory activities used by CNEN. The description of nuclear power plants and the methodology used in studies of environmental protection and radiation protection are presented [pt

  14. Annual and activity report 2005 - INB - Brazilian Nuclear Industries. Nuclear fuel: technology for the essential

    International Nuclear Information System (INIS)

    2005-01-01

    This document reports the activities of Brazilian Nuclear Industry company during 2005 as follows: uranium isotope enrichment; production of nuclear fuel; mineral resources; finance and administration; planning and sales; quality, safety and environment, communication and social action; economic and financial management

  15. Low temperature humidification dehumidification desalination process

    International Nuclear Information System (INIS)

    Al-Enezi, Ghazi; Ettouney, Hisham; Fawzy, Nagla

    2006-01-01

    The humidification dehumidification desalination process is viewed as a promising technique for small capacity production plants. The process has several attractive features, which include operation at low temperature, ability to utilize sustainable energy sources, i.e. solar and geothermal, and requirements of low technology level. This paper evaluates the characteristics of the humidification dehumidification desalination process as a function of operating conditions. A small capacity experimental system is used to evaluate the process characteristics as a function of the flow rate of the water and air streams, the temperature of the water stream and the temperature of the cooling water stream. The experimental system includes a packed humidification column, a double pipe glass condenser, a constant temperature water circulation tank and a chiller for cooling water. The water production is found to depend strongly on the hot water temperature. Also, the water production is found to increase upon the increase of the air flow rate and the decrease of the cooling water temperature. The measured air and water temperatures, air relative humidity and the flow rates are used to calculate the air side mass transfer coefficient and the overall heat transfer coefficient. Measured data are found to be consistent with previous literature results

  16. Nuclear Legislation in OECD and NEA Countries. Regulatory and Institutional Framework for Nuclear Activities - United Kingdom

    International Nuclear Information System (INIS)

    2003-01-01

    This country profile provide comprehensive information on the regulatory and Institutional Framework governing nuclear activities as well as a detailed review of a full range of nuclear law topics, including: mining regime; radioactive substances; nuclear installations; trade in nuclear materials and equipment; radiation protection; radioactive waste management; non-proliferation and physical protection; transport; and nuclear third party liability. The profile is complemented by reproductions of the primary legislation regulating nuclear activities in the country. Content: I. General Regulatory Regime: 1. Introduction; 2. Mining Regime; 3. Radioactive Substances; 4. Nuclear Installations (Licensing and inspection, including nuclear safety; Protection of the environment against radiation effects; Emergency response); 5. Trade in Nuclear Materials and Equipment; 6. Radiation Protection; 7. Radioactive Waste Management; 8. Non-Proliferation and Physical Protection; 9. Transport; 10. Nuclear Third Party Liability; II. Institutional Framework: 1. Regulatory and Supervisory Authorities (Department of Trade and Industry - DTI; Secretary of State for Environment, Food and Rural Affairs and the Secretary of State for Health; Secretary of State for Transport; Secretary of State for Education); 2. Advisory Bodies (Medical Research Council - MRC; Nuclear Safety Advisory Committee; Radioactive Waste Management Advisory Committee); 3. Public and Semi-Public Agencies (United Kingdom Atomic Energy Authority - UKAEA; Health and Safety Commission and Executive - HSC/HSE; National Radiological Protection Board - NRPB; Environment Agencies; British Nuclear Fuels plc. - BNFL; Amersham International plc.; The National Nuclear Corporation Ltd. - NNC; United Kingdom Nirex Ltd.; Magnox Electric plc.; British Energy Generation Ltd.; Scottish Electricity Generator Companies; British Energy Generation Ltd.; Regional Electricity Companies in England and Wales)

  17. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  18. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, NorEddine; Lattemann, Sabine; Missimer, Thomas M.; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary L.

    2014-01-01

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group's contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  19. Safety objectives for nuclear activities in Canada

    International Nuclear Information System (INIS)

    1982-04-01

    This report by the Advisory Committee on Nuclear Safety presents a concise statement of the basic safety objectives which the Committee considers underlie, or should underlie, the regulations and the licensing and compliance practices of the Atomic Energy Control Board. The report also includes a number of general criteria for achieving these objectives

  20. Nuclear Energy Agency. 6. activity report. 1977

    International Nuclear Information System (INIS)

