WorldWideScience

Sample records for nuclear beams project

  1. Isobar separator for radioactive nuclear beams project

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Nolen, J.A.

    1995-08-01

    In order to produce pure beams of radioactive products emanating from the production target/ion source system, both mass and isobar separation is required. A preliminary mass separation with a resolution {triangle}M/M of approximately 10{sup -3} will select the proper mass beam. An isobar separator is needed because the masses of adjacent isobars are usually quite close, especially for beams near stability. In general, a mass resolution of 5 x 10{sup -5} is needed for isobar separation in the A < 120 region, while a resolution of 3 x 10{sup -5} or better is needed for heavier masses. Magnets are used to obtain mass separation. However, in addition to having mass dispersion properties, magnets also have an equal energy dispersion. This means that an energy variation in the beam cannot be distinguished from a mass difference. This is important because ions emerge from the ion source having a small ({approximately} 10{sup -5} - 10{sup -4}) energy spread. In order to make the system respond only to mass differences, it must be made energy dispersion. This is normally accomplished by using a combination of electric and magnetic fields. The most convenient way of doing this is to use an electric deflection following the magnet separator. A preliminary isobar separator which achieves a mass resolution of 2.7 x 10{sup -5} is shown in Figure I-38. It uses two large 60{degrees} bending magnets to obtain a mass dispersion of 140 mm/%, and four electric dipoles with bending angles of 39{degrees} to cancel the energy dispersion. Sextupole and octupole correction elements are used to reduce the geometrical aberrations.

  2. Baltic nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Adlys, Gediminas; Adliene, Diana [Kaunas Univ. of Technology (Lithuania)

    2009-07-01

    The Authors discuss the Baltic energy policy with respect to new nuclear power plants for Lithuania, Belarus and the Kaliningrad region. The construction of a new nuclear power plant in Lithuania would threaten Russian interests in the region. Therefore Lithuania is looking to Russian plans to build a new nuclear power plant in the Kaliningrad region as an attempt to subvert Lithuania's foreign partners and potential investors from participating in the Visaginas NPP project. However, the authors conclude, that the Visaginas NPP project is and must be the preferential project for the EU and NATO member states.

  3. Mixed beams for the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Breese, M.B.H.; Legge, G.L.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Recently the Micro-Analytical Research Centre (MARC) at Melbourne University has developed a technique to provide mixed beams of ions for a magnetically focussed nuclear microprobe. Such a mixed beam is defined as two (or more) beams of different species ions that can quickly and easily be made to have the same magnetic rigidity R{sub m} = (mE/q{sup 2}) and therefore be transported, focused and scanned the same in a magnetic nuclear microprobe. The production of mixed beams in an electrostatically focussed micro- probe have already been demonstrated. This paper will show how mixed beams can be produced on a single-ended accelerator. Indications of how to produce them on a tandem will also be given. Applications of these mixed beams in micro-lithography, scanning transmission ion microscopy (STIM) imaging and ion beam induced charge (IBIC) imaging will also be presented. 3 refs., 3 figs.

  4. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  5. Nuclear Propulsion Project Workshop summary

    Science.gov (United States)

    Miller, Thomas J.; Clark, John S.; Barnett, John W.

    1991-01-01

    NASA-Lewis has undertaken the planning and coordination of a joint NASA/DOE/DOD Nuclear Propulsion Project which will investigate both nuclear electric and nuclear thermal concepts. The three-agency team has been tasked with the development of an Interagency Agreement and Memorandum of Understanding, as well as the drafting of a statement as to astronaut crew guidelines and values, the assessment of human-rating requirements, the development of an interagency safety and environmental assessment plan, and the development of test facility requirements. Attention is to be given to the role of SP-100 for nuclear-electric propulsion applications.

  6. Nuclear Astrophysics Measurements with Radioactive Beams

    Science.gov (United States)

    Smith, Michael S.; Ernst Rehm, K.

    Radioactive nuclei play an important role in a diverse range of astrophysical phenomena including the early universe, the sun, red giant stars, nova explosions, X-ray bursts, supernova explosions, and supermassive stars. Measurements of reactions with beams of short-lived radioactive nuclei can, for the first time, probe the nuclear reactions occurring in these cosmic phenomena. This article describes the astrophysical motivation for experiments with radioactive beams, the techniques to produce these beams and perform astrophysically relevant measurements, results from recent experiments, and plans for future facilities.

  7. Radioactive ion beams in nuclear astrophysics

    Science.gov (United States)

    Gialanella, L.

    2016-09-01

    Unstable nuclei play a crucial role in the Universe. In this lecture, after a short introduction to the field of Nuclear Astrophysics, few selected cases in stellar evolution and nucleosynthesis are discussed to illustrate the importance and peculiarities of processes involving unstable species. Finally, some experimental techniques useful for measurements using radioactive ion beams and the perspectives in this field are presented.

  8. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; Scott, John; Power, Kevin P.

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  9. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adams, N

    2007-07-08

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to

  10. Physics with post accelerated beams: nuclear astrophysics

    Science.gov (United States)

    Murphy, A. St J.

    2017-05-01

    In this article, recent studies so far conducted with post accelerated beams at the ISOLDE facility in the area of nuclear astrophysics are reviewed. Two experiments in particular are highlighted, that each feature novelty and innovation. Three future experiments are also briefly presented. Collectively, these works advance our understanding of big bang nucleosynthesis, quiescent and explosive burning in novae and x-ray bursts, and core-collapse supernovae, both in terms of the underlying explosion mechanism and gamma-ray satellite observable radioisotopes.

  11. Do twisted laser beams evoke nuclear hyperpolarization?

    Science.gov (United States)

    Schmidt, A. B.; Andrews, D. L.; Rohrbach, A.; Gohn-Kreuz, C.; Shatokhin, V. N.; Kiselev, V. G.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B.

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5 nm and various topological charges. We acquired 1H and 19F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5 mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  12. Nuclear astrophysics with secondary (radioactive) beams

    CERN Document Server

    Gai, M

    1995-01-01

    Some problems in nuclear astrophysics are discussed with emphasize on the ones central to the field which were not solved over the last two decades, including Helium Burning in Massive stars (the 12C(a,g)16O reaction) and the 8B Solar Neutrino Flux Problem (the 7Be(p,g)8B reaction). We demonstrate that a great deal of progress was achieved by measuring the time reverse process(es): the beta-delayed alpha-particle emission of 16N and the Coulomb dissociation of 8B, using radioactive beams (of 16N and 8B). In this way an amplification of the sought for cross section was achieved, allowing a measurement of the small cross section(s) of relevance for stellar (solar) process(es).

  13. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or

  14. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    Science.gov (United States)

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  15. Beam Dynamics Studies for the SPARC Project

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M.; Biagini, Maria E.; Boscolo, M.; Fusco, V.; Guiducci, S.; Migliorati, M.; Serafini, L.; Vaccarezza, C.; Bartolini, R.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Limborg, C.G.; /Unlisted /Unlisted /ENEA, Frascati /SLAC

    2008-03-17

    The aim of the SPARC project, is to promote an R&D activity oriented to the development of a high brightness photoinjector to drive SASE-FEL experiments. We discuss in this paper the status of the beam dynamics simulation activities.

  16. Canadian national nuclear forensics capability project

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J.; Dimayuga, I., E-mail: joanne.ball@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Summerell, I. [Royal Canadian Mounted Police, Ottawa, Ontario (Canada); Totland, M. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Jonkmans, G. [Defence Research and Development Canada, Ottawa, Ontario (Canada); Whitlock, J. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); El-jaby, A. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada); Inrig, E. [Defence Research and Development Canada, Ottawa, Ontario (Canada)

    2015-06-15

    Following the 2010 Nuclear Security Summit, Canada expanded its existing capability for nuclear forensics by establishing a national nuclear forensics laboratory network, which would include a capability to perform forensic analysis on nuclear and other radioactive material, as well as on traditional evidence contaminated with radioactive material. At the same time, the need for a national nuclear forensics library of signatures of nuclear and radioactive materials under Canadian regulatory control was recognized. The Canadian Safety and Security Program, administered by Defence Research and Development Canada's Centre for Security Science (DRDC CSS), funds science and technology initiatives to enhance Canada's preparedness for prevention of and response to potential threats. DRDC CSS, with assistance from Canadian Nuclear Laboratories, formerly Atomic Energy of Canada Limited, is leading the Canadian National Nuclear Forensics Capability Project to develop a coordinated, comprehensive, and timely national nuclear forensics capability. (author)

  17. Nuclear Structure and Nuclear Astrophysics Studies with Fast Heavy-Ion Beams

    Science.gov (United States)

    Motobayashi, Tohru

    Collaboration between France and Japan on studies with fast RI (radioactive isotope) beams and related technical developments started in 1980s, when the GANIL accelerators and RIKEN cyclotron complex started operation and RI beam production technique was developed. Several examples of collaboration on nuclear physics and nuclear astrophysics experiments including related technical development are discussed.

  18. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  19. Nuclear Structure at the Legnaro National Laboratories:. from High Intensity Stable to Radioactive Nuclear Beams

    Science.gov (United States)

    de Angelis, G.

    2007-04-01

    To understand the properties of a nucleus, apart from establishing the interaction between its components, it is necessary to determine the arrangement of the nucleons, i.e. the structure of a nucleus. So far our knowledge about the structure of nuclei is mostly limited to nuclei close to the valley of stability, or nuclei with a deficiency of neutrons, which can be produced in fusion-evaporation reactions with stable beams and stable targets. Future perspectives in nuclear structure rely on radioactive ion beams (RIB) as well as on high intensity beams of stable ions (HISB). A world wide effort is presently going on in order to built the next generation radioactive ion beam facilities like the FAIR and the EURISOL projects. The LNL are contributing to such development through the design study of the EURISOL project as well as through the design and construction of the intermediate facility SPES. Concerning the instrumentation, particularly powerful is the combination of large acceptance spectrometers with highly segmented γ-detector arrays. An example is the CLARA γ-ray detector array coupled with the PRISMA spectrometer at the Legnaro National Laboratories (LNL). The physics aims achievable with such device complement studies performed with current radioactive beam (RIB) facilities. With this set-up we have recently investigated the stability of the N=50 shell closure. Here the comparison of the experimental data with shell model calculations seems to indicate a persistence of the N=50 shell gap down to Z=31. Also the study of proton rich nuclei can strongly benefit from the use of high intensity stable beams using fusion evaporation reactions at energies close to the Coulomb barrier. Future perspectives at LNL are based on an increase in intensity as well as on the availability of heavy ion species. Moreover a new ISOL facility (SPES) dedicated to the production and acceleration of radioactive neutron rich species is now under development at LNL. Among the new

  20. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  1. ADIGE: the radioactive ion beam injector of the SPES project

    Science.gov (United States)

    Galatà, A.; Bellan, L.; Bisoffi, G.; Comunian, M.; Martin, L.; Moisio, M. F.; Palmieri, A.; Pisent, A.; Prete, G.; Roncolato, C.

    2017-07-01

    The Selective Production of Exotic Species (SPES) project is presently under development at INFN-LNL: aim of this project is the production, ionization and postacceleration of radioactive ions to perform forefront research in nuclear physics. An ECR-based charge breeder (SPES-CB) will allow post-acceleration of radioactive ions: in particular, the SPES-CB has been designed and developed by LPSC of Grenoble, based on the Phoenix booster. It will be equipped with a complete test bench totally integrated with the SPES beam line: this part of the post-accelerator, together with the newly designed RFQ, composes the so-called ADIGE injector (Acceleratore Di Ioni a Grande carica Esotici) for the superconducting linac ALPI. The injector will employ a unique Medium Resolution Mass Spectrometer (MRMS, resolving power 1/1000), mounted downstream the SPES-CB, in order to avoid the typical drawback of the ECR-based charge breeding technique, that is the beam contamination. This contribution describes the ADIGE injector, with particular attention to the analysis of possible contaminations and the performances expected for the MRMS, showing the beam dynamics calculations for a reference radioactive beam.

  2. Measurement of nuclear cross sections using radioactive beams; Medicion de secciones eficaces nucleares usando haces radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a {sup 6} He nuclear radioactive beam ({beta} emitting with half life 806.7 ms) for the study of the reaction {sup 6} + {sup 209} Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  3. Theoretical Aspects of Science with Radioactive Nuclear Beams

    CERN Document Server

    Dobaczewski, J; Dobaczewski, Jacek; Nazarewicz, Witold

    1997-01-01

    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

  4. Spent Nuclear Fuel Project Technical Databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-10-23

    The Spent Nuclear Fuel (SNF) Project Technical Databook is developed for use as a common authoritative source of fuel behavior and material parameters in support of the Hanford SNF Project. The Technical Databook will be revised as necessary to add parameters as their Databook submittals become available.

  5. Development of ion beam techniques for the study of special nuclear materials related problems

    Energy Technology Data Exchange (ETDEWEB)

    Maggiore, C.J.; Tesmer, J.R.; Martz, J.C. [and others

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The scientific objective of this project was to develop the ion beam techniques for the characterization of actinides and their effects on other materials. It was designed to enhance their ability to quantitatively understand the oxidation, corrosion, diffusion, stability, and radiation damage of actinides and the materials with which they are in contact. The authors developed and applied several low-energy nuclear techniques (resonant and nonresonant backscattering, nuclear reaction analysis, and particle-induced x-ray emission) to the quantitative study of the near surfaces of actinide and tritide materials, and determined the absolute accuracy and precision of ion beam measurements on these materials. They also demonstrated the use of variable-energy alpha beams for the study of accelerated aging of polymeric materials in contact with actinide materials.

  6. Nuclear Cryogenic Propulsion Stage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Key NCPS project objectives are to conduct preliminary design, fabrication, and test of representative fuel samples and partial length fuel elements for the two...

  7. NORWAY: a nuclear demonstration project?

    CERN Multimedia

    Clery, Daniel

    2007-01-01

    "Egil Lillestøl is a man with a rather unusual mission: he wants his homeland of Norway to take the lead in developement of of a new form of nuclear power. Norway is Europe's largest petroleum exporter, from its North Sea oil and gas fields, and Lillestøl, a physicist at the University of Bergen, believes the country needs to do something about its carbon emissions.

  8. Ion beam coolers in nuclear physics

    CERN Document Server

    Äystö, J

    2003-01-01

    Cooling techniques for low-energy radioactive ion beams are reviewed together with applications on high-precision measurements of ground state properties of exotic nuclei. The emphasis in the presentation is on cooling, bunching and improving the overall characteristics of ion beams by RFQ-driven buffer gas cooling devices. Application of cooled and bunched beams in collinear laser spectroscopy to extract isotope shifts and hyperfine structure are presented with examples on radioactive Ti, Zr and Hf isotopes. The impact of the new-generation coolers on mass measurements of short-lived nuclei is discussed with examples on precision measurements of masses of super-allowed beta emitters. As a new concept, decay spectroscopy of radioactive ions trapped in a cooler Penning trap is presented.

  9. Nuclear astrophysics with exotic nuclei and rare ion beams

    Science.gov (United States)

    Trache, Livius

    2013-02-01

    Nuclear astrophysics has become a major motivation for nuclear physics research in the latest few decades. The quests to understand grand scale cosmic phenomena, the origin of elements and isotopes, the sources of energy in stars, were advanced by studies at the microscopic scale of nuclei. Advances in the production, separation and acceleration of unstable nuclei lead not only to new knowledge in the structure of nuclei and nuclear matter, but also have revolutionized nuclear physics for astrophysics. I will review some of the many contributions that nuclear astrophysics made to our fundamental knowledge, and then will describe a few indirect methods used in nuclear astrophysics using radioactive beams, concentrating on those used by the groups I work with.

  10. Nuclear physics with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kozub, Raymond L. [Tennessee Technological Univ., Cookeville, TN (United States)

    2015-07-23

    This is a final report on DOE Grant No. DE FG02 96ER40955, which was active at Tennessee Technological University (TTU) from 1 March 1996 to 29 May 2015. Generally, this report will provide an overall summary of the more detailed activities presented in the progress reports, numbered DOE/ER/40955-1 through DOE/ER/40955-18, which were submitted annually to the DOE Office of Nuclear Physics.

  11. Accelerated radioactive nuclear beams: Existing and planned facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nitschke, J.M.

    1992-07-01

    An over-view of existing and planned radioactive nuclear beam facilities world-wide. Two types of production methods are distinguished: projectile fragmentation and the on-line isotope separator (ISOL) method. While most of the projectile fragmentation facilities are already in operation, almost all the ISOL-based facilities are in still the planning stage.

  12. Indian manpower for mega nuclear project

    CERN Multimedia

    2003-01-01

    "India is supplying critical scientific manpower and high-tech components needed for building a Large Hadron Collider (LHC) - an accelerator used in particle physics research - a mega scientific project of the European Organisation for Nuclear Research (CERN) worth billions of dollars" (1/2 page).

  13. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-01-20

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  14. Spent nuclear fuel project product specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    1999-02-25

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  15. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Moshe [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097, USA and Wright Lab, Dept. of Physics, Yale University, New Haven, CT 06520-8124 and the Charged Particle Working Group (CPWG) of the Technical Design Report (TDR) (United States)

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  16. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  17. Spent nuclear fuel project technical databook

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  18. RIKEN radioactive isotope beam factory project – Present status and perspectives

    Indian Academy of Sciences (India)

    H Sakurai

    2010-08-01

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis is given to the present status and future plans of new devices.

  19. Behavior of nuclear materials irradiated with a dual ion beam

    Science.gov (United States)

    Thomé, Lionel; Velişa, Gihan; Debelle, Aurélien; Miro, Sandrine; Garrido, Frédérico; Trocellier, Patrick; Serruys, Yves

    2014-05-01

    Synergistic effects of nuclear (Sn) and electronic (Se) energy losses are investigated by comparing the damage accumulated in selected oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals irradiated with single and dual low and high energy ion beams. Channeling results show that the Sn/Se synergy induces a strong decrease of the damage in MgO and SiC (where amorphization is prevented) and almost no effects in c-ZrO2 and Gd2Ti2O7. Raman and TEM results confirm this statement. The healing of defects generated by nuclear collisions in MgO and SiC is due to the electronic excitation produced in the wake of swift ions. These results present a strong interest for technological applications in the nuclear industry where expected cooperative Sn/Se effects may preserve the integrity of nuclear materials.

  20. Advanced nuclear reactor public opinion project

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  1. The charge breeder beam line for the selective production of exotic species project at INFN-Legnaro National Laboratories

    Science.gov (United States)

    Galatà, A.; Comunian, M.; Maggiore, M.; Manzolaro, M.; Angot, J.; Lamy, T.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an INFN (Istituto Nazionale di Fisica Nucleare) project with the aim at producing and post-accelerating exotic beams to perform forefront research in nuclear physics. To allow post-acceleration of the radioactive ions, an ECR-based Charge Breeder (CB) developed on the basis of the Phoenix booster was chosen. The design of the complete beam line for the SPES-CB will be described: a system for stable 1+ beams production was included; special attention was paid to the medium resolution mass spectrometer after the CB to limit possible superposition of the exotic beams with the impurities present in the ECR plasma.

  2. Physics with post-accelerated beams at ISOLDE: nuclear reactions

    Science.gov (United States)

    Di Pietro, A.; Riisager, K.; Van Duppen, P.

    2017-04-01

    Nuclear-reaction studies have until now constituted a minor part of the physics program with post-accelerated beams at ISOLDE, mainly due to the maximum energy of REX-ISOLDE of around 3 MeV/u that limits reaction work to the mass region below A = 100. We give an overview of the current experimental status and of the physics results obtained so far. Finally, the improved conditions given by the HIE-ISOLDE upgrade are described.

  3. Present and future radioactive nuclear beam developments at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Decrock, P.

    1996-11-01

    A scheme for building an ISOL-based radioactive nuclear beam facility at the Argonne Physics Division, is currently evaluated. The feasibility and efficiency of the different steps in the proposed production- and acceleration cycles are being tested. At the Dynamitron Facility of the ANL Physics Division, stripping yields of Kr, Xe and Ph beams in a windowless gas cell have been measured and the study of fission of {sup 238}U induced by fast neutrons from the {sup 9}Be(dn) reaction is in progress. Different aspects of the post-acceleration procedure are currently being investigated. In parallel with this work, energetic radioactive beams such as {sup 17}F, {sup 18}F and {sup 56}Ni have recently been developed at Argonne using the present ATLAS facility.

  4. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  5. Financing strategy for Indonesian Nuclear Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Subki, I.M.; Arbie, B.; Adiwardojo; Seotrisnanto, A.Y. [National Atomic Enegy Agency, Batan (Indonesia)

    1998-07-01

    In anticipation of the introduction in the early 2000s of a nuclear power plant, the Government of Indonesia (GOI), through the National Atomic Energy Agency (BATAN) , has formulated a Bid Invitation Specification (BIS) in parallel with the completion of the NPP Feasibility Study. This BIS formulation assumed an open international tender for the first unit of the NPP with project financing as a conventional loan. The GOI's recent policy is to minimize government financial support for power development. This paper summarizes a financing strategy for the Indonesian NPP project to make the NPP economically viable, and provides a general discussion on project financing using a conventional approach, Build--Own-Operate (BOO) and a counter-purchase approach. Innovative approaches for financing are still being pursued in order to obtain an optimum solution for investors and owners, to fulfill the Indonesian government's requirements. (author)

  6. A polarized beams project at ISAC

    CERN Document Server

    Levy, C D P; Jayamanna, K; Kiefl, R; Kuo, T; Olivo, M; Wight, G W; Yuan, D; Zelenski, A N

    2002-01-01

    A polarizer beam line at the radioactive beams facility ISAC at TRIUMF is nearly complete. Initially for sup 8 Li sup + ions for beta-NMR studies in condensed matter, it can in principle supply three or more experiments simultaneously, and the technique used is practicable with all alkali-metal ion beams. An atomic beam, created with over 90% efficiency by passing the initial unpolarized 30 keV beam through a sodium vapor jet target, will be polarized by colinear optical pumping. A novel feature is that the atomic beam is reionized with demonstrated high efficiency in a helium gas target. The emittance growth through the helium cell has been measured for stable sup 7 Li sup + beam on a test stand and found to be small. We report these measurements as a function of helium flow rates. A preliminary polarized sup 8 Li sup + run is planned for May, 2000.

  7. Increasing Cone-beam projection usage by temporal fitting

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections are typi...

  8. Nuclear fragmentation of high-energy heavy-ion beams in water.

    Science.gov (United States)

    Schardt, D; Schall, I; Geissel, H; Irnich, H; Kraft, G; Magel, A; Mohar, M F; Munzenberg, G; Nickel, F; Scheidenberger, C; Schwab, W; Sihver, L

    1996-01-01

    As a part of the physical-technical program of the heavy-ion therapy project at GSI we have investigated the nuclear fragmentation of high-energy ion beams delivered by the heavy-ion synchrotron SIS, using water as a tissue-equivalent target. For a direct comparison of fragmentation properties, beams of 10B, 12C, 14N, and 16O were produced simultaneously as secondary beams from a primary 18O beam and separated in flight by magnetic beam analysis. The Z-distributions of beam fragments produced in the water target were measured via energy loss in a large ionisation chamber and a scintillator telescope. From these data we obtained both total and partial charge-changing cross sections. In addition we have performed Bragg measurements using two parallel-plate ionization chambers and a water target of variable length. The detailed shape of the measured Bragg curves and the measured cross sections are in good agreement with model calculations based on semi-empirical formulae.

  9. Radioactive nuclear beams and the North American IsoSpin Laboratory (ISL) initiative

    Energy Technology Data Exchange (ETDEWEB)

    Casten, R.F.

    1992-01-01

    Radioactive nuclear beams (RNBs) offer exciting new research opportunities in fields as diverse as nuclear structure, nuclear reactions, astrophysics atomic, materials, and applied science. Their realization in new accelerator complexes also offers important technical challenges. Some of the nuclear physics possibilities afforded by RNBs, with emphasis on low spin nuclear structure, are discussed, accompanied by an outline of the ISL initiative and its status.

  10. Radioactive nuclear beams and the North American IsoSpin Laboratory (ISL) initiative

    Energy Technology Data Exchange (ETDEWEB)

    Casten, R.F.

    1992-12-01

    Radioactive nuclear beams (RNBs) offer exciting new research opportunities in fields as diverse as nuclear structure, nuclear reactions, astrophysics atomic, materials, and applied science. Their realization in new accelerator complexes also offers important technical challenges. Some of the nuclear physics possibilities afforded by RNBs, with emphasis on low spin nuclear structure, are discussed, accompanied by an outline of the ISL initiative and its status.

  11. A Second Generation Radioactive Nuclear Beam Facility at CERN

    CERN Document Server

    Äystö, J; Lindroos, M; Ravn, H L; Van Duppen, P

    2000-01-01

    The proposed Superconducting Proton Linac (SPL) at CERN would be an ideal driver for a proton-driven second-generation Radioactive Nuclear Beam facility. We propose to investigate the feasibility of constructing such a facility at CERN close to the present PS Booster ISOLDE facility. The existing ISOLDE facility would be fed with a 10 micro-amps proton beam from SPL, providing the physics community with a low-intensity experimental area. A second, new facility would be built with target stations deep underground, permitting proton beam intensities of more than 100 micro-amps. The secondary beams can be post-accelerated to 20-100 MeV/u and there will be a storage ring complex and large segmented detectors in the experimental area. Also, benefits from a muon-ion collider or from merging the ions and muons should be investigated. Since the antiproton decelerator would be nearby, the opportunities for antiprotonic radioactive atom studies should be pursued as well.

  12. Medical applications of nuclear physics and heavy-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  13. Status of neutron beam utilization at the Dalat nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dien, Nguyen Nhi; Hai, Nguyen Canh [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  14. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  15. Nuclear Systems (NS): Technology Demonstration Unit (TDU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA’s Space Technology Mission Directorate. To this end,...

  16. Speckle-metric-optimization-based adaptive optics for laser beam projection and coherent beam combining.

    Science.gov (United States)

    Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary

    2012-07-15

    Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.

  17. Spent nuclear fuel project product specification

    Energy Technology Data Exchange (ETDEWEB)

    Pajunen, A.L.

    1998-01-30

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification.

  18. BUNCHED BEAM STOCHASTIC COOLING PROJECT FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BRENNAN, J.M.; BASKIEWICZ, M.M.

    2005-09-18

    The main performance limitation for RHIC is emittance growth caused by IntraBeam Scattering during the store. We have developed a longitudinal bunched-beam stochastic cooling system in the 5-8 GHz band which will be used to counteract IBS longitudinal emittance growth and prevent de-bunching during the store. Solutions to the technical problems of achieving sufficient kicker voltage and overcoming the electronic saturation effects caused by coherent components within the Schottky spectrum are described. Results from tests with copper ions in RHIC during the FY05 physics run, including the observation of signal suppression, are presented.

  19. Large-angle production of charged pions with incident pion beams on nuclear targets

    CERN Document Server

    Apollonio, M.; Bagulya, A.; Barr, G.; Blondel, A.; Bobisut, F.; Bogomilov, M.; Bonesini, M.; Booth, C.; Borghi, S.; Bunyatov, S.; Burguet-Castell, J.; Catanesi, M.G.; Cervera-Villanueva, A.; Chimenti, P.; Coney, L.; Di Capua, E.; Dore, U.; Dumarchez, J.; Edgecock, R.; Ellis, M.; Ferri, F.; Gastaldi, U.; Giani, S.; Giannini, G.; Gibin, D.; Gilardoni, S.; Gorbunov, P.; Gossling, C.; Gomez-Cadenas, J.J.; Grant, A.; Graulich, J.S.; Gregoire, G.; Grichine, V.; Grossheim, A.; Guglielmi, A.; Howlett, L.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Kirsanov, M.; Kolev, D.; Krasnoperov, A.; Martin-Albo, J.; Meurer, C.; Mezzetto, M.; Mills, G.B.; Morone, M.C.; Novella, P.; Orestano, D.; Palladino, V.; Panman, J.; Papadopoulos, I.; Pastore, F.; Piperov, S.; Polukhina, N.; Popov, B.; Prior, G.; Radicioni, E.; Schmitz, D.; Schroeter, R.; Skoro, G.; Sorel, M.; Tcherniaev, E.; Temnikov, P.; Tereschenko, V.; Tonazzo, A.; Tortora, L.; Tsenov, R.; Tsukerman, I.; Vidal-Sitjes, G.; Wiebusch, C.; Zucchelli, P.

