WorldWideScience

Sample records for nuclear decommissioning waste

  1. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  2. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  3. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  4. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  5. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  6. UK safety and standards for radioactive waste management and decommissioning on nuclear licensed sites

    International Nuclear Information System (INIS)

    Mason, D.J.

    2001-01-01

    This paper discusses the regulation of radioactive waste and decommissioning in the United Kingdom and identifies the factors considered by HM Nuclear Installations Inspectorate in examining the adequacy arrangements for their management on nuclear licensed sites. The principal requirements are for decommissioning to be undertaken as soon as reasonably practicable and that radioactive wastes should be minimised, disposed of or contained and controlled by storage in a passively safe form. However, these requirements have to be considered in the context of major organisational changes in the UK nuclear industry and the non-availability of disposal routes for some decommissioning wastes. The legislative framework used to regulate decommissioning of nuclear facilities in the UK is described. Reference is made to radioactive waste and decommissioning strategies, quinquennial reviews criteria for delicensing and the forthcoming Environmental Impact Assessment Regulations. (author)

  7. Waste management, decommissioning and environmental restoration for Canada's nuclear activities. Proceedings

    International Nuclear Information System (INIS)

    2011-01-01

    The Canadian Nuclear Society conference on Waste Management, Decommissioning and Environmental Restoration for Canada's Nuclear Activities was held in Toronto, Ontario, Canada on September 11-14, 2011. The conference provided a forum for discussion of the status and proposed future directions of technical, regularly, environmental, social and economic aspects of radioactive waste management, nuclear facility decommissioning, and environmental restoration activities for Canadian nuclear facilities. The conference included both plenary sessions and sessions devoted to more detailed technical issues. The plenary sessions were focussed on three broad themes: the overall Canadian program; low and intermediate waste; and, international perspectives. Topics of the technical sessions included: OPG's deep geologic repository for low and intermediate level waste; stakeholder interactions; decommissioning projects; uranium mine waste management; used fuel repository - design and safety assessment; federal policies, programs and oversight; regulatory considerations; aboriginal traditional knowledge; geological disposal - CRL site classification; geological disposal - modelling and engineered barriers; Port Hope Area Initiative; waste characterization; LILWM - treatment and processing; decommissioning projects and information management; international experience; environmental remediation; fuel cycles and waste processing.

  8. Radiochemical analysis for nuclear waste management in decommissioning

    International Nuclear Information System (INIS)

    Hou, X.

    2010-07-01

    The NKS-B RadWaste project was launched from June 2009. The on-going decommissioning activities in Nordic countries and current requirements and problems on the radiochemical analysis of decommissioning waste were discussed and overviewed. The radiochemical analytical methods used for determination of various radionuclides in nuclear waste are reviewed, a book was written by the project partners Jukka Lehto and Xiaolin Hou on the chemistry and analysis of radionuclide to be published in 2010. A summary of the methods developed in Nordic laboratories is described in this report. The progresses on the development and optimization of analytical method in the Nordic labs under this project are presented. (author)

  9. Radiochemical analysis for nuclear waste management in decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2010-07-15

    The NKS-B RadWaste project was launched from June 2009. The on-going decommissioning activities in Nordic countries and current requirements and problems on the radiochemical analysis of decommissioning waste were discussed and overviewed. The radiochemical analytical methods used for determination of various radionuclides in nuclear waste are reviewed, a book was written by the project partners Jukka Lehto and Xiaolin Hou on the chemistry and analysis of radionuclide to be published in 2010. A summary of the methods developed in Nordic laboratories is described in this report. The progresses on the development and optimization of analytical method in the Nordic labs under this project are presented. (author)

  10. Challenges in the management of decommission waste of nuclear facilities in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.

    2002-01-01

    It is inevitable that every nuclear facility must one day be safely decommissioned. When considering decommissioning, large amounts of radioactive and non-radioactive waste have to be taken into account. Disposal of such materials can have large economic impact on the overall decommissioning cost. In developing countries like Ghana, the perception of environmental protection through waste management, is often not very high as compared to many other pressing needs. Therefore limited resources are allocated for environmental problems. Ghana operates a tank-in- pool type research reactor, 30kW output for research in neutron activation analysis, radioisotope preparation, education and training, a radiotherapy unit that utilizes a 185TBq Co-60 radioactive sources for the treatment of cancer and a gamma irradiation facility which utilizes 1.85PBq Co-60 radioactive source for the irradiation of various materials. All these facilities are operating without designed decommissioning in mind, an inadequate waste management infrastructure as well as a lack of a repository to handling the resulting waste. It is today's beneficials of the nuclear facility that has to deal with the legacies of the future decommissioning activities. The paper outlines some of the challenges and issues to be expected in the management of waste from future decommissioning of nuclear facilities in Ghana with the absence of a waste management infrastructure and inadequate financial resources. The paper puts forth a concept to perform meaningful and significant plans whilst the facilities are still operating. (author)

  11. Application of clearance principles to radioactive waste from the decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Lin Xiaoling; Feng Dingsheng; Dong Yonghe

    2010-01-01

    The definition of clearance is introduced. The principles and dose criterion of clearance are also clarified. The main radionuclides in radioactivity waste and the radioactivity waste which can be cleared are investigated. The techniques for the measurement of radioactivity waste from the decommissioning of nuclear reactors are summarized. This paper provides the scientific criterion and methods for the management of radioactive waste, and lays the foundation for the treatment of radioactive waste from the decommissioning of nuclear reactor. (authors)

  12. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  13. Selected problems of minimization and management of radioactive wastes from nuclear power plant decommissioning. Part 2

    International Nuclear Information System (INIS)

    Kyrs, M.; Moravec, A.

    1988-06-01

    The processing prior to storage of radioactive wastes produced in nuclear power plant decommissioning is described as are the types of containers employed for waste transport and/or disposal. Data are summarized on exposure of personnel to radioactivity resulting from nuclear power plant decommissioning activities, and accessible data are collected on the costs of nuclear power plant decommissioning and of waste management. Potential directions of research in this field under Czechoslovak conditions are specified. (author)

  14. Development of recycling techniques for nuclear power plant decommissioning waste

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Oguri, Daiichiro; Abe, Seiji; Ohnishi, Kazuhiko

    2003-01-01

    Recycling of concrete and metal waste will provide solution to reduce waste volume, contributing to save the natural resources and to protect the environment. Nuclear Power Engineering Corporation has developed techniques of concrete and metal recycling for decommissioning waste of commercial nuclear power plants. A process of radioactive concrete usage for mortar solidification was seen to reduce concrete waste volume by 2/3. A concrete reclamation process for high quality aggregate was confirmed that the reclaimed aggregate concrete is equivalent to ordinary concrete. Its byproduct powder was seen to be utilized various usage. A process of waste metal casting to use radioactive metal as filler could substantially decrease the waste metal volume when thinner containers are applied. A pyro-metallurgical separation process was seen to decrease cobalt concentration by 1/100. Some of these techniques are finished of demonstration tests for future decommissioning activity. (author)

  15. Analytical methodology for optimization of waste management scenarios in nuclear installation decommissioning process - 16148

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir; Daniska, Vladimir; Rehak, Ivan; Vasko, Marek

    2009-01-01

    The nuclear installation decommissioning process is characterized by production of large amount of various radioactive and non-radioactive waste that has to be managed, taking into account its physical, chemical, toxic and radiological properties. Waste management is considered to be one of the key issues within the frame of the decommissioning process. During the decommissioning planning period, the scenarios covering possible routes of materials release into the environment and radioactive waste disposal, should be discussed and evaluated. Unconditional and conditional release to the environment, long-term storage at the nuclear site, near surface or deep geological disposal and relevant material management techniques for achieving the final status should be taken into account in the analysed scenarios. At the level of the final decommissioning plan, it is desirable to have the waste management scenario optimized for local specific facility conditions taking into account a national decommissioning background. The analytical methodology for the evaluation of decommissioning waste management scenarios, presented in the paper, is based on the materials and radioactivity flow modelling, which starts from waste generation activities like pre-dismantling decontamination, selected methods of dismantling, waste treatment and conditioning, up to materials release or conditioned radioactive waste disposal. The necessary input data for scenarios, e.g. nuclear installation inventory database (physical and radiological data), waste processing technologies parameters or material release and waste disposal limits, have to be considered. The analytical methodology principles are implemented into the standardised decommissioning parameters calculation code OMEGA, developed in the DECOM company. In the paper the examples of the methodology implementation for the scenarios optimization are presented and discussed. (authors)

  16. Progress on radiochemical analysis for nuclear waste management in decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X. (Technical Univ. of Denmark. Center for Nuclear Technologies (NuTech), Roskilde (Denmark))

    2012-01-15

    This report summarized the progress in the development and improvement of radioanalytical methods for decommissioning and waste management completed in the NKS-B RadWaste 2011 project. Based on the overview information of the analytical methods in Nordic laboratories and requirement from the nuclear industry provided in the first phase of the RadWaste project (2010), some methods were improved and developed. A method for efficiently separation of Nb from nuclear waste especially metals for measurement of long-lived 94Nb by gamma spectrometry was developed. By systematic investigation of behaviours of technetium in sample treatment and chromatographic separation process, an effective method was developed for the determination of low level 99Tc in waste samples. An AMS approachment was investigated to measure ultra low level 237Np using 242Pu for AMS normalization, the preliminary results show a high potential of this method. Some progress on characterization of waste for decommissioning of Danish DR3 is also presented. (Author)

  17. Progress on radiochemical analysis for nuclear waste management in decommissioning

    International Nuclear Information System (INIS)

    Hou, X.

    2012-01-01

    This report summarized the progress in the development and improvement of radioanalytical methods for decommissioning and waste management completed in the NKS-B RadWaste 2011 project. Based on the overview information of the analytical methods in Nordic laboratories and requirement from the nuclear industry provided in the first phase of the RadWaste project (2010), some methods were improved and developed. A method for efficiently separation of Nb from nuclear waste especially metals for measurement of long-lived 94Nb by gamma spectrometry was developed. By systematic investigation of behaviours of technetium in sample treatment and chromatographic separation process, an effective method was developed for the determination of low level 99Tc in waste samples. An AMS approachment was investigated to measure ultra low level 237Np using 242Pu for AMS normalization, the preliminary results show a high potential of this method. Some progress on characterization of waste for decommissioning of Danish DR3 is also presented. (Author)

  18. HSE policy on decommissioning and radioactive waste management at licensed nuclear sites

    International Nuclear Information System (INIS)

    Bacon, M.

    1997-01-01

    In the UK, radioactive waste management and decommissioning on a licensed nuclear is regulated by the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to radioactive waste management and decommissioning activities. This provides a continuous but flexible safety regime until there is no danger from ionizing radiations. The regulatory policy is discussed, taking into account the implications of the 1995 White Paper reviewing radioactive waste management policy. For both radioactive waste management and decommissioning the key element of HSE policy is the need for strategic planning. This should ensure that problems are not allowed to build up and to demonstrate that, taking into account all factors, the proposed actions are the optimum in terms of safety. There is a presumption in HSE's policy towards disposal of radioactive waste as soon as possible where disposal routes exist. Where long-term storage is necessary passively safe forms are preferred over those requiring continuous monitoring or frequent intervention. (author)

  19. Germany: Management of decommissioning waste in Germany

    International Nuclear Information System (INIS)

    Borrmann, F.; Brennecke, P.; Koch, W.; Kugel, K.; Steyer, S.

    2007-01-01

    Over the past two decades, Germany has gained a substantial amount of experience in the decommissioning of nuclear facilities of different types and sizes. Many research reactors and all prototype nuclear power plants, as well as a few larger nuclear power plants and fuel cycle facilities, are currently at varying stages of decommissioning. Several facilities have been fully dismantled and the sites have been cleared for reuse. The decommissioning projects comprise 18 power and prototype reactors, 33 research reactors and 11 fuel cycle facilities which are being or have been decommissioned. In the future, further nuclear power plants will be shut down and decommissioned in accordance with Germany?s energy policy to phase out the use of nuclear power for commercial electricity generation as given in the April 2002 amendment of the Atomic Energy Act. Radioactive waste, from operations as well as from decommissioning activities, is to be conditioned in such a way as to comply with the waste acceptance requirements of a repository. In Germany, all types of radioactive waste (i.e., short-lived and long-lived) are to be disposed of in deep geological formations. A distinction is being made for heat generating waste (i.e., high level waste) and waste with negligible heat generation (i.e., low level and intermediate level waste). Radioactive decommissioning waste is waste with negligible heat generation. Waste acceptance requirements of a repository are of particular importance for the conditioning of radioactive waste, including decommissioning waste. The waste acceptance requirements, as they resulted from the Konrad licensing procedure, are being applied by the waste generators for the conditioning of decommissioning waste. Compliance with these requirements must be demonstrated through the waste package quality control, even if the waste will be disposed of in the future. In 2002 the Konrad repository was licensed for the disposal of all types of waste with negligible

  20. Waste management, decommissioning and environmental restoration for Canada's nuclear activities: 'Current practices and future needs'

    International Nuclear Information System (INIS)

    2006-01-01

    The Canadian Nuclear Society conference on Waste Management, Decommissioning and Environmental Restoration for Canada's Nuclear Activities was held on May 8-11, 2005 in Ottawa, Ontario, Canada. The objective of this Conference was to provide a forum for discussion and exchange of views on the technical, regulatory and social challenges and opportunities in radioactive waste management, nuclear facility decommissioning and environmental restoration activities in Canada. The Conference was organized into several plenary sessions and eight technical tracks: Low- and intermediate-level wastes; Uranium mining and milling wastes; Used nuclear fuel; Decommissioning; Environmental restoration; Policy, economics and social issues; Licensing and regulatory issues; and, Radioactive materials transportation. The three-day Conference involved waste management, decommissioning and environmental technology practitioners; delegates from industry, academia, and government agencies and regulators; consulting engineers; financial and legal experts; and other specialists working in the field. While the Conference had a primarily Canadian focus, about 10 per cent of the submissions received came from foreign and international organizations, which provided insights into how other countries are dealing with similar issues

  1. The state-of-the-art report on management of the decommissioning waste generated from nuclear facilities

    International Nuclear Information System (INIS)

    Kang, Il Sik; Lee, K. M.; Chung, K. H.; Kim, T. K.; Kim, K. J.

    1998-03-01

    As a result of this research on management methodologies of decommissioning waste from nuclear facilities, the state of the art of decommissioning status, plan, and management field on decommissioning waste in foreign countries as well as in Korea is evaluated. Radioactive waste for final disposal according to reusing non-radioactive waste by clear guideline on classification criteria of decommissioning waste by clear guideline on classification criteria of decommissioning waste will be reduced and metal through melting decontamination may be reused. Also, the relevant regulations on acceptance criteria of disposal site for decommissioning waste should be introduced to manage decommissioning waste effectively. It is necessary that large transport containers which satisfy relevant regulations should be designed and manufactured to transport of large waste. (author). 49 refs., 24 tabs., 30 figs

  2. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Friske, A.; Thiele, D.

    1988-01-01

    The IAEA classification of decommissioning stages is outlined. The international development hitherto observed in decommissioning of nuclear reactors and nuclear power stations is presented. The dismantling, cutting and decontamination methods used in the decommissioning process are mentioned. The radioactive wastes from decommissioning are characterized, the state of the art of their treatment and disposal is given. The radiation burdens and the decommissioning cost in a decommissioning process are estimated. Finally, some evaluation of the trends in the decommissioning process of nuclear power plants is given. 54 refs. (author)

  3. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R.

    2008-01-01

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  4. Waste management practices in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Dickson, H.W.

    1979-01-01

    Several thousand sites exist in the United States where nuclear activities have been conducted over the past 30 to 40 years. Questions regarding potential public health hazards due to residual radioactivity and radiation fields at abandoned and inactive sites have prompted careful ongoing review of these sites by federal agencies including the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). In some instances, these reviews are serving to point out poor low-level waste management practices of the past. Many of the sites in question lack adequate documentation on the radiological conditions at the time of release for unrestricted use or were released without appropriate restrictions. Recent investigations have identified residual contamination and radiation levels on some sites which exceed present-day standards and guidelines. The NRC, DOE, and Environmental Protection Agency are all involved in developing decontamination and decommissioning (D and D) procedures and guidelines which will assure that nuclear facilities are decommissioned in a manner that will be acceptable to the nuclear industry, various regulatory agencies, other stakeholders, and the general public

  5. The waste management implications of decommissioning

    International Nuclear Information System (INIS)

    Passant, F.H.

    1988-01-01

    Decommissioning policy can only be framed in the light of radioactive waste management policy. What can be done with the waste materials, how and when, will determine the overall decommissioning plans and costs. In this paper the waste management options and their costs are reviewed for the decommissioning of the Central Electricity Generating Boards civil nuclear power stations. The paper concentrates on the decommissioning of Magnox stations, although comparative information on waste volumes and costs are given for the AGR programme and a typical PWR. (author)

  6. TRU waste-assay instrumentation and application in nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1982-01-01

    The Los Alamos TRU waste assay program is developing measurement techniques for TRU and other radioactive waste materials generated by the nuclear industry, including decommissioning programs. Systems are now being fielded for test and evaluation purposes at DOE TRU waste generators. The transfer of this technology to other facilities and the commercial instrumentation sector is well in progress. 6 figures

  7. Development of 3D Visualization Technology for Medium-and Large-sized Radioactive Metal Wastes from Decommissioning Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A Rim; Park, Chan Hee; Lee, Jung Min; Kim, Rinah; Moon, Joo Hyun [Dongguk Univ., Gyongju (Korea, Republic of)

    2013-10-15

    The most important point of decommissioning nuclear facilities and nuclear power plants is to spend less money and do this process safely. In order to perform a better decommissioning nuclear facilities and nuclear power plants, a data base of radioactive waste from decontamination and decommissioning of nuclear facilities should be constructed. This data base is described herein, from the radioactive nuclide to the shape of component of nuclear facilities, and representative results of the status and analysis are presented. With the increase in number of nuclear facilities at the end of their useful life, the demand of decommissioning technologies will continue to grow for years to come. This analysis of medium-and large-sized radioactive metal wastes and 3D visualization technology of the radioactive metal wastes using the 3D-SCAN are planned to be used for constructing data bases. The data bases are expected to be used on development of the basic technologies for decommissioning nuclear facilities 4 session.

  8. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  9. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  10. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Buck, S.

    1996-01-01

    Nuclear facilities present a number of problems at the end of their working lives. They require dismantling and removal but public and environmental protection remain a priority. The principles and strategies are outlined. Experience of decommissioning in France and the U.K. had touched every major stage of the fuel cycle by the early 1990's. Decommissioning projects attempt to restrict waste production and proliferation as waste treatment and disposal are costly. It is concluded that technical means exist to deal with present civil plant and costs are now predictable. Strategies for decommissioning and future financial provisions are important. (UK)

  11. Optimising waste management performance - The key to successful decommissioning

    International Nuclear Information System (INIS)

    Keep, Matthew

    2007-01-01

    Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

  12. State fund of decommissioning of nuclear installations and handling of spent nuclear fuels and nuclear wastes (Slovak Republic)

    International Nuclear Information System (INIS)

    Kozma, Milos

    2006-01-01

    State Fund for Decommissioning of Nuclear Installations and Handling of Spent Nuclear Fuels and Nuclear Wastes was established by the Act 254/1994 of the National Council of the Slovak Republic as a special-purpose fund which concentrates financial resources intended for decommissioning of nuclear installations and for handling of spent nuclear fuels and radioactive wastes. The Act was amended in 2000, 2001 and 2002. The Fund is legal entity and independent from operator of nuclear installations Slovak Power Facilities Inc. The Fund is headed by Director, who is appointed and recalled by Minister of Economy of the Slovak Republic. Sources of the Fund are generated from: a) contributions by nuclear installation operators; b) penalties imposed by Nuclear Regulatory Authority of the Slovak Republic upon natural persons and legal entities pursuant to separate regulation; c) bank credits; d) interest on Fund deposits in banks; e) grants from State Budget; f) other sources as provided by special regulation. Fund resources may be used for the following purposes: a) decommissioning of nuclear installations; b) handling of spent nuclear fuels and radioactive wastes after the termination of nuclear installation operation; c) handling of radioactive wastes whose originator is not known, including occasionally seized radioactive wastes and radioactive materials stemming from criminal activities whose originator is not known, as confirmed by Police Corps investigator or Ministry of Health of the Slovak Republic; d) purchase of land for the establishment of nuclear fuel and nuclear waste repositories; e) research and development in the areas of decommissioning of nuclear installations and handling of nuclear fuels and radioactive wastes after the termination of the operation of nuclear installations; f) selection of localities, geological survey, preparation, design, construction, commissioning, operation and closure of repositories of spent nuclear fuels and radioactive wastes

  13. Legal and Regulatory Frameworks for Decommissioning and Waste Management

    International Nuclear Information System (INIS)

    Leech, Jonathan

    2016-01-01

    Safe and efficient decommissioning and waste management requires clear structures for allocating responsibility and funding. Organisation of decommissioning and waste management activities and the regulatory environment within which those activities are undertaken should also allow the supply chain to prosper and, wherever possible, reduce barriers to international availability of resources and waste facilities. Radioactive waste treatment and disposal in particular raises both legal and political challenges to effective international co-operation, yet options for decommissioning and waste management are maximised where international barriers can be minimised. Added to this, international nuclear liabilities issues must be managed so as to avoid unnecessary deterrents to international mobility of capability within the decommissioning market. Contractual terms and insurance arrangements for international shipments of nuclear waste and materials will also need to take into account imminent changes to liabilities conventions, ensuring compliance and management of compliance costs (of both insurance and management time). This paper explores legal and commercial structures intended to support effective decommissioning and waste management and examines regulatory and commercial factors affecting the ability of facility operators to utilise internationally available capability. It focusses on: - strategic approaches developed in the UK to address decommissioning and waste management liabilities associated with the UK's first and second generation civil nuclear sites and comparison of those approaches with other jurisdictions with significant decommissioning liabilities; - liability and compliance risks associated with navigating international nuclear liabilities regimes in context of both mobility of decommissioning capability and international waste shipment; and - regulatory issues affecting international availability of waste treatment facilities, including

  14. The calculation and estimation of wastes generated by decommissioning of nuclear facilities. Tokai works and Ningyo-toge Environmental Engineering Center

    International Nuclear Information System (INIS)

    Ayame, Y.; Tanabe, T.; Takahashi, K.; Takeda, S.

    2001-07-01

    This investigation was conducted as a part of planning the low-level radioactive waste management program (LLW management program). The aim of this investigation was contributed to compile the radioactive waste database of JNC's LLW management program. All nuclear facilities of the Tokai works and Ningyo-toge Environmental Engineering Center were investigated in this work. The wastes generated by the decommissioning of each nuclear facility were classified into radioactive waste and others (exempt waste and non-radioactive waste), and the amount of the wastes was estimated. The estimated amounts of radioactive wastes generated by decommissioning of the nuclear facilities are as follows. (1) Tokai works: The amount of waste generated by decommissioning of nuclear facilities of the Tokai works is about 1,079,100 ton. The amount of radioactive waste is about 15,400 ton. The amount of exempt waste and non-radioactive waste is about 1,063,700 ton. (2) Ningyo-toge Environmental Engineering Center: The amount of waste generated by decommissioning of nuclear facilities of Ningyo-toge Environmental Engineering Center is about 112,500 ton. The amount of radioactive waste is about 7,800 ton. The amount of exempt waste and non-radioactive waste is about 104,700 ton. (author)

  15. Potential of the non-waste concept under NPP decommissioning

    International Nuclear Information System (INIS)

    Oussanov, V.I.; Popov, E.P.; Markelov, P.I.

    2001-01-01

    There are three principal ways to approaching the non-waste nuclear cycle: radical reduction of the long-lived radioactivity generation; creation of the effective reuse procedure and, at last, radioactive waste transmutation. Unlike nuclear fuel cycle, the drastic reduction of the waste arising from the design materials cycle can be reached without need to address the technologies of burning or transmutation of the long-lived radioactive nuclei. The study shows the great potential of the nuclear technology in respect of the cardinal solution of the NPP decommissioning problem and decreasing of decommissioning cost. The key issue of the solution is a radical reduction of the radioactive waste arising from the decommissioning procedure. Generalizing, one may come to conclusion that approaching the non-waste nuclear technology consists in the further developing of the nuclear power infrastructure to a self-contained system including: innovated NPPs (more safe and generating less amount of decommissioning waste), plants for reprocessing fuel and exposed design materials, storage facilities. The paper contribute to the notion that such activity is economically and ecologically expedient. (author)

  16. Decommissioning Work Modeling System for Nuclear Facility Decommissioning Design

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, W. H.; Choi, Y. D.; Moon, J. K.

    2012-01-01

    During the decommissioning activities of the KRR-1 and 2 (Korea Research Reactor 1 and 2) and UCP (Uranium Conversion Plant), all information and data, which generated from the decommissioning project, were record, input and managed at the DECOMMIS (DECOMMissioning Information management System). This system was developed for the inputting and management of the data and information of the man-power consumption, operation time of the dismantling equipment, the activities of the radiation control, dismantled waste management and Q/A activities. When a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste volume and estimating the cost of the decommissioning project. That is why, the DEFACS (DEcommissioning FAcility Characterization DB System) was established for the management of the facility characterization data. The DEWOCS (DEcommissioning WOrk-unit productivity Calculation System) was developed for the calculation of the workability on the decommissioning activities. The work-unit productivities are calculated through this system using the data from the two systems, DECOMMIS and DEFACS. This result, the factors of the decommissioning work-unit productivities, will be useful for the other nuclear facility decommissioning planning and engineering. For this, to set up the items and plan for the decommissioning of the new objective facility, the DEMOS (DEcommissioning work Modeling System) was developed. This system is for the evaluation the cost, man-power consumption of workers and project staffs and technology application time. The factor of the work-unit productivities from the DEWOCS and governmental labor cost DB and equipment rental fee DB were used for the calculation the result of the DEMOS. And also, for the total system, DES (Decommissioning Engineering System), which is now

  17. Establishment the code for prediction of waste volume on NPP decommissioning

    International Nuclear Information System (INIS)

    Cho, W. H.; Park, S. K.; Choi, Y. D.; Kim, I. S.; Moon, J. K.

    2013-01-01

    In practice, decommissioning waste volume can be estimated appropriately by finding the differences between prediction and actual operation and considering the operational problem or supplementary matters. So in the nuclear developed countries such as U.S. or Japan, the decommissioning waste volume is predicted on the basis of the experience in their own decommissioning projects. Because of the contamination caused by radioactive material, decontamination activity and management of radio-active waste should be considered in decommissioning of nuclear facility unlike the usual plant or facility. As the decommissioning activity is performed repeatedly, data for similar activities are accumulated, and optimal strategy can be achieved by comparison with the predicted strategy. Therefore, a variety of decommissioning experiences are the most important. In Korea, there is no data on the decommissioning of commercial nuclear power plants yet. However, KAERI has accumulated the basis decommissioning data of nuclear facility through decommissioning of research reactor (KRR-2) and uranium conversion plant (UCP). And DECOMMIS(DECOMMissioning Information Management System) was developed to provide and manage the whole data of decommissioning project. Two codes, FAC code and WBS code, were established in this process. FAC code is the one which is classified by decommissioning target of nuclear facility, and WBS code is classified by each decommissioning activity. The reason why two codes where created is that the codes used in DEFACS (Decommissioning Facility Characterization management System) and DEWOCS (Decommissioning Work-unit productivity Calculation System) are different from each other, and they were classified each purpose. DEFACS which manages the facility needs the code that categorizes facility characteristics, and DEWOCS which calculates unit productivity needs the code that categorizes decommissioning waste volume. KAERI has accumulated decommissioning data of KRR

  18. Regulatory experience in nuclear power station decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.; Waters, R.E.; Taylor, F.E.; Burrows, P.I.

    1995-01-01

    In the UK, decommissioning on a licensed nuclear site is regulated and controlled by HM Nuclear Installations Inspectorate on behalf of the Health and Safety Executive. The same legislative framework used for operating nuclear power stations is also applied to decommissioning activities and provides a continuous but flexible safety regime until there is no danger from ionising radiations. The regulatory strategy is discussed, taking into account Government policy and international guidance for decommissioning and the implications of the recent white paper reviewing radioactive waste management policy. Although each site is treated on a case by case basis as regulatory experience is gained from decommissioning commercial nuclear power stations in the UK, generic issues have been identified and current regulatory thinking on them is indicated. Overall it is concluded that decommissioning is an evolving process where dismantling and waste disposal should be carried out as soon as reasonably practicable. Waste stored on site should, where it is practical and cost effective, be in a state of passive safety. (Author)

  19. Decommissioning of nuclear facilities: Feasibility, needs and costs

    International Nuclear Information System (INIS)

    DeLaney, E.G.; Mickelson, J.R.

    1985-01-01

    The Nuclear Energy Agency's Working Group on Decommissioning is preparing a study entitled ''Decommissioning of Nuclear Facilities: Feasibility, Needs and Costs.'' The study addresses the economics, technical feasibility and waste management aspects of decommissioning larger commercial reactors and nuclear support facilities. Experience on decommissioning small reactors and fuel cycle facilities shows that current technology is generally adequate. Several major projects that are either underway or planned will demonstrate decommissioning of the larger and more complex facilities. This experience will provide a framework for planning and engineering the decommissioning of the larger commercial reactors and fuel cycle facilities. Several areas of technology development are desired for worker productivity improvement, occupational exposure reduction, and waste volume reduction. In order to assess and plan for the decommissioning of large commercial nuclear facilities, projections have been made of the capacity of these facilities that may be decommissioned in the future and the radioactive waste that would be produced from the decommissioning of these facilities. These projections through the year 2025 are based on current data and the OECD reactor capacity forecast through the year 2000. A 25-year operating lifetime for electrical power generation was assumed. The possibilities of plant lifetime extension and the deferral of plant dismantlement make this projection very conservative

  20. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.

  1. Simulation studies for quantification of solid waste during decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Sobhan Babu, K.; Gopalakrishnan, R.K.; Gupta, P.C.

    2007-01-01

    Decommissioning is the final phase in the lifecycle of a nuclear installation and in the area of occupational radiation protection, decommissioning constitute a challenge mainly due to the huge and complex radioactive waste generation. In the context of management and disposal of waste and reuse/recycle of usable materials during decommissioning of reactors, clearance levels for relevant radionuclides are of vital importance. During the process of decommissioning radionuclide-specific clearance levels allow the release of a major quantity of materials to the environment, without regulatory considerations. These levels may also be used to declare the usable materials for reuse or recycle. Assessment of activity concentration in huge quantities of material, for the purpose of clearance, is a challenge in decommissioning process. This paper describes the simulation studies being carried out for the design of a monitoring system for the estimation of activity concentration of the decommissioned materials, especially rubbles/concrete, using mathematical models. Several designs were studied using simulation and it was observed that for the estimation of very low levels of activity concentration, to satisfy the conditions of unrestricted releases, detection system using the principle of Emission Computed Tomography (ECT) is the best suitable method. (author)

  2. Progress on Radiochemical Analysis for Nuclear Waste Management in Decommissioning

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Qiao, Jixin; Shi, Keliang

    With the increaed numbers of nuclear facilities have been closed and are being or are going to be decommissioned, it is required to characterise the produced nuclear waste for its treatment by identification of the radionuclides and qualitatively determine them. Of the radionuclides related...... separation of radionuclides. In order to improve and maintain the Nodic competence in analysis of radionculides in waste samples, a NKS B project on this topic was launched in 2009. During the first phase of the NKS-B RadWaste project (2009-2010), a good achivement has been reached on establishment...... of collaboration, identifing the requirements from the Nordic nuclear industries and optimizing and development of some analytical methods (Hou et al. NKS-222, 2010). In the year 2011, this project (NKS-B RadWaste2011) continued. The major achievements of this project in 2011 include: (1) development of a method...

  3. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    A survey of the main questions of decommissioning of nuclear power plants will be given in the sight of German utilities (VDEW-Working group 'Stillegung'). The main topics are: 1) Definitions of decommissioning, entombment, removal and combinations of such alternatives; 2) Radioactive inventory (build up and decay); 3) Experience up to now; 4) Possibilities to dismantle are given by possibility to repair nuclear power plants; 5) Estimated costs, waste, occupational radiation dose; 6) German concept of decommissioning. (orig./HK) [de

  4. Decommissioning standards: the radioactive waste impact

    International Nuclear Information System (INIS)

    Russell, J.L.; Crofford, W.N.

    1979-01-01

    Several considerations are important in establishing standards for decommissioning nuclear facilities, sites and materials. The review includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions, and low-level radioactive waste. Decommissioning appears more closely related to radiation protection than to waste management, although it is often carried under waste management programs or activities. Basically, decommissioning is the removal of radioactive contamination from facilities, sites and materials so that they can be returned to unrestricted use or other actions designed to minimize radiation exposure of the public. It is the removed material that is the waste and, as such, it must be managed and disposed of in an environmentally safe manner. It is important to make this distinction even though, for programmatic purposes, decommissioning may be carried under waste management activities. It was concluded that the waste disposal problem from decommissioning activities is significant in that it may produce volumes comparable to volumes produced during the total operating life of a reactor. However, this volume does not appear to place an inordinate demand on shallow land burial capacity. It appears that the greater problems will be associated with occupational exposures and costs, both of which are sensitive to the timing of decommissioning actions

  5. Decommissioning, radioactive waste management and nuclear public information issues in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Enrico Mainardi [AIN - ENEA (Italy)

    2006-07-01

    the international level. The site is extremely stable from the geological point of view. It consists of a 10 km{sup 2} rock-salt layer 150 m thick protected by a clay layer 700 m thick. A similar solution has been adopted successfully for the WIPP (Waste Isolation Pilot Plant) in New Mexico (USA) operating from 1999. This paper outlines the main issues and considerations connected with decommissioning, radioactive waste management and site decision within the country together with more details on the quantities and quality of the Italian nuclear waste. The demonstration that decommissioning is feasible at reasonable costs and that wastes can be collected in a national repository with the highest safety levels will certainly further improve public attitude in favour of nuclear power. (author)

  6. Decommissioning, radioactive waste management and nuclear public information issues in Italy

    International Nuclear Information System (INIS)

    Enrico Mainardi

    2006-01-01

    the international level. The site is extremely stable from the geological point of view. It consists of a 10 km 2 rock-salt layer 150 m thick protected by a clay layer 700 m thick. A similar solution has been adopted successfully for the WIPP (Waste Isolation Pilot Plant) in New Mexico (USA) operating from 1999. This paper outlines the main issues and considerations connected with decommissioning, radioactive waste management and site decision within the country together with more details on the quantities and quality of the Italian nuclear waste. The demonstration that decommissioning is feasible at reasonable costs and that wastes can be collected in a national repository with the highest safety levels will certainly further improve public attitude in favour of nuclear power. (author)

  7. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)

  8. Strategic aspects on waste management in decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Rannemalm, T.; Eliasson, S.; Larsson, A.; Lidar, P.; Bergh, N.; Hedin, G.

    2017-01-01

    A team composed of experts from the facility owner OKG, Westinghouse and Studsvik (today Cyclife Sweden and Studsvik Consulting) was asked to develop a basis for decision on an overall strategy for the management of the material and waste arising from the decommissioning of two BWR NPPs at the Oskarshamn site in Sweden. To be able to provide a good basis for decision the full waste management chain from generation to disposition, i.e. clearance or disposal had to be assessed, categorised, quantified and analysed with regards to costs, environmental impact and risks. A systematic approach was applied taking benefit of the decommissioning studies made previously for the two facilities, the decommissioning concepts developed by Ndcon (the partnership in decommissioning between Studsvik and Westinghouse) and the combined knowledge and experience in the project team. In total 4 different waste management concepts were compared individually and in combinations. The four concepts evaluated were based on: direct disposal in the national geological repository; treatment of the waste for volume reduction and where applicable clearance in an external waste treatment facility; decontamination and clearance in an on-site waste treatment facility; direct disposal in a near surface repository at the NPP site. It was important to be able to compare the different options in a quantifiable way. Therefore the project team set up a matrix with parameters for the different options gained from the utility, the national waste management company, external vendors and the experience of the team. In this way a quantitative analysis could be done with the four different waste management options. In addition to the quantitative analysis the team summarised decades of experience in radioactive waste management and decommissioning recommendations and risk analyses. Special attention was given to risk mitigation and redundancy in the waste management chain. The development of an overall waste

  9. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  10. Safety analysis of disposal of decommissioning waste from the Olkiluoto nuclear power plant - PURKU-93

    International Nuclear Information System (INIS)

    Vieno, T.; Meszaros, F.; Nordman, H.; Taivassalo, V.

    1993-12-01

    Decommissioning waste from the Olkiluoto nuclear power plant will be disposed of at the depth between 60 and 100 meters in the bedrock at the power plant site. The existing VLJ repository for low and medium level operating waste will be extended with three new silos for the decommissioning waste of the TVO I and II reactors and the spent fuel interim store at the Olkiluoto site. Besides dismantling waste also used fuel boxes, control rods and other activated metal components accumulated during the operation of the reactors will be disposed of in the repository. The safety analysis is based on the detailed decommissioning plan of the Olkiluoto power plants and the comprehensive safety analysis carried out for the Final Safety Analysis Report of the VLJ repository. (58 refs., 31 figs., 38 tabs.)

  11. The management and regulation of decommissioning wastes

    International Nuclear Information System (INIS)

    Berkhout, F.

    1990-01-01

    Radioactive waste management is an inevitable consequence of nuclear technology. In the past it was often regarded as a peripheral matter, easily dealt with, and having little impact on the economics of the fuel cycle. Gradually, over the last two decades, waste management has asserted itself as one of nuclear power's most intractable problems. First, it is a problem of trying to understand through science the effects of discharging and disposing of man-made radioactivity to the general environment. Second, technologies for treating and disposing of the wastes, as well as techniques to verify their safety, must be developed. Third, and most problematically, a wide spread of public trust in the techniques of management must be nurtured. Disputes over each of these dimensions of the question exist in nearly all countries with nuclear programmes. Some of them may be near resolution, but many others are far from closure. Decommissioning, because it comes last in the nuclear life-cycle, is also the last important aspect of the technology to be considered seriously. In Britain, wastes arising from decommissioning, whether it is done slowly or quickly, are projected to have an important impact on the scale of radioactive waste management programmes, beginning in the mid-1990s. It follows that decommissioning, contentious in itself, is likely to exacerbate the difficulties of waste management. (author)

  12. The Optimization of Radioactive Waste Management in the Nuclear Installation Decommissioning Process

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir

    2008-01-01

    The paper presents a basic characterization of nuclear installation decommissioning process especially in the term of radioactive materials management. A large amount of solid materials and secondary waste created after implementation of decommissioning activities have to be managed considering their physical, chemical, toxic and radiological characteristics. Radioactive materials should be, after fulfilling all the conditions defined by the authorities, released to the environment for the further use. Non-releasable materials are considered to be a radioactive waste. Their management includes various procedures starting with pre-treatment activities, continuing with storage, treatment and conditioning procedures. Finally, they are disposed in the near surface or deep geological repositories. Considering the advantages and disadvantages of all possible ways of releasing the material from nuclear installation area, optimization of the material management process should be done. Emphasis is placed on the radiological parameters of materials, availability of waste management technologies, waste repositories and on the radiological limits and conditions for materials release or waste disposal. Appropriate optimization of material flow should lead to the significant savings of money, disposal capacities or raw material resources. Using a suitable calculation code e.g. OMEGA, the evaluation of the various material management scenarios and selection of the best one, based on the multi-criterion analysis, should be done. (authors)

  13. Status of decommissioning and waste management in the Nuclear Science Research Institute of JAEA

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Yamashita, Toshiyuki

    2007-01-01

    The Nuclear Science Research Institute (NSRI) of JAEA has some experiences of the decommissioning of research reactors and research laboratories including a reprocessing test facility. In order to dismantle those facilities safely, we paid much attention for the radiological protection of radiation workers taking into consideration of characteristics of each facility, especially to protect internal exposures. As the results of decommissioning activities, several thousands tons of solid radioactive wastes were generated. In the near future, we will start the treatment of these stored wastes by a super compactor, metal melting furnace and non-metal waste melting furnace to gain high volume reduction and to prepare stable waste forms for final disposal. In Japan, the clearance system was established in 2005 by amending the Nuclear Regulatory Law. The NSRI plans to release very slightly contaminated concrete debris for recycling, which was generated from the replacement of reactor core of research reactor (JRR-3), according to the clearance system. (author)

  14. A decontamination technique for decommissioning waste

    International Nuclear Information System (INIS)

    Heki, H.; Hosaka, K.; Kuribayashi, N.; Ishikura, T.

    1993-01-01

    A large amount of radioactive metallic waste is generated from decommissioned commercial nuclear reactors. It is necessary from the point of environmental protection and resource utilization to decontaminate the contaminated metallic waste. A decommissioning waste processing system has been previously proposed considering such decommissioning waste characteristics as its large quantity, large radioactivity range, and various shapes and materials. The decontamination process in this system was carried out by abrasive blasting as pretreatment, electrochemical decontamination as the main process, and ultrasonic cleaning in water as post-treatment. For electrochemical decontamination, electrolytic decontamination for simple shaped waste and REDOX decontamination for complicated shaped waste were used as effective decontamination processing. This time, various kinds of actual radioactive contaminated samples were taken from operating power plants to simulate the decontamination of decommissioning waste. After analyzing the composition, morphogenesis and surface observation, electrolytic decontamination, REDOX decontamination, and ultrasonic cleaning experiments were carried out by using these samples. As a result, all the samples were decontaminated below the assumed exemption level(=4 x 10 -2 Bq/g). A maximum decontamination factor of over 104 was obtained by both electrolytic and REDOX decontamination. The stainless steel sample was easy to decontaminate in both electrochemical decontaminations because of its thin oxidized layer. The ultrasonic cleaning process after electrochemical decontamination worked effectively for removing adhesive sludge and the contaminated liquid. It has been concluded from the results mentioned above that electrolytic decontamination and REDOX decontamination are effective decontamination process for decontaminating decommissioning waste

  15. Nuclear decommissioning planning, execution and international experience

    CERN Document Server

    2012-01-01

    A title that critically reviews the decommissioning and decontamination processes and technologies available for rehabilitating sites used for nuclear power generation and civilian nuclear facilities, from fundamental issues and best practices, to procedures and technology, and onto decommissioning and decontamination case studies.$bOnce a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any ...

  16. Overview of management of low and intermediate level radioactive wastes at the Institute for Nuclear Research for to save management of the waste from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The national policy of radioactive waste management fully complies with the international requirements established by 'Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and with the EURATOM treaty, directives, recommendations and policy of radioactive waste management promoted at the level of the European Union. The Institute for Nuclear Research Pitesti (INR) has its own Radwaste Treatment Plant. The object of activity is to treat and condition radioactive waste resulted from the nuclear facility. According to the National Nuclear Program, the institute is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by Cernavoda NPP. For all these, in accordance with the Governmental order no. 11/2003, INR shall must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from decommissioning activities. (authors)

  17. Nuclear power plant decommissioning. The nature of problems

    Energy Technology Data Exchange (ETDEWEB)

    Yunus, Yaziz

    1986-04-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large-scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane.

  18. DASAO: software tool for the management of safeguards, waste and decommissioning

    International Nuclear Information System (INIS)

    Noynaert, Luc; Verwaest, Isi; Libon, Henri; Cuchet, Jean-Marie

    2013-01-01

    Decommissioning of nuclear facilities is a complex process involving operations such as detailed surveys, decontamination and dismantling of equipment's, demolition of buildings and management of resulting waste and nuclear materials if any. This process takes place in a well-developed legal framework and is controlled and followed-up by stakeholders like the Safety Authority, the Radwaste management Agency and the Safeguards Organism. In the framework of its nuclear waste and decommissioning program and more specifically the decommissioning of the BR3 reactor, SCK-CEN has developed different software tools to secure the waste and material traceability, to support the sound management of the decommissioning project and to facilitate the control and the follow-up by the stakeholders. In the case of Belgium, it concerns the Federal Agency for Nuclear Control, the National Agency for radioactive waste management and fissile material and EURATOM and IAEA. In 2005, Belgonucleaire decided to shutdown her Dessel MOX fuel fabrication plant and the production stopped in 2006. According to the final decommissioning plan ('PDF') approved by NIRAS, the decommissioning works should start in 2008 at the earliest. In 2006, the management of Belgonucleaire identified the need for an integrated database and decided to entrust SCK-CEN with its development, because SCK-CEN relies on previous experience in comparable applications namely already approved by authorities such as NIRAS, FANC and EURATOM. The main objectives of this integrated software tool are: - simplified and updated safeguards; - waste and material traceability; - computerized documentation; - support to project management; - periodic and final reporting to waste and safety authorities. The software called DASAO (Database for Safeguards, Waste and Decommissioning) was successfully commissioned in 2008 and extensively used from 2009 to the satisfaction of Belgonucleaire and the stakeholders. SCK-CEN is

  19. Nuclear Energy Agency task group on Radiological Characterisation for Decommissioning of Nuclear Installations

    International Nuclear Information System (INIS)

    Larsson, Arne; Weber, Inge

    2016-01-01

    Radiological characterisation plays a significant role in the process of decommissioning of shut-down nuclear facilities in order to ensure the protection of the environment and radiation safety. At all stages of a decommissioning programme or project, adequate radiological characterisation is of crucial importance, not least from a material and waste perspective. The radiological characterisation is a key element for planning, controlling and optimising decommissioning and dismantling activities. Experience has shown that data and information from the operation of a facility can - supplemented by recently collected and analysed data and information - be of crucial importance for decisions on waste management and for characterisation of radioactive waste. Once the dismantling has been done, some information may be hard, costly or even impossible to obtain later in the waste management process. This was the reason why the Working Party on Decommissioning and Dismantling (WPDD) of the OECD Nuclear Energy Agency (NEA) decided in late 2013 to extend the mandate of the Task Group on Radiological Characterisation and Decommissioning (TGRCD) for a second phase focusing on nuclear facility characterisation from a waste and material end-state perspective whereas the first phase focused on overall strategies of radiological characterisation. This paper gives an overview of the activities and findings within both phases up to now. (authors)

  20. Managing LLRW from decommissioning of nuclear facilities - a Canadian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Donders, R E [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Hardy, D G [Frontenac Consulting Services, Deep River, ON (Canada); De, P L [Low-Level Radioactive Waste Management Office, Gloucester, ON (Canada)

    1994-03-01

    In Canada, considerable experience has been gained recently in decommissioning nuclear facilities and managing the resulting waste. This experience has raised important issues from both the decommissioning and waste management perspectives. This paper focuses on the waste management aspects of decommissioning. Past experience is reviewed, preliminary estimates of waste volumes and characteristics are provided, and the major technical and regulatory issues are discussed. (author). 5 refs., 1 tab., 2 figs.

  1. The brief introduction to decommissioning of nuclear reactor projects

    International Nuclear Information System (INIS)

    Zhao Shixin

    1991-01-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste

  2. The brief introduction to decommissioning of nuclear reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Shixin, Zhao [Beijing Inst. of Nuclear Engineering (China)

    1991-08-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste.

  3. A State of the Art on the Technology for Recycling and Reuse of the Decommissioning Concrete Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chung Hun; Choi, Wang Kyu; Min, Byung Youn; Oh, Won Zin; Lee, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-02-15

    This report describes the reduction and recycling technology of decommissioning concrete waste. Decontamination and decommissioning (D and D) becomes one of the most important nuclear markets especially in the developed countries including USA, UK and France where lots of the retired nuclear facilities have been waiting for decommissioning. In our country the KAERI has been carrying out the decommissioning of the retired TRIGA MARK II and III research reactors and an uranium conversion plant as the first national decommissioning project since 1998. One of the most important areas of the decommissioning is a management of a huge amount of a decommissioning waste the cost of which is more than half of the total decommissioning cost. Therefore reduction in decommissioning waste by a reuse or a recycle is an important subject of decommissioning technology development in the world. Recently much countries pay attention to recycle the large amount of concrete dismantling waste resulted from both a nuclear and a non nuclear industries. In our country, much attention was taken in a recycle of concrete dismantling waste as a concrete aggregate, but a little success has been resulted due to the disadvantages such as a weakness of hardness and surface mortar contamination. A recycle in nuclear industry and a self disposal of the radioactively contaminated concrete wastes are main directions of concrete wastes resulted from a nuclear facility decommissioning. In this report it was reviewed the state of art of the related technologies for a reduction and a recycle of concrete wastes from a nuclear decommissioning in the country and abroad. Prior to recycle and reuse in the nuclear sector, however, the regulatory criteria for the recycle and reuse of concrete waste should be established in parallel with the development of the recycling technology.