    1978-01-01

    NEA has, as a primary objective, to ensure through international co-operation that the nuclear option is available for consideration in its true worth. The safety and regulatory aspects of nulear development have represented in 1977 about two thirds of NEA's total effort; and a high degree of priority was given to questions of nuclear safety and of radioactive waste management. Similarly, the growing need of Member countries for an integrated appraisal of technical, economic, safety, environmental and political questions influencing the nuclear fuel cycle was increasingly taken into account. Finally, a general effort was made to achieve greater visibility for the positive results of the NEA programme, as a contribution to improved public understanding of the factors underlying nuclear power programmes. As in previous years, the NEA programme continued to involve close collaboration with the International Atomic Energy Agency (IAEA) and the Commission of the European Communities. Within the OECD, close collaboration was maintained with the Combined Energy Staff and the Environment Directorate

  1. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  2. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2004-01-01

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  3. Graduate nuclear engineering programmes motivate educational and research activities

    International Nuclear Information System (INIS)

    Mavko, B.

    2000-01-01

    Some fifteen years ago the University of Ljubljana, Faculty for Mathematics and Physics together with the national research organisation the J. Stefan jointly established a Graduate programme of Nuclear Engineering. From the onset, the programme focused on nuclear technology, nuclear safety, and reactor physics and environment protection. Over the years this graduate programme has became the focal point of nuclear related, research and educational activities in Slovenia. It has grown into a meeting ground for recognised national and distinguished foreign educators and experienced professionals from the industry. In conjunction with an important national project, supported by the Slovenian government, entitled 'Jung Researcher' it also enhances the knowledge transfer to the next generation. Since the programme was introduced, the interest for this programme has been steadily growing. Accordingly, a number of PhD and MS degrees in NE have been awarded. The graduates of this programme have encountered very good job opportunities in nuclear as well as in non-nuclear sector. (author)

  4. Activities of the ANS special committee on nuclear nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Sanders, T.L. [Sandia National Labs., Albuquerque, NM (United States)

    2001-07-01

    The American Nuclear Society (ANS) Special Committee on Nuclear Nonproliferation (SCNN) believes that to reverse current trends, U.S. policy must revisit the fundamental premise of Atoms for Peace: A collaborative nuclear enterprise enhances rather than diminishes national security. To accomplish this, the U.S. Government must develop an integrated policy on energy, nuclear technology, and national security. The policy must recognize that these are interrelated and that an integrated policy will require substantial investments in nuclear research and development and in nuclear education. This paper describes the current activities of the SCNN to heighten awareness of nonproliferation issues for decision makers and ANS members, and alert them to the need for action to resolve these concerns. (author)

  5. Activities of the ANS special committee on nuclear nonproliferation

    International Nuclear Information System (INIS)

    Buckner, M.R.; Sanders, T.L.

    2001-01-01

    The American Nuclear Society (ANS) Special Committee on Nuclear Nonproliferation (SCNN) believes that to reverse current trends, U.S. policy must revisit the fundamental premise of Atoms for Peace: A collaborative nuclear enterprise enhances rather than diminishes national security. To accomplish this, the U.S. Government must develop an integrated policy on energy, nuclear technology, and national security. The policy must recognize that these are interrelated and that an integrated policy will require substantial investments in nuclear research and development and in nuclear education. This paper describes the current activities of the SCNN to heighten awareness of nonproliferation issues for decision makers and ANS members, and alert them to the need for action to resolve these concerns. (author)

  6. Progress report on nuclear data activities in Sweden for 1980

    International Nuclear Information System (INIS)

    Conde, H.

    1981-04-01

    The report contains information from laboratories in Sweden about measurements and compilations which are relevant to obtain nuclear data for research and development in different applied fields of nuclear physics. The report also contains short information about changes of existing experimental facilities. Reports relevant to the nuclear energy field are given of neutron cross section measurements and studies of the fission process. Reports are also given of nuclear structure and decay data measurements especially fission product nuclear data measurements of importance for the research on reactor safety and nuclear waste handling. Charged particle and photonuclear cross section measurements with applications in e.g. activation analysis and the production of radioisotopes for medical use are reported as well.(author)

  7. Nuclear Power Plant Control and Instrumentation activities in Finland

    International Nuclear Information System (INIS)

    Haapanen, P.; Wahlstroem, B.