    2009-01-01

    Measurements of the double-differential pi+/- production cross-section in the range of momentum 100 MeV/c <= p <= 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad using pi+/- beams incident on beryllium, aluminium, carbon, copper, tin, tantalum and lead targets are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d2sigma/dpdtheta at six incident beam momenta. Data at 3 GeV/c, 5 GeV/c, 8 GeV/c, and 12 GeV/c are available for all targets while additional data at 8.9 GeV/...

  20. Large-angle production of charged pions with incident pion beams on nuclear targets

    CERN Document Server

    Apollonio, M; Bagulya, A; Barr, G; Blondel, A; Bobisut, F; Bogomilov, M; Bonesini, M; Booth, C; Borghi, S; Bunyatov, S; Burguet-Castell, J; Catanesi, M G; Cervera-Villanueva, A; Chimenti, P; Coney, L; Di Capua, E; Dore, U; Dumarchez, J; Edgecock, R; Ellis, M; Ferri, F; Gastaldi, U; Giani, S; Giannini, G; Gibin, D; Gilardoni, S; Gorbunov, P; Gößling, C; Gómez-Cadenas, J J; Grant, A; Graulich, J S; Grégoire, G; Grichine, V; Grossheim, A; Guglielmi, A; Howlett, L; Ivanchenko, A; Ivanchenko, V; Kayis-Topaksu, A; Kirsanov, M; Kolev, D; Krasnoperov, A; MartíinAlbo, J; Meurer, C; Mezzetto, M; B Mills, G; Morone, M C; Novella, P; Orestano, D; Palladino, V; Panman, J; Papadopoulos, I; Pastore, F; Piperov, S; Polukhina, N; Popov, B; Prior, G; Radicioni, E; Schmitz, D; Schroeter, R; Skoro, G; Sorel, M; Tcherniaev, E; Temnikov, P; Tereschenko, V; Tonazzo, A; Tortora, L; Tsenov, R; Tsukerman, I; Vidal-Sitjes, G; Wiebusch, C; Zucchelli, P

    2009-01-01

    Measurements of the double-differential pi+/- production cross-section in the range of momentum 100 MeV/c <= p <= 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad using pi+/- beams incident on beryllium, aluminium, carbon, copper, tin, tantalum and lead targets are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d2sigma/dpdtheta at six incident beam momenta. Data at 3 GeV/c, 5 GeV/c, 8 GeV/c, and 12 GeV/c are available for all targets while additional data at 8.9 GeV/...

  1. Project Icarus: Nuclear Fusion Propulsion Concept Comparison

    Science.gov (United States)

    Stanic, M.

    Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.

  2. Procurement of Beams in Multiple D&B Bridge Projects

    Directory of Open Access Journals (Sweden)

    CT. Ramanathan

    2010-06-01

    Full Text Available Selected infrastructure development projects are being implemented by Design and Build (D&B pocurement system in Sabah (East Malaysia by the Public Works Department (PWD. In the first phase 45 bridge replacement projects were awarded in 5 packages. These simultaneous multiple Bridge projects are for the development of the backward areas and hence their timely completion is utmost important. Procurement and production of bridge beams have been the critical element of construction in these rural areas and no researches has been reported on various aspects of procurement of the bridge beams in multiple D&B projects. The aspects of procurement researched in this work include the determination of a common beam element for the ease of procurement and the optimization of the construction methodology, the finalization and purchasing plate dimensions to suite the manufacturer's production range, the delivery of materials, the planning and monitoring of fabrication, the preparation and assembly, and the erection and launching of beams. The beams are optimized using element optimization techniques. The most important problems in fabricating steel girders were in planning and scheduling of materials for the fabrication and the fabrication process. Findings in all the aspects of production of steel girders are highlighted through a case study of six long span bridges at various locations in Sabah. Solutions drawn from lessons learnt which minimize wastages, and aids in timely completion of beams in multiple bridge construction are discussed.

  3. Nuclear emergency preparedness. Final report of the Nordic Nuclear Safety Research Project BOK-1

    DEFF Research Database (Denmark)

    Lauritzen, B.

    2002-01-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, “Nuclear Emergency Preparedness”, was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects:Laboratory measurements and quality assurance (BOK-1.......1); Mobile measurements and measurement strategies (BOK-1.2); Field measurements and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in theNordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project...

  4. Physics projects of COMPASS with hadron beams

    CERN Document Server

    Faessler, M A

    1999-01-01

    COMPASS, a new state-of-the-art spectrometer to be installed at the CERN Super Proton Synchrotron for experiments with muon and hadron beams, will be exposed to hadron beams with intensities up to 10/sup 8//sec and energies up to 280 GeV. The physics goals are to study the rare production of charmed hadrons, including doubly charmed baryons, in inelastic interactions, with particular interest in their semileptonic decays; to search for glueballs and hybrids in central and diffractive production. Predictions of chiral perturbation theory will be tested in Primakoff reactions. The spectrometer shall be equipped with excellent particle identification and tracking, with calorimetry, dedicated triggers and fast read-out. A significant improvement of light hadron spectroscopy - compared to previous measurements -can be achieved already in the initial phase of the experiment. (4 refs).

  5. Multicusp sources for ion beam projection lithography

    Science.gov (United States)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Vujic, J.; Williams, M. D.; Wutte, D.; Zahir, N.

    1998-02-01

    Multicusp ion sources are capable of producing positive and negative ions with good beam quality and low energy spread. The ion energy spread of multicusp sources has been measured by three different techniques. The axial ion energy spread has been reduced by introducing a magnetic filter inside the multicusp source chamber which adjusts the plasma potential distribution. The axial energy spread is further reduced by optimizing the source configuration. Values as low as 0.8 eV have been achieved.

  6. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: napoli@lnl.infn.it; Andrighetto, A.; Antonini, P.; Benini, D.; Bermudez, J.; Bisoffi, G.; Boratto, E.; Bortolato, D.; Calderolla, M.; Calore, A.; Campo, D.; Carturan, S.; Cinausero, M.; Comunian, M.; Corradetti, S.; De Angelis, G.; De Ruvo, P. L.; Esposito, J.; Ferrari, L.; Galatá, A. [INFN - Laboratori Nazionali di Legnaro, Viale dell’Università 2, I-35020 Legnaro (PD) (Italy); and others

    2016-07-07

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and their maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.

  7. The Next Generation Nuclear Plant (NGNP) Project

    Energy Technology Data Exchange (ETDEWEB)

    F. H. Southworth; P. E. MacDonald

    2003-11-01

    The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOE’s project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10

  8. Multicusp sources for ion beam projection lithography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wutte, D.; Zahir, N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1998-02-01

    Multicusp ion sources are capable of producing positive and negative ions with good beam quality and low energy spread. The ion energy spread of multicusp sources has been measured by three different techniques. The axial ion energy spread has been reduced by introducing a magnetic filter inside the multicusp source chamber which adjusts the plasma potential distribution. The axial energy spread is further reduced by optimizing the source configuration. Values as low as 0.8 eV have been achieved. {copyright} {ital 1998 American Institute of Physics.}

  9. Status of RHIC head-on beam-beam compensation project

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Anerella, M.; Beebe, E.; Bruno, D.; Gassner, D.M.; Gu, X.; Gupta, R.C.; Hock, J.; Jain, A.K.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Montag, C.; Oerter, B.; Okamura, M.; Pikin, A.I.; Raparia, D.; Tan, Y.; Than, R.; Thieberger, P.; Tuozzolo, J.; Zhang, W.

    2011-03-28

    Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosities. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing. An overview of the RHIC head-on beam-beam compensation project is given in [1], and more details in [2]. With 2 head-on beam-beam interactions in IP6 and IP8, a third interaction with a low-energy electron beam is added near IP10 to partially compensate the the head-on beam-beam effect. Two electron lenses are under construction, one for each ring. Both will be located in a region common to both beams, but each lens will act only on one beam. With head-on beam-beam compensation up to a factor of two improvement in luminosity is expected together with a polarized source upgrade. The current RHIC polarized proton performance is documented in Ref. [4]. An electron lens (Fig. 1) consists of an DC electron gun, warm solenoids to focus the electron beam during transport, a superconducting main solenoid in which the interaction with the proton beam occurs, steering magnets, a collector, and instrumentation. The main developments in the last year are given below. The experimental program for polarized program at 100 GeV was expected to be finished by the time the electron lenses are commissioned. However, decadal plans by the RHIC experiments STAR and PHENIX show a continuing interest at both 100 GeV and 250 GeV, and a larger proton beam size has been accommodated in the design (Tab. 1). Over the last year beam and lattice parameters were optimized, and RHIC proton lattices are under development for optimized electron lens performance. The effect of the electron lens magnetic structure on the proton beam was evaluated, and found to be correctable. Experiments were done in RHIC and the Tevatron.

  10. Nuclear physics with advanced brilliant gamma beams at ELI-NP

    Science.gov (United States)

    Ur, Călin A.; Filipescu, Dan; Gheorghe, Ioana; Iancu, Violeta; Suliman, Gabriel; Teşileanu, Ovidiu

    2016-01-01

    The Extreme Light Infrastructure - Nuclear Physics facility is dedicated to nuclear physics studies with the use of extreme electromagnetic radiation. One of the main research system to be installed and operated in the facility is an outstanding high brilliance gamma beam system. The Gamma Beam System of ELI-NP will produce intense, quasi-monochromatic gamma beams via inverse Compton scattering of short laser pulses on relativistic electron beam pulses. The gamma beams available at ELI-NP will allow for the performance of photo-nuclear reactions aiming to reveal the intimate structure of the atomic nucleus. Nuclear Resonance Fluorescence, photo-fission, photo-disintegration reactions above the particle threshold will be used to study the dipole response of nuclei, the structure of the Pygmy resonances, nuclear processes relevant for astrophysics, production and study of exotic neutron-rich nuclei.

  11. Nuclear physics with advanced brilliant gamma beams at ELI–NP

    Directory of Open Access Journals (Sweden)

    Ur Călin A.

    2016-01-01

    Full Text Available The Extreme Light Infrastructure - Nuclear Physics facility is dedicated to nuclear physics studies with the use of extreme electromagnetic radiation. One of the main research system to be installed and operated in the facility is an outstanding high brilliance gamma beam system. The Gamma Beam System of ELI–NP will produce intense, quasi–monochromatic gamma beams via inverse Compton scattering of short laser pulses on relativistic electron beam pulses. The gamma beams available at ELI–NP will allow for the performance of photo-nuclear reactions aiming to reveal the intimate structure of the atomic nucleus. Nuclear Resonance Fluorescence, photo-fission, photo-disintegration reactions above the particle threshold will be used to study the dipole response of nuclei, the structure of the Pygmy resonances, nuclear processes relevant for astrophysics, production and study of exotic neutron–rich nuclei.

  12. Bond to deliver our nuclear projects from bondage

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, T.K.

    1985-11-01

    This paper examines the Internal Revenue Service (IRS) ruling that prevents the use of Pollution Control Revenue Bonds (PCRB) as a source of capital to complete nuclear projects, advances arguments that prevention of pollutants should be treated at least in par with the removal, alteration, or disposal of realized pollution, recommends reexamination of the IRS ruling, and emphasizes the need for the nuclear community and ultimately the US Congress to take a fresh look at the applicability of the PCRB tax exemption incentives for the nuclear safety-related structures and systems, at least for the completion of suspended nuclear projects.

  13. LANSCE beam instrumentation and the LANSCE refurbishment project

    Energy Technology Data Exchange (ETDEWEB)

    Mccrady, Rodney C [Los Alamos National Laboratory; Blind, Barbara [Los Alamos National Laboratory; Gilpatrick, John D [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Power, John F [Los Alamos National Laboratory; Rybarcyk, Lawrence J [Los Alamos National Laboratory; Sedillo, James D [Los Alamos National Laboratory; Gruchalla, Michael E [Los Alamos National Laboratory

    2010-01-01

    The heart of the LANSCE accelerator complex consists of Cockroft-Walton-type injectors, a drift-tube linac (DTL) and a side-coupled linac (CCL). These systems are approaching 40 years of age and a project to re-establish high-power capability and to extend the lifetime is underway. Many of the present beam diagnostic systems are difficult to maintain, and the original beam position monitors don't provide any data at all. These deficiencies hamper beam tuning and trouble-shooting efforts. One thrust of the refurbishment project is to restore reliable operation of the diagnostic systems. This paper describes the present diagnostics systems and their limitations and the envisaged next-generation systems. The emphasis will be on the uses and requirements for the systems rather than the solutions and engineering aspects of the refurbishment.

  14. Spent nuclear fuel project design basis capacity study

    Energy Technology Data Exchange (ETDEWEB)

    Cleveland, K.J.

    1996-09-09

    A parametric study of the Spent Nuclear Fuel Project system capacity is presented. The study was completed using a commercially available software package to develop a summary level model of the major project systems. Alternative configurations, sub-system cycle times, and operating scenarios were tested to identify their impact on total project duration and equipment requirements.

  15. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-12-07

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major

  16. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation....

  17. Experiments with radioactive nuclear beams II; Experimentos con haces nucleares radiactivos II

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano C, D.; Garcia M, H.; Rosales M, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-12-15

    The studies of nuclear reactions with heavy ions have been carried out for years for the group of heavy ions of the laboratory of the Accelerator of the ININ. Especially in the last years the group has intruded in the studies of nuclear reactions with radioactive beams, frontier theme at world level. Presently Technical Report is presented in detailed form the experimental methods and the analysis procedures of the research activities carried out by the group. The chpater II is dedicated to the procedures used in the analysis of the last two experiments with radioactive beams carried out by the group. In the chapter III is presented the procedure followed to carrying out an extended analysis with the CCDEF code, to consider the transfer channel of nucleons in the description of the fusion excitation functions of a good number of previously measured systems by the group. Finally, in the chapter IV the more important steps to continue in the study of the reaction {sup 12}C + {sup 12}C experiment drifted to be carried out using the available resources of the Tandem Accelerator Laboratory of the ININ are described. At the end of each chapter some of the more representative results obtained in the analysis are presented and emphasis on the scientific production generated by the group for each case is made. (Author)

  18. Future Perspectives in Nuclear Structure: From high intensity stable to radioactive nuclear beams

    Science.gov (United States)

    de Angelis, Giacomo

    2005-04-01

    Future perspectives in nuclear structure rely on radioactive nuclear beams as well as on high intensity beams of stable ions. Especially for neutron rich nuclei, deep-inelastic and multi-nucleon transfer reactions can be used to populate yrast and non yrast states. Particularly powerful is here the combination of large acceptance spectrometers with highly segmented γ-detector arrays. Such devices, eventually complemented by large cov- erage particle detectors, can provide the necessary channel selectivity to identify very rare signals. An example is the CLARA γ-ray detector array coupled with the PRISMA spectrometer at the Legnaro National Laboratories (LNL). The physics aims achievable with this setup will complement studies performed with current radioactive beam (RIB) facilities. With such set-up we have recently investigated the stability of the N=50 shell closure when moving towards more exotic systems. Here the comparison of the experi- mental data with shell model calculations seems to indicate a persistence of the N=50 shell gap down to Z=32. Future perspectives at LNL are based on an increase in in- tensity as well as on the availability of heavy ion species. Beams like 136Xe or 208Pb, which will be provided by the new PIAVE injector, can be used to drive the multinucleon flux toward the more exotic regions. Moreover a new ISOL facility (SPES) dedicated to the production and acceleration of radioactive neutron rich species is now under develop- ment at LNL. It will be based on an high intensity proton and deuteron LINAC. Induced fission fragments will be ionized and then accelerated using the presently existing super- conductive LINAC (ALPI). Among the new instrumentation the concept of γ-ray tracking has been recently introduced in nuclear spectroscopy. Detectors based on γ-ray tracking have position resolution capabilities with excellent performances both in efficiency and in achievable Doppler correction. A new γ-ray detector array (AGATA) based on

  19. Low-energy nuclear reactions with double-solenoid- based radioactive nuclear beam

    Indian Academy of Sciences (India)

    Valdir Guimarães

    2010-07-01

    The University of Notre Dame, USA (Becchetti et al, Nucl. Instrum. Methods Res. A505, 377 (2003)) and later the University of São Paulo, Brazil (Lichtenthaler et al, Eur. Phys. J. A25, S-01, 733 (2005)) adopted a system based on superconducting solenoids to produce low-energy radioactive nuclear beams. In these systems the solenoids act as thick lenses to collect, select, and focus the secondary beam into a scattering chamber. Many experiments with radioactive light particle beams (RNB) such as 6He, 7Be, 8Li, 8B have been performed at these two facilities. These low-energy RNB have been used to investigate low-energy reactions such as elastic scattering, transfer and breakup, providing useful information on the structure of light nuclei near the drip line and on astrophysics. Total reaction cross-sections, derived from elastic scattering analysis, have also been investigated for light system as a function of energy and the role of breakup of weakly bound or exotic nuclei is discussed.

  20. Projecting light beams with 3D waveguide arrays

    Science.gov (United States)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  1. Titanium Loop Heat Pipes for Space Nuclear Radiators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  2. Computational Nuclear Quantum Many-Body Problem: The UNEDF Project

    CERN Document Server

    Bogner, Scott; Carlson, Joseph A; Engel, Jonathan; Fann, George; Furnstahl, Richard J; Gandolfi, Stefano; Hagen, Gaute; Horoi, Mihai; Johnson, Calvin W; Kortelainen, Markus; Lusk, Ewing; Maris, Pieter; Nam, Hai Ah; Navratil, Petr; Nazarewicz, Witold; Ng, Esmond G; Nobre, Gustavo P A; Ormand, Erich; Papenbrock, Thomas; Pei, Junchen; Pieper, Steven C; Quaglioni, Sofia; Roche, Kenneth J; Sarich, Jason; Schunck, Nicolas; Sosonkina, Masha; Terasaki, Jun; Thompson, Ian J; Vary, James P; Wild, Stefan M

    2013-01-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  3. Progresses on Nuclear Facilities Remediation Projects

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Cun-ping; WU; Jie; LI; Mei-shan

    2012-01-01

    <正>In 2012, the engineering management department centralized the construction, through highlighting the key route, decomposing the missions and regular implement, controlled the safety, quality, budget and plan of the projects very well. Although all the projects suffered the heavy storm on the 21th July in Beijing, the projects have been pushed on and made new progresses.

  4. Extracting respiratory signals from thoracic cone beam CT projections

    CERN Document Server

    Yan, Hao; Yin, Wotao; Pan, Tinsu; Ahmad, Moiz; Mou, Xuanqin; Cervino, Laura; Jia, Xun; Jiang, Steve B

    2012-01-01

    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising tech...

  5. Autonomous Control of Space Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors to support future lunar and Mars robotic and manned missions impose new and innovative technological requirements for their control and protection...

  6. Nuclear project back on track / Matt Garrick

    Index Scriptorium Estoniae

    Garrick, Matt

    2011-01-01

    1. juuniks on Leedu valitsus saanud Visaginasesse rajatava tuumaelektrijaama puudutavad investeerimisettepanekud Hitachi-GE Nuclear Energy Limited, General Electric Co. ja Westlinghouse Electric Company poolt. Peaminister Andrius Kubiliuse sõnul toob tuumaelektrijaam Leetu energiasõltumatuse

  7. Nuclear project back on track / Matt Garrick

    Index Scriptorium Estoniae

    Garrick, Matt

    2011-01-01

    1. juuniks on Leedu valitsus saanud Visaginasesse rajatava tuumaelektrijaama puudutavad investeerimisettepanekud Hitachi-GE Nuclear Energy Limited, General Electric Co. ja Westlinghouse Electric Company poolt. Peaminister Andrius Kubiliuse sõnul toob tuumaelektrijaam Leetu energiasõltumatuse

  8. Projecting light beams with 3D waveguide arrays

    CERN Document Server

    Crespi, Andrea

    2016-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase pa...

  9. Nuclear emergency preparedness. Final report of the Nordic nuclear safety research project BOK-1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, Bent [Risoe National Lab., Roskilde (Denmark)

    2002-02-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, 'Nuclear Emergency Preparedness', was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects: Laboratory measurements and quality assurance (BOK-1.1); Mobile measurements and measurement strategies (BOK-1.2); Field measurement and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in the Nordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project outline, objectives and organization are described and main results presented. (au)

  10. Evaluation of Nuclear Data for Nuclear R and D Projects

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J. H.; Lee, Y. O.; Gil, C. S. and others

    2005-04-15

    Nuclear structure database, neutron data, charged particle data, and high energy service were improved and the libraries of WIMSD-5B, HELIOS, KASHIL-E6 were updated in response to the relevant users' requests. Measured resonance data, 19 nuclides for high burn-up fuel, isotopes for the thorium cycle were evaluated. Gamma production cross sections for underground resource exploration and for the development of in-core detector were also evaluated. The computer code system for theoretical model calculation was improved for the high energy nuclear data and, then applied to the evaluation for the accelerator and space applications. For the production of radioisotope, 'KAERI Charged Particle Cross Section Library' was published. Various libraries such as for MCNP4C, WIMSD-5, fast reactor, shielding, fission product burnup, and reactor benchmark were generated, and a code system for neutron and charged particle transport simulation was installed and their library production system was developed. Neutron capture cross sections were measured using facilities in Kyoto Univ. and TIT of Japan, and in Dubna, Russia. The TOF facility at PAL was upgraded and measurements were performed for 12 samples. Fast neutron measurement system was designed and built in the VDG facility, and its characteristics were also estimated.

  11. Scholarship for Nuclear Communications and Methods for Evaluation of Nuclear Project Acceptability

    Energy Technology Data Exchange (ETDEWEB)

    Golay, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-10-30

    This project aims to go beyond effective communication in understanding how to design nuclear enterprise projects that will gain stakeholder acceptability. Much of what we are studying is generally applicable to controversial projects, and we expect our results to be of broad value beyond the nuclear arena. Acceptability is more than effective communication; it also requires varying degrees of engagement with a disparate number of stakeholder groups. In the nuclear enterprise, previous attempts have been well designed physically (i.e., technologically sound), but have floundered by being insensitive concerning acceptance. Though effective communication is a necessary, but insufficient, condition for such success, there is a lack of scholarship regarding how to gain stakeholder acceptance for new controversial projects, including nuclear ones. Our work is building a model for use in assessing the performance of a project in the area of acceptability. In the nuclear-social nexus, gaining acceptance requires a clear understanding of factors regarded as being important by the many stakeholders that are common to new nuclear project (many of whom hold an effective veto power). Projects tend to become socially controversial when public beliefs, expert opinion and decision-maker understanding are misaligned. As such, stakeholder acceptance is hypothesized as both an ongoing process and an initial project design parameter comprised of complex, social, cognitive and technical components. Controversial projects may be defined as aspects of modern technologies that some people question, or are cautious about. They could range from genetic modifications, biological hazards, effects of chemical agents, nuclear radiation or hydraulic fracturing operations. We intend that our work will result in a model likely to be valuable for refining project design and implementation to increase the knowledge needed for successful management of stakeholder relationships.

  12. 3D sound in the telepresence project BEAMING

    DEFF Research Database (Denmark)

    Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben;

    2012-01-01

    for the Visitor, 3D audio is provided through headphones. It is rendered based on the Locals' coordinates via a common Internet database including local positional tracking to ensure that information on the Visitor's head rotation has a minimum delay through the network. The BEAMING project currently addresses...... three applications: A general purpose theatrical scene, a teaching situation and a medical patient-visiting-doctor scenario. The March 2012 project review deals with the teaching situation. This involves a single microphone recording followed by signal processing that reconstructs the spatial content...

  13. Fast character projection electron beam lithography for diffractive optical elements

    Science.gov (United States)

    Harzendorf, Torsten; Fuchs, Frank; Banasch, Michael; Zeitner, Uwe D.

    2014-05-01

    Electron beam lithography becomes attractive also for the fabrication of large scale diffractive optical elements by the use of the character projection (CP) technique. Even in the comparable fast variable shaped beam (VSB) exposure approach for conventional electron beam writers optical nanostructures may require very long writing times exceeding 24 hours per wafer because of the high density of features, as required by e.g. sub-wavelength nanostructures. Using character projection, the writing time can be reduced by more than one order of magnitude, due to the simultaneous exposure of multiple features. The benefit of character projection increases with increasing complexity of the features and decreasing period. In this contribution we demonstrate the CP technique for a grating of hexagonal symmetry at 350nm period. The pattern is designed to provide antireflective (AR) properties, which can be adapted in their spectral and angular domain for applications from VIS to NIR by changing the feature size and the etching depth of the nanostructure. This AR nanostructure can be used on the backside of optical elements e.g. gratings, when an AR coating stack could not be applied for the reason of climatic conditions or wave front accuracy.

  14. The Science of Nuclear Materials Detection using gamma-ray beams: Nuclear Resonance Fluorescence

    Science.gov (United States)

    Ohgaki, Hideaki

    2014-09-01

    An atomic nucleus is excited by absorption of incident photons with an energy the same as the excitation energy of the level, and subsequently a gamma-ray is emitted as it de-excites. This phenomenon is called Nuclear Resonance Fluorescence and mostly used for studies on Nuclear Physics field. By measuring the NRF gamma-rays, we can identify nuclear species in any materials because the energies of the NRF gamma-rays uniquely depend on the nuclear species. For example, 235U has an excitation level at 1733 keV. If we irradiate a material including 235U with a gamma-ray tuned at this excitation level, the material absorbs the gamma-ray and re-emits another gamma-ray immediately to move back towards the ground state. Therefore we can detect the 235U by measuring the re-emitted (NRF) gamma-rays. Several inspection methods using gamma-rays, which can penetrate a thick shielding have been proposed and examined. Bertozzi and Ledoux have proposed an application of nuclear resonance fluorescence (NRF) by using bremsstrahlung radiations. However the signal-to-noise (SN) ratio of the NRF measurement with the bremsstrahlung radiation is, in general, low. Only a part of the incident photons makes NRF with a narrow resonant band (meV-eV) whereas most of incident radiation is scattered by atomic processes in which the reaction rate is higher than that of NRF by several orders of magnitudes and causes a background. Thus, the NRF with a gamma-ray quasi-monochromatic radiation beam is proposed. The monochromatic gamma-rays are generated by using laser Compton scattering (LCS) of electrons and intense laser photons by putting a collimator to restrict the gamma-ray divergence downstream. The LCS gamma-ray, which is energy-tunable and monochromatic, is an optimum apparatus for NRF measurements We have been conducted NRF experiment for nuclear research, especially with high linear polarized gamma-ray generated by LCS, to survey the distribution of M1 strength in MeV region in LCS

  15. Spent nuclear fuel project design basis capacity study

    Energy Technology Data Exchange (ETDEWEB)

    Cleveland, K.J.

    1998-07-22

    A parametric study of the Spent Nuclear Fuel Project system capacity is presented. The study was completed using a commercially available software package to develop a summary level model of the major project systems. A base case, reflecting the Fiscal Year 1998 process configuration, is evaluated. Parametric evaluations are also considered, investigating the impact of higher fuel retrieval system productivity and reduced shift operations at the canister storage building on total project duration.