  4. A State of the Art on the Technology for Recycling and Reuse of the Decommissioning Concrete Wastes

    International Nuclear Information System (INIS)

    Jung, Chung Hun; Choi, Wang Kyu; Min, Byung Youn; Oh, Won Zin; Lee, Kun Woo

    2008-02-01

    This report describes the reduction and recycling technology of decommissioning concrete waste. Decontamination and decommissioning (D and D) becomes one of the most important nuclear markets especially in the developed countries including USA, UK and France where lots of the retired nuclear facilities have been waiting for decommissioning. In our country the KAERI has been carrying out the decommissioning of the retired TRIGA MARK II and III research reactors and an uranium conversion plant as the first national decommissioning project since 1998. One of the most important areas of the decommissioning is a management of a huge amount of a decommissioning waste the cost of which is more than half of the total decommissioning cost. Therefore reduction in decommissioning waste by a reuse or a recycle is an important subject of decommissioning technology development in the world. Recently much countries pay attention to recycle the large amount of concrete dismantling waste resulted from both a nuclear and a non nuclear industries. In our country, much attention was taken in a recycle of concrete dismantling waste as a concrete aggregate, but a little success has been resulted due to the disadvantages such as a weakness of hardness and surface mortar contamination. A recycle in nuclear industry and a self disposal of the radioactively contaminated concrete wastes are main directions of concrete wastes resulted from a nuclear facility decommissioning. In this report it was reviewed the state of art of the related technologies for a reduction and a recycle of concrete wastes from a nuclear decommissioning in the country and abroad. Prior to recycle and reuse in the nuclear sector, however, the regulatory criteria for the recycle and reuse of concrete waste should be established in parallel with the development of the recycling technology

  5. Nuclear decommissioning and society

    International Nuclear Information System (INIS)

    Pasqualetti, M.J.

    1990-01-01

    Links between decommissioning in general, reactor decommissioning in particular, and the public are indexed. The established links are recognised and others, such as jobs, are discussed. Finally the links with policy, such as political geography, and wider issues of the environment and public concern over waste disposal are considered. Decommissioning is a relatively new field where public opinion must now be considered but it has implications both for existing nuclear power plants and those planned for the future, especially in their siting. This book looks especially at the situation in the United Kingdom. There are twelve papers, all indexed separately. (UK)

  6. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Science.gov (United States)

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  7. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  8. Full system chemical decontamination used in nuclear decommissioning

    International Nuclear Information System (INIS)

    Elder, George; Rottner, Bernard; Braehler, Georg

    2012-01-01

    The decommissioning of nuclear power stations at the end of the operational period of electricity generation offers technical challenges in the safe dismantling of the facility and the minimization of radioactive waste arising from the decommissioning activities. These challenges have been successfully overcome as demonstrated by decommissioning of the first generation of nuclear power plants. One of the techniques used in decommissioning is that of chemical decontamination which has a number of functions and advantages as given here: 1. Removal of contamination from metal surfaces in the reactors cooling systems. 2. Reduction of radioactive exposure to decommissioning workers 3. Minimization of metal waste by decontamination and recycling of metal components 4. Control of contamination when dismantling reactor and waste systems 5. Reduction in costs due to lower radiation fields, lower contamination levels and minimal metal waste volume for disposal. One such chemical decontamination technology was developed for the Electric Power Research Institute (EPRI) by Bradtec (Bradtec is an ONET Technologies subsidiary) and is known as the EPRI DFD system. This paper gives a description of the EPRI DFD system, and highlights the experience using the system. (orig.)

  9. Some studies related to decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Bergman, C.; Menon, S.

    1990-02-01

    Decommissioning of large nuclear reactors has not yet taken place in the Nordic countries. Small nuclear installations, however, have been dismantled. This NKA-programme has dealt with some interesting and important factors which have to be analysed before a large scale decommissioning programme starts. Prior to decommissioning, knowledge is required regarding the nuclide inventory in various parts of the reactor. Measurements were performed in regions close to the reactor tank and the biological shield. These experimental data are used to verify theoretical calculations. All radioactive waste generated during decommissioning will have to be tansported to a repository. Studies show that in all the Nordic countries there are adequate transport systems with which decommissioning waste can be transported. Another requirement for orderly decommissioning planning is that sufficient information about the plant and its operation history must be available. It appears that if properly handled and sorted, all such information can be extracted from existing documentation. (authors)

  10. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    Full text: Canada has developed significant expertise in radioactive waste management since the mid 1940s, when the Canadian nuclear program commenced activities at Chalk River Laboratories (CRL). Atomic Energy of Canada Limited (AECL), created as a Federal Crown Corporation in 1952, continues to manage wastes from these early days, as well as other radioactive wastes produced by Canadian hospitals, universities, industry, and operational wastes from AECL's current programs. AECL is also carrying out decommissioning of nuclear facilities and installations in Canada, predominantly at its own sites in Ontario (CRL, and the Douglas Point and Nuclear Power Demonstration prototype reactors), Manitoba (Whiteshell Laboratories) and Quebec (Gentilly-1 prototype reactor). At the CRL site, several major waste management enabling facilities are being developed to facilitate both the near- and long-term management of radioactive wastes. For example, the Liquid Waste Transfer and Storage Project is underway to recover and process highly radioactive liquid wastes, currently stored in underground tanks that, in some cases, date back to the initial operations of the site. This project will stabilize the wastes and place them in modern, monitored storage for subsequent solidification and disposal. Another initiative, the Fuel Packaging and Storage Project, has been initiated to recover and condition degraded used fuel that is currently stored in below-ground standpipes. The fuel will be then be stored in new facilities based on an adaptation of AECL's proven MACSTOR TM * dry storage system, originally designed for intermediate-term above-ground storage of used CANDU fuel bundles. Other commercial-based development work is underway to improve the storage density of the MACSTOR TM design, and to extend its application to interim storage of used LWR fuels as well as to the storage of intermediate-level radioactive waste arising from upcoming reactor refurbishment activities in Canada

  11. A state-of-the art on decommissioning of nuclear facilities in Japan

    International Nuclear Information System (INIS)

    Park, Seung Kook; Kim, Hee Reyoung; Chung, Un Soo; Jung, Ki Jung

    2002-05-01

    While proceeding the KRR-1 and 2 decommissioning project, we are carried out study for the state of the art on decommissioning of nuclear facilities in Japan. Also, we are studied for the research reactors and commercial power plant that has the object of decommissioning, and for the government and the organization related on decommissioning operation. We are investigated for decommissioning activities of nuclear facilities achieved by JAERI, and collected the information and data for decommissioning techniques and computational system through the JPDR(Japan Power Demonstration Reactor) decommissioning activities. Such techniques are applying for Tokai Power Station began the decommissioning project from last year, and for Fugen Nuclear Power Station to be planned the decommissioning from 2003. Recent techniques for decommissioning was acquired by direct contact. The status of the treatment for decommissioning waste and the disposal facility for the very low-level radioactive concrete wastes was grasped

  12. Decommissioning situation and research and development for the decommissioning of the commercial nuclear power station in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Tatsumi.

    1996-01-01

    There are 48 commercial nuclear power stations in operation in Japan as of January 1, 1995, which supplies about 28% (2.2 x 10 8 MWh) of total annual electricity generation in FY 1992. Accordingly, as the nuclear power contributes so much in electricity generation, there is a growing concern in the public toward the safety on decommissioning nuclear power station. It is gravely important to secure the safety throughout the decommissioning. This paper discusses: the decommissioning situation in Japan; the Japanese national policy for decommissioning of commercial nuclear power stations; R and D for decommissioning of commercial nuclear power stations in Japan; and the present conditions of low-level radioactive wastes disposal in Japan

  13. Brazilian nuclear power plants decommissioning plan for a multiple reactor site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys B.; Moreira, Joao M.L.; Maiorino, Jose R., E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas. Programa de Pos-Graduacao em Energia e Engenharia da Energia

    2015-07-01

    Actually, Brazil has two operating Nuclear Power Plants and a third one under construction, all at Central Nuclear Almirante Alvaro Alberto - CNAAA. To comply with regulatory aspects the power plants operator, Eletronuclear, must present to Brazilian Nuclear Regulatory Agency, CNEN, a decommissioning plan. Brazilian experience with decommissioning is limited because none of any nuclear reactor at the country was decommissioned. In literature, decommissioning process is well described despite few nuclear power reactors have been decommissioned around the world. Some different approach is desirable for multiple reactors sites, case of CNAAA site. During the decommissioning, a great amount of wastes will be produced and have to be properly managed. Particularly, the construction of Auxiliary Services on the site could be a good choice due to the possibility of reducing costs. The present work intends to present to the Eletronuclear some aspects of the decommissioning concept and decommissioning management, storage and disposal de wastes, based on the available literature, regulatory standards of CNEN and international experience as well as to suggest some solutions to be implemented at CNAAA site before starts the decommissioning project in order to maximize the benefits. (author)

  14. Brazilian nuclear power plants decommissioning plan for a multiple reactor site

    International Nuclear Information System (INIS)

    Monteiro, Deiglys B.; Moreira, Joao M.L.; Maiorino, Jose R.

    2015-01-01

    Actually, Brazil has two operating Nuclear Power Plants and a third one under construction, all at Central Nuclear Almirante Alvaro Alberto - CNAAA. To comply with regulatory aspects the power plants operator, Eletronuclear, must present to Brazilian Nuclear Regulatory Agency, CNEN, a decommissioning plan. Brazilian experience with decommissioning is limited because none of any nuclear reactor at the country was decommissioned. In literature, decommissioning process is well described despite few nuclear power reactors have been decommissioned around the world. Some different approach is desirable for multiple reactors sites, case of CNAAA site. During the decommissioning, a great amount of wastes will be produced and have to be properly managed. Particularly, the construction of Auxiliary Services on the site could be a good choice due to the possibility of reducing costs. The present work intends to present to the Eletronuclear some aspects of the decommissioning concept and decommissioning management, storage and disposal de wastes, based on the available literature, regulatory standards of CNEN and international experience as well as to suggest some solutions to be implemented at CNAAA site before starts the decommissioning project in order to maximize the benefits. (author)

  15. Radioactive waste management and decommissioning at the NEA

    International Nuclear Information System (INIS)

    2010-11-01

    The OECD Nuclear Energy Agency (NEA) seeks to assist its member countries in developing safe, sustainable and societally acceptable strategies for the management of all types of radioactive materials, with particular emphasis on the management of long-lived waste and spent fuel and on decommissioning of disused nuclear facilities. The programme of work in these areas is carried out for the most part by the Radioactive Waste Management Committee (RWMC) assisted by three working parties: - The Forum on Stakeholder Confidence (FSC). - The Integration Group for the Safety Case (IGSC). - The Working Party on Decommissioning and Dismantling (WPDD). Other NEA Committees also have interests in this field: the Committee on Radiation Protection and Public Health (CRPPH) and the Nuclear Development Committee (NDC). The OECD/NEA is at the forefront in addressing both the technical and societal requirements for durable and sustainable waste management and decommissioning solutions. Through the RWMC it provides a neutral forum where policy makers, regulators and implementing organisations can discuss issues of common interest and develop solutions that meet the diverse needs of its member countries

  16. Decommissioning project of commercial nuclear power plant

    International Nuclear Information System (INIS)

    Karigome, S.

    2008-01-01

    Decommissioning project of commercial nuclear power plant in Japan was outlined. It is expected that the land, after the decommissioning of commercial nuclear power plants, will serve as sites for new plants. Steps will be taken to reduce the amount of wastes generated and to recycle/reuse them. Wastes with a radioactivity concentration below the 'clearance level' need not be dealt with as radioactive material, and may be handled in the same way as conventional wastes. The Tokai-1 power station, a 166 MWe carbon dioxide cooled reactor which closed down in 1998, is being decommissioned and the first ten years as 'safe storage' to allow radioactivity to decay. Non-reactor grade components such as turbines were already removed, heat exchanger dismantling started and the reactor will be dismantled, the buildings demolished and the site left ready for reuse. All radioactive wastes will be classified as low-level wastes in three categories and will be buried under the ground. The total cost will be 88.5 billion yen -34.7 billion for dismantling and 53.8 billion for waste treatment including the graphite moderator. (T. Tanaka)

  17. Treatment of organic radioactive waste in decommissioning project

    International Nuclear Information System (INIS)

    Dimovic, S.; Plecas, I.

    2003-01-01

    This paper describes methods of treatment of organic radioactive waste in the aspect of its integral part of radioactive waste which will arise during decommissioning process of nuclear power reactor RA (author)

  18. BNFL nuclear decommissioning liabilities management program

    International Nuclear Information System (INIS)

    Colquhoun, A.P.

    1995-01-01

    The objective of this paper is to describe BNFL's policy and strategy for decommissioning and also to summarize the overall scope of nuclear liabilities in the wider field of waste retrieval and storage, as well as the dismantling and demolition aspects of decommissioning. BNFL's recently established organisational arrangements for discharging all types of these liabilities are explained, together with a review of practical progress in dealing with them. Organisational changes in recent years have amalgamated decommissioning work with operations covering waste storage and retrieval operations. A strategy of minimising residual activity in shutdown plants is pursued, followed by dismantling and demolition on appropriate time scales to minimise risk and cost. Since April 1995, a new BNFL subsidiary, Nuclear Liabilities Management Company Limited has taken responsibility for discharge of BNFL's Waste Retrieval and Decommissioning liabilities on all BNFL sites. NLM has the objectives of optimal and lowest cost management of liabilities and much clearer segregation of physical operations from project specification and planning. The Ministry of Defense (MoD) policy, strategy, work programmes and progress for the Atomic Weapons Establishment (AWE) are also outlined. MoD/AEA has established an equivalent strategy for dealing with its liabilities. (J.S.). 5 refs., 2 figs., 4 appends

  19. Operating Procedures to Identify Wastes of Decommissioning

    International Nuclear Information System (INIS)

    Gatea, M.A.

    2016-01-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive material. Many of these sites suffered substantial physical damage during the Gulf Wars as well as the challenging of the difficult security situation in the country.The destruction of the former nuclear facilities during the 1991 Gulf war aggravated the problem. As a result of these events, many of these nuclear facilities have lost their containment of the radioactive material and it now has an increased potential to be dispersed into the environment.Iraqi Decommissioning Directorate (IDD) is one of the Ministry of Science and Technology (MoST) formations. It deals with decommissioning of former Iraqi nuclear sites. It considers a producer of radioactive waste.Therefore, waste management represents the vital requirement to work accomplishment.The work carries out on-site waste pretreatment which considers as a minimization of waste management.W M is necessary to: Segregate 'at source' as much materials as possible to minimize quantities of radioactive waste, clear or exempt as much materials as possible and decontaminate and recycle as much radioactive waste as possible. And in more general terms: to control and account for radioactive waste to protect human health and the environment, to make sure we do not leave unnecessary burdens for future generations, to concentrate, contain and isolate the waste from the environment therefore, this make any releases to the environment to be restricted and subject to regulatory control.This procedure applies on-site waste pretreatment which comprises segregating, characterizing, minimizing, classifying, packaging and relocating of generated wastes during decommissioning of destroyed nuclear facilities. The stationary waste treatment activities are the responsibility of RWTD/MoST.The (RPC/MoE) is the national regulatory body during the whole radioactive waste management

  20. Nuclear data requirements for fission reactor decommissioning

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1993-01-01

    The meeting was attended by 13 participants from 8 Member States and 2 International Organizations who reviewed the status of the nuclear data libraries and computer codes used to calculate the radioactive inventory in the reactor unit components for the decommissioning purposes. Nuclides and nuclear reactions important for determination of the radiation fields during decommissioning and for the final disposal of radioactive waste from the decommissioned units were identified. Accuracy requirements for the relevant nuclear data were considered. The present publication contains the text of the reports by the participants and their recommendations to the Nuclear Data Section of the IAEA. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  1. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  2. Decommissioning and back working of Greifswald nuclear power plant

    International Nuclear Information System (INIS)

    Rittscher, D.; Leushacke, D.F.; Meyer, R.

    1998-01-01

    At Nuclear Power Plant Greifswald, the Energiewerke Nord are carrying out the presently world's largest decommissioning project. This requires the gathering up of experience from the operation of the nuclear power plants at Greifswald, the decommissioning of other nuclear power plants, waste management, project management and licensing procedures for the decommissioning of nuclear power plants. That confirmed that the back working of nuclear plants is not a technical problem but a challenge for project management and logistics. It shows that the dismantling and disposal of nuclear plants is an ordinary process in our economic life. (orig.) [de

  3. Feedback experience from the decommissioning of Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Santiago, J.L.

    2008-01-01

    The Spain has accumulated significant experience in the field of decommissioning of nuclear and radioactive facilities. Relevant projects include the remediation of uranium mills and mines, the decommissioning of research reactors and nuclear research facilities and the decommissioning of gas-graphite nuclear power plants. The decommissioning of nuclear facilities in Spain is undertaken by ENRESA, who is also responsible for the management of radioactive wastes. The two most notable projects are the decommissioning of the Vandellos I nuclear power plant and the decommissioning of the CIEMAT nuclear research centre. The Vandellos I power plant was decommissioned in about five years to what is known as level 2. During this period, the reactor vessel was confined, most plant systems and components were dismantled, the facility was prepared for a period of latency and a large part of the site was restored for subsequent release. In 2005 the facility entered into the phase of dormancy, with minimum operating requirements. Only surveillance and maintenance activities are performed, among which special mention should be made to the five-year check of the leak tightness of the reactor vessel. After the dormancy period (25 - 30 years), level 3 of decommissioning will be initiated including the total dismantling of the remaining parts of the plant and the release of the whole site for subsequent uses. The decommissioning of the CIEMAT Research Centre includes the dismantling of obsolete facilities such as the research reactor JEN-1, a pilot reprocessing plant, a fuel fabrication facility, a conditioning plant for liquid and a liquid waste storage facility which were shutdown in the early eighties. Dismantling works have started in 2006 and will be completed by 2009. On the basis of the experience gained in the above mentioned sites, this paper describes the approaches adopted by ENRESA for large decommissioning projects. (author)

  4. Establishment and Evaluation of Decommissioning Plant Inventory DB and Waste Quantity

    International Nuclear Information System (INIS)

    Oh, Jae Yong; Moon, Sang-Rae; Yun, Taesik; Kim, Hee-Geun; Sung, Nak-Hoon; Jung, Seung Hyuk

    2016-01-01

    Korea Hydro and Nuclear Power (KHNP) made a decision for permanent shutdown of Kori-1 and has progressed the strategy determination and R and D for the decommissioning of Kori-1. Decommissioning waste, Structure, System and Components (SSCs) is one of the most important elements. Decommissioning waste quantity is calculated based on Plant Inventory Database (PI DB) with activation and contamination data. Due to the largest portion of waste management and disposal in decommissioning, it is necessary to exactly evaluate waste quantity (applying the regulation, guideline and site-specific characterization) for economic feasibility. In this paper, construction of PI DB and evaluation of waste quantity for Optimized Pressurized Reactor (OPR-1000) are mainly described. Decommissioning waste quantities evaluated are going to be applied to calculation of the project cost. In fact, Ministry of Trade, Industry and Energy (MOTIE) in Korea expected the decommissioning waste quantity in a range of 14,500-18,850 drums, and predicted appropriate liability for decommissioning fund by using waste quantity. The result of this study is also computed by the range of 14,500-18,850 drums. Since there is no site-specific data for the NPP site, this evaluation is the preliminary analysis

  5. Establishment and Evaluation of Decommissioning Plant Inventory DB and Waste Quantity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Yong; Moon, Sang-Rae; Yun, Taesik; Kim, Hee-Geun [KHNP CRI, Daejeon (Korea, Republic of); Sung, Nak-Hoon; Jung, Seung Hyuk [KONES Corp., Seoul (Korea, Republic of)

    2016-10-15

    Korea Hydro and Nuclear Power (KHNP) made a decision for permanent shutdown of Kori-1 and has progressed the strategy determination and R and D for the decommissioning of Kori-1. Decommissioning waste, Structure, System and Components (SSCs) is one of the most important elements. Decommissioning waste quantity is calculated based on Plant Inventory Database (PI DB) with activation and contamination data. Due to the largest portion of waste management and disposal in decommissioning, it is necessary to exactly evaluate waste quantity (applying the regulation, guideline and site-specific characterization) for economic feasibility. In this paper, construction of PI DB and evaluation of waste quantity for Optimized Pressurized Reactor (OPR-1000) are mainly described. Decommissioning waste quantities evaluated are going to be applied to calculation of the project cost. In fact, Ministry of Trade, Industry and Energy (MOTIE) in Korea expected the decommissioning waste quantity in a range of 14,500-18,850 drums, and predicted appropriate liability for decommissioning fund by using waste quantity. The result of this study is also computed by the range of 14,500-18,850 drums. Since there is no site-specific data for the NPP site, this evaluation is the preliminary analysis.

  6. Accidental safety analysis methodology development in decommission of the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H.; Hwang, J. H.; Jae, M. S.; Seong, J. H.; Shin, S. H.; Cheong, S. J.; Pae, J. H.; Ang, G. R.; Lee, J. U. [Seoul National Univ., Seoul (Korea, Republic of)

    2002-03-15

    Decontamination and Decommissioning (D and D) of a nuclear reactor cost about 20% of construction expense and production of nuclear wastes during decommissioning makes environmental issues. Decommissioning of a nuclear reactor in Korea is in a just beginning stage, lacking clear standards and regulations for decommissioning. This work accident safety analysis in decommissioning of the nuclear facility can be a solid ground for the standards and regulations. For source term analysis for Kori-1 reactor vessel, MCNP/ORIGEN calculation methodology was applied. The activity of each important nuclide in the vessel was estimated at a time after 2008, the year Kori-1 plant is supposed to be decommissioned. And a methodology for risk analysis assessment in decommissioning was developed.

  7. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Y. K.; Cho, J. H. [SunKwang Atomic Energy Safety Co., Seoul (Korea, Republic of)

    2014-10-15

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas.

  8. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    International Nuclear Information System (INIS)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K.; Choi, Y. K.; Cho, J. H.

    2014-01-01

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas

  9. Factors influencing the decommissioning of large-scale nuclear plants

    International Nuclear Information System (INIS)

    Large, J.H.

    1988-01-01

    The decision-making process involving the decommissioning of the UK graphite moderated, gas-cooled nuclear power stations is complex. There are timing, engineering, waste disposal, cost and lost generation capacity factors to consider and the overall decision of when and how to proceed with decommissioning may include political and public tolerance dimensions. For the final stage of decommissioning the nuclear industry could either completely dismantle the reactor island leaving a green-field site or, alternatively, the reactor island could be maintained indefinitely with additional super- and substructure containment. At this time the first of these options, or deferred decommissioning, prevails and with this the nuclear industry has expressed considerable confidence that the technology required will become available with passing time, that acceptable radioactive waste disposal methods and facilities will be available and that the eventual costs of decommissioning will not escalate without restraint. If the deferred decommissioning strategy is wrong and it is not possible to completely dismantle the reactor islands a century into the future, then it may be too late to effect sufficient longer term containment to maintain the reactor hulks in a reliable condition. With respect to the final decommissioning of large-scale nuclear plant, it is concluded that the nuclear industry does not know quite how to do it, when it will be attempted and when it will be completed, and they do not know how much it will eventually cost. (author)

  10. Management of waste associated with the decommissioning of the JASON research reactor and the nuclear laboratories at the Royal Naval College Greenwich

    International Nuclear Information System (INIS)

    Beeley, P.A.; Lockwood, R.J.S.; Hoult, D.; Major, R.

    2001-01-01

    In 1996 the UK Government announced that the Royal Naval College, Greenwich would pass to non-defence use by the millennium. As a consequence of this decision, the decommissioning of the JASON 10 kW Argonaut research reactor and the relocation of the Department of Nuclear Science and Technology (DNST) were approved by the Ministry of Defence. The decommissioning of the reactor commenced in November 1997 while DNST remained operational until October 1998. The DNST was responsible for education and training in support of the UK Naval Nuclear Propulsion Programme and operated academic laboratories for atomic and nuclear physics, health physics, instrument calibration and radiochemistry. Therefore, besides the nuclear reactor, open and sealed sources (alpha, beta and gamma), intense x-ray (sealed tube) and gamma-ray ( 60 CO and 137 Cs) sources and small 241 Am/Be neutron sources had been used in the Department for over 35 years. Decommissioning of all facilities was therefore a relatively complex task and the management of waste streams was challenging. All facilities were successfully decommissioned for unrestricted site release by December 1999 and this paper will describe the methodology used for preparation, storage, characterisation and disposal of all waste streams. The most significant waste management task during this decommissioning programme was that associated with the JASON reactor. It should be noted that the JASON reactor fuel was not designated as nuclear waste, the fuel removal and storage were covered under separate contracts and therefore no high level waste was generated. With respect to other waste streams, a combination of Monte Carlo modelling and selective sampling and analysis of the reactor materials was used to estimate the quantities of waste as follows: LLW - 76 tonnes packed in 4 half height ISO containers; LLW - 6 Tonnes packed in 200litre drums in 1 full height ISO container; ILW - 60 kg packed in approved shielded containers; FRW -121

  11. The decommissioning of nuclear facilities; Le demantelement des installations nucleaires de base

    Energy Technology Data Exchange (ETDEWEB)

    Niel, J.Ch.; Rieu, J.; Lareynie, O.; Delrive, L.; Vallet, J.; Girard, A.; Duthe, M.; Lecomte, C.; Rozain, J.P.; Nokhamzon, J.G.; Davoust, M.; Eyraud, J.L.; Bernet, Ph.; Velon, M.; Gay, A.; Charles, Th.; Leschaeva, M.; Dutzer, M.; Maocec, Ch.; Gillet, G.; Brut, F.; Dieulot, M.; Thuillier, D.; Tournebize, F.; Fontaine, V.; Goursaud, V.; Birot, M.; Le Bourdonnec, Th.; Batandjieva, B.; Theis, St.; Walker, St.; Rosett, M.; Cameron, C.; Boyd, A.; Aguilar, M.; Brownell, H.; Manson, P.; Walthery, R.; Wan Laer, W.; Lewandowski, P.; Dorms, B.; Reusen, N.; Bardelay, J.; Damette, G.; Francois, P.; Eimer, M.; Tadjeddine, A.; Sene, M.; Sene, R

    2008-11-15

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  12. Technology, safety and costs of decommissioning nuclear reactors at multiple-reactor stations

    International Nuclear Information System (INIS)

    Wittenbrock, N.G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWR) and large (1155-MWe) boiling water reactors (BWR) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services

  13. Financial guarantee for decommissioning and nuclear waste management activities at OPG

    International Nuclear Information System (INIS)

    Van den Hengel, J.

    2006-01-01

    This paper provides an overview on the establishment and maintenance of a financial guarantee for decommissioning and nuclear waste management activities at Ontario Power Generation (OPG) in accordance with CNSC requirements. The process and timelines are documented leading to the establishment of the guarantee effective July 31, 2003. Reference plans, cost estimates, funding mechanisms and reporting mechanisms are summarized. The renewal process projected at the end of the 5-year initial financial guarantee period is also included. (author)

  14. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    OpenAIRE

    Won-Jun Choi; Myung-Sub Roh; Chang-Lak Kim

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research...

  15. The Communities' research and development programme on decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1981-01-01

    This is the first progress report of the European Community's programme (1979-1983) of research on the decommissioning of nuclear power plants. It shows the status of the programme on 31 December 1980. The programme seeks to promote a number of research and development projects as well as the identification of guiding principles. The projects concern the following subjects: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific waste materials: steel, concrete and graphite; large transport containers for radioactive was produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive wastes arising from decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  16. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  17. Organization and management for decommissioning of large nuclear facilities

    International Nuclear Information System (INIS)

    2000-01-01

    For nuclear facilities, decommissioning is the final phase in the life-cycle after siting, design, construction, commissioning and operation. It is a complex process involving operations such as detailed surveys, decontamination and dismantling of plant equipment and facilities, demolition of buildings and structures, and management of resulting waste and other materials, whilst taking into account aspects of health and safety of the operating personnel and the general public, and protection of the environment. Careful planning and management is essential to ensure that decommissioning is accomplished in a safe and cost effective manner. Guidance on organizational aspects may lead to better decision making, reductions in time and resources, lower doses to the workers and reduced impact on public health and the environment. The objective of this report is to provide information and guidance on the organization and management aspects for the decommissioning of large nuclear facilities which will be useful for licensees responsible for discharging these responsibilities. The information contained in the report may also be useful to policy makers, regulatory bodies and other organizations interested in the planning and management of decommissioning. In this report, the term 'decommissioning' refers to those actions that are taken at the end of the useful life of a nuclear facility in withdrawing it from service with adequate regard for the health and safety of workers and members of the public and for the protection of the environment. The term 'large nuclear facilities' involves nuclear power plants, large nuclear research reactors and other fuel cycle facilities such as reprocessing plants, fuel conversion, fabrication and enrichment plants, as well as spent fuel storage and waste management plants. Information on the planning and management for decommissioning of smaller research reactors or other small nuclear facilities can be found elsewhere. The report covers

  18. The planning of decommissioning activities within nuclear facilities - Generating a Baseline Decommissioning Plan

    International Nuclear Information System (INIS)

    Meek, N.C.; Ingram, S.; Page, J.

    2003-01-01

    BNFL Environmental Services has developed planning tools to meet the emerging need for nuclear liabilities management and decommissioning engineering both in the UK and globally. It can provide a comprehensive baseline planning service primarily aimed at nuclear power stations and nuclear plant. The paper develops the following issues: Decommissioning planning; The baseline decommissioning plan;The process; Work package; Compiling the information; Deliverables summary; Customer Benefits; - Planning tool for nuclear liability life-cycle management; - Robust and reliable plans based upon 'real' experience; - Advanced financial planning; - Ascertaining risk; - Strategy and business planning. The following Deliverables are mentioned:1. Site Work Breakdown Structure; 2. Development of site implementation strategy from the high level decommissioning strategy; 3. An end point definition for the site; 4. Buildings, operational systems and plant surveys; 5. A schedule of condition for the site; 6. Development of technical approach for decommissioning for each work package; 7. Cost estimate to WBS level 5 for each work package; 8. Estimate of decommissioning waste arisings for each work package; 9. Preparation of complete decommissioning programme in planning software to suit client; 10. Risk modelling of work package and overall project levels; 11. Roll up of costs into an overall cost model; 12. Cash flow, waste profiling and resource profiling against the decommissioning programme; 13. Preparation and issue of Final Report. Finally The BDP process is represented by a flowchart listing the following stages: [Power Station project assigned] → [Review project and conduct Characterisation review of power station] → [Identify work packages] → [Set up WBS to level 3] → [Assign work packages] → [Update WBS to level 4] →[Develop cost model] → [Develop logic network] → [Develop risk management procedure] ] → [Develop project strategy document]→ [Work package

  19. Preliminary plan for decommissioning - repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Hallberg, Bengt; Tiberg, Liselotte

    2010-06-01

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable for the

  20. The Ministry of Dilemmas [decommissioning nuclear submarines

    International Nuclear Information System (INIS)

    Peden, W.

    1995-01-01

    A consultant for Greenpeace, the anti-nuclear campaigners, looks at the United Kingdom Government's problems with decommissioning of its nuclear submarine fleet as the vessels become obsolete, and at the transport and storage of spent fuels from the submarine's propulsion reactors. It is argued that no proper plans exist to decommission the vessels safely. The Ministry of Defence sites such as Rosyth and Devonport are immune from inspection by regulatory bodies, so there is no public knowledge of any potential radioactive hazards from the stored out-of-service carcasses, floating in dock, awaiting more active strategies. The author questions the wisdom of building new nuclear submarines, when no proper program exists to decommission existing vessels and their operational waste. (U.K.)

  1. Structure and function design for nuclear facilities decommissioning information database

    International Nuclear Information System (INIS)

    Liu Yongkuo; Song Yi; Wu Xiaotian; Liu Zhen

    2014-01-01

    The decommissioning of nuclear facilities is a radioactive and high-risk project which has to consider the effect of radiation and nuclear waste disposal, so the information system of nuclear facilities decommissioning project must be established to ensure the safety of the project. In this study, by collecting the decommissioning activity data, the decommissioning database was established, and based on the database, the decommissioning information database (DID) was developed. The DID can perform some basic operations, such as input, delete, modification and query of the decommissioning information data, and in accordance with processing characteristics of various types of information data, it can also perform information management with different function models. On this basis, analysis of the different information data will be done. The system is helpful for enhancing the management capability of the decommissioning process and optimizing the arrangements of the project, it also can reduce radiation dose of the workers, so the system is quite necessary for safe decommissioning of nuclear facilities. (authors)

  2. Decommissioning of nuclear facilities in Korea

    International Nuclear Information System (INIS)

    Hahn, Pil Soo

    2003-01-01

    In 1996, it was concluded that the first Korea research reactor (KRR-1) and the second Korea research reactor (KRR-2) would be shut down and decommissioned. The main reason for the decommissioning was that the facilities became old and has become surrounded by the urbanised community. And many difficulties, including the higher cost, were faced according to the enhanced regulations. Another reason was the introduction of a new research reactor 'HANARO' in 1995. A project to decommission the reactors was launched on January of 1997 with a goal of release of the site and buildings for unrestricted use by 2008. All the radioactive wastes generated are to be transported to the national repository, planned by the Korea Hydro and Nuclear Power Company (KHNP), and the final evaluation of the residual radioactivity will be made before the clearance of the site. As a first step of the project, a decommissioning plan, including the assessment of the environmental impact and the quality assurance program, was prepared and submitted to the government in 1998. It was approved, after its safety evaluation, by the Korea Institute of Nuclear Safety (KINS) in November of 2000. After some preparative works such as documentation of procedures, the decontamination and dismantling works for the laboratories and hot cells of KRR-2 were started in September, 2001 and finished in December, 2002. The spent fuels that had been generated from the reactors were transferred to the United States in 1998 and no spent fuel remained at the site. All the liquid waste, both operational and decommissioning, was very low in its radioactivity and was treated in a natural evaporation facility of 200 m3/year capacity, developed by KAERI. Especially the laundry waste was treated in a membrane filtering unit for the removal of surfactants before being introduced to the natural evaporator. The solid wastes were segregated and packed in the container of 4 m3, designed according to the ISO-1496, and also in

  3. The Community's research and development programme on decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    1982-01-01

    The programme, adopted by the Council of the European Communities, seeks to promote a number of research and development projects as well as the identification of guiding principles. The projects concern the following subjects: long-term integrity of buildings and systems; decontaminations for decommissioning purposes; dismantling techniques; treatment of specific waste materials (steel, concrete and graphite); large transport containers for radioactive waste arising from decommissioning of nuclear power plants in the Community; and influence of nuclear power plant design features on decommissioning

  4. Radiological protection and radioactive waste management aspects of the decommissioning of redundant nuclear facilities at the Rosyth Dockyard, UK

    International Nuclear Information System (INIS)

    Kerr, Robert W.; Murdo Murray; Hunter Common

    2008-01-01

    The Rosyth Dockyard is located near the city of Edinburgh in Scotland. The dockyard's nuclear activities centred around the refuelling and refitting of submarines, as well as some submarine decommissioning. In 1993, submarine refitting work was transferred to Devonport in Southern England. This meant that there were a number of facilities at the Rosyth Dockyard that were now redundant. In accordance with UK government policy a programme of works was instigated to allow for the decommissioning of these nuclear liabilities. This paper provides a brief overview of work activities performed to allow physical decommissioning to take place. Topics covered include radiological characterisation activities, development of monitoring protocols for decommissioning, obtaining relevant environmental authorisations, developing a decommissioning safety case, gaining the UK's Nuclear Installations Inspectorate approval to proceed with decommissioning and an overview of some of the post operative clean out (POCO) activities performed. Edmund Nuttall Ltd were contracted to perform the physical decommissioning of the redundant nuclear facilities, that have been subject to POCO, and this work commenced in February 2006. As part of this contract they were to provide a radiological protection infrastructure including dosimetry and health physics monitoring. This paper discusses the radiological protection infrastructure established by the decommissioning contractor, the radiological protection aspects of the decommissioning work, some of the tools and techniques utilised to date during the nuclear decommissioning, and the radioactive waste management processes established for the project. All activities are referenced to relevant aspects of UK nuclear industry best practice and to the Scottish, UK and European regulatory framework. The progress to date is discussed and lessons that have been learnt are highlighted. (author)

  5. Decommissioning and demolition of the Greifswald nuclear power station

    International Nuclear Information System (INIS)

    Sterner, H.; Leushacke, D.; Rittscher, D.

    1995-01-01

    The unexpected decision to decommission the plants in Greifswald makes the management and disposal of fuels and plant waste a major issue to be solved as a precondition for decommissioning and dismantling. The decisive point in waste management is the existence of an interim store or repository of sufficient capacity to accept both the nuclear fuel and the plant waste and the considerable volumes of radioactive residues arising in dismantling. Current major activities include planning for decommissioning and demolition, and drafting of the licensing documents; removal of the fuel elements from the reactor units; construction of the northern interim store for fuel elements and residues. (orig./HP)

  6. Development of recycling techniques on decommissioning concrete waste

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Oguri, Daiichiro; Sukekiyo, Mitsuaki

    2000-01-01

    Nuclear Power Engineering Corporation (NUPEC) has been developing decommissioning techniques, implemented under a contract with the Ministry of International Trade and Industry (MITI), to verify and improve the performance of the key decommissioning techniques. One of main themes is on concrete recycling techniques, which deals with high quality aggregate retrieval from concrete waste, high efficient usage of the by-product powder to recycling products, and effective usage of radioactive concrete to filling material for waste form. This paper describes progress and accomplishment on the concrete recycling technique development which started in 1996. (author)

  7. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  8. Decommissioning of units 1 - 4 at Kozloduy nuclear power plant in Bulgaria

    International Nuclear Information System (INIS)

    Dishkova, Denitsa

    2014-01-01

    Nuclear safety and security are absolute priorities for the European Union countries and this applies not only to nuclear power plants in operation but also to decommissioning. In terms of my technical background and my working experience in the field of licensing and environmental impact assessment during the decommissioning of Units 1 to 4 at Kozloduy Nuclear Power Plant (KNPP) in Bulgaria, I decided to present the strategy for decommissioning of Units 1 to 4 at KNPP which was selected and followed to achieve safe and effective decommissioning process. The selected strategy in each case must meet the legislative framework, to ensure safe management of spent fuel and radioactive waste, to provide adequate funding and to lead to positive socio-economic impact. The activities during the decommissioning generate large volume of waste. In order to minimize their costs and environmental impact it should be given a serious consideration to the choice, the development and the implementation of the most adequate process for treatment and the most appropriate measurement techniques. The licensing process of the decommissioning activities is extremely important and need to cope with all safety concerns and ensure optimal waste management. (authors)

  9. The study on the recycle condition for existence of the decommissioning waste in the nuclear power station

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Ozaki, Sachio; Hirai, Mitsuyuki; Sakamoto, Hiroyuki; Usui, Tatsuo; Simizu, Yasuo; Ogane, Daisuke

    2000-01-01

    To establish the technique of the recycle for concrete waste, this paper describes the recycle condition for existence of the decommissioning concrete waste in the nuclear power plant and considers the durability of cask yard concrete constructed at about twenty years ago. The authors examine the recycle system of concrete in the power plant. (author)

  10. Novel Problems Associated with Accounting and Control of Nuclear Material from Decontamination and Decommissioning and in Waste

    International Nuclear Information System (INIS)

    Schlegel, Steven C.

    2007-01-01

    The reduction in nuclear arms and the production facilities that supported the weapons programs have produced some unique problems for nuclear material control and accountability (MC and A). Many of these problems are not limited to the weapons complex, but have the potential to appear in many legacy facilities as they undergo dismantlement and disposal. Closing facilities find that what was previously defined as product has become a waste stream bringing regulatory, human, and technological conflict. The sometimes unique compositions of these materials produce both storage and measurement problems. The nuclear material accounting and control programs have had to become very adaptive and preemptive to ensure control and protection is maintained. This paper examines some of the challenges to Safeguards generated by deinventory, decontamination decommissioning, dismantlement, demolition, and waste site remediation from predictable sources and some from unpredictable sources. 1.0 Introduction The United States is eliminating many facilities that support the nuclear weapons program. With the changing political conditions around the world and changes in military capabilities, the decreased emphasis on nuclear weapons has eliminated the need for many of the aging facilities. Additionally, the recovery of plutonium from dismantled weapons and reuse of components has eliminated the need to produce more plutonium for the near future. Because the nuclear weapons program and commercial applications generally do not mix in the United States, the facilities in the DOE complex that no longer have a weapon mission are being deinventoried, decontaminated, decommissioned, and dismantled/demolished. The materials from these activities are then disposed of in various ways but usually in select waste burial sites. Additionally, the waste in many historical burial sites associated with the weapons complex are being recovered, repackaged if necessary, and disposed of in either

  11. The European community's programme of research on the decommissioning of nuclear power plants: objectives, scope and implementation

    International Nuclear Information System (INIS)

    Huber, B.

    1984-01-01

    The European Community's research activities on the decommissioning of nuclear installations are aimed at developing effective techniques and procedures for ensuring the protection of man and his environment against the potential hazards from nuclear installations that have been withdrawn from service. The first five-year (1979-1983) programme of research on the decommissioning of nuclear power plants has comprised seven R and D projects concerning the following areas: maintaining disused plants in safe condition; surface decontamination for decommissioning purposes; dismantling techniques; treatment of the main waste materials arising in decommissioning, i.e. steel, concrete and graphite; large containers for decommissioning waste; arisings and characteristics of decommissioning waste; plant design features facilitating decommissioning. The research work was carried out by organizations and companies in the Member States under 51 research contracts, most of them cost-sharing. The Commission is now launching a new five-year (1984-1988) programme of research on the decommissioning of nuclear installations. (author)

  12. The Preliminary Decommissioning Plan of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Pham Van; Vien, Luong Ba; Vinh, Le Vinh; Nghiem, Huynh Ton; Tuan, Nguyen Minh; Phuong, Pham Hoai [Nuclear Research Institute, Da Lat (Viet Nam)

    2013-08-15

    Recently, after 25 years of operation, a preliminary decommissioning plan for the Dalat Nuclear Research Reactor (DNRR) has been produced but as yet it has not been implemented due to the continued operations of the reactor. However, from the early phases of facility design and construction and during operation, the aspects that facilitate decommissioning process have been considered. This paper outlines the DNRR general description, the organization that manages the facility, the decommissioning strategy and associated project management, and the expected decommissioning activities. The paper also considers associated cost and funding, safety and environmental issues and waste management aspects amongst other considerations associated with decommissioning a nuclear research reactor. (author)

  13. Development of decommissioning, decontamination and reuse technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Moon, J. K.; Choi, B. S.

    2012-03-01

    In this project, the foundation of decommissioning technology through the development of core technologies applied to maintenance and decommissioning of nuclear facility was established. First of all, we developed the key technology such as safety assessment technology for decommissioning work needed at the preparatory stage of decommissioning of the highly contaminated facilities and simultaneous measurement technology of the high-level alpha/beta contamination applicable to the operation and decommissioning of the nuclear facilities. Second, we developed a remotely controlled laser ablation decontamination system which is useful for a removal of fixed contaminants and developed a chemical gel decontamination technology for a removal of non-fixed contaminants during the maintenance and decommissioning works of high radiation hot cells which have been used for a recycling or treatment of spent fuels. Third, we developed a volume reduction and self-disposal technology for dismantled concrete wastes. Also, the technology for volume reduction and stabilization of the peculiar wastes(HEPA filter and organic mixed wastes), which have been known to be very difficult to treat and manage, generated from the high radioactive facilities in operation, improvement and repair and under decommissioning was developed. Finally, this research project was developed a system for the reduction of radiotoxicity of several uranium mixtures generated in the front- and back-end nuclear fuel cycles with characteristics of highly enhanced proliferation-resistance and more environmental friendliness, which can make the uranium to be recovered or separated from the mixtures with a high purity level enough for the uranium to be reused and to be classified as C-class level for burial near the surface, and then which result in the much reduction in volume of the uranium mixture wastes

  14. Aspects related to the decommissioning of the nuclear power plants

    International Nuclear Information System (INIS)

    Goicea, Andrei; Andrei, Veronica

    2003-01-01

    All power plants, either coal, gas or nuclear, at the end of their life needs to be decommissioned and demolished and thus, to made the site available for other uses. The first generation nuclear power plants were designed for a life of about 30 years and some of them proved capable of continuing well beyond this term. Newer plants have been designed for a 40 to 60 years operating life. To date, other 90 commercial power reactors have been retired from operation. For nuclear power plants and nuclear facilities in general the decommissioning process consists of some or all of the following activities: the safe management of nuclear materials held in the facility, cleaning-up of radioactivity (decontamination), plant dismantling, progressive demolition of the plant and site remediation. Following the decommissioning, the regulatory controls covering facility end, partially or totally, and the safe site is released for appropriate alternative use. Cernavoda NPP is a young plant and it can benefit from the continuously developing experience of the decommissioning process at the international level. The current experience allows the most metallic parts of a nuclear power to be decontaminated and recycled and makes available proven techniques and equipment to dismantle nuclear facilities safely. As experience is gained, decommissioning costs for nuclear power plants, including disposal of associated wastes, are reducing and thus, contribute in a smaller fraction to the total cost of electricity generation. The new specific Romanian regulations establish a funding system for decommissioning and provisions for long-term radioactive waste management. In the near future a decommissioning plan will be made available for Cernavoda NPP. Since the plant has only 7 years operation, that plan can be improved in order to benefit from international experience that is growing. (authors)

  15. Present status of technology development on decommissioning and waste management in Nuclear Cycle Backend Directorate. Progress in 2009

    International Nuclear Information System (INIS)

    Takahashi, Kuniaki; Ishigami, Tsutomu; Funabashi, Hideyuki; Meguro, Yoshihiro; Tachibana, Mitsuo

    2010-11-01

    It is an important issue to take measures against the matters on decommissioning of retired nuclear facilities and management of low-level radioactive waste arising from research activities and operation of nuclear facilities, and the measures must be taken with rational way by ensuring the safety. As the development, improvement, and proper deployment of technologies will be key factors, a technology development program is under way in Nuclear Cycle Backend Directorate taking account of these matters in cooperation with research and development institutes/centers in Japan Atomic Energy Agency. The technology development items are selected from the viewpoints of systematic implementation of measures and cost reduction; these include the development of computer systems for planning and evaluation of decommissioning programs, supercritical CO 2 fluid leaching method for decontamination, nitrate-ion degradation method, simple and rapid determination method for radioactivity of radioactive waste, safety assessment for waste disposal and so on. This report describes outline and progress of the technology development program conducted in FY2009 by the research and development unit. (author)

  16. European Learning Initiatives for Nuclear Decommissioning and Environmental Remediation

    International Nuclear Information System (INIS)

    Abousahl, Said; )

    2017-01-01

    Situation nuclear decommissioning in the EU: - Demonstration of decommissioning at an industrial scale, as a 'last but feasible step' of the nuclear life-cycle, is essential for the credibility of the nuclear energy option; - Decommissioning market is in expansion, particularly in Europe; - Currently, an industrial experience exist, however... further attention is necessary for: - Development of the most suitable techniques, with respect to safety, efficiency and waste limitation; - Standardisation and harmonisation (incl. cost estimation); - Offering and promoting dedicated education and training opportunities; - Sharing knowledge and experiences. Offering and promoting dedicated Education and Training (E&T) opportunities: JRC organised jointly with the University of Birmingham in April 2015 a seminar on Education and Training in Nuclear Decommissioning, in an attempt to answer to the questions: •What are the E&T needs ? •What are the opportunities, what does already exist ? •How can we attract young talent ? Outcome of the seminar is published in a joint report with orientations on the way forward to support Education and Training in Nuclear Decommissioning in the EU

  17. Criteria, standards and policies regarding decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Detilleux, E.; Lennemann, W.L.

    1977-01-01

    At the end of this century, there will probably be around 2500 operating nuclear power reactors, along with all the other nuclear fuel cycle facilities supporting their operation. Eventually these facilities, one by one, will be shut down and it will be necessary to dispose of them as with any redundant industrial facility or plant. Some parts of a nuclear fuel cycle facility can be dismantled by conventional methods, but those parts which have become contaminated with radioactive nuclear products or induced radioactivity must be subject to rigid controls and restrictions and handled by special dismantling and disposal procedures. In many cases, the resulting quantity of radioactive waste is likely to be relatively large and dismantling quite costly. Decommissioning nuclear facilities is a multifaceted problem involving planners, design engineers, operators, waste managers and regulatory authorities. Preparation for decommissioning should begin as early as site selection and plant design. The corner stone for the preparation of a decommissioning programme is the definition of its extent, meeting the requirements for public and environmental protection during the period that the radioactive material is of concern. The paper discusses the decontamination and decommissioning experience at the Eurochemic fuel reprocessing plant, the implications and the knowledge gained from this experience. It includes the results of technical reviews made by the Nuclear Energy Agency of OECD and the International Atomic Energy Agency regarding decommissioning nuclear facilities. The paper notes the special planning that should be arranged between those responsible for the nuclear facility and competent public authorities who should jointly make a realistic determination of the eventual disposition of the nuclear facility, even before it is built. Recommendations cover the responsibilities of nuclear plant entrepreneurs, designers, operators, and public and regulatory authorities

  18. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper on nuclear decommissioning was presented by Dr H. Lawton to a meeting of the British Nuclear Energy Society and Institution of Nuclear Engineers, 1986. The decommissioning work currently being undertaken on the Windscale advanced gas cooled reactor (WAGR) is briefly described, along with projects in other countries, development work associated with the WAGR operation and costs. (U.K.)

  19. Nuclear power plant decommissioning and radioactive waste management in the U.K.. A regulatory perspective

    International Nuclear Information System (INIS)

    Ross, W.M.