    1990-01-01

    Finland has achieved some remarkable achievements in nuclear power production. Existing four plants have some of the best operating records in the world - high capacity factors, low occupational doses and short refuelling outages. Although public opinion was strongly turned against nuclear power after Chernobyl accident, and no decisions for new nuclear plants can be made before next elections in 1991, the nuclear option is still open. Utility companies are maintaining readiness to start new construction immediately after a positive political decision is made. One important component of the good operation history of the Finnish nuclear power plants is connected to the continuous research, development, modification and upgrading work, which is proceeding in Finland. In the following a short description is given on recent activities related to the I and C-systems of the nuclear power plants. (author). 2 tabs

  8. Analysis by nuclear reactions and activations. A current bibliography

    International Nuclear Information System (INIS)

    Bujdoso, E.

    2001-01-01

    A current bibliography based on INIS Atomindex with 78 references on Analysis by nuclear reactions and activations has been prepared for year 1998. References are arranged by first authors' name. (N.T.)

  9. Activity report of the ENEA Nuclear Data project in 2008

    International Nuclear Information System (INIS)

    Ventura, A.

    2009-03-01

    Descriptions are given of the nuclear data activities undertaken during 2008 at the Bologna Research Centre of the Italian National Agency for New Technologies, Energy and the Environment (ENEA). (author)

  10. Activities of Japan Nuclear Technology Institute Japanese TSO of Industry

    International Nuclear Information System (INIS)

    Nagata, T.

    2010-01-01

    Nuclear energy is a superior form of energy in that it delivers stable power supplies and counters global warming, and it is important to promote nuclear power generation as the core power sources for a nation. However, the Japanese environment surrounding nuclear energy is changing drastically, following the liberalization of market and recent series of troubles or falsifications shaking public confidence in nuclear energy. In the above mentioned situation, nuclear industries and organizations must fulfill their individual roles, and amass its strength to work toward enhancing industry initiatives for safety activities, securing safe / stable plant operations, restoring public confidence and initiate revitalization of nuclear energy operations. The Japan Nuclear Technology Institute (JANTI) has been established as a new entity for supporting and leading the industry's further progress in March 2005. Members of JANTI are not only utilities but also component manufacturers and constructors. JANTI enhance the technological foundation of nuclear energy based on scientific and rational data, coordinates its use among a wide range of relevant organizations, and helps members enhance their voluntary safety activities. At the same time, it is independent of utilities, and exercises a function of checking industry at the objective, third-party standpoint. As for the activities of JANTI itself, information disclosure and the establishment of a council comprising external members will enhance administration transparency. (author)

  11. Nuclear starburst activity induced by elongated bulges in spiral galaxies

    Science.gov (United States)

    Kim, Eunbin; Kim, Sungsoo S.; Choi, Yun-Young; Lee, Gwang-Ho; de Grijs, Richard; Lee, Myung Gyoon; Hwang, Ho Seong

    2018-06-01

    We study the effects of bulge elongation on the star formation activity in the centres of spiral galaxies using the data from the Sloan Digital Sky Survey Data Release 7. We construct a volume-limited sample of face-on spiral galaxies with Mr nuclear starbursts using the fibre specific star formation rates derived from the SDSS spectra. We find a statistically significant correlation between bulge elongation and nuclear starbursts in the sense that the fraction of nuclear starbursts increases with bulge elongation. This correlation is more prominent for fainter and redder galaxies, which exhibit higher ratios of elongated bulges. We find no significant environmental dependence of the correlation between bulge elongation and nuclear starbursts. These results suggest that non-axisymmetric bulges can efficiently feed the gas into the centre of galaxies to trigger nuclear starburst activity.

  12. The effect of feed salinity on the biofouling dynamics of seawater desalination.

    Science.gov (United States)

    Yang, Hui-Ling; Pan, Jill R; Huang, Chihpin; Lin, Justin Chun-Te

    2011-05-01

    A persistent cell labeling dye and a novel microbial counting method were used to explore the effects of salinity on a microbial population in a reverse osmosis (RO) desalination system, and these clearly distinguished microbial cell multiplication from cell adherence. The results indicated that microbial multiplication is more active at the front of a seawater RO pressure vessel, while adhesion dominates the back of the vessel. A severe reduction in RO permeate flux and total dissolved solid (TDS) rejection were detected at low salinity, attributed to marked cell multiplication and release of extracellular polymeric substances, whilst a relatively stable flux was observed at medium and high salinity. The results from PCR-DGGE revealed the variation in microbial species distribution on the membrane with salinity. The results imply the critical role of membrane modification in biofouling mitigation in the desalination process.