  16. Development of atomic-beam resonance method to measure the nuclear moments of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, T., E-mail: sugimoto@ribf.riken.jp [SPring-8 (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Kawamura, H.; Murata, J. [Rikkyo University, Department of Physics (Japan); Nagae, D.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H.; Yoshimi, A. [RIKEN Nishina Center (Japan)

    2008-01-15

    We have been working on the development of a new technique of atomic-beam resonance method to measure the nuclear moments of unstable nuclei. In the present study, an ion-guiding system to be used as an atomic-beam source have been developed.

  17. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  18. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  19. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  20. Agile Machining and Inspection Non-Nuclear Report (NNR) Project

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Lloyd

    2009-02-19

    This report is a high level summary of the eight major projects funded by the Agile Machining and Inspection Non-Nuclear Readiness (NNR) project (FY06.0422.3.04.R1). The largest project of the group is the Rapid Response project in which the six major sub categories are summarized. This project focused on the operations of the machining departments that will comprise Special Applications Machining (SAM) in the Kansas City Responsive Infrastructure Manufacturing & Sourcing (KCRIMS) project. This project was aimed at upgrading older machine tools, developing new inspection tools, eliminating Classified Removable Electronic Media (CREM) in the handling of classified Numerical Control (NC) programs by installing the CRONOS network, and developing methods to automatically load Coordinated-Measuring Machine (CMM) inspection data into bomb books and product score cards. Finally, the project personnel leaned perations of some of the machine tool cells, and now have the model to continue this activity.

  1. Report of the State of Nevada Commission on Nuclear Projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-01

    This third biennial Report of the Nevada Commission on Nuclear Projects has been prepared in fulfillment of the requirements of NRS 459.0092, which stipulates that the Commission shall report to the Governor and Legislature on any matter relating to radioactive waste disposal the Commission deems appropriate and advise and make recommendations on the policy of the State concerning nuclear waste disposal projects. Chapter One of the Report presents a brief overview of the Commission`s functions and statutory charges. It also contains a summary of developments which have affected the overall nuclear waste disposl issue since the last Commission Report was published in November, 1988. Chapter Two contains a synthesis of Commission activities and reports on the findings of the Commission relative to the geotechnical, environmental, socioeconomic, transportation, intergovernmental and legal aspects of federal and State nuclear waste program efforts.

  2. State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities. (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State. (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987. (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State. (4) Work closely and consult with affected local governments and State agencies. (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

  3. Spent Nuclear Fuel Project Document Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Connor, M.D.; Harizison, G.L.; Rice, W.C.

    1995-12-01

    The SNF Project Document Management Plan identifies and describes the currently available systems and processes for implementing and maintaining an effective document control and records management program. This program governs the methods by which documents are generated, released, distributed, maintained current, retired, and ultimately disposed.

  4. Beam commissioning of the SπRIT time projection chamber

    Science.gov (United States)

    Jhang, Genie; Barney, Jon; Estee, Justin; Isobe, Tadaaki; Kaneko, Masanori; Kurata-Nishimura, Mizuki; Cerizza, Giordano; Santamaria, Clementine; Lee, Jung Woo; Lasko, Paweł; Łukasik, Jerzy; Lynch, William G.; McIntosh, Alan B.; Murakami, Tetsuya; Pawłowski, Piotr; Shane, Rebecca; Tangwancharoen, Suwat; Tsang, Manyee Betty; Baba, Hidetada; Hong, Byungsik; Kim, Young Jin; Lee, Hyo Sang; Otsu, Hideaki; Pelczar, Krzysztof; Sakurai, Hiroyoshi; Suzuki, Daisuke; Xiao, Zhigang; Yennello, Sherry J.; Zhang, Yan

    2016-07-01

    The SπRIT Time Projection Chamber (TPC) was constructed at Michigan State University in the U.S.A. and transported to the Radioactive Isotope Beam Factory at RIKEN in Japan. In October 2015, the SπRIT TPC was commissioned with 200 AMeV 79Se beams outside the SAMURAI dipole magnet. The experimental setup consists of the SπRIT TPC, a Multiplicity Trigger Array, a KATANA array, and a Active Veto array. The TPC is fully equipped with a newly-developed read-out electronics system, GET electronics. The trigger logic to select events of the TPC based on the ancillary detectors was tested. The analysis software, SpiRITROOT, was developed to analyze the SπRIT TPC data to determine the best trigger logic for upcoming experiments.

  5. [Nuclear energy and environment: review of the IAEA environmental projects].

    Science.gov (United States)

    Fesenko, S; Fogt, G

    2012-01-01

    The review of the environmental projects of the International Atomic Energy Agency is presented. Basic IAEA documents intended to protect humans and the Environment are considered and their main features are discussed. Some challenging issues in the area of protection of the Environment and man, including the impact of nuclear facilities on the environment, radioactive waste management, and remediation of the areas affected by radiological accidents, nuclear testing and sites of nuclear facilities are also discussed. The need to maintain the existing knowledge in radioecology and protection of the environment is emphasised.

  6. Applications of laser produced ion beams to nuclear analysis of materials

    Science.gov (United States)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ˜ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi0.85Co0.15O2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  7. Nuclear astrophysics and the Daresbury Recoil Separator at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.S.

    1997-12-01

    The Daresbury Recoil Separator (DRS) has been installed for nuclear astrophysics research at Oak Ridge National Laboratory`s Holifield Radioactive Ion Beam Facility. It will be used for direct measurements of capture reactions on radioactive ions which occur in stellar explosions such as novae, supernovae and X-ray bursts. These measurements will be made in inverse kinematics with radioactive heavy ion beams incident on hydrogen and helium targets, and the DRS will separate the capture reaction recoils from the intense flux of beam particles. Details of the new DRS experimental equipment and preliminary results from the first commissioning experiments with stable beams are described, along with the plans for the first measurements with radioactive beams. Other astrophysics research efforts at ORNL--in theoretical astrophysics, nuclear astrophysics data evaluation, heavy element nucleosynthesis, theoretical atomic astrophysics, and atomic astrophysics data--are also briefly described.

  8. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Uwe, Greife [Colorado School of Mines, Golden, CO (United States)

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  9. Power Beaming to Space Using a Nuclear Reactor-Pumped Laser

    Science.gov (United States)

    Lipinski, Ronald J.; Monroe, David K.; Pickard, Paul S.

    1994-07-01

    The present political and environmental climate may slow the inevitable direct utilization of nuclear power in space. In the meantime, there is another approach for using nuclear energy for space power. That approach is to let nuclear energy generate a laser beam in a ground-based nuclear reactor-pumped laser (RPL), and then beam the optical energy into space. Potential space applications for a ground-based RPL include (1) illuminating geosynchronous communication satellites in the earth's shadow to extend their lives, (2) beaming power to orbital transfer vehicles, (3) providing power (from earth) to a lunar base during the long lunar night, and (4) removing space debris. FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept which is being developed by the Department of Energy with Sandia National Laboratories as the lead laboratory. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. Frequency-doubling the 1733-nm line would yield a good match for photovoltaic arrays at 867 nm. Preliminary designs of an RPL suitable for power beaming have been completed. The MW- class laser is fairly simple in construction, self-powered, closed-cycle (no exhaust gases), and modular. This paper describes the FALCON program accomplishments and power-beaming applications.

  10. Tecnatom support to new nuclear power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, A. B. [TECNATOM, S. A., Av. Montes de Oca 1, 28709 San Sebastian de los Reyes, Madrid (Spain)], e-mail: amanrique@tecnatom.es

    2009-10-15

    Tecnatom is a Spanish engineering company with more than 50 years of experience working for the nuclear industry all over the world. It has worked in over 30 countries in activities related to the operation and maintenance of nuclear power plants. Along this half century of history. Tecnatom has been providing its services to nuclear utilities, regulators, NPP vendors, NPP owners / operators and nuclear fuel manufacturers not only in Spain but also abroad. It started to work in the design of new nuclear power plants in the early 90 s and since then has continued collaborating with different suppliers in the design and licensing of new reactors especially in the areas of plant systems design, man-machine interface design, main control room simulators building, training, qualification of equipment and PSI/ISI engineering services. Some challenges to the reactivation of nuclear power plants construction are common worldwide, including: regulatory processes, workforce availability, construction project management, etc. Being some keys to success the following: apply qualified resources, enough resources for early planning, project leadership, organization and integration, establish a strong integrated management team. The goal of this paper is to inform regarding the capabilities of Tecnatom in the construction of new power plants. (Author)

  11. Proceedings of the Nuclear Criticality Technology and Safety Project Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1994-01-01

    This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

  12. Nuclear techniques using radioactive beams for biophysical studies

    CERN Document Server

    Stachura, Monika Kinga

    Perturbed angular correlation of "-rays (PAC) spectroscopy and nuclear magnetic resonance measured by !-decay (betaNMR) spectroscopy are two very sensitive and, among life-scientists, infrequently encountered nuclear techniques. Both of them belong to the family of hyperfine techniques, which allow for measurements of the interactions of extra-nuclear electromagnetic fields with the nuclear moments. In this way - they can provide useful information about the local structure of the investigated systems. The first part of the work presented here focuses on investigating the fundamental chemistry of heavy metal ion - protein interactions mainly with PAC spectroscopy. A variety of questions concerning both the function of metal ions in natural systems and in synthetic biomolecules on the one hand and the toxic effects of some metal ions on the other were addressed, the results of which are described in four different papers. Paper I is a review article entitled ”Selected applications of perturbed angular correl...

  13. Nuclear Fragmentation in Clinical Heavy Ion Beams, Should We Worry?

    DEFF Research Database (Denmark)

    Bassler, Niels; Hansen, David Christoffer; Toftegaard, Jakob

    fragmentation of the primary ions. Even if patient treatment with heavy ions has been established, the influence of nuclear fragmentation is yet to be fully quantified. The fragmentation spectrum of ions is relevant for particle therapy in numerous ways: 1. Dose distribution: A distinct tail of secondary...... on the secondary particle spectrum from fragmentation. b. In addition hereto, fluence correction factors can be calculated which take this effect into account, which are directly a result of nuclear fragmentation in the medium. 3. Radiobiology: Physical dose is not sufficient to describe the outcome of a treatment...... the sensitivity on the three fields mentioned above, including: turning off nuclear fragmentation entirely, changing all ineleastic cross sections +/- 20%, changing key parameters in the Fermi-Breakup (FB) model. Results show nuclear effects have their largest impact on the dose distribution. Stopping power...

  14. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  15. Experience of international projects implementation at Leningrad Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Zavialov, L.A. [Leningrad Nuclear Power Plant ' Rosenergoatom' , Leningrad Region, 188540, Sosnovy Bor (Russian Federation)

    2008-07-01

    During the period of 1992-2007 more than 60 different projects of different specificity and budget have been successfully implemented in frames of Technical Assistance for the Commonwealth of Independent States (TACIS) Program, Project financed by European Bank for Reconstruction and Development (EBRD), as well as in frames of Agreements on Cooperation between Leningrad NPP and Radiation and Nuclear safety Authority of Finland (STUK) and Swedish Nuclear Power Inspectorate, International Co-operation Program SKI-ICP(SIP). All these projects were directed to the safety increasing of the Leningrad NPP reactor, type RBMK-1000. Implementation of the technical aid projects has been performed by different foreign companies such as Aarsleff Oy, (Finland), SGN (France), Nukem (Germany), Jergo AB (Sweden), SABAROS (Switzerland), Westinghouse (USA), Nordion (Canada), Bruel and Kjer (Denmark), Data System and Solutions (UK), SVT Braundshuz (Germany) WICOTEC (Sweden), Studsvik (Sweden) and etc. which has enough technical and organizational experience in implementation of such projects, as well as all necessary certificates and licenses for works performance. Selection of a Contractor/Supplier for a joined work performance has been carried out in accordance with the tender procedure, technical specification and a planned budget. Project financing was covered by foreign Consolidated Funds and Authorities interested in increasing of Leningrad NPP safety, which have valid intergovernmental agreements with Russian Federation on the technical assistance to be provided to the NPPs. At present time all joined international projects implemented at Leningrad NPP are financed jointly with LNPP. All projects can be divided into technical aid projects connected with development and turnkey implementation of systems and complexes and projects for supply of equipment which has no analogues in Russia but successfully used all over the world. Positive experience of the joined projects

  16. Production of a nuclear spin polarized /sup 23/Na-beam by optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Dreves, W.; Kamke, W.; Broermann, W.; Fick, D.

    1981-11-01

    Nuclear spin polarization of an atomic /sup 23/Na-beam was produced by a combination of optical pumping with a dye laser and a sextupole magnet and alternatively, by optical pumping with two dye lasers. The maximum value measured for the vector polarization was P/sub 2/ = 0.86 +- 0.08, using beam foil spectroscopy. Further improvements of polarized ion sources based on this principle are discussed.

  17. Nuclear Waste Removal Using Particle Beams Incineration with Fast Neutrons

    CERN Document Server

    Revol, Jean Pierre Charles

    1997-01-01

    The management of nuclear waste is one of the major obstacles to the acceptability of nuclear power as a main source of energy for the future. TARC, a new experiment at CERN, is testing the practicality of Carlo Rubbia's idea to make use of Adiabatic Resonance Crossing to transmute long-lived fission fragments into short-lived or stable nuclides. Spallation neutrons produced in a large Lead assembly have a high probability to be captured at the energies of cross-section resonances in elements such as 99Tc, 129I, etc. An accelerator-driven sub-critical device using Thorium (Energy Amplifier) would be very effective in eliminating TRansUranic elements which constitute the most dangerous part of nuclear waste while producing from it large amounts of energy. In addition, such a system could transform, at a high rate and little energetic cost, long-lived fission fragments into short-lived elements.

  18. High power beam dump project for the accelerator prototype LIPAc: cooling design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Parro Albeniz, M.

    2015-07-01

    In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with

  19. Engineering for new-built nuclear power plant projects; Ingenieria para proyectos de nuevas centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, A.

    2012-11-01

    This article reviews the opportunities existing in the market (electrical utilities and reactor vendors) for an engineering company with the profile of Empresarios Agrupados (EA) in new-built nuclear power plant projects. To do this, reference is made to some representative examples of projects in which EA has been participating recently. the article concludes sharing with the reader some lessons learned from this participation. (Author)

  20. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  1. The Thai-Canadian nuclear human resources development linkage project

    Energy Technology Data Exchange (ETDEWEB)

    Sumitra, Tatchai; Chankow, Nares [Chulalongkorn university (Thailand); Bradley, K.; Bereznai, G. [Atomic Energy of Canada Limited (Canada)

    1998-07-01

    The Thai-Canadian Nuclear Human Resources Development Linkage Project (the ''Project'') was initiated in 1994 in order to develop the engineering and scientific expertise needed for Thailand to decide whether and how the country can best benefit from the establishment of a nuclear power program. The Project was designed to upgrade current academics and people in industry, and to develop an adequate supply of new technical personnel for academic, industry, utility, regulatory and other government institutions. The key Project objectives included the establishment of a Chair in Nuclear Engineering at Chulalongkorn University, the upgrading of the current Masters level curriculum, the establishment of undergraduate and doctorate level curricula, development and delivery of an industrial training program for people in industry and government, exchanges of Thai and Canadian academics and industry experts to establish common research programs and teaching interests, and a public education program that was to test in Thailand some of the techniques that have been successfully used in Canada. (author)

  2. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    Directory of Open Access Journals (Sweden)

    Chang-Bum Moon

    2014-02-01

    Full Text Available This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL and fragmentation capability to produce rare isotopes beams (RIBs and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  3. Precision Atomic Physics Techniques for Nuclear Physics with Radioactive Beams

    CERN Document Server

    Blaum, Klaus; Nörtershäuser, Wilfried

    2012-01-01

    Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear physics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and and storage-ring mass spectrometry as well as laser spectroscopy of radioactive nuclei have now been used for a long time but significant progress has been achieved in these fields within the last decade. The basic principles of laser spectroscopic investigations, Penning-trap and storage-ring mass measurements of short-lived nuclei are summarized and selected physics results a...

  4. Advanced nuclear reactor public opinion project. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  5. Applications of laser produced ion beams to nuclear analysis of materials

    Energy Technology Data Exchange (ETDEWEB)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S. [Graduate School for the Creation of New Photonics Industries, Shizuoka (Japan) and Institute de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain) and Institute of Laser Engineering, Osaka University, Osaka (Japan); Toyota Central R and D Labs., Inc., Aichi (Japan); Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Gunnma (Japan); Toyota Central R and D Labs., Inc., Aichi (Japan)

    2012-07-11

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of {approx} 1.0 {mu}m at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5{mu}m FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  6. Projection techniques to approach the nuclear many-body problem

    Science.gov (United States)

    Sun, Yang

    2016-04-01

    Our understanding of angular-momentum-projection goes beyond quantum-number restoration for symmetry-violated states. The angular-momentum-projection method can be viewed as an efficient way of truncating the shell-model space which is otherwise too large to handle. It defines a transformation from the intrinsic system, where dominant excitation modes in the low-energy region are identified with the concept of spontaneous symmetry breaking, to the laboratory frame with well-organized configuration states according to excitations. An energy-dictated, physically-guided shell-model truncation can then be carried out within the projected space and the Hamiltonian is thereby diagonalized in a compact basis. The present article reviews the theory of angular-momentum-projection applied in the nuclear many-body problem. Angular momentum projection emerges naturally if a deformed state is treated quantum-mechanically. To demonstrate how different physical problems in heavy, deformed nuclei can be efficiently described with different truncation schemes, we introduce the projected shell model and show examples of calculation in a basis with axial symmetry, a basis with triaxiality, and a basis with both quasiparticle and phonon excitations. Technical details of how to calculate the projected matrix elements and how to build a workable model with the projection techniques are given in the appendix.

  7. A Project in Support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Cheol; Kim, Kyoung Pyo; Yi, Ji Ho (and others)

    2007-12-15

    The results and contents of the project are as follows; - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate. - Domestic INIS project has carried out various activities on supporting a decision-making for INIS Secretariat, exchanges of the statistical information between INIS and the country, and technical assistance for domestic end-users using INIS database. - Based on the construction of INIS database sent by member states, the data published in the country has been gathered, collected, and inputted to INIS database according to the INIS reference series. - Using the INIS output data, it has provided domestic users with searching INIS CD-ROM DB and INIS online database, INIS SDI service, non-conventional literature delivery services and announce INIS to users. - Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy information and computer software developed in the advanced countries.

  8. The J-PARC project-strangeness nuclear physics programs

    CERN Document Server

    Nagae, T

    2005-01-01

    Since Japanese fiscal year JFY01, which started on April 1, 2001, the Japan Proton Accelerator Research Complex (J-PARC) has been in construction under a cooperation of two institutions, KEK and Japan Atomic Energy Research Institute (JAERI). After a short introduction of the whole project, I will report on the current status of the construction. Then, I describe the initial programs on strangeness nuclear physics at J-PARC, in detail.

  9. Next Generation Nuclear Plant Project 2009 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick; Jim Kinsey; Keith Perry; Dave Petti

    2010-05-01

    The mission of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy technology to the United States and other economies by demonstrating its applicability to market sectors not served by light water reactors (LWRs). Those markets typically use fossil fuels to fulfill their energy needs, and high temperature gas-cooled reactors (HTGRs) like the NGNP can reduce this dependence and the resulting carbon footprint.

  10. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine;

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...

  11. New frontiers in nuclear physics with high-power lasers and brilliant monochromatic gamma beams

    Science.gov (United States)

    Gales, S.; Balabanski, D. L.; Negoita, F.; Tesileanu, O.; Ur, C. A.; Ursescu, D.; Zamfir, N. V.

    2016-09-01

    The development of high power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular particle and nuclear physics, astrophysics as well as societal applications in material science, nuclear energy and applications for medicine. The European Strategic Forum for Research Infrastructures has selected a proposal based on these new premises called the Extreme Light Infrastructure (ELI). The ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a combination of laser and accelerator technology at the frontier of knowledge. This unique combination of beams that are unique worldwide allows us to develop an experimental program in nuclear physics at the frontiers of present-day knowledge as well as society driven applications. In the present paper, the technical description of the facility as well as the new perspectives in nuclear structure, nuclear reactions and nuclear astrophysics will be presented.

  12. Ion beam analysis - development and application of nuclear reaction analysis methods, in particular at a nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeland, K.A.

    1996-11-01

    This thesis treats the development of Ion Beam Analysis methods, principally for the analysis of light elements at a nuclear microprobe. The light elements in this context are defined as having an atomic number less than approx. 13. The work reported is to a large extent based on multiparameter methods. Several signals are recorded simultaneously, and the data can be effectively analyzed to reveal structures that can not be observed through one-parameter collection. The different techniques are combined in a new set-up at the Lund Nuclear Microprobe. The various detectors for reaction products are arranged in such a way that they can be used for the simultaneous analysis of hydrogen, lithium, boron and fluorine together with traditional PIXE analysis and Scanning Transmission Ion Microscopy as well as photon-tagged Nuclear Reaction Analysis. 48 refs.

  13. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  14. Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA

    CERN Document Server

    Caciolli, A; Bemmerer, D; Bonetti, R; Broggini, C; Confortola, F; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Marta, M; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2008-01-01

    Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear astrophysics are performed at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso laboratory. By virtue of a specially constructed passive shield, the laboratory gamma-ray background for E_\\gamma < 3 MeV at LUNA has been reduced to levels comparable to those experienced in dedicated offline underground gamma-counting setups. The gamma-ray background induced by an incident alpha-beam has been studied. The data are used to evaluate the feasibility of sensitive in-beam experiments at LUNA and, by extension, at similar proposed facilities.

  15. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    Energy Technology Data Exchange (ETDEWEB)

    Gales, S., E-mail: sydney.gales@eli-np.ro; Zamfir, N. V., E-mail: sydney.gales@eli-np.ro [ELI-NP, Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Bucharest-Magurele (Romania)

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  16. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm

    Science.gov (United States)

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-01

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp–Davis–Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  17. Ion-beam characterization of He implanted into nuclear matrices

    Energy Technology Data Exchange (ETDEWEB)

    Pantelica, D.; Thome, L. E-mail: thome@csnsm.in2p3.fr; Enescu, S.E.; Negoita, F.; Ionescu, P.; Stefan, I.; Gentils, A

    2004-06-01

    The behavior of helium produced by the disintegration of actinides is a very important issue in the management of radioactive waste arising from nuclear reactors. The experimental techniques generally used to determine He profiles, based on standard nuclear reaction analysis, are either time consuming or lacking in accuracy. Elastic recoil detection analysis (ERDA) with high-energy heavy ions offers the possibility to extract helium profiles in a simpler way. This paper presents results obtained in the case of spinel single crystals implanted with He ions at several fluences (2 x 10{sup 16} and 5 x 10{sup 16} cm{sup -2}), providing different He concentrations ({approx}2 and 5 at.%, respectively). Helium depth profiles were measured by ERDA using high-energy Cu ions, whereas the damage induced by implantation was analyzed by classical Rutherford backscattering and channeling (RBS/C). Good He profiles were recorded, even at the smallest fluence used. Moreover, the combination of ERDA and RBS/C allows one to correlate He profiles and damage distributions.

  18. Radioactive ion beams for biomedical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2002-01-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in biomedical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio- lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission) suitable for SPECT, positron emission suitable for positron emission tomography (PET), alpha -, beta /sup -/- and Auger electron emission. (21 refs).

  19. Recent developments and research projects at the low-energy RI beam facility CRIB

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H., E-mail: yamag@cns.s.u-tokyo.ac.jp [Center for Nuclear Study (CNS), University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubono, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502,Japan (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y.K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D.N.; Khiem, L.H.; Duy, N.N. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, HaNoi (Viet Nam)

    2013-12-15

    Highlights: • CRIB is a unique low-energy RI beam separator of the University of Tokyo. • CRIB has been produced various RI beams mainly on the proton-rich side. • The major topics studied at CRIB are resonant scatterings and (alpha, p) reactions. • Strong alpha resonances were observed with {sup 7}Be + alpha resonant scattering. -- Abstract: CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. An overview of the recent developments and status of CRIB, including a detailed summary of beam parameters, is presented. Studies on proton and α resonant scatterings, direct measurements of (α,p) reactions, and other types of measurements (β-decay lifetimes, etc.) have been performed using RI beams at CRIB, motivated by interests in astrophysical reactions and exotic nuclear structure. Among the studies at CRIB, the measurement of {sup 7}Be + α resonant scattering is discussed.

  20. Nuclear physics experiments with in-beam fast-timing and plunger techniques

    Science.gov (United States)

    Sotty, C.

    2017-06-01

    Nuclear lifetime and g factor are crucial observables in nuclear physics, as they give access to the excited states nuclear wave functions using the well-known electromagnetic transition operators. Thus, they are benchmarks to validate or discard nuclear structure theories. During the last decades, the evolution of the nuclear instruments and methods gave birth to several techniques used to measure lifetimes and moments. Among them, the in-beam Fast Electronic Scintillation Timing (FEST) technique is used to measure lifetimes of nuclear states in the picosecond to nanosecond range. Plunger devices originally developed to perform lifetime measurements of excited states in the picosecond range using the Recoil Distance Doppler Shift (RDDS) are now also employed to measure g factor using the new Time-Differential Recoil-In-Vacuum (TDRIV) technique. Recently commissioned, the ROmanian array for SPectroscopy in HEavy ion REactions (ROSPHERE) is dedicated to perform γ-ray spectroscopy, specially suited for lifetime measurements using the RDDS and in-beam fast-timing techniques at the 9 MV Bucharest-Tandem accelerator facility of the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH). An introduction of above-mentioned techniques is provided and selected results are illustrating them with physics cases. The in-beam fast-timing and RDDS techniques are described using lifetime measurements respectively in 67Cu and 120Te measured at the 9 MV Bucharest-Tandem accelerator. Finally, the precise g factor measurement of the first-excited state in 24Mg using by the new TDRIV technique at the ALTO-Tandem Orsay facility is presented.

  1. Project of a new circuit for nuclear fuel irradiation; Projeto de um novo circuito para irradiacao de combustiveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zeituni, Carlos A.; Terremoto, Luis A.A.; Perrotta, Jose A.; Silva, Jose E.R. da [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear. Div. de Engenharia do Combustivel. E-mail: czeituni@usp.br

    2000-07-01

    This paper reports information about the operation of the old Irradiated Fuel Assembly for nuclear miniplates irradiation in the reactor IEA-R1, named CICON (Circuit for Nuclear Fuels Irradiation), and presents the project of the new one. This paper also describes the problems of the old capsule and which details we will change in the new project. (author)

  2. New nuclear projects in the world. Sustainable Nuclear Energy; Nuevos proyectos nucleares en el mundo. energia nuclear sostenible

    Energy Technology Data Exchange (ETDEWEB)

    Leon, P. T.

    2011-07-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO{sub 2} emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  3. Nuclear halo of a 177 MeV proton beam in water: theory, measurement and parameterization

    CERN Document Server

    Gottschalk, Bernard; Daartz, Juliane; Wagner, Miles S

    2014-01-01

    The dose distribution of a monoenergetic pencil beam in water consists of an electromagnetic "core", a "halo" from charged nuclear secondaries, and a much larger "aura" from neutral secondaries. These regions overlap, but each has distinct spatial characteristics. We have measured the core/halo using a 177MeV test beam offset in a water tank. The beam monitor was a fluence calibrated plane parallel ionization chamber (IC) and the field chamber, a dose calibrated Exradin T1, so the dose measurements are absolute (MeV/g/p). We performed depth-dose scans at ten displacements from the beam axis ranging from 0 to 10cm. The dose spans five orders of magnitude, and the transition from halo to aura is clearly visible. We have performed model-dependent (MD) and model-independent (MI) fits to the data. The MD fit separates the dose into core, elastic/inelastic nuclear, nonelastic nuclear and aura terms, and achieves a global rms measurement/fit ratio of 15%. The MI fit uses cubic splines and the same ratio is 9%. We re...

  4. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    KLEM, M.J.