    1993-01-01

    Effective control of the decommissioning and radioactive waste management of nuclear power plant in United Kingdom are introduced. The Government established the legislative framework and national strategy, operators provided the necessary skills and equipment for implementation, and the regulators used the legislative controls to ensure a safe system of work is achieved and maintained

  20. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lunning, W.H.

    1977-01-01

    Collaborative studies are in progress in the U.K. between the U.K.A.E.A., the Generating Boards and other outside bodies, to identify the development issues and practical aspects of decommissioning redundant nuclear facilities. The various types of U.K.A.E.A. experimental reactors (D.F.R., W.A.G.R , S.G.H.W.R.) in support of the nuclear power development programme, together with the currently operating commercial 26 Magnox reactors in 11 stations, totalling some 5 GW will be retired before the end of the century and attention is focussed on these. The actual timing of withdrawal from service will be dictated by development programme requirements in the case of experimental reactors and by commercial and technical considerations in the case of electricity production reactors. Decommissioning studies have so far been confined to technical appraisals including the sequence logic of achieving specific objectives and are based on the generally accepted three stage progression. Stage 1, which is essentially a defuelling and coolant removal operation, is an interim phase. Stage 2 is a storage situation, the duration of which will be influenced by environmental pressures or economic factors including the re-use of existing sites. Stage 3, which implies removal of all active and non-active waste material and returning the site to general use, must be the ultimate objective. The engineering features and the radioactive inventory of the system must be assessed in detail to avoid personnel or environmental hazards during Stage 2. These factors will also influence decisions on the degree of Stage 2 decommissioning and its duration, bearing in mind that for Stage 3 activation may govern the waste disposal route and the associated radiation man-rem exposure during dismantling. Ideally, planning for decommissioning should be considered at the design stage of the facility. An objective of present studies is to identify features which would assist decommissioning of future systems

  1. The Study on Domestic and Foreign Cases for Decommissioning of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Baek, Ye Ji; Hhu, Joo Youn; Lee, Jung Hyun; Hwang, Yong Soo

    2016-01-01

    This study was able to analyze domestic and foreign cases, and collect data on the approximate amount of waste and time required time; however, data on applied technology, input manpower, required cost, and waste disposal method was insufficient. DPRK activities such as nuclear weapon development or nuclear testing not only threaten our country's security but also have an adverse effect on nuclear nonproliferation and security in the international society. Therefore, denuclearization of the DPRK is prior task that is essential to peace on the Korean Peninsula. The fundamental purpose of denuclearization of the DPRK is to safely decommission facilities related to developing nuclear weapons and to depose related radioactive waste and nuclear materials. Understanding descriptive references and physical properties of the facility and its purpose important for decommissioning nuclear facilities. Although it was impossible to collect data on DPRK nuclear facilities to perform complete decommissioning, we were able to understand the process used at DPRK nuclear facilities with open source data. This study has been conducted to establish overall measures for decommissioning DPRK nuclear facilities. DPRK nuclear facilities in this study include a IRT- 2000 type nuclear research reactor, a 5 MWe graphite moderated reactor, nuclear fuel fabrication facility, and a nuclear fuel reprocessing facility, which are considered as facilities that produce or manufacture nuclear materials needed for nuclear weapons or related to such activities.

  2. The Study on Domestic and Foreign Cases for Decommissioning of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Ye Ji; Hhu, Joo Youn; Lee, Jung Hyun; Hwang, Yong Soo [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    This study was able to analyze domestic and foreign cases, and collect data on the approximate amount of waste and time required time; however, data on applied technology, input manpower, required cost, and waste disposal method was insufficient. DPRK activities such as nuclear weapon development or nuclear testing not only threaten our country's security but also have an adverse effect on nuclear nonproliferation and security in the international society. Therefore, denuclearization of the DPRK is prior task that is essential to peace on the Korean Peninsula. The fundamental purpose of denuclearization of the DPRK is to safely decommission facilities related to developing nuclear weapons and to depose related radioactive waste and nuclear materials. Understanding descriptive references and physical properties of the facility and its purpose important for decommissioning nuclear facilities. Although it was impossible to collect data on DPRK nuclear facilities to perform complete decommissioning, we were able to understand the process used at DPRK nuclear facilities with open source data. This study has been conducted to establish overall measures for decommissioning DPRK nuclear facilities. DPRK nuclear facilities in this study include a IRT- 2000 type nuclear research reactor, a 5 MWe graphite moderated reactor, nuclear fuel fabrication facility, and a nuclear fuel reprocessing facility, which are considered as facilities that produce or manufacture nuclear materials needed for nuclear weapons or related to such activities.

  3. The study of the container types used for transport and final disposal of the radioactive wastes resulting from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Postelnicu, C.

    1998-01-01

    The purpose of the present paper is to select from a variety of package forms and capacities some containers which will be used for transport and disposal of the radioactive wastes resulting from decommissioning of nuclear facilities into the National Repository for Radioactive Waste - Baita, Bihor county. Taken into account the possibilities of railway and / or road transport and waste disposal in our country, detailed container classification was given in order to use them for radioactive waste transport and final disposal from decommissioning of IFIN-HH Research Reactor. (author)

  4. Green Vinca - Vinca Institute nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Current conditions related to the nuclear and radiation safety in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro are the result of the previous nuclear programs in the former Yugoslavia and strong economic crisis during the previous decade. These conditions have to be improved as soon as possible. The process of establishment and initialisation of the Vinca Institute Nuclear Decommissioning (VIND) Program, known also as the 'Green Vinca' Program supported by the Government of the Republic Serbia, is described in this paper. It is supposed to solve all problems related to the accumulated spent nuclear fuel, radioactive waste and decommissioning of RA research reactor. Particularly, materials associated to the RA reactor facility and radioactive wastes from the research, industrial, medical and other applications, generated in the previous period, which are stored in the Vinca Institute, are supposed to be proper repackaged and removed from the Vinca site to some other disposal site, to be decided yet. Beside that, a research and development program in the modern nuclear technologies is proposed with the aim to preserve experts, manpower and to establish a solid ground for new researchers in field of nuclear research and development. (author)

  5. Status of the support researches for the regulation of nuclear facilities decommissioning in Japan

    International Nuclear Information System (INIS)

    Masuda, Yusuke; Iguchi, Yukihiro; Kawasaki, Satoru; Kato, Masami

    2011-01-01

    In Japan, 4 nuclear power stations are under decommissioning and some nuclear fuel cycle facilities are expected to be decommissioned in the future. On the other hand, the safety regulation of decommissioning of nuclear facilities was changed by amending act in 2005. An approval system after review process of decommissioning plan was adopted and applied to the power stations above. In this situation, based on the experiences of the new regulatory system, the system should be well established and moreover, it should be improved and enhanced in the future. Nuclear Industry and Safety Agency (NISA) is in charge of regulation of commercial nuclear facilities in Japan and decommissioning of them is included. Japan Nuclear Energy Safety Organization (JNES) is in charge of technical supports for NISA as a TSO (Technical Support Organization) also in this field. As for decommissioning, based on regulatory needs, JNES has been continuing research activities from October 2003, when JNES has been established. Considering the 'Prioritized Nuclear Safety Research Plan (August 2009)' of the Nuclear Safety Commission of Japan and the situation of operators facilities, 'Regulatory Support Research Plan between FY 2010-2014' was established in November 2009, which shows the present regulatory needs and a research program. This program consists of researches for 1. review process of decommissioning plan of power reactors, 2. review process of decommissioning plan of nuclear fuel cycle facilities, 3. termination of license at the end of decommissioning and 4. management of decommissioning waste. For the item 1, JNES studied safety assessment methods of dismantling, e.g. obtaining data and analysis of behavior of dust diffusion and risk assessment during decommissioning, which are useful findings for the review process. For the item 2, safety requirements for the decommissioning of nuclear fuel cycle facilities was compiled, which will be used in the future review. For the item 3

  6. Situation and perspective of the decommissioning of nuclear power plants in Germany

    International Nuclear Information System (INIS)

    Kuroda, Yuji

    2012-01-01

    After the Fukushima Daiichi nuclear power plant accident that occurred in 2011, Germany has decided to go back to the phasing out of nuclear energy, with eight reactors shut down. In accordance with this, the number of operating nuclear plants has reduced to 9 from 17. On the other hand, the number of closed reactors is now 27, and the country has become the world's third largest country after the United Kingdom and the United States in the decommissioning field. In this paper, it is described the current situation and perspectives of the decommissioning in Germany, with the history of phasing out of nuclear energy. At first, the basic framework of regulatory regime and funding system are introduced. Then, experience of operations at decommissioning plants and status of radiation waste management are explained. Although the work on decommissioning is steadily proceeding in the country, establishing of final repository of high level waste is still remaining as the most important issue. (author)

  7. Idea: an integrated set of tools for sustainable nuclear decommissioning projects

    International Nuclear Information System (INIS)

    Detilleux, M.; Centner, B.; Vanderperre, S.; Wacquier, W.

    2008-01-01

    Decommissioning of nuclear installations constitutes an important challenge and shall prove to the public that the whole nuclear life cycle is fully mastered by the nuclear industry. This could lead to an easier public acceptance of the construction of new nuclear power plants. When ceasing operation, nuclear installations owners and operators are looking for solutions in order to assess and keep decommissioning costs at a reasonable level, to fully characterise waste streams (in particular radiological inventories of difficult-to-measure radionuclides) and to reduce personnel exposure during the decommissioning activities taking into account several project, site and country specific constraints. In response to this need, Tractebel Engineering has developed IDEA (Integrated DEcommissioning Application), an integrated set of computer tools, to support the engineering activities to be carried out in the frame of a decommissioning project. IDEA provides optimized solutions from an economical, environmental, social and safety perspective. (authors)

  8. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  9. The Importance of Enhancing Worldwide Industry Cooperation in Radiological Protection, Waste Management and Decommissioning - Views from the Global Nuclear Industry

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2008-01-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates) is of great relevance.This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of Summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry's involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG

  10. A study on the influence of the regulatory requirements of a nuclear facility during decommissioning activities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Park, Kook Nam; Hong, Yun Jeong; Park, Jang Jin; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The preliminary decommissioning plan should be written with various chapters such as a radiological characterization, a decommissioning strategy and methods, a design for decommissioning usability, a safety evaluation, decontamination and dismantling activities, radioactive waste management, an environmental effect evaluation, and fire protection. The process requirements of the decommissioning project and the technical requirements and technical criteria should comply with regulatory requirements when dismantling of a nuclear facility. The requirements related to safety in the dismantling of a nuclear facility refer to the IAEA safety serious. The present paper indicates that a decommissioning design and plan, dismantling activities, and a decommissioning project will be influenced by the decommissioning regulatory requirements when dismantling of a nuclear facility. We hereby paved the way to find the effect of the regulatory requirements on the decommissioning of a whole area from the decommissioning strategy to the radioactive waste treatment when dismantling a nuclear facility. The decommissioning requirements have a unique feature in terms of a horizontal relationship as well as a vertical relationship from the regulation requirements to the decommissioning technical requirements. The decommissioning requirements management will be conducted through research that can recognize a multiple relationship in the next stage.

  11. KONTEC 2009. Report about the 9th International Symposium on ''Conditioning of radioactive operational and decommissioning wastes''

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    ''Kontec 2009'' was organized in Dresden on April 15-17, 2009. For the 8 th time, this established international meeting covered the subjects of ''Conditioning of Radioactive Operational and Decommissioning Wastes'' and ''Decommissioning and Dismantling of Nuclear Facilities'' and the R and D Status Report delivered by the German Federal Ministry for Education and Research on this key topic. Some 790 participants from 13 countries heard and discussed the contributions to the three-day meeting. The program of the symposium comprised plenary sessions dealing with these 4 key subjects: Disposal of Radioactive Residues from Nuclear Facilities' Operation and Decommissioning, Decommissioning and Dismantling of Nuclear Facilities, Facilities and Systems for the Conditioning of Operational and Decommissioning Wastes, Transport, Interim and Final Storage of Non-heat Generating Wastes (i.e. Konrad). The sessions were supplemented by poster sessions and selected short presentations under the heading of ''Kontec Direct.'' (orig.)

  12. The specificity of decommissioning waste for disposal and from different facilities

    International Nuclear Information System (INIS)

    Jones, J.; Hilden, W.; Pla Campana, E.; )

    2005-01-01

    Full text: During the decommissioning of nuclear installations significant waste quantities arise, the bulk being material which qualifies for free release or exemption. Only minor quantities have to be submitted to regulatory control and have either to be disposed or can be released, recycled or reused under certain conditions defined by the regulatory body. Actually, it is almost impossible to derive at meaningful data for the expected waste quantities by a simple propagation of the experiences made in other installations. Rather, the quantities and categorisation are significantly installation specific and are determined by a variety of factors such as the plant construction and operation history, the thoroughness of facility characterisation in preparation for decommissioning, the timing of the decommissioning exercise, the kind and scope of the applied waste treatment and conditioning techniques, the possibility for recycling or reusing irradiated or contaminated materials as well as the applicable national legislation. Further international co-operation aiming at the development of waste estimation techniques is required. Moreover, a harmonisation of national legislation might help to compare waste arisings under the various decommissioning exercises

  13. Innovative nuclear power plant building arragement in consideration of decommissioning

    International Nuclear Information System (INIS)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed

  14. Innovative nuclear power plant building arragement in consideration of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak [Dept. of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-04-15

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  15. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    Directory of Open Access Journals (Sweden)

    Won-Jun Choi

    2017-04-01

    Full Text Available A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1 early site restoration; and (2 radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  16. Preliminary study on recycling of metallic waste from decommissioning of nuclear power plant for cask

    International Nuclear Information System (INIS)

    Ohe, Koichiro; Kato, Osamu; Saegusa, Toshiari

    1999-01-01

    Preliminary study was made on technology required to recycle of metallic waste from decommissioning for spent fuel storage cask and on quantity of the cask which can be produced by the metallic waste. The technical and institutional issues for the recycling were studied. The metallic waste from decommissioning may be technically used to a certain degree for manufacturing the casks. However, there were some technical issues to be solved. For example, the manufacturing factories should be established. The radioactive waste from the factories with radiation control should be handled and treated carefully. Quality of the cask should be properly controlled. The 'Clearance Levels' which allows to recycle decommissioning waste have been hardly enacted in Japan. Technical and economic evaluation on recycling of metallic waste from decommissioning for spent fuel storage cask should be conducted again after progress in recycling of radioactive waste of which radioactivity is below the 'Clearance Levels' in Japan. (author)

  17. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid

  18. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Bergh, Niklas; Hedin, Gunnar

    2013-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  19. Radioactive waste management and decommissioning in The United States

    International Nuclear Information System (INIS)

    Raymont, J.M.

    2005-01-01

    With their missions and access to disposal sites changing over the last decade, radioactive waste management and decommissioning practice in the U.S. commercial and federal nuclear markets has evolved to keep pace. This paper reviews the changes that have occurred and the differing waste management practices that have resulted depending on whether a nuclear facility is situated on federally owned or privately owned property in the United States, confirming that the cost of disposal generally dictates waste management and decommissioning practices. Of the 123 utility-owned licensed commercial reactors in U.S., 19 are undergoing decomissioning, with the balance of 104 reactors focusing on plant life extension, power upgrades, and power generation. As a result, almost all of the approximately dollar 400 million in annual expenditures on waste processing and disposal comes from waste generated from operations. In contrast, the U.S. Department of Energy (DOE), under its Environmental Management (EM) program, is focused on decommissioning the facilities, tanks, and ground contamination resulting from 50-years of Cold War activities and spending about dollar 7 billion a year on these activities. Other than spent fuel, U.S. federal law precludes disposal of commercial nuclear power plant radioactive wastes at DOE disposal sites. In contrast to the commercial disposal market, which must go through extensive public hearings and decision-making, the DOE has a much freer hand in siting new disposal capacity on federal land. As a result, the DOE has ample disposal capacity, 'routinely' opens new disposal sites, and enjoys disposal pricing well below the commercial market. Waste composition, volume, and activity levels drive disposal costs, which is the key life cycle parameter in determining radioactive waste management practice. Differences in these parameters drive the differences in how radioactive waste management practice is performed in the commercial and DOE markets

  20. Decommissioning considerations at a time of nuclear renaissance

    International Nuclear Information System (INIS)

    Devgun, Jas S.

    2007-01-01

    At a time of renaissance in the nuclear power industry, when it is estimated that anywhere between 60 to 130 new power reactors may be built worldwide over the next 15 years, why should we focus on decommissioning? Yet it is precisely the time to examine what decommissioning considerations should be taken into account as the industry proceeds with developing final designs for new reactors and the construction on the new build begins. One of the lessons learned from decommissioning of existing reactors has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Even though decommissioning may be sixty years down the road from the time they go on line, eventually all reactors will be decommissioned. It is only prudent that new designs be optimized for eventual decommissioning, along with the other major considerations. The overall objective in this regard is that when the time comes for decommissioning, it can be completed in shorter time frames, with minimum generation of radioactive waste, and with better radiological safety. This will ensure that the tail end costs of the power reactors are manageable and that the public confidence in the nuclear power is sustained through the renaissance and beyond. (author)

  1. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  2. Decommissioning engineering systems for nuclear facilities and knowledge inheritance for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tachibana, Mitsuo

    2016-01-01

    Information on construction, operation and maintenance of a nuclear facility is essential in order to plan and implement the decommissioning of the nuclear facility. A decommissioning engineering system collects these information efficiently, retrieves necessary information rapidly, and support to plan the reasonable decommissioning as well as the systematic implementation of dismantling activities. Then, knowledge of workers involved facility operation and dismantling activities is important because decommissioning of nuclear facility will be carried out for a long period. Knowledge inheritance for decommissioning has been carried out in various organizations. This report describes an outline of and experiences in applying decommissioning engineering systems in JAEA and activities related to knowledge inheritance for decommissioning in some organizations. (author)

  3. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  4. A necessity for research in the recycling of concrete waste from the decommissioning

    International Nuclear Information System (INIS)

    Seo, Ha Na; Whang, Joo Ho

    2009-01-01

    Construction of the I/LLW disposal site is now underway in Gyeongju. When completed it will be able to store 100,000 radioactive waste drums in a geologically deep disposal site; hence, a method for disposing of another 700,000 drums will be discussed. Kori-1 is continuously being safely operated even after passing its 30 years designated life span. However, because 12 more nuclear power plants will operate past their designated life span by 2030, the necessity for research about their decommissioning will increase. Approximately 6,200 tons of radioactive waste will be generated from each decommissioned plant. It will be difficult to store all of the waste in Gyeongju due to cost and efficiency issues. For these reasons it is needed to discuss recycling methods for minimizing radioactive waste during decommissioning. This study suggests a scenario for recycling concrete waste of a decommissioned disposal site as crushed rock and also presents prior research for concrete waste recycling

  5. Decommissioning of building part of nuclear power plant

    International Nuclear Information System (INIS)

    Sochor, R.

    1988-01-01

    The characteristics are discussed using literature data of building work during decommissioning or reconstruction of nuclear power plants. The scope of jobs associated with power plant decommissioning is mainly given by the size of contaminated parts, intensity of radioactivity, the volume of radioactive wastes and the possible building processes. Attention is devoted to the cost of such jobs and the effect of the plant design on cost reduction. (Z.M.). 6 refs

  6. Decommissioning of nuclear facilities. Feasibility, needs and costs

    International Nuclear Information System (INIS)

    1986-01-01

    Reactor decommissioning activities generally are considered to begin after operations have ceased and the fuel has been removed from the reactor, although in some countries the activities may be started while the fuel is still at the reactor site. The three principal alternatives for decommissioning are described. The factors to be considered in selecting the decommissioning strategy, i.e. a stage or a combination of stages that comprise the total decommissioning programme, are reviewed. One presents a discussion of the feasibility of decommissioning techniques available for use on the larger reactors and fuel cycle facilities. The numbers and types of facilities to be decommissioned and the resultant waste volumes generated for disposal will then be projected. Finally, the costs of decommissioning these facilities, the effect of these costs on electricity generating costs, and alternative methods of financing decommissioning are discussed. The discussion of decommissioning draws on various countries' studies and experience in this area. Specific details about current activities and policies in NEA Member Countries are given in the short country specific Annexes. The nuclear facilities that are addressed in this study include reactors, fuel fabrication facilities, reprocessing facilities, associated radioactive waste storage facilities, enrichment facilities and other directly related fuel cycle support facilities. The present study focuses on the technical feasibility, needs, and costs of decommissioning the larger commercial facilities in the OECD member countries that are coming into service up to the year 2000. It is intended to inform the public and to assist in planning for the decommissioning of these facilities

  7. Waste from decommissioning of research reactors and other small nuclear facilities

    International Nuclear Information System (INIS)

    Massaut, V.

    2001-01-01

    Full text: Small nuclear facilities were often built for research or pilot purposes. It includes the research reactors of various types and various aims (physics research, nuclear research, nuclear weapons development, materials testing reactor, isotope production, pilot plant, etc.) as well as laboratories, hot cells and accelerators used for a broad spectrum of research or production purposes. These installations are characterized not only by their size (reduced footprint) but also, and even mostly, by the very diversified type of materials, products and isotopes handled within these facilities. This large variety can sometimes enhance the difficulties encountered for the dismantling of such facilities. The presence of materials like beryllium, graphite, lead, PCBs, sodium, sometimes in relatively large quantities, are also challenges to be faced by the dismantlers of such facilities, because these types of waste are either toxic or no solutions are readily available for their conditioning or long term disposal. The paper will review what is currently done in different small nuclear facilities, and what are the remaining problems and challenges for future dismantling and waste management. The question of whether Research and Development for waste handling methods and processes is needed is still pending. Even for the dismantling operation itself, important improvements can be brought in the fields of characterization, decontamination, remote handling, etc. by further developments and innovative systems. The way of funding such facilities decommissioning will be reviewed as well as the very difficult cost estimation for such facilities, often one-of-a-kind. The aspects of radioprotection optimization (ALARA principle) and classical operators safety will also be highlighted, as well as the potential solutions or improvements. In fact, small nuclear facilities encounter often, when dismantling, the same problems as the large nuclear power plants, but have in

  8. Final disposal of decommissioning wastes in the Federal Republic of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Brewitz, W; Stippler, R

    1981-01-01

    The waste disposal concept of the Federal Republic of Germany for nuclear power plants provides for the final disposal of radioactive waste in deep geological formations and mines. The radiological safety of such a repository depends on a system of multiple barriers of which the geological barrier is the most important one. The isolation concept must guarantee the waste to decay below the limiting values of the German Radiation Protection Regulation within the repository. The expected total decommissioning waste masses from 12 nuclear power plants operating in the Federal Republic of Germany amounts to approxiametly 85000 Mg. For the final disposal of these wastes there are, under present aspects, two mines being considered as repositories. The pilot repository in the Asse II salt mine is in the state of licensing. The adandoned iron ore mine Konrad is being investigated for its feasibility and licensing will probably be initiated in 1982. Capacity and efficiency calculations have proved that both mines have got the technical requirements needed for the disposal of decommissioning and operating wastes from existent as well as from future built nuclear power plants.

  9. Policies and Strategies for the Decommissioning of Nuclear and Radiological Facilities

    International Nuclear Information System (INIS)

    2011-01-01

    This publication presents the main elements of policies and strategies for decommissioning activities of nuclear and radiological facilities. It is intended to help in facilitating proper and systematic planning, and safe, timely and cost effective implementation of all decommissioning activities. The policy establishes the principles for decommissioning and the strategy contains the approaches for the implementation of the policy. The publication will be a useful guide for strategic planners, waste managers, operators of facilities under decommissioning, regulators and other stakeholders.

  10. Waste Management During RA Reactor Decommissioning

    International Nuclear Information System (INIS)

    Markovic, M.; Avramovic, I.

    2008-01-01

    The objective of radioactive waste management during the RA reactor decommissioning is to deal with radioactive waste in a manner that protects human health and the environment now and in the future. The estimation of waste quantities to be expected during decommissioning is a very important step in the initial planning. (author)

  11. Waste management for Shippingport Station Decommissioning Project: Extended summary

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP

  12. Decommissioning of AECL Whiteshell laboratories - 16311

    International Nuclear Information System (INIS)

    Koroll, Grant W.; Bilinsky, Dennis M.; Swartz, Randall S.; Harding, Jeff W.; Rhodes, Michael J.; Ridgway, Randall W.

    2009-01-01

    Whiteshell Laboratories (WL) is a Nuclear Research and Test Establishment near Winnipeg, Canada, operated by AECL since the early 1960's and now under decommissioning. WL occupies approximately 4400 hectares of land and employed more than 1000 staff up to the late-1990's, when the closure decision was made. Nuclear facilities at WL included a research reactor, hot cell facilities and radiochemical laboratories. Programs carried out at the WL site included high level nuclear fuel waste management research, reactor safety research, nuclear materials research, accelerator technology, biophysics, and industrial radiation applications. In preparation for decommissioning, a comprehensive environmental assessment was successfully completed [1] and the Canadian Nuclear Safety Commission issued a six-year decommissioning licence for WL starting in 2003 - the first decommissioning licence issued for a Nuclear Research and Test Establishment in Canada. This paper describes the progress in this first six-year licence period. A significant development in 2006 was the establishment of the Nuclear Legacy Liabilities Program (NLLP), by the Government of Canada, to safely and cost effectively reduce, and eventually eliminate the nuclear legacy liabilities and associated risks, using sound waste management and environmental principles. The NLLP endorsed an accelerated approach to WL Decommissioning, which meant advancing the full decommissioning of buildings and facilities that had originally been planned to be decontaminated and prepared for storage-with-surveillance. As well the NLLP endorsed the construction of enabling facilities - facilities that employ modern waste handling and storage technology on a scale needed for full decommissioning of the large radiochemical laboratories and other nuclear facilities. The decommissioning work and the design and construction of enabling facilities are fully underway. Several redundant non-nuclear buildings have been removed and redundant

  13. The Community's research and development programme on decommissioning of nuclear installations: First annual progress report (year 1985)

    International Nuclear Information System (INIS)

    1986-01-01

    This is the first Annual Progress Report of the European Community's 1984-88 programme of research on the decommissioning of nuclear installations. It shows the status of implementation reached on 31 December 1985. The 1984-88 programme has the following contents: A. Research and development projects concerning the following subjects: Project No 1: Long-term integrity of building and systems; Project No 2: Decontamination for decommissioning purposes; Project No 3: Dismantling techniques; Project No 4: Treatment of specific waste materials: steel, concrete and graphite; Project No 5: Large containers for radioactive waste produced in the dismantling of nuclear installations; Project No 6: Estimation of the quantities of radioactive wastes arising from the decommissioning of nuclear installations in the Community; Project No 7: Influence of installation design features on decommissioning. B. Identification of guiding principles, namely: - certain guiding principles in the design and operation of nuclear installations with a view to simplifying their subsequent decommissioning, - guiding principles in the decommissioning of nuclear installations which could form the initial elements of a Community policy in this field. C. Testing of new techniques under real conditions, within the framework of large-scale decommissioning operations undertaken in Member States. This first progress report, covering the period of putting the programme into action, describes the work to be carried out under the 27 research contracts concluded, as well as initial work performed and first results obtained

  14. Nuclear waste management, reactor decommisioning, nuclear liability and public attitudes

    International Nuclear Information System (INIS)

    Green, R.E.

    1982-01-01

    This paper deals with several issues that are frequently raised by the public in any discussion of nuclear energy, and explores some aspects of public attitudes towards nuclear-related activities. The characteristics of the three types of waste associated with the nuclear fuel cycle, i.e. mine/mill tailings, reactor wastes and nuclear fuel wastes, are defined, and the methods currently being proposed for their safe handling and disposal are outlined. The activities associated with reactor decommissioning are also described, as well as the Canadian approach to nuclear liability. The costs associated with nuclear waste management, reactor decommissioning and nuclear liability are also discussed. Finally, the issue of public attitudes towards nuclear energy is addressed. It is concluded that a simple and comprehensive information program is needed to overcome many of the misconceptions that exist about nuclear energy and to provide the public with a more balanced information base on which to make decisions

  15. Development of an integrated cost model for nuclear plant decommissioning

    International Nuclear Information System (INIS)

    Amos, G.; Roy, R.

    2003-01-01

    A need for an integrated cost estimating tool for nuclear decommissioning and associated waste processing and storage facilities for Intermediate Level Waste (ILW) was defined during the authors recent MSc studies. In order to close the defined gap a prototype tool was developed using logically derived CER's and cost driver variables. The challenge in developing this was to be able to produce a model that could produce realistic cost estimates from the limited levels of historic cost data that was available for analysis. The model is an excel based tool supported by 3 point risk estimating output and is suitable for producing estimates for strategic or optional cost estimates (±30%) early in the conceptual stage of a decommissioning project. The model was validated using minimal numbers of case studies supported by expert opinion discussion. The model provides an enhanced approach for integrated decommissioning estimates which will be produced concurrently with strategic options analysis on a nuclear site

  16. Decommissioning and waste markets attract new global alliances

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear24, London (United Kingdom)

    2014-08-15

    Renewed global efforts to broaden knowledge and expertise in the field of radwaste management and identify the most promising technologies for clean-up and treatment of nuclear wastes are being led by the International Atomic Energy Agency (IAEA). In its recently-published annual report for 2013, the IAEA has given details of the development of new projects for the management of intermediate-level waste and large amounts of waste. Decommissioning can be a lucrative prospect. The availability of skills will be a key factor. Whatever technological advances are made in the coming years, there needs to be corresponding investment in attracting new recruits to the nuclear industry and equipping them with the skills that the industry will need.

  17. Decommissioning and waste markets attract new global alliances

    International Nuclear Information System (INIS)

    Shepherd, John

    2014-01-01

    Renewed global efforts to broaden knowledge and expertise in the field of radwaste management and identify the most promising technologies for clean-up and treatment of nuclear wastes are being led by the International Atomic Energy Agency (IAEA). In its recently-published annual report for 2013, the IAEA has given details of the development of new projects for the management of intermediate-level waste and large amounts of waste. Decommissioning can be a lucrative prospect. The availability of skills will be a key factor. Whatever technological advances are made in the coming years, there needs to be corresponding investment in attracting new recruits to the nuclear industry and equipping them with the skills that the industry will need.

  18. Waste management strategy for cost effective and environmentally friendly NPP decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Per Lidar; Arne Larsson [Studsvik Nuclear AB (ndcon partner), Nykoping (Sweden); Niklas Bergh; Gunnar Hedin [Westinghouse Electric Sweden AB (ndcon partner), Vasteraas (Sweden)

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  19. Waste management strategy for cost effective and environmentally friendly NPP decommissioning

    International Nuclear Information System (INIS)

    Per Lidar; Arne Larsson; Niklas Bergh; Gunnar Hedin

    2013-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  20. Solid Waste from the Operation and Decommissioning of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn Ann [Georgia Inst. of Technology, Atlanta, GA (United States); D' Arcy, Daniel [Georgia Inst. of Technology, Atlanta, GA (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Isha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Yufei [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-01-05

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  1. The characterization of cement waste form for final disposal of decommissioned concrete waste

    International Nuclear Information System (INIS)

    Lee, K.W.; Lee, Y.J.; Hwang, D.S.; Moon, J.K.

    2015-01-01

    Since the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete waste have been generated. In Korea, the decontamination and decommissioning of the KRR-1, 2 at the KAERI have been under way. In addition, 83 drums of 200 l, and 41 containers of 4 m 3 of concrete waste were generated. Conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled into a void space after concrete rubble pre-placement into 200 l drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested to have 75:15:10 as the optimized mixing ratio. In addition, the compressive strength of cement waste form was satisfied, including fine powder up to a maximum 40 wt% in concrete debris waste of about 75%. (authors)

  2. The Research Status for Decommissioning and Radioactive Waste Minimization of HTR-PM

    International Nuclear Information System (INIS)

    Li Wenqian; Li Hong; Cao Jianzhu; Tong Jiejuan

    2014-01-01

    Decommissioning of the high-temperature gas-cooled reactor-pebble bed module (HTR-PM) as a part of the nuclear power plant, is very important during the early design stage of the construction, and it is under study and research currently. This article gives a thorough description of the current decommissioning study status of HTR-PM. Since HTR-PM has its features such as adopting a large amount of graphite, the waste inventory and characterization will be quite different from other type of reactors, new researches should be carried out and good lessons of practices and experiences should be learned from international other reactors, especially the AVR. Based on the new international regulations and Chinese laws, a comprehensive decommissioning program should be proposed to guarantee the HTR-PM will succeed in every stage of the decommissioning, such as defueling, decontamination, dismantling, demolition, waste classification and disposal, etc. In the meantime, the minimization of the radioactive waste should be taken into account during the whole process - before construction, during operation and after shut down. In this article, the decommissioning strategy and program conception of HTR-PM will be introduced, the radiation protection consideration during the decommissioning activities will be discussed, and the research on the activation problem of the decommissioning graphite will be introduced. (author)

  3. Building confidence in decommissioning in France: Towards a safe, industrially applicable, coherent national system without site or waste liberation

    International Nuclear Information System (INIS)

    Averous, J.; Chapalain, E.

    2002-01-01

    The rate of decommissioning in France is accelerating, as the first generation of power reactors will be actively decommissioned in the next few years. Experience has been gathered from past decommissioning activities and some current pilot decommissioning operations. This experience has shown that a national system has to be put in place to deal with decommissioning, waste elimination and site cleaning up activities in order to allow a consistent, safe, transparent and industrially applicable management of these matters. A system founded on successive lines of defence has been put into enforcement, which does not involve any site nor waste liberation, as it is considered that the criteria associated are always prone to discussion and contradiction. This system is based on the following concepts : 'nuclear waste', waste prone to have been contaminated or activated, is segregated from 'conventional waste' using a system involving successive lines of defence, and hence, building a very high level of confidence that no 'nuclear waste' will be eliminated without control in conventional waste eliminators or recycling facilities ; 'nuclear waste' is eliminated in dedicated facilities or repositories, or in conventional facilities under the condition of a special authorisation based on a radiological impact study and a public inquiry ; a global safety evaluation of the nuclear site is conducted after decommissioning in order to define possible use restrictions. In all cases, minimum restrictions will be put into enforcement in urbanisation plans to ensure sufficient precaution when planning future uses of the ground or the building. This paper describes this global system in detail and shows that its inherent consistency allows it to be easily applicable by operators while achieving a high level of safety and confidence. (author)

  4. Radionuclide metrology research for nuclear site decommissioning

    Science.gov (United States)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  5. International conference on lessons learned from the decommissioning of nuclear facilities and the safe termination of nuclear activities. Contributed papers

    International Nuclear Information System (INIS)

    2006-12-01

    The International Atomic Energy Agency (IAEA), in cooperation with the European Commission (EC), Nuclear Energy Agency to the Organisation for Economic Co-operation and Development (OECD/NEA), and the World Nuclear Association (WNA), organized an International Conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities from 11 to 15 December 2006 in Athens, Greece. This Book of Contributed Papers contains technical papers and posters contributed by experts from operating organisations, regulatory bodies, technical support organisations, and other institutions on issues falling within the scope of the Conference. The following main topics were covered: Evolution of national and international policies and criteria for the safe and efficient decommissioning of nuclear facilities and safe termination of nuclear activities; Review of lessons learned from ongoing or completed activities associated with decommissioning; Improvement of safety and efficiency through the use of new and innovative technologies; Practical aspects in the management of material, waste and sites resulting from decommissioning, including the management of waste in the absence of repositories and waste acceptance requirements; Procedures for demonstrating compliance with clearance criteria; Experience from radiological assessments associated with decommissioning; Involvement of the local communities and the impact that decommissioning activities has on them. The presented papers and posters were reviewed and accepted following the guidelines established by the Conference Programme Committee for consideration at the Conference. The material compiled in this Book of Contributed Papers has not undergone rigorous editing by the editorial staff of the IAEA. However, certain modifications were made: a unified format was adopted for all papers; and minor corrections were made in the text where required. Each paper and poster has been indexed

  6. International conference on lessons learned from the decommissioning of nuclear facilities and the safe termination of nuclear activities. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    The International Atomic Energy Agency (IAEA), in cooperation with the European Commission (EC), Nuclear Energy Agency to the Organisation for Economic Co-operation and Development (OECD/NEA), and the World Nuclear Association (WNA), organized an International Conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities from 11 to 15 December 2006 in Athens, Greece. This Book of Contributed Papers contains technical papers and posters contributed by experts from operating organisations, regulatory bodies, technical support organisations, and other institutions on issues falling within the scope of the Conference. The following main topics were covered: Evolution of national and international policies and criteria for the safe and efficient decommissioning of nuclear facilities and safe termination of nuclear activities; Review of lessons learned from ongoing or completed activities associated with decommissioning; Improvement of safety and efficiency through the use of new and innovative technologies; Practical aspects in the management of material, waste and sites resulting from decommissioning, including the management of waste in the absence of repositories and waste acceptance requirements; Procedures for demonstrating compliance with clearance criteria; Experience from radiological assessments associated with decommissioning; Involvement of the local communities and the impact that decommissioning activities has on them. The presented papers and posters were reviewed and accepted following the guidelines established by the Conference Programme Committee for consideration at the Conference. The material compiled in this Book of Contributed Papers has not undergone rigorous editing by the editorial staff of the IAEA. However, certain modifications were made: a unified format was adopted for all papers; and minor corrections were made in the text where required. Each paper and poster has been indexed

  7. Liabilities identification and long-term management decommissioning of nuclear installations in Slovak Republic

    International Nuclear Information System (INIS)

    Burclova, Jana; Konecny, Ladislav

    2003-01-01

    The decommissioning is defined as the safe removal of nuclear facilities from service and reduction of residual radioactivity and/or risk to a level enabling their use for the purpose of another nuclear facility or unrestricted use (site release) and termination of license. The Legal Basis for Decommissioning and Waste Management are described in 4 acts: - 1. Act 130/98 Coll. on peaceful use of nuclear energy (Atomic Act); - 2. The act No 127/1994 Coll. on environmental impact assessment (amended 2000); - 3. The act No 254/1994 Coll. on creation of state found for NPP decommissioning, spent fuel management and disposal investment (amended 2000, 2001); 4. The act No 272/1994 Coll. on protection of public health (amended 1996,2000). The licensing process for radioactive waste management installations as for all nuclear installations is running in following principal steps. The permits for siting, construction, operation including commissioning, individual steps of decommissioning and site release are issued by municipal environmental office on the basis of the Act No 50/1976 Coll. on territorial planning and construction rules and the decisions of the Nuclear regulatory Authority (UJD SR) based on the Atomic Act. The safety documentation shall be prepared by applicant and it is subject of the regulatory bodies approval, for nuclear safety is responsible UJD SR, for radiation protection Ministry of Health, for fire protection Ministry of Interior and for general safety Ministry of Labour, Social Policy and Family. UJD SR issues the permit for each decommissioning phase based on review and approval of safety documentation. Decommissioning Strategy of Slovak Republic was strongly influenced by the changes of Waste Management Strategy. During the last time UJD SR dedicated the great effort to principal improvement of legislation, to cooperation with Ministry of Economy with the aim to create rules for financial sources for decommissioning activities and to enforcement of

  8. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1975-01-01

    Present concepts on stages of, designing for and costs of decommissioning, together with criteria for site release, are described. Recent operations and studies and assessments in progress are summarized. Wastes from decommissioning are characterized

  9. Blending of Low-Level Radioactive Waste for NPP Decommissioning

    International Nuclear Information System (INIS)

    Kessel, David S.; Kim, Chang Lak

    2016-01-01

    Radioactive wastes may are generated throughout the life cycle of a nuclear power plant. These wastes can be categorized as follows: Operational wastes in the form of solids, liquids and gases. Plant components resulting from maintenance, modification or life extension work (e.g. steam generators, pumps, valves, control rods, spent filters, etc.). Materials from the structure of the plant and equipment (e.g. metals and concrete that result in large quantities of waste upon decommissioning Large quantities of materials will be generated during decommissioning and dismantling. A significant proportion of these materials will only be slightly contaminated with radioactivity. Due to economies of scale, recycling and reuse options are more likely to be cost effective for such large quantities of materials than for the relatively smaller quantities arising during operation. These materials also present opportunities to manage waste more effectively by utilizing the approaches to blending discussed in this paper. The NRC uses allows blending based on risk and performance measures for public health and safety. Performance-based regulation means that the blended waste must meet the limits on radiation exposures at the disposal facility and limits on how much the radioactivity concentration may vary or in other words, how homogeneous and well mixed it is. LLW blending is an approach to waste management that can give greater flexibility for disposal options for NPP waste from the entire life cycle of the plant which includes operational wastes such as ion exchange resins and filters, maintenance wastes which include replacement components (discrete items), and large quantities of decommissioning wastes

  10. Blending of Low-Level Radioactive Waste for NPP Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chang Lak [KEPCO, Ulsan (Korea, Republic of)

    2016-05-15

    Radioactive wastes may are generated throughout the life cycle of a nuclear power plant. These wastes can be categorized as follows: Operational wastes in the form of solids, liquids and gases. Plant components resulting from maintenance, modification or life extension work (e.g. steam generators, pumps, valves, control rods, spent filters, etc.). Materials from the structure of the plant and equipment (e.g. metals and concrete that result in large quantities of waste upon decommissioning Large quantities of materials will be generated during decommissioning and dismantling. A significant proportion of these materials will only be slightly contaminated with radioactivity. Due to economies of scale, recycling and reuse options are more likely to be cost effective for such large quantities of materials than for the relatively smaller quantities arising during operation. These materials also present opportunities to manage waste more effectively by utilizing the approaches to blending discussed in this paper. The NRC uses allows blending based on risk and performance measures for public health and safety. Performance-based regulation means that the blended waste must meet the limits on radiation exposures at the disposal facility and limits on how much the radioactivity concentration may vary or in other words, how homogeneous and well mixed it is. LLW blending is an approach to waste management that can give greater flexibility for disposal options for NPP waste from the entire life cycle of the plant which includes operational wastes such as ion exchange resins and filters, maintenance wastes which include replacement components (discrete items), and large quantities of decommissioning wastes.

  11. Applicability of compton imaging in nuclear decommissioning activities

    International Nuclear Information System (INIS)

    Ljubenov, V.Lj.; Marinkovic, P.M.

    2002-01-01

    During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)

  12. Construction times and the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The construction and the decommissioning periods of nuclear power plants (NPP), are studied, due to their importance in the generation costs. With reference to the construction periods of these plants, a review is made of the situation and technical improvements made in different countries, with the purpose of shortening them. In regard to the decommissioning of NPP, the present and future situations are reviewed in connection with different stages of decommissioning and their related problems, as the residual radioactivity of different components, and the size of the final wastes to be disposed of. The possibilities of plant life extensions are also revised in connection with these problems. Finally, the expected decommissioning costs are analyzed. (Author) [es

  13. What will we do with the low level waste from reactor decommissioning?

    International Nuclear Information System (INIS)

    Meehan, A. R.; Wilmott, S.; Crockett, G.; Watt, N. R.

    2008-01-01

    The decommissioning of the UK's Magnox reactor sites will produce large volumes of low level waste (LLW) arisings. The vast majority of this waste takes the form of concrete, building rubble and redundant plant containing relatively low levels of radioactivity. Magnox Electric Ltd (Magnox) is leading a strategic initiative funded by the Nuclear Decommissioning Authority (NDA) to explore opportunities for the disposal of such waste to suitably engineered facilities that might be located on or adjacent to the site of waste arising, if appropriate and subject to regulatory acceptance and stakeholder views. The strategic issues surrounding this initiative are described along with an update of progress with stakeholder consultations in relation to the proposed licensing of the first such facility at Hinkley Point A, which could be viewed as a test case for the development of similar disposal facilities at other nuclear sites in England and Wales. (authors)

  14. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  15. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-01

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  16. Financing waste management, decommissioning and site rehabilitation in the nuclear industry

    International Nuclear Information System (INIS)

    1987-01-01

    The book on financing waste management, decommissioning and site rehabilitation in the nuclear industry, concerns the findings of a survey carried out by the Uranium Institute on the financing of the fuel cycle and utility industries in seventeen countries. The countries included:- Australia, Belgium, Canada, Finland, France, Gabon, German Federal Republic, Italy, Japan, Namibia, South Africa, Spain, Sweden, Switzerland, Taiwan, United Kingdom and United States of America. The survey revealed that provisions for future environmental management costs are being made for most facilities and operations, in some cases dating back over quite a long period. In the case of electricity, such costs are being, or about to be, included in the cost of a kWh by all of the electrical utilities examined. (U.K.)

  17. Report on waste burial charges: Escalation of decommissioning waste disposal costs at low-level waste burial facilities

    International Nuclear Information System (INIS)

    1988-07-01

    One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plant, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised annually, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC, and contains values for the escalation of radioactive waste burial costs, by site and by year. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analysis, or may use an escalation rate at least equal to the escalation approach presented herein. 4 refs., 2 tabs

  18. Decommissioning of nuclear facilities: 'it can and has been done'

    International Nuclear Information System (INIS)

    2009-01-01

    Considerable international experience gained over the last 20 years demonstrates that nuclear facilities can be safely dismantled and decommissioned once a decision is made to cease operations and permanently shut them down. The term decommissioning is used to describe all the management and technical actions associated with ceasing operation of a nuclear installation and its subsequent dismantling to facilitate its removal from regulatory control (de-licensing). These actions involve decontamination of structures and components, dismantling of components and demolition of buildings, remediation of any contaminated ground and removal of the resulting waste. Worldwide, of the more than 560 commercial nuclear power plants that are or have been in operation, about 120 plants have been permanently shut down and are at some stage of decommissioning. About 10% of all shutdown plants have been fully decommissioned, including eight reactors of more than 100 MWe. A larger number of various types of fuel cycle and research facilities have also been shut down and decommissioned, including: facilities for the extraction and enrichment of uranium, facilities for fuel fabrication and reprocessing, laboratories, isotope production facilities and particle accelerators. This brochure looks at decommissioning across a spectrum of nuclear facilities and shows worldwide examples of successful projects. Further information can be found in NEA publications and on a number of web-sites

  19. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    International Nuclear Information System (INIS)

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies

  20. The Canadian approach to nuclear codes and standards. A CSA forum for development of standards for CANDU: radioactive waste management and decommissioning

    International Nuclear Information System (INIS)

    Shin, T.; Azeez, S.; Dua, S.

    2006-01-01

    Together with the Canadian Standards Association (CSA), industry stakeholders, governments, and the public have developed a suite of standards for CANDU nuclear power plants that generate electricity in Canada and abroad. In this paper, we will describe: CSA's role in national and international nuclear standards development; the key issues and priority projects that the nuclear standards program has addressed; the new CSA nuclear committees and projects being established, particularly those related to waste management and decommissioning; the hierarchy of nuclear regulations, nuclear, and other standards in Canada, and how they are applied by AECL; the standards management activities; and the future trends and challenges for CSA and the nuclear community. CSA is an accredited Standards Development Organization (SDO) and part of the international standards system. CSA's Nuclear Strategic Steering Committee (NSSC) provides leadership, direction, and support for a standards committee hierarchy comprised of members from a balanced matrix of interests. The NSSC strategically focuses on industry challenges; a new nuclear regulatory system, deregulated energy markets, and industry restructuring. As the first phase of priority projects is nearing completion, the next phase of priorities is being identified. These priorities address radioactive waste management, environmental radiation management, decommissioning, structural, and seismic issues. As the CSA committees get established in the coming year, members and input will be solicited for the technical committees, subcommittees, and task forces for the following related subjects: Radioactive Waste Management; a) Dry Storage of Irradiated Fuel; b) Short-Term Radioactive Waste Management; c) Long-Term Storage and Disposal of Radioactive Waste. 2. Decommissioning Nuclear Power is highly regulated, and public scrutiny has focused Codes and Standards on public and worker safety. Licensing and regulation serves to control

  1. The Community's research and development programme on decommissioning of nuclear power plants. Fourth annual progress report (year 1983)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This is the fourth progress report of the European Community's program. (1979-83) of research on decommissioning of nuclear power plants. It covers the year 1983 and follows the 1980, 1981 and 1982 reports (EUR 7440, EUR 8343, EUR 8962). The present report describes the further progress of research and contains a large amount of results. For a majority of the 51 research contracts composing the 1979-83 programme, work was completed by the end of 1983; the conclusions drawn from this work are in this report. The European Community's program deals with the following fields: long-term integrity of buildings and systems; decontamination for decommissioning purposes; dismantling techniques; treatment of specific wastes materials (steel, concrete and graphite); large transport containers for radioactive waste produced in the dismantling of nuclear power plants; estimation of the quantities of radioactive waste arising from the decommissioning of nuclear power plants in the Community; influence of nuclear power plant design features on decommissioning

  2. Nuclear Decommissioning R and D: a successful history that goes on. Evolution of R and D for nuclear decommissioning

    International Nuclear Information System (INIS)

    Laraia, Michele; )

    2017-01-01

    Research and Development (R and D) in Nuclear Decommissioning date back to the 1980's and 1990's. At that time, decommissioning was a relatively new, sporadic activity; technologies were mostly imported from the non-nuclear field and adapted to nuclear uses (a trend that continues to this day and should not be looked down). R and D were first applied to a laboratory scale, and later on expanded to prototype and pilot installations. The European Commission launched a series of multi-year R and D programmes, ultimately covering the full-scale decommissioning of nuclear power plants and other large installations. Certain installations (especially the BR-3 reactor at Mol, Belgium), were used to test and compare different technologies and assign a ranking based on various factors. In parallel, the US Department of Energy was active in a number of R and D activities, culminating in a number of topical publications until around the year 2000 and the explosive growth of the decommissioning market. In Japan in early 1990's the decommissioning of the Japan Power Demonstration Reactor (JPDR) was used to test almost all dismantling techniques being available at that time: the spin-offs of JPDR work were still flowing into the nuclear community until recently. It has to be also highlighted that the Chernobyl accident boosted a spate of decommissioning R and D aimed at solving practical problems in the aftermath of that severe accident. Although R and D in this field peaked around the year 2000, R and D efforts have continued to this day. While decommissioning is not 'rocket science' and it can be safely stated that this industry has reached maturity, there are areas (e.g. management of secondary waste, access, characterization and dismantling in 'difficult' environments) that require further efforts to optimize processes and reduce the still high costs. The IAEA has contributed to these advances in various ways. For example, some 50 topical reports on the decommissioning of

  3. Approach to long- term regalement of nuclear energy installation decommissioning

    International Nuclear Information System (INIS)

    Dryapachenko, Yi.P.; Rudenko, B. A.; Ozimaj, M.S.