  13. Rotating carbon nanotube membrane filter for water desalination

    Science.gov (United States)

    Tu, Qingsong; Yang, Qiang; Wang, Hualin; Li, Shaofan

    2016-01-01

    We have designed a porous nanofluidic desalination device, a rotating carbon nanotube membrane filter (RCNT-MF), for the reverse osmosis desalination that can turn salt water into fresh water. The concept as well as design strategy of RCNT-MF is modeled, and demonstrated by using molecular dynamics simulation. It has been shown that the RCNT-MF device may significantly improve desalination efficiency by combining the centrifugal force propelled reverse osmosis process and the porous CNT-based fine scale selective separation technology. PMID:27188982

  14. Electro-desalination of glazed tile panels - discussion of possibilities

    DEFF Research Database (Denmark)

    Dias-Ferreira, Célia; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2016-01-01

    . In the few experiments conducted on tiles with attached mortar, the mortar was desalinated to a higher degree than the biscuit and successful desalination of the biscuit through the mortar requires further research. In-situ pilot scale tests were performed on highly salt-contaminated walls without tiles...... by placing electrodes at the same side of the wall. Thus it may be possible to desalinate tile panels, without any physical damage of the fragile glaze, by placing electrodes on the back of the wall or by removing some tiles, placing electrodes in their spaces, and extracting the salts from there before...... the tiles are placed back again....

  15. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Ghaffour, Noreddine; Lattemann, Sabine; Missimer, Thomas; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary

    2014-01-01

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m 3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW h e /m 3 ). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h e /m 3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source

  16. Potential Effects of Desalinated Seawater on Arteriosclerosis in Rats.

    Science.gov (United States)

    Duan, Lian; Zhang, Li Xia; Zhang, Shao Ping; Kong, Jian; Zhi, Hong; Zhang, Ming; Lu, Kai; Zhang, Hong Wei

    2017-10-01

    To evaluate the potential risk of arteriosclerosis caused by desalinated seawater, Wistar rats were provided desalinated seawater over a 1-year period, and blood samples were collected at 0, 90, 180, and 360 days. Blood calcium, magnesium, and arteriosclerosis-related indicators were investigated. Female rats treated with desalinated seawater for 180 days showed lower magnesium levels than the control rats (P seawater for 360 days (P seawater, and no increase in risk of arteriosclerosis was observed. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Nuclear legislation: analytical study. Regulatory and institutional framework for nuclear activities

    International Nuclear Information System (INIS)

    2001-01-01

    Australia' s basic legislation in the nuclear field consists in five Acts passed by the Federal Parliament. These Acts are as follow: the South Pacific nuclear free zone treaty Act; the nuclear non-proliferation act; the Australian nuclear science and technology organisation act; the Australian nuclear science and technology organisation amendment act; the radiation protection and nuclear safety act. The two first Acts were prompted by the need for domestic legislation to implement Australia 's international obligations. The third arose from a long-standing recognition that the Atomic energy Act was inappropriate as the legislative basis for the activities of Australia 's national nuclear organisation. For its part the fourth Act introduced some necessary changes into the Australian nuclear science and technology organisation Act. Finally, the fifth act establishes a regime to regulate the operation of nuclear installations and the management of radiation sources, where the activities are undertaken by Commonwealth entities. Each of these Acts is discussed in more details in this work. (N.C.)

  18. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    International Nuclear Information System (INIS)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-01

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites

  19. Needs and processes for the sea water desalination; Besoins et Procedes pour le dessalement de l'eau de mer

    Energy Technology Data Exchange (ETDEWEB)

    Livet, F. [Institut National Polytechnique (INPG-UJF), SIMaP, UMR CNRS 5266, 38 - Grenoble (France)

    2007-11-15

    The author shows the needs of the sea water desalination for the dry countries. The main technique is the reverse osmosis. It requires electricity and its development needs big electric power plants. For economical and ecological reasons, the nuclear energy seems well appropriate. Libya is for instance very interested in this technique, because of their water shortage problem. (A.L.B.)

  20. Nuclear safety activities in the SR of Slovenia in 1986

    International Nuclear Information System (INIS)

    Susnik, J.

    1987-06-01

    Currently Yugoslavia has one 632 MWe nuclear power plant (NPP) of PWR design, located at Krsko in the Socialist Republic (SR) of Slovenia. Krsko NPP, which is a two-loop plant, started power operation in 1981. In general, reactor safety activities in the SR of Slovenia are mostly related to upgrading the safety of our Krsko NPP and to developing capabilities for use in future units. This report presents the nuclear safety related legislation and organization of the corresponding regulatory body, and the activities related to nuclear safety of the participating organizations in the SR of Slovenia in 1986. (author)