    2000-10-18

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8

  5. Nuclear Physics Programs for the Future Rare Isotope Beams Accelerator Facility in Korea

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We present nuclear physics programs based on the planned experiments using rare isotope beams (RIBs) for the future Korean Rare Isotope Beams Accelerator facility; RAON. This ambitious facility has both an Isotope Separation On Line (ISOL) and fragmentation capability for producing RIBs and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. Low energy RIBs at Elab = 5 to 20 MeV per nucleon are for the study of nuclear structure and nuclear astrophysics toward and beyond the drip lines while higher energy RIBs produced by in-flight fragmentation with the re-accelerated ions from the ISOL enable to explore the neutron drip lines in intermediate mass regions. The planned programs have goals for investigating nuclear structures of the exotic nuclei toward and beyond the nucleon drip lines by addressing the following issues: how the shell structure evolves in areas of extreme proton to neutron imbalance; whether the isospin symmetry maintains in isobaric mirror nu...

  6. Training implementation matrix, Spent Nuclear Fuel Project (SNFP)

    Energy Technology Data Exchange (ETDEWEB)

    EATON, G.L.

    2000-06-08

    This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently.

  7. A Series Dissertation on Tianwan Nuclear Power Station--Summary of Tianwan Nuclear Power Station Project

    Institute of Scientific and Technical Information of China (English)

    Li Qiankun

    2006-01-01

    This is a summary in relation to the construction and operation of Tianwan Nuclear Power Station (the Project) at Lianyungang, Jiangsu Province, the People' s Republic of China. The breakdown specialty topic shall been given in times to come. In this report, the author attempted to give some general description of the Project, including the Project site' s general layout and geographical conditions. A description of its exposure to the elements is also provided, supported by some data made available to us. The key component parts of the Project are described, namely, the nuclear island which includes the reactor, steam generator and so on; the conventional island and the balance of plant. Wherever possible, the improvements to the reactor design over the operating V320 are highlighted, which result in the V428 reactor model. The supplier and contractor for the major equipment such as the reactor and the turbine is the Russian company, namely Atomstroyexport (ASE). There are third country suppliers who provide other equipment. For instance, Siemens supplies the full digital I&C system and Framatome ANP supplies the emergency diesel generators; the metal-clad switchgear cabinet by ABB of Australia; the main steam isolation valve unit by CCI AG of Switzerland. All these foreign suppliers are well known globally. Their experience and quality of the equipment supplied by them are well recognized by the people in the respective fields. As for the civil work and erection work, the most experienced and trustworthy local contractors have been selected. These contractors have proven their competence in similar contract work before. For the testing of the equipment, stringent and proper procedures which meet international standards are adopted. Finally, the author wished on this report could provide the world a safety and advanced Nuclear Project building in China.

  8. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    Energy Technology Data Exchange (ETDEWEB)

    Carl Wharton; Kent Norris

    2009-12-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  9. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    Energy Technology Data Exchange (ETDEWEB)

    Carl Wharton

    2009-10-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  10. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    Energy Technology Data Exchange (ETDEWEB)

    Carl Wharton; Kent Norris

    2010-03-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  11. Application of laser produced ion beams to nuclear analysis of materials

    Science.gov (United States)

    Mima, Kunioki; Fujita, K.; Azuma, H.; Yamazaki, A.; Kato, Y.; Okuda, C.; Ukyo, Y.; Sawada, H.; Gonzalez-Arrabal, Raquel; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2013-11-01

    The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ˜1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ˜ 1.0) anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm). The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  12. Application of laser produced ion beams to nuclear analysis of materials

    Directory of Open Access Journals (Sweden)

    Mima Kunioki

    2013-11-01

    Full Text Available The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ∼1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA, JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ∼ 1.0 anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm. The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  13. Intense, brilliant micro γ-beams in nuclear physics and applications

    Science.gov (United States)

    Habs, D.; Gasilov, S.; Lang, C.; Thirolf, P. G.; Jentschel, M.; Diehl, R.; Schroer, C.; Barty, C. P. J.; Zamfir, N. V.

    2011-06-01

    900, we can obtain small spots for each of the beamlets. While focusing the beamlets to a much smaller spot size, we can bend them effectively with micro wedges to e.g. parallel beamlets. We can monochromatize these γ beamlets within the rocking curve of a common Laue crystal, using an additional angle selection by a collimator to reach a strongly reduced band width of 10-4 - 10-6. We propose the use of a further lens/wedge arrays or Bragg reflection to superimpose the beamlets to a very small total γ beam spot. Many experiments gain much from the high beam resolution and the smaller focal spot. This new γ optics requires high resolution diagnostics, where we want to optimize the focusing, using very thin target wires of a specific nuclear resonance fluorescence (NRF) isotope to monitor the focusing for the resonance energy. With such beams we can explore new nuclear physics of higher excited states with larger level densities. New phenomena, like the transition from chaotic to regular nuclear motion, weakly-bound halo states or states decaying by tunneling can be studied. The higher level density also allows to probe parity violating nuclear forces more sensitively. This γ optics improves many applications, like a more brilliant positron source, a more brilliant neutron source, higher specific activity of medical radioisotopes or NRF micro-imaging.

  14. Nuclear criticality project plan for the Hanford Site tank farms

    Energy Technology Data Exchange (ETDEWEB)

    Bratzel, D.R., Westinghouse Hanford

    1996-08-06

    The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste

  15. Study of Nuclear Moments and Mean Square Charge Radii by Collinear Fast-Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    The collinear fast-beam laser technique is used to measure atomic hyperfine structures and isotope shifts of unstable nuclides produced at ISOLDE. This gives access to basic nuclear ground-state and isomeric-state properties such as spins, magnetic dipole and electric quadrupole moments, and the variation of the nuclear mean square charge radius within a sequence of isotopes. \\\\ \\\\ Among the various techniques used for this purpose, the present approach is of greatest versatility, due to the direct use of the beams from the isotope separator. Their phase-space properties are exploited to achieve high sensitivity and resolution. The optical spectra of neutral atoms are made accessible by converting the ion beams into fast atomic beams. This is accomplished in the charge-exchange cell which is kept at variable potential ($\\pm$10~kV) for Doppler-tuning of the effective laser wavelength. The basic optical resolution of 10$^{-8}$ requires a 10$^{-5}$ stability of the 60~kV main acceleration voltage and low energy ...

  16. Single stage ECR source for the radioactive ion beam project in Louvain- la-Neuve

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J.; Baeten, F.; Dom, C.; Darquennes, D.; Delbar, T.; Jongen, Y.; Huyse, M.; Reusen, G.; Van Duppen, P. and others

    1989-01-01

    In 1987 the project RIB (Radioactive Ion Beam) was started at Louvain-La - Neuve, to produce and accelerate radioactive nuclei of C, N, O, F and Ne. Within the framework of this project, a single stage E.C.R. source will be built. The general scheme of the project and the design of the source are discussed.

  17. Uranium from German nuclear power projects of the 1940s - a nuclear forensic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Klaus; Wallenius, Maria; Luetzenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; Belle, Pieter van; Varga, Zsolt [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Buda, Razvan; Erdmann, Nicole [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Karlsruhe (Germany); Institut fuer Kernchemie, Universitaet Mainz (Germany); Kratz, Jens-Volker; Trautmann, Norbert [Institut fuer Kernchemie, Universitaet Mainz (Germany); Fifield, L. Keith; Tims, Stephen G. [Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); Froehlich, Michaela B. [Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT (Australia); Universitaet Wien, Fakultaet fuer Chemie, Institut fuer Anorganische Chemie, Vienna (Austria); Steier, Peter [Universitaet Wien, Fakultaet fuer Physik, Isotopenforschung und Kernphysik, Vienna (Austria)

    2015-11-02

    Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel. Through measurement of the {sup 230}Th/{sup 234}U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the {sup 87}Sr/{sup 86}Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of {sup 236}U and {sup 239}Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Influence of nuclear radiation and laser beams on optical fibers and components

    Directory of Open Access Journals (Sweden)

    Pantelić Slađana N.

    2011-01-01

    Full Text Available The influence of nuclear radiation and particles has been the object of investigation for a long time. For new materials and systems the research should be continued. Human activities in various environments, including space, call for more detailed research. The role of fibers in contemporary communications, medicine, and industry increases. Fibers, their connections and fused optics components have one type of tasks - the transmission of information and power. The other type of tasks is reserved for fiber lasers: quantum generators and amplifiers. The third type of tasks is for fiber sensors, including high energy nuclear physics. In this paper we present some chosen topics in the mentioned areas as well as our experiments with nuclear radiation and laser beams to fiber and bulk materials of various nature (glass, polymer, metallic, etc..

  19. Full data consistency conditions for cone-beam projections with sources on a plane.

    Science.gov (United States)

    Clackdoyle, Rolf; Desbat, Laurent

    2013-12-07

    Cone-beam consistency conditions (also known as range conditions) are mathematical relationships between different cone-beam projections, and they therefore describe the redundancy or overlap of information between projections. These redundancies have often been exploited for applications in image reconstruction. In this work we describe new consistency conditions for cone-beam projections whose source positions lie on a plane. A further restriction is that the target object must not intersect this plane. The conditions require that moments of the cone-beam projections be polynomial functions of the source positions, with some additional constraints on the coefficients of the polynomials. A precise description of the consistency conditions is that the four parameters of the cone-beam projections (two for the detector, two for the source position) can be expressed with just three variables, using a certain formulation involving homogeneous polynomials. The main contribution of this work is our demonstration that these conditions are not only necessary, but also sufficient. Thus the consistency conditions completely characterize all redundancies, so no other independent conditions are possible and in this sense the conditions are full. The idea of the proof is to use the known consistency conditions for 3D parallel projections, and to then apply a 1996 theorem of Edholm and Danielsson that links parallel to cone-beam projections. The consistency conditions are illustrated with a simulation example.

  20. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  1. Projected Costs of U.S. Nuclear Forces, 2017 to 2026

    Science.gov (United States)

    2017-02-01

    prepared using the same approach as the orig- inal estimate and considers only those costs that CBO has identified as directly associated with the nuclear...CBO FEBRUARY 2017 Projected Costs of U.S. Nuclear Forces, 2017 to 2026 Nuclear weapons have been a cornerstone of U.S. national security since they...Congressional Budget Office to estimate the 10-year costs to operate, maintain, and modernize U.S. nuclear forces. In response, CBO published Projected Costs

  2. The nuclear matrix elements of 0vββ decay and the NUMEN project at INFN-LNS

    Science.gov (United States)

    Cappuzzello, F.; Agodi, C.; Aciksoz, E.; Acosta, L.; Aslanouglou, X.; Auerbach, N.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello, T.; Boudhaim, S.; Bouhssa, M. L.; Boztosun, I.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Calvo, D.; Chávez Lomelí, E. R.; Colonna, M.; D'Agostino, G.; Deshmukh, N.; de Faria, P. N.; Ferrero, A.; Foti, A.; Finocchiaro, P.; Gomes, P. R. S.; Greco, V.; Hacisalihoglu, A.; Housni, Z.; Khouaja, A.; Inchaou, J.; Lanzalone, G.; La Via, F.; Lay, J. A.; Lenske, H.; Linares, R.; Lubian, J.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Lo Presti, D.; Medina, N.; Mendes, D. R.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Rifuggiato, D.; Rodrigues, M. R. D.; Santagati, G.; Santopinto, E.; Scaltrito, L.; Sgouros, O.; Solakcı, S. O.; Soukeras, V.; Tudisco, S.; Vsevolodovna, R. I. M.; Zagatto, V.

    2016-07-01

    An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross section measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy). However, a major upgrade is foreseen for the INFN-LNS research infrastructure to cope with beam currents as high as several ppA required by the project.

  3. HYPERNUCLEAR SPECTROSCOPY WITH HEAVY ION BEAMS : THE HypHI PROJECT AT GSI AND FAIR

    NARCIS (Netherlands)

    Saito, T. R.; Bianchin, S.; Borodina, O.; Hoffmann, J.; Koch, K.; Kurz, N.; Maas, F.; Minami, S.; Nakajima, D.; Ott, W.; Oezel, B.; Rappold, C.; Schmidt, C.; Trautmann, W.; Traeger, M.; Voltz, S.; Achenbach, P.; Pochodzalla, J.; Sekimoto, M.; Takahashi, T.; Kavatsyuk, M.; Hayashi, Y.; Hiraiwa, T.; Moritsu, M.; Nagae, T.; Okamura, A.; Sako, M.; Sugimura, H.; Tanida, K.; Fukuda, T.; Mizoi, Y.; Ajimura, S.; Mochizuki, T.; Sakaguchi, A.; Koike, T.; Tamura, H.

    2010-01-01

    The HypHI experiment for precise hypernuclear spectroscopy with induced reactions of stable heavy ion beams and rare isotope beams is currently under preparation at GSI. The main goal of the HypHI project is to study neutron and proton rich hypernuclei and to measure directly hypernuclear magnetic m

  4. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Barquest, B.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Bale, J.C.; Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Gwinner, G. [University of Manitoba, Department of Physics and Astronomy, Allen Building, Winnipeg, MB R3T 2N2 (Canada); Kanungo, R. [Saint Mary’s University, Astronomy and Physics Department, 923 Robie Street, Halifax, NS B3H 3C3 (Canada); Krücken, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); UBC Department of Physics and Astronomy, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)

    2016-06-01

    A new radiofrequency quadrupole (RFQ) based ion beam cooler and buncher is under development for the CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project at TRIUMF. The CANREB project requires an RFQ buncher that will efficiently accept continuous beams of rare isotopes from either the Advanced Rare IsotopE Laboratory (ARIEL) or Isotope Separator and ACcelerator (ISAC) target by way of a high resolution magnetic spectrometer, with energies up to 60 keV and deliver bunched beams to an electron beam ion source (EBIS) for charge breeding. The energy of the bunched beam delivered to the EBIS will be adjustable to match the requirements of the existing post acceleration infrastructure. The CANREB RFQ incorporates design considerations to facilitate ease of use over a wide range of ion masses, and is intended to accommodate incident beam rates as high as 10{sup 8} pps, delivering beam bunches at 100 Hz. An overview of the CANREB RFQ design concept will be presented, informed by results from both ion optical simulations as well as commissioning efforts with other beam cooler and buncher devices. Simulation results indicate that the design is well suited to deliver high quality bunched beams with high efficiency with as many as 10{sup 6} ions per bunch.

  5. Proceedings of the nuclear criticality technology safety project

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.G. [comp.

    1997-06-01

    This document contains summaries of the most of the papers presented at the 1994 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 10 and 11 at Williamsburg, Va. The meeting was broken up into seven sessions, which covered the following topics: (1) Validation and Application of Calculations; (2) Relevant Experiments for Criticality Safety; (3) Experimental Facilities and Capabilities; (4) Rad-Waste and Weapons Disassembly; (5) Criticality Safety Software and Development; (6) Criticality Safety Studies at Universities; and (7) Training. The minutes and list of participants of the Critical Experiment Needs Identification Workgroup meeting, which was held on May 9 at the same venue, has been included as an appendix. A second appendix contains the names and addresses of all NCTSP meeting participants. Separate abstracts have been indexed to the database for contributions to this proceedings.

  6. Neutron Time Projection Chamber for Nuclear Security and Verification Applications

    Science.gov (United States)

    Jovanovic, I.; Bowden, N. S.; Carosi, G. P.; Heffner, M.; Roecker, C.

    2011-12-01

    Detection of fast neutrons produced by fission is a powerful method for discovering, verifying the presence, or monitoring significant quantities of special nuclear material (SNM) at up to moderate distances. Fast neutrons are relatively rare in the natural background and can be very penetrating, even in situations when the energetic gamma-rays are well shielded. Fast neutrons point in the direction of their source and can thus be considered for use in imaging, a feature desirable for rapid, high-signal-to-noise detection of concealed SNM and for nuclear verification. We describe the development and performance of a prototype neutron time projection chamber (nTPC) and its use for directional neutron detection and high-resolution neutron imaging. The nTPC is based on ˜0.025 m3 of a hydrogen-methane mixture and utilizes a readout system with low channel count and is optimized for low event rates. We experimentally demonstrate robust operation, reliable particle identification, event-by-event directional reconstruction over the entire 4π solid angle, and insensitivity to gamma-rays. High-efficiency and high-resolution modes of operation based on single and double neutron scatters, respectively, have also been demonstrated.

  7. O projeto do submarino nuclear brasileiro The Brazilian nuclear submarine project

    Directory of Open Access Journals (Sweden)

    João Roberto Martins Filho

    2011-12-01

    Full Text Available O artigo procura reconstruir a trajetória do programa do submarino nuclear brasileiro desde suas origens, no governo Geisel, aos dias atuais. Lançando mão do conceito de oportunismo tecnológico, procura analisar a atitude dos diferentes governos federais sobre o projeto, mostrando que os governos neoliberais de Fernando Collor, Itamar Franco e Fernando Henrique Cardoso cortaram radicalmente verbas para o programa, sem, no entanto, suspendê-lo por completo. Surpreendentemente, parece haver uma continuidade entre os governos militares e o governo Lula, quanto ao apoio decidido à ideia do submarino nuclear. Quanto às relações de força na Marinha, o texto conclui que não há divergências significativas sobre a relevância do programa, o que não exclui choques de personalidades navais, em virtude do caráter autárquico assumido pelo projeto e da dificuldade de continuá-lo apenas com verbas da própria força. O artigo utilizou entrevistas recentes com atores-chaves do processo.The article aims to reconstruct the history of the Brazilian nuclear-powered submarine program, from its origins to the present. Using the concept of technological opportunism, it seeks to understand the position of the different federal administrations vis-à-vis the project, concluding that the Collor, Franco and Cardoso administrations did not support the program. However, they did not terminate the project. Surprisingly, there is a continuity between the military governments and the Lula administration, in the decisive support each gave to the program. With repect to the Navy, the analysis concludes that there were no significant disagreements, with the exception of personal conflicts originating in the autarchic features that the program had assumed and in the problem of scarcity of resources. The article is based on interviews with key actors.

  8. Gamma ray beams for Nuclear Astrophysics: first results of tests and simulations of the ELISSA array

    Science.gov (United States)

    La Cognata, M.; Anzalone, A.; Balabanski, D.; Chesnevskaya, S.; Crucillà, V.; Filipescu, D. M.; Guardo, G. L.; Gulino, M.; Lattuada, D.; Matei, C.; Pizzone, R. G.; Romano, S.; Spitaleri, C.; Taffara, A.; Tesileanu, O.; Tumino, A.; Xu, Y.

    2017-03-01

    The Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility, under construction in Magurele near Bucharest in Romania, will provide high-intensity and high-resolution gamma ray beams that can be used to address hotly debated problems in nuclear astrophysics. For this purpose, a silicon strip detector array (named ELISSA) will be realized in a common effort by ELI-NP and INFN-LNS (Catania, Italy), in order to measure excitation functions and angular distributions over a wide energy and angular range. A prototype of ELISSA was built and tested at Laboratori Nazionali del Sud (INFN-LNS) in Catania with the support of ELI-NP. On this occasion, we carried out experiments with alpha sources and with a 11 MeV 7Li beam. Thanks to our approach, the first results of those tests show up a very good energy resolution (better than 1%) and very good position resolution, of the order of 1 mm. Below 1 MeV, a resolution of the order of 6 mm is found, still good enough for the measurement of angular distribution and the kinematical identification of the reactions induced on the target by gamma beams.

  9. Nuclear Structure Studies of Exotic Nuclei with Radioactive Ion Beams A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Winger, Jeff Allen [Mississippi State Univ., Mississippi State, MS (United States)

    2016-04-21

    Beta-decay spectroscopy provides important information on nuclear structure and properties needed to understand topics as widely varied as fundamental nuclear astrophysics to applied nuclear reactor design. However, there are significant limitations of our knowledge due to an inability to experimentally measure everything. Therefore, it is often necessary to rely on theoretical calculations which need to be vetted with experimental results. The focus of this report will be results from experimental research performed by the Principal Investigator (PI) and his research group at Mississippi State University in which the group played the lead role in proposing, implementing, performing and analyzing the experiment. This research was carried out at both the National Superconduction Cyclotron Laboratory (NSCL) at Michigan State University and the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The primary emphasis of the research was the use of \\bdec spectroscopy as a tool to understand the evolution of nuclear structure in neutron-rich nuclei which could then be applied to improve theory and to increase the overall knowledge of nuclear structure.

  10. Fixed target project AFTER at the LHC beams for heavy ion and hadron physics

    Science.gov (United States)

    Kurepin, A. B.; Topilskaya, N. S.

    2017-09-01

    High intensity proton and lead ion beams at the LHC collider allow one to use the beam halo by placing a fixed target or a bent crystal for beam extraction. The particle energy in this case is just half that at the RHIC collider, but the luminosity exceeds the collider luminosity many times. It is also possible to install a polarized target in the extracted beam. The project AFTER is aimed at investigation of rare processes, polarization phenomena, determination of the parameters required for analysis of cosmic rays and neutrino astrophysics, detailed investigation of quarkonia production and suppression depending on the phase transition of matter to the quark-gluon phase.

  11. Spent nuclear fuel project high-level information management plan

    Energy Technology Data Exchange (ETDEWEB)

    Main, G.C.

    1996-09-13

    This document presents the results of the Spent Nuclear Fuel Project (SNFP) Information Management Planning Project (IMPP), a short-term project that identified information management (IM) issues and opportunities within the SNFP and outlined a high-level plan to address them. This high-level plan for the SNMFP IM focuses on specific examples from within the SNFP. The plan`s recommendations can be characterized in several ways. Some recommendations address specific challenges that the SNFP faces. Others form the basis for making smooth transitions in several important IM areas. Still others identify areas where further study and planning are indicated. The team`s knowledge of developments in the IM industry and at the Hanford Site were crucial in deciding where to recommend that the SNFP act and where they should wait for Site plans to be made. Because of the fast pace of the SNFP and demands on SNFP staff, input and interaction were primarily between the IMPP team and members of the SNFP Information Management Steering Committee (IMSC). Key input to the IMPP came from a workshop where IMSC members and their delegates developed a set of draft IM principles. These principles, described in Section 2, became the foundation for the recommendations found in the transition plan outlined in Section 5. Availability of SNFP staff was limited, so project documents were used as a basis for much of the work. The team, realizing that the status of the project and the environment are continually changing, tried to keep abreast of major developments since those documents were generated. To the extent possible, the information contained in this document is current as of the end of fiscal year (FY) 1995. Programs and organizations on the Hanford Site as a whole are trying to maximize their return on IM investments. They are coordinating IM activities and trying to leverage existing capabilities. However, the SNFP cannot just rely on Sitewide activities to meet its IM requirements

  12. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    Institute of Scientific and Technical Information of China (English)

    YANG Min; JIN Xu-Ling; LI Bao-Lei

    2010-01-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress(FDK)algorithm,we propose a simple yet feasible method to accurately measure the projected coordinate origin.This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse.We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography(DR)projections of a group of spherical objects.Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections.Based on the experimental results,this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  13. Hypernuclear Spectroscopy with Stable Heavy Ion Beams and Rare-isotope Beams:HypHI Project at GSI and FAIR

    Institute of Scientific and Technical Information of China (English)

    T.R.Saito

    2009-01-01

    The international HypHI collaboration proposes to perform hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and FAIR in order to study neutron and proton rich hypernuclei and to measure directly hypernuclear magnetic moments for the first time.The project is divided into four phases.In the first Phase 0 experiment,the feasibility of precise hypernuclear spectroscopy with heavy ion beams will be demonstrated by observing π~- decay channels of ~e_ΛH,~4_ΛH and ~5_ΛHe with ~6Li projectiles at 2 AGeV impinging on a ~(12)C target.In the later Phases 1 through 3,studies of proton and neutron rich hypernuclei,direct measurements of hypernuclear magnetic moments and the spectroscopy of hypernuclei toward the nucleon drip-lines are planned.

  14. The HypHI project: Hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and FAIR

    CERN Document Server

    Bianchin, S; Ajimura, S; Borodina, O; Fukuda, T; Hoffmann, J; Kavatsyuk, M; Koch, K; Koike, T; Kurz, N; Maas, F; Minami, S; Mizoi, Y; Nagae, T; Nakajima, D; Okamura, A; Ott, W; Özel, B; Pochodzalla, J; Rappold, C; Saito, T R; Sakaguchi, A; Sako, M; Sekimoto, M; Sugimura, H; Takahashi, T; Tamura, H; Tanida, K; Trautmann, W

    2008-01-01

    The HypHI collaboration aims to perform a precise hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and fAIR in order to study hypernuclei at extreme isospin, especially neutron rich hypernuclei to look insight hyperon-nucleon interactions in the neutron rich medium, and hypernuclear magnetic moments to investigate baryon properties in the nuclei. We are currently preparing for the first experiment with $^6$Li and $^{12}$C beams at 2 AGeV to demonstrate the feasibility of a precise hypernuclear spectroscopy by identifying $^{3}_{\\Lambda}$H, $^{4}_{\\Lambda}$H and $^{5}_{\\Lambda}$He. The first physics experiment on these hypernuclei is planned for 2009. In the present document, an overview of the HypHI project and the details of this first experiment will be discussed.

  15. Modeling of an Adjustable Beam Solid State Light Project

    Science.gov (United States)

    Clark, Toni

    2015-01-01

    This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.

  16. An experience of electron beam (EB) irradiated gemstones in Malaysian nuclear agency

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada, E-mail: sarada@nuclearmalaysia.gov.my; Hairaldin, Siti Zulaiha, E-mail: sarada@nuclearmalaysia.gov.my; Tajau, Rida, E-mail: sarada@nuclearmalaysia.gov.my; Karim, Jamilah, E-mail: sarada@nuclearmalaysia.gov.my; Jusoh, Suhaimi, E-mail: sarada@nuclearmalaysia.gov.my; Ghazali, Zulkafli, E-mail: sarada@nuclearmalaysia.gov.my [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); Ahmad, Shamshad [School of Chemicals and Material Engineering, NUST Islamabad (Pakistan)

    2014-02-12

    In Nuclear Malaysia, a study on gemstone irradiation using beta particle is conducted. The purpose of the study is to evaluate the gemstone colour enhancement by using different kind of precious and non-precious gemstones. By using irradiation technique, selected gemstones are exposed to highly ionizing radiation electron beam to knock off electrons to generate colour centres culminating in the introduction of deeper colours. The colour centres may be stable or unstable depending on the nature of colour centre produced. The colour change of irradiated stones were measured by HunterLab colour measurement. At 50 kGy, Topaz shows changes colour from colourless to golden. Meanwhile pearl shows changes from pale colour to grey. Kunzite and amethyst shows colour changes from colorless to green and pale colour to purple. Gamma survey meter measurement confirmed that irradiation treatment with 3 MeV electron beam machine does not render any activation that activate the gems to become radioactive.

  17. An experience of electron beam (EB) irradiated gemstones in Malaysian nuclear agency

    Science.gov (United States)

    Idris, Sarada; Hairaldin, Siti Zulaiha; Tajau, Rida; Karim, Jamilah; Jusoh, Suhaimi; Ghazali, Zulkafli; Ahmad, Shamshad

    2014-02-01

    In Nuclear Malaysia, a study on gemstone irradiation using beta particle is conducted. The purpose of the study is to evaluate the gemstone colour enhancement by using different kind of precious and non-precious gemstones. By using irradiation technique, selected gemstones are exposed to highly ionizing radiation electron beam to knock off electrons to generate colour centres culminating in the introduction of deeper colours. The colour centres may be stable or unstable depending on the nature of colour centre produced. The colour change of irradiated stones were measured by HunterLab colour measurement. At 50 kGy, Topaz shows changes colour from colourless to golden. Meanwhile pearl shows changes from pale colour to grey. Kunzite and amethyst shows colour changes from colorless to green and pale colour to purple. Gamma survey meter measurement confirmed that irradiation treatment with 3 MeV electron beam machine does not render any activation that activate the gems to become radioactive.