    2001-01-01

    In this report we make an accent on because the rules of nuclear installation decommissioning should provide controllability with compounded operations not one generations of the performers. The strategy should take into account problems of the economic completion, environment and standards of health, script of decommissioning and its execution, and so on. These strategies are bound with the social conditions, with accent on work with the low level wastes

  4. Decommissioning planning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, Gunnar; Bergh, Niklas [Westinghouse Electric Sweden AB, Vaesteraes (Sweden)

    2013-07-01

    The technologies required for the decommissioning work are for the most part readily proven. Taken into account that there will be many more years before the studied reactor units will undergo decommissioning, the techniques could even be called conventional at that time. This will help bring the decommissioning projects to a successful closure. A national waste fund is already established in Sweden to finance amongst others all dismantling and decommissioning work. This will assure that funding for the decommissioning projects is at hand when needed. All necessary plant data are readily available and this will, combined with a reliable management system, expedite the decommissioning projects considerably. Final repositories for both long- and short-lived LILW respectively is planned and will be constructed and dimensioned to receive the decommissioning waste from the Swedish NPP:s. Since the strategy is set and well thought-through, this will help facilitate a smooth disposal of the radioactive decommissioning waste. (orig.)

  5. The Nordic programme on waste and decommissioning (KAN) 1990-93

    International Nuclear Information System (INIS)

    1994-03-01

    In assessing nuclear waste safety, both long term and short term aspects need to be considered. For the development of a system for the final disposal of spent nuclear fuel, the most challenging task is to develop a sufficient understanding of the long term safety of a potential repository. Two of the NKS-projects are directly relevant for the long term safety of a deep geological repository, whereas the other projects mainly concern issues in managing nuclear waste today. Information about repositories and their contents must be conserved so that it can be easily retrieved. The KAN-1.3 studies deal with available information and how to preserve it. Archive safety as well as the expected durability of different archive media is explored. In the long term the present day climate will change significantly. An important part of the KAN-3 project has been to assemble field evidence, such as historic data indicating effects of past glaciations. The potential impact of a future glaciation on a repository is also explored in this project. An unlikely accident at a nuclear power plant could result in deposition of radioactive elements in the environment so that cleanup becomes necessary. In the KAN-2 project waste volumes and activities in different environments are estimated. Experiments have been performed with soil removal, and with cement solidification, and cost-benefit analyses are developed for use in emergency planning. Clearance of radioactive materials from regulatory control may reduce waste volumes that must otherwise be handled as radioactive, especially in conjunction with decommissioning. In the KAN-1.1 project the essential aspects of the clearance problems are dealt with such as definitions, radiological assessments, monitoring, and preparation of a clearance application. Eventually all nuclear installations in the Nordic countries will have to be decommissioned. In the KAN-1.2 project, the decommissioning of a pilot reprocessing plant is documented and

  6. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Schneider, K.J.

    1979-01-01

    The Symposium was jointly sponsored by OECD/NEA and IAEA and was attended by more than 225 participants from 26 countries. Forty one papers were presented in eight sessions which covered the following topics: national and international policies and planning; engineering considerations relevant to decommissioning; radiological release considerations and waste classifications; decommissioning experience; and decontamination and remote operations. In addition, a panel of decommissioning experts discussed questions from the participants

  7. The Importance of Experience Based Decommissioning Planning

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2016-01-01

    Decommissioning of a nuclear facility is an extensive and multidisciplinary task, which involves the management and technical actions associated with ceasing operation and thereafter the step-by-step transfer of the facility from an operating plant to an object under decommissioning. The decommissioning phase includes dismantling of systems and components, decontamination and clearance, demolition of buildings, remediation of any contaminated ground and finally a survey of the site. Several of these activities generate radioactive or potentially radioactive waste, which has to be managed properly prior to clearance or disposal. What makes decommissioning of nuclear installations unique is to large extent the radioactive waste management. No other industries have that complex regulatory framework for the waste management. If decommissioning project in the nuclear industry does not consider the waste aspects to the extent required, there is a large risk of failure causing a reduced trust by the regulators and other stakeholders as well as cost and schedule overruns. This paper will give an overview of important aspects and findings gathered during decades of planning and conducting decommissioning and nuclear facility modernization projects. (authors)

  8. Regulatory procedures for the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Woods, P.B.; Basu, P.K.

    1988-01-01

    The basic safety legislation under which operational safety at nuclear installations is regulated does not change when the plant is decommissioned. In the United Kingdom the relevant nuclear safety legislation is embodied in several Acts of Parliament or international conventions. These are listed and described. The potential risk in decommissioning is from radiation exposure of the workers and to a lesser extent of the public and environment. The regulations try to ensure this risk is reduced to acceptable levels. This objective can be achieved if the project is adequately planned, there is reliable information about the plant, the risks are identified and assessed, the quality assurance is good and personnel are trained, and the radioactive wastes produced are managed and disposed of suitably. (U.K.)

  9. Management of very low level waste from decommissioning of the A-1 Jaslovske Bohunice nuclear power plant in Slovakia

    International Nuclear Information System (INIS)

    Burclova, J.; Konecny, L.; Mrskova, A.

    2000-01-01

    Efforts were made to accelerate decommissioning, particularly of the nuclear power plant A1 of the HWGCR type. Progress made and current developments in this subject area are reviewed. Radioactive waste categories are described along with release criteria. An overview is provided on contaminated scrap and the sorting of contaminated soil and concrete. (author)

  10. Expansive development of a decommissioning program 'recycle simulator' in nuclear power station

    International Nuclear Information System (INIS)

    Nishiuchi, T.; Ozaki, S.; Hironaga, M.

    2004-01-01

    A decommissioning program 'Recycle Simulator' should be put into practice in careful consideration of both recycle of non-radioactive wastes and reduce of radioactive wastes in the coming circulatory social system. Nevertheless current support systems for decommissioning planning mainly deal with decontamination, safety storage and dismantlement, so-called the prior part of the total decommissioning process. Authors emphasize the necessity of total planning of decommissioning including recycle or reuse of a large amount of demolition materials and are propelling the development of the multi expert system named 'Recycle Simulator'. This paper presents an algorithm of the recycling and reusing scenario of demolition materials and a summarized configuration. 'Recycle Simulator' for the demolished concrete was developed in 2000 and presented at a previous International Conference on Nuclear Engineering. Construction of a supporting multi expert system for the totally planning of decommissioning projects is objected by expansive development of the previous version. 3 main conclusions obtained from this paper are the following. (1) The previously developed expert system was advanced in its estimation function toward the satisfaction of decommissioning planners. (2) The applicability of the system was enlarged to all the radioactive and non-radioactive wastes, demolished metal and concrete products, in a corresponding site of decommissioning. (3) Finally decommissioning recycle simulator was completed in a harmonized unification. (authors)

  11. How it is possible to build a national system for decommissioning waste management without site nor waste liberation: the case of France

    International Nuclear Information System (INIS)

    Averous, Jeremie; Chapalain, Estelle

    2003-01-01

    Past experience in decommissioning in France has shown that a national system has to be put in place to deal with decommissioning, waste elimination and site cleaning up activities in order to allow a consistent, safe, transparent and industrially applicable management of these matters. A system founded on successive lines of defence has been put into enforcement, which does not involve any site nor waste liberation, as it is considered that the criteria associated are always prone to discussion and contradiction. This system is based on the following concepts: - 'nuclear waste', waste prone to have been contaminated or activated, is segregated from 'conventional waste' using a system involving successive lines of defence, and hence, building a very high level of confidence that no 'nuclear waste' will be eliminated without control in conventional waste eliminators or recycling facilities; - 'nuclear waste' is eliminated in dedicated facilities or repositories, or in conventional facilities under the condition of a special authorization based on a radiological impact study and a public inquiry; - a global safety evaluation of the nuclear site is conducted after decommissioning in order to define possible use restrictions. In all cases, minimum restrictions will be put into enforcement in urbanization plans to ensure sufficient precaution when planning future uses of the ground or the building. This paper describes this global system in detail and shows that its inherent consistency allows it to be easily applicable by operators while achieving a high level of safety and confidence. It is now widely accepted by stakeholders. The French Nuclear Safety Authority is now working to apply this methodology more widely to other nuclear practices like the waste management from medical, research and industrial activities, or from past or remediation activities. (authors)

  12. Development of decommissioning management system for nuclear fuel cycle facilities (DECMAN)

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichirou; Ishijima, Noboru; Tanimoto, Ken-ichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-04-01

    In making a plan of decommissioning of nuclear fuel facilities, it is important to optimize the plan on the standpoint of a few viewpoints, that is, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost (they are called evaluation indexes). In the midst of decommissioning, the decommissioning plan would be modified suitably to optimize the evaluation indexes adjusting to progress of the decommissioning. The decommissioning management code (DECMAN), that is support system on computer, has been developed to assist the decommissioning planning. The system calculates the evaluation indexes quantitatively. The system consists of three fundamental codes, facility information database code, technical know-how database code and index evaluation code, they are composed using Oracle' database and 'G2' expert system. The functions of the system are as follows. (1) Facility information database code. Information of decommissioning facility and its rooms, machines and pipes in the code. (2) Technical know-how database code. Technical Information of tools to use in decommissioning work, cutting, dose measure, and decontamination are there. (3) Index evaluation code. User build decommissioning program using above two database codes. The code evaluates five indexes, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost, on planning decommissioning program. Results of calculation are shown in table, chart, and etc. (author)

  13. EUROSAFE forum 2013. Safe disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The proceedings of the EUROSAFE forum 2013 - safe disposal of nuclear waste include contributions to the following topics: Nuclear installation safety - assessment; nuclear installation safety - research; waste and decommissioning - dismantling; radiation protection, 3nvironment and emergency preparedness; security of nuclear installations and materials.

  14. SE-VYZ - Decommissioning of Nuclear Installations, Radioactive Waste and Spent Fuel Management

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    In this presentations processes of radioactive waste treatment in the Bohunice Radioactive Waste Processing Center (SE-VYZ), Jaslovske Bohunice are presented. Decommissioning of the A-1 NPP is also presented. Disposal of conditioned radioactive waste in fibre concrete containers (FCC) are transported to Mochovce from Jaslovske Bohunice by the transport truck where are reposited in the National radioactive waste repository Mochovce. The Interim spent fuel storage facility (ISFSF) is included into this presentation

  15. Nuclear waste. Last stop Siberia?

    International Nuclear Information System (INIS)

    Popova, L.

    2006-01-01

    Safe and environmentally sound management of nuclear waste and spent fuel is an unresolved problem of nuclear power. But unlike other nuclear nations, Russia has much more problems with nuclear waste. Russia inherited these problems from the military programs and decades of nuclear fuel cycle development. Nuclear waste continue to mount, while the government does not pay serious enough attention to the solution of the waste problem and considers to increase the capacity of nuclear power plants (NPPs). There are more than 1000 nuclear waste storages in Russia.1 More than 70 million tons of the solid waste has been accumulated by the year 2005, including 14 million tons of tails of the decommissioned uranium mine in the North Caucasus. President Putin said that ''infrastructure of the waste processing is extremely insufficient''. (orig.)

  16. An international contribution to decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lazo, T.

    1995-01-01

    Nuclear power plants and fuel cycle facilities must be retired from service when they have completed their design objective, become obsolete or when they no longer fulfill current safety, technical or economic requirements. Decommissioning is defined as the set of technical and administrative operations that provides adequate protection of workers and public against radiation risks, minimizes impact on the environment and involves manageable costs. A traditional definition of the stages of decommissioning has been proposed by the IAEA and is largely used worldwide. A number of factors have to be considered when selecting the optimum strategy, which include the national nuclear policy, characteristics of the facility, health and safety, environmental protection, radioactive waste management, future use of the site, improvements of the technology that may be achieved in the future, costs and availability of funds and various social considerations. The paper describes the current situation of nuclear facilities and the associated forthcoming requirements and problems of decommissioning. This task requires a complete radionuclide inventory, decontamination methods, disassembly techniques and remote operations. Radiation safety presents three aspects: nuclear safety, protection of workers and protection of the public. An appropriate delay to initiate decommissioning after shutdown of a facility may considerably reduce workers exposures and costs. Decommissioning also generates significant quantities of neutron-activated and surface contaminated materials which require a specific management. A vigorous international cooperation and coordinated research programs have been encouraged by the NEA for a minimization of costs and efforts and to provide a basis for consensus of opinions on policies, strategies and criteria. (J.S.). 19 refs., 5 figs., 3 tabs

  17. A study on source term assessment and waste disposal requirement of decontamination and decommissioning for the TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Joo Ho; Lee, Kyung JIn; Lee, Jae Min; Choi, Gyu Seup; Shin, Byoung Sun [Kyunghee Univ., Seoul (Korea, Republic of)

    1999-08-15

    The objective and necessity of the project : TRIGA is the first nuclear facility that decide to decommission and decontamination in our nation. As we estimate the expected life of nuclear power generation at 30 or 40 years, the decommissioning business should be conducted around 2010, and the development of regulatory technique supporting it should be developed previously. From a view of decommissioning and decontamination, the research reactor is just small in scale but it include all decommissioning and decontamination conditions. So, the rules by regulatory authority with decommissioning will be a guide for nuclear power plant in the future. The basis of regulatory technique required when decommissioning the research reactor are the radiological safety security and the data for it. The source term is very important condition not only for security of worker but for evaluating how we dispose the waste is appropriate for conducting the middle store and the procedure after it when the final disposal is considered. The content and the scope in this report contain the procedure of conducting the assessment of the source term which is most important in understanding the general concept of the decommissioning procedure of the decommissioning and decontamination of TRIGA research reactor. That is, the sampling and measuring method is presented as how to measure the volume of the radioactivity of the nuclear facilities. And also, the criterion of classifying the waste occurred in other countries and the site release criteria which is the final step of decommissioning and decontamination presented through MARSSIM. Finally, the program to be applicable through comparing the methods of our nation and other countries ones is presented as plan for disposal of the waste in the decommissioning.

  18. The characterization of cement waste form for final disposal of decommissioning concrete wastes

    International Nuclear Information System (INIS)

    Lee, Yoon-ji; Lee, Ki-Won; Min, Byung-Youn; Hwang, Doo-Seong; Moon, Jei-Kwon

    2015-01-01

    Highlights: • Decommissioning concrete waste recycling and disposal. • Compressive strength of cement waste form. • Characteristic of thermal resistance and leaching of cement waste form. - Abstract: In Korea, the decontamination and decommissioning of KRR-1, 2 at KAERI have been under way. The decommissioning of the KRR-2 was finished completely by 2011, whereas the decommissioning of KRR-1 is currently underway. A large quantity of slightly contaminated concrete waste has been generated from the decommissioning projects. The concrete wastes, 83ea of 200 L drums, and 41ea of 4 m 3 containers, were generated in the decommissioning projects. The conditioning of concrete waste is needed for final disposal. Concrete waste is conditioned as follows: mortar using coarse and fine aggregates is filled with a void space after concrete rubble pre-placement into 200 L drums. Thus, this research developed an optimizing mixing ratio of concrete waste, water, and cement, and evaluated the characteristics of a cement waste form to meet the requirements specified in the disposal site specific waste acceptance criteria. The results obtained from a compressive strength test, leaching test, and thermal cycling test of cement waste forms conclude that the concrete waste, water, and cement have been suggested as an optimized mixing ratio of 75:15:10. In addition, the compressive strength of the cement waste form was satisfied, including a fine powder up to a maximum of 40 wt% in concrete debris waste of about 75%. According to the scale-up test, the mixing ratio of concrete waste, water, and cement is 75:10:15, which meets the satisfied compressive strength because of an increase in the particle size in the waste

  19. Appendix 4. Documentation of sufficient capacity facility for spent nuclear fuel and radioactive waste management and its compliance with the decommissioning strategy and schedule

    International Nuclear Information System (INIS)

    2007-01-01

    In this chapter the documentation of sufficient capacity facility for spent nuclear fuel and radioactive waste management and its compliance with the decommissioning strategy and schedule of the NPP A-1 are presented.

  20. Planning for decommissioning of Ignalina Nuclear Power Plant Unit-1

    International Nuclear Information System (INIS)

    Poskas, P.; Poskas, R.; Zujus, R.

    2002-01-01

    In accordance to Ignalina NPP Unit 1 Closure Law, the Government of Lithuania approved the Ignalina NPP Unit 1 Decommissioning Program until 2005. For enforcement of this program, the plan of measures for implementation of the program was prepared and approved by the Minister of Economy. The plan consists of two parts, namely technical- environmental and social-economic. Technical-environmental measures are mostly oriented to the safe management of spent nuclear fuel and operational radioactive waste stored at the plant and preparation of licensing documents for Unit 1 decommissioning. Social-economic measures are oriented to mitigate the negative social and economic impact on Lithuania, inhabitants of the region, and, particularly, on the staff of Ignalina NPP by means of creating favorable conditions for a balanced social and economic development of the region. In this paper analysis of planned radioactive waste management technologies, licensing documents for decommissioning, other technical-environmental and also social-economic measures is presented. Specific conditions in Lithuania important for defining the decommissioning strategy are highlighted. (author)

  1. A study on the application of standards for clearance of metal waste generated during the decommissioning of NPP by using the RESRAD-RECYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Kim, Dong Min; Lee, Sang Heon [Chosun University, Gwangju (Korea, Republic of)

    2016-12-15

    The metal waste generated during nuclear power plant decommissioning constitutes a large proportion of the total radioactive waste. This study investigates the current status of domestic and international regulatory requirements for clearance and the clearance experience of domestic institutions. The RESRAD-RECYCLE code was used for analyzing the clearance of the metal wastes generated during actual nuclear power plant decommissioning, and assessment of the exposure dose of twenty-six scenarios was carried out. The evaluation results will be useful in preliminary analysis of clearance and recycling during nuclear power plant decommissioning. As a next step, the effects of reducing disposal costs by clearance can be studied.

  2. The decommissioning of the Barnwell nuclear fuel plant

    International Nuclear Information System (INIS)

    McNeil, J.

    1999-01-01

    The decommissioning of the Barnwell Nuclear Fuel Plant is nearing completion. The owner's objective is to terminate the plant radioactive material license associated with natural uranium and transuranic contamination at the plant. The property is being released for commercial-industrial uses, with radiation exposure from residual radioactivity not to exceed 0.15 millisieverts per year. Historical site assessments have been performed and the plant characterized for residual radioactivity. The decommissioning of the uranium hexafluoride building was completed in April, 1999. Most challenging from a radiological control standpoint is the laboratory building that contained sixteen labs with a total of 37 glove boxes, many of which had seen transuranics. Other facilities being decommissioned include the separations building and the 300,000-gallon underground high-level waste tanks. This decommissioning in many ways is the most significant project of this type yet undertaken in South Carolina. Many innovations have been made to reduce the time and costs associated with the project. (author)

  3. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  4. Safety problems in decommissioning nuclear power plants

    International Nuclear Information System (INIS)

    Auler, I.; Bardtenschlager, R.; Gasch, A.; Majohr, N.

    1975-12-01

    The safety problems at decommissioning are illustrated by the example of a LWR with 1300 MW electric power after 40 years of specified normal operation. For such a facility the radioactivity in the form of activation and contamination one year after being finally taken out of service is in the order of magnitude of 10 7 Ci, not counting the fuel assemblies. The dose rates occurring during work on the reactor vessel at nozzle level may amount to some 10 4 rem/h. After a rough estimation the accumulated dose for the decommissioning personnel during total dismantling will be about 1200 rem. During performance of the decommissioning activities the problems are mainly caused by direct radiation of the active components and systems and by the release of radioactive particles, aerosols and liquids if these components are crushed. The extent of later dismantling problems may be reduced by selecting appropriate materials as well as considering the requirements for dismantling in design and arrangement of the components already in the design stage of new facilities. Apart from plant design also the concept for the disposal of the radioactive waste from decommissioning will provide important boundary conditions. E.g. the maximum size of the pieces to be stored in the ultimate storage place will very much influence the dose expenditure for handling these parts. For complete dismantling of nuclear power plants an ultimate store must be available where large amounts of bulky decommissioning waste, containing relatively low activity, can be stored. The problems and also the cost for decommissioning may be considerably reduced by delaying complete disposal of the radioactive material >= 40 years and during this period, keeping the radioactivity enclosed within the plant in the form of a safe containment. (orig./HP) [de

  5. Economic Evaluation of Decommissioning Cost of Nuclear Power Plant in the National Electricity Plan in Korea

    International Nuclear Information System (INIS)

    Lee, Man Ki; Nam, Ji Hee

    2008-01-01

    Decommissioning cost of a nuclear power plant includes the costs related with dismantling a nuclear power plant, disposal of a spent fuel and of a low/medium radioactive waste. The decommissioning cost is different from the other expenditures in that it is occurred after the reactor finishes its commercial operation. In this respect, the electricity act was enforced to secure provisions for decommissioning a nuclear power plant during its commercial operation. The purpose of this study is to provide economic evaluation and economic cost for a decommissioning when the cost of a decommissioning is provided as one of input to the national electricity plan. Therefore, this study does not deal with whether the estimated amount of a decommissioning cost is just or not. This study focuses how to transfer the estimated decommissioning cost given in the electricity act to the economic cost, which can be used in the national electricity plan

  6. The decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Barker, F.

    1992-01-01

    This report has been commissioned by the National Steering Committee of Nuclear Free Local Authorities to provide: a comprehensive introduction to the technical, social, political, environmental and economic dimensions to nuclear power station decommissioning; an independent analysis of Nuclear Electric's recent change of decommissioning strategy; the case for wider public involvement in decision making about decommissioning; and a preliminary assessment of the potential mechanisms for achieving that essential wider public involvement

  7. Nuclear decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, H.

    1987-02-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the UK, good progress has been made with the WAGR and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level.

  8. Financing the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Decommissioning of both commercial and R and D nuclear facilities is expected to increase significantly in the coming years, and the largest of such industrial decommissioning projects could command considerable budgets. It is important to understand the costs of decommissioning projects in order to develop realistic cost estimates as early as possible based on preliminary decommissioning plans, but also to develop funding mechanisms to ensure that future decommissioning expenses can be adequately covered. Sound financial provisions need to be accumulated early on to reduce the potential risk for residual, unfunded liabilities and the burden on future generations, while ensuring environmental protection. Decommissioning planning can be subject to considerable uncertainties, particularly in relation to potential changes in financial markets, in energy policies or in the conditions and requirements for decommissioning individual nuclear installations, and such uncertainties need to be reflected in regularly updated cost estimates. This booklet offers a useful overview of the relevant aspects of financing the decommissioning of nuclear facilities. It provides information on cost estimation for decommissioning, as well as details about funding mechanisms and the management of funds based on current practice in NEA member countries. (authors)

  9. The European Community's research and development programme on the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Skupinski, E.

    1988-01-01

    The Commission of the European Communities (CEC) continued with a second research programme on the decommissioning of nuclear installations (1984-88), after having completed a first programme on the decommissioning of nuclear power plants (1979-83). The programme, which has about 70 research contracts with organisations or private firms in the member states, includes the development and testing of advanced techniques, such as decontamination and dismantling, and the consideration of the radioactive waste arising therefrom. Work is done at laboratory scale or in the context of large-scale decommissioning operations. The paper will give an overview on the technical content and on some selected results. (author)

  10. Technology and costs for decommissioning of Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs.

  11. Technology and costs for decommissioning of Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1994-06-01

    The decommissioning study for the Swedish nuclear power plants has been carried out during 1992 to 1994 and the work has been led by a steering group consisting of people from the nuclear utilities and SKB. The study has been focused on two reference plants, Oskarshamn 3 and Ringhals 2. Oskarshamn 3 is a boiling water reactor (BWR) and Ringhals 2 is a pressurized water reactor (PWR). Subsequently, the result from these plants have been translated to the other Swedish plants. The study gives an account of the procedures, costs, waste quantities and occupational doses associated with decommissioning of the Swedish nuclear power plants. Dismantling is assumed to start immediately after removal of the spent fuel. No attempts at optimization, in terms of technology or costs, have been made. The nuclear power plant site is restored after decommissioning so that it can be released for use without restriction for other industrial activities. The study shows that a reactor can be dismantled in about five years, with an average labour force of about 150 persons. The maximum labour force required for Oskarshamn 3 has been estimated to about 300 persons. This peak load occurred the first years but is reduced to about 50 persons during the demolishing of the buildings. The cost of decommissioning Oskarshamn 3 has been estimated to be about MSEK 940 in January 1994 prices. The decommissioning of Ringhals 2 has been estimated to be MSEK 640. The costs for the other Swedish nuclear power plants lie in the range MSEK 590-960. 17 refs, 21 figs, 15 tabs

  12. The management of financial resources intended for radioactive waste and decommissioning of the nuclear facilities in the european union

    International Nuclear Information System (INIS)

    Tatar, F.; Dima, A.; Glodeanu, F.; Miller, B.; Mosmonea, R.

    2015-01-01

    The European Commission has developed policies and made recommendations on how financial resources should be established and managed by Member States for the purpose of radioactive waste management. The manner in which these recommendations have been accepted, and are applied, varies between European countries. To some extent, this variation reflects the maturity of the nuclear programs in each country and whether or not nuclear facilities are largely state or privately owned and operated. This paper reviews the European Commission.s policy on financial resourcing for radioactive waste management and decommissioning and evaluates how financial resources are practically established and managed by Member States. The findings from the review are then used to benchmark the situation in Romania. (authors)

  13. Guide for International Peer Reviews of Decommissioning Cost Studies for Nuclear Facilities

    International Nuclear Information System (INIS)

    LaGuardia, Thomas S.; Pescatore, Claudio; )

    2014-01-01

    Peer reviews are a standard co-operative OECD working tool that offer member countries a framework to compare experiences and examine best practices in a host of areas. The OECD Nuclear Energy Agency (NEA) has developed a proven methodology for conducting peer reviews in radioactive waste management and nuclear R and D. Using this methodology, the NEA Radioactive Waste Management Committee's Working Party on Decommissioning and Dismantling (WPDD) developed the present guide as a framework for decommissioning cost reviewers and reviewees to prepare for and conduct international peer reviews of decommissioning cost estimate studies for nuclear facilities. It includes checklists that will help national programmes or relevant organisations to assess and improve decommissioning cost estimate practices in the future. This guide will act as the NEA reference for conducting such international peer reviews. The remainder of this guide is divided into eight chapters. Chapter 2 describes gathering the cost estimate study and underpinning documents, reviewing the study and writing a final report. Chapter 3 provides a detailed checklist approach for the review of the cost study report. Chapter 4 provides checklists to assist in reviewing benchmarked information. Chapter 5 provides comments on the approach and recommendations for use of this guide. Chapters 6 and 7 provide the background material used in developing this guide and Chapter 8 provides a list of the abbreviations and acronyms used in this guide

  14. Waste minimization fundamental principles used in radioactive waste management plan for decommissioning of a CANDU - 600 nuclear power plant

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Georgescu, Roxana Cristiana; Sociu, Florin

    2009-01-01

    The objectives of waste minimization are to limit the generation and spread of radioactive contamination and to reduce the amount of wastes for storage and disposal, thereby limiting any consequent environmental impact, as well as the total costs associated with contaminated material management. This objective will be achieved by: reviewing the sources and characteristics of radioactive materials arising from Decontamination and Decommissioning (D and D) activities; reviewing waste minimization principles and current practical applications, together with regulatory, technical, financial and political factors influencing waste minimization practices; and reviewing current trends in improving waste minimization practices during Decontamination and Decommissioning. The main elements of a waste minimization strategy can be grouped into four areas: source reduction, prevention of contamination spread, recycle and reuse, and waste management optimization. For sustaining this objective, the following principles and procedures of wastes management are taken into account: safety and environment protection principles; principles regarding the facility operation; quality assurance procedures; procedures for material classification and releasing. (authors)

  15. Decommissioning - The worldwide challenge

    International Nuclear Information System (INIS)

    McKeown, John

    2002-01-01

    Full text: Whatever the future may hold for nuclear power, there are closed or ageing nuclear facilities in many countries around the world. While these may be in safe care and maintenance at present, a sustainable long term solution is required. Facilities need to be decommissioned, contaminated land remediated, and wastes conditioned for safe storage or disposal. Practical nuclear site restoration has been demonstrated internationally. This experience has revealed generic challenges in dealing with old, often experimental, facilities. These include: Facilities not designed for ease of decommissioning; Records of plant construction and operation, and of the materials utilised and wastes produced, not to modern standards; Fuels and wastes stored for long periods in less than optimal conditions, leading to deterioration and handling problems; The historic use of experimental fuels and materials, giving rise to unique waste streams requiring unique waste management solutions; The application of modern safety and environmental standards to plant which dates from the 1940s, 50s and 60s, requiring investment before decommissioning can even commence. These problems can be tackled, as examples from UKAEA's own programme will illustrate. But two fundamental issues must be recognised and considered. First, the costs of decommissioning older facilities are very high, and may place a heavy burden on national budgets, despite using best efforts to control them. We can limit these costs by learning from one another's experience and sharing the development of new techniques and technologies. UKAEA has already initiated a programme of international collaboration, and hopes that other IAEA countries will be encouraged to follow suit. But whilst the costs of decommissioning may be high, the process normally meets with public acceptance. This is seldom the case for long term waste storage or disposal. Until waste management routes are available - either nationally or internationally

  16. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  17. Proceedings of the research conference on cementitious composites in decommissioning and waste management (RCWM2017)

    International Nuclear Information System (INIS)

    Sano, Yuichi; Ashida, Takashi

    2017-11-01

    Collaborative Laboratories for Advanced Decommissioning Science (CLADS) is responsible to promote international cooperation in the R and D activities on the decommissioning of Fukushima Daiichi Nuclear Power Station and to develop the necessary human resources. CLADS held the Research Conference on Cementitious Composites in Decommissioning and Waste Management (RCWM2017) on 20th and 21st June, 2017. This report compiles the abstracts and the presentation materials in the above conference. (author)

  18. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the UK, good progress has been made with the WAGR and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  19. Vinca nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Sotic, O.; Plecas, I.; Ljubenov, V.; Peric, A.

    2002-01-01

    In this paper a preliminary program for the nuclear decommissioning in The Vinca Institute of Nuclear Sciences is presented. Proposed Projects and Activities, planned to be done in the next 10 years within the frames of the Program, should improve nuclear and radiation safety and should solve the main problems that have arisen in the previous period. Project of removal of irradiated spent nuclear fuel from the RA reactor, as a first step in all possible decommissioning strategies and the main activity in the first two-three years of the Program realization, is considered in more details. (author)

  20. Remediation and decommissioning of radioactive waste facilities in Estonia

    International Nuclear Information System (INIS)

    Putnik, H.; Realo, E.

    2001-01-01

    Full text: The nuclear training facility at Paldiski was constructed in the early 1960's by the former USSR Navy. The hull sections of Delta and Echo class submarines each housing a full-sized ship reactor were installed in the main building of the site for training of navy personnel in safe operation of the submarine nuclear reactor systems. The first reactor was commissioned in 1968 and the second in 1982, while both was shut down in 1989. After Estonia's reproclamation of independence in 1991 the responsibility for the clean up and decommissioning of the Paldiski site became a subject of negotiations between Russia and Estonia. As the result Estonia took the ownership and control of the site in September 1995. Before the take over the Russian authorities defuelled the reactors and transported the spent fuel to Russia, dismantled the hull sections not related with reactor systems, seal-welded the hull sections housing the reactor vessels with their primary circuitry and enclosed those in reinforced concrete sarcophagi. The auxiliary facilities and radioactive waste were left intact. Main goals of the Conceptual Decommissioning Plan for the Paldiski facilities, developed under the auspices of the Paldiski International Expert Reference Group (Pier, a group established at the request of the Estonian government to advise local authorities to maintain the decommissioning and waste management at Paldiski) were defined as following: Establishing the waste management system and a long term monitored interim storage, corresponding to internationally accepted safety standards and capable to condition, receive and store all the waste generated during decommissioning of the facility; Reductions of the extent of radiologically controlled areas as much as possible, in order to minimise maintenance requirements. To achieve these goals the following main tasks were addressed in the short and medium term site management action plans: Rearrangement of site for the needs of

  1. Decommissioning and cutting methods in the nuclear field

    Energy Technology Data Exchange (ETDEWEB)

    Bensoussan, E. [Protem SAS, 26 - Etoile sur Rhone (France)

    2008-07-01

    A few states started in the early forties/fifties the first development of nuclear technologies. Some of them now own a great amount of nuclear installations which entirely fulfill their assignment. In some cases, the life time of the nuclear power plants which were scheduled for approximately 30 years have been extended by more than 50%, the other ones as well as fuel production and enrichment plants, experimental or research reactors, will have to be dismantled in the near future. The decommissioning of those installations is definitely one of the twenty first century challenge. It is differently managed depending on the countries and their energetic and development policies, their financial consideration, the availability of qualified engineers or specialized companies to handle such projects. The final aim of decommissioning is to recover the geographic site in its original condition. A real cooperation is existing in between the people involved in different countries through different types of conferences and meetings during which the main subjects are: - The safety of the operators during all the phases of decommissioning operations. - Restrictions and dimensioning of the required equipment - Storage and waste management - Elaboration of procedures for recording all different steps and processes. Some of the techniques are described in this paper without being exhaustive. (author)

  2. Decommissioning and cutting methods in the nuclear field

    International Nuclear Information System (INIS)

    Bensoussan, E.

    2008-01-01

    A few states started in the early forties/fifties the first development of nuclear technologies. Some of them now own a great amount of nuclear installations which entirely fulfill their assignment. In some cases, the life time of the nuclear power plants which were scheduled for approximately 30 years have been extended by more than 50%, the other ones as well as fuel production and enrichment plants, experimental or research reactors, will have to be dismantled in the near future. The decommissioning of those installations is definitely one of the twenty first century challenge. It is differently managed depending on the countries and their energetic and development policies, their financial consideration, the availability of qualified engineers or specialized companies to handle such projects. The final aim of decommissioning is to recover the geographic site in its original condition. A real cooperation is existing in between the people involved in different countries through different types of conferences and meetings during which the main subjects are: - The safety of the operators during all the phases of decommissioning operations. - Restrictions and dimensioning of the required equipment - Storage and waste management - Elaboration of procedures for recording all different steps and processes. Some of the techniques are described in this paper without being exhaustive. (author)

  3. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0035] Decommissioning of Nuclear Power Reactors AGENCY... the NRC's regulations relating to the decommissioning process for nuclear power reactors. The revision... Commission (NRC) is issuing Revision 1 of regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power...

  4. Record keeping for the decommissioning of nuclear facilities: Guidelines and experience

    International Nuclear Information System (INIS)

    2002-01-01

    This report covers record keeping for the decommissioning of nuclear facilities. Nuclear facilities include large commercial facilities such as nuclear power plants or chemical nuclear facilities (e.g. for fabrication and reprocessing), but also include smaller facilities such as research reactors and medical, industrial and other research facilities. Special attention may be needed for these small facilities owing to factors such as the low priority given to decommissioning by research teams and the possibility of poorly recorded structural and operational changes. A focus on research reactors is also important because of their widespread distribution. Two IAEA TECDOCs address record keeping for radioactive waste management and disposal facilities, and therefore these areas are not covered in this report. The objective of this report is to provide information, experience and assistance on how to identify, update as needed and maintain records to assist in the decommissioning of nuclear facilities, including for the decommissioning plan. This report is intended to be useful to policy makers, regulators, owners, operators, decommissioning contractors and other interested parties. Record keeping is an integral part of overall QA or quality management programmes, and this is emphasized in this report. This report also indicates the possible consequences of not maintaining adequate records. This report describes the needs and the sources of the records for decommissioning (Section 3) and the process of identifying and selecting these records (Section 4). Section 5 considers the records from the decommissioning process itself and their retention, while Section 6 deals with QA, organization and responsibilities. The Records Management System (RMS) is dealt with in Section 7 and the management of new records in Section 8. A summary of observations is included in Section 9. The report is complemented by an appendix and annexes that describe case histories

  5. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Elder, H.K.

    1986-05-01

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m 3 ; 89% interim storage, 383 m 3 ). The MOX plant lagoon wastes are Class A waste (2930 m 3 ). All of the wastes from the U-Fab and UF 6 plants are designated as Class A waste (U-Fab 1090 m 3 , UF 6 1259 m 3 )

  6. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  7. Decommissioning Combustible Waste Treatment using Oxygen-Enriched Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byungyoun; Lee, Yoonji; Yun, Gyoungsu; Lee, Kiwon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The aim of the paper is current status of treatment for the decommissioning combustible waste in KAERI and for the purpose of the volume reduction and clearance for decommissioning combustible wastes generated by the decommissioning projects. The incineration technology has been selected for the treatment of combustible wastes. About 34 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. Temperature, pressure of major components, stack gas concentration, i. e., SOx, NOx, CO, CO{sub 2} and HCl, and the residual oxygen were measured. Measured major parameters during normal operation were sustained on a stable status within a criteria operation condition. Oxygen enriched air, 22vol. % (dry basis) was used for stable incineration. The volume reduction ratio has achieved about 1/117. The incineration with decommissioning radioactive combustible waste is possible with moderate oxygen enrichment of 22 vol.% (dry basis) into the supply air. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas. The pressure, off-gas flow and temperature of major components remained constant within the range specified. The measures gases and particulate materials in stack were considerably below the regulatory limits. The achieved volume reduction ratio through incineration is about 1/117.

  8. Decommissioning Study of Oskarshamn NPP

    International Nuclear Information System (INIS)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  9. Decommissioning study of Forsmark NPP

    International Nuclear Information System (INIS)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  10. Decommissioning Study of Oskarshamn NPP

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  11. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  12. An outsider's view of decommissioning

    International Nuclear Information System (INIS)

    Wilkie, T.

    1996-01-01

    The decommissioning of nuclear facilities is not just a technical or even a financial issue. Presenting decommissioning as a technically difficult task overcome by superhuman effort on the part of the industry will not gain much credit amongst sophisticated consumers who now require that any complex technology will work and work safely. Any engineering problems are surmountable given the money to find the solution. Some of the financial aspects of decommissioning are worrying, however, given their open-ended nature. The cost of waste disposal is one of these. Despite a lapse of fifty years since the start-up of its first reactor, the United Kingdom is unlikely to have available a repository for the disposal of intermediate level waste until about 2020. Waste disposal is a large consideration in decommissioning and the industry's forecasts of cost in this area lack credibility in the light of a poor track record in financial prediction. Financial engineering in the form of the segregated fund set up in March 1996 to cover the decommissioning of nuclear power stations in the United Kingdom is likely to provide only short term reassurance in the light of doubts about a credible future for nuclear power. This lack of confidence over the wider problems of nuclear power creates particular problems for decommissioning which go beyond technical difficulties and complicate financial considerations. (UK)

  13. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the United Kingdom, good progress has been made with the Windscale Advanced Gas-cooled Reactor and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  14. Regulations by the DFTCE concerning the Fund for the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    1985-02-01

    These Regulations were made by the Federal Ministry of Transport, Communications and Energy in implementation of the Ordinance of 5 December 1983 establishing a fund for the decommissioning of nuclear installations. They specify the way in which nuclear operators must contribute to the fund and the method for calculating the contributions. The costs of decommissioning also include dismantling and disposal of the resulting waste. The Regulations entered into force retroactively, on 1 January 1984, on the same date as the 1983 Ordinance. (NEA) [fr

  15. Radioactive waste management plan during the TRIGA Mark II and III decommissioning

    International Nuclear Information System (INIS)

    Jung, K.J.; Park, S.K.; Geong, G.H.; Lee, K.W.; Chung, U.S.; Paik, S.T.

    2001-01-01

    The decontamination and decommissioning (D and D) project of TRIGA Mark-I and Mark-II (KRR 1 and 2) was started in January 1997 and will be completed by December 2002. In the first year of the project, work was performed in preparation of the decommissioning plan, start of the environmental impact assessment and setup licensing procedure and documentation for the project with cooperation of the Korea Institute of Nuclear Safety (KINS). In the second year, Hyundai Engineering Company (HEC) with British Nuclear Fuels pie (BNFL) as technical assisting partner was designated as the contractor to do design and licensing documentation for the D and D of both reactors. After pre-design, a hazard and operability (HAZOP) study checked each step of the work. At the end of 1998, the decommissioning plan documentation including environmental impact assessment report was finished and submitted to the Ministry of Science and Technology (MOST) for licensing. It is expected to be issued by the end of September 1999. Practical work will then be started around the end of 1999. The safe treatment and management of the radioactive waste arising from the D and D activities is of utmost importance for successful completion of the practical dismantling work. This paper summarizes general aspects of radioactive waste treatment and management plan for the TRIGA Mark-I and II decommissioning work. (author)

  16. Preliminary plan for decommissioning - repository for spent nuclear fuel; Preliminaer plan foer avveckling - slutfoervar foer anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Hallberg, Bengt; Tiberg, Liselotte (Studsvik Nuclear AB, Nykoeping (Sweden))

    2010-06-15

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable

  17. Aspects of nuclear waste management

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-10-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (au)

  18. A nuclear inspector's perspective on decommissioning at UK nuclear sites

    International Nuclear Information System (INIS)

    Robinson, I.F.

    1999-01-01

    The legislative framework used to regulate decommissioning of nuclear facilities in the UK is described. Pre-licensing requirements are outlined and the operation of a nuclear site licence is described. Mention is made of safety assessment and the published principles which are NII's view of what constitutes good practice within the nuclear industry. HSE's approach to the regulation of nuclear decommissioning is described before discussing issues associated with optioneering, the timing of decommissioning, occupational doses and public doses. It is noted that the professional approach taken by the nuclear industry within the framework of the existing regulatory requirements has resulted in considerable reductions in occupational dose over the last few years. The de-licensing process is described in the context of terminating a licensee's period of responsibility for safety, and principles by which 'no danger' may be judged are described. Impending new legislation on environmental impact assessment in relation to decommissioning nuclear reactors is mentioned. It is concluded that a powerful and flexible method of regulatory control is in place with regard to nuclear decommissioning. (author)

  19. Prospects of nuclear waste management and radioactive waste management

    International Nuclear Information System (INIS)

    Koprda, V.

    2015-01-01

    The policy of radioactive waste management in the Slovak Republic is based on the principles defined by law on the National Nuclear Fund (NJF) and sets basic objectives: 1 Safe and reliable nuclear decommissioning; 2 The minimization of radioactive waste; 3. Selection of a suitable fuel cycle; 4 Safe storage of radioactive waste (RAW) 5 Security chain management of radioactive waste and spent nuclear fuel (SNF); 6 Nuclear safety; 7 The application of a graduated approach; 8 Respect of the principle 'a polluter pays'; 9 Objective decision-making process; 10 Responsibility. In connection with the above objectives, it appears necessary to build required facilities that are listed in this article.

  20. Final generic environmental impact statement on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This final generic environmental impact statement was prepared as part of the requirement for considering changes in regulations on decommissioning of commercial nuclear facilities. Consideration is given to the decommissioning of pressurized water reactors, boiling water reactors, research and test reactors, fuel reprocessing plants (FRPs) (currently, use of FRPs in the commercial sector is not being considered), small mixed oxide fuel fabrication plants, uranium hexafluoride conversion plants, uranium fuel fabrication plants, independent spent fuel storage installations, and non-fuel-cycle facilities for handling byproduct, source and special nuclear materials. Decommissioning has many positive environmental impacts such as the return of possibly valuable land to the public domain and the elimination of potential problems associated with increased numbers of radioactively contaminated facilities with a minimal use of resources. Major adverse impacts are shown to be routine occupational radiation doses and the commitment of nominally small amounts of land to radioactive waste disposal. Other impacts, including public radiation doses, are minor. Mitigation of potential health, safety, and environmental impacts requires more specific and detailed regulatory guidance than is currently available. Recommendations are made as to regulatory decommissioning particulars including such aspects as decommissioning alternatives, appropriate preliminary planning requirements at the time of commissioning, final planning requirements prior to termination of facility operations, assurance of funding for decommissioning, environmental review requirements. 26 refs., 7 figs., 68 tabs

  1. Preliminary nuclear decommissioning cost study

    International Nuclear Information System (INIS)

    Sissingh, R.A.P.

    1981-04-01

    The decommissioning of a nuclear power plant may involve one or more of three possible options: storage with surveillance (SWS), restricted site release (RSR), and unrestricted site use(USU). This preliminary study concentrates on the logistical, technical and cost aspects of decommissioning a multi-unit CANDU generating station using Pickering GS as the reference design. The procedure chosen for evaluation is: i) removal of the fuel and heavy water followed by decontamination prior to placing the station in SWS for thiry years; ii) complete dismantlement to achieve a USU state. The combination of SWS and USU with an interim period of surveillance allows for radioactive decay and hence less occupational exposure in achieving USU. The study excludes the conventional side of the station, assumes waste disposal repositories are available 1600 km away from the station, and uses only presently available technologies. The dismantlement of all systems except the reactor core can be accomplished using Ontario Hydro's current operating, maintenance and construction procedures. The total decommissioning period is spread out over approximately 40 years, with major activities concentrated in the first and last five years. The estimated dose would be approximately 1800 rem. Overall Pickering GS A costs would be $162,000,000 (1980 Canadian dollars)

  2. Very low level waste disposal in France. A key tool for the management for decommissioning wastes in France

    Energy Technology Data Exchange (ETDEWEB)

    Duetzer, Michel [Andra - Agence Nationale pour la Gestion des Dechets Radioactives, Chatenay-Malabry (France). Direction Industrielle

    2015-07-01

    At the end of the 90{sup th}, France had to deal with the emerging issue of the management of wastes resulting from decommissioning operations of nuclear facilities. A specific regulation was issued and Andra, the French National Radioactive Waste Management Agency, developed a dedicated near surface disposal facility to accommodate very low level radioactive wastes. After more than 10 years of operation, this facility demonstrated it can provide efficient and flexible solutions for the management of decomissioning wastes.

  3. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    Neri, Emilio; French, Amanda; Urso, Maria Elena; Deffrennes, Marc; Rothwell, Geoffrey; ); Rehak, Ivan; Weber, Inge; ); Carroll, Simon; Daniska, Vladislav

    2016-01-01

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  4. Impact of the decommissioning of nuclear facilities and radioactive waste trafficking in Africa

    International Nuclear Information System (INIS)

    Abukabar, B. G.

    2007-01-01

    Africa is the world's second largest and the most populated continent after Asia, it has a total population of approximately 800 million people. It comprises of 54 sovereign nations out of which 36 are coastal countries and blessed with over 100 Seaports. Apart from Nigeria, South Africa, Egypt, Libya, Morocco, Tunisia and Libya, all the other remaining African countries are extremely poor and unviable. As a result of this, Africa has been experiencing a lot of civil unrest since the 1960s when most of the African countries gained their independence from their former colonial masters, the civil unrest in countries like Angola, Democratic Republic of Congo, Sudan, Burundi, Rwanda, Mozambique, Liberia, Sierra Leon and recently in Cote D'Ivoire, are good examples. In addition to abject poverty of less than 1$ per person per day makes trafficking in drugs, arms, humans and weaponry trade on the continent becomes much more rampant. Today the continent is experiencing the coming of a new evil deal called 'Trade in radioactive waste'; which involves the transporting of materials from existing or decommissioned nuclear plants ranging from fairly used Trucks, laboratory equipment s, office facilities, clothing materials like booths and raincoats, roofing sheets and even toxic waste from the developed countries to it's waste bin in Africa, where it is unsafely disposed after collecting millions of dollars from It's original owners (UN report, 2001). Recent statistics have revealed that most of the people involved in the evil businesses of trafficking in drugs, human, arms and trading in weaponry, are diverting in to the so called new evil business of 'Trade in Radioactive waste' because this new evil business financially exceeds the rest of the above listed evil businesses. This is clearly proved by the recent toxic waste disposed in Abidjan Cot Devoir in August 2006. The materials from the decommissioned nuclear plant sites can be hazardous if for example a roofing sheet

  5. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  6. Regulatory aspects of nuclear reactor decommissioning

    International Nuclear Information System (INIS)

    Ross, W.M.