  18. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  19. The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute

    Energy Technology Data Exchange (ETDEWEB)

    Panteleev, V. N., E-mail: vnp@pnpi.spb.ru; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M. [NRC “Kurchatov Institute” PNPI, 188300 Gatchina (Russian Federation)

    2015-12-15

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes {sup 82}Sr and {sup 223,224}Ra are also presented.

  20. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation.

    Science.gov (United States)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine; Sobolevsky, Nikolai; Bassler, Niels

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte Carlo simulations with SHIELD-HIT10Areasonably matched the most abundant PET isotopes (11)C and (15)O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10Aand measurement. Improved modeling requires more accurate measurements of cross-section values.

  1. Metallic beam developments for the SPIRAL 2 project

    Energy Technology Data Exchange (ETDEWEB)

    Barué, C., E-mail: barue@ganil.fr; Canet, C.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CEA/CNRS, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Lamy, T.; Sole, P.; Thuillier, T. [LPSC, Université Joseph Fourier Grenoble 1, Grenoble INP, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Peaucelle, C. [IPNL, Université de Lyon, Université de Lyon 1,CNRS/IN2P3 CERN, 4 rue E. Fermi, 69622 Villeurbanne Cedex (France)

    2014-02-15

    The SPIRAL 2 facility, currently under construction, will provide either stable or radioactive beams at high intensity. In addition to the high intensity of stable beams, high charge states must be produced by the ion source to fulfill the RFQ LINAC injection requirements: Q/A = 1/3 at 60 kV ion source extraction voltage. Excepting deuterons and hydrogen, most of the stable beam requests concern metallic elements. The existing 18 GHz electron cyclotron resonance ion source (ECRIS) Phoenix V2 designed at LPSC Grenoble has been used for the tests and will be the source for the SPIRAL 2 commissioning. The tests performed at LPSC for calcium ({sup 40}Ca{sup 14+} and {sup 40}Ca{sup 16+}), nickel ({sup 58}Ni{sup 19+}), and sulfur ({sup 32}S{sup 11+}) are described and discussed. Due to the very high charge states required, the oven method has been chosen. An intensity of 1 pμA has been reached for those elements. The performance and the beam stability have been studied using different buffer gases, and some ionization efficiency preliminary results are given.

  2. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  3. Experimental Observations of Nuclear Activity in Deuterated Materials Subjected to a Low-Energy Photon Beam

    Science.gov (United States)

    Steinetz, Bruce M.; Benyo, Theresa L.; Pines, Vladimir; Pines, Marianna; Forsley, Lawrence P.; Westmeyer, Paul A.; Chait, Arnon; Becks, Michael D.; Martin, Richard E.; Hendricks, Robert C.; hide

    2017-01-01

    Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8+C36D74+Mo and HfD2+C36D74+Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium ((163)Er and (171)Er) and of molybdenum ((99)Mo and (101)Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum ((99)Mo and (101)Mo), and by beta decay, technetium ((99m)Tc and (101)Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating (is) greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity.

  4. Study of Nuclear Reactions with 11C and 15O Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwon [Univ. of California, Berkeley, CA (United States)

    2007-05-14

    Nuclear reaction study with radioactive ion beams is one of the most exciting research topics in modern nuclear physics. The development of radioactive ion beams has allowed nuclear scientists and engineers to explore many unknown exotic nuclei far from the valley of nuclear stability, and to further our understanding of the evolution of the universe. The recently developed radioactive ion beam facility at the Lawrence Berkeley National Laboratory's 88-inch cyclotron is denoted as BEARS and provides 11C, 14O and 15O radioactive ion beams of high quality. These moderate to high intensity, proton-rich radioactive ion beams have been used to explore the properties of unstable nuclei such as 12N and 15F. In this work, the proton capture reaction on 11C has been evaluated via the indirect d(11C, 12N)n transfer reaction using the inverse kinematics method coupled with the Asymptotic Normalization Coefficient (ANC) theoretical approach. The total effective 12N → 11C+p ANC is found to be (C eff12N = 1.83 ± 0.27 fm-1. With the high 11C beam intensity available, our experiment showed excellent agreement with theoretical predictions and previous experimental studies. This study also indirectly confirmed that the 11C(p,γ) reaction is a key step in producing CNO nuclei in supermassive low-metallicity stars, bypassing the slow triple alpha process. The newly developed 15O radioactive ion beam at BEARS was used to study the poorly known level widths of 16F via the p(15O,15O)p reaction. Among the nuclei in the A=16, T=1 isobaric triad, many states in 16N and 16O have been well established, but less has been reported on 16F. Four states of 16F below 1 MeV have been identified experimentally: 0-, 1

  5. Project outline of high quality electron beam generation at Waseda University

    Energy Technology Data Exchange (ETDEWEB)

    Washio, M.; Hama, Y.; Kashiwagi, S.; Kuroda, R.; Kobuki, T. [Waseda Univ., Advanced Research Institute for Science and Engineering, Shinjuku, Tokyo (Japan); Hirose, T. [Tokyo Metropolitan Univ. (Japan). Dept. of Physics

    2000-03-01

    High quality electron beam generation project has been started at Waseda University under the grant of Ministry of Education, named High-Tech Research Center Project. In the project, we will install a laser photo-cathode RF Gun system with 1.6 accelerating structure cells of s-band and a stabilized RF power source. This RF Gun is expected to produce single electron bunch up to 1 or 2nC with around 10ps pulse duration. (author)

  6. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, J., E-mail: julianna.szabo@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary); Palfalvi, J.K. [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary)

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  7. Projected Costs of U.S. Nuclear Forces, 2015 to 2024

    Science.gov (United States)

    2015-01-01

    range bombers) and DOE’s budgets for activities related to specific warheads used for strategic systems and for nuclear reactors that power SSBNs...Review of the Department of Defense Nuclear Enterprise (June 2014) http://go.usa.gov/tG8C ( PDF , 2.7 MB). JANUARY 2015 PROJECTED COSTS OF U.S. NUCLEAR ...budgeted amounts for SSBNs. The department will spend less for the SSBNs’ nuclear power reactors (primarily because the design of the new submarine’s

  8. Spent Nuclear Fuel (SNF) Project Design Basis Capacity Study

    Energy Technology Data Exchange (ETDEWEB)

    CLEVELAND, K.J.

    2000-08-17

    This study of the design basis capacity of process systems was prepared by Fluor Federal Services for the Spent Nuclear Fuel Project. The evaluation uses a summary level model of major process sub-systems to determine the impact of sub-system interactions on the overall time to complete fuel removal operations. The process system model configuration and time cycle estimates developed in the original version of this report have been updated as operating scenario assumptions evolve. The initial document released in Fiscal Year (FY) 1996 varied the number of parallel systems and transport systems over a wide range, estimating a conservative design basis for completing fuel processing in a two year time period. Configurations modeling planned operations were updated in FY 1998 and FY 1999. The FY 1998 Base Case continued to indicate that fuel removal activities at the basins could be completed in slightly over 2 years. Evaluations completed in FY 1999 were based on schedule modifications that delayed the start of KE Basin fuel removal, with respect to the start of KW Basin fuel removal activities, by 12 months. This delay resulted in extending the time to complete all fuel removal activities by 12 months. However, the results indicated that the number of Cold Vacuum Drying (CVD) stations could be reduced from four to three without impacting the projected time to complete fuel removal activities. This update of the design basis capacity evaluation, performed for FY 2000, evaluates a fuel removal scenario that delays the start of KE Basin activities such that staffing peaks are minimized. The number of CVD stations included in all cases for the FY 2000 evaluation is reduced from three to two, since the scenario schedule results in minimal time periods of simultaneous fuel removal from both basins. The FY 2000 evaluation also considers removal of Shippingport fuel from T Plant storage and transfer to the Canister Storage Building for storage.

  9. Angra 1 nuclear power plant full scope simulator development project

    Energy Technology Data Exchange (ETDEWEB)

    Selvatici, Edmundo; Castanheira, Luiz Carlos C.; Silva Junior, Nilo Garcia da, E-mail: edsel@eletronuclear.gov.br, E-mail: lccast@eletronuclear.gov.br, E-mail: nilogar@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (SCO/ELETRONUCLEAR), Angra dos Reis, RJ (Brazil). Superintendencia de Coordenacao da Operacao; Zazo, Francisco Javier Lopez; Ruiz, Jose Antonio, E-mail: jlopez@tecnatom.es, E-mail: jaruiz@tecnatom.es [Tecnatom S.A., San Sebastian de los Reyes, Madrid (Spain)

    2015-07-01

    Specific Full Scope Simulators are an essential tool for training NPP control room operators, in the formation phase as well as for maintaining their qualifications. In the last years availability of a Plant specific simulator has also become a Regulator requirement for Nuclear Power Plant operation. By providing real-time practical training for the operators, the use of a simulator allows improving the operator's performance, reducing the number of unplanned shutdowns and more effective response to abnormal and emergency operating conditions. It can also be used, among other uses, to validate procedures, test proposed plant modifications, perform engineering studies and to provide operation training for the technical support staff of the plant. The NPP site, in Angra dos Reis-RJ, Brazil, comprises the two units in operation, Unit 1, 640 MWe, Westinghouse PWR and Unit 2, 1350 MWe, KWU/Areva PWR and one unit in construction, Unit 3, 1405 MWe, KWU/Areva PWR, of the same design of Angra 2. Angra 2 has had its full scope simulator from the beginning, however this was not the case of Angra 1, that had to train its operators abroad, due to lack of a specific simulator. Eletronuclear participated in all the phases of the project, from data supply to commissioning and validation. The Angra 1 full scope simulator encompasses more than 80 systems of the plant including the Primary system, reactor core and associated auxiliary systems, the secondary system and turbo generator as well as all the Plant operational and safety I and C. The Angra 1 Main Control Room panels were reproduced in the simulator control room as well as the remote shutdown panels that are outside the control room. This paper describes the project for development of the Angra 1 NPP Full Scope Simulator, supplied by Tecnatom S.A., in the period of Feb.2012 to Feb.2015. (author)

  10. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; /Fermilab; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  11. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing

    2004-12-09

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z

  12. Nuclear Safety Analysis for the Mars Exploration Rover 2003 Project

    Science.gov (United States)

    Firstenberg, Henry; Rutger, Lyle L.; Mukunda, Meera; Bartram, Bart W.

    2004-02-01

    The National Aeronautics and Space Administration's Mars Exploration Rover (MER) 2003 project is designed to place two mobile laboratories (Rovers) on Mars to remotely characterize a diversity of rocks and soils. Milestones accomplished so far include two successful launches of identical spacecraft (the MER-A and MER-B missions) from Cape Canaveral Air Force Station, Florida on June 10 and July 7, 2003. Each Rover uses eight Light Weight Radioisotope Heater Units (LWRHUs) fueled with plutonium-238 dioxide to provide local heating of Rover components. The LWRHUs are provided by the U.S. Department of Energy. In addition, small quantities of radioactive materials in sealed sources are used in scientific instrumentation on the Rover. Due to the radioactive nature of these materials and the potential for accidents, a formal Launch Approval Process requires the preparation of a Final Safety Analysis Report (FSAR) for submittal to and independent review by an Interagency Nuclear Safety Review Panel. This paper presents a summary of the FSAR in terms of potential accident scenarios, probabilities, source terms, radiological consequences, mission risks, and uncertainties in the reported results.

  13. A Far-Field Electro-Magnetic Tractor Beam Project

    Data.gov (United States)

    National Aeronautics and Space Administration — When the project began, our intention was to develop a more accurate model of the forces that could be obtained between experimentally demonstrate...

  14. Upgrades to the LHC Injection and Beam Dumping Systems for the HL-LHC Project

    CERN Document Server

    Uythoven, Jan; Goddard, Brennan; Hrivnak, Jan; Lechner, Anton; Maciariello, Fausto; Mereghetti, Alessio; Perillo Marcone, Antonio; Vittal Shetty, N; Shetty, Nikhil Vittal; Steele, Genevieve

    2014-01-01

    The HL-LHC project will push the performance of the LHC injection and beam dumping systems towards new limits. This paper describes the systems affected and presents the new beam parameters for these systems. It also describes the studies to be performed to determine which sub-components of these systems need to be upgraded to fulfil the new HL-LHC requirements. The results from the preliminary upgrade studies for the injection absorbers TDI are presented.

  15. Overview of Nuclear Energy: Present and Projected Use

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Stanculescu

    2011-09-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  16. A simplified approach for the generation of projection data for cone beam geometry

    Indian Academy of Sciences (India)

    Tushar Roy; P S Sarkar; Amar Sinha

    2011-04-01

    To test a developed reconstruction algorithm for cone beam geometry, whether it is transmission or emission tomography, one needs projection data. Generally, mathematical phantoms are generated in three dimensions and the projection for all rotation angles is calculated. For non-symmetric objects, the process is cumbersome and computation intensive. This paper describes a simple methodology for the generation of projection data for cone beam geometry for both transmission and emission tomographies by knowing the object’s attenuation and/or source spatial distribution details as input. The object details such as internal geometrical distribution are nowhere involved in the projection data calculation. This simple approach uses the pixilated object matrix values in terms of the matrix indices and spatial geometrical coordinates. The projection data of some typical phantoms (generated using this approach) are reconstructed using standard FDK algorithm and Novikov’s inversion formula. Correlation between the original and reconstructed images has been calculated to compare the image quality.

  17. A method for the determination of nuclear cross sections of proton beams by the collective model and extended nuclear-shell theory

    CERN Document Server

    Ulmer, W

    2010-01-01

    A recapitulatory analysis of total nuclear cross sections of various nuclei is presented, which yields detailed knowledge on the different physical processes such as potential/resonance scatter and nuclear reactions. The physical base for potential/resonance scatter and the threshold energy resulting from Coulomb repulsion of nuclei are collective/oscillator models. The part pertaining to the nuclear reactions can only be determined by the microscopic theory (Schr\\"odinger equation and strong interactions). The physical impact is the fluence decrease of proton beams in different media and the scatter behavior of secondary particles.

  18. Physical Mechanisms and Feedback Control of Beam Halo-Chaos for Accelerator-driven Radioactive-clean Nuclear Power Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High-current proton beams have attractive features for possible breakthrough applications, especially for accelerator-driven radioactive-clean nuclear power systems (ADS), which make nuclear energy systems safer, cleaner, cheaper, and therefore more practical. However, beam halo-chaos in ADS has become one of the key technical issues because it can cause excessive radio-activation from the accelerators and significantly limits the industrial applications of the new accelerators.Some general engineering methods for chaos control have been developed, but they generally

  19. Projected beam irradiation at low latitudes using Meteonorm database

    DEFF Research Database (Denmark)

    Hatwaambo, Sylvester; Perers, Bengt; Karlsson, Björn

    2009-01-01

    by a collector provided the projection angle lies within the acceptance angle. The Meteonorm method of calculating solar radiation on any arbitrary oriented surface uses the globally simulated meteorological databases. Meteonorm has become a valuable too for estimating solar radiation where measured solar...

  20. Gulf States Strategic Vision to Face Iranian Nuclear Project

    Science.gov (United States)

    2015-09-01

    Strategic International Studies, 2011), 32, http://csis.org/files/110202. pdf . 5 Ibid. 6 Tariq Khaitous, Arab Reactions to a Nuclear -Armed Iran...of a nuclear reactor in the city of Bushehr. The partnership with Germany was critical in helping the company make gains in the business. The...program saw Iran continue to construct new nuclear reactors south of Bushehr, with each plant having an output of 1200 MW of energy.72 Patrikarakos

  1. A project in support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung; Choi, Pyong Hoon; Yi, Ji Ho (and others)

    2005-12-15

    Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing. - Promotion of domestic nuclear energy technology by utilizing nuclear energy informations and computer software developed in the advanced countries. - Establish strategies of international cooperation in an effort to promote our nation's Leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate.

  2. Nuclear interaction study around beam pipe region in the Tracker system at CMS with 13 TeV data

    CERN Document Server

    CMS Collaboration

    2015-01-01

    Analysis is presented to study the material in the Tracker system with nuclear interactions from proton-proton collisions recorded by the CMS experiment at the CERN LHC. The data correspond to an integrated luminosity of 7.3 pb$^{-1}$ at a centre-of-mass energy of 13 TeV collected at 3.8 Tesla magnetic field. With reconstructed nuclear interactions we observe the structure of the material, including beam pipe, in the Tracker system.

  3. Nuclear threats in the vicinity of the Nordic countries. Final report of the Nordic Nuclear Safety Research project SBA-1

    Energy Technology Data Exchange (ETDEWEB)

    Eikelmann, I.M.H. [Norwegian Radiation Protection Authority (Norway)

    2002-11-01

    The acute phase of a nuclear accident and the possibility of high exposure of the populations are always the most important threats in the emergency preparedness work. Radioactive contamination from an accident can however also cause long term effects for land use and enhanced doses to special population groups and economic problems for agriculture, reindeer industry, hunting, tourism and recreation. For planning purposes it is always valuable to be aware of surrounding radiation hazards and other potential threats. Thus, mapping such threats in a Nordic context is an important factor in emergency preparedness in the area. This report presents a cross-disciplinary study from the NKS research program 1998-2001.The scope of the project was to prepare a 'base of knowledge' regarding possible nuclear threats in the vicinity of the Nordic countries. This base of knowledge will, by modere information technology as different websites, be made available to authorities, media and the population. The users of the websites can easily get information on different types of nuclear installations and threats. The users can get an overview of the situation and, if they so wish, make their own judgements. The project dealt with a geographical area including North-west Russia and the Baltic states. The results from the different activities in the project were generated in a web based database called the 'the base of knowledge'. Key words Nuclear threats, Nordic countries, nuclear power plants, nuclear ship, nuclear waste, literature database, base of knowledge, webaccessed information, atmospheric transport, decommissioning of submarines, nuclear installations, waste management, radioactive contamination in marine environment, radioactive sources, criticality analysis. (au)

  4. Influence of nuclear quantum effects on frozen phonon simulations of electron vortex beam HAADF-STEM images

    Energy Technology Data Exchange (ETDEWEB)

    Löfgren, André; Zeiger, Paul; Kocevski, Vancho; Rusz, Ján, E-mail: jan.rusz@fysik.uu.se

    2016-05-15

    We have evaluated atomic resolution high-angle annular dark field images with ordinary beams and electron vortex beams for thin crystals of bcc iron, explicitly considering the atomic vibrations using molecular dynamics. The shape of the image representing an atomic column depends on the orbital angular momentum, sample thickness and temperature. For electron vortex beams we observe characteristic doughnut-shaped images of atomic columns. It is shown how the thermal diffuse scattering reduces the depth of their central minima, which get further smeared by finite source size effects. In addition, it is shown that in calculations of HAADF-STEM images at low temperatures one has to explicitly consider the nuclear quantum effects (zero point vibrations), otherwise the effect of atomic vibrations is strongly underestimated. - Highlights: • HAADF STEM images calculated for ordinary beams and electron vortex beams. • Temperature, sample thickness, convergence angle and source size broadening effects. • Zero point vibrations included into the molecular dynamics calculations.

  5. IH-DTL design with KONUS beam dynamics for KHIMA project

    Science.gov (United States)

    Lee, Yumi; Kim, Eun-San; Li, Zhihui; Hahn, Garam

    2015-11-01

    The Kombinierte Null Grad Struktur (KONUS) beam dynamics design of the interdigit H-mode drift tube linac (IH-DTL) for the Korea Heavy Ion Medical Accelerator (KHIMA) project is presented. We performed a KONUS beam dynamics simulation for a carbon beam (12C4+) with the LORASR code. The 12C4+ beam was accelerated from an input energy of 0.4 MeV/u to an output energy of 7 MeV/u by the IH-DTL operated at 200 MHz. The optimization aims were to increase the transmission efficiency and to minimize the beam emittance growth, beam loss, and project costs. The buncher with two gaps and two quadrupole doublets were placed between the RFQ and the IH-DTL. The whole IH-DTL consists of two tanks, 56 acceleration gaps, and four quadrupole triplets. It achieves a transmission efficiency of 100%. The total length from the exit of the RFQ to the exit of the IH-DTL is approximately 507.7 cm.

  6. The radioactive ion beam project at VECC, Kolkata – A status report

    Indian Academy of Sciences (India)

    Alok Chakrabarti

    2002-12-01

    A project to build an ISOL-post accelerator type of radioactive ion beam (RIB) facility has been undertaken at VECC, Kolkata. The funding for the first phase of the project was approved in August 1997. This phase will be the R&D phase and will be completed by December 2003. The present status of development of the various sub-systems of the RIB facility will be discussed.

  7. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    Science.gov (United States)

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  8. Dosimetry for ion-beam therapy using fluorescent nuclear track detectors and an automated reader

    CERN Document Server

    Greilich, Steffen; Klimpki, Grischa M; Kouwenberg, Jasper J M; Neuholz, Alexander; Pfeiler, Tina; Rahmanian, Shirin; Stadler, Alexander; Ulrich, Leonie

    2016-01-01

    For the assessment of effects of clinical ion-beams, dosimetry has to be complemented by information on particle-energy distribution or related quantities. Fluorescence nuclear track detectors made from C,Mg-doped alumina single crystals allow for the quantification of ion track density and energy loss on a single-track basis. In this study, their feasibility and accuracy to quantify fluence, linear-energy-transfer (LET) distributions, and eventually dose for a spread-out carbon ion Bragg peak was investigated. We found that while for the primary ions track densities agreed within a percent range with the reference data generated by Monte-Carlo radiation transport, the number of low-LET fragments in the beam was largely underestimated by approximately a factor three - the effect was most pronounced for protons where the measured fluence deviates at least an order of magnitude. Nevertheless, due to the dose major contribution of carbon ions, the determination of the individual detector sensitivity could be ide...

  9. Design of a support system for the vertical beam transfer lines of the ELENA project

    CERN Document Server

    Bozhkov, Kristiyan

    2016-01-01

    This report aims to present the design of a support system for the vertical beam transfer lines of the ELENA project. Two different designs can be found in this report. The mechanical strength and the structure performance of the support are analysed by a finite element model.

  10. Silicon Carbide Based Power Mangement and Distribution for Space Nuclear Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard, 100's kWe power management and distribution (PMAD) system for space nuclear...

  11. The 2011 nuclear medicine technology job analysis project of the American Registry of Radiologic Technologists.

    Science.gov (United States)

    Anderson, Dan; Hubble, William; Press, Bret A; Hall, Scott K; Michels, Ann D; Koenen, Roxanne; Vespie, Alan W

    2010-12-01

    The American Registry of Radiologic Technologists (ARRT) conducts periodic job analysis projects to update the content and eligibility requirements for all certification examinations. In 2009, the ARRT conducted a comprehensive job analysis project to update the content specifications and clinical competency requirements for the nuclear medicine technology examination. ARRT staff and a committee of volunteer nuclear medicine technologists designed a job analysis survey that was sent to a random sample of 1,000 entry-level staff nuclear medicine technologists. Through analysis of the survey data and judgments of the committee, the project resulted in changes to the nuclear medicine technology examination task list, content specifications, and clinical competency requirements. The primary changes inspired by the project were the introduction of CT content to the examination and the expansion of the content covering cardiac procedures.

  12. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-09-28

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  13. Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    2000-10-12

    This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

  14. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    Science.gov (United States)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  15. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  16. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    Science.gov (United States)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  17. Iterative ct reconstruction from few projections for the nondestructive post irradiation examination of nuclear fuel assemblies

    Science.gov (United States)

    Abir, Muhammad Imran Khan

    The core components (e.g. fuel assemblies, spacer grids, control rods) of the nuclear reactors encounter harsh environment due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of the nuclear power plants. The Post Irradiation Examination (PIE) can reveal information about the integrity of the elements during normal operations and off?normal events. Computed tomography (CT) is a tool for evaluating the structural integrity of elements non-destructively. CT requires many projections to be acquired from different view angles after which a mathematical algorithm is adopted for reconstruction. Obtaining many projections is laborious and expensive in nuclear industries. Reconstructions from a small number of projections are explored to achieve faster and cost-efficient PIE. Classical reconstruction algorithms (e.g. filtered back projection) cannot offer stable reconstructions from few projections and create severe streaking artifacts. In this thesis, conventional algorithms are reviewed, and new algorithms are developed for reconstructions of the nuclear fuel assemblies using few projections. CT reconstruction from few projections falls into two categories: the sparse-view CT and the limited-angle CT or tomosynthesis. Iterative reconstruction algorithms are developed for both cases in the field of compressed sensing (CS). The performance of the algorithms is assessed using simulated projections and validated through real projections. The thesis also describes the systematic strategy towards establishing the conditions of reconstructions and finds the optimal imaging parameters for reconstructions of the fuel assemblies from few projections.

  18. SRT project: tele-robotics maintenance of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Santamaria, J. [Iberdrola SA, Madrid (Spain); Calleja, J.M.; Carmena, P. [Endesa, Madrid (Spain); Avello, A.; Rubio, Y.A. [CEIT-Centro de Estudias e Investigaciones Tecnicas de Guipuzcoa, San Sebastian (Spain)

    2001-07-01

    The main aim of the SRT project was to develop a family of robots to help in the operation of nuclear power plants. Four robotic systems were developed and this paper focuses on three of them: ANAES -a steam leak detector through noise analysis-, MALIBA -a master-slave tele-operation system with force feedback- and ROBICEN -a compact pneumatic wall climbing robot-. ANAES (the Spanish acronym of spectrum analysis) consists of a set of sensor heads attached to a computer. Each head has two microphones and a video camera installed on it, and a DC motor that rotates the head. The heads are shielded with lead and boron steel, especially near the video camera. The noise generated by the plant is recorded every day at the same time and the software compares the recorded noise with the mean values of past records. The system can discern whether the noise has remarkably changed and, through phase analysis of the sound recorded by both microphones, identifies the direction of arrival (DOA) of the new noise, probably a steam leak. Using several heads, the new noise source can be identified. The video camera can be used to ease the location of the steam leaks. The stationariness of the measured noise has been tested in C.N. Cofrentes -a Spanish BWR-6 reactor-. A finished system with six heads has recently been installed in the MSR (moisture separator reheater) of the same plant. MALIBA is a master-slave tele-operated system with force feedback. It consists of two robots: a Stewart platform used as master robot and an open chain robot used as slave. The slave robot follows faithfully the movements of the master, and the master robot can reflect a force proportional to the force exerted by the slave on the environment. Three tools have been developed for the slave robot: a robot hand that includes a small video camera, a pneumatic drill and a rectifier. The results obtained have shown its effectiveness for the designed operations. ROBICEN is a lightweight pneumatic robot

  19. Progress Report of Nuclear Facilities Remediation Projects in 2013

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    In 2013,five projects have been achieved a good progress through strengthening coordination and well-organization.1 Pilot project of radioactive solid waste retrieval and conditioning The hot commissioning of the project has been completed.Some radioactive solid waste was pretreated and conditioned during hot commissioning.The results of hot commissioning showed that data

  20. Hydrogen Wave Heater for Nuclear Thermal Propulsion Component Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified Nuclear Thermal Propulsion (NTP) as a propulsion concept which could provide the fastest trip times to Mars and as the preferred concept for...

  1. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  2. Nuclear Systems (NS): Kilopower Small Fission Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear power systems enable human and robotic exploration missions to solar system locations where other power system alternatives are infeasible,...

  3. High Temperature Resistance Claddings for Nuclear Thermal Rockets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will develop a series of nano-/micro-composite coated nuclear reactor facing components using MesoCoat's CermaCladTM process. This proposed SBIR program...

  4. A Project in Support of Nuclear Technology Cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deok Ku; Kim, Kyoung Pyo; Ko, Young Chel (and others)

    2006-12-15

    Establish strategies of international cooperation in an effect to promote our nation's leading role in international society, to form the foundation for the effective transfer of nuclear technology to developing countries, and to cope with the rapidly changing international nuclear climate. Using the INIS output data, it has provided domestic users with searching. Establish the integrated management system of information resources and to automate business flow and to improve business productivity through efficient information sharing.