    1990-01-01

    The paper discusses the regulatory aspects of decommissioning commercial nuclear power stations in the UK. The way in which the relevant legislation has been used for the first time in dealing with the early stages of decommissioning commercial nuclear reactor is described. International requirements and how they infit with the UK system are also covered. The discussion focusses on the changes which have been required, under the Nuclear Site Licence, to ensure that the licensee carries out of work of reactor decommissioning in a safe and controlled manner. (Author)

  7. Decommissioning and dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Pelzer, N.

    1993-01-01

    The German law governing decommissioning and dismantling of nuclear installations can be called to be embryonic as compared to other areas of the nuclear regulatory system, and this is why the AIDN/INLA regional meeting organised by the German national committee in July 1992 in Schwerin has been intended to elaborate an assessment of the current legal situation and on this basis establish proposals for enhancement and development, taking into account the experience reported by experts from abroad. The proceedings comprise the paper of the opening session, 'Engineering and safety aspects of the decommissioning of nuclear installations', and the papers and discussions of the technical sessions entitled: - Comparative assessment of the regulatory regimes. - Legislation governing the decommissioning of nuclear installations in Germany. - Analysis of the purpose and law making substance of existing regulatory provisions for the decommissioning of nuclear installations. All seventeen papers of the meeting have been prepared for separate retrieval from the database. (orig./HSCH) [de

  8. Nuclear decommissioning: A problem that won't go away

    International Nuclear Information System (INIS)

    Lenssen, N.

    1999-01-01

    The problem of shutdown reactors is growing steadily. As of the beginning of 1999, 94 reactors have been shutdown, only 429 were in operation, meaning that one out of 5.5 reactors ever built was permanently closed. Yet only a handful of these have actually been dismantled. Some countries as Japan and USA, have announced their policies that hey plan to dismantle their reactors in a decade or two after closure. Other countries like Canada or France intend to wait several decades. At the extreme United Kingdom decided to wait more than 100 years. This old shutdown reactors could become a near permanent fixture in some countries. The problem is that, the longer the reactors run, the more radioactive their interiors become, the more difficult, dangerous and expensive is to dismantle the plants, to store and bury the residual radioactive waste. Despite some early real experience with the cost of decommissioning plants, it still remains uncertain just what those costs will be and who will pay. Estimates of the dismantling cost have ranged from 10% of the initial capital investment up to 40% and even 100%. Thus, decommissioning could become the largest remaining expense facing the nuclear industry and the governments who have supported it, particularly if efforts to confine radioactive waste fail. The challenge facing the human societies is to keep nuclear waste including the shuttered plants in isolation for the many millennia that make up the hazardous life of these materials. In this light, no matter what becomes of nuclear power, the nuclear age will continue for a very long time

  9. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  10. International Good Practice on Practical Implementation of Characterisation in Decommissioning. Radiological Characterization in Decommissioning of Nuclear Facilities: International Good Practice on Practical Implementation

    International Nuclear Information System (INIS)

    Larsson, A.; Empdage, M.; Weber, I.; )

    2017-01-01

    Within the Nuclear Energy Agency (NEA), the Working Party on Decommissioning and Dismantling (WPDD) operates under the umbrella of the Radioactive Waste Management Committee (RWMC). The WPDD provides a focus for the analysis of decommissioning policy, strategy and regulation, including the related issues of waste management, release of buildings and sites from regulatory control and associated cost estimation and funding. WPDD also convenes task groups comprised of experts from the NEA member countries to review related topics such as characterisation techniques which support decommissioning and associated waste management. The Task Group on Radiological Characterisation and Decommissioning was established in 2011 to identify and present characterisation good practice at different stages of decommissioning and to identify areas that could, or should, be developed further through international cooperation and coordination. By the end of 2016 two phases of work will be complete. The first phase developed strategic guidance for decision makers on the selection and tailoring of strategies for radiological characterisation, which gives an overview of good practice for radiological characterisation at different phases of the life cycle of a nuclear installation. The second phase has focused on strategies for practical implementation of radiological characterisation from a waste and materials end-state perspective. This paper provides a summary of the phase 2 findings, covering: -) a major international survey (questionnaire) to elicit the views of characterisation experts regarding good practice; -) Learning drawn from recent international case studies; -) The collation and analysis of regulations, standards and guidance documents; -) Learning distilled from an international conference on characterisation co-organised by the task group; and -) Overall conclusions regarding characterisation good practice, recommendations and identified areas for further international

  11. Waste generated by the future decommissioning of the Magurele VVR-S Research Reactor

    International Nuclear Information System (INIS)

    Dragolici, F.; Turcanu, C.N.; Dragolici, A.C.

    2001-01-01

    Nuclear Research Reactor WWR-S from the National Institute of Research and Development for Physics and Nuclear Engineering 'Horia Hulubei', Bucharest-Magurele, was commissioned in July 1957 and it was shut down in December 1997. At the moment the reactor is in conservation state. During its operation this reactor worked at an average power of 2MW, almost 3216 h/year, producing a total thermal power of 230 x 10 3 MWh. No major modifications or improvements were made during the 40 years of operation to the essential parts of the reactor, respective to the primary cooling system, reactor vessel, active core and electronic devices. So, all components of the measure, control and protection systems are old, generally at the technical level of the 1950s, therefore a reason why in December 1997 the operation was ceased. At present, the reactor can be considered, by IAEA definition in the first stage (reactor shut down, but the vital functions are maintained and monitored). The survey is related to the second stage - restrictive use of the area. To develop a real decommissioning project, it was first necessary to evaluate the volume and the characteristics of the radioactive waste which will be generated. Radioactive waste generated during the decommissioning of Magurele WR-S research reactor may be classified as: Activated wastes (internal structures, horizontal channels and thermal column, biological shield); Contaminated wastes (primary circuit non-activated components, hot cells, some technological rooms as main hall, pumps room, radioactive material transfer areas, ventilation building and stack); Possibly contaminated materials from any area of reactor building and ventilation building. After 40 years of nuclear research activities, all such areas are suspected of contamination. The volume of wastes that will result from WWR-S Research Reactor decommissioning is summarized

  12. Reasons for immediate decommissioning of all nuclear facilities put forward by union members

    International Nuclear Information System (INIS)

    Scheer, J.

    1988-01-01

    The author presents his arguments against the use of nuclear energy from the health hazard point of view, describing the damaging effects of radioactive radiation as a result of increasing environmental radioactivity due to the operation of nuclear installations, or as a consequence of nuclear accidents. The economic problems resulting from an immediate decommissioning of nuclear power plants - development of electricity demand and costs - are judged to be solvable, and decommissioning, the author says, would create new jobs. Another immediate response to the latest irregularities disclosed in the nuclear waste management industry should be to establish public supervisory bodies consisting of non-biased experts who can be found in ecologic research institutes or in other independent monitoring and measuring institutions. (HSCH) [de

  13. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, Cristina

    2016-01-01

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  14. License stewardship and other approaches to commercial nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Daly, P.T.; Moloney, B.P.

    2011-01-01

    This paper addresses the challenge of how our industry could arrange itself to deliver decommissioning of Nuclear Power Plants (NPPs) safely, in good time and affordably. There is a growing wealth of experience across the world in safe decommissioning techniques. Most - arguably all - of the techniques required to perform the full decommissioning of NPPs have been demonstrated on full-scale projects. Waste processing and disposal challenges remain in many countries, where the major issues are societal acceptance and political will. Interim storage possibilities have been identified in most countries. In decommissioning, the outstanding significant issues lie now in the domain of affordability and risk management. This paper will illustrate approaches to decommissioning with examples from the US and UK, to explore how the industry can achieve configurations to deliver lower risk and improved affordability for utilities. Different configurations, or models, will be used to illustrate the approaches taken. (orig.)

  15. Application of Regulation for recycling metals arising from Decommissioning of an Italian Nuclear Facility - Application of national regulations for metallic materials' recycling from the decommissioning of an Italian nuclear facility

    International Nuclear Information System (INIS)

    Varasano, Giovanni; Baldassarre, Leonardo; Petagna, Edoardo

    2014-01-01

    The start of the decommissioning of nuclear Italian sites requires proper management of clearance for large volumes of metallic materials. This paper describes the current legal framework relating to the Italian regulatory system of reference for the verification of the conditions of unconditional release of materials from nuclear installations, with particular reference to the recycling of metals. The definition of clearance levels, whether general or specific, ensures the clearance of materials arising from nuclear sites without further examinations. The Italian legislation on radiation protection requires that the removal of materials from authorized practices be subject to special requirements included in the authorization provisions. These requirements provide clearance levels that take account of the recommendations and technical guidelines supplied by the European Commission. The regulatory framework requires compliance with current technical and managerial requirements, issued by the National Regulatory Authority and annexed to the Ministerial Authorization, in which are shown the levels of surface activity and specific activity established for the unconditional release of metals from nuclear sites. The real challenge for the nuclear operator is the management of large amounts of waste materials arising from decommissioning activities. For the Italian operator SOGIN SpA is of extreme importance the correct application of national regulatory framework, in order to allow the most effective reduction of the amount of radioactive waste during decommissioning activities. (authors)

  16. Unrestricted re-use of decommissioned nuclear laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, R; Noynaert, L; Harnie, S; Marien, J

    1996-09-18

    A decommissioning strategy was developed by the Belgian Nuclear Research Centre SCK/CEN. In this strategy decommissioning works are limited to the radioactive parts of the nuclear installation. After obtaining an attestation for unrestricted reuse of the building after removal of all radioactivity, the building can be used for new industrial purposes outside the nuclear field. The decommissioning activities according to this strategy have been applied in four buildings. The results are described.

  17. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    International Nuclear Information System (INIS)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-01

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample

  18. Governments' role in decommissioning nuclear power facilities

    International Nuclear Information System (INIS)

    Guindon, S.; Wendling, R.D.; Gordelier, S.; Soederberg, O.; Averous, J.; Orlando, D.

    2005-01-01

    Many nuclear power plants will reach the end of their operating lives over the next 20 years; some may be life-extended, others may not. This development will precipitate enhanced industrial and regulatory activities in the area of decommissioning. We are also witnessing in many countries a significant shift in the role of government itself: new pressures on governments, such as enhanced attention on environmental impact/mitigation and strategies to implement market-oriented approaches in a variety of sectors, including the energy sector are driving the public policy agenda. The paper will examine the range of policy issues, drawing from recent NEA studies on decommissioning policies and the recent NEA study on Government and Nuclear Energy and, strategies and costs, and other current trends and developments in the nuclear industry and in the nuclear policy fields. The paper will reflect on issues to be addressed during the conference and draw conclusions on the appropriate role of government in this area. Decommissioning policy is very specific and focused: it is not a high level policy/political issue in most instances and rarely gets the same attention as the issue surrounding the future of nuclear energy itself and public concerns regarding safety, waste and economics. One reason why decommissioning does not get the same attention as for example disposal of spent nuclear fuel might be the fact that technology is available for decommissioning, while technology for disposal of spent nuclear fuel is under development. High profile or not, it will remain an important issue for governments and industry alike particularly because of the cost and long lead times involved. In some instances, governments are the owners of the facilities to be decommissioned. In addition, decommissioning factors into issues surrounding the economics of nuclear energy and the sustainability of the nuclear option. Based on results of the Tarragona Seminar (Spain, September 2-4, 2003) and

  19. Developing and initiating a public engagement process for a nuclear decommissioning and waste management program

    International Nuclear Information System (INIS)

    Badke, C.; Johnson, C.; Brooks, S.; MacCafferty, M.

    2011-01-01

    Public consultation is key to any major nuclear initiative, but how do you engage the public in a complex multi-site nuclear decommissioning and environmental restoration program that will last 70 years? A clear message of sound environmental stewardship throughout the process is critical to building the trust required to attract public interest and support. The Nuclear Legacy Liabilities Program (NLLP) manages Canada's nuclear legacy liabilities at Atomic Energy of Canada Limited (AECL) sites and is funded by the Government of Canada through Natural Resources Canada (NRCan). The objective of the NLLP is to safely and cost-effectively reduce the federal legacy liabilities and associated risks, based on sound waste management and environmental principles, in the best interest of Canadians. An important area of focus for the NLLP in both the short- and long-term is to inform the public, stakeholders and Aboriginal people about the Program, and to gather input on the long-term strategy for site restoration and waste management. This paper describes progress made to date on developing and initiating a public engagement process for the NLLP in the initial phase of the Program. Furthermore, it examines general best practices for public participation, specific challenges and opportunities which have been identified, as well as the next steps for communications activities related to the Program. (author)

  20. Decommissioning of multiple-reactor stations: facilitation by sequential decommissioning

    International Nuclear Information System (INIS)

    Moore, E.B.; Smith, R.I.; Wittenbrock, N.G.

    1982-01-01

    Reductions in cost and radiation dose can be achieved for decommissionings at multiple reactor stations because of factors not necessarily present at a single reactor station: reactors of similar design, the opportunity for sequential decommissioning, a site dedicated to nuclear power generation, and the option of either interim or permanent low-level radioactive waste storage facilities onsite. The cost and radiation dose reductions occur because comprehensive decommissioning planning need only be done once, because the labor force is stable and need only be trained once, because there is less handling of radioactive wastes, and because central stores, equipment, and facilities may be used. The cost and radiation dose reductions are sensitive to the number and types of reactors on the site, and to the alternatives selected for decommissioning. 3 tables

  1. Software development to support decommissioning and waste management strategic planning

    International Nuclear Information System (INIS)

    Williams, John; Warneford, Ian; Harrison, J.

    1997-01-01

    One of the components of the UKAEA's mission is to care for and, at the appropriate time, safely dismantle its radioactive facilities which are no longer in use. To assist in the development of an optimised strategy, AEA Technology was commissioned to produce decision support software. This paper describes the background to the development of the software, its key features and current status, and the lessons learnt during the development. The software, known as UKAEA SPS (Strategic Planning System), is a unique support software package that has been developed to assist in the planning of decommissioning and radioactive waste management. SPS models linked decommissioning and waste management strategies covering all of UKAEA's nuclear liabilities. It has been developed around the database package ACCESS, and runs on Pentium PCs; however, it has many of the features of project planning systems. Its principal outputs are costs, timings and utilisation data for the waste stores, processing facilities, transport and disposal operations displayed at any level of aggregation. This allows programme managers to see easily the effects of changing key parameters in a strategy under development. (author)

  2. Options for Enhancing Education, Training and Knowledge Management for Decommissioning

    International Nuclear Information System (INIS)

    Roberts, John

    2017-01-01

    UK Nuclear Sites: Decommissioning: 26 Magnox Reactors, 2 Fast Reactors; Operational: 14 AGRs, 1 PWR; 9.6 GWe Total Capacity. Nuclear Technology Education Consortium (NTEC) Decommissioning Modules: N04 Decommissioning, Radioactive Waste and Environmental Management; N07 Nuclear Safety Case Development; N08 Particle & Colloid Engineering in the Nuclear Industry; N09 Policy, Regulation & Licensing; N10 Processing, Storage & Disposal of Nuclear Waste; N31 Management of the Decommissioning Process; N01 Reactor Physics, Criticality & Design; N02 Nuclear Fuel Cycle; N03 Radiation & Radiological Protection; N06 Reactor Materials & Lifetime Behaviour; N11 Radiation Shielding; N12 Reactor Thermal Hydraulics; N13 Criticality Safety Management; N23 Environmental Impact Assessment; N32 Experimental Reactor Physics

  3. Approaches of Knowledge Management System for the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Iguchi, Y.; Yanagihara, S.; Kato, Y.; Tezuka, M.; Koda, Y.

    2016-01-01

    Full text: The decommissioning of a nuclear facility is a long term project, handling information beginning with design, construction and operation. Moreover, the decommissioning project is likely to be extended because of the lack of the waste disposal site. In this situation, as the transfer of knowledge to the next generation is a crucial issue, approaches of knowledge management (KM) are necessary. For this purpose, the total system of decommissioning knowledge management system (KMS) is proposed. In this system, we should arrange, organize and systematize the data and information of the plant design, maintenance history, trouble events, waste management records etc. The collected data, information and records should be organized by computer support systems. It becomes a base of the explicit knowledge. Moreover, measures of extracting tacit knowledge from retiring employees are necessary. The experience of the retirees should be documented as much as possible through effective questionnaire or interview process. In this way, various KM approaches become an integrated KMS as a whole. The system should be used for daily accumulation of knowledge thorough the planning, implementation and evaluation of decommissioning activities and it will contribute to the transfer of knowledge. (author

  4. The SGHWR decommissioning project-waste strategy

    International Nuclear Information System (INIS)

    Graham, G.; Napper, M.

    1999-01-01

    Every facility must reach a stage in the decommissioning process where low-level waste (LLW) becomes the major factor in the decommissioning costs, therefore a cost-effective strategy for dealing with the waste must be sought. This paper describes the waste management strategy process that was carried out at the steam generating heavy water reactor (SGHWR) at Winfrith in Dorset. Obviously, each facility will have its own specific radiological problems, with its own unique fingerprint, which will have to be addressed, and, therefore, the optimum waste management strategy will differ for each facility. However, from the work done at SGHWR, it can be seen that it is possible to formulate a structured approach for dealing with LLW which meets the requirements of all stake holders, is safe, technically acceptable, cost-effective, and, furthermore, is equally applicable to other plants. (author)

  5. Decommissioning: the final folly

    International Nuclear Information System (INIS)

    Dibdin, T.

    1990-01-01

    The Second International Seminar on Decommissioning of Nuclear Facilities held in London is reviewed. Various solutions to the reactor decommissioning, including isolating the reactor core, and turning the surrounding buildings into a theme park, are mentioned. The International Atomic Energy Agency identifies three decommissioning stages. Stage 1, defuelling; Stage 2 dismounting of non-radioactive plant with isolation of the nuclear island and Stage 3, return to a 'green field' site. The real debate is about waste management and timing of the stages - whether to defer Stage 3 for a century or so, or even whether to attempt Stage 3 at all. Cost estimation is also discussed. In the United Kingdom, the timing of completion of the deep repository for high level waste will affect the timing. (UK)

  6. Decommissioning in British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    Colquhoun, A.

    1988-01-01

    Decommissioning projects at the BNFL Sellafield site have been selected taking the following into account; the need to gain experience in preparation for the decommissioning of the Magnox reactors and for the post Magnox stage; the need to develop larger scale projects; the need to be cost effective and to foster long term safety. The balance between prompt or delayed decommissioning has to consider operator dose uptake and radioactive waste management. The ten year plan for decommissioning at Sellafield is described briefly. Currently decommissioning is of the fuel pond and decanning plant, the Windscale Pile Chimneys, the coprecipitation plant and the uranium recovery plant. (author)

  7. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    International Nuclear Information System (INIS)

    Barariu, G.; Giumanca, R.

    2006-01-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. In accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to ensure the

  8. Russian nuclear-powered submarine decommissioning

    International Nuclear Information System (INIS)

    Bukharin, O.; Handler, J.

    1995-01-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems

  9. Decommissioning of four small nuclear waste storage buildings and an evaporation plant

    International Nuclear Information System (INIS)

    Hedvall, R.H.; Ellmark, C.; Stocker, P.

    2008-01-01

    A small-scale decommissioning concept was applied with staff from an earlier project wish strong knowledge of radiation protection, minimized radiation doses and environmental pollution. The project was therefore initiated with less than 10 people involved using standard hand held equipment. The aim of the decommissioning project was to set free as much material as possible, i.e. remove waste from the regulatory control regime and also free the remaining structures and buildings for conventional demolition and subsequent reuse of the property. Complete decommissioning will be concluded at the end of 2008 when all waste is taken case of. This is the fourth in a series of important decommissioning projects in Studsvik since the 1980s. Some of the conclusions are: 1) Obtain a group with well-known personnel that have been working together before for the entire project For a project larger than this, project management assistant would have made follow-up more efficient. Experts in instrumentation and statistics are also important. Also important is knowledge about practical decisions that would make the project more efficient in terms of time. Interviews and historical facts are important when choosing which nuclides are of most interest for measurements (but be critic). 2) Be sure all authoritative requirements are followed, like setting up a work environment plan at the entrance to the site and placing a fence around the work site. 3) Check all individual radiation exposures before project start and do whole body measurements both before and after the project. Urine samples should be taken if alpha contamination is a risk. 4) Calculate for unwanted and 'not what you expected' situations in the time schedule. 5) Be aware of contaminations and radiation sources outside the actual area. They might have to be moved. 6) Calculate and order bins and containers for waste storage well in advance. Stay informed of the updated amount of waste and keep it in locked storage. 7

  10. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  11. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  12. Decommissioning of nuclear power plants and research reactors. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    Radioactive waste is produced in the generation of nuclear power and the use of radioactive materials in industry, research and medicine. The importance of the safe management of radioactive waste for the protection of human health and the environment has long been recognized, and considerable experience has been gained in this field. The IAEA's Radioactive Waste Safety Standards Programme aimed at establishing a coherent and comprehensive set of principles and requirements for the safe management of waste and formulating the guidelines necessary for their application. This is accomplished within the IAEA Safety Standards Series in an internally consistent set of publications that reflect an international consensus. The publications will provide Member States with a comprehensive series of internationally agreed publications to assist in the derivation of, and to complement, national criteria, standards and practices. The Safety Standards Series consists of three categories of publications: Safety Fundamentals, Safety Requirements and Safety Guides. With respect to the Radioactive Waste Safety Standards Programme, the set of publications is currently undergoing review to ensure a harmonized approach throughout the Safety Standards Series. This Safety Guide addresses the subject of decommissioning of nuclear power plants and research reactors. It is intended to provide guidance to national authorities and operating organizations for the planning and safe management of the decommissioning of such installations. This Safety Guide has been prepared through a series of Consultants and Technical Committee meetings. It supersedes former Safety Series publications Nos 52, 74 and 105

  13. Cost for the radioactive wastes from nuclear power

    International Nuclear Information System (INIS)

    1989-06-01

    The future cost for handling, storing and disposing of radioactive wastes from the Swedish nuclear power plants are calculated in this report. The following plants and systems are already operating: - Transportsystem for radioactive wastes. - A control spent fuel intermediate storage plant. - A repository for low and medium level wastes. These are planned: - A treatment plant for used fuels. A repository for high-level wastes and repository for decommissioning wastes. The costs include Rand D and decommissioning. Total future costs from 1990 are estimated to be 43 billion SEK (6,5 billion dollars), during 60 years. Up to 1990 7,4 billion SEK (1,1 billion dollars) have been spent. (L.E.)

  14. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  15. Nuclear power plant decommissioning costs in perspective

    International Nuclear Information System (INIS)

    Rothwell, Geoffrey; Deffrennes, Marc; Weber, Inge

    2016-01-01

    At the international level, actual experience is limited in the completion of nuclear power plant decommissioning projects. Cost data for decommissioning projects are thus largely unavailable, with few examples of analyses or comparisons between estimates and actual costs at the project level. The Nuclear Energy Agency (NEA) initiated a project to address this knowledge gap and in early 2016 published the outcomes in the report on Costs of Decommissioning Nuclear Power Plants. The study reviews decommissioning costs and funding practices adopted by NEA member countries, based on the collection and analysis of survey data via a questionnaire. The work was carried out in co-operation with the International Atomic Energy Agency (IAEA) and the European Commission (EC). (authors)

  16. The IAEA Safety Regime for Decommissioning

    International Nuclear Information System (INIS)

    Bell, M.J.

    2002-01-01

    Full text of publication follows: The International Atomic Energy Agency is developing an international framework for decommissioning of nuclear facilities that consists of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, and a hierarchy of Safety Standards applicable to decommissioning. The Joint Convention entered into force on 18 June 2001 and as of December 2001 had been ratified by 27 IAEA Member States. The Joint Convention contains a number of articles dealing with planning for, financing, staffing and record keeping for decommissioning. The Joint Convention requires Contracting Parties to apply the same operational radiation protection criteria, discharge limits and criteria for controlling unplanned releases during decommissioning that are applied during operations. The IAEA has issued Safety Requirements document and three Safety Guides applicable to decommissioning of facilities. The Safety Requirements document, WS-R-2, Pre-disposal Management of Radioactive Waste, including Decommissioning, contains requirements applicable to regulatory control, planning and funding, management of radioactive waste, quality assurance, and environmental and safety assessment of the decommissioning process. The three Safety Guides are WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, WS-G-2.2, Decommissioning of Medical, Industrial and Research Facilities, an WS-G-2.4, Decommissioning of Nuclear Fuel Cycle Facilities. They contain guidance on how to meet the requirements of WS-R-2 applicable to decommissioning of specific types of facilities. These Standards contain only general requirements and guidance relative to safety assessment and do not contain details regarding the content of the safety case. More detailed guidance will be published in future Safety Reports currently in preparation within the Waste Safety Section of the IAEA. Because much material arising during the decommissioning

  17. The cost of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    This report sets out the results of a National Audit Office investigation to determine the extent of the potential Government liability for nuclear decommissioning, how this is to be financed and the possible implications for the taxpayer. Further effort are needed to improve the nuclear industry's estimates, improve efficiency and face up to the costs of decommissioning. This should also ensure that the full cost of nuclear energy is identified. (author)

  18. Classifying decommissioning wastes for allocation to appropriate final repositories

    International Nuclear Information System (INIS)

    Alder, J.C.; Tunaboylu, K.

    1982-01-01

    For the safe disposal of radioactive wastes in different repositories, it is of advantage to classify them in well-defined conditioned categories, appropriate for final disposal. These categories, the so-called waste sorts are characterized by similar radionuclide distribution, similar nuclide-specific activity concentrations and similar waste matrix. A methodology is presented for classifying decommissioning wastes and is applied to the decommissioning wastes arising from a Swiss program of 6 GWe. The amounts and nuclide-specific activity inventories of the decommissioning waste sorts have been estimated. A first allocation into two different repository types has been performed. Such a classification enables one to define the source parameters for repository safety analysis and allows one to allocate the different waste categories into appropriate final repositories. This work presents a first iteration to determine which waste sorts belong to which repository type. The characteristics of waste sorts have to be better defined and the protective strength of the repository barriers has to be optimized. 7 references, 2 figures, 4 tables

  19. Development for recycle of dismantled metal wastes by decommissioning of NPP

    International Nuclear Information System (INIS)

    Asami, Tomohiro; Sato, Hiroshi; Hatakeyama, Mutsuo

    2007-01-01

    For recycle of dismantled metal wastes generated by the decommissioning of nuclear power plant, we examined a melting test for melting characterization of stainless steel scrap, designed the conceptual process to produce the recycle products, and developed a recycle cost evaluation code which is useful to make a rational planning for the waste management program (cost, determination of process, etc.) of these metal wastes. This report gives the summary of these development carried out from 2001 to 2005. This work was performed under the sponsorship of Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  20. KONTEC 2013. 11{sup th} international symposium on 'Conditioning of radioactive operational and decommissioning waste' and 11{sup th} BMBF status report on 'Decommissioning and demolition of nuclear facilities'; KONTEC 2013. 11. internationales Symposium 'Konditionierung radioaktiver Betriebs- und Stilllegungsabfaelle' einschliesslich 11. Statusbericht des BMBF 'Stilllegung und Rueckbau kerntechnischer Anlagen'. Veranstaltungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2013-06-15

    KONTEC 2013 was held in Dresden on 13 to 15 March 2013. The 11{sup th} event organized under this heading dealt with the subjects of 'Conditioning of Radioactive Operational and Decommissioning Waste' and 'Decommissioning and Demolition of Nuclear Facilities' including the R and D Status Report by the Federal Ministry of Education and Research (BMBF) on the same subject. The conference was attended by an international audience from 19 countries. The program included plenary sessions on these 4 key topics: - Disposal of Radioactive Residues from Nuclear Facilities' Operation and Decommissioning. - Decommissioning and Dismantling of Nuclear Facilities. - Facilities and Systems for the Conditioning of Operational and Decommissioning Wastes. - Transport, Interim and Final Storage of Non-heat Generating Wastes (i.e. Konrad). These sessions were accompanied by poster sessions and short presentations under the heading of 'Kontec Direct.' The best presentations of the categories Plenary Session Presentation, Poster Presentation and Kontec-Direct have been awarded. In detail, 'Dismantling of Russian nuclear powered submarines' by Detlef Mietann, 'Requalification of 'Old Packages' for the Konrad Repository Described for the Model Case of Packages from Storage Annex A and Repackaging of Containers Holding Compacts in Hall 2 of the GNS Plant' by Martina Koessler, Sebastian Schwall and Pascal Budriks, and 'Electrochemical process development for cleaning organic, C-14-labelled waste solutions' by Hans-Juergen Friedrich. (orig.)

  1. Nuclear Waste Management under Approaching Disaster: A Comparison of Decommissioning Strategies for the German Repository Asse II.

    Science.gov (United States)

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans-Peter

    2017-07-01

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has resulted in the identification of three possible so-called decommissioning options: complete backfilling, relocation of the waste to deeper levels in the mine, and retrieval. The selection of a decommissioning strategy must compare expected investment costs with expected social damage costs (economic, environmental, and health damage costs) caused by flooding and subsequent groundwater contamination. We apply a cost minimization approach that accounts for the uncertainty regarding the stability of the rock formation and the risk of an uncontrollable brine intrusion. Since economic and health impacts stretch out into the far future, we examine the impact of different discounting methods and rates. Due to parameter uncertainty, we conduct a sensitivity analysis concerning key assumptions. We find that retrieval, the currently preferred option by policymakers, has the lowest expected social damage costs for low discount rates. However, this advantage is overcompensated by higher expected investment costs. Considering all costs, backfilling is the best option for all discounting scenarios considered. © 2016 Society for Risk Analysis.

  2. Decommissioning and Waste Disposal Programme of NPP Krsko - How to Proceed in the Future

    International Nuclear Information System (INIS)

    Mele, I.; Zeleznik, N.; Levanat, I.; Lokner, V.

    2006-01-01

    By the agreement between Slovenia and Croatia on the ownership and exploitation of the NPP Krsko, which is effective since March 2003, the decommissioning and the disposal of spent fuel and low and intermediate level waste from NPP Krsko is the responsibility of both countries. In article 10 the agreement requires that within a year after putting it into force both parties jointly prepare a decommissioning and waste disposal programme with more detailed elaboration of these issues. According to these requirements such a programme was prepared by the waste management organisations from both countries - APO from Croatia and ARAO from Slovenia - and in March 2004 submitted to the Intergovernmental Commission for adoption. Later in 2004 the document was accepted also by both Governments and in Croatia also by the Parliament. By the agreement it is also anticipated that the decommissioning and waste disposal programmes be revised at least every 5 years. Such an approach is quite common and practiced in many countries, and some countries prepare revisions even more frequently. The purpose of these new revisions is two folded: on one hand to improve the technical solutions for the decommissioning as well as for waste disposal by including new or better known data and new technological developments and experience, and on the other hand to update the cost calculation of these future nuclear liabilities. Having in mind that these cost estimations are made for the rather distant future it is extremely important that regular updating and adjustment of estimates be performed in order to meet the future needs. Although the Decommissioning and Waste Disposal Programme has just recently passed the adoption procedure and its implementation has not yet been fully achieved, the time of the next revision is approaching fast. To make good progress in the next revision serious preparations including some strategic decisions should start immediately. The programme from 2004 was prepared

  3. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    International Nuclear Information System (INIS)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2013-01-01

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices of the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)

  4. Technologies for gas cooled reactor decommissioning, fuel storage and waste disposal. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1998-09-01

    Gas cooled reactors (GCRs) and other graphite moderated reactors have been important part of the world's nuclear programme for the past four decades. The wide diversity in status of this very wide spectrum of plants from initial design to decommissioning was a major consideration of the International Working group on Gas Cooled Reactors which recommended IAEA to convene a Technical Committee Meeting dealing with GCR decommissioning, including spent fuel storage and radiological waste disposal. This Proceedings includes papers 25 papers presented at the Meeting in three sessions entitled: Status of Plant Decommissioning Programmes; Fuels Storage Status and Programmes; waste Disposal and decontamination Practices. Each paper is described here by a separate abstract

  5. Preparation for Ignalina NPP decommissioning

    International Nuclear Information System (INIS)

    Medeliene, D.

    2004-01-01

    Latest developments of atomic energy in Lithuania, works done to prepare Ignalina NPP for final shutdown and decommissioning are described. Information on decommissioning program for Ignalina NPP unit 1, decommissioning method, stages and funding is presented. Other topics: radiation protection, radioactive waste management and disposal. Key facts related to nuclear energy in Lithuania are listed

  6. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem

  8. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem.

  9. Shippingport Station Decommissioning Project Start of Physical Decommissioning

    International Nuclear Information System (INIS)

    Crimi, F. P.

    1987-01-01

    The Shippingport Atomic Power Station consists of the nuclear steam supply system and associated radioactive waste processing systems, which are owned by the United States Department of Energy, and the turbine-generator and balance of plant, which is owned by the Duquesne Light Company. The station is located at Shippingport, Pennsylvania on seven acres of land leased by DOE from Duquesne Light Company. The Shippingport Station Decommissioning Project is being performed under contract to the DOE by the General Electric Company and its integrated subcontractor, Morrison-Knudsen Company. as the Decommissioning Operations Contractor. This paper describes the current status of the physical decommissioning work, which started September 1985. The preparations required to start a major decommissioning work effort in a safe and cost effective manner are discussed including the development and implementation of a cost/schedule control system. The detailed plan required to ensure that people, property, and procedures are ready in sufficient time to support the start of physical decommissioning is also discussed. The total estimated cost of the Shippingport Station Decommissioning Project should be $98.3 M, with the Project scheduled for completion in April 1990. As the decommissioning of the first commercial-scale nuclear power plant, the Shippingport Project is expected to set the standard for safe, cost-effective demolition of nuclear plants

  10. Management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Code of Practice defines the minimum requirements for the design and operation of structures, systems and components important for the management of radioactive wastes from thermal neutron nuclear power plants. The topics covered include design and operation of gaseous, liquid and solid waste systems, waste transport, storage and disposal, decommissioning wastes and wastes from unplanned events

  11. Development of computer program for estimating decommissioning cost - 59037

    International Nuclear Information System (INIS)

    Kim, Hak-Soo; Park, Jong-Kil

    2012-01-01

    The programs for estimating the decommissioning cost have been developed for many different purposes and applications. The estimation of decommissioning cost is required a large amount of data such as unit cost factors, plant area and its inventory, waste treatment, etc. These make it difficult to use manual calculation or typical spreadsheet software such as Microsoft Excel. The cost estimation for eventual decommissioning of nuclear power plants is a prerequisite for safe, timely and cost-effective decommissioning. To estimate the decommissioning cost more accurately and systematically, KHNP, Korea Hydro and Nuclear Power Co. Ltd, developed a decommissioning cost estimating computer program called 'DeCAT-Pro', which is Decommission-ing Cost Assessment Tool - Professional. (Hereinafter called 'DeCAT') This program allows users to easily assess the decommissioning cost with various decommissioning options. Also, this program provides detailed reporting for decommissioning funding requirements as well as providing detail project schedules, cash-flow, staffing plan and levels, and waste volumes by waste classifications and types. KHNP is planning to implement functions for estimating the plant inventory using 3-D technology and for classifying the conditions of radwaste disposal and transportation automatically. (authors)

  12. Decommissioning Facility Characterization DB System

    International Nuclear Information System (INIS)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S.

    2010-01-01

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  13. Decommissioning Facility Characterization DB System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  14. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  15. Architecture for a new age of nuclear waste and decommissioning

    International Nuclear Information System (INIS)

    Barrie, D.

    1995-01-01

    Plans to decommission the Trawsfynydd Nuclear Reactor and bury the remaining structure, restoring the site to its previous natural appearance, are set out in this booklet. The ''Poweto Change'' project is a cooperative venture, drawing together architects, engineers, artists and the local communities of Trawsfynydd and Blaenaum Ffestiniog. Plans for reusing parts of the power plants structures to recreate a media centre are discussed and illustrated. (author)

  16. Waste management for the Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station Decommissioning Project (SSDP) is being performed by the US Department of Energy (DOE) with the objectives of placing the station in a radiologically safe condition, demonstrating safe and cost effective dismantlement and providing useful data for future decommissioning projects. This paper describes the development of the Waste Management Plan which is being used for the accomplishment of the SSDP. Significant aspects of the Plan are described, such as the use of a process control and inventory system. The current status of waste management activities is reported. It is concluded that SSDP has some unique aspects which will provide useful information for future decommissioning projects

  17. Nuclear waste : Is everthing under control ?

    OpenAIRE

    Giuliani, Gregory; De Bono, Andréa; Kluser, Stéphane; Peduzzi, Pascal

    2007-01-01

    50 years after the opening of the world's first civil nuclear power station, very little radioac- tive waste produced has been permanently disposed of. Moreover, the average age of today's reactors is approximately 22 years, meaning most of them will be decommissioned over the next decades. All of these wastes will have to be disposed of even if no more nuclear reactors are built. But is it wise to take further advantage of the “nuclear path”, without proven and widely-utilized solutions to t...

  18. Decommissioning of nuclear installations - regulations - financing - responsibility - insurance

    International Nuclear Information System (INIS)

    Hubert, E.H.; Andersson, C.; Deprimoz, J.; Mayoux, J.C.; Richard, M.; Sartorelli, C.; Nocera, F.

    1983-01-01

    This paper highlights three aspects of decommissioning of nuclear installations which relate, more or less directly, to legal options already applied or advocated. It reviews the regulatory conditions for decommissioning a nuclear installation and indicates legal provisions for financing decommissioning expenditures. It also describes the legal provisions to determine liabilities in case of nuclear damage and the assistance which insurers may provide to cover the consequences of such liabilities. (NEA) [fr

  19. Financial aspects of decommissioning

    International Nuclear Information System (INIS)

    Chirica, T.; Havris, A.

    2003-01-01

    European Commission adopted recently two proposals of Directives designed to pave the way for a Community approach to the safety of nuclear power plants and the processing of radioactive waste. Nuclear safety cannot be guaranteed without making available adequate financial resources. With regard, in particular, to the decommissioning of nuclear facilities, the Directive defines the Community rules for the establishment, management and use of decommissioning funds allocated to a body with legal personality separate from that of the nuclear operator. In order to comply with the acquis communautaire, Romanian Government issued the Emergency Ordinance no. 11/2003 which set up the National Agency for Radioactive Waste (ANDRAD) and soon will be established the financial mechanism for raising the necessary funds. Societatea Nationala 'Nuclearelectrica' S.A. operates, through one of its branches, Cernavoda NPP Unit 1 and has to prepare its decommissioning strategy and to analyze the options to assure the financing for covering the future costs. The purpose of this paper is to clarify the financial systems' mechanisms to the satisfaction of the nuclear operator obligations, according to the disbursement schedule foreseen by decommissioning projects . The availability of cash to pay for all the decommissioning expenditure must be foreseen by setting up assets and establishing a suitable financing plan. The different practices of assets management shall be presented in this paper on the basis of the international experience. Some calculation samples shall be given as an illustration. (author)

  20. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  1. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process.

  2. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J.

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  3. Decommissioning and dismantling of nuclear and fuel cycle facilitites in Spain

    International Nuclear Information System (INIS)

    Gravalos, J.M.; Alamo, S.

    1992-01-01

    In the recent past, and as a consequence of a fire in the turbine island of the Vandellos I Graphite Gas type Nuclear Plant, which damaged the facility to a point that recovery was not judged economically feasible, the authorities decided on the final shutdown of the plant. Several studies were performed in order to select the dismantling strategy to be adopted. In spite of Valdellos I being the first commercial reactor to be decommissioned in Spain, several research reactors and fuel cycle facilities, which have reached the end of their commercial lives, are at present at different stages of their dismantling and decommissioning process as is described further. The development of an exemption policy for below regulatory concern wastes is considered a very significant issue regarding decommissioning as it has a large impact on radioactive waste volumes, and thus on costs. Aware of this problem ENRESA together with Spanish regulatory authorities are working in close cooperation with CEC research programs to complete the development of criteria and methodologies for the application of exemption practices in Spain

  4. Prospective needs for decommissioning commercial nuclear facilities

    International Nuclear Information System (INIS)

    Stevens, G.H.; Yasui, M.; Laraia, M.

    1992-01-01

    The answers to the questions: How many reactors will face the end of their operating lifetime over the next few decades? To what extent are the issues of decommissioning urgent? The answers will lead us to those issues that should be tackled now in order to complete smoothly the decommissioning of commercial nuclear power plants. The prospective needs for decommissioning of nuclear power plants are illustrated from the viewpoint of reactor age, and some of the issues to be tackled, in particular by governments, in this century are discussed, to prepare for the future decommissioning activities. (author) 18 refs.; 2 figs.; 2 tabs

  5. SGN's Dismantling and Decommissioning engineering, projects experience and capabilities

    International Nuclear Information System (INIS)

    Destrait, L.

    1998-01-01

    Its experience in waste treatment, conditioning, storage and disposal, its cooperation with CEA and COGEMA Group in license agreements give SGN expertise in the decommissioning field. SGN's experience and background in all areas of nuclear facility decommissioning, such as chemical and mechanical cells, nuclear advanced reactors, reprocessing facilities result in fruitful references to the customers. The poster is presenting different achievements and projects with SGN's participation such as: - The decommissioning of Windscale Advanced Gas cooled Reactors (WAGR), in particular providing methodology and equipment to dismantle the Pressure and Insulation Vessel of the reactor. - The decommissioning plan of Ignalina (Lithuania) and Paldiski (Estonia), defining strategies, scenarios, necessary equipments and tools and choosing the best solutions to decommission the site under different influencing parameters such as cost, dose rate exposure, etc... - Th One Site Assistance Team (OSAT) at Chernobyl regarding the preparation works for the waste management and decommissioning of the plant. - The decommissioning of French nuclear facilities such as reprocessing (UP1) and reactor (EL4) plants. The important experience acquired during the facility management and during the first dismantling and decommissioning operations is an important factor for the smooth running of these techniques for the future. The challenge to come is to control all the operations, the choice of strategies, the waste management, the efficiency of tools and equipments, and to provide nuclear operators with a full range of proven techniques to optimise costs and minimize decommissioning personnel exposure. (Author)

  6. Cost for the radioactive wastes from nuclear power

    International Nuclear Information System (INIS)

    1992-06-01

    The future cost for handling, storing and disposing of radioactive wastes from the Swedish nuclear power plants are calculated in this report. The following plants and systems are already operating: * Transport system for radioactive wastes, * A control spent fuel intermediate storage plant, * A repository for low and medium level wastes. These are planned: * A treatment plant for used fuels, * A repository for high-level wastes, and * Repository for decommissioning wastes. The costs include R and D and decommissioning. Total future costs from 1993 are estimated to be 46.4 billion SEK (8.3 billion USD), during 60 years. Up to 1992 8.7 billion SEK (1.6 billion USD) have been spent

  7. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  8. Radiation safety for decommissioning projects

    International Nuclear Information System (INIS)

    Ross, A.C.

    1999-01-01

    Decommissioning of redundant nuclear facilities is a growth area in the UK at the present time. NUKEM Nuclear Limited is a leading-edge nuclear decommissioning and waste management contractor (with its own in-house health physics and safety department), working for a variety of clients throughout the UK nuclear industry. NUKEM Nuclear is part of the prestigious, international NUKEM group, a world-class organization specializing in nuclear engineering and utilities technologies. NUKEM Nuclear is involved in a number of large, complex decommissioning projects, both in its own right and as part of consortia. This paper explores the challenges presented by such projects and the interfaces of contractor, client and subcontractors from the point of view of a radiation protection adviser. (author)

  9. The European Community's research and development activities on the management of radioactive waste from decommissioning

    International Nuclear Information System (INIS)

    Huber, B.

    1984-01-01

    The Commission of the European Communities is conducting an R and D programme on the decommissioning of nuclear power plants. The activities carried out within this framework that concern, in particular, management of the radioactive waste arising from the decommissioning are outlined. Characterization of the radioactivity inventory of nuclear power plants at the end of their useful life is of fundamental importance in this context. Research in this field comprises analyses of the trace elements in reactor materials which are relevant for the formation of long-lived radionuclides by neutron activation, as well as examinations of samples taken from activated and contaminated plant components. Most of the radioactive plant components are only surface contaminated. Highly efficient decontamination techniques are being developed with the objective of achieving conditions permitting unrestricted release of the material treated. Other activities concern the conditioning of steel and concrete waste for disposal, and the management of graphite waste from gas-cooled reactors. Large containers are being developed for transport and disposal of radioactive components. Finally, the methods of radiological evaluation and measurement are being studied which are required to decide whether material from the dismantling of nuclear power plants has to be disposed of as radioactive waste or not. (author)

  10. Decommissioning of nuclear facilities by the United States Department of Energy Oak Ridge Field Office

    International Nuclear Information System (INIS)

    DeLozier, M.F.P.

    1992-01-01

    The Oak Ridge Field Office of the United States Department of Energy is projecting one of the largest decommissioning efforts in the nation during the next ten to twenty years. The nuclear facilities are varied with respect to the types of contaminants and types of structures and equipment involved. The facilities planned for decommissioning include 26 ORNL facilities (e.g., OGR, HRE, MSRE), 70 facilities at Oak Ridge K25 site, and the Y-12 plant at Oak Ridge. Innovative technologies are required to decommission the facilities and dispose of the waste generated. (R.P.)

  11. Funding nuclear-power-plant decommissioning. Final report

    International Nuclear Information System (INIS)

    Burns, R.E.; Henderson, J.S.; Pollard, W.; Pryor, T.; Chen, Y.M.

    1982-10-01

    The report is organized according to the steps that one might go through when analyzing funding of decommissioning costs. The first step in analyzing decommissioning costs might be to review the present regulatory framework within which decommissioning cost decisions must be made. A description is presented of the present NRC regulations that address the decommissioning of a nuclear power plant. A description is also presented of recent public utility commission activities concerning funding the costs of decommissioning. Possible future trends in NRC regulation are also discussed. The estimation of decommmissioning costs is analyzed. A description of each of the possible decommissoining options is presented. The options of decommissioning include immediate dismantlement, various types of safe storage, and entombment. A discussion is presented of cost estimations for each decommissioning option for nuclear units containing pressurized water reactors and boiling water reactors. A description is included of the various methods of collecting funds for decommissioning as well as a discussion of their possible regulatory treatment. Material is presented which will provide the reader with background information that might assist state utility commissioners or their staffs in choosing or evaluating one of the financial mechanisms for covering decommissioning costs

  12. Decommissioning of naval nuclear ships

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1993-10-01

    During the next decade the two major nuclear powers will each have to decommission more than 100 naval nuclear vessels, in particular submarines. The problems connected with this task is considered in this report. Firstly the size of the task is considered, i.e. the number of nuclear vessels that has to be decommissioned. Secondly the reactors of these vessels, their fuel elements, their power level, the number of reactors per vessel and the amount of radioactivity to be handled are discussed. Thirdly the decommissioning procedures, i.e. The removal of fuel from the vessels, the temporary storage of the reactor fuel near the base, and the cleaning and disposal of the reactor and the primary circuit components are reviewed. Finally alternative uses of the newer submarines are briefly considered. It should be emphasizes that much of the detailed information on which this report is based, may be of dubious nature, and that may to some extent affect the validity of the conclusions of the report. (au)

  13. UK-Nuclear decommissioning authority and US Salt-stone waste management issues

    International Nuclear Information System (INIS)

    Lawless, William; Whitton, John

    2007-01-01

    Available in abstract form only. Full text of publication follows: We update two case studies of stakeholder issues in the UK and US. Earlier versions were reported at Waste Management 2006 and 2007 and at ICEM 2005. UK: The UK nuclear industry has begun to consult stakeholders more widely in recent years. Historically, methods of engagement within the industry have varied, however, recent discussions have generally been carried out with the explicit understanding that engagement with stakeholders will be 'dialogue based' and will 'inform' the final decision made by the decision maker. Engagement is currently being carried out at several levels within the industry; at the national level (via the Nuclear Decommissioning Authority's (NDA) National Stakeholder Group (NSG)); at a local site level (via Site Stakeholder Groups) and at a project level (usually via the Best Practicable Environmental Option process (BPEO)). This paper updates earlier results by the co-author with findings from a second questionnaire issued to the NSG in Phase 2 of the engagement process. An assessment is made regarding the development of stakeholder perceptions since Phase 1 towards the NDA process. US: The US case study reviews the resolution of issues on salt-stone by Department of Energy's (DOE) Savannah River Site (SRS) Citizens Advisory Board (CAB), in Aiken, SC. Recently, SRS-CAB encouraged DOE and South Carolina's regulatory Department of Health and Environmental Control (SC-DHEC) to resolve a conflict preventing SC-DHEC from releasing a draft permit to allow SRS to restart salt-stone operations. It arose with a letter sent from DOE blaming the Governor of South Carolina for delay in restarting salt processing. In reply, the Governor blamed DOE for failing to assure that Salt Waste Processing Facility (SWPF) would be built. SWPF is designed to remove most of the radioactivity from HLW prior to vitrification, the remaining fraction destined for salt-stone. (authors)

  14. Experience gained in the management of radioactive waste from maintenance, decontamination and partial decommissioning of a reprocessing plant and conclusions resulting for the management of radioactive wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Hild, W.

    1983-01-01

    After a short description of the historical background of Eurochemic, its main tasks and the various operational phases, a detailed description of the waste management principles applied is presented. The practical experience in the waste treatment is reported for both the operational phase of the reprocessing plant and its decontamination and partial decommissioning after shutdown. Based on this experience and the presented data, an assessment of the practical operations is made and conclusions are drawn. Finally, recommendations are formulated both for the general waste management policy and the practical waste treatment processes in nuclear power reactors. (author)

  15. Radioactive waste management, decommissioning, spent fuel storage. V. 1. Waste management principles, decommissioning, dismantling, operations in hot environment

    International Nuclear Information System (INIS)

    1985-01-01

    This book deals mainly with decommissioning problems concerning more particularly dismantling and decontamination techniques, and radioactive waste processing. Radioactive waste management in France and the French regulation are tackled. Equipments developed for works in hostile environment are also presented [fr

  16. Monitoring programmes for unrestricted release related to decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1992-01-01

    Decommissioning of nuclear facilities usually results in a large volume of radioactive and non-radioactive materials. All these materials will have to be segregated as radioactive, non-radioactive and exempt from regulatory control, and then disposed of, reused or recycled. As more and more facilities approach decommissioning, controlling these wastes and setting release criteria and limits for these materials will represent a major task for the regulatory body and the licensee. Efforts are, therefore, under way at the IAEA to help achieve international consensus on the release criteria for decommissioning and a monitoring programme to verify compliance with these criteria. Within the above context, the present report was conceived as a technical document to provide an overview of all the factors to be considered in the development, planning and implementation of a monitoring programme to assure regulatory compliance with criteria for unrestricted release of materials, buildings and sites from decommissioning. The report is intended as a planning document for the owners, operators and regulatory bodies involved in decommissioning. 41 refs, 4 figs, 2 tabs

  17. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  18. Program change management during nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Bushart, Sean; Kim, Karen; Naughton, Michael

    2011-01-01

    Decommissioning a nuclear power plant is a complex project. The project involves the coordination of several different departments and the management of changing plant conditions, programs, and regulations. As certain project Milestones are met, the evolution of such plant programs and regulations can help optimize project execution and cost. This paper will provide information about these Milestones and the plant departments and programs that change throughout a decommissioning project. The initial challenge in the decommissioning of a nuclear plant is the development of a definitive plan for such a complex project. EPRI has published several reports related to decommissioning planning. These earlier reports provided general guidance in formulating a Decommissioning Plan. This Change Management paper will draw from the experience gained in the last decade in decommissioning of nuclear plants. The paper discusses decommissioning in terms of a sequence of major Milestones. The plant programs, associated plans and actions, and staffing are discussed based upon experiences from the following power reactor facilities: Maine Yankee Atomic Power Plant, Yankee Nuclear Power Station, and the Haddam Neck Plant. Significant lessons learned from other sites are also discussed as appropriate. Planning is a crucial ingredient of successful decommissioning projects. The development of a definitive Decommissioning Plan can result in considerable project savings. The decommissioning plants in the U.S. have planned and executed their projects using different strategies based on their unique plant circumstances. However, experience has shown that similar project milestones and actions applied through all of these projects. This allows each plant to learn from the experiences of the preceding projects. As the plant transitions from an operating plant through decommissioning, the reduction and termination of defunct programs and regulations can help optimize all facets of

  19. Decommissioning of nuclear power facilities

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Yashchenko, Ya.V.

    2005-01-01

    This is the first manual in Ukraine giving the complete review of the decommissioning process of the nuclear power facilities including the issues of the planning, design documentation development, advanced technology description. On the base of the international and domestic experience, the issues on the radwaste management, the decontamination methods, the equipment dismantling, the remote technology application, and also the costs estimate at decommissioning are considered. The special attention to the personnel safety provision, population and environment at decommissioning process is paid

  20. Eastern and Central Europe Decommissioning, ECED 2015 - Book of Abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    Scientific conference deals with problems of reactor decommissioning and radioactive waste management in the Central Europe. The Conference included the following sessions: (1): Characterisation and Radioactive Waste Management; (2) Managerial Aspects of Decommissioning; (3) JAVYS Experience with Back-End of Nuclear Power Engineering - Progress in Last 2 Years; (4) Decommissioning Planning and Costing and Education; (5) Technical Aspects of Decommissioning; (6) Radioactive Waste Management; (4) Poster Session. The Book of Abstracts contains two invitation speeches and 30 abstracts.

  1. Preliminary study of the environmental radiological assessment for the Garigliano nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Esposito, A.M.; Sabbarese, C.; Sirignano, C.; Visciano, L.; D'Onofrio, A.D.; Lubritto, C.; Terrasi, F.

    2002-01-01

    In the last few years many nuclear installations in the world have been stopped either because they reached the end of production lifetime, or for operation problems or, like in Italy, for political decisions. This stop started the decommissioning procedure. It consists in the dismantling of the nuclear installation with appropriate controls and limitations of environmental and radiological impact which arises from these operations. The evaluation of risk and the actions needed for the population safeguard are generally inspired to the recommendations of the International Commission on Radiological Protection (ICRP), but each country faces the problem with different evaluation methodologies and calculations. That is due to different laws and environmental, social and economical context where nuclear installations are located. For this, the decommissioning operations must be separately evaluated for each nuclear installation. In this paper, we present the work carried out so far about the decommissioning of the Nuclear Power Plant of Garigliano (Caserta, Italy), which is managed by SoGIN (Societa di Gestione degli Impianti Nucleari). This Nuclear Power Plant began its activity in 1964 by using a boiling water reactor with a production of 160 MW electric power. In 1979 this nuclear installation was stopped for maintenance and operation has not been resumed until the referendum in 1986, after which all Italian nuclear plants were stopped. Now, the Nuclear Power Plant of Garigliano has the reactor isolated respect to the remaining part and all components and pipes have been drained and sealed. The underground tanks of radioactive wastes have been evacuated and decontaminated. The radioactive wastes have been completely conditioned with cementification in drums suitable to prevent outside release

  2. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    International Nuclear Information System (INIS)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-01

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites

  3. Regulations and financing for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Kumakura, Osamu

    1981-01-01

    The purpose of this report is to survey the French legislation concerning the decommissioning of nuclear facilities and the method of financing for it. There is no clause in French regulations, which states any specific criterion or licensing procedure for the proper decommissioning. The legal problems in this domain are treated within the general regulation system on atomic energy. The decommissioning of nuclear facilities is carried out in accordance with the licensing procedure for constructing nuclear facilities or the permission procedure for operating them, according to the ''Decree on nuclear installations, 1963''. The works for the final shut-down and decommissioning are regarded as the modification to the safety report or the general operation instructions, and new permit is required. In the case that the radioactivity of substances after decommissioning is above the criteria of the Decree, 1963, the new license is required. In the case of below the criteria, the facilities are governed by the ''Act on installations classified for environmental protection, 1976''. The ''Decree on general radiation protection, 1966'', the ''Decree on radiation protection of workers in nuclear installations, 1975'', the ''Ministerial order on transport of dangerous materials, 1945'', and two ministerial orders on radioactive effluent discharge, 1974, are applied to the decommissioning works. (Kako, I.)

  4. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Alvarez, A.; Correa, E.; Navarro, N.; Sancho, C.; Angeles, A.

    2000-01-01

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  5. Decommissioning of DR 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N.

    2009-02-15

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  6. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  7. Discussion on management of decommissioning funds for nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hailiang

    2013-01-01

    Decommissioning funding is one of the major issues with regard to the policy and management of nuclear power. This paper describes current status of decommissioning of nuclear power plants in some foreign countries and narrates the practices in these countries on the estimation of decommissioning cost, the retrieval and management of decommissioning funds, and the guarantee of fund sufficiency. Based on a brief analysis of the status of decommissioning funding management for nuclear power plants in China, suggestions on tasks or activities needed to be carried out at present in the field of decommissioning funding are proposed. (authors)

  8. The preliminary planning for decommissioning nuclear facilities in Taiwan

    International Nuclear Information System (INIS)

    Li, K.K.

    1993-01-01

    During the congressional hearing in 1992 for a $7 billion project for approval of the fourth nuclear power plant, the public was concerned about the decommissioning of the operating plants. In order to facilitate the public acceptance of nuclear energy and to secure the local capability for appropriate nuclear backend management, both technologically and financially, it is important to have preliminary planning for decommissioning the nuclear facilities. This paper attempted to investigate the possible scope of decommissioning activities and addressed the important regulatory, financial, and technological aspects. More research and development works regarding the issue of decommissioning are needed to carry out the government's will of decent management of nuclear energy from the cradle to the grave

  9. Decommissioning of nuclear facilities: a growing activity in the world

    International Nuclear Information System (INIS)

    Anasco, Raul

    2001-01-01

    Nuclear power plants and nuclear facilities are no different from normal buildings and factories. Eventually, they become worn-out or old fashioned, too expensive to maintain or remodel. Decommissioning a nuclear facility is different from retiring other types because of the radioactivity involved. The most important consideration in nuclear decommissioning is to protect workers and the public from exposure to harmful levels of radiation. General criteria and strategies for the decommissioning of nuclear facilities are described as well as the present decommissioning activities of the Argentine CNEA (author)

  10. Magnox Electric plc's strategy for decommissioning its nuclear licensed sites

    International Nuclear Information System (INIS)

    2002-02-01

    The 1995 White Paper 'Review of Radioactive Waste Management Policy: Final Conclusions', Cm 2919, determined that the Government would ask all nuclear operators to draw up strategies for the decommissioning of their redundant plant and that the Health and Safety Executive (HSE) would review these strategies on a quinquennial basis in consultation with the environment agencies. This review has considered Magnox Electric pie (Magnox Electric) arrangements for the identification of its responsibilities for decommissioning and radioactive waste management, the quantification of the work entailed, the standards and timing of the work, and the arrangements to provide the financial resources to undertake the work. This is the second review by the HSE in response to Cm 2919 of Magnox Electric's nuclear power station decommissioning and radioactive waste management strategies and is based on the situation in April 2000. It reports the Nuclear Installations Inspectorate's (NIl) view that the strategies proposed by Magnox Electric are appropriate. The strategies are considered to be largely consistent with both national and international policy statements and guidance, and are potentially flexible enough to be able to accommodate lessons learned during ongoing decommissioning activities. During the review the Nil has considered whether Magnox Electric has identified all the tasks required to fully decommission its sites. Generally this has been found to be the case. Some additional tasks have been identified due, in part, to the reviewers' noting the changes which have recently taken place in environmental expectations. At this time, on the basis of the information presented, and with the provisos stated below, Magnox Electric's provisioning for final dismantling after 85 years is considered to be reasonable. The Nil expects Magnox Electric to further justify why a shorter timescale is not reasonably practicable before the next review. One of the purposes of this review

  11. Project and feedback experience on nuclear facility decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L. [ENRESA (Spain); Benest, T.G. [United Kingdom Atomic Energy Authority, Windscale, Cumbria (United Kingdom); Tardy, F.; Lefevre, Ph. [Electricite de France (EDF/CIDEN), 69 - Villeurbanne (France); Willis, A. [VT Nuclear Services (United Kingdom); Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R. [Belgoprocess (Belgium); Jeanjacques, M. [CEA Saclay, 91 - Gif sur Yvette (France); Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C. [CEA Fontenay aux Roses, 92 (France); Fontana, Ph.; Fraize, G. [CEA Marcoule 30 (France); Seurat, Ph. [AREVA NC, 75 - Paris (France); Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2008-11-15

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  12. Project and feedback experience on nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Santiago, J.L.; Benest, T.G.; Tardy, F.; Lefevre, Ph.; Willis, A.; Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.; Jeanjacques, M.; Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C.; Fontana, Ph.; Fraize, G.; Seurat, Ph.; Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A.

    2008-01-01

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  13. Socio-economic impact of nuclear reactor decommissioning at Vandellos I NPP

    International Nuclear Information System (INIS)

    Liliana Yetta Pandi

    2013-01-01

    Currently nuclear reactors in Indonesia has been outstanding for more than 30 years, the possibility of nuclear reactors will be decommissioned. Closure of the operation or decommissioning of nuclear reactors will have socio-economic impacts. The socioeconomic impacts occur to workers, local communities and wider society. In this paper we report on socio-economic impacts of nuclear reactors decommissioning and lesson learned that can be drawn from the socio-economic impacts decommissioning Vandellos I nuclear power plant in Spain. Socio-economic impact due to decommissioning of nuclear reactor occurs at installation worker, local community and wider community. (author)

  14. Decommissioning analyzis of a university cyclotron

    International Nuclear Information System (INIS)

    Eggermont, G.X.; Buls, N.; Hermanne, A.

    1996-01-01

    In the widespread use of some medical nuclear facilities, such as cyclotrons for isotope production, Life cycle analyzis, including decommissioning, was not taken into account. The structural materials of an accelerator and the concrete shielding of the bunker are activated by neutrons. This could yield a considerable volume of nuclear waste and needs radiation protection concern for occupational workers and the environment during some decennia. At the university of Brussels (WB) a prospective radiation protection and waste analyzis is being made for the later decommissioning of their cyclotron. Only few similar studies have been published. In Belgium future nuclear dismantling operations will be submitted to a radiation protection authorization procedure. Meanwhile the nuclear waste authorities insist on dismantling planning, including financial provisioning. An optimization exercise was made at the VUB-cyclotron, taking into account international trends to clearance levels for low level nuclear waste. Conceptual prevention opportunities e.g. selective material choice could be identified for future accelerator constructions. (author)

  15. Computer System Analysis for Decommissioning Management of Nuclear Reactor

    International Nuclear Information System (INIS)

    Nurokhim; Sumarbagiono

    2008-01-01

    Nuclear reactor decommissioning is a complex activity that should be planed and implemented carefully. A system based on computer need to be developed to support nuclear reactor decommissioning. Some computer systems have been studied for management of nuclear power reactor. Software system COSMARD and DEXUS that have been developed in Japan and IDMT in Italy used as models for analysis and discussion. Its can be concluded that a computer system for nuclear reactor decommissioning management is quite complex that involved some computer code for radioactive inventory database calculation, calculation module on the stages of decommissioning phase, and spatial data system development for virtual reality. (author)

  16. Survey of technology for decommissioning of nuclear fuel cycle facilities. 8. Remote handling and cutting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-03-01

    In nuclear fuel cycle facility decommissioning and refurbishment, the remote handling techniques such as dismantling, waste handling and decontamination are needed to reduce personnel radiation exposure. The survey research for the status of R and D activities on remote handling tools suitable for nuclear facilities in the world and domestic existing commercial cutting tools applicable to decommissioning of the facilities was conducted. In addition, the drive mechanism, sensing element and control system applicable to the remote handling devices were also surveyed. This report presents brief surveyed summaries. (H. Itami)

  17. Technical and cost aspects of radioactive wastes from decommissioning

    International Nuclear Information System (INIS)

    Claes, J.; Menon, S.

    2001-01-01

    The OECD Nuclear Energy Agency's Co-operative Programme on Decommissioning was established in 1985 to share the experience and information emerging from on-going decommissioning projects within member countries. The main aim of the programme is to gather and collate such data, which can then provide the basis for planning the future industrial phase of decommissioning of commercial nuclear plants. Starting with 10 decommissioning projects in 1985, today the programme has 35 participating projects from 12 countries. Apart from exchanging valuable information, task groups have been set up for in-depth analysis and studies of areas of common interest, among which are the recycling of material from decommissioning projects and decommissioning costs. This paper will describe the structure and mode of operation of the programme. Some of the results of the work in the task groups will be presented, with particular emphasis on the management of materials from decommissioning and on decommissioning costs. (author)

  18. Developing a Step Wise Approach to Waste Management and Decommissioning at Sellafield Ltd

    International Nuclear Information System (INIS)

    Weston, Rebecca

    2016-01-01

    Developing a Step Wise Approach to Waste Management and Decommissioning at Sellafield Ltd: • Understand the challenge; • Understand preferred direction of travel; • Characterisation - enabling waste led decommissioning; • Engaging stakeholders; • Focus on the true drivers - alternative ILW approach; • Alternative ILW approach - simplification of waste handling process; • Manage future challenges; • Fit for purpose transport package for decommissioning wastes; • Risk based management framework

  19. Development of decommissioning engineering support system (DEXUS) of the Fugen Nuclear Power Station

    International Nuclear Information System (INIS)

    Iguchi, Yukihiro; Kanehira, Yoshiki; Tochibana, Mitsuo

    2004-01-01

    The Fugen Nuclear Power Station (NPS) was shut down permanently in March 2003, and preparatory activities are underway to decommission the Fugen NPS. An engineering system to support the decommissioning is being developed to create a dismantling plan using state-of-art software such as 3-dimensional computer aided design (3D-CAD) and virtual reality (VR). In particular, an exposure dose evaluation system using VR has been developed and tested. The total system can be used to quantify radioactive waste, to visualize radioactive inventory, to simulate the dismantling plan, to evaluate workload in radiation environments and to optimize the decommissioning plan. The system will also be useful for educating and training workers and for gaining public acceptance. (author)

  20. Towards a safety case for the use of laser cutting in nuclear decommissioning

    International Nuclear Information System (INIS)

    Hilton, P.A.

    2014-01-01

    Some of the requirements in nuclear decommissioning include size reduction of contaminated containers, pipework and other structures manufactured from stainless and other steels. Size reduction is generally performed using mechanical saws or shears, with drawbacks of quick wear, significant applied force, difficult remote operation and addition to contaminated waste mass. The use of lasers for cutting within the context of nuclear decommissioning has been recently demonstrated by TWI and others. In this paper, aspects of drawing together a safety case for using laser beams for cutting in a nuclear decommissioning cell are discussed, via analysis of relevant purpose designed experimental data. Data presented includes assessment of the use of different focal length lenses and the power densities anticipated at distances of up to 3 m from the focal point, as well as beam effects on material behind the cutting zone. An assessment of anticipated material damage from stray beams or unintended exposure to laser light of surrounding items is also presented. Finally materials for effective screening against stray beams during the cutting process have been tested for effectiveness. (authors)

  1. Selection of optimal treatment procedures for non-standard radioactive waste arising from decommissioning of NPP after accident

    Energy Technology Data Exchange (ETDEWEB)

    Strážovec, Roman, E-mail: strazovec.roman@javys.sk [Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava (Slovakia); JAVYS, a.s., Tomášikova 22, 821 02 Bratislava (Slovakia); Hrnčíř, Tomáš [DECOM, a.s., Sibírska 1, 917 01 Trnava (Slovakia); Lištjak, Martin [Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava (Slovakia); VUJE, a.s., Okružná 5, 918 64 Trnava (Slovakia); Nečas, Vladimír [Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava (Slovakia)

    2016-05-15

    The decommissioning of nuclear power plants is becoming a standard industrial activity where the optimization processes of partial activities are inevitable mainly for technical and economic reasons. In Slovakia, the decommissioning of A1 NPP is very specific case because A1 NPP is rare type of NPP (prototype) and furthermore its operation was affected by the accident. A large number of specific non-standard radioactive waste, such as long-time storage cases (hereinafter LSC), that is not usually present within the decommissioning projects of NPP with a regular termination of operation, represent one of the significant consequences of the accident and issues arisen from follow-up activities. The presented article describes the proposal of processing and conditioning of non-standard radioactive waste (such as LSC), together with description of methodology applied in the proposal for update of waste acceptance criteria for the processing and conditioning of radioactive waste (hereinafter RAW) within Bohunice Radioactive waste Treatment and Conditioning Centre (hereinafter RWTC). The results of performed detailed analysis are summarized into new waste acceptance criteria for technological lines keeping in mind safety principles and requirements for protection of operating personnel, the public and the environment.

  2. Summary of some Recent Work on Financial Planning for Decommissioning of Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, Staffan (Swedish Nuclear Power Inspectorate, Stockholm (Sweden)); Sjoeblom, Rolf (Tekedo AB, Nykoeping (Sweden))

    2008-06-15

    The new European Union Environmental Liability Directive (ELD) together with the new standard and the increased awareness of the implications of the statements on Environmental liabilities in the IFRS/IA high-light the need for appropriate planning for decommissioning including cost estimations and waste fund management. These new regulations and standards are in some respects more stringent than the strictly nuclear rules. Consequently, The Swedish Nuclear Power Inspectorate has sought communication with non-nuclear actors in the area, including the participation in the recent meeting Environmental Economics and Investment Assessment 11, 27-30 May, 2008, Cadiz, Spain. The present compilation of publications on decommissioning and associated cost calculations in Sweden was prompted by these contacts. The compilation comprises 14 reports published during the last four years

  3. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    International Nuclear Information System (INIS)

    Ogawa, Ryuichiro; Ishijima, Noboru

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  4. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP Krsko. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for a decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill the decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economic aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling of all activities necessary for the decommissioning of the NPP Krsko are presented. (author)

  5. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP KRSKO. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and the results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economical aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling all activities necessary for the decommissioning of the NPP KRSKO are presented. (author)

  6. Investigations on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Goertz, R.; Bastek, H.; Doerge, W.; Kruschel, K.P.

    1985-01-01

    The study discusses and evaluates safety and licensing related aspects associated with the decommissioning of nuclear power plants. Important decommissioning projects and experiences with relevance to decommissioning are analyzed. Recent developments in the field of decommissioning techniques with the potential of reducing the occupational dose to decommissioning workers are described and their range of application is discussed. The radiological consequences of the recycling of scrap metal arising during decommissioning are assessed. The results may be used to evaluate present licensing practices and may be useful for future licensing procedures. Finally the environmental impact of radionuclide release via air and water pathways associated with decommissioning activities is estimated. (orig.) [de

  7. Principles of record keeping for decommissioning purposes

    International Nuclear Information System (INIS)

    Laraia, M.

    2003-01-01

    At the siting and conceptual design stage of a nuclear facility the first records pertaining to that facility are produced and stored. Subsequent phases in the facility's life cycle (detailed design, construction, commissioning, operation and shutdown) will include the production and retention of a large variety of records. Design, as-built drawings and operational records are essential for safe and efficient operation of any nuclear facility. This set of records is constantly updated and augmented during operation. Records from all phases of a nuclear facility are important for planning its decommissioning. Although not all of these records need to be included explicitly in the decommissioning plan itself, the process of initial, ongoing and final planning utilizes pertinent records for, and ultimately achieves, safe and cost effective decommissioning. When a nuclear facility is shutdown for decommissioning, current operating experience may be lost. Therefore, one important element of planning is to identify, secure and store appropriate operational records to support decommissioning. This process is preferably initiated during the design and construction phase and continues throughout operation including shutdown. Part of the records inventory from operation will become records for decommissioning and it is cost effective to identify these records before final facility shutdown. Experience shows that lack of attention to record keeping may result in an undue waste of time, other resources and additional costs. The newly established Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management recognizes the importance of keeping decommissioning-related records. In addition, the systematic management of records is an essential part of quality assurance and is often a licence condition. A good comprehensive decommissioning records management system (RMS) is one specific application of the broader concepts of 'Protection

  8. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  9. Decommissioning: a problem or a challenge?

    Directory of Open Access Journals (Sweden)

    Mele Irena

    2004-01-01

    Full Text Available With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste management programme for each nuclear facility in time, and financial provisions for implementing such programme should be provided. In this paper a presentation of current decommissioning experience in Slovenia is given. The main problems and difficulties in decommissioning of the Žirovski Vrh Uranium Mine are exposed and the lesson learned from this case is presented. The preparation of the decommissioning programme for the Nuclear Power Plant Krško is also described, and the situation at the TRIGA research reactor is briefly discussed.

  10. A Comparative Perspective on Reactor Decommissioning

    International Nuclear Information System (INIS)

    Devgun, J.S.; Zelmer, R.

    2006-01-01

    A comparative perspective on decommissioning, based on facts and figures as well as the national policies, is useful in identifying mutually beneficial 'lessons learned' from various decommissioning programs. In this paper we provide such a perspective on the US and European approaches based on a review of the programmatic experience and the decommissioning projects. The European countries selected for comparison, UK, France, and Germany, have nuclear power programs comparable in size and vintage to the US program but have distinctly different policies at the federal level. The national decommissioning scene has a lot to do with how national nuclear energy policies are shaped. Substantial experience exists in all decommissioning programs and the technology is in a mature state. Substantial cost savings can result from sharing of decommissioning information, technologies and approaches among various programs. However, the Achilles' heel for the decommissioning industry remains the lack of appropriate disposal facilities for the nuclear wastes. (authors)

  11. Decommissioning standards

    International Nuclear Information System (INIS)

    Crofford, W.N.

    1980-01-01

    EPA has agreed to establish a series of environmental standards for the safe disposal of radioactive waste through participation in the Interagency Review Group on Nuclear Waste Management (IRG). One of the standards required under the IRG is the standard for decommissioning of radioactive contaminated sites, facilities, and materials. This standard is to be proposed by December 1980 and promulgated by December 1981. Several considerations are important in establishing these standards. This study includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include: the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions. 4 refs

  12. Integration of knowledge management system for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Iguchi, Yukihiro; Yanagihara, Satoshi

    2016-01-01

    The decommissioning of a nuclear facility is a long term project, handling information which begins from the design, construction and operation. Moreover, the decommissioning project is likely to be extended because of the lack of the waste disposal site especially in Japan. In this situation, because the transfer of knowledge and education to the next generation is a crucial issue, integration and implementation of a system for knowledge management is necessary in order to solve it. For this purpose, the total system of decommissioning knowledge management system (KMS) is proposed. In this system, we have to arrange, organize and systematize the data and information of the plant design, maintenance history, trouble events, waste management records etc. The collected data, information and records should be organized by computer support system e.g. data base system. It becomes a base of the explicit knowledge. Moreover, measures of extracting tacit knowledge from retiring employees are necessary. The experience of the retirees should be documented as much as possible through effective questionnaire or interview process. The integrated knowledge mentioned above should be used for the planning, implementation of dismantlement or education for the future generation. (author)

  13. Technology and costs for decommissioning the Swedish nuclear power plants

    International Nuclear Information System (INIS)

    1986-05-01

    The study shows that, from the viewpoint of radiological safety, a nuclear power plant can be dismantled immediately after it has been shut down and the fuel has been removed, which is estimated to take about one year. Most of the equipment that will be used in decommissioning is already available and is used routinely in maintenance and rebuilding work at the nuclear power plants. Special equipment need only be developed for dismantlement of the reactor vessel and for demolishing of heavy concrete structures. The dismantling of a nuclear power plant can be accomplished in about five years, with an average labour force of about 200 men. The maximum labour force required for Ringhals 1 has been estimated at about 500 men during the first years, when active systems are being dismantled in a number of fronts in the plant. During the last years when the buildings are being demolished, approximately 50 men are required. In order to limit the labour requirement and the dose burden to the personnel, the material is taken out in as large pieces as possible. The cost of decommissioning a boiling water reactor (BWR) of the size of Ringhals 1 has been estimated to be about MSEK 540 in January 1986 prices, and for a pressurized water reactor (PWR, Ringhals 2) about MSEK 460. The cost for the other Swedish nuclear power plants lie in the range of MSEK 410-760. These are the direct cost for the decommissioning work, to which must be added the costs of transportation and disposal of the decommissioning waste, about 100 000 m/sup3/. These costs have been estimated to be about MSEK 600 for the 12 Swedish reactors. (author)

  14. Proceedings of the international topical meeting on nuclear and hazardous waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the 1988 International Topical Meeting on Nuclear and Hazardous Waste Management. Included are the following articles: Defense radioactive waste management: status and challenges, Secrets of successful siting legislation for low-level radioactive waste disposal facilities, A generic hazardous waste management training program, Status of industry standards for decommissioning of nuclear facilities

  15. 47{sup th} Annual meeting on nuclear technology (AMNT 2016). Key Topics / Enhanced safety and operation excellence and decommissioning experience and Waste management solutions

    Energy Technology Data Exchange (ETDEWEB)

    Salnikova, Tatiana [AREVA GmbH, Erlangen (Germany); Schaffrath, Andreas [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-10-15

    Summary report on the Key Topics ''Enhanced Safety and Operation Excellence'' and ''Decommissioning Experience and Waste Management Solutions'' of the 47{sup th} Annual Conference on Nuclear Technology (AMNT 2016) held in Hamburg, 10 to 12 May 2016. Other Sessions of AMNT 2016 have been and will be covered in further issues of atw.

  16. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities

    International Nuclear Information System (INIS)

    Benjamin, Serge; Descures, Sylvain; Du Pasquier, Louis; Francois, Patrice; Buonarotti, Stefano; Mariotti, Giovanni; Tarakonov, Jurij; Daniska, Vladimir; Bergh, Niklas; Carroll, Simon; AaSTRoeM, Annika; Cato, Anna; De La Gardie, Fredrik; Haenggi, Hannes; Rodriguez, Jose; Laird, Alastair; Ridpath, Andy; La Guardia, Thomas; O'Sullivan, Patrick; ); Weber, Inge; )

    2017-01-01

    The cost estimation process of decommissioning nuclear facilities has continued to evolve in recent years, with a general trend towards demonstrating greater levels of detail in the estimate and more explicit consideration of uncertainties, the latter of which may have an impact on decommissioning project costs. The 2012 report on the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, a joint recommendation by the Nuclear Energy Agency (NEA), the International Atomic Energy Agency (IAEA) and the European Commission, proposes a standardised structure of cost items for decommissioning projects that can be used either directly for the production of cost estimates or for mapping of cost items for benchmarking purposes. The ISDC, however, provides only limited guidance on the treatment of uncertainty when preparing cost estimates. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities, prepared jointly by the NEA and IAEA, is intended to complement the ISDC, assisting cost estimators and reviewers in systematically addressing uncertainties in decommissioning cost estimates. Based on experiences gained in participating countries and projects, the report describes how uncertainty and risks can be analysed and incorporated in decommissioning cost estimates, while presenting the outcomes in a transparent manner

  17. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  18. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  19. The Relevance of Metal Recycling for Nuclear Industry Decommissioning Programmes

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, P.J., E-mail: nea@nea.fr [OECD Nuclear Energy Agency, Paris (France)

    2011-07-15

    The large amount of scrap metal arising from the decommissioning of nuclear facilities may present significant problems in the event that the facility owners seek to implement a management strategy based largely or fully on disposal in dedicated disposal facilities. Depending on whether disposal facilities currently exist or need to be developed, this option can be very expensive. Also, public reluctance to accept the expansion of existing disposal facilities, or the siting of new ones, mean that the disposal option should be used only after a wide consideration of all available management options. A comparison of health, environmental and socio-economic impacts of the recycling of lightly contaminated scrap metal, as compared with equivalent impacts associated with the production of replacement material, suggests that recycling has significant overall advantages. With present-day technologies, a large proportion of the metal waste from decommissioning can be decontaminated to clearance levels because most of the contamination is on or near the surface of the metal. In purely economic terms, it makes little sense for lightly contaminated scrap metal from decommissioning, which tends to be of high quality, to be removed from the supply chain and replaced with metal from newly-mined ore. In many countries, the metal recycling industry remains reluctant to accept metal from decommissioning. In Germany, the recycling industry and the decommissioning industry have worked together to develop an approach whereby such material is accepted for melting and the recycled material and is then used for certain defined end uses. Sweden also uses dedicated melting facilities for the recycling of metal from the nuclear industry. Following this approach, the needs of the decommissioning industry are being met in a way that also addresses the needs of the recycling industry. (author)

  20. A RWMAC commentary on the Science Policy Research Unit Report: UK Nuclear Decommissioning Policy: time for decision

    International Nuclear Information System (INIS)

    Anon.

    1994-04-01

    The Radioactive Waste Management Advisory Committee (RWMAC) is an independent body which advises the Secretaries of State for the Environment, Scotland and Wales, on civil radioactive waste management issues. Chapter 4 of the RWMAC's Twelfth Annual Report discussed nuclear power plant decommissioning strategy. One of the RWMAC's conclusions was that the concept of financial provisioning for power station decommissioning liabilities, which might be passed on to society several generations into the future, deserved further study. A specification for such a study was duly written (Annex 2) and, following consideration of tendered responses, the Science Policy Research Unit (SPRU) at Sussex University, was contracted to carry out the work. The SPRU report stands as a SPRU analysis of the subject. This separate short RWMAC report, which is being released at the same time as the SPRU report, presents the RWMAC's own commentary on the SPRU study. The RWMAC has identified five main issues which should be addressed when deciding on a nuclear plant decommissioning strategy. These are: the technical approach to decommissioning, the basis of financial provisions, treatment of risk, segregation of management of funds, and the need for a wider environmental view. (author)

  1. The Importance of Building and Enhancing Worldwide Industry Cooperation in the Areas of Radiological Protection, Waste Management and Decommissioning

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2006-01-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates) is of vital importance. This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry ' s involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG

  2. The importance of building and enhancing worldwide industry cooperation in the areas of radiological protection, waste management and decommissioning

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2006-01-01

    The slow or stagnant rate of nuclear power generation development in many developed countries over the last two decades has resulted in a significant shortage in the population of mid-career nuclear industry professionals. This shortage is even more pronounced in some specific areas of expertise such as radiological protection, waste management and decommissioning. This situation has occurred at a time when the renaissance of nuclear power and the globalization of the nuclear industry are steadily gaining momentum and when the industry's involvement in international and national debates in these three fields of expertise (and the industry's impact on these debates) is of vital importance. This paper presents the World Nuclear Association (WNA) approach to building and enhancing worldwide industry cooperation in radiological protection, waste management and decommissioning, which is manifested through the activities of the two WNA working groups on radiological protection (RPWG) and on waste management and decommissioning (WM and DWG). This paper also briefly describes the WNA's participatory role, as of Summer 2005, in the International Atomic Energy Agency (IAEA) standard development committees on radiation safety (RASSC), waste safety (WASSC) and nuclear safety (NUSSC). This participation provides the worldwide nuclear industry with an opportunity to be part of IAEA's discussions on shaping changes to the control regime of IAEA safety standards. The review (and the prospect of a revision) of IAEA safety standards, which began in October 2005, makes this WNA participation and the industry's involvement at the national level timely and important. All of this excellent industry cooperation and team effort is done through 'collegial' exchanges between key industry experts, which help tackle important issues more effectively. The WNA is continuously looking to enhance its worldwide industry representation in these fields of expertise through the RPWG and WM and DWG

  3. Analysis of the risk assessment of a waste repository for radioactive waste from the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Weil, L.

    1984-09-01

    A review of decommissioning experiences and concepts is presented. The radioactive inventory of LWR of modern design at final shutdown is estimated on the basis of activation analysis and empirical data on contamination. In combination with existing types of waste packages and deposition techniques these results allow a prediction of the necessary repository volume for the decommissioning wastes in the Federal Republic of Germany. The essential element of this investigation is the development of a model for the quantitative analysis of the accident 'water intrusion' in the repository. Based on the fundamental chemical and physical processes governing nuclide migration a transport equation is obtained which can be restricted to one dimension due to the thickness and the low permeability of the geological layers above the repository. The radiological consequences are evaluated. The long-lived activation product Ni-59 turns out to be critical radionuclide. Despite a number of conservatisms in the model the evaluated doses are acceptable. The results clearly support the long term safety of the 'Konrad' mine as a low-level waste repository. (orig./HP) [de

  4. Management of Materials from the Decommissioning of Nuclear Reactors

    International Nuclear Information System (INIS)

    Braehler, Georg

    2014-01-01

    Georg Braehler of the World Nuclear Association (WNA) gave an insightful presentation on what can be done with materials from the decommissioning of nuclear reactors. The presentation showed that, although the volumes of waste generated seem large, they are in fact small compared to the conventional recycling market and should not have much impact on operations. The main issue surrounding the recycling of these materials is acceptance, both from a public and a legal perspective which are needed to promote a sustainable route for the recovered materials. Georg concluded that recycling is the most practical and affordable process to minimise the environmental impact. Several questions were raised following the presentation about the issue of public acceptance in Germany of recycling metal that has been cleared for release. The main reason for the current public acceptance is that nothing has happened to generate distrust. A comment was also raised about the limited scale of materials from the nuclear industry. The small volumes of metal generated could deter the conventional waste market from accepting the perceived risk of recycling cleared metals from the nuclear industry

  5. Irradiated concrete maze is confronted by robotics. [Uncertainties of nuclear reactor decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, A

    1984-09-01

    Nuclear reactor decommissioning and demolition are discussed. Three stages of the process are defined, and three options are described, depending on the rate at which the stages of the process are carried out. The options are: immediate decommissioning and demolition within 10 to 15 years of shutdown; partial deferment, the final stage being deferred for 10 to 100 years; total deferment, the second and third stages being deferred for 50 years or more. The possibilities and problems of designing a task-specific robot to carry out decommissioning are discussed. It is pointed out that specialist demolition will be needed. The problem of massive amounts of radioactive waste disposal is considered. The large unknown cost of the operation, and the desirability of getting experience in the problems involved, are discussed.

  6. BN-350 decommissioning problems of radioactive waste management

    International Nuclear Information System (INIS)

    Galkin, A.; Tkachenko, V.

    2002-01-01

    Pursuant of modern concept on radioactive waste management applied in IAEA Member States all radioactive wastes produced during the BN-350 operation and decommissioning are subject to processing in order to be transformed to a form suitable for long-term storage and final disposal. The first two priority objectives for BN-350 reactor are as follows: cesium cleaning from sodium followed by sodium drain, and processing; processing of liquid and solid radioactive waste accumulated during BN-350 operation. Cesium cleaning from sodium and sodium processing to NaOH will be implemented under USA engineering and financial support. However the outputted product might be only subject to temporary storage under special conditions. Currently the problem is being solved on selection of technology for sodium hydroxide conversion to final product incorporated into cement-like matrix ready for disposal pursuant to existing regulatory requirements. Industrial installation is being designed for liquid radioactive waste processing followed by incorporation to cement matrix subject to further disposal. The next general objective is management of radioactive waste expected from BN-350 decommissioning procedure. Complex of engineering-radiation investigation that is being conducted at BN-350 site will provide estimation of solid and liquid radioactive waste that will be produced during the course of the BN-350 decommission. Radioactive wastes that will be produced may be shared for primary (metal structures of both reactor and reactor plant main and auxiliary systems equipment as well as construction wastes of dismantled biological protection, buildings and structures) and secondary (deactivation solutions, tools, materials, cloth, special accessory, etc.). Processing of produced radioactive wastes (including high activity waste) requires the use of special industrial facilities and construction of special buildings and structures for arrangement of facilities mentioned as well as for

  7. Training practices to support decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bourassa, J.; Clark, C.R.; Kazennov, A.; Laraia, M.; Rodriguez, M.; Scott, A.; Yoder, J.

    2006-01-01

    Adequate numbers of competent personnel must be available during any phase of a nuclear facility life cycle, including the decommissioning phase. While a significant amount of attention has been focused on the technical aspects of decommissioning and many publications have been developed to address technical aspects, human resource management issues, particularly the training and qualification of decommissioning personnel, are becoming more paramount with the growing number of nuclear facilities of all types that are reaching or approaching the decommissioning phase. One of the keys to success is the training of the various personnel involved in decommissioning in order to develop the necessary knowledge and skills required for specific decommissioning tasks. The operating organisations of nuclear facilities normally possess limited expertise in decommissioning and consequently rely on a number of specialized organisations and companies that provide the services related to the decommissioning activities. Because of this there is a need to address the issue of assisting the operating organisations in the development and implementation of human resource management policies and training programmes for the facility personnel and contractor personnel involved in various phases of decommissioning activities. The lessons learned in the field of ensuring personnel competence are discussed in the paper (on the basis of information and experiences accumulated from various countries and organizations, particularly, through relevant IAEA activities). Particularly, the following aspects are addressed: transition of training from operational to decommissioning phase; knowledge management; target groups, training needs analysis, and application of a systematic approach to training (SAT); content of training for decommissioning management and professional staff, and for decommissioning workers; selection and training of instructors; training facilities and tools; and training as

  8. Decommissioning and radioactive waste management. The European Commission overview

    International Nuclear Information System (INIS)

    Rehak, M

    2010-01-01

    In this lecture author deals with the European Commission overview on the decommissioning and radioactive waste management. Financial support of European Commission of decommissioning of the Ignalina NPP, Bohunice V1 NPP and Kozloduy Units 1 and 2 is presented.

  9. Overview assessment of nuclear-waste management

    International Nuclear Information System (INIS)

    Burton, B.W.; Gutschick, V.P.; Perkins, B.A.

    1982-08-01

    After reviewing the environmental control technologies associated with Department of Energy nuclear waste management programs, we have identified the most urgent problems requiring further action or follow-up. They are in order of decreasing importance: (1) shallow land disposal technology development; (2) active uranium mill tailings piles; (3) uranium mine dewatering; (4) site decommissioning; (5) exhumation/treatment of transuranic waste at Idaho National Engineering Laboratory; (6) uranium mine spoils; and (7) medical/institutional wastes. 7 figures, 33 tables

  10. Nuclear energy. First experiences with decommissioning in Germany

    International Nuclear Information System (INIS)

    Sokoll, Joerg

    2015-01-01

    After the Fukushima disaster in 2011 the German parliament changed the national atomic energy law by way of its thirteenth amendment. In contrast to the initial ''nuclear phaseout'' the new phaseout of nuclear energy foresees a large number of decommissionings which will occur in part successively and in part simultaneously and will extend over a period of eleven years. Eight generating units were already decommissioned in 2011 or have not been ramped up again since then. By 2020 the last units will have been decommissioned and the phaseout of nuclear energy will have been completed, at least in terms of power plant operation. However the subsequent dismantling operations will keep German operators busy for decades to come. This article reports on first practical experiences in decommissioning.

  11. Planning for decommissioning of nuclear facilities - Nuclear as a semi-sustainable energy source, the views of younger stakeholders - 59222

    International Nuclear Information System (INIS)

    Lindskog, Staffan; Labor, Bea

    2012-01-01

    Document available in abstract form only. Full text of publication follows: It is planned that many nuclear facilities will be decommissioned in the near future. This challenge includes certified repositories for LLW and ILW, procedures for classification and free release, systems for transportation, planning activities, and liaison with the public. The last item can have a substantial impact on the efficiency of decommissioning projects. Insufficient dialogue with various stakeholder groups can be a factor that drives costs, whilst appropriate programs, means and environments for communication and knowledge transfer may facilitate the establishment of contemporary and comprehensive bases for decisions and thereby also enhance the possibility for consensus and thereby achieve feasible and sustainable solutions. The programs thus decided for the decommissioning of nuclear facilities and the management of the nuclear waste must then be communicated openly and constitute an integral part of the stakeholder related activities. The nuclear renaissance implies as well as calls for newer platforms for communications with the stakeholders. This communication must include how compliance with the Polluter Pays Principle (PPP) (and also preferably the Extended Polluter Responsibility, EPR) is to be achieved

  12. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    International Nuclear Information System (INIS)

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis

    2013-01-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m 2 . In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition

  13. Optimizing decommissioning and waste management

    International Nuclear Information System (INIS)

    McKeown, J.

    2000-01-01

    UKAEA has clarified its future purpose. It is a nuclear environmental restoration business. Its proud history of being at the forefront of nuclear research now provides decommissioning challenges of unique breadth. The methods employed, and in some cases developed, by UKAEA to assist in the optimization of its overall work programme are identified. (author)

  14. The curious accountancy of decommissioning

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Financial provision for the decommissioning and waste management of the United Kingdom Magnox and AGR reactor is discussed. In the last set of accounts prior to privatisation a decommissioning provision of Pound 8.34 bn was indicated whereas previous figures had only shown Pound 2.88. It is suggested that the increase was only achieved on paper, without real financial provision. Estimates of decommissioning costs for the Magnox stations have increased greatly. Cost estimates for AGR decommissioning have still to be released but it is expected that the post-privatisation owners of the nuclear power industry, Nuclear Electric, will have to find Pound 6-7 bn to dismantle its own reactors. Much of this it hopes to put off for over 100 years. The South of Scotland Electicity Board has made much more realistic provision for its own Magnox and two AGR stations. Reprocessing costs for AGR reactor fuel is uncertain and high reprocessing and decommissioning costs will mean increases in the price of nuclear electricity. (UK)

  15. Information base for waste repository design. Volume 5. Decommissioning of underground facilities. Technical report

    International Nuclear Information System (INIS)

    Giuffre, M.S.; Plum, R.L.; Koplik, C.M.; Talbot, R.

    1979-03-01

    This report is Volume 5 of a seven volume document on nuclear waste repository design issues. This report discusses the requirements for decommissioning a deep underground facility for the disposal of radioactive waste. The techniques for sealing the mined excavations are presented and an information base on potential backfill materials is provided. Possible requirements for monitoring the site are discussed. The performance requirements for backfill materials are outlined. The advantages and disadvantages of each sealing method are stated

  16. Research reactor utilization, safety, decommissioning, fuel and waste management. Posters of an international conference

    International Nuclear Information System (INIS)

    2005-01-01

    For more than 50 years research reactors have played an important role in the development of nuclear science and technology. They have made significant contributions to a large number of disciplines as well as to the educational and research programmes of about 70 countries world wide. About 675 research reactors have been built to date, of which some 278 are now operating in 59 countries (86 of them in 38 developing Member States). Altogether over 13,000 reactor-years of cumulative operational experience has been gained during this remarkable period. The objective of this conference was to foster the exchange of information on current research reactor concerns related to safety, operation, utilization, decommissioning and to provide a forum for reactor operators, designers, managers, users and regulators to share experience, exchange opinions and to discuss options and priorities. The topical areas covered were: a) Utilization, including new trends and directions for utilization of research reactors. Effective management of research reactors and associated facilities. Engineering considerations and experience related to refurbishment and modifications. Strategic planning and marketing. Classical applications (nuclear activation analysis, isotope production, neutron beam applications, industrial irradiations, medical applications). Training for operators. Educational programmes using a reactor. Current developments in design and fabrication of experimental facilities. Irradiation facilities. Projects for regional uses of facilities. Core management and calculation tools. Future trends for reactors. Use of simulators for training and educational programmes. b) Safety, including experience with the preparation and review of safety analysis reports. Human factors in safety analysis. Management of extended shutdown periods. Modifications: safety analysis, regulatory aspects, commissioning programmes. Engineering safety features. Safety culture. Safety peer reviews and

  17. Needs for R and D and innovations to address challenges of nuclear facility decommissioning after its normal shutdown versus advanced approaches required for Fukushima Daiichi NPS decommissioning. Needs and emergency technologies for decommissioning

    International Nuclear Information System (INIS)

    Laurent, G.

    2017-01-01

    Taking into account several attempts to address variety of needs for R and D related to the decommissioning challenges such as: - Characterisation and survey prior to dismantling, - Technologies for dismantling, - Decontamination and on-site remediation, - Material and waste management, - Site characterisation and environmental monitoring. This presentation will give an update of approaches in several countries for R and D to aim at more efficient and effective decommissioning and, above all, to reduce current labour intensive needs to implement this kind of work. The evidence of the particular needs to coordinate efforts both for 'normal decommissioning' and accident cases like Fukushima Daiichi will be offered by demonstrating that, for a large part, that needs might be considered as similar. Some examples of particular interest will be given and it will be emphasized the need to adapt existing and/or new technologies from 'non-nuclear' areas to use them for nuclear decommissioning. The global interest to evaluate and to coordinate R and D efforts will be demonstrated. Consequently there might be a large international interest to increase the consensus where R and D can be better directed. The more comprehensive coordination should support improvement of the overview of future decommissioning needs to implement the decommissioning activities more effectively in terms of time and finance, not compromising safety. (author)

  18. Plan for reevaluation of NRC policy on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1978-03-01

    Recognizing that the current generation of large commercial reactors and supporting nuclear facilities would substantially increase future decommissioning needs, the NRC staff began an in-depth review and re-evaluation of NRC's regulatory approach to decommissioning in 1975. Major technical studies on decommissioning have been initiated at Battelle Pacific Northwest Laboratory in order to provide a firm information base on the engineering methodology, radiation risks, and estimated costs of decommissioning light water reactors and associated fuel cycle facilities. The Nuclear Regulatory Commission is now considering development of a more explicit overall policy for nuclear facility decommissioning and amending its regulations in 10 CFR Parts 30, 40, 50, and 70 to include more specific guidance on decommissioning criteria for production and utilization facility licensees and byproduct, source, and special nuclear material licensees. The report sets forth in detail the NRC staff plan for the development of an overall NRC policy on decommissioning of nuclear facilities

  19. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    International Nuclear Information System (INIS)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W.

    2016-01-01

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  20. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  1. Decontamination and Decommissioning at Small Nuclear Facilities: Facilitating the Submission of Decommissioning Funding Plans

    International Nuclear Information System (INIS)

    Minor, D.A.; Grumbles, A.

    2009-01-01

    This paper describes the efforts of the Washington State Department of Health to ensure that small nuclear facilities have the tools each needs to submit Decommissioning Funding Plans. These Plans are required by both the U.S. Nuclear Regulatory Commission (NRC) and in some states - in the case of Washington state, the Washington State Department of Health is the regulator of radioactive materials. Unfortunately, the guidance documents provided by the U.S. NRC pertain to large nuclear facilities, such as nuclear fuel fabrication plants, not the small nuclear laboratory nor small nuclear laundry that may also be required to submit such Plans. These small facilities are required to submit Decommissioning Funding Plans by dint of their nuclear materials inventory, but have only a small staff, such as a Radiation Safety Officer and few authorized users. The Washington State Department of Health and Attenuation Environmental Company have been working on certain tools, such as templates and spreadsheets, that are intended to assist these small nuclear facilities prepare compliant Decommissioning Funding Plans with a minimum of experience and effort. (authors)

  2. Technical and legal aspects of the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Rowden, M.A.; Fowler, S.E.

    1983-01-01

    Many of the plants licensed at the start of nuclear power programmes will require decommissioning in the 1990's and this issue should now be confronted by the nuclear industry, its regulators and governments. This paper deals with the United States programme and experience in the decommissioning of nuclear installations and describes alternative decommissioning methods including safety and financial aspects. (NEA) [fr

  3. Decommissioning of evaporation technology for processing liquid radioactive waste in UJV Rez, a. s

    International Nuclear Information System (INIS)

    Tous, M.; Otcovsky, T.; Podlaha, J.