  5. A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT

    Science.gov (United States)

    Schlifske, Daniel; Medeiros, Henry

    2016-03-01

    Modern CT image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu and Bruno De Man. The extension of the branchless method is named "pre-integration" because it achieves a significant performance boost by integrating the data before the projection and back-projection operations. It was written with Nvidia's CUDA platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-integration method were analyzed. Both projection and back-projection are significantly faster with preintegration. The image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler's Image Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-integration method show no significant impact to image quality.

  6. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Science.gov (United States)

    Barbagallo, M.; Mastromarco, M.; Colonna, N.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2014-12-01

    The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  7. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-01-01

    Full Text Available The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  8. On-going scientific and development projects involving rare-isotope beams at ATLAS

    Science.gov (United States)

    Kay, Benjamin

    2016-09-01

    The ATLAS Facility, located at Argonne National Laboratory, provides both radioactive and stable ion beams at energies around the Coulomb barrier (Uranium, the facility also holds the capability to produce radioactive beams using the two-accelerator method, an in-flight production facility, or through the collection of spontaneous fission fragments at the CARIBU facility. The in-flight technique, in particular, is utilized to produce short-lived beams that are typically one to two-nucleons away from stability, and lighter than mass 40. The CARIBU facility, however, provides access to very neutron-rich isotopes, ranging from the vicinity of doubly-magic 132Sn, to regions of large deformation near A 150 . CARIBU beams are available in both stopped and re-accelerated fashions, and therefore, measurement techniques involving trapping or stopping of the ions, as well as reactions requiring beam energies at or beyond the Coulomb barrier, are possible. In this presentation, highlights from various scientific results which have hinged on radioactive beams produced at ATLAS are to be shown. Also, introductions to, and descriptions of, the on-going technical initiatives aimed at enhancing the radioactive ion-beam production at ATLAS will be given. Finally, exciting future avenues for rare-isotope research, made possible because of the new initiative, is to be discussed. For example, installation of an electron beam ion source (EBIS) has recently been completed to increase both the purity and intensities of re-accelerated CARIBU beams. In addition, expansion of the isotopes produced in-flight, both mass and isospin, is going to occur with the construction of a dedicated separator, AIRIS. AIRIS is designed to highly suppress the intense un-reacted primary beam ( 1 p μA), while still providing generous transport of the radioactive in-flight beams to nearly all experimental stations. Finally, in an attempt to reach tera incognita below 208Pb, development of a modified gas

  9. Decay Data Evaluation Project: Evaluation of (52)Fe nuclear decay data.

    Science.gov (United States)

    Luca, Aurelian

    2016-03-01

    Within the Decay Data Evaluation Project (DDEP) and the IAEA Coordinated Research Project no. F41029, the evaluation of the nuclear decay data of (52)Fe, a radionuclide of interest in nuclear medicine, was performed. The main nuclear decay data evaluated are: the half-life, decay energy, energies and probabilities of the electron capture and β(+) transitions, internal conversion coefficients and gamma-ray energies and emission intensities. This new evaluation, made using the DDEP methodology and tools, was included in the DDEP database NUCLEIDE.

  10. Roseires Dam Heightening Project in Sudan Works of Pre-tensioned Pre-stressed Concrete Beams

    Institute of Scientific and Technical Information of China (English)

    黄志敏

    2014-01-01

    Works of pre-tensioned and pre-stressed concrete beams at dam crest of Roseires Dam Heightening Project located on Nile Riv-er in the Country of Sudan was in a big quantity, complexity and tight completion time. For pre-tensioning operation, frame type pedestal was built. Strict work method statement and applicable work procedure were also developed to assure high work quality and timely completion. All these have become precious experience in the field of pre-tensioning and pre-stressing beams.

  11. Overview of Beam Instrumentation and Diagnostics for the NSLS-II Project

    Energy Technology Data Exchange (ETDEWEB)

    Singh,O.

    2008-05-04

    A new, ultra-bright 3rd generation light source, the NSLS-II Project, is planned to be built at Brookhaven National Laboratory. The light source being developed will have unprecedently small beam horizontal emittance and will provide the radiation sources with a brightness of 3 x 10{sup 21} photons/sec/0.1%BW/mm{sup 2}/mrad{sup 2}. In this paper we present the detailed specifications and a comprehensive description of the planned beam instrumentation system and the first results of the ongoing instrumentation R&D activities on beyond state-of-the-art subsystems.

  12. Lightweight Radiator Fins for Space Nuclear Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate concept radiator fins that incorporate novel carbon materials for improved performance of segmented high temperature...

  13. Development of Export Control Comprehensive Management Model for Nuclear Power Plants and Others Projects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chansuh; Seo, Hana; Choi, Sundo [Korea Institute of Nuclear Nonproliferation And Control, Daejeon (Korea, Republic of)

    2014-05-15

    It is required that there are lots of managements of care and concern if the project contains strategic items such as NPPs. The Korean nuclear industry and its related companies, such as the Korea Hydro and Nuclear Power (KHNP), are promoting greater exports of NPPs. It is likely that Korea will export more this technology to newcomer states in the future. As a result, the ROK has been improving its export control management system for NPPs. In keeping with this national effort, Korea Institute of Nuclear Nonproliferation And Control (KINAC) developed comprehensive export control management model for NPPs and other projects, in preparation for this projected growth in the industry. This model also applies to the nuclear export case of the UAE, aims to manage the project from bidding to the end of the contract. The recent Export Licensing of Nuclear Facility Technology was reflected in the Notice on Export and Import of Strategic Items in January 2014. Through this license, the large-scale project legislation framework was established. It can also minimize nonproliferation concerns of the international community through strict management. It is expected that the Korea will be able to enhance transparency and secure the nuclear use, while meeting nonproliferation purpose.

  14. Low-contrast visualization in megavoltage cone-beam CT at one beam pulse per projection using thick segmented scintillators

    Science.gov (United States)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Wang, Yi

    2010-04-01

    Megavoltage cone-beam computed tomography (MV CBCT) using an electronic portal imaging device (EPID) is a highly promising technique for providing valuable volumetric information for image guidance in radiotherapy. However, active matrix flat-panel imagers (AMFPIs), which are the established gold standard in portal imaging, require a relatively large dose to create images that are clinically useful. This is a consequence of the inefficiency of the phosphor screens employed in conventional MV AMFPIs, which utilize only ~2% of the incident radiation at 6 MV. Fortunately, the incorporation of thick, segmented scintillators can significantly improve the performance of MV AMFPIs, leading to improved image quality for projection imaging at extremely low dose. It is therefore of interest to explore the performance of such thick scintillators for MV CBCT toward the goal of soft-tissue contrast visualization. In this study, prototype AMFPIs incorporating segmented scintillators based on CsI:Tl and BGO crystals with thicknesses ranging from ~11 to 25 mm have been constructed and evaluated. Each prototype incorporates a detector consisting of a matrix of 120 × 60 scintillator elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm, coupled to an overlying ~1 mm thick Cu plate. The prototype AMFPIs were incorporated into a bench-top CBCT system, allowing the acquisition of tomographic images of a contrast phantom using a 6 MV radiotherapy photon beam. The phantom consists of a water-equivalent (solid water) cylinder, embedded with tissue-equivalent inserts having electron densities, relative to water, varying from ~0.43 to ~1.47. Reconstructed images of the phantom were obtained down to the lowest available dose (one beam pulse per projection), corresponding to a total scan dose of ~4 cGy using 180 projections. In this article, reconstructed images, contrast, noise and contrast-to-noise ratio for the tissue-equivalent objects using the

  15. Method for assigning sites to projected generic nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  16. SCINTILLA A European project for the development of scintillation detectors and new technologies for nuclear security

    CERN Document Server

    Alemberti, A; Botta, E; De Vita, R; Fanchini, E; Firpo, G

    2014-01-01

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  17. Overview of nuclear new build projects and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Poncelet, Jean-Pol [FORATOM, Brussels (Belgium)

    2017-05-15

    Nuclear power is an important source for electricity production in Europe: today 131 reactors are operated in 14 EU Member States, delivering 28 % of the European power and one half of its low-carbon electricity. The turnover of the sector is about 70 billion Euro and there are about 800,000 high qualified jobs. Worldwide the capacities of nuclear power are extending. New build activities are moving to the Eastern countries. Today, the whole electricity market in Europe is characterised by uncertainties for all investments due to political market interventions. A common European energy policy does not appear to exist.

  18. Evaluation of nuclear data for R and D projects; development of database for medical nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Tae Suk [Catholic University, Seoul (Korea); Shin, D. O. [Kyung Hee University, Seoul (Korea); Joh, C. W.; Chang, J. S. [Ajou University, Suwon (Korea); Choi, Y. [Sungkyunkwan University, Seoul (Korea); Kim, S. H. [Hanyang University, Seoul (Korea); Park, S. Y. [National Cancer Center, Seoul (Korea); Shin, D. H.; Lee, S [Kyonggi University, Seoul (Korea)

    2002-04-01

    Medical nuclear data used in the country is not provided by academic associations and organizations concerned and even by government organizations concerned. This is aimed to investigate the diagnostic and therapeutic equipments in the clinical use and the domestic present status of nuclear data and physical properties of sealed or unsealed radioactive isotopes and to establish the nuclear database. About 120 domestic centers take nuclear medicine tests and 52 medical centers do radiotherapy. The 30-odd different kinds of radionuclides are usually used in nuclear medicine in the country. The 30-odd kinds of unsealed sources are used for diagnosis and therapy and 10-odd kinds of sealed sources for brachytherapy in the country. The special radiotherapy includes Gamma-knife, linac-based stereotactic radiosurgery, conformal radiotherapy and Intensity modulated radiotherapy. The nuclear data base has been completed on the basis of these data collected and the web site made is available with ease to anyone who want to get nuclear data. 39 refs., 20 figs., 8 tabs. (Author)

  19. Nuclear reactions with radioactive and stable beams (Part II); Reacciones nucleares con haces radiactivos y estables (Parte II)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-12-15

    At the present time there is a great interest at world level in experiments, with accelerated nuclei of short half life. The dispersion, fusion, transfer and break processes in the interaction of weakly light projectiles bounded with targets of Z great its have been object of intense recent investigation, at world level. Our group, in collaboration with the University of Notre Dame, it has measured and analyzed these processes for weakly bound systems as: {sup 6}He + {sup 209}Bi, {sup 8}Li + {sup 208}Pb, {sup 10}Be + {sup 208}Pb. On the other hand a research line that has wakened up great interest, it is that of studies of resonant reactions using the Inverse Kinematics technique with thick targets. The use of this technique allows to measure an entire excitation function with a single bombardment. Our group has carried out, in the ININ, preliminary bombardments for the system {sup 12}C + {sup 4}He. This allowed to establish the feasibility of implementing this technique in our Laboratory. The application of this and other techniques to different systems like {sup 18}O + {sup 4}He, {sup 12}C + {sup 12}C, {sup 12}C + {sup 16}O, {sup 16}O + {sup 16}O, it opens the possibility to measure the fusion of these systems at very low energy and to deepen in the knowledge of the nuclear structure and the nuclear astrophysics. In this technical report, the activities carried out by our group during the second stage of this project, considered for 2005 are described. Also in that year, our group carries out a research stay in the University of Notre Dame, during this stay, the angular distribution of the projectiles of {sup 8}B dispersed in an enriched target of {sup 58}Ni was measured. The same as in the previous experiments, in this occasion it was also possible to measure those angular distributions of the projectiles of {sup 7}Be and {sup 6}Li dispersed in this same target. In this same one our stay group participates in other three experiments proposed by collaborators of

  20. 78 FR 70588 - STP Nuclear Operating Company; South Texas Project

    Science.gov (United States)

    2013-11-26

    ...; (12) geothermal power; (13) municipal solid waste; (14) biomass; (15) biofuels; (16) oil-fired power...: Final supplement 48 to generic environmental impact statement for license renewal of nuclear plants... the final, plant-specific, Supplement 48 to the ``Generic Environmental Impact Statement for License...

  1. Overview of the activities at the low-energy beam separator CRIB

    Science.gov (United States)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Yang, L.; Sakaguchi, Y.; Abe, K.; Shimizu, H.; CRIB Collaboration

    2017-09-01

    CRIB (CNS Radio-Isotope Beam separator) is a low-energy RI beam separator of Center for Nuclear Study (CNS), the University of Tokyo. Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the RI beams at CRIB, forming international collaborations. Measurements of proton and α resonant scatterings have been performed at CRIB for many nuclides using RI beams. Projects to study astrophysical reactions with direct and indirect methods are also in progress.

  2. Aberrant “Barbed-Wire” Nuclear Projections of Neutrophils in Trisomy 18 (Edwards Syndrome

    Directory of Open Access Journals (Sweden)

    Basil M. Kahwash

    2015-01-01

    Full Text Available We discuss the significance of neutrophils with increased, aberrant nuclear projections mimicking “barbed-wire” in a newborn child with trisomy 18 (T18. Increased, aberrant nuclear projections have been previously reported in trisomy of the D group of chromosomes (chromosomes 13, 14, and 15, and we report similar findings in a patient with T18. The peripheral blood smear showed relative neutrophilia with the majority (37% of neutrophils showing two or more thin, rod-shaped or spike-shaped, and often pedunculated aberrant nuclear projections. The number of projections ranged from 2 to 6 per cell, averaged 2 per affected neutrophil, and ranged in length from 0.22 μm to 0.83 μm. This case confirms that the morphologic finding described is not restricted to trisomy of one of the chromosomes in group D, as implied in the literature.

  3. Aberrant "Barbed-Wire" Nuclear Projections of Neutrophils in Trisomy 18 (Edwards Syndrome).

    Science.gov (United States)

    Kahwash, Basil M; Nowacki, Nicholas B; Kahwash, Samir B

    2015-01-01

    We discuss the significance of neutrophils with increased, aberrant nuclear projections mimicking "barbed-wire" in a newborn child with trisomy 18 (T18). Increased, aberrant nuclear projections have been previously reported in trisomy of the D group of chromosomes (chromosomes 13, 14, and 15), and we report similar findings in a patient with T18. The peripheral blood smear showed relative neutrophilia with the majority (37%) of neutrophils showing two or more thin, rod-shaped or spike-shaped, and often pedunculated aberrant nuclear projections. The number of projections ranged from 2 to 6 per cell, averaged 2 per affected neutrophil, and ranged in length from 0.22 μm to 0.83 μm. This case confirms that the morphologic finding described is not restricted to trisomy of one of the chromosomes in group D, as implied in the literature.

  4. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications

    Science.gov (United States)

    Zhong, Yuan; Rännar, Lars-Erik; Liu, Leifeng; Koptyug, Andrey; Wikman, Stefan; Olsen, Jon; Cui, Daqing; Shen, Zhijian

    2017-04-01

    A feasibility study was performed to fabricate ITER In-Vessel components by one of the metal additive manufacturing methods, Electron Beam Melting® (EBM®). Solid specimens of SS316L with 99.8% relative density were prepared from gas atomized precursor powder granules. After the EBM® process the phase remains as austenite and the composition has practically not been changed. The RCC-MR code used for nuclear pressure vessels provides guidelines for this study and tensile tests and Charpy-V tests were carried out at 22 °C (RT) and 250 °C (ET). This work provides the first set of mechanical and microstructure data of EBM® SS316L for nuclear fusion applications. The mechanical testing shows that the yield strength, ductility and toughness are well above the acceptance criteria and only the ultimate tensile strength of EBM® SS316L is below the RCC-MR code. Microstructure characterizations reveal the presence of hierarchical structures consisting of solidified melt pools, columnar grains and irregular shaped sub-grains. Lots of precipitates enriched in Cr and Mo are observed at columnar grain boundaries while no sign of element segregation is shown at the sub-grain boundaries. Such a unique microstructure forms during a non-equilibrium process, comprising rapid solidification and a gradient 'annealing' process due to anisotropic thermal flow of accumulated heat inside the powder granule matrix. Relations between process parameters, specimen geometry (total building time) and sub-grain structure are discussed. Defects are formed mainly due to the large layer thickness (100 μm) which generates insufficient bonding between a few of the adjacently formed melt pools during the process. Further studies should focus on adjusting layer thickness to improve the strength of EBM® SS316L and optimizing total building time.

  5. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator

    Science.gov (United States)

    Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.

    2017-09-01

    Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.

  6. Spent nuclear fuel project systems engineering management plan

    Energy Technology Data Exchange (ETDEWEB)

    Womack, J.C., Westinghouse Hanford

    1996-07-19

    The purpose of this document is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices. The methodology promotes and ensures sound management of the SNF Project. The scope of the document encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project including risk management process, design authority/design agent concept, and documentation responsibilities. This implementation applies to, and is tailored to the needs of the SNF Project and all its Subprojects, including all current and future Subprojects.

  7. Oxygen Containment System Options for Nuclear Thermal Propulsion Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept for this project is to take the hydrogen exhaust and inject it with a high mixture ratio of oxygen so the reaction produces steam.  In theory, in a...

  8. Nuclear Ground State Properties in Strontium by Fast Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii show a decrease with increasing neutron number below the N=50 shell closure. Above N=50 the charge radii increase regularly up to N=59 before revealing a strong discontinuity, indicating the onset of strong ground state deformation. A comparison of the droplet model shows that for the transitional isotopes below and above N=50, the zero point quadrupole motion describes part of the observed shell effect. Calculations carried out in the Hartree-Fock plus BCS model suggest an additional change in the surface region of the charge distribution at spherical shape. From these calculations it is furthermore proposed, that the isotopes $^7

  9. Design strength evaluation of RC beams under radiation environments for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won-Hee [Institute for Infrastructure Engineering, University of Western Sydney, Penrith, NSW 2751 (Australia); Kwon, Tae-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Hyeong-Tae [Department of Civil and Environmental Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Park, Kyoungsoo, E-mail: k-park@yonsei.ac.kr [Department of Civil and Environmental Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-05-15

    Neutron irradiation changes the behavior of construction materials such as strength and ductility, and thus structural design equations or their safety margins should accordingly be updated for the design of nuclear power plants (NPP) under irradiation. However, current design codes do not account for such changes in material strength. In this study, a framework is proposed to evaluate the change of the safety margins in design equations of reinforced concrete (RC) flexural members under radiation environments. Material strength changes are approximated on the basis of a collected test database, and the design strengths of RC beams are evaluated considering these material strength changes. The evaluation results demonstrate that the design strength of an under-reinforced flexural member can increase while the design strength of an over-reinforced member generally decreases. These results are associated with the material strength changes such that the yield strength of steel increases and the compressive strength of concrete decreases with the fluence of neutron radiation. Current NPP design codes need to further consider this un-conservative design possibility due to the design strength reduction of flexural members under irradiation.

  10. Simultaneous Hand-Eye-Workspace and Camera Calibration using Laser Beam Projection

    OpenAIRE

    Jwu-Sheng Hu; Yung-Jung Chang

    2014-01-01

    This work presents a novel calibration technique capable of simultaneously calibrating a camera’s intrinsic parameters and hand-eye-workspace relations. In addition to relaxing the requirement of a precise calibration reference to achieve manipulator accuracy, the proposed method functions when the hand is not in the view field of the eye. The calibration method uses a laser pointer mounted on the hand to project laser beams onto a planar object, which serves as the working plane. Collected l...

  11. European research projects for metrology in Brachytherapy and External Beam Cancer Therapy

    Science.gov (United States)

    Ankerhold, Ulrike; Toni, Maria Pia

    2012-10-01

    In 2008, within the framework of the European Metrology Research Programme (EMRP), two projects were launched with the central objective of providing reliable measuring techniques for the methods of modern cancer therapy using ionizing radiation—such as brachytherapy, intensity modulated radiation therapy and hadron therapy—and using high intensity therapeutic ultrasound. The two three-year projects are ‘Increasing cancer treatment efficacy using 3D brachytherapy’ (Brachytherapy) and ‘External Beam Cancer Therapy’ (EBCT). For these modern treatment methods there is an urgent requirement for establishing a sound metrological basis with regard to the radiation dose delivered and its spatial distribution. This paper gives a brief overview about the two projects' work, their goals and findings. The details of the projects' work and their outcomes are presented within these conference proceedings or in the cited publications.

  12. Advanced Elastic/Inelastic Nuclear Data Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Frank; Chowdhury, Partha; Greife, Uwe; Fisher Hicks, Sally; Tsvetkov, Pavel; Rahn Vanhoy, Jeffrey; Hill, Tony; Kawano, Toshihiko; Slaughter, David

    2015-06-08

    The optical model is used to analyze the elastic and inelastic scattering of nucleons, deuterons, hellions, tritons, and alpha particles by the nuclei. Since this paper covers primarily neutron-nucleus scattering, the focus will be limited to only that interaction. For the sake of this model, the nucleus is described as a blob of nuclear matter with properties based upon its number of nucleons. This infers that a single potential can describe the interaction of particles with different energies with different nuclei.

  13. A denoising algorithm for projection measurements in cone-beam computed tomography.

    Science.gov (United States)

    Karimi, Davood; Ward, Rabab

    2016-02-01

    The ability to reduce the radiation dose in computed tomography (CT) is limited by the excessive quantum noise present in the projection measurements. Sinogram denoising is, therefore, an essential step towards reconstructing high-quality images, especially in low-dose CT. Effective denoising requires accurate modeling of the photon statistics and of the prior knowledge about the characteristics of the projection measurements. This paper proposes an algorithm for denoising low-dose sinograms in cone-beam CT. The proposed algorithm is based on minimizing a cost function that includes a measurement consistency term and two regularizations in terms of the gradient and the Hessian of the sinogram. This choice of the regularization is motivated by the nature of CT projections. We use a split Bregman algorithm to minimize the proposed cost function. We apply the algorithm on simulated and real cone-beam projections and compare the results with another algorithm based on bilateral filtering. Our experiments with simulated and real data demonstrate the effectiveness of the proposed algorithm. Denoising of the projections with the proposed algorithm leads to a significant reduction of the noise in the reconstructed images without oversmoothing the edges or introducing artifacts.

  14. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  15. A multiscale filter for noise reduction of low-dose cone beam projections

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B.

    2015-08-01

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, \\text{exp}≤ft(-{{x}2}/2σ f2\\right) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of {σf} , which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ f2 is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  16. Nuclear Science and Applications with the Next Generation of High-Power Lasers and Brilliant Low-Energy Gamma Beams at ELI-NP

    Science.gov (United States)

    Gales, S.

    2015-11-01

    The development of high-power lasers and the combination of such novel devices with accelerator technology has enlarged the science reach of many research fields, in particular high-energy nuclear physics and astrophysics, as well as societal applications in material science, nuclear energy and medicine. The European Strategic Forum for Research Infrastructures (ESFRI) has selected a proposal based on these new premises called "ELI" for Extreme Light Infrastructure. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for nuclear physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10-PW lasers and a Compton back-scattering high-brilliance and intense low-energy gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  17. SACSESS – the EURATOM FP7 project on actinide separation from spent nuclear fuels

    Directory of Open Access Journals (Sweden)

    Bourg Stéphane

    2015-12-01

    Full Text Available Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes. Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.

  18. The nuclear borderlands the Manhattan project in post-cold war New Mexico

    CERN Document Server

    Masco, Joseph

    2013-01-01

    The Nuclear Borderlands explores the sociocultural fallout of twentieth-century America's premier technoscientific project--the atomic bomb. Joseph Masco offers the first anthropological study of the long-term consequences of the Manhattan Project for the people that live in and around Los Alamos, New Mexico, where the first atomic bomb, and the majority of weapons in the current U.S. nuclear arsenal, were designed. Masco examines how diverse groups--weapons scientists at Los Alamos National Laboratory, neighboring Pueblo Indian Nations and Nuevomexicano communities, and antinuclear activist

  19. Prioritizing the countries for BOT nuclear power project using Analytic Hierarchy Process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Woo; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This paper proposes factors influencing the success of BOT nuclear power projects and their weighting method using Analytic Hierarchy Process (AHP) to find the optimal country which developer intends to develop. To summarize, this analytic method enable the developer to select and focus on the country which has preferable circumstance so that it enhances the efficiency of the project promotion by minimizing the opportunity cost. Also, it enables the developer to quantify the qualitative factors so that it diversifies the project success strategy and policy for the targeted country. Although the performance of this study is insufficient due to the limitation of time, small sampling and security of materials, it still has the possibility to improve the analytic model more systematically through further study with more data. Developing Build-Own(or Operate)-Transfer (BOT) nuclear power project carrying large capital in the long term requires initially well-made multi-decision which it prevents sorts of risks from unexpected situation of targeted countries. Moreover, the nuclear power project in most case is practically implemented by Government to Government cooperation, so the key concern for such nuclear power project would be naturally focused on the country situation rather than project viability at planning stage. In this regard, it requires the evaluation of targeted countries before involving the project, comprehensive and proper decision making for complex judgment factors, and efficient integration of expert's opinions, etc. Therefore, prioritizing and evaluating the feasibility of country for identification of optimal project region is very meaningful study.

  20. Summary for the Next Generation Nuclear Plant Project in Review

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2010-09-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  1. Summary for the Next Generation Nuclear Plant Project in Review

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2010-08-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  2. Summary for the Next Generation Nuclear Plant Project in Review

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2010-09-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  3. Summary for the Next Generation Nuclear Plant Project in Review

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2010-08-01

    This paper reports on the major progress that the NGNP Project has made toward developing and commercializing the HTGR technology. Significant R&D progress has been made in addressing key technical issues for qualification of the HTGR fuel and graphite, codification of high temperature materials and verification and validation of design codes. Work is also progressing in heat transfer/transport design and testing and in development of the high temperature steam electrolysis hydrogen production process. A viable licensing strategy has been formulated in coordination with the NRC and DOE. White papers covering key licensing issues have been and will continue to be submitted and necessary discussions of these key issues have begun with the NRC. Continued government support is needed to complete the Project objectives as established in the 2005 Energy Policy Act.

  4. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  5. An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups

    CERN Document Server

    Rinaldi, I; Parodi, K; Ferrari, A; Sala, P; Mairani, A

    2011-01-01

    Monte Carlo (MC) codes are useful tools to simulate the complex processes of proton beam interactions with matter. In proton therapy, nuclear reactions influence the dose distribution. Therefore, the validation of nuclear models adopted in MC codes is a critical requisite for their use in this field. A simple integral test can be performed using a multi-layer Faraday cup (MLFC). This method allows separation of the nuclear and atomic interaction processes, which are responsible for secondary particle emission and the finite primary proton range, respectively. In this work, the propagation of 160 MeV protons stopping in two MLFCs made of polyethylene and copper has been simulated by the FLUKA MC code. The calculations have been performed with and without secondary electron emission and transport, as well as charge sharing in the dielectric layers. Previous results with other codes neglected those two effects. The impact of this approximation has been investigated and found to be relevant only in the proximity ...

  6. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    Science.gov (United States)

    Thomé, Lionel; Debelle, Aurélien; Garrido, Frédérico; Trocellier, Patrick; Serruys, Yves; Velisa, Gihan; Miro, Sandrine

    2013-04-01

    Single and dual-beam irradiations of oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals were performed to study combined effects of nuclear (Sn) and electronic (Se) energy losses. Rutherford backscattering experiments in channeling conditions show that the Sn/Se cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO2 and Gd2Ti2O7. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative Sn/Se effects may lead to the preservation of the integrity of nuclear devices.

  7. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    Energy Technology Data Exchange (ETDEWEB)

    Garvin, L.J.