    2015-01-01

    The UJV Rez, a. s. is the main leader in processing institutional radioactive waste (RAW) in the Czech Republic and the Waste Management Department has been established since the research reactor VVR-S (now LVR-15) was put in operation. Due to the large activities in nuclear research and engineering in the past, a big capacity of waste management technologies was needed. The low pressure compactor for volume reduction of solid RAW, as well as chemical pre-treatment technology of liquid RAW were installed and later the evaporation technology for effective processing the liquid RAW with the cementation and bituminization unit for final conditioning of concentrated liquid RAW were used. During the years of research reactor operation and research activities in UJV Rez, a. s. there were two installed evaporation technologies in row. After the latest evaporator lifetime, changes in liquid RAW production and together with higher decontamination factor requirements, this technology was decided to be decommissioned. The decommissioned evaporation technology was installed and put in operation in 1991. This technology was used for processing liquid aqueous RAW produced from internal research activities and of course for external producers and institutions (e.g. universities, medicine, research institutes, industry). The approved decommissioning plan was prepared and the licence for immediate decommissioning was obtained in 2012. Then the decommissioning project started. The preparing stages as dosimetric survey, expected material balance and of course initial decontamination activities were performed. Evaporation technology dismantling and processing the arising RAW were done by the internal staff of Waste Management Department. The total volume of produced RAW was 49,5 m 3 of RAW. The secondary liquid RAW (from decontamination) of amount 1,4 m 3 , contaminated sludge of amount 0,5 m 3 , solid RAW (construction steel) of amount 39,1 m 3 , solid compressible RAW (protective

  4. Progress of JPDR decommissioning project

    International Nuclear Information System (INIS)

    Kiyota, M.; Yanagihara, S.

    1995-01-01

    The Japan Power Demonstration Reactor (JPDR) decommissioning project is progressively achieving its final goal; the project will be finished by March 1996 to release the JPDR's site into unrestricted use in a green field condition. The new techniques which developed or improved in R and D, the first phase of this program, have been successfully applied to the actual dismantling activities. Some decommissioning wastes have been managed as the first case of onsite shallow land burial based on the new regulatory frame of radioactive waste management. The experiences and the data obtained from the JPDR dismantling activities are expected to contribute to future decommissioning of commercial nuclear power plants. (author)

  5. Generations of decay: the political geography of decommissioning

    International Nuclear Information System (INIS)

    Blowers, A.

    1990-01-01

    Energy is politics. We rarely find it where we need it, it imposes upon other areas when we move it, and the less control we have over its development and use, the more politically insecure we feel. Nuclear power appears to avoid the traditional politics of energy supply by geographically internalizing much of the fuel cycle. But the problem of waste disposal, including decommissioning, is a major source of political conflict and uncertainty affecting the whole future of the nuclear industry. One of the most politically motivated decisions of the decommissioning era will be in choosing whether the process will be immediate or deferred. Deferred decommissioning is the most likely strategy, and that geographical inertia is the likely outcome. Such inertia is a feature of industrial decline, with each industrial epoch leaving the detritus of past decisions for future generations to discover and deal with. The political basis of the nuclear fuel cycle is its links with considerations of wastes, hazards, longevity, and equity, all matters of public interest and concern. As part of the nuclear fuel cycle, decommissioning will include these considerations too, and it is for this reason that, wherever decommissioning takes place, political questions arise. (author)

  6. Decommissioning nuclear power plants. Policies, strategies and costs

    International Nuclear Information System (INIS)

    2003-01-01

    The decommissioning of nuclear power plants is a topic of increasing interest to governments and the industry as many nuclear units approach retirement. It is important in this context to assess decommissioning costs and to ensure that adequate funds are set aside to meet future financial liabilities arising after nuclear power plants are shut down. Furthermore, understanding how national policies and industrial strategies affect those costs is essential for ensuring the overall economic effectiveness of the nuclear energy sector. This report, based upon data provided by 26 countries and analysed by government and industry experts, covers a variety of reactor types and sizes. The findings on decommissioning cost elements and driving factors in their variance will be of interest to analysts and policy makers in the nuclear energy field. (author)

  7. Safety analysis of disposal of decommissioning wastes from Loviisa nuclear power plant

    International Nuclear Information System (INIS)

    Vieno, T.; Nordman, H.; Rasilainen, K.; Suolanen, V.

    1987-12-01

    The repository for decommissioning wastes from the Loviisa nuclear power plant consisting of two 445 MWe PWR units is planned to be excavated at the depth of 90-130 meters in the bedrock of the power plant site. The reactor vessels weighing each about 215 tons will be transferred each in one piece into the repository. They are emplaced in an upright position in big holes excavated in the bottom of repository caverns. The reactor vessel internals are then emplaced inside the vessels. Finally, the vessels will be filled with concrete and the lids will be emplaced and sealed. Steam generators and pressurizers will also be disposed of uncutted. Other decommissioning wastes will be cut into smaller pieces and emplaced in concrete or wooden containers. The repository will be situated on the small island on which the power plant is located. The groundwater on the island contains two zones of different salinity: an upper zone of fresh, flowing groundwater and a lower zone of saline, stagnant groundwater where the repository will be situated. Three groundwater scenarios have been considered in the safety analysis: a scenario based on the present site conditions, an altered scenario where the repository is assumed to be situated in a zone of fresh, flowing groundwater and a distruptive event scenario with an intensive groundwater flow through the repository. The obtained results of the analysis show clear safety margins. In the basic scenario the maximum annul dose rate is 6x10 -14 Sv/a via the local sea pathways, 6x10 -11 Sv/a via the lake pathways and 4x10 -8 Sv/a via a well bored in the vicinity of the repository. In the altered groundwater scenario the maximum annual dose rate is 4x10 -10 Sv/a via the sea pathways, 3x10 -7 Sv/a via the lake pathways and 1x10 -5 Sv/a via the well pathway. In the unlikely disruptive event scenario the corresponding dose rates are 8x10 -10 Sv/a (sea), 7x10 -7 Sv/a (lake) and 2x10 -4 Sv/a (well)

  8. Safety Assessment for Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    In the past few decades, international guidance has been developed on methods for assessing the safety of predisposal and disposal facilities for radioactive waste. More recently, it has been recognized that there is also a need for specific guidance on safety assessment in the context of decommissioning nuclear facilities. The importance of safety during decommissioning was highlighted at the International Conference on Safe Decommissioning for Nuclear Activities held in Berlin in 2002 and at the First Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management in 2003. At its June 2004 meeting, the Board of Governors of the IAEA approved the International Action Plan on Decommissioning of Nuclear Facilities (GOV/2004/40), which called on the IAEA to: ''establish a forum for the sharing and exchange of national information and experience on the application of safety assessment in the context of decommissioning and provide a means to convey this information to other interested parties, also drawing on the work of other international organizations in this area''. In response, in November 2004, the IAEA launched the international project Evaluation and Demonstration of Safety for Decommissioning of Facilities Using Radioactive Material (DeSa) with the following objectives: -To develop a harmonized approach to safety assessment and to define the elements of safety assessment for decommissioning, including the application of a graded approach; -To investigate the practical applicability of the methodology and performance of safety assessments for the decommissioning of various types of facility through a selected number of test cases; -To investigate approaches for the review of safety assessments for decommissioning activities and the development of a regulatory approach for reviewing safety assessments for decommissioning activities and as a basis for regulatory decision making; -To provide a forum

  9. The decommissioning plan of the Nuclear Ship MUTSU

    International Nuclear Information System (INIS)

    Adachi, M.; Matsuo, R.; Fujikawa, S.; Nomura, T.

    1995-01-01

    This paper describes the review about the decommissioning plan and present state of the Nuclear Ship Mutsu. The decommissioning of the Mutsu is carried out by Removal and Isolation method. The procedure of the decommissioning works is presented in this paper. The decommissioning works started in April, 1992 and it takes about four years after her last experimental voyage. (author)

  10. Guidelines for estimating nuclear power plant decommissioning costs

    International Nuclear Information System (INIS)

    LaGuardia, T.S.; Williams, D.H.

    1989-01-01

    The objectives of the study were: (1) To develop guidelines to facilitate estimating the cost of nuclear power plant decommissioning alternatives on a plant-specific basis and to facilitate comparing estimates made by others. The guidelines are expressed in a form that could be readily adapted by technical specialists from individual utilities or by other uses. (2) To enhance the industry's credibility with decision-makes at the state and federal levels during rate/regulatory processes involving decommissioning costs. This is accomplished by providing a detailed, systematic breakdown of how decommissioning cost estimates are prepared. (3) To increase the validity, realism, and accuracy of site-specific decommissioning cost estimates. This is accomplished by pulling together the experiences and practices of several nuclear utilities and consultants in conducting past decommissioning cost estimates

  11. Human resource development for management of decommissioning

    International Nuclear Information System (INIS)

    Tanaka, Kenichi

    2017-01-01

    This paper described the contents of 'Human resource development for the planning and implementation of safe and reasonable nuclear power plant decommissioning' as the nuclear human resource development project by the Ministry of Education, Culture, Sports, Science and Technology. The decommissioning of a nuclear power plant takes 30 to 40 years for its implementation, costing tens of billions of yen. As the period of decommissioning is almost the same as the operation period, it is necessary to provide a systematic and continuous supply of engineers who understand the essence of the decommissioning project. The engineers required here should have project management ability to take charge of preparation, implementation, and termination of decommissioning, and have the ability to perform not only technology, but also factor management, cost management, and the like. As the preconditions of these abilities, it is important to develop human resources who possess qualities that can oversee decommissioning in the future. The contents of human resource education are as follows; (1) desk training (teaching materials: facilities of nuclear power plants, management of nuclear fuels, related laws, decommissioning work, decontamination, dismantling, disposal of waste, etc.), (2) field training (simulators, inspection of power station under decommissioning, etc.), (3) practical training (radiation inventory evaluation, and safety assessment), and (4) inspection of overseas decommissioning, etc. (A.O.)

  12. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong; Kyungwoo Choi

    2013-01-01

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  13. The Impact of Severe Nuclear Accidents on National Decision for Nuclear Decommissioning

    International Nuclear Information System (INIS)

    Suh, Young A; Hornibrook, Carol; Yim, Man Sung

    2016-01-01

    Many researchers have tried to identify the impact of severe nuclear accidents on a country's or international nuclear energy policy [2-3]. However, there is little research on the influence of nuclear accidents and historical events on a country's decision to permanently shutdown an NPP versus international nuclear decommissioning trends. To demonstrate the correlation between a nuclear severe accident and the impact on world nuclear decommissioning, this research reviewed case studies of individual historical events, such as the St. Lucens, TMI, Chernobyl, Fukushima accidents and the series of events leading up to the collapse of the Soviet Union. For validation of the results of these case studies, a statistical analysis was conducted using the R code. This will be useful in explaining how international and national decommissioning strategies are affected by shutdown reasons, i.e. world historical events. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently In conclusion, nuclear severe accidents and historical events have an impact on the number of international NPPs that shutdown permanently and cancelled NPP construction. This directly impacts international nuclear decommissioning policy and nuclear energy policy trends. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently

  14. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  15. Decommissioning of Nuclear Facilities: Training and Human Resource Considerations

    International Nuclear Information System (INIS)

    2008-01-01

    One of the cornerstones of the success of nuclear facility decommissioning is the adequate competence of personnel involved in decommissioning activities. The purpose of this publication is to provide methodological guidance for, and specific examples of good practices in training as an integral part of human resource management for the personnel performing decommissioning activities. The use of the systematic methodology and techniques described in this publication may be tailored and applied to the development of training for all types of nuclear facilities undergoing decommissioning. Examples of good practices in other aspects of human resources, such as knowledge preservation, management of the workforce and improvement of human performance, are also covered. The information contained in this publication, and the examples provided in the appendices and enclosed CD-ROM, are representative of the experience of decommissioning of a wide variety of nuclear facilities.

  16. Surface contamination technology in decommissioning of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu

    2012-01-01

    Surface contamination measurement is the most basic technology in radiation control of the nuclear and radiation facilities. Loose surface contamination causes internal exposure through airborne contamination. Surface contamination measurement is recently more important in the waste management such as confirmation of decontamination factor, contamination survey of carried-out materials from radioactive control area, and application of clearance level. This report describes the base of surface contamination standards, meaning of contamination in decommissioning, relationship between clearance level and surface contamination, and current technology of surface contamination measurement. (author)

  17. Decommissioning of nuclear power plants: policies, strategies and costs

    International Nuclear Information System (INIS)

    Lund, I.

    2004-01-01

    As many nuclear power plants will reach the end of their lifetime during the next 20 years or so, decommissioning is an increasingly important topic for governments, regulators and industries. From a governmental viewpoint, particularly in a deregulated market, one essential aspect is to ensure that money for the decommissioning of nuclear installations will be available at the time it is needed, and that no 'stranded' liabilities will be left to be financed by the taxpayers rather than by the electricity consumers. For this reason, there is governmental interest in understanding decommissioning costs, and in periodically reviewing decommissioning cost estimates from nuclear installation owners. Robust cost estimates are key elements in designing and implementing a coherent and comprehensive national decommissioning policy including the legal and regulatory bases for the collection, saving and use of decommissioning funds. From the industry viewpoint, it is essential to assess and monitor decommissioning costs in order to develop a coherent decommissioning strategy that reflects national policy and assures worker and public safety, whilst also being cost effective. For these reasons, nuclear power plant owners are interested in understanding decommissioning costs as best as possible and in identifying major cost drivers, whether they be policy, strategy or 'physical' in nature. National policy considerations will guide the development of national regulations that are relevant for decommissioning activities. Following these policies and regulations, industrial managers responsible for decommissioning activities will develop strategies which best suit their needs, while appropriately meeting all government requirements. Decommissioning costs will be determined by technical and economic conditions, as well as by the strategy adopted. Against this backdrop, the study analyses the relationships among decommissioning policy as developed by governments, decommissioning

  18. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  19. Decommissioning Challenges, strategy and programme development

    Energy Technology Data Exchange (ETDEWEB)

    Potier, J.M.; Laraie, M.; Dinner, P. [Waste Technology Section, Dept. of Nuclear Energy, International Atomic Energy Agency (IAEA), Vienna (Austria); Pescatore, C.; O' Sullivan [Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 75 - Paris (France); Dupuis, M.C. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Szilagyi, A.; Collazo, Y.; Negin, Ch. [U.S. Department of Energy, Washington, DC (United States)

    2008-11-15

    This document gathers 4 short articles. The first one presents the IAEA decommissioning activities. These activities include: -) the development and implementation of the international action on decommissioning, -) the provision of experts and equipment to assist member states, -) networking activities such as training or exchange of knowledge and experience. The second article presents the work program of the Nea (nuclear energy agency) in the field of decommissioning and reports on the lessons that have been learnt. Among these lessons we can quote: -) selecting a strategy for decommissioning and funding it adequately, -) regulating the decommissioning of nuclear activities, -) thinking of the future in terms of reusing materials, buildings and sites, -) involving local and regional actors in the decommissioning process from decision-making to dismantling work itself, and -) increasing transparency in decision-making in order to build trust. The third article presents the management of radioactive wastes in France. This management is based on the categorization of wastes in 6 categories according to both the activity level and the radioactive half-life T: 1) very low activity, 2) low activity and T < 31 years, 3) low activity and T > 31 years, 4) intermediate activity and T < 31 years, 5) intermediate activity and T > 31 years, and 6) high activity. For categories 1, 2, 3 and 5, the waste treatment process and the disposal places have been operating for a long time while for categories 4 and 6, the disposal places are still being studied: low-depth repository and deep geological repository respectively. The last article presents the action of the US Department of energy in decommissioning activities and environmental remediation, the example of the work done at the ancient nuclear site of Rocky Flats gives an idea of the magnitude and complexity of the operations made. (A.C.)

  20. Decommissioning Unit Cost Data

    International Nuclear Information System (INIS)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-01-01

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for

  1. Roadmap and performance carried out during Ciemat site decommissioning

    International Nuclear Information System (INIS)

    Quinones, Javier; Diaz Diaz, Jose Luis

    2005-01-01

    Ciemat (Research Centre for Energy, Environment and Technology) located in the heart of the Ciudad Universitaria of Madrid, occupies a property of 20 Ha. Since its creation in 1951 as JEN, and in 1986 renowned as Ciemat, it has involved on R and D projects in the field of Energy and Environment, i.e., Nuclear Fission, Nuclear Fusion, Fossils Fuels, Renewable Energy. As a consequence of the R and D projects developed between 1951 - 1986 on Nuclear Fission field (fuel design, fabrication, characterization on irradiated fuels, safety studies, etc) and to the diversification of the goals as well, it is necessary to Decommissioning and Dismantling (D and D) from nuclear facilities (nuclear reactor, Hot Cells, Irradiation facility), buildings and soils. Preparations for D and D included a staged shutdown of operations, planning documentation and licensing for decommissioning. As a prerequisite to Ciemat application for a decommissioning license and nuclear environmental assessment was carried out according to Spanish Nuclear Council (CSN) and approval of the site decommissioning project was obtained in 2000 and valid until December 31, 2006. Since 2001 - 2003 is underway and focussed on the radiological characterization of the site (divided in pieces of ground), when each piece of ground is characterized a planning for D and D is presented to CSN in order to obtain a license for actuation. Nowadays several pieces of ground are decontaminated and modifications have been done in order to achieve a safe state of storage-with-surveillance. Later phases have planned waste management improvements for selected wastes already on temporally storage, eventually followed by final decommissioning of facilities and buildings and cleaning of contaminants from soils and removal of waste from the site. This paper describes the planning, nuclear and environment assessment and descriptions of decommissioning activities currently underway at Ciemat. (Author)

  2. Characterization of Iraq's remote nuclear facilities for decommissioning and waste management - 59167

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Jarjies, Adnan; Miller, Ross A.

    2012-01-01

    The Government of Iraq (GOI) has undertaken efforts to decommission and dismantle former nuclear facilities. The GOI has only preliminary information on some of the former nuclear facilities. This paper will highlight the challenges involved in conducting inspections of the outlying former nuclear facilities in Iraq and present a brief summary of the results of those inspections. The facilities discussed in this paper are located at various sites throughout Iraq, from locations close to Baghdad to those in the north and far western desert areas. Some of the facilities, such as those at the Al Tuwaitha Nuclear Research Center have been visited and characterized. Other facilities, including the following, have not been visited or thoroughly characterized. - Al Jesira, Uranium feed stock production facility; - Adaya, Burial location for contaminated equipment; - Djerf al Naddah, Spent fuel storage facility; - Rashdiya, Centrifuge development center; - Al Qa'im, Uranium (yellowcake) production facility. The visits were conducted to develop an inventory of the buildings/structures that need to be included in decommissioning/dismantlement efforts. The number of buildings, type of construction, size and general condition of the buildings were noted. In addition, attempts were made to determine contamination levels on surfaces, equipment, rubble, etc. This information will be used to support the Iraqi decommissioning and dismantlement project. Because the facilities are scattered throughout the country of Iraq, significant planning and coordination was required to ensure personnel security. Teams consisting of individuals from the Iraqi Ministry of Science and Technology (MoST) and Americans were under military escort when traveling to and visiting the sites. Because of the security issues, time on the ground at each site was limited. This paper will highlight the challenges involved in conducting the inspections of the outlying former nuclear facilities In Iraq and

  3. AECL's strategy for decommissioning Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Joubert, W.M.; Pare, F.E.; Pratapagiri, G.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, its foundations are explained and it is described how it has and soon will be applied to various facilities. A brief summary is provided of the experience gained up to date on the implementation of this strategy. (author) 3 figs.; 1 tab

  4. Practical decommissioning experience with nuclear installations in the European Community

    International Nuclear Information System (INIS)

    Skupinski, E.

    1993-01-01

    Initiated by the Commission of the European Communities (CEC), this seminar was jointly organized by Kernkraftwerke RWE Bayernwerk GmbH (KRB) and the CEC at Gundremmingen-Guenzburg (D), where the former KRB-A BWR is presently being dismantled. The meeting aimed at gathering a limited number of European experts for the presentation and discussion of operations, the results and conclusions on techniques and procedures presently applied in the dismantling of large-scale nuclear installations in the European Community. Besides the four pilot dismantling projects of the presently running third R and D programme (1989-93) of the European Community on decommissioning of nuclear installations (WAGR, BR-3 PWR, KRB-A BWR and AT-1 FBR fuel reprocessing), the organizers selected the presentation of topics on the following facilities which have a significant scale and/or representative features and are presently being dismantled: the Magnox reprocessing pilot plant at Sellafield, the HWGCR EL4 at Monts d'Arree, the operation of an on-site melting furnace for G2/G3 GCR dismantling waste at Marcoule, an EdF confinement conception of shut-down LWRs for deferred dismantling, and the technical aspects of the Greifswald WWER type NPPs decommissioning. This was completed by a presentation on the decommissioning of material testing reactors in the United Kingdom and by an overview on the conception and implementation of two EC databases on tools, costs and job doses. The seminar concluded with a guided visit of the KRB-A dismantling site. This meeting was attended by managers concerned by the decommissioning of nuclear installations within the European Community, either by practical dismantling work or by decision-making functions. Thereby, the organizers expect to have contributed to the achievement of decommissioning tasks under optimal conditions - with respect to safety and economics - by making available a complete and updated insight into on-going dismantling projects and by

  5. Decommissioning of NPPs with spent nuclear fuel present - efforts to amend the German regulatory framework to cope with this situation

    International Nuclear Information System (INIS)

    Brendebach, Boris; Rehs, Bernd

    2016-01-01

    The authorization to operate an installation for the fission of nuclear fuel for the commercial production of electricity was withdrawn for the seven oldest NPPs and NPP Kruemmel in Germany on August 6, 2011 after the events at Japanese Nuclear Power Plant (NPP) Fukushima Daiichi in March 2011. In the meantime, all these NPPs applied for decommissioning. One aspect reflected in the applications for these NPPs is the possibility that spent nuclear fuel elements or fuel rods will still be present in the cooling ponds at least during the first stage of decommissioning, i.a. due to limited availability of spent fuel casks. Although considerable decommissioning experiences are available in Germany, the approach 'decommissioning with fuel elements present' has been the exceptional case so far. The paper highlights the efforts undertaken to strengthen the regulatory framework with respect to decommissioning in Germany taking into account this changed approach. The paper presents a short introduction to the legal and regulatory requirements for decommissioning in Germany. Afterwards, the updates to the Decommissioning Guide, which includes proposals for an appropriate procedure for the decommissioning, safe enclosure and dismantling of facilities or parts thereof as defined in item 7 of the German Atomic Energy Act in respect of the application of the technical rules for planning and preparation of decommissioning measures as well as for licensing and supervision, are highlighted. In addition, the amendments to the Guidelines for the Decommissioning of Nuclear Facilities of the Nuclear Waste Management Commission (ESK), which is complementary to the Decommissioning Guide in a technical sense, are reported as well. (authors)

  6. Policy and systems analysis for nuclear installation decommissioning

    International Nuclear Information System (INIS)

    Gu Jiande

    1995-01-01

    On the basis of introducing into principal concept for nuclear installation decommissioning, form policy, sciences point of view, the author analyses present problems in the policy, the administrative and programme for decommissioning work in China. According to the physical process of decommissioning, the author studied engineering economics, derived method and formulas to estimate decommissioning cost. It is pointed out that basing on optimization principle for radiation protection and analysing cost-benefit for decommissioning engineering, the corresponding policy decision can be made

  7. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment

    International Nuclear Information System (INIS)

    Lauridsen, Kurt

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  8. Nuclear Site Remediation and Restoration during Decommissioning of Nuclear Installations. A Report by the NEA Co-operative Programme on Decommissioning

    International Nuclear Information System (INIS)

    Orr, Peter; Mitchell, Nick; Mobbs, Shelly; Bennest, Terry; Abu-Eid, Rateb-Boby; Berton, Marie-Anne; Dehaye, Catherine Ollivier; Pellenz, Gilles; Cruikshank, Julian; Diaz Arocas, Paloma; Garcia Tapias, Ester; Hess, Norbert; Hong, Sam-Bung; Miller, Susan; Monken-Fernandes, Horst; ); Morse, John; Nitzsche, Olaf; Ooms, Bart; Osimani, Celso; Stuart Walker

    2014-01-01

    Decommissioning of nuclear facilities and related remedial actions are currently being undertaken around the world to enable sites or parts of sites to be reused for other purposes. Remediation has generally been considered as the last step in a sequence of decommissioning steps, but the values of prevention, long-term planning and parallel remediation are increasingly being recognised as important steps in the process. This report, prepared by the Task Group on Nuclear Site Restoration of the NEA Co-operative Programme on Decommissioning, highlights lessons learnt from remediation experiences of NEA member countries that may be particularly helpful to practitioners of nuclear site remediation, regulators and site operators. It provides observations and recommendations to consider in the development of strategies and plans for efficient nuclear site remediation that ensures protection of workers and the environment. (authors)

  9. Chemical mode control in nuclear power plant decommissioning during operation of technologies in individual radioactive waste processing plants

    International Nuclear Information System (INIS)

    Horvath, J.; Dugovic, L.

    1999-01-01

    Sewage treatment of nuclear power plant decommissioning is performed by system of sewage concentration in evaporator with formation of condensed rest, it means radioactive waste concentrate and breeding steam. During sewage treatment plant operation department of chemical mode performs chemical and radiochemical analysis of sewage set for treatment, chemical and radiochemical analysis of breeding steam condensate which is after final cleaning on ionization filter and fulfilling the limiting conditions released to environment; chemical and radiochemical analysis of heating steam condensate which is also after fulfilling the limiting conditions released to environment. Condensed radioactive concentrate is stored in stainless tanks and later converted into easy transportable and chemically stable matrix from the long term storage point of view in republic storage Mochovce. The article also refer to bituminous plant, vitrification plant, swimming pool decontamination plant of long term storage and operation of waste processing plant Bohunice

  10. Evaluating decommissioning costs for nuclear power plants

    International Nuclear Information System (INIS)

    MacDonald, R.R.

    1980-01-01

    An overview is presented of the economic aspects of decommissioning of large nuclear power plants in an attempt to put the subject in proper perspective. This is accomplished by first surveying the work that has been done to date in evaluating the requirements for decommissioning. A review is presented of the current concepts of decommissioning and a discussion of a few of the uncertainties involved. This study identifies the key factors to be considered in the econmic evaluation of decommissioning alternatives and highlights areas in which further study appears to be desirable. 12 refs

  11. Communications programme for the RA nuclear reactor decommission

    International Nuclear Information System (INIS)

    Milanovic, S.; Antic, D.

    2002-01-01

    During the decommissioning of the RA research nuclear reactor at the VINCA Institute of Nuclear Sciences, an adequate number of radiation and contamination surveys should be conduced to assure radiological safety of the workers, the public and the environment. Public would like to know more about the nuclear and radiological safety. The communications programme defines the ways to informing the public, its representatives and the information media about the health and safety aspects of the activities during the RA nuclear reactor decommission. (author)

  12. The decommissioning and redevelopment of NECSA site

    International Nuclear Information System (INIS)

    Visagie, A.L.; Fourie, E.

    2008-01-01

    reuse of equipment were not optimised and the uncoordinated redevelopment and reuse lead to decommissioning to lower levels than required. A holistic approach towards redevelopment and reuse could have resulted in minimising decommissioning waste. In the past decommissioning was aimed at the final disposal of waste and the remediation of a site. This concept is currently challenged and decommissioning should not be viewed as an endpoint of a facility or site but should rather be the starting phase of a redevelopment and reuse opportunity for a facility or site. A decommissioning strategy based on the final closure of a facility or site should be a last resort and the focus should move to redevelopment and reuse options. The decommissioning of a nuclear site is usually associated with remaining liabilities, which require resources to ensure management of stored radiological waste etc. If the nuclear site is redeveloped and reused, these control measures and infrastructure could be included as part of the reuse scenario which is beneficial to the redevelopment and to liability management. (author)

  13. Decommissioning strategy selection

    International Nuclear Information System (INIS)

    Warnecke, E.

    2005-01-01

    At the end of their useful life nuclear facilities have to be decommissioned. The strategy selection on how to decommission a facility is a highly important decision at the very beginning of decommissioning planning. Basically, a facility may be subject to (a) immediate dismantling; (b) deferred dismantling after a period of ''safe enclosure'' or (c) entombment where a facility is turned into a near surface disposal facility. The first two strategies are normally applied. The third one may be accepted in countries without significant nuclear activities and hence without disposal facilities for radioactive waste. A large number of factors has to be taken into account when a decision on the decommissioning strategy is being made. Many of the factors cannot be quantified. They may be qualitative or subject to public opinion which may change with time. At present, a trend can be observed towards immediate dismantling of nuclear facilities, mainly because it is associated with less uncertainty, less local impact, a better public acceptance, and the availability of operational expertise and know how. A detailed evaluation of the various factors relevant to strategy selection and a few examples showing the situation regarding decommissioning strategy in a number of selected countries are presented in the following article. (orig.)

  14. Identification and evaluation of facilitation techniques for decommissioning light water power reactors

    International Nuclear Information System (INIS)

    LaGuardia, T.S.; Risley, J.F.

    1986-06-01

    This report describes a study sponsored by the US Nuclear Regulatory Commission to identify practical techniques to facilitate the decommissioning of nuclear power generating facilities. The objective of these ''facilitation techniques'' is to reduce the radioactive exposures and/or volumes of waste generated during the decommissioning process. The report presents the possible facilitation techniques identified during the study and discusses the corresponding facilitation of the decommissioning process. Techniques are categorized by their applicability of being implemented during the three stages of power reactor life: design/construction, operation, or decommissioning. Detailed cost-benefit analyses were performed for each technique to determine the anticipated exposure and/or radioactive waste reduction; the estimated costs for implementing each technique were then calculated. Finally, these techniques were ranked by their effectiveness in facilitating the decommissioning process. This study is a part of the Nuclear Regulatory Commission's evaluation of decommissioning policy and its modification of regulations pertaining to the decommissioning process. The findings can be used by the utilities in the planning and establishment of activities to ensure that all objectives of decommissioning will be achieved

  15. The Impact of Severe Nuclear Accidents on National Decision for Nuclear Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Young A; Hornibrook, Carol; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Many researchers have tried to identify the impact of severe nuclear accidents on a country's or international nuclear energy policy [2-3]. However, there is little research on the influence of nuclear accidents and historical events on a country's decision to permanently shutdown an NPP versus international nuclear decommissioning trends. To demonstrate the correlation between a nuclear severe accident and the impact on world nuclear decommissioning, this research reviewed case studies of individual historical events, such as the St. Lucens, TMI, Chernobyl, Fukushima accidents and the series of events leading up to the collapse of the Soviet Union. For validation of the results of these case studies, a statistical analysis was conducted using the R code. This will be useful in explaining how international and national decommissioning strategies are affected by shutdown reasons, i.e. world historical events. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently In conclusion, nuclear severe accidents and historical events have an impact on the number of international NPPs that shutdown permanently and cancelled NPP construction. This directly impacts international nuclear decommissioning policy and nuclear energy policy trends. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently.

  16. Decommissioning and environmental restoration of nuclear facilities in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    2000-01-01

    In the beginning of the 1980s, the Scientific and Technological Commission (STC) began the study on the environmental impact of the nuclear industry in China. At the end of the 1980s, the STC initiated the study on the decommissioning of nuclear facilities and environmental restoration. In 1989 the STC completed the project entitled ''Radiological and Environmental Quality Assessment of the Nuclear Industry in China Over the Past Thirty Years''. The status of the environmental pollution of various nuclear facility sites was subsequently analysed. In 1994, the decommissioning and environmental restoration of the first research and manufacture complex for nuclear weapons was completed. The complex is now accessible to the public without restriction and the site has become a town. Some nuclear related facilities, such as uranium mines, are currently being decommissioned. Although uranium mining and milling has a more serious impact on the environment, the technology for decommissioning and environmental restoration in mining and milling installations is not much more complicated than that used for reactor and reprocessing facilities: much has been achieved in the area of mining and milling. (author)

  17. Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4

    International Nuclear Information System (INIS)

    1994-06-01

    One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report

  18. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  19. Plan for reevaluation of NRC policy on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1978-12-01

    The present decommissioning regulations contained in Sections 50.33(f) and 50.82 of 10 CFR part 50 require applicants for power reactor operating licenses to demonstrate that they can obtain the funds needed to meet both operating costs and estimated costs of shutdown and decommissioning. The development of detailed, specific decommissioning plans for nuclear power plants is not currently required until the licensee seeks to terminate his operating license. Recognizing that the current generation of large commercial reactors and supporting nuclear facilities would substantially increase the need for future decommissionings, the NRC staff began an in-depth review and reevaluation of NRC's regulatory approach to decommissioning in 1975. The Nuclear Regulatory Commission is now considering development of a more explicit overall policy for nuclear facility decommissioning and amending its regulations in 10 CFR Parts 30, 40, 50, and 70 to include more specific guidance on decommissioning criteria for production and utilization facility licensees and byproduct, source, and special nuclear material licensees. In response to comments from the public and states, and to information gained during the initial stage of execution of the plan, several modifications of the plan are now required. The revised overall report sets forth in detail the current NRC staff plan for the development of an overall NRC policy on decommissioning of nuclear facilities

  20. Principles and practices in managing the wastes resulting from decommissioning

    International Nuclear Information System (INIS)

    Vladescu, Gabriela; Oprescu, Theodor; Niculae, Ortenzia; Stan, Camelia

    2004-01-01

    . The chapter 2.4 presents a proposal for constituting a statistical basis for radioactive materials classification and the associated measuring procedures. The chapter 2.5 illustrates the principles by applying them to classification of solid. liquid and gaseous radioactive materials and their assignation to one of the categories: excluded, excepted, clean or radioactive. The results of this study can be applied in classifying the radioactive wastes produced in Romania in different nuclear activities such as Cernavoda NPP operation, nuclear research, industry, and medicine, decommissioning of different nuclear facilities, etc

  1. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-03-01

    The main tasks performed during the period related to the influence of manufacture, transport and disposal on the design of such packages. It is deduced that decommissioning wastes will be transported under the IAEA Transport Regulations under either the Type B or Low Specific Activity (LSA) categories. If the LSA packages are self-shielded, reinforced concrete is the preferred material of construction. But the high cost of disposal implies that there is a strong reason to investigate the use of returnable shields for LSA packages and in such cases they are likely to be made of ferrous metal. Economic considerations favour the use of spheroidal graphite cast iron for this purpose. Transport operating hazards have been investigated using a mixture of desk studies, routes surveys and operations data from the railway organisations. Reference routes were chosen in the Federal Republic of Germany, France and the United Kingdom. This work has led to a description of ten accident scenarios and an evaluation of the associated accident probabilities. The effect of disposal on design of packages has been assessed in terms of the radiological impact of decommissioning wastes, an in addition corrosion and gas evolution have been examined. The inventory of radionuclides in a decommissioning waste package has low environmental impact. If metal clad reinforced concrete packages are to be used, the amount of gas evolution is such that a vent would need to be included in the design. Similar unclad packages would be sufficiently permeable to gases to prevent a pressure build-up. (author)

  2. Prioritisation process for decommissioning of the Iraq former nuclear complex

    International Nuclear Information System (INIS)

    Jarjies, Adnan; Abbas, Mohammed; Fernandes, Horst M.; Coates, Roger

    2008-01-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site is Al-Tuwaitha, the former nuclear research centre. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. Therefore, a prioritization methodology has been developed in order to aid the decision-making process. The methodology comprises three principal stages of assessment: 1) a quantitative surrogate risk assessment, 2) a range of sensitivity analyses and 3) the inclusion of qualitative modifying factors. A group of five Tuwaitha facilities presented the highest evaluated risk, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, with a relatively large number of lower risk facilities and sites comprising a third group. This initial risk-based order of priority is changed when modifying factors are taken into account. It is necessary to take account of Iraq's isolation from the international nuclear community over the last two decades and the lack of experienced personnel. Therefore it is appropriate to initiate decommissioning operations on selected low risk facilities at Tuwaitha in order to build capacity/experience and prepare for work to be carried out in more complex and potentially high hazard facilities. In addition it is appropriate to initiate some prudent precautionary actions relating to some of the higher risk facilities. (author)

  3. Plan 96 - Costs for management of the radioactive waste from nuclear power production

    International Nuclear Information System (INIS)

    1996-06-01

    This report presents a calculation of the costs for implementing all measures needed to manage and dispose of spent nuclear fuel and radioactive wastes from the Swedish nuclear power reactors. The cost calculations include costs for R,D and D as well as for decommissioning and dismantling the reactor plants etc. The following facilities and systems are already in operation: Transportation system for radioactive waste products, Central interim storage facility for spent nuclear fuel, Final repository for radioactive operational wastes. Plans exist for: Encapsulation plant for spent nuclear fuel, Deep repository for spent fuel and other long-lived waste, Final repository for decommissioning waste. The total future costs, in Jan 1996 prices, for the Swedish waste system from 1997 have been calculated to be 42.2 billion SEK (about 6.4 billion USD). The total costs apply for the waste obtained from 25 years of operation of all Swedish reactors. It is estimated that 10.6 billion SEK in current money has been spent through 1996. Costs based on waste quantities from operation of the reactors for 40 years are also reported. 6 refs

  4. The work and perspective of the OECD/NEA in decommissioning

    International Nuclear Information System (INIS)

    O'Sullivan, P.; Pescatore, C.

    2008-01-01

    OECD member countries are increasingly faced with the need to make provisions for dealing with all aspects of dealing with the management of legacy nuclear installations, especially in terms of having in place adequate policies and regulatory frameworks for ensuring both safety and the efficient implementation of the decommissioning projects. Efficiency also requires that funding schemes are capable of providing adequate funds when required, even in the event that issues arise during implementation that were not anticipated during the planning phase. Waste management arrangements may encompass separate disposal routes for different categories of waste, including Very Low Level Waste, and may also include provisions for clearance and recycling. Recent moves in several countries towards establishing new nuclear programmes are bringing decommissioning activities into fresh focus, for reasons of public confidence (i.e. demonstrating that decommissioning can be done). In some instances existing nuclear sites will be used for the construction of new installations, but stakeholder issues are important for these sites as well. Maturing decommissioning experience should also provide lessons that would help in the reduction of lifetime costs for nuclear plants and other facilities. The challenge lying ahead is to establish a framework that will account for growing nuclear industrial activities in competitive, globalized markets, while maintaining and assuring the safety of decommissioning for the public and for workers. Within this context, institutional arrangements, stakeholder issues, costs and funding, waste management and release policies, as well as availability of technologies and skills, need to be kept under review. (authors)

  5. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  6. Systems engineering approach for the reuse of metallic waste from NPP decommissioning and dose evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyung Woo; Kim, Chang Lak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-03-15

    The oldest commercial reactor in South Korea, Kori-1 Nuclear Power Plant (NPP), will be shut down in 2017. Proper treatment for decommissioning wastes is one of the key factors to decommission a plant successfully. Particularly important is the recycling of clearance level or very low level radioactively contaminated metallic wastes, which contributes to waste minimization and the reduction of disposal volume. The aim of this study is to introduce a conceptual design of a recycle system and to evaluate the doses incurred through defined work flows. The various architecture diagrams were organized to define operational procedures and tasks. Potential exposure scenarios were selected in accordance with the recycle system, and the doses were evaluated with the RESRAD-RECYCLE computer code. By using this tool, the important scenarios and radionuclides as well as impacts of radionuclide characteristics and partitioning factors are analyzed. Moreover, dose analysis can be used to provide information on the necessary decontamination, radiation protection process, and allowable concentration limits for exposure scenarios.

  7. Remote Decommissioning Experiences at Sellafield

    International Nuclear Information System (INIS)

    Brownridge, M.

    2006-01-01

    British Nuclear Group has demonstrated through delivery of significant decommissioning projects the ability to effectively deploy innovative remote decommissioning technologies and deliver cost effective solutions. This has been achieved through deployment and development of off-the-shelf technologies and design of bespoke equipment. For example, the worlds first fully remotely operated Brokk was successfully deployed to enable fully remote dismantling, packaging and export of waste during the decommissioning of a pilot reprocessing facility. British Nuclear Group has also successfully implemented remote decommissioning systems to enable the decommissioning of significant challenges, including dismantling of a Caesium Extraction Facility, Windscale Pile Chimney and retrieval of Plutonium Contaminated Material (PCM) from storage cells. The challenge for the future is to continue to innovate through utilization of the supply chain and deploy off-the-shelf technologies which have been demonstrated in other industry sectors, thus reducing implementation schedules, cost and maintenance. (authors)

  8. Swedish Nuclear Waste Management from Theory to Practice

    International Nuclear Information System (INIS)

    Holmqvist, Magnus

    2008-01-01

    The programme has evolved from a project of a few experts drawing up the outline of what today is a comprehensive programme of research, development, demonstration, design, construction and operation of facilities for radioactive waste management. The Swedish programme was greatly influenced at an early stage by political actions, which included placing the responsibility with the reactor owners to demonstrate safe disposal of spent nuclear fuel and also to fund a disposal programme. The response of the reactor owners was to immediately start the KBS project. Its third report in 1983 described the KBS-3 concept, which is still the basis for SKB's deep geological repository system. Thus, this year is the 25th anniversary of the creation of the well-known KBS-3 concept. The SKB programme for nuclear waste management is today divided in two sub programmes; LILW Programme and the Nuclear Fuel Programme. The LILW Programme is entering into a new phase with the imminent site investigations for the expansion of the SFR LILW repository, which is in operation since 1988, to accept also decommissioning waste. The expansion of SFR is driven by a government decision urging SKB to investigate when a licensing of a repository for decommissioning waste can be made

  9. The Waste Management Plan integration into Decommissioning Plan of the WWR-S research reactor from Romania

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Oprescu, Theodor; Filip, Mihaela; Sociu, Florin

    2008-01-01

    The paper presents the progress of the Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor WWR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for WWR-S decommissioning was also developed. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are part of the radioactive waste management strategy. (authors)

  10. Nuclear power plant decommissioning: an unresolved problem

    International Nuclear Information System (INIS)

    Pollock, C.

    1987-01-01

    In 1984, the Critical Mass Energy Project asserted that at least 11 US reactors had gone through one-third of their operating lives without collecting any decommissioning funds and that nationwide only $600 million had been collected. This lack of financial planning prompted 10 states to require mandatory periodic deposits into external accounts: California, Colorado, Connecticut, Maine, Massachusetts, Mississippi, New Hampshire, Pennsylvania, Vermont, and Wisconsin. Setting aside decommissioning funds is essential in every country that uses nuclear power. Regardless of a nation's future energy plans, existing plants must eventually be scrapped. Just as today's cities would not be habitable without large fleets of garbage trucks and extensive landfills, the international nuclear industry is not viable without a sound decommissioning strategy. Thirty years after the first nuclear plant started producing electricity, such a strategy has yet to be formulated. More than 500 reactors, including those currently under construction, will have to be decommissioned. Preparing to safely retire these plants requires aggressive, well-funded research and development programs, policy makers willing to tackle unpleasant, long-term problems, and robust retirement accounts funded by today's utility customers

  11. Development of a decommissioning plan for nuclear power plant 'Krsko'

    International Nuclear Information System (INIS)

    Tankosic, Djurica; Fink, Kresimir

    1991-01-01

    Nuclear Power Plant 'Krsko' (NEK), is the only nuclear power plant in Yugoslavia, is a two-loop, Westinghouse-design, pressurized water reactor rated at 632 MWe. When NEK applied for an operating license in 1981, it did not have to explain how the plant would be decommissioned and decommissioning provisions were not part of the licensing process. Faced with mounting opposition to nuclear power and a real threat that the plant would be shut down, the plant management developed a Mission Plan for resolving the decommissioning problem. The Mission Plan calls for a preliminary decommissioning plan to be prepared and submitted to the local regulatory body before the end of 1992

  12. Policy on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This Regulatory Policy Statement describes the policy of the Atomic Energy Control Board (AECB) on the decommissioning of those facilities defined as nuclear facilities in the Atomic Energy Control (AEC) Regulations. It is intended as a formal statement, primarily for the information of licensees, or potential licensees, of the regulatory process and requirements generally applicable to the decommissioning of nuclear facilities licensed and regulated by the AECB pursuant to the authority of the AEC Act and Regulations

  13. Implementation of stage 3 decommissioning and optimization of radioactive waste generation, Triton facility, France

    International Nuclear Information System (INIS)

    2008-01-01

    The CEA centre of Fontenay-aux-Roses was created in 1946, when the French nuclear energy programme started. Two generations of facilities have been built and operated. The first generation remained operational for 15 years and was dismantled in the late 1950s. It was replaced by a new generation of facilities, as part of the French electronuclear programme, and these included the Triton and Nereide research reactors (hereafter called the Triton facility). In accordance with the CEA strategy and taking into account its urban location, in 1998 the CEA Fontenay-aux-Roses centre decided to launch an extensive cleanup programme to be implemented from 2010 onwards. This included the Stage 3 decommissioning of the Triton facility. In the frame of this decommissioning project, a decommissioning strategy was developed making it possible to optimize the volume of radioactive waste generated

  14. Decommissioning of IFEC

    International Nuclear Information System (INIS)

    Ceccotti, G.; Sberze, L.

    1995-05-01

    The IFEC nuclear fuel fabrication plant operated in Italy for more then thirty years and has now been successfully decommissioned. The rules and regulations relating to Quality Assurance established during the fabrication of Cirene reactor fuel have been adhered to during the decommissioning phase. The use of personnel with large experience in the nuclear field has resulted in vast majority of cares of material and apparatus to be reutilized in conventional activities without the need of calling on the assistance of external firms. The whole decontamination process was successfully completed on time and in particular the quantity of contaminated wastes was kept to eminimun

  15. General principles underlying the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-03-01

    Previous statements on the use of the term 'decommissioning' by the International Atomic Energy Agency, the Atomic Energy Control Board, and the Advisory Committee on Nuclear Safety are reviewed, culminating in a particular definition for its use in this paper. Three decommissioning phases are identified and discussed, leading to eight general principles governing decommissioning including one related to financing

  16. Technical and economical problems of decommissioning nuclear power plants (NPP) in Russia

    International Nuclear Information System (INIS)

    Vaneev, M.

    2001-01-01

    under the direction of the senior lecturer Mikhail A. Skachek was estimated the basic economic parameters of decommissioning process NPP with the various types of reactors (WWR-440, WWR-1000, RBMK-1000) Now we are researching the subscription of disposal the nuclear waste in a total cost of decommissioning NPP. The estimation of expenses for decommissioning NPP was carried out with the helps of the program DECOST - adapted on faculty NPP MPEI to a Russian economy conditions of the transition period. Program 'DECOST' is developed for an estimation of expenses and payments for removal from operation of nuclear power installations in different conditions. (author)

  17. Radioactive waste assessment using 'moderate growth in nuclear electricity generation' scenario

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1985-05-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation scenario -Scheme 3. Scheme 3 assumes a moderate growth in nuclear generation scenario with raw waste arisings from 3 main groups: (i) existing and committed commercial reactors; (ii) fuel reprocessing plants; (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment, and indicates the type of information that can be generated. (author)

  18. Waste processing practices at waste management department from INR

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Bujoreanu, L.

    2010-01-01

    The Institute for Nuclear Research Pitesti (INR), subsidiary of the Romanian Authority for Nuclear Activities has its own Radioactive Waste Treatment Plant (STDR). The object of activity of STDR within the INR Pitesti is to treat and condition radioactive waste resulted from the nuclear facility. Also, it will must prepare and manage the decommissioning projects of its own facilities and to upgrade the facilities for the management of the radioactive waste resulting from other decommissioning activities. In according with the National Nuclear Program and the Governmental order no. 11/2003, the Institute for Nuclear Research is the main support for implementation of the methods and technologies for conditioning and disposal of radioactive waste generated by the decommissioning of nuclear facilities. The classes and criteria of classification for radioactive waste generated in operation and decommissioning in Romania are established in compliance with the classification recommended by IAEA and generally valid in EU countries. The general classification takes into consideration the disposal requirements to isolate the radioactive waste from environment. In Romania, waste minimization is considered by Order No. 56/2004 of CNCAN President for approval of Fundamental regulations on the safe management of radioactive waste. According to this regulation, the generation of radioactive waste is to be kept to the minimum practicable level in terms of both its activity and volume through appropriate design measures, facility operation and decommissioning practices. In order to meet this requirement, the operator must ensure: - selection and control of materials; - recycling and reuse of materials, including clearance of materials; - implementing adequate operating procedures, including those referring to the physical, chemical and radiological characterization of the waste and sorting of different type of materials. (orig.)

  19. Development of the Decontamination and Decommissioning Technology for Nuclear Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Moon, J. K.; Won, C. H.