    1995-11-01

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  8. An optical readout TPC (O-TPC) for studies in nuclear astrophysics with gamma-ray beams at HI{gamma}S{sup 1}

    Energy Technology Data Exchange (ETDEWEB)

    Gai, M; Zimmerman, W R; Kading, T J; Seo, P-N; Young, A H [LNS at Avery Point, University of Connecticut, Groton, CT 06340-6097 (United States); Ahmed, M W; Stave, S C; Henshaw, S S; Martel, P P; Weller, H R [TUNL, Dept. of Physics, Duke University, Durham, NC 27708 (United States); Breskin, A; Chechik, R [Dept. of Particle Physics, Weizmann Institute of Science, 76100 Rehovot (Israel); Bromberger, B; Dangendorf, V; Tittelmeier, K [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Delbar, Th [Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); III, R H France [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); McDonald, J E R, E-mail: moshe.gai@yale.edu [Dept. of Physics, Yale University, New Haven, CT 06520-8124 (United States)

    2010-12-15

    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO{sub 2}(80%) + N{sub 2}(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HI{gamma}S) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm{sup 3}. Ionization electrons drift towards a double parallel-grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche-induced photons from N{sub 2} emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a {sup 148}Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and {sup 12}C particles from the dissociation of {sup 16}O and of three alpha-particles from the dissociation of {sup 12}C have been measured during initial in-beam test experiments performed at the HI{gamma}S facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.

  9. Photo-fission for the production of radioactive beams ALTO project

    CERN Document Server

    Essabaa, S; Ausset, P; Bajeat, O; Baronick, J P; Clapier, F; Coacolo, J L; Donzaud, C; Ducourtieux, M; Galas, S; Gardes, D; Grialou, D; Hosni, F; Guillemaud-Müller, D; Ibrahim, F; Junquera, T; Lau, C; Le Blanc, F; Lefort, H; Le Scornet, J C; Lesrel, J; Müller, A C; Obert, J; Perru, O; Potier, J C; Proust, J; Pougheon, F; Roussière, B; Rouvière, N; Sauvage, J; Sorlin, O; Tkatchenko, A; Verney, D; Waast, B; Rinolfi, Louis; Rossat, G; Forkel-Wirth, Doris; Müller, A; Bienvenu, G; Bourdon, J C; Garvey, Terence; Jacquemard, B; Omeich, M

    2003-01-01

    In order to probe neutron rich radioactive noble gases produced by photo-fission, a PARRNe-1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine: LEP Injector Linac. The experiment allowed us to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photo-fission. The obtained results show that the use of the electrons is a promising mode to get intense neutron rich ion beams. After the success of this photo-fission experiment, a conceptual design for the installation at IPN Orsay of a 50 MeV electron accelerator close to the PARRNe-2 device has been worked out: ALTO Project. This work has started within a collaboration between IPNO, LAL (Laboratoire de l'Accelerateur Lineaire) and CERN groups.

  10. Photo-fission for the production of radioactive beams ALTO project

    Energy Technology Data Exchange (ETDEWEB)

    Essabaa, S. E-mail: essabaa@ipno.in2p3.fr; Arianer, J.; Ausset, P.; Bajeat, O.; Baronick, J.P.; Clapier, F.; Coacolo, L.; Donzaud, C.; Ducourtieux, M.; Gales, S.; Gardes, D.; Grialou, D.; Hosni, F.; Guillemaud-Mueller, D.; Ibrahim, F.; Junquera, T.; Lau, C.; Le Blanc, F.; Lefort, H.; Le Scornet, J.C.; Lesrel, J.; Mueller, A.C.; Obert, J.; Perru, O.; Potier, J.C.; Proust, J.; Pougheon, F.; Roussiere, B.; Rouviere, N.; Sauvage, J.; Sorlin, O.; Tkatchenko, A.; Verney, D.; Waast, B.; Rinolfi, L.; Rossat, G.; Forkel-Wirth, D.; Muller, A.; Bienvenu, G.; Bourdon, J.-C.; Garvey, T.; Jacquemard, B.; Omeich, M

    2003-05-01

    In order to probe neutron rich radioactive noble gases produced by photo-fission, a PARRNe-1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine: LEP Injector Linac. The experiment allowed us to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photo-fission. The obtained results show that the use of the electrons is a promising mode to get intense neutron rich ion beams. After the success of this photo-fission experiment, a conceptual design for the installation at IPN Orsay of a 50 MeV electron accelerator close to the PARRNe-2 device has been worked out: ALTO Project. This work has started within a collaboration between IPNO, LAL (Laboratoire de l'Accelerateur Lineaire) and CERN groups.

  11. An Apparatus For Student Projects Using External-Beam PIXE And PIGE

    Science.gov (United States)

    Correll, Francis D.; Edsall, Douglas W.; DePooter, Katherine A.; Maskell, Nicholas D.; Vanhoy, Jeffrey R.

    2011-06-01

    We recently installed a simple endstation at the Naval Academy Tandem Accelerator Laboratory to support student projects using external-beam PIXE and PIGE. It consists of a short, graphite-lined beamline extension with a thin window, an interlocked box that surrounds the target, detectors for x- and gamma rays, provision for flooding the target with helium gas, easily changed x-ray absorbers, and a compact video camera for monitoring the position of the beam spot. We used this system to measure the elemental composition of colonial-era architectural materials, principally bricks and mortar, from James Madison's Montpelier, the reconstructed Virginia estate of the fourth President of the United States. We describe the design and construction of the system, relate some of our experiences using it, and present some preliminary data from our investigations.

  12. Nonlinear Control of Beam Halo-Chaos in Accelerator-Driven Clean Nuclear Power System

    Institute of Scientific and Technical Information of China (English)

    FANG JinQing; CHEN GuanRong; ZHOU LiuLai; WENG JiaQiang

    2002-01-01

    Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry, medicine, and national defense. Some general engineering methods for chaos control have been developed in recent years, but they generally are unsuccessful for beam halo-chaos suppression due to many technical constraints. Beam halo-chaos is essentially a spatiotemporal chaotic motion within a high power proton accelerator. In this paper, some efficient nonlinear control methods, including wavelet function feedback control as a special nonlinear control method, are proposed for controlling beam halo-chaos under five kinds of the initial proton beam distributions (i.e., Kapchinsky-Vladimirsky, full Gauss,3-sigma Gauss, water-bag, and parabola distributions) respectively. Particles-in-cell simulations show that after control of beam halo-chaos, the beam halo strength factor is reduced to zero, and other statistical physical quantities of beam halo-chaos are doubly reduced. The methods we developed is very effective for suppression of proton beam halo-chaos in a periodic focusing channel of accelerator. Some potential application of the beam halo-chaos control in experiments is finally pointed out.

  13. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  14. Use of mathematical modeling in nuclear measurements projects

    Energy Technology Data Exchange (ETDEWEB)

    Toubon, H.; Menaa, N.; Mirolo, L.; Ducoux, X.; Khalil, R. A. [AREVA/CANBERRA Nuclear Measurements Business Unit, Saint Quentin-en-Yvelines 78182 (France); Chany, P. [AREVA/BE Nuclear Sites Value Development AREVA NC Marcoule, BP 76170, 30206 Bagnols Sur Ceze (France); Devita, A. [AREVA/BE MELOX, BP 124, 30206 Bagnols Sur Ceze (France)

    2011-07-01

    Mathematical modeling of nuclear measurement systems is not a new concept. The response of the measurement system is described using a pre-defined mathematical model that depends on a set of parameters. These parameters are determined using a limited set of experimental measurement points e.g. efficiency curve, dose rates... etc. The model that agrees with the few experimental points is called an experimentally validated model. Once these models have been validated, we use mathematical interpolation to find the parameters of interest. Sometimes, when measurements are not practical or are impossible extrapolation is implemented but with care. CANBERRA has been extensively using mathematical modeling for the design and calibration of large and sophisticated systems to create and optimize designs that would be prohibitively expensive with only experimental tools. The case studies that will be presented here are primarily performed with MCNP, CANBERRA's MERCURAD/PASCALYS and ISOCS (In Situ Object Counting Software). For benchmarking purposes, both Monte Carlo and ray-tracing based codes are inter-compared to show models consistency and add a degree of reliability to modeling results. (authors)

  15. A GPU tool for efficient, accurate, and realistic simulation of cone beam CT projections.

    Science.gov (United States)

    Jia, Xun; Yan, Hao; Cervino, Laura; Folkerts, Michael; Jiang, Steve B

    2012-12-01

    Simulation of x-ray projection images plays an important role in cone beam CT (CBCT) related research projects, such as the design of reconstruction algorithms or scanners. A projection image contains primary signal, scatter signal, and noise. It is computationally demanding to perform accurate and realistic computations for all of these components. In this work, the authors develop a package on graphics processing unit (GPU), called gDRR, for the accurate and efficient computations of x-ray projection images in CBCT under clinically realistic conditions. The primary signal is computed by a trilinear ray-tracing algorithm. A Monte Carlo (MC) simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A denoising process specifically designed for Poisson noise removal is applied to obtain a smooth scatter signal. The noise component is then obtained by combining the difference between the MC primary and the ray-tracing primary signals, and the difference between the MC simulated scatter and the denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic one by scaling its amplitude according to a specified mAs level. The computations of gDRR include a number of realistic features, e.g., a bowtie filter, a polyenergetic spectrum, and detector response. The implementation is fine-tuned for a GPU platform to yield high computational efficiency. For a typical CBCT projection with a polyenergetic spectrum, the calculation time for the primary signal using the ray-tracing algorithms is 1.2-2.3 s, while the MC simulations take 28.1-95.3 s, depending on the voxel size. Computation time for all other steps is negligible. The ray-tracing primary signal matches well with the primary part of the MC simulation result. The MC simulated scatter signal using gDRR is in agreement with EGSnrc results with a relative difference of 3.8%. A noise calibration process is conducted to calibrate g

  16. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    Science.gov (United States)

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  17. Nuclear Propulsion and Power Non-Nuclear Test Facility (NP2NTF): Preliminary Analysis and Feasibility Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors, which power nuclear propulsion and power systems, and the nuclear radiation and residual radioactivity associated with these systems, impose...

  18. Aircraft Nuclear Propulsion Project Quarterly Progress Report for Period Ending December 31, 1956

    Energy Technology Data Exchange (ETDEWEB)

    NA, NA [ORNL

    1957-03-12

    This quarterly progress report of the Aircraft Nuclear Propulsion Project at ORNL records the technical progress of research on circulating-fuel reactors and other ANP research at the Laboratory. The report is divided into five major parts: 1) Aircraft Reactor Engineering, 2) Chemistry, and 3) Metallurgy, 4) Heat Transfer and Physical Properties, Radiation Damage, and Fuel Recovery and Reprocessing, and 5) Reactor Shielding.

  19. Project Plan Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project

    Energy Technology Data Exchange (ETDEWEB)

    BARTLETT, W.D.

    1999-09-14

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev.0. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation.

  20. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  1. Coherent Effects of High Current Beam in Project-X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  2. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    CERN Document Server

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  3. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  4. The nuclear weapons inheritance project: student-to-student dialogues and interactive peer education in disarmament activism.

    Science.gov (United States)

    Buhmann, Caecilie Böck

    2007-01-01

    The Nuclear Weapons Inheritance Project is a student run and student initiated project founded in 2001 with the purpose of increasing awareness of health effects of nuclear policies and empowering university students to take action in a local and international context. The project uses dialogues to discuss nuclear disarmament with university students and a method of interactive peer education to train new trainers. The project has met more than 1500 students in nuclear weapon states in dialogue and trained about 400 students from all over the world. This article describes the methods and results of the project and discuss how the experience of the project can be used in other projects seeking to increase awareness of a topic and to initiate action on social injustice.

  5. Monitoring nuclear reactors with anti-neutrino detectors: the ANGRA project

    Energy Technology Data Exchange (ETDEWEB)

    Chimenti, Pietro; Leigui, Marcelo Augusto [UFABC - Universidade Federal do ABC. Rua Santa Adelia, 166. Bairro Bangu. Santo Andre - SP (Brazil); Anjos, Joao; Azzi, Gabriel; Rafael, Gama; Ademarlaudo, Barbosa; Lima, Herman; VAZ, Mario; Villar, Arthur [Centro Brasileiro de Pesquisas Fisicas - CBPF, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ - 22290-180 (Brazil); Gonzales, Luis Fernando; Bezerra, Thiago; Kemp, Ernesto [Unicamp, State University of Campinas, Cidade Universitaria ' Zeferino Vaz' , Barao Geraldo - Campinas, Sao Paulo (Brazil); Nunokawa, Hiroshi [Department of Physics, Pontifical Catholic University - PUC, Rua Marques de Sao Vicente, 225, 22451-900 Gavea - Rio de Janeiro - RJ (Brazil); Guedes, Germano; Faria, Paulo Cesar [Universidade Estadual de Feira de Santana - UEFS, Avenida Transnordestina, Novo Horizonte (Brazil); Pepe, Iuri [Universidade Federal da Bahia - UFBA (Brazil)

    2010-07-01

    We describe the status of the ANGRA Project, aimed at developing an anti-neutrino detector for monitoring nuclear reactors. Indeed the detection of anti-neutrinos provides a unique handle for non-invasive measurements of the nuclear fuel. This kind of measurements are of deep interest for developing new safeguards tools which may help in nuclear non-proliferation programs. The ANGRA experiment, placed at about 30 m from the core of the 4 GW Brazilian nuclear power reactor ANGRA II, is based on a water Cherenkov detector with about one ton target mass. A few thousand antineutrino interactions per day are expected. The latest results from simulations and the status of the construction are presented. (authors)

  6. Validation of nuclear models in Geant4 using the halo of a proton pencil beam stopping in water

    CERN Document Server

    Hall, David C; Paganetti, Harald; Gottschalk, Bernard

    2015-01-01

    A proton pencil beam is associated with a surrounding low-dose envelope, originating from nuclear interactions. It is important for treatment planning systems to accurately model this envelope when performing dose calculations for pencil beam scanning treatments, and Monte Carlo (MC) codes are commonly used for this purpose. This work aims to validate the nuclear models employed by the Geant4 MC code, by comparing the simulated absolute dose distribution to a recent experiment of a 177 MeV proton pencil beam stopping in water. Impressive agreement is observed over five orders of magnitude, with both the shape and normalisation well modelled. The normalisations of two depth dose curves are lower than experiment, though this could be explained by an experimental positioning error. The Geant4 neutron production model is also verified in the distal region. The entrance dose is poorly modelled, suggesting an unaccounted upstream source of low-energy protons. Recommendations are given for a follow-up experiment whi...

  7. After Euro 620 m arbitration ruling. What next for Bulgaria's Belene nuclear project?

    Energy Technology Data Exchange (ETDEWEB)

    Kraev, Kamen [NucNet, Brussels (Belgium)

    2016-08-15

    Iran is considering Bulgaria's offer to sell it the Russian-made reactor equipment produced for the abandoned Belene nuclear project. The Belene project was initially planned and started in the 1980s, but was stopped in the early 1990s. In 2008 the project was formally given new life, but suspended again in 2010 and abandoned in 2012. The International Court of Arbitration (ICA) ordered the Bulgarian operator Natsionalna Elektricheska Kompania EAD to pay Euro 620 m in compensation to Russia's Atomstroyexport.

  8. Developing the concept of maintenance and repairs in projects of power units for new-generation nuclear power stations

    Science.gov (United States)

    Gurinovich, V. D.; Yanchenko, Yu. A.

    2012-05-01

    Results from conceptual elaboration of individual requirements for the system of maintenance and repairs that must be implemented in the projects of new-generation nuclear power stations are presented taking as an example the power unit project for a nuclear power station equipped with a standard optimized VVER reactor with enhanced information support (the so-called VVER TOI reactor). Implementation of these concepts will help to achieve competitiveness of such nuclear power stations in the domestic and international markets.

  9. REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography

    Science.gov (United States)

    McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.

    2012-03-01

    REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.

  10. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  11. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bibb, E.K.

    1997-10-15

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  12. THE HYPHI PROJECT : HYPERNUCLEAR SPECTROSCOPY WITH STABLE HEAVY ION BEAMS AND RARE ISOTOPE BEAMS AT GSI AND FAIR

    NARCIS (Netherlands)

    Bianchin, S.; Achenbach, P.; Ajimura, S.; Borodina, O.; Fukuda, T.; Hoffmann, J.; Kavatsyuk, M.; Koch, K.; Koike, T.; Kurz, N.; Maas, F.; Minami, S.; Mizoi, Y.; Nagae, T.; Nakajima, D.; Okamura, A.; Ott, W.; Ozel, B.; Pochodzalla, J.; Rappold, C.; Saito, T. R.; Sakaguchi, A.; Sako, M.; Sekimoto, M.; Sugimura, H.; Takahashi, T.; Tamura, H.; Tanida, K.; Trautmann, W.

    2009-01-01

    The HypHI collaboration aims to perform a precise hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and FAIR in order to study hypernuclei at extreme isospin, especially neutron rich hypernuclei to look insight hyperon-nucleon interactions in the neutron rich medium

  13. Data base on dose reduction research projects for nuclear power plants. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Yu, C.K.; Roecklein, A.K. [Brookhaven National Lab., Upton, NY (United States)

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  14. DEFINING ‘PROJECT SUCCESS’ FOR A COMPLEX PROJECT – THE CASE OF A NUCLEAR ENGINEERING DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    S.I. Van Niekerk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The case of a nuclear engineering project was investigated to establish the relevant success criteria for the development of complex, high-technology systems. The project was first categorised according to an existing scheme, and the Delphi method was used to determine the criteria for project success that apply to this specific case. A framework of project success dimensions was extended to include criteria that are of specific importance for the project under consideration.

    While project efficiency (delivery on time and within budget obviously still needs to be controlled, the results provide empirical evidence for the notion that, for ‘super high tech’ projects, this is relatively less important. The relative importance of the dimensions of success was also evaluated and presented on a timeline stretching from project execution to 10 years after project completion. This provided empirical evidence for certain concepts in the literature.

    AFRIKAANSE OPSOMMING: Die geval van ʼn kern-ingenieursprojek is ondersoek om die relevante kriteria vir sukses vir die ontwikkeling van komplekse hoë-tegnologiesisteme te bepaal. Die projek is eerstens geklassifiseer volgens ʼn bestaande skema, en die Delphi-metode is vervolgens gebruik om die relevante kriteria vir projeksukses vir die betrokke geval te bepaal. ʼn Bestaande raamwerk van dimensies vir projeksukses is uitgebrei om kriteria wat van spesifieke belang vir die betrokke geval in te sluit.

    Terwyl tydige aflewering, binne begroting natuurlik steeds belangrik is, voorsien die resultate empiriese bewys vir die nosie in die literatuur dat hierdie aspekte van relatief minder belang is in die geval van ‘super hoë-tegnologie’-projekte. Die relatiewe belangrikheid van die dimensies van sukses is ook evalueer, en aangedui op ʼn tydlyn wat strek van projekuitvoering tot 10 jaar na die afhandeling van die projek. Dit lewer empiriese bewys vir sekere bewerings in

  15. Role of Halden Reactor Project for world-wide nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M.A.; Volkov, B.

    2011-07-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  16. CT metal artifact reduction method correcting for beam hardening and missing projections

    Science.gov (United States)

    Verburg, Joost M.; Seco, Joao

    2012-05-01

    We present and validate a computed tomography (CT) metal artifact reduction method that is effective for a wide spectrum of clinical implant materials. Projections through low-Z implants such as titanium were corrected using a novel physics correction algorithm that reduces beam hardening errors. In the case of high-Z implants (dental fillings, gold, platinum), projections through the implant were considered missing and regularized iterative reconstruction was performed. Both algorithms were combined if multiple implant materials were present. For comparison, a conventional projection interpolation method was implemented. In a blinded and randomized evaluation, ten radiation oncologists ranked the quality of patient scans on which the different methods were applied. For scans that included low-Z implants, the proposed method was ranked as the best method in 90% of the reviews. It was ranked superior to the original reconstruction (p = 0.0008), conventional projection interpolation (p implants, and better as compared to the original reconstruction (p combining algorithms tailored to specific types of implant materials.

  17. A GPU Tool for Efficient, Accurate, and Realistic Simulation of Cone Beam CT Projections

    CERN Document Server

    Jia, Xun; Cervino, Laura; Folkerts, Michael; Jiang, Steve B

    2012-01-01

    Simulation of x-ray projection images plays an important role in cone beam CT (CBCT) related research projects. A projection image contains primary signal, scatter signal, and noise. It is computationally demanding to perform accurate and realistic computations for all of these components. In this work, we develop a package on GPU, called gDRR, for the accurate and efficient computations of x-ray projection images in CBCT under clinically realistic conditions. The primary signal is computed by a tri-linear ray-tracing algorithm. A Monte Carlo (MC) simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A denoising process is applied to obtain a smooth scatter signal. The noise component is then obtained by combining the difference between the MC primary and the ray-tracing primary signals, and the difference between the MC simulated scatter and the denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic one by scali...

  18. Filter/moderator system for a BNCT beam of epithermal neutrons at nuclear reactor MARIA

    Science.gov (United States)

    Tyminska, Katarzyna

    2009-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we present a filter/moderator system modeled with MCNP code in order to obtain an epithermal neutron beam for BNCT post at MARIA reactor in Swierk.

  19. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  20. Updated projections of radioactive wastes to be generated by the U. S. nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Kee, C.W.; Croft, A.G.; Blomeke, J.O.

    1976-12-01

    Eleven types of radioactive wastes to be generated within the fuel cycle operations of the U.S. nuclear power industry are defined, and projections are presented of their annual generation rates, shipping requirements, and accumulated characteristics over the remainder of this century. The power reactor complex is assumed to consist of uranium- and plutonium-fueled LWRs, HTGRs, and LMFBRs, and the installed nuclear electric capacity of the U.S. is taken as 68.1, 252, and 510 GW at the ends of calendar years 1980, 1990, and 2000, respectively. 72 tables.

  1. Prevented Mortality and Greenhouse Gas Emissions From Historical and Projected Nuclear Power

    Science.gov (United States)

    Kharecha, Pushker A.; Hansen, James E.

    2013-01-01

    In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420 000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.

  2. Nuclear Chemistry Project. Progress report, Janary 1, 1979-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-21

    The first on-line operation of the Princeton electron spectrometer was achieved and its capability for fast life time measurements demonstrated. The first operation of the heavy ion source was achieved and beams of 75 meV /sup 12/C/sup +4/ ions and 37 MeV /sup 6/Li/sup +2/ ions demonstrated. The capability of the isotope separator to provide pure mass separated samples of radioisotopes is being utilized for three different applications. The very weak electron capture branch of 19-s krypton 81m to bromine 81 was studied. This transition probability is of crucial importance for a possible solar neutrino detection method based on natural bromine. Lead 202 has been prepared and mass separated for optical hyperfine spectroscopic studies. The isotope shift shift which measures the second moment, < r/sup 2/ >, of the nuclear charge indicates the more neutron deficient lead isotopes are becoming increasingly soft toward nuclear deformation.

  3. High intensity X/γ photon beams for nuclear physics and photonics

    Science.gov (United States)

    Serafini, L.; Alesini, D.; Bacci, N.; Bliss, N.; Cassou, K.; Curatolo, C.; Drebot, I.; Dupraz, K.; Giribono, A.; Petrillo, V.; Palumbo, L.; Vaccarezza, C.; Variola, A.; Zomer, F.

    2016-05-01

    In this manuscript we review the challenges of Compton backscattering sources in advancing photon beam performances in the 1 - 20 MeV energy range, underlining the design criteria bringing to maximum spectral luminosity and briefly describing the main achievements in conceiving and developing new devices (multi-bunch RF cavities and Laser recirculators) for the case of ELI-NP Gamma Beam System (ELI-NP-GBS).

  4. XCAN project : coherent beam combining of large number fibers in femtosecond regime (Conference Presentation)

    Science.gov (United States)

    Antier, Marie; Le Dortz, Jeremy; Bourderionnet, Jerome; Larat, Christian; Lallier, Eric; Daniault, Louis; Fsaifes, Ihsan; Heilmann, Anke; Bellanger, Severine; Simon-Boisson, Christophe; Chanteloup, Jean-Christophe; Brignon, Arnaud

    2016-10-01

    The XCAN project, which is a three years project and began in 2015, carried out by Thales and the Ecole Polytechnique aims at developing a laser system based on the coherent combination of laser beams produced through a network of amplifying optical fibers. This technique provides an attractive mean of reaching simultaneously the high peak and high average powers required for various industrial, scientific and defense applications. The architecture has to be compatible with very large number of fibers (1000-10000). The goal of XCAN is to overcome all the key scientific and technological barriers to the design and development of an experimental laser demonstrator. The coherent addition of multiple individual phased beams is aimed to provide tens of Gigawatt peak power at 50 kHz repetition rate. Coherent beam combining (CBC) of fiber amplifiers involves a master oscillator which is split into N fiber channels and then amplified through series of polarization maintaining fiber pre-amplifiers and amplifiers. In the so-called tiled aperture configuration, the N fibers are arranged in an array and collimated in the near field of the laser output. The N beamlets then interfere constructively in the far field, and give a bright central lobe. CBC techniques with active phase locking involve phase mismatch detection, calculation of the correction and phase compensation of each amplifier by means of phase modulators. Interferometric phase measurement has proven to be particularly well suited to phase-lock a very large number of fibers in continuous regime. A small fraction of the N beamlets is imaged onto a camera. The beamlets interfere separately with a reference beam. The phase mismatch of each beam is then calculated from the interferences' position. In this presentation, we demonstrate the phase locking of 19 fibers in femtosecond pulse regime with this technique. In our first experiment, a master oscillator generates pulses of 300 fs (chirped at 200 ps). The beam is

  5. The challenges of new nuclear projects. E.ON Experience; Los desafios de los nuevos proyectos nucleares. Experiencia de E.ON

    Energy Technology Data Exchange (ETDEWEB)

    Spechty, J.; Perez Rodriguez, J. L.

    2012-07-01

    E.ON is one of the largest privately-owned energy companies in the world. Its portfolio of nuclear assets in composed of 21 nuclear power plants on 13 sites located in Germany and Sweden, 9 of which are directly operated by E.ON. At present E.ON develops large-scale construction projects in two of the European countries willing to commit to new nuclear build-Finland and UK - for which its experience as the best nuclear power plant operator in Europe is key. (Author)

  6. Drive Beam Quadrupoles for the CLIC Project: a Novel Method of Fiducialisation and a New Micrometric Adjustment System

    CERN Document Server

    AUTHOR|(SzGeCERN)411678; Duquenne, Mathieu; Sandomierski, Jacek; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    This paper presents a new method of fiducialisation applied to determine the magnetic axis of the Drive Beam quadrupole of the CLIC project with respect to external alignment fiducials, within a micrometric accuracy and precision. It introduces also a new micrometric adjustment system along 5 Degrees of Freedom, developed for the same Drive Beam quadrupole. The combination of both developments opens very interesting perspectives to get a more simple and accurate alignment of the quadrupoles.

  7. Nuclear reactions with radioactive and stable beams (Part I); Reacciones nucleares con haces radiactivos y estables (Parte I)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-12-15

    At the present time there is a great interest at world level in experiments, with accelerated nuclei of short half life. The dispersion, fusion, transfer and break processes in the interaction of weakly light projectiles bounded with targets of Z great its have been object of intense recent investigation, at world level. Our group, in collaboration with the University of Notre Dame, it has measured and analyzed these processes for weakly bound systems as: {sup 6}He + {sup 209}Bi, {sup 8}Li + {sup 208}Pb, {sup 10}Be + {sup 208}Pb. On the other hand a research line that has wakened up great interest, it is that of studies of resonant reactions using the Inverse Kinematics technique with thick targets. The use of this technique allows to measure an entire excitation function with a single bombardment. Our group has carried out, in the ININ, preliminary bombardments for the system {sup 12}C + {sup 4}He. This allowed to establish the feasibility of implementing this technique in our Laboratory. The application of this and other techniques to different systems like {sup 18}O + {sup 4}He, {sup 12}C + {sup 12}C, {sup 12}C + {sup 16}O, {sup 16}O + {sup 16}O, it opens the possibility to measure the fusion of these systems at very low energy and to deepen in the knowledge of the nuclear structure and the nuclear astrophysics. In this technical report, the activities carried out by our group during 2004 are described.(Author)

  8. Project management for the decommissioning and dismantling of nuclear facilities; Projektmanagement fuer Stilllegung und Rueckbau kerntechnischer Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, Joerg; Wilhelm, Oliver [ENBW Kernkraft GmbH, Neckarwestheim (Germany); Seizer, Burkhard; Schuetz, Tobias [Drees und Sommer, Stuttgart (Germany)

    2015-12-15

    The decommissioning of nuclear power plants is executed in a classic project manner as it is known from other construction projects. It is obvious to use the known portfolio of project management tools. The complexity that is created by the large size of the project in combination with safety requirements of the nuclear industry has to be handled. Complexity can only be managed addressing two main drivers: Prioritization and speed (agility) in project execution. Prioritization can be realized by applying tools like Earned Value Management. A high speed of project execution is established by applying Agile Management like SCRUM-methods. This method is adopted in the context of the cooperation ''Complex Projects'' to the needs of nuclear industry.