    2010-04-01

    The research results could be used for a design of a remote ablation decontamination system and ultimately applicable for an decontamination of high radiation facilities such as the DUPIC and PIEF. The evaluation technology of decommissioning process must be developed and will be used for the ALARA planning tool of decommissioning process and demonstrated for tools of decommissioning equipment. Also, this technology can be used for tools workplaces with high work difficulty such as large-scale chemical plant, under water and space. It is expected that the technology for a volume reduction and self-disposal of dismantled concrete wastes can be contributed to the establishment of a management plan for radioactive dismantled concrete wastes through the minimization of final waste volume

  20. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2012-02-15

    ... Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... draft regulatory guide (DG) DG-1271 ``Decommissioning of Nuclear Power Reactors.'' This guide describes... Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This proposed...

  1. Characterization, treatment and conditioning of radioactive graphite from decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    2006-09-01

    Graphite has been used as a moderator and reflector of neutrons in more than 100 nuclear power plants and in many research and plutonium-production reactors. It is used primarily as a neutron reflector or neutron moderator, although graphite is also used for other features of reactor cores, such as fuel sleeves. Many of the graphite-moderated reactors are now quite old, with some already shutdown. Therefore radioactive graphite dismantling and the management of radioactive graphite waste are becoming an increasingly important issue for a number of IAEA Member States. Worldwide, there are more than 230 000 tonnes of radioactive graphite which will eventually need to be managed as radioactive waste. Proper management of radioactive graphite waste requires complex planning and the implementation of several interrelated operations. There are two basic options for graphite waste management: (1) packaging of non-conditioned graphite waste with subsequent direct disposal of the waste packages, and (2) conditioning of graphite waste (principally either by incineration or calcination) with separate disposal of any waste products produced, such as incinerator ash. In both cases, the specific properties of graphite - such as Wigner energy, graphite dust explosibility, and radioactive gases released from waste graphite - have a potential impact on the safety of radioactive graphite waste management and need to be carefully considered. Radioactive graphite waste management is not specifically addressed in IAEA publications. Only general and limited information is available in publications dealing with decommissioning of nuclear reactors. This report provides a comprehensive discussion of radioactive graphite waste characterization, handling, conditioning and disposal throughout the operating and decommissioning life cycle. The first draft report was prepared at a meeting on 23-27 February 1998. A technical meeting (TM) was held in October 1999 in coincidence with the Seminar on

  2. Stakeholder involvement in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    2007-01-01

    Significant numbers of nuclear facilities will need to be decommissioned in the coming decades. In this context, NEA member countries are placing increasing emphasis on the involvement of stakeholders in the associated decision procedures. This study reviews decommissioning experience with a view to identifying stakeholder concerns and best practice in addressing them. The lessons learnt about the end of the facility life cycle can also contribute to better foresight in siting and building new facilities. This report will be of interest to all major players in the field of decommissioning, in particular policy makers, implementers, regulators and representatives of local host communities

  3. Recycling and Reuse of Materials Arising from the Decommissioning of Nuclear Facilities. A Report by the NEA Co-operative Program on Decommissioning

    International Nuclear Information System (INIS)

    Ooms, Bart; Verwaest, Isi; Legee, Frederic; Nokhamzon, Jean-Guy; Pieraccini, Michel; Poncet, Philippe; Franzen, Nicole; Vignaroli, Tiziano; Herschend, Bjoern; Benest, Terry; Loudon, David; Favret, Derek; Weber, Inge; )

    2017-01-01

    Large quantities of materials arising from the decommissioning of nuclear facilities are non-radioactive per se. An additional, significant share of materials is of very low-level or low-level radioactivity and can, after having undergone treatment and a clearance process, be recycled and reused in a restricted or unrestricted way. Recycle and reuse options today provide valuable solutions to minimise radioactive waste from decommissioning and at the same time maximise the recovery of valuable materials. The NEA Co-operative Programme on Decommissioning (CPD) prepared this overview on the various approaches being undertaken by international and national organisations for the management of slightly contaminated material resulting from activities in the nuclear sector. The report draws on CPD member organisations' experiences and practices related to recycling and reuse, which were gathered through an international survey. It provides information on improvements and changes in technologies, methodologies and regulations since the 1996 report on this subject, with the conclusions and recommendations taking into account 20 years of additional experience that will be useful for current and future practitioners. Case studies are provided to illustrate significant points of interest, for example in relation to scrap metals, concrete and soil

  4. Radiation protection in connection with the decommissioning of nuclear plants

    International Nuclear Information System (INIS)

    1997-04-01

    This document presents the SSI preliminary views and position concerning the decommissioning of nuclear plants. To prevent the exposure of the decommissioning personnel and the general public to unacceptable levels of radiation and to protect the environment and future generations, it is SSI's task to formulate and issue the necessary terms and regulations with which the reactor licensees must comply during the decommissioning work. The views and principles presented here are the basis of SSI's continued work on guidelines and regulations for the decommissioning of nuclear plants

  5. Decommissioning and Decontamination

    International Nuclear Information System (INIS)

    Massaut, V.

    2000-01-01

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  6. Waste management facility remediation and decommissioning at a national nuclear research site

    International Nuclear Information System (INIS)

    Cameron, D.J.; Dolinar, G.M.; Killey, R.W.D.

    1994-01-01

    Historic waste management practices at eight locations on AECL's Chalk River site have resulted in the formation of contaminated groundwater plumes, some of which have surfaced and contaminated surface materials. A priority setting process has been used to establish a plan of attack that will lead to the eventual decommissioning of these facilities. In general terms, the preferred approach is to install impermeable covers to prevent further leaching of waste sources and to prevent escape of leachate to the biosphere, followed by cleanup of surface contamination and remediation of aquifers. Final disposal of the waste sources would be delayed for perhaps 20 years. Substantial progress has been made in the treatment of contaminated groundwater, with one field installation in place and another under development. This paper describes how the prioritization task was tackled to produce a long term plan of action and describes initial interventions that have been attempted and their results. 4 refs., 3 tabs., 3 figs

  7. Planning the Decommissioning of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Podlaha, J., E-mail: pod@ujv.cz [Nuclear Research Institute Rez, 25068 Rez (Czech Republic)

    2013-08-15

    In the Czech Republic, three research nuclear reactors are in operation. According to the valid legislation, preliminary decommissioning plans have been prepared for all research reactors in the Czech Republic. The decommissioning plans shall be updated at least every 5 years. Decommissioning funds have been established and financial resources are regularly deposited. Current situation in planning of decommissioning of research reactors in the Czech Republic, especially planning of decommissioning of the LVR-15 research reactor is described in this paper. There appeared new circumstances having wide impact on the decommissioning planning of the LVR-15 research reactor: (1) Shipment of spent fuel to the Russian Federation for reprocessing and (2) preparation of processing of radioactive waste from reconstruction of the VVR-S research reactor (now LVR-15 research reactor). The experience from spent fuel shipment to the Russian Federation and from the process of radiological characterization and processing of radioactive waste from reconstruction of the VVR-S research reactor (now the LVR-15 research reactor) and the impact on the decommissioning planning is described in this paper. (author)

  8. Technology development for nuclear fuel cycle waste treatment - Decontamination, decommissioning and environmental restoration (1)

    International Nuclear Information System (INIS)

    Lee, Byung Jik; Won, Hui Jun; Yoon, Ji Sup and others

    1997-12-01

    Through the project of D econtamination, decommissioning and environmental restoration technology development , the following were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Environmental remediation technology development. (author). 95 refs., 45 tabs., 163 figs

  9. Alternatives and costs for the decommissioning of Angra Nuclear Power Plants

    International Nuclear Information System (INIS)

    Carajilescov, Pedro; Moreira, Joao Manoel Losada; Maiorino, Jose Rubens

    2013-01-01

    The decommissioning of a nuclear reactor requires several actions involving legal basis, decommissioning strategies, planning, dismantling, packing, transport and storage of a large volume of radioactive materials, qualified personnel and financial resources. The paper discusses the several aspects of these actions for the decommissioning of Angra nuclear Power Plants, based on the international experiences. The main phases of the decommissioning process, the Brazilian regulation and cost estimations are also presented. Finally, two alternatives for the decommissioning of the plants, based on logistic aspects, are discussed. (author)

  10. Alternatives and costs for the decommissioning of Angra Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carajilescov, Pedro; Moreira, Joao Manoel Losada; Maiorino, Jose Rubens, E-mail: pedro.carajilescov@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2013-07-01

    The decommissioning of a nuclear reactor requires several actions involving legal basis, decommissioning strategies, planning, dismantling, packing, transport and storage of a large volume of radioactive materials, qualified personnel and financial resources. The paper discusses the several aspects of these actions for the decommissioning of Angra nuclear Power Plants, based on the international experiences. The main phases of the decommissioning process, the Brazilian regulation and cost estimations are also presented. Finally, two alternatives for the decommissioning of the plants, based on logistic aspects, are discussed. (author)

  11. Remote machine engineering applications for nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Toto, G.; Wyle, H.R.

    1983-01-01

    Decontamination and decommissioning of a nuclear facility require the application of techniques that protect the worker and the enviroment from radiological contamination and radiation. Remotely operated portable robotic arms, machines, and devices can be applied. The use of advanced systems should enhance the productivity, safety, and cost facets of the efforts; remote automatic tooling and systems may be used on any job where job hazard and other factors justify application. Many problems based on costs, enviromental impact, health, waste generation, and political issues may be mitigated by use of remotely operated machines. The work that man can not do or should not do will have to be done by machines

  12. Decommissioning of Australian nuclear facilities - a regulatory perspective

    International Nuclear Information System (INIS)

    Diamond, T.V.; Mabbott, P.E.; Lawrence, B.R.

    2000-01-01

    Decommissioning has been a key political, economic and technical issue for the nuclear industry in recent years as older nuclear facilities have been retired. The management of decommissioning is an important part of nuclear safety as the potential exists for occupational exposures that are several times those expected during normal operation. It involves pre-planning and preparatory measures, procedures and instructions, technical and safety assessments, technology for handling large volumes of radioactive material, cost analyses, and a complex decision process. A challenge for the Commonwealth Government regulatory body, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), is to allow the Commonwealth entities that operate nuclear facilities ample freedom to address the above, at the same time ensuring that international best practice is invoked to ensure safety. Accordingly, ARPANSA has prepared a regulatory guideline, first drafted by the Nuclear Safety Bureau in March 1997, that documents the process and the criteria that it uses when assessing an application from an operating organisation for a decommissioning licence. Copyright (2000) Australasian Radiation Protection Society Inc

  13. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt [ed.

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  14. Management of Radioactive Waste after a Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Strand, Per; Laurent, Gerard; Rindo, Hiroshi; Georges, Christine; Ito, Eiichiro; Yamada, Norikazu; Iablokov, Iuri; Kilochytska, Tatiana; Jefferies, Nick; Byrne, Jim; Siemann, Michael; Koganeya, Toshiyuki; Aoki, Hiroomi

    2016-01-01

    The NEA Expert Group on Fukushima Waste Management and Decommissioning R and D (EGFWMD) was established in 2014 to offer advice to the authorities in Japan on the management of large quantities of on-site waste with complex properties and to share experiences with the international community and NEA member countries on ongoing work at the Fukushima Daiichi site. The group was formed with specialists from around the world who had gained experience in waste management, radiological contamination or decommissioning and waste management R and D after the Three Mile Island and Chernobyl accidents. This report provides technical opinions and ideas from these experts on post-accident waste management and R and D at the Fukushima Daiichi site, as well as information on decommissioning challenges. Chapter 1 provides general descriptions and a short introduction to nuclear accidents or radiological contaminations; for instance the Chernobyl NPP accident, the Three Mile Island Unit 2 accident and the Windscale fire accident. Chapter 2 provides experiences on regulator-implementer interaction in both normal and abnormal situations, including after a nuclear accident. Chapter 3 provides experiences on stakeholder involvement after accidents. These two chapters focus on human aspects after an accident and provide recommendations on how to improve communication between stakeholders so as to resolve issues arising after unexpected nuclear accidents. Chapters 4, 5 and 6 provide information on technical issues related to waste management after accidents. Chapter 4 focuses on the physical and chemical nature of the waste, Chapter 5 on radiological characterisation, and Chapter 6 on waste classification and categorisation. The persons involved in waste management after an accident should address these issues as soon as possible after the accident. Chapters 7 and 8 also focus on technical issues but with a long-term perspective of the waste direction in the future. Chapter 7 relates

  15. Nuclear power plant decommissioning: state-of-the-art review

    International Nuclear Information System (INIS)

    Williams, D.H.

    1984-01-01

    A brief orientation to the state-of-the-art of nuclear power plant decommissioning discusses the related areas of experience, tools and techniques, and planning. There have been 68 nuclear reactor decommissionings to date, including 9 power plants, some of which were mothballed. The picture suggests that the term art may be misapplied since decommissioning is now more of a mature commercial industrial than a research and development endeavor. It also suggests that the nuclear industry has shown foresight by preparing for it before a crisis situation developed. Some of this has already influenced operators of coal power plants, especially where hazardous materials may be involved. 33 references, 1 table

  16. ECED 2013: Eastern and Central Europe Decommissioning. International Conference on Decommissioning of Nuclear Facilities. Conference Guide and Book of Abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The Conference included the following sessions: (I) Opening session (2 contributions); (II) Managerial and Funding Aspects of Decommissioning (5 contributions); (III) Technical Aspects of Decommissioning I (6 contributions); (IV) Experience with Present Decommissioning Projects (4 contributions); (V) Poster Session (14 contributions); (VI) Eastern and Central Europe Decommissioning - Panel Discussion; (VII) Release of Materials, Waste Management and Spent Fuel Management (6 contributions); (VIII) Technical Aspects of Decommissioning II (5 contributions).

  17. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  18. BN-350 nuclear power plant. Regulatory aspects of decommissioning

    International Nuclear Information System (INIS)

    Shiganakov, S.; Zhantikin, T.; Kim, A.

    2002-01-01

    Full text: The BN-350 reactor is a fast breeder reactor using liquid sodium as a coolant [1]. This reactor was commissioned in 1973 and operated for its design life of 20 years. Thereafter, it was operated on the basis of annual licenses, and the final shutdown was initially planned in 2003. In 1999, however, the Government of the Republic of Kazakhstan adopted Decree on the Decommissioning of BN-350 Reactor. This Decree establishes the conception of the reactor plant decommissioning. The conception envisages three stages of decommissioning. The first stage of decommissioning aims at putting the installation into a state of long term safe enclosure. The main goal is an achievement of nuclear-and radiation-safe condition and industrial safety level. The completion criteria for the stage are as follows: spent fuel is removed and placed in long term storage; radioactive liquid metal coolant is drained from the reactor and processed; liquid and solid radioactive wastes are reprocessed and long-term stored; systems and equipment, that are decommissioned at the moment of reactor safe store, are disassembled; radiation monitoring of the reactor building and environment is provided. The completion criteria of the second stage are as follows: 50 years is up; a decision about beginning of works by realization of dismantling and burial design is accepted. The goal of the third stage is partial or total dismantling of equipment, buildings and structure and burial. Since the decision on the decommissioning of BN-350 Reactor Facility was accepted before end of scheduled service life (2003), to this moment 'The Decommissioning Plan' (which in Kazakhstan is called 'Design of BN-350 reactor Decommission') was not worked out. For realization of the Governmental Decree and for determination of activities by the reactor safety provision and for preparation of its decommission for the period till Design approval the following documents were developed: 1. Special Technical Requirements

  19. Assessments of conditioned radioactive waste arisings from existing and committed nuclear installations and assuming a moderate growth in nuclear electricity generation - June 1985

    International Nuclear Information System (INIS)

    Fairclough, M.P.; Goodill, D.R.; Tymons, B.J.

    1985-03-01

    This report describes an assessment of conditioned radioactive waste arisings from existing and committed nuclear installations, DOE Revised Scheme 1, and from an assumed nuclear power generation scenario, DOE Revised Scheme 3, representing a moderate growth in nuclear generation. Radioactive waste arise from 3 main groups of installations and activities: i. existing and committed commercial reactors; ii. fuel reprocessing plants, iii. research, industrial and medical activities. Stage 2 decommissioning wastes are considered together with WAGR decommissioning and the 1983 Sea Dump Consignment. The study uses the SIMULATION 2 code which models waste material flows through a system of waste treatment and packaging to disposal. With a knowledge of the accumulations and average production rates of untreated wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data for the inventory calculations have previously been documented. Some recent revisions and assumptions concerning future operation of nuclear facilities are presented in this report. (author)

  20. Institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Kovarik, P.; Svoboda, K.; Podlaha, J.

    2008-01-01

    Nuclear research institute Rez, plc. (mentioned below as NRI) has had a dominant position in the area of the nuclear research and development in the Czech Republic, the Central and the Eastern Europe. Naturally, the radioactive waste management is an integral part of the nuclear industry, research and development. For that reason, there is Centre of the radioactive waste management (mentioned below as Centre) in the NRI. This Centre is engaged in the radioactive waste treatment, decontamination, characterisation, decommissioning and other relevant activities. This paper describes the system of technology and other information about institutional radioactive waste management in the NRI. (authors)

  1. Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361

    International Nuclear Information System (INIS)

    Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike; Daniska, Vladimir

    2013-01-01

    The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

  2. Methodology for cost estimate in projects for nuclear power plants decommissioning

    International Nuclear Information System (INIS)

    Salij, L.M.

    2008-01-01

    The conceptual approaches to cost estimating of nuclear power plants units decommissioning projects were determined. The international experience and national legislative and regulatory basis were analyzed. The possible decommissioning project cost classification was given. It was shown the role of project costs of nuclear power plant units decommissioning as the most important criterion for the main project decisions. The technical and economic estimation of deductions to common-branch fund of decommissioning projects financing was substantiated

  3. SGDes project. Decommissioning management system of Enresa

    International Nuclear Information System (INIS)

    Fernandez Lopez, M.; Julian, A. de

    2013-01-01

    ENRESA, the public company responsible for managing radioactive waste produced in spain and nuclear facilities decommissioning work, has developed a management information system (SGDes) for the decommissioning of nuclear power plants, critical for the company. SGDes system is capable of responding to operational needs for efficient, controlled and secure way. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both the human and technological point of view. (Author)

  4. The new revision of NPP Krsko decommissioning, radioactive waste and spent fuel management program: analyses and results

    International Nuclear Information System (INIS)

    Zeleznik, Nadja; Kralj, Metka; Lokner, Vladimir; Levanat, Ivica; Rapic, Andrea; Mele, Irena

    2010-01-01

    The preparation of the new revision of the Decommissioning and Spent Fuel (SF) and Low and Intermediate level Waste (LILW) Disposal Program for the NPP Krsko (Program) started in September 2008 after the acceptance of the Term of Reference for the work by Intergovernmental Committee responsible for implementation of the Agreement between the governments of Slovenia and Croatia on the status and other legal issues related to investment, exploitation, and decommissioning of the Nuclear power plant Krsko. The responsible organizations, APO and ARAO together with NEK prepared all new technical and financial data and relevant inputs for the new revision in which several scenarios based on the accepted boundary conditions were investigated. The strategy of immediate dismantling was analyzed for planned and extended NPP life time together with linked radioactive waste and spent fuel management to calculate yearly annuity to be paid by the owners into the decommissioning funds in Slovenia and Croatia. The new Program incorporated among others new data on the LILW repository including the costs for siting, construction and operation of silos at the location Vrbina in Krsko municipality, the site specific Preliminary Decommissioning Plan for NPP Krsko which included besides dismantling and decontamination approaches also site specific activated and contaminated radioactive waste, and results from the referenced scenario for spent fuel disposal but at very early stage. Important inputs for calculations presented also new amounts of compensations to the local communities for different nuclear facilities which were taken from the supplemented Slovenian regulation and updated fiscal parameters (inflation, interest, discount factors) used in the financial model based on the current development in economical environment. From the obtained data the nominal and discounted costs for the whole nuclear program related to NPP Krsko which is jointly owned by Slovenia and Croatia have

  5. Regulations for the safe management of radioactive wastes and spent nuclear fuel

    International Nuclear Information System (INIS)

    Voica, Anca

    2007-01-01

    The paper presents the national, international and European regulations regarding radioactive waste management. ANDRAD is the national authority charged with nation wide coordination of safe management of spent fuel and radioactive waste including their final disposal. ANDRAD's main objectives are the following: - establishing the National Strategy concerning the safety management of radioactive waste and spent nuclear fuel; - establishing the national repositories for the final disposal of the spent nuclear fuel and radioactive waste; - developing the technical procedures and establishing norms for all stages of management of spent nuclear fuel and radioactive waste, including the disposal and the decommissioning of the nuclear and radiologic facilities

  6. Vitrification technology for treating low-level waste from nuclear facilities

    International Nuclear Information System (INIS)

    Oniki, Toshiro; Nabemoto, Toyonobu; Fukui, Toshiki

    2016-01-01

    The development of technologies for treating nuclear waste generated by nuclear power plants and reprocessing plants during their operation or decommissioning is underway both in Japan and abroad. Of the many types of treatment technologies that have been developed, vitrification technology is attracting attention as being the most promising technology for converting such waste into a stable state. As a brief review of technical developments aimed at reducing nuclear waste and finding a solution to the final disposal issue, this paper describes approaches to completing the development of vitrification technology in Japan, including IHI's activities. (author)

  7. Decommissioning and equipment replacement of nuclear power plants under uncertainty

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Naito, Yuta; Kimura, Hiroshi; Madarame, Haruki

    2007-01-01

    This study examines the optimal timing for the decommissioning and equipment replacement of nuclear power plants. We consider that the firm has two options of decommissioning and equipment replacement, and determines to exercise these options under electricity price uncertainty. This problem is formulated as two optimal stopping problems. The solution of this model provides the value of the nuclear power plant and the threshold values for decommissioning and replacement. The dependence of decommissioning and replacement strategies on uncertainty and each cost is shown. In order to investigate the probability of events for decommissioning and replacement, Monte Carlo calculations are performed. We also show the probability distribution and the conditional expected time for each event. (author)

  8. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  9. Stakeholder involvement in the decommissioning of Trojan and Maine Yankee nuclear power plants

    International Nuclear Information System (INIS)

    Watson, Bruce A.; Orlando, Dominick A.

    2006-01-01

    Trojan Nuclear Plant (Trojan) and Maine Yankee Nuclear Plant (Maine Yankee) were the first two power reactors to complete decommissioning under the U. S. Nuclear Regulatory Commission's (NRC's) License Termination Rule (LTR), 10 CFR Part 20, Subpart E. The respective owners' decisions to decommission the sites resulted in different approaches to both the physical aspects of the decommissioning, and the approach for obtaining approval for completing the decommissioning in accordance with regulations. Being in different States, the two single-unit pressurized water reactor sites had different State requirements and levels of public interest that impacted the decommissioning approaches. This resulted in significant differences in the decommissioning planning, the conduct of decommissioning operations, the volume of low-level radioactive waste, and the final status survey (FSS) program. While both licensees have Independent Spent Fuel Storage Installations (ISFSIs), Trojan obtained a separate license for the ISFSI in accordance with the requirements of 10 CFR Part 72 and terminated its 10 CFR Part 50 license. Maine Yankee elected to reduce the 10 CFR Part 50 license to only the requirements for the ISFSI. While the NRC regulations are flexible and allow different approaches to ISFSI licensing, there are separate licensing requirements that must be addressed. In 10 CFR 50.82, the NRC mandates public participation in the decommissioning process. For Maine Yankee, stakeholder and public input resulted in the licensee entering into an agreement with a citizen group and resulted in State legislation that lowered the dose limit below the NRC radiological criteria of 0.25 milli-Sievert/year (mSv/yr) (25 mrem/yr) in 10 CFR 20.1402 for unrestricted use. The lowering of the radiological criteria resulted in a significant dose modeling effort using site-specific Derived Concentrations Guideline Levels (DCGLs) that were well below the NRC DCGL screening values. This contributed to

  10. Relative evaluation on decommissioning accident scenarios of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jei-Kwon; Hyun, Dong-Jun; Kim, Geun-Ho; Kim, Tae-Hyoung; Jo, Kyung-Hwa; Seo, Jae-Seok; Jeong, Seong-Young; Lee, Jung-Jun

    2012-01-01

    Highlights: ► This paper suggests relative importance on accident scenarios during decommissioning of nuclear facilities. ► The importance of scenarios can be performed by using AHP and Sugeno fuzzy method. ► The AHP and Sugeno fuzzy method guarantee reliability of the importance evaluation. -- Abstract: This paper suggests the evaluation method of relative importance on accident scenarios during decommissioning of nuclear facilities. The evaluation method consists of AHP method and Sugeno fuzzy integral method. This method will guarantee the reliability of relative importance evaluation for decommissioning accident scenarios.

  11. Potential for recycling of slightly radioactive metals arising from decommissioning within nuclear sector in Slovakia.

    Science.gov (United States)

    Hrncir, Tomas; Strazovec, Roman; Zachar, Matej

    2017-09-07

    The decommissioning of nuclear installations represents a complex process resulting in the generation of large amounts of waste materials containing various concentrations of radionuclides. Selection of an appropriate strategy of management of the mentioned materials strongly influences the effectiveness of decommissioning process keeping in mind safety, financial and other relevant aspects. In line with international incentives for optimization of radioactive material management, concepts of recycling and reuse of materials are widely discussed and applications of these concepts are analysed. Recycling of some portion of these materials within nuclear sector (e.g. scrap metals or concrete rubble) seems to be highly desirable from economical point of view and may lead to conserve some disposal capacity. However, detailed safety assessment along with cost/benefit calculations and feasibility study should be developed in order to prove the safety, practicality and cost effectiveness of possible recycling scenarios. Paper discussed the potential for recycling of slightly radioactive metals arising from decommissioning of NPPs within nuclear sector in Slovakia. Various available recycling scenarios are introduced and method for overall assessment of various recycling scenarios is outlined including the preliminary assessment of safety and financial aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Vinca institute nuclear decommissioning program - Establishment and initialisation

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Present conditions in The Vinca Institute of Nuclear Sciences related to the nuclear and radiation safety, as result of ambitious nuclear program in the former Yugoslavia and strong economic crisis during the previous decade, have to be improved as soon as possible. RA research reactor, which extended shutdown stage took almost 18 years, spent nuclear fuel from the RA operation in the water pools within the reactor building and inadequate storage facilities for the low and intermediate radioactive wastes at the Vinca site are the main safety problems that have to be solved. To solve the problems mentioned above, a new 'Vinca Nuclear Decommissioning (VIND) Program' is initiated in the Vinca Institute during 2002. The Program team is assembled from about 60 experts from the Institute and relevant organisations. The Program, known also as the G reen Vinca , will be supported, besides the government funding and expected donation from foreign institutions, by experts' help from the IAEA. The necessary equipment will be obtained through the technical assistance from the IAEA. Close co-operation of the team members with experts and relevant companies from nuclear developed countries is expected. (author)

  13. Workshop on decommissioning

    International Nuclear Information System (INIS)

    Broden, K.

    2005-12-01

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  14. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    Baumann, B.L.; Haffner, D.R.; Miller, R.L.; Scotti, K.S.

    1986-06-01

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  15. Development of training system to prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, Geunho; Seo, Jaeseok

    2014-01-01

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities

  16. Development of training system to prevent accidents during decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, Geunho; Seo, Jaeseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities.

  17. Chemical and mechanical decontamination processes to minimize secondary waste decommissioning

    International Nuclear Information System (INIS)

    Enda, M.; Ichikawa, N.; Yaita, Y.; Kanasaki, T.; Sakai, H.

    2008-01-01

    In the decommissioning of commercial nuclear reactors in Japan, prior to the dismantling of the nuclear power plants, there are plans to use chemical techniques to decontaminate reactor pressure vessels (RPVs), internal parts, primary loop recirculation systems (PLRs), reactor water clean up systems (RWCUs), etc., so as to minimize radiation sources in the materials to be disposed of. After dismantling the nuclear power plants, chemical and mechanical decontamination techniques will then be used to reduce the amounts of radioactive metallic waste. Toshiba Corporation has developed pre-dismantling and post-dismantling decontamination systems. In order to minimize the amounts of secondary waste, the T-OZON process was chosen for decontamination prior to the dismantling of nuclear power plants. Dismantling a nuclear power plant results in large amounts of metallic waste requiring decontamination; for example, about 20,000 tons of such waste is expected to result from the dismantling of a 110 MWe Boiling Water Reactor (BWR). Various decontamination methods have been used on metallic wastes in preparation for disposal in consideration of the complexity of the shapes of the parts and the type of material. The materials in such nuclear power plants are primarily stainless steel and carbon steel. For stainless steel parts having simple shapes, such as plates and pipes, major sources of radioactivity can be removed from the surface of the parts by bipolar electrolysis (electrolyte: H 2 SO 4 ). For stainless steel parts having complicated shapes, such as valves and pumps, major sources of radioactivity can be removed from the surfaces by redox chemical decontamination treatments (chemical agent: Ce(IV)). For carbon steel parts having simple shapes, decontamination by blasting with zirconia grit is effective in removing major sources of radioactivity at the surface, whereas for carbon steel parts having complicated shapes, major sources of radioactivity can be removed from

  18. Gas cooled reactor decommissioning. Packaging of waste for disposal in the United Kingdom deep repository

    International Nuclear Information System (INIS)

    Barlow, S.V.; Wisbey, S.J.; Wood, P.

    1998-01-01

    United Kingdom Nirex Limited has been established to develop and operate a deep underground repository for the disposal of the UK's intermediate and certain low level radioactive waste. The UK has a significant Gas Cooled Reactor (GCR) programme, including both Magnox and AGR (Advanced Gas-cooled Reactor) capacity, amounting to 26 Magnox reactors, 15 AGR reactors as well as research and prototype reactor units such as the Windscale AGR and the Windscale Piles. Some of these units are already undergoing decommissioning and Nirex has estimated that some 15,000 m 3 (conditioned volume) will come forward for disposal from GCR decommissioning before 2060. This volume does not include final stage (Stage 3) decommissioning arisings from commercial reactors since the generating utilities in the UK are proposing to adopt a deferred safe store strategy for these units. Intermediate level wastes arising from GCR decommissioning needs to be packaged in a form suitable for on-site interim storage and eventual deep disposal in the planned repository. In the absence of Conditions for Acceptance for a repository in the UK, the dimensions, key features and minimum performance requirements for waste packages are defined in Waste Package Specifications. These form the basis for all assessments of the suitability of wastes for disposal, including GCR wastes. This paper will describe the nature and characteristics of GCR decommissioning wastes which are intended for disposal in a UK repository. The Nirex Waste Package Specifications and the key technical issues, which have been identified when considering GCR decommissioning waste against the performance requirements within the specifications, are discussed. (author)

  19. Civil nuclear and responsibilities related to radioactive wastes. The 'cumbersome' wastes of the civil nuclear; The Parliament and the management of wastes from the civil nuclear; The Swiss legal framework related to the shutting down of nuclear power stations and to the management of radioactive wastes; Economic theory and management of radioactive wastes: to dare the conflict

    International Nuclear Information System (INIS)

    Rambour, Muriel; Pauvert, Bertrand; Zuber-Roy, Celine; Thireau, Veronique

    2015-01-01

    This publication presents the contributions to a research seminar organised by the European Centre of research on Risk, Collective Accident and Disasters Law (CERDACC) on the following theme: civil nuclear and responsibilities related to radioactive wastes. Three main thematic issues have been addressed: the French legal framework for waste processing, the comparison with the Swiss case, and the controversy about the exposure of societies to waste-induced risks. The first contribution addressed the cumbersome wastes of the civil nuclear industry: characterization and management solutions, the hypothesis of reversibility of the storage of radioactive wastes. The second one comments the commitment of the French Parliament in the management of wastes of the civil nuclear industry: role of Parliamentary Office of assessment of scientific and technological choices (OPECST) to guide law elaboration, assessment by the Parliament of the management of nuclear wastes (history and evolution of legal arrangements). The next contribution describes the Swiss legal framework for the shutting down of nuclear power stations (decision and decommissioning) and for the management of radioactive wastes (removal, financing). The last contribution discusses the risk related to nuclear waste management for citizen and comments how economists address this issue

  20. Calculating the Unit Cost Factors for Decommissioning Cost Estimation of the Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Lee, Dong Gyu; Jung, Chong Hun; Lee, Kune Woo

    2006-01-01

    The estimated decommissioning cost of nuclear research reactor is calculated by applying a unit cost factor-based engineering cost calculation method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning cost of nuclear research reactor is composed of labor cost, equipment and materials cost. Labor cost of decommissioning costs in decommissioning works are calculated on the basis of working time consumed in decommissioning objects. In this paper, the unit cost factors and work difficulty factors which are needed to calculate the labor cost in estimating decommissioning cost of nuclear research reactor are derived and figured out.

  1. Decommissioning of nuclear facilities in Europe and the experience of TUV SUD

    International Nuclear Information System (INIS)

    Hummel, Lothar; Kim, Duill; Ha, Taegun; Yang, Kyunghwa

    2012-01-01

    Many commercial nuclear facilities of the first generation will be taken out of operation in the near future. As of January 2012, total 19 prototype and commercial nuclear reactors have been decommissioned or are under dismantling in Germany. Most of decommissioning projects were successfully performed and a great deal of experience has been accumulated. Selecting a decommissioning strategy is a very important step at the beginning of the decision making process. According to IAEA requirements immediate dismantling is chosen as a preferred option in many countries today. It is associated with less uncertainty, positive political and social effect, and it can make use of existing operational experience and know-how. The availability of funds and final repository is of high importance for a decommissioning strategy selection. The time frame for the dismantling of nuclear facilities depends on the type, size and complexity of the individual project. TUV SUD, which is supervising most of nuclear power plants in Germany, has accumulated lots of experience by taking parts in decommissioning projects. It direct dismantling is chosen, actual light water reactor in Germany decommissioned to green field in approx. 10 years. The activities of TUV SUD cover from establishing the decommissioning concept to the clearance of the sites. This provides an overview of decommissioning projects of nuclear facilities in Europe, including a detail illustration of the German situation. Finally, some recommendations are suggested for the first decommissioning project based on the lessons and experiences derived from many decommissioning works in Europe

  2. Aspects of nuclear waste management after a 4-year Nordic programme

    International Nuclear Information System (INIS)

    Moberg, L.

    1990-01-01

    Six areas of concern in nuclear waste management have been dealt with in a four-year Nordic research programme. They include work in two international projects, Hydrocoin dealing with modelling of groundwater flow in crystalline rock, and Biomovs, concerned with biosphere models. Geologic questions of importance to the prediction of future behaviour are examined. Waste quantities from the decommissioning of nuclear power stations are estimated, and total amounts of waste to be transported in the Nordic countries are evaluated. Waste amounts from a hypothetical reactor accident are also calculated. (author)

  3. Proceedings of the 6th Korea-China Joint workshop on nuclear waste management

    International Nuclear Information System (INIS)

    2005-11-01

    This proceedings contains articles of 6th Korea-China Joint workshop on nuclear waste management. It was held on November 16-17, 2005 in Kyeongju, Korea. This proceedings is comprised of 3 sessions. The main subject titles of session are as follows: Nuclear fuel cycle, Radioactive waste treatment, Radwaste disposal and decontamination and decommissioning. (Yi, J. H.)

  4. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's plan to decommission and reclaim exploratory shafts and related facilities

    International Nuclear Information System (INIS)

    Fenster, D.F.; Schubert, J.P.; Zellmer, S.D.; Harrison, W.; Simpson, D.G.; Busch, J.S.

    1984-07-01

    The following recommendations are made for improving the Office of Nuclear Waste Isolation's plan for decommissioning and reclaiming exploratory shafts and other facilities associated with site characterization: (1) Discuss more comprehensively the technical aspects of activities related to decommissioning and reclamation. More detailed information will help convince the staff of the US Nuclear Regulatory Commission and others that the activities as outlined in the plan are properly structured and that the stated goals can be achieved. (2) Address in considerably greater detail how the proposed activities will satisfy specific federal, state, and local laws and regulations. (3) State clearly the precise purpose of the plan, preferably at the beginning and under an appropriate heading. (4) Also under an appropriate heading and immediately after the section on purpose, describe the scope of the plan. The tasks covered by this plan and closely related tasks covered by other appropriate plans should be clearly differentiated. (5) Discuss the possible environmental effects of drilling the exploratory shaft, excavating drifts in salt, and drilling boreholes as part of site characterization. Mitigation activities should be designed to counter specific potential impacts. High priority should be given to minimizing groundwater contamination and restoring the surface to a condition consistent with the proposed land use following completion of characterization activities at sites not chosen for repository construction. (6) Define ambiguous technical terms, either in the text when first introduced or in an appended glossary

  5. Decommissioning of nuclear facilities using current criteria

    International Nuclear Information System (INIS)

    Shum, E.Y.; Swift, J.J.; Malaro, J.C.

    1991-01-01

    When a licensed nuclear facility ceases operation, the US Nuclear Regulatory Commission (NRC) is responsible for ensuring that the facility and its site are decontaminated to an acceptable level so that it is safe to release that facility and site for unrestricted public use. Currently, the NRC is developing decommissioning criteria based on reducing public doses from residual contamination in soils and structures at sites released for unrestricted use to as low as is reasonably achievable (ALARA). Plans are to quantify ALARA in terms of an annual total effective dose equivalent (TEDE) to an average member of the most highly exposed population group. The NRC is working on a regulatory guidance document to provide a technical basis for translating residual contamination levels to annual dose levels. Another regulatory guide is being developed to provide guidance to the licensee on how to conduct radiological surveys to demonstration compliance with the NRC decommissioning criteria. The methods and approaches used in these regulatory guides on the decommissioning of a nuclear facility are discussed in the paper

  6. Optimizing decommissioning strategies

    International Nuclear Information System (INIS)

    Passant, F.H.

    1993-01-01

    Many different approaches can be considered for achieving satisfactory decommissioning of nuclear installations. These can embrace several different engineering actions at several stages, with time variations between the stages. Multi-attribute analysis can be used to help in the decision making process and to establish the optimum strategy. It has been used in the Usa and the UK to help in selecting preferred sites for radioactive waste repositories, and also in UK to help with the choice of preferred sites for locating PWR stations, and in selecting optimum decommissioning strategies

  7. Radiochemical analysis of concrete samples for decommission of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, Daniel; Wershofen, Herbert [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100 38116, Braunschweig (Germany); Larijani, Cyrus; Sobrino-Petrirena, Maitane; Garcia-Miranda, Maria; Jerome, Simon M. [National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2014-07-01

    Decommissioning of the oldest nuclear power reactors are some of the most challenging technological legacy issues many countries will face in forthcoming years, as many power reactors reach the end of their design lives. Decommissioning of nuclear reactors generates large amounts of waste that need to be classified according to their radioactive content. Approximately 10 % of the contaminated material ends up in different repositories (depending on their level of contamination) while the rest is decontaminated, measured and released into the environment or sent for recycling. Such classification needs to be done accurately in order to ensure that both the personnel involved in decommissioning and the population at large are not needlessly exposed to radiation or radioactive material and to minimise the environmental impact of such work. However, too conservative classification strategies should not be applied, in order to make proper use of radioactive waste repositories since space is limited and the full process must be cost-effective. Implicit in decommissioning and classification of waste is the need to analyse large amounts of material which usually combine a complex matrix with a non-homogeneous distribution of the radionuclides. Because the costs involved are large, it is possible to make great savings by the adoption of best available practices, such as the use of validated methods for on-site measurements and simultaneous determination of more than one radionuclide whenever possible. The work we present deals with the development and the validation of a procedure for the simultaneous determination of {sup 241}Am, plutonium isotopes, uranium isotopes and {sup 90}Sr in concrete samples. Samples are firstly ground and fused with LiBO{sub 2} and Li{sub 2}B{sub 4}O{sub 7}. After dissolution of the fused sample, silicate and alkaline elements are removed followed by radiochemical separation of the target radionuclides using extraction chromatography. Measurement

  8. Hungarian Experience in Decommissioning Planning for the Paks Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Danko, G.; Takats, F. [Golder Associates, Budapest (Hungary)

    2013-08-15

    Preparations for the decommissioning planning, and the legal background are described in the first part, followed by a review of possible decommissioning strategies and the present reference scenario. Specific issues of financing the future decommissioning and the anticipated radioactive wastes and their activities are described in the latter part of the report. (author)

  9. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    International Nuclear Information System (INIS)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-01-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning

  10. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  11. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  12. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FOR THE DECOMMISSIONING OF THE HORIZONTAL FUEL CHANNELS IN THE CANDU 6 NUCLEAR REACTOR. PART 6 - PRESENTATION OF THE DECOMMISSIONING DEVICE

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2015-05-01

    Full Text Available The objective of this paper is to present a possible solution for the designing of a device for the decommissioning of the horizontal fuel channels in the CANDU 6 nuclear reactor. The decommissioning activities are dismantling, demolition, controlled removal of equipment, components, conventional or hazardous waste (radioactive, toxic in compliance with the international basic safety standards on radiation protection. One as the most important operation in the final phase of the nuclear reactor dismantling is the decommissioning of fuel channels. For the fuel channels decommissioning should be taken into account the detailed description of the fuel channel and its components, the installation documents history, adequate radiological criteria for decommissioning guidance, safety and environmental impact assessment, including radiological and non-radiological analysis of the risks that can occur for workers, public and environment, the description of the proposed program for decommissioning the fuel channel and its components, the description of the quality assurance program and of the monitoring program, the equipments and methods used to verify the compliance with the decommissioning criteria, the planning of performing the final radiological assessment at the end of the fuel channel decommissioning. These will include also, a description of the proposed radiation protection procedures to be used during decommissioning. The dismantling of the fuel channel is performed by one device which shall provide radiation protection during the stages of decommissioning, ensuring radiation protection of the workers. The device shall be designed according to the radiation protection procedures. The decommissioning device assembly of the fuel channel components is composed of the device itself and moving platform support for coupling of the selected channel to be dismantled. The fuel channel decommissioning device is an autonomous device designed for

  13. Challenges of Ignalina NPP Decommissioning - View of Lithuanian Operator

    International Nuclear Information System (INIS)

    Aksionov, P.

    2017-01-01

    The state enterprise Ignalina Nuclear Power Plant (INPP) operates 2 similar design units of RBMK-1500 water-cooled graphite-moderated channel-type power reactors (1500 MW electrical power). INPP is carrying out the decommissioning project of the 2 reactors which includes: -) the retrieval of the spent nuclear fuel from the power units and its transportation into the Interim Spent Fuel Storage Facility; -) equipment and building decontamination and dismantling; -) radioactive waste treatment and storage; and -) the operation of key systems to ensure nuclear, radiation and fire protection. Ignalina NPP decommissioning project is planned to be completed by 2038. The presentation will be focused on the ongoing decommissioning activities at Ignalina NPP. The overview of main aspects and challenges of INPP decommissioning will be provided

  14. Technology, safety and costs of decommissioning a refernce boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  15. The estimation of the amount of radioactive waste from decommissioning of the nuclear facilities in Oarai Engineering Center

    International Nuclear Information System (INIS)

    Tanimoto, Kenichi; Aihara, Nagafumi; Imai, Katutomo; Tobita, Kazunori; Nemoto, Masaaki; Imahori, Shinji; Noguchi, Kouichi; Hasegawa, Makoto

    1998-11-01

    The estimation of the amount of radioactive waste produced from nuclear facilities in Oarai Engineering Center was performed for the purpose of using it for countermeasure of decommissioning planning. The conditions and the result of the estimation are as follows; (1) The total amount of occurrence of radioactive waste is 18,820 tons. As the items of the amount in radioactive level, the amount of 1 GBq/t and over is 820 tons and that of under 1 GBq/t is 18,000 tons. (2) The amount of metal waste is 5,820 tons and the amount of concrete is 13,000 tons. (3) Above calculation was based on related specifications, complete drawings, and visual observation. (4) To dismantle facilities, if must exfoliate the surface of wall. As for the polluted zone and the zone with possibility of pollution, it decided to exfoliate 5 cm in thickness from the surface of the wall. And, as for the zone that fundamentally pollution was not there, it decided to exfoliate surface 1 cm in thickness from the surface of the wall. (5) Using the suitable decontamination technology and exfoliation technology can reduce the amount of radioactive waste. (6) In the facilities dealing with sealed source judging from the past record of operation, there is no contact with the radioactive material, etc. Therefore, it can be disposed of all the waste that comes out from the facilities as non-radioactive waste. (author)

  16. Decommissioning activities for Salaspils research reactor - 59055

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnacs, J.

    2012-01-01

    In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor (SRR). The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH at 1998-1999. The Latvian government decided to start the direct dismantling to 'green field' in October 26, 1999. The upgrade of decommissioning and dismantling plan was performed in 2003-2004 years, which change the main goal of decommissioning to the 'brown field'. The paper deals with the SRR decommissioning experience during 1999-2010. The main decommissioning stages are discussed including spent fuel and radioactive wastes management. The legal aspects and procedures for decommissioning of SRR are described in the paper. It was found, that the involvement of stakeholders at the early stages significantly promotes the decommissioning of nuclear facility. Radioactive waste management's main efforts were devoted to collecting and conditioning of 'historical' radioactive wastes from different storages outside and inside of reactor hall. All radioactive materials (more than 96 tons) were conditioned in concrete containers for disposal in the radioactive wastes repository 'Radons' at Baldone site. The dismantling of contaminated and activated components of SRR systems is discussed in paper. The cementation of dismantled radioactive wastes in concrete containers is discussed. Infrastructure of SRR, including personal protective and radiation measurement equipment, for decommissioning purposes was upgraded significantly. Additional attention was devoted to the free release measurement's technique. The certified laboratory was installed for supporting of all decommissioning activities. All non-radioactive equipments and materials outside of reactor buildings were released for clearance and dismantled for reusing or conventional disposing. Weakly contaminated materials from reactor hall were collected

  17. Decommissioning of surface facilities associated with repositories for the deep geological disposal of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1978-11-01

    A methodology is presented in this paper to evaluate the decommissioning of the surface facilities associated with repositories for the deep geological disposal of high-level nuclear wastes. A cost/risk index (figure of merit), expressed as $/manrem, is proposed as an evaluation criteria. On the basis of this cost/risk index, we gain insight into the advisability of adapting certain decontamination design options into the original facility. Three modes are considered: protective storage, entombment, and dismantlement. Cost estimates are made for the direct labor involved in each of the alternative modes for a baseline design case. Similarly, occupational radiation exposures are estimated, with a larger degree of uncertainty, for each of the modes. Combination of these estimates produces the cost/risk index. To illustrate the methodology, an example using a preliminary baseline repository design is discussed

  18. New directions in nuclear waste disposal in Ontario Hydro

    International Nuclear Information System (INIS)

    Nash, K.

    1996-01-01

    Ontario Hydro Nuclear has financial, environmental, safety and public acceptance business objectives which must be met to achieve long term sustainable success. Short term objectives of achieving nuclear excellence in safety, cost and production are vital to this success. Ontario Hydro's nuclear waste and decommissioning liabilities must be managed within these objectives. This paper outlines the financial environmental and societal considerations and responsibility framework for managing these liabilities. (author)

  19. History of radiological characterisation in Studsvik - History of radiological characterisation in decommissioning projects in Studsvik

    International Nuclear Information System (INIS)

    Hedvall, Robert

    2012-01-01

    AB SVAFO is a nuclear waste technology and decommissioning company based in Sweden in the scenic surroundings of Studsvik on the Baltic coast. SVAFO is owned by the Swedish nuclear power industry. The company was created in 1992 by Sydsvenska Vaermekraft AB, Vattenfall AB, Forsmarks Kraftgrupp AB and Oskarshamns Kraftgrupp AB as a consequence of the Act on the Financing of the Management of Certain Radioactive Waste etc, from 1988. AB SVAFO's main business is to take care of formerly state-owned spent nuclear waste at the site, including small amounts of nuclear fuel. Buildings are also included, mainly nuclear waste storage buildings and a research reactor. Some buildings have already been decommissioned and all the fuel is treated. In the past 30 years, various decommissioning projects have been carried out, encompassing areas such as an underground research reactor, a Van de Graaff accelerator, 15,000 m 2 of nuclear laboratories, two 150 m 3 underground concrete sludge silos and several waste-storage buildings. Up till now only one or two persons did a simple characterisation before the project started to get the level of contamination. With the start of the decommissioning of the former uranium mine in Ranstad and the R2-reactor, more efforts have been put for the characterisation. The change in methods will be described. (author)

  20. Nuclear power plants life extension and decommissioning its economic aspects

    International Nuclear Information System (INIS)

    Watanabe, Yoshiaki

    1994-06-01

    In USA where the development of nuclear power was started early, the life of nuclear power plants expires successively around the turn of century, and the serious hindrance to electric power supply is feared. Therefore, the research for extending 40 year approved period of operation is in progress. By the extension of life of nuclear power plants, huge cost reduction is estimated as compared with the construction of new plants. However, due to the rise of the cost for the life extension, there were the cases of forced decommissioning. In this book, the present state of the life extension of nuclear power stations, the economical assessment and analysis of the life extension by DOE, the economical assessment by MIDAS method of Electric Power Research Institute, the economical assessment by cost-benefit method of Northern States Power Co., the assessment of the long term operation possibility of nuclear power stations, the economical assessment system for the life extension in Japan, the present state of the decommissioning of nuclear power stations and that in USA, Canada and Europe, the assessment of the decommissioning cost by OECD/NEA, and the decommissioning cost for thermal power stations are described. (K.I.)