  9. International Remote Monitoring Project Embalse Nuclear Power Station, Argentina Embalse Remote Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sigfried L.; Glidewell, Donnie D.; Bonino, Anibal; Bosler, Gene; Mercer, David; Maxey, Curt; Vones, Jaromir; Martelle, Guy; Busse, James; Kadner, Steve; White, Mike; Rovere, Luis

    1999-07-21

    The Autoridad Regulatoria Nuclear of Argentina (ARN), the International Atomic Energy Agency (IAEA), ABACC, the US Department of Energy, and the US Support Program POTAS, cooperated in the development of a Remote Monitoring System for nuclear nonproliferation efforts. This system was installed at the Embalse Nuclear Power Station last year to evaluate the feasibility of using radiation sensors in monitoring the transfer of spent fuel from the spent fuel pond to dry storage. The key element in this process is to maintain continuity of knowledge throughout the entire transfer process. This project evaluated the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguard efficiency. New technology has been developed to enhance the design of the system to include storage capability on board sensor platforms. This evaluation has led to design enhancements that will assure that no data loss will occur during loss of RF transmission of the sensors.

  10. Radiological and environmental consequences. Final report of the Nordic Nuclear Safety Research project BOK-2

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E. [Icelandic Radiation Protection Institute (Iceland)

    2002-11-01

    Final report of the Nordic Nuclear Safety Research project BOK-2, Radiological and Environmental Consequences. The project was carried out 1998-2001 with participants from all the Nordic countries. Representatives from the Baltic States were also invited to some of the meetings and seminars. The project consisted of work on terrestrial and marine radioecology and had a broad scope in order to enable participation of research groups with various fields of interest. This report focuses on the project itself and gives a general summary of the studies undertaken. A separate technical report summarises the work done by each research group and gives references to papers published in scientific journals. The topics in BOK-2 included improving assessment of old and recent fallout, use of radionuclides as tracers in Nordic marine areas, improving assessment of internal doses and use of mass spectrometry in radioecology. (au)

  11. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  12. Nuclear energy as a subsurface heavy oil recovery technique (Project Athabasca). [Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Moore, S.D.

    1976-01-01

    Nuclear energy may become an acceptable thermal recovery technique in the subsurface heavy oil deposits of N. Alberta. The subterranean detonation cavern also may facilitate secondary and tertiary in situ recovery methods, steam injection, and fireflood. Less than 5% of Canada's heavy oil reserves, variously estimated at up to 600-billion bbl, are producible by surface mining. Recovery theory is simple--the nuclear detonation releases both thermal and shock energy to convert otherwise immobile viscous heavy oil deposits into conventionally recoverable hydrocarbons. The proposed Project Athabaska, to employ a 10-kt device, requires exhaustive planning to overcome formidable technical, political, and environmental concerns. Technically, precedent shows that project cost is practically indepencent of yield. The crude oil production unit will comprise a central detonation or emplacement well and several peripheral production wells. Each successive recovery technique will benefit from vastly improved permeability resulting from the prior recovery method.

  13. Resource Letter MP-3: The Manhattan Project and Related Nuclear Research

    Science.gov (United States)

    Reed, B. Cameron

    2016-10-01

    This Resource Letter is a supplement to the earlier Resource Letters MP-1 and MP-2, and provides further sources on the Manhattan Project and related research. Books, review papers, journal articles, videos, and websites are cited for the following topics: general works, technical works, biographical and autobiographical works, foreign wartime nuclear programs and related allied intelligence, the use of the bombs against Hiroshima and Nagasaki, technical papers of historical interest, postwar policy and technical developments, and educational materials. Together, these three Resource Letters describe nearly 400 sources of information on the Manhattan Project.

  14. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  15. North Korean nuclear issues and the LWR project; analysis of the key technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Koo; Kwack, E. H.; Shin, J. S.; An, J. S.; Lee, J. U.; Kim, H. T.; Kim, J. S.; Yoon, Y. C

    2000-11-01

    Year 2000 will be remembered as an epoch making period between two Koreas. Korean nuclear industries became activated with the KEDO LWR main contracts entering into force in February, 2000. Respective design, manufacturing and construction activities are mobilized in accordance with the total project schedule of about 100 months. What started out as the nuclear power plant design standardization project in the early '80s, is now being implemented as repeat construction of KSNPs at Yonggwang and Ulchin sites as well as at Kumho site in the DPRK. However, the KEDO construction schedule and the past nuclear inconsistency issues are closely linked due to the nonproliferation concerns. In practice, the IAEA must come to the conclusion that the correctness and completeness must be fulfilled before delivery of the first key component for the KEDO LWR unit 1. While the IAEA verification process tends to focus on the nuclear materials accountancy control, longer term objective between two Koreas is bound to take the form of confidence building. It is necessary to analyse the nuclear research and production facilities in order to make proper evaluation of a nation's nuclear capabilities. Close assessment on development status of graphite moderated reactors and their operation history, spent fuel reprocessing facilities, and HEU production capabilities would be essential. In addition, illicit trafficking possibilities should be addressed. Chapter 1 describes the graphite moderated reactors in general; Chapter 2 describes various reprocessing processes and their detection capabilities; Chapter 3 contains possible uranium enrichment processes with their detection capabilities, and Chapter 4 summarizes the international treaties in illicit trafficking control with the IAEA database.

  16. Fast computation of statistical uncertainty for spatiotemporal distributions estimated directly from dynamic cone beam SPECT projections

    Energy Technology Data Exchange (ETDEWEB)

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2001-04-09

    The estimation of time-activity curves and kinetic model parameters directly from projection data is potentially useful for clinical dynamic single photon emission computed tomography (SPECT) studies, particularly in those clinics that have only single-detector systems and thus are not able to perform rapid tomographic acquisitions. Because the radiopharmaceutical distribution changes while the SPECT gantry rotates, projections at different angles come from different tracer distributions. A dynamic image sequence reconstructed from the inconsistent projections acquired by a slowly rotating gantry can contain artifacts that lead to biases in kinetic parameters estimated from time-activity curves generated by overlaying regions of interest on the images. If cone beam collimators are used and the focal point of the collimators always remains in a particular transaxial plane, additional artifacts can arise in other planes reconstructed using insufficient projection samples [1]. If the projection samples truncate the patient's body, this can result in additional image artifacts. To overcome these sources of bias in conventional image based dynamic data analysis, we and others have been investigating the estimation of time-activity curves and kinetic model parameters directly from dynamic SPECT projection data by modeling the spatial and temporal distribution of the radiopharmaceutical throughout the projected field of view [2-8]. In our previous work we developed a computationally efficient method for fully four-dimensional (4-D) direct estimation of spatiotemporal distributions from dynamic SPECT projection data [5], which extended Formiconi's least squares algorithm for reconstructing temporally static distributions [9]. In addition, we studied the biases that result from modeling various orders temporal continuity and using various time samplings [5]. the present work, we address computational issues associated with evaluating the statistical uncertainty of

  17. Vitrified hillforts as anthropogenic analogues for nuclear waste glasses - project planning and initiation

    Energy Technology Data Exchange (ETDEWEB)

    Sjoblom, Rolf; Weaver, Jamie L.; Peeler, David K.; Mccloy, John S.; Kruger, Albert A.; Ogenhall, E.; Hjarthner-Jolder, E.

    2016-09-27

    Nuclear waste must be deposited in such a manner that it does not cause significant impact on the environment or human health. In some cases, the integrity of the repositories will need to sustain for tens to hundreds of thousands of years. In order to ensure such containment, nuclear waste is frequently converted into a very durable glass. It is fundamentally difficult, however, to assure the validity of such containment based on short-term tests alone. To date, some anthropogenic and natural volcanic glasses have been investigated for this purpose. However, glasses produced by ancient cultures for the purpose of joining rocks in stonewalls have not yet been utilized in spite of the fact that they might offer significant insight into the long-term durability of glasses in natural environments. Therefore, a project is being initiated with the scope of obtaining samples and characterizing their environment, as well as to investigate them using a suite of advanced materials characterization techniques. It will be analysed how the hillfort glasses may have been prepared, and to what extent they have altered under in-situ conditions. The ultimate goals are to obtain a better understanding of the alteration behaviour of nuclear waste glasses and its compositional dependence, and thus to improve and validate models for nuclear waste glass corrosion. The paper deals with project planning and initiation, and also presents some early findings on fusion of amphibolite and on the process for joining the granite stones in the hillfort walls.

  18. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  19. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    Energy Technology Data Exchange (ETDEWEB)

    Meilinger, Manuel [Regensburg Univ. (Germany). CIML Group; Siemens Healthcare, Erlangen (Germany); Schmidgunst, Christian; Schuetz, Oliver [Siemens Healthcare, Erlangen (Germany); Lang, Elmar W. [Regensburg Univ. (Germany). CIML Group

    2011-07-01

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  20. Nuclear design aspect of the Korean high intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Song, Tae-Yung [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1998-11-01

    A plan to construct a high current proton accelerator has been proposed by KAERI. We are presenting the required nuclear design to support the project as well as a brief overview of the proposed proton accelerator. The target and core design is highlighted to show feasibility of incineration of minor actinides from the spent fuel of light water reactors. Radiation shielding and activation analyses are also important for the design and the license of the accelerator. (author)

  1. Dose-projection considerations for emergency conditions at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, G.A.; Ramsdell, J.V.; Poeton, R.W.; Powell, D.C.; Desrosiers, A.E.

    1983-05-01

    The purpose of this report is to review the problems and issues associated with making environmental radiation-dose projections during emergencies at nuclear power plants. The review is divided into three areas: source-term development, characterization of atmospheric dispersion and selection of appropriate dispersion models, and development of dosimetry calculations for determining thyroid dose and whole-body dose for ground-level and elevated releases. A discussion of uncertainties associated with these areas is also provided.

  2. Nuclear halo of a 177\\,MeV proton beam in water

    CERN Document Server

    Gottschalk, Bernard; Daartz, Juliane; Wagner, Miles S

    2014-01-01

    The dose distribution of a pencil beam in a water tank consists of a core, a halo and an aura. The core consists of primary protons which suffer multiple Coulomb scattering (MCS) and slow down by multiple collisions with atomic electrons (Bethe-Bloch theory). The halo consists of charged secondaries, many of them protons, from elastic interactions with H, elastic and inelastic interactions with O, and nonelastic interactions with O. We show that the halo radius is roughly one third of the beam range. The aura consists of neutral secondaries (neutrons and gamma rays) and the charged particles they set in motion. We have measured the core/halo at 177 MeV using a test beam offset in a water tank. The beam monitor was a plane parallel ionization chamber (IC) and the field IC a dose calibrated Exradin T1. Our dose measurements are absolute. We took depth-dose scans at ten displacements from the beam axis ranging from 0 to 10 cm. The dose spans five orders of magnitude, and the transition from halo to aura is obvio...

  3. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Science.gov (United States)

    Hutcheson, A.; Angell, C. T.; Becker, J. A.; Boswell, M.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kiser, M.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Weisel, G. J.; Wilhelmy, J. B.

    2007-08-01

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on 235,238U and 241Am using pulsed and monoenergetic neutron beams with En = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt γ rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  4. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, A. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States)]. E-mail: hutch@tunl.duke.edu; Angell, C.T. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Boswell, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Crowell, A.S. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Dashdorj, D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Fallin, B. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Fotiades, N. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Howell, C.R.; Karwowski, H.J.; Kelley, J.H.; Kiser, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Nelson, R.O. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pedroni, R.S. [NC A and T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Tonchev, A.P.; Tornow, W. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Weisel, G.J. [Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2007-08-15

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on {sup 235,238}U and {sup 241}Am using pulsed and monoenergetic neutron beams with E {sub n} = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt {gamma} rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  5. Arenas for risk governance in nuclear waste management - The European Union ARGONA Project

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Josefin P.; Wetzel, Carina (Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden)); Andersson, Kjell; Lidberg, Maria (Karita Research AB, Box 6048, SE-187 06 Taeby (Sweden))

    2009-12-15

    There is a large knowledge base about governance issues but how to implement the new processes of transparency and participation is not self-evident. In other words there is a common demand for bridging the gap between research and implementation for the governance of nuclear waste management. There are legal, organizational, historical and cultural factors that set conditions which have to be understood for effective implementation. We must also understand how deliberative methods and the transparency approach relate to each other, and to formal decision-making in representative democracy. Therefore, the ARGONA project intends to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. For this purpose, the project includes: Studies of the context within which processes of participation and transparency take place, in order to understand how the processes can be used in the waste management programs. Studies of theory - in order to build participation and transparency on a firm ground; Case studies - to understand how different processes work; Implementation - to make a difference, learn and demonstrate. The project now approaches its finalization and it is foreseen that the reporting, in addition to 25 deliverables to the European Commission, will include a full final report, a summary final report and recommendations with proposed guidelines that can be considered by national actors of nuclear waste programmes as well as the European Commission

  6. Arenas for risk governance in nuclear waste management - The European Union ARGONA Project

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Josefin P.; Wetzel, Carina (Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden)); Andersson, Kjell; Lidberg, Maria (Karita Research AB, Box 6048, SE-187 06 Taeby (Sweden))

    2009-12-15

    There is a large knowledge base about governance issues but how to implement the new processes of transparency and participation is not self-evident. In other words there is a common demand for bridging the gap between research and implementation for the governance of nuclear waste management. There are legal, organizational, historical and cultural factors that set conditions which have to be understood for effective implementation. We must also understand how deliberative methods and the transparency approach relate to each other, and to formal decision-making in representative democracy. Therefore, the ARGONA project intends to demonstrate how participation and transparency link to the political and legal systems and how new approaches can be implemented in nuclear waste management programmes. For this purpose, the project includes: Studies of the context within which processes of participation and transparency take place, in order to understand how the processes can be used in the waste management programs. Studies of theory - in order to build participation and transparency on a firm ground; Case studies - to understand how different processes work; Implementation - to make a difference, learn and demonstrate. The project now approaches its finalization and it is foreseen that the reporting, in addition to 25 deliverables to the European Commission, will include a full final report, a summary final report and recommendations with proposed guidelines that can be considered by national actors of nuclear waste programmes as well as the European Commission

  7. Building a Universal Nuclear Energy Density Functional (UNEDF): SciDAC-2 Project

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joe; Furnstahl, Dick; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-06-30

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1, 2006 - Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; and third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  8. Project X Broader Impacts

    CERN Document Server

    Asner, D M; Henderson, S; Plunkett, R; Wootan, D W; Peterson, M A; Senor, D; Tschirhart, R; Grasselino, A; Romanenko, A; MacDougall, G; Heffner, R H

    2013-01-01

    Part-3 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". The proposed Project X proton accelerator at Fermilab, with multi-MW beam power and highly versatile beam formatting, will be a unique world-class facility to explore particle physics at the intensity frontier. Concurrently, however, it can also facilitate important scientific research beyond traditional particle physics and provide unprecedented opportunities in applications to problems of great national importance in the nuclear energy and security sector.

  9. Enhanced e-beam pattern writing for nano-optics based on character projection

    Science.gov (United States)

    Kley, E.-Bernhard; Schmidt, Holger; Zeitner, Uwe; Banasch, Michael; Schnabel, Bernd

    2012-02-01

    The pattern generation for nano-optics raises high demands on resolution, writing speed and flexibility: nearly arbitrary complex structures with feature sizes below 100 nm should be realized on large areas up to 9 inches in square within reasonable time. With e-beam lithography the requirements on resolution and flexibility can be fulfilled but the writing time becomes the bottle neck. Acceleration by Variable Shaped Beam (VSB) writing principle (geometrical primitives with flexible size can be exposed with a single shot) is sometimes not sufficient. Character Projection (CP) is able to speed up the writing drastically because complex pattern of a limited area can be exposed by one shot [1]. We tested CP in the Vistec SB350 OS for optical applications and found a shot count reduction up to 1/1000, especially for geometries which are hard to approximate by geometrical primitives. Additionally, the resolution and the pattern quality were influenced in a positive way. Another benefit is the possibility to spend a part of the gain in writing speed to the use of a high resolution but low sensitive resist like HSQ. The tradeoff between speed and flexibility should be compensable by a large number of characters available.

  10. ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, A. M. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058, Russia; Kondratenko, M. A. [GOO Zaryad, Russkaya st., 41, Novosibirsk, 630058, Russia; Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei; Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Filatov, Yuri [MIPT, Dolgoprudniy, Moscow Region, Russia

    2016-05-01

    In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, we propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.

  11. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those

  12. NUMEN Project @ LNS : Heavy Ions Double Charge Exchange as a tool towards the 0νββ Nuclear Matrix Element

    Science.gov (United States)

    Agodi, C.; Cappuzzello, F.; Bonanno, D. L.; Bongiovanni, D. G.; Branchina, V.; Calabrese, S.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Foti, A.; Finocchiaro, P.; Greco, V.; Lanzalone, G.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Tudisco, S.

    2016-06-01

    The NUMEN Project, proposed at INFN Laboratori Nazionali del Sud (LNS) in Catania, has the aim to access the nuclear matrix elements, entering the expression of the life time of double beta decay, by relevant cross sections of double charge exchange reactions. The basic point, on which it is based this innovative technique, is the coincidence of the initial and final state wave-functions in the two classes of processes and the similarity of the transition operators. A key aspect of the Project is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  13. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  14. Nuclear physics with simple and multi-element detectors and with stable and radioactive beams

    Indian Academy of Sciences (India)

    Neil Rowley

    2001-07-01

    The phenomenon of fusion barrier distributions is discussed in the context of a problem already investigated in some detail with simple detection systems, but possessing avenues to studies with multi-detector arrays. The complementarity of research with simple and complex detectors, as well as with stable and radioactive beams, will be highlighted.

  15. Development of the RFQ Cooler SHIRaC: beam transport and nuclearization

    CERN Document Server

    Boussaid, Ramzi

    2016-01-01

    The development of the new RFQ Cooler, called SHIRaC, was carried out. As a part of SPIRAL 2 facility, SHIRaC aims to handle and cool typical SPIRAL 2 beams with large emittances (up to 80 pi.mm.mrad) and high currents (up to 1 uA). Its purposes are to enhance as much as possible the beam quality (transverse geometric emittance of less than 3 pi.mm.mrad and longitudinal energy spread close to 1 eV) and to transmit more than 60 % of ions. Numerical simulations and experimental studies have shown that the required beam quality can be reached only in term of the emittance. The energy spread is very far from expected values. It is sensitive to the space charge and the buffer gas diffusion and more importantly to the RF field derivative effect. The latter arises at the RFQ exit and increases with the RF parameters (the frequency and the amplitude of the RF voltage). Studies allowing to enhance the cooled beam quality, mainly the energy spread reduction, are presented and discussed along this paper. They consist in...

  16. Study of Italian Renaissance sculptures using an external beam nuclear microprobe

    Science.gov (United States)

    Zucchiatti, A.; Bouquillon, A.; Moignard, B.; Salomon, J.; Gaborit, J. R.

    2000-03-01

    The use of an extracted proton micro-beam for the PIXE analysis of glazes is discussed in the context of the growing interest in the creation of an analytical database on Italian Renaissance glazed terracotta sculptures. Some results concerning the frieze of an altarpiece of the Louvre museum, featuring white angels and cherubs heads, are presented.

  17. Discussions and projections about the future demand for nuclear power in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de, E-mail: fabio@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Nuclear and Engineering Center; Imakuma, Kengo, E-mail: kimakuma@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Information Technology Development Dept.

    2011-07-01

    This paper aims mainly to discuss the current scenarios of power consumption, nuclear power and conventional and uranium resources and, based on that, present projections about the future demand for power generated through atomic fissions in Brazil, showing that there may be differences in estimates of future projections, depending on the indexes considered: global or domestic. The time horizon for the analysis was studied up to the maximum for the national population, for some of the world and Brazil's governmental data in terms of population growth, energy consumption and energy consumption per capita. To introduce the importance of the methodology adopted, data and some problems presented about the current world energy and Brazilian scenarios are discussed. Calculations show that the power consumption projections for Brazil, when using global indexes, are very high. According to our methodology, power consumption in Brazil is nearly 4.5 times below the estimates presented by the global indexes. The conclusion is that applying global indexes and their extension to domestic scenarios lead to errors of orders of magnitudes, due to the specific particularities of each country, and must be avoided if accurate projections about energy and nuclear scenarios must be considered. (author)

  18. [Development of computer assisted learning program using cone beam projection for head radiography].

    Science.gov (United States)

    Nakazeko, Kazuma; Kajiwara, Hironori; Watanabe, Hiroyuki; Kuwayama, Jun; Karube, Shuhei; Araki, Misao; Hashimoto, Takeyuki; Shinohara, Hiroyuki

    2012-01-01

    We present a computer assisted learning (CAL) program to simulate head radiography. The program provides cone beam projections of a target volume, simulating three-dimensional computed tomography (CT) of a head phantom. The generated image is 512 x 512 x 512 pixels with each pixel 0.6 mm on a side. The imaging geometry, such as X-ray tube orientation and phantom orientation, can be varied. The graphical user interface (GUI) of the CAL program allows the study of the effects of varying the imaging geometry; each simulated projection image is shown quickly in an adjoining window. Simulated images with an assigned geometry were compared with the image obtained using the standard geometry in clinical use. The accuracy of the simulated image was verified through comparison with the image acquired using radiography of the head phantom, subsequently processed with a computed radiography system (CR image). Based on correlation coefficient analysis and visual assessment, it was concluded that the CAL program can satisfactorily simulate the CR image. Therefore, it should be useful for the training of head radiography.

  19. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  20. 77 FR 50541 - STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Application for Amendment to...

    Science.gov (United States)

    2012-08-21

    ... COMMISSION STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Application for Amendment to... of STP Nuclear Operating Company (the licensee) to withdraw its application dated June 2, 2011 (ADAMS... ``Begin Web- based ADAMS Search.'' For problems with ADAMS, please contact the NRC's Public Document...

  1. Project-Based Learning in the Masters degree in Nuclear Engineering at BarcelonaTECH. Experience gained in the area of Management of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Reventos, F.; Vives, E.; Brunet, A.; Sabate, R.; Calvino, F.; Batet, L.

    2014-07-01

    From its first edition, that took place in 2011-2012, the Masters degree in Nuclear Engineering from BarcelonaTECH has been using techniques of Project-Based Learning to fulfill the purpose of training nuclear engineers with a profile suitable for positions in the industry. The Master is sponsored by ENDESA and relies on the collaboration with institutions and companies. The Master is embedded in EMINE, the European Master in Innovation in Nuclear Energy, supported by KIC-InnoEnergy and the European Institute of Technology. (Author)

  2. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    Science.gov (United States)

    Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.

    2017-02-01

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.

  3. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Damoy, S.; Perez Loureiro, D. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Chambert, V.; Dorangeville, F. [IPNO, CNRS/IN2P3, Orsay (France); Druillole, F. [CEA, DSM/Irfu/SEDI, Gif-Sur-Yvette (France); Grinyer, G.F. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Lermitage, A.; Maroni, A.; Noël, G. [IPNO, CNRS/IN2P3, Orsay (France); Porte, C.; Roger, T. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Rosier, P. [IPNO, CNRS/IN2P3, Orsay (France); Suen, L. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France)

    2014-01-21

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm{sup 2} pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics.

  4. An integrated high-performance beam optics-nuclear processes framework with hybrid transfer map-Monte Carlo particle transport and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, L., E-mail: bandura@msu.ed [Argonne National Laboratory, Argonne, IL 60439 (United States); Erdelyi, B. [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Nolen, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-12-01

    An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.

  5. Low Energy Nuclear Reaction Aircraft- 2013 ARMD Seedling Fund Phase I Project

    Science.gov (United States)

    Wells, Douglas P.; McDonald, Robert; Campbell, Robbie; Chase, Adam; Daniel, Jason; Darling, Michael; Green, Clayton; MacGregor, Collin; Sudak, Peter; Sykes, Harrison; hide

    2014-01-01

    This report serves as the final written documentation for the Aeronautic Research Mission Directorate (ARMD) Seedling Fund's Low Energy Nuclear Reaction (LENR) Aircraft Phase I project. The findings presented include propulsion system concepts, synergistic missions, and aircraft concepts. LENR is a form of nuclear energy that potentially has over 4,000 times the energy density of chemical energy sources. It is not expected to have any harmful emissions or radiation which makes it extremely appealing. There is a lot of interest in LENR, but there are no proven theories. This report does not explore the feasibility of LENR. Instead, it assumes that a working system is available. A design space exploration shows that LENR can enable long range and high speed missions. Six propulsion concepts, six missions, and four aircraft concepts are presented. This report also includes discussion of several issues and concerns that were uncovered during the study and potential research areas to infuse LENR aircraft into NASA's aeronautics research.

  6. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  7. Nuclear Structure Observable with Polarized Target and Polarized Real Photon Beam at Mainz Microtron

    Science.gov (United States)

    Paudyal, Dilli

    2016-09-01

    The nucleon polarizabilities are fundamental structure observables, like the nucleon mass or charge. While the electric (αE 1) and magnetic (βM 1) scalar polarizabilities of the nucleon have been measured, little effort has been made to extract the spin dependent polarizabilities. These nucleon polarizabilities, γE1E1 ,γM1M1 ,γM1E2 and γE1M2 describe the spin response of a proton to electric and magnetic dipole and quadrupole interactions. We plan to extract them using polarized photon beam and polarized target at the MAMI tagged photon facility in Mainz, Germany. This requires precise measurement of the double polarization observable ∑2 z which is sensitive to these polarizabilities. The ∑2 z is measured via a circularly polarized photon beam on a longitudinally polarized butanol target in the resonance region (E = 250 - 310 MeV). Together with constraints from αE 1 and βM 1, the forward spin polarizability (γ0) , and QCD based models, should allow us to extract all four spin polarizabilities. This presentation will be focused on the preliminary experimental results for the measurement of ∑2 z at different energies and angles. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

  8. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F

  9. Standardization of Administered Activities in Pediatric Nuclear Medicine: A Report of the First Nuclear Medicine Global Initiative Project, Part 2-Current Standards and the Path Toward Global Standardization.

    Science.gov (United States)

    Fahey, Frederic H; Bom, Henry Hee-Seung; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2016-07-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI are to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. It was decided to divide the final report of this project into 2 parts. Part 1 was published in this journal in the spring of 2015. This article presents part 2 of the final report. It discusses current standards for administered activities in children and adolescents that have been developed by various professional organizations. It also presents an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of 313 nuclear medicine clinics and centers from 29 countries. Lastly, it provides recommendations for a path toward global standardization of the administration of radiopharmaceuticals in children.

  10. Automated patient setup and gating using cone beam computed tomography projections

    Science.gov (United States)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia; Poulsen, Per; Parikh, Parag

    2016-03-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those in the planning CT. This step is time-intensive and user-dependent, and often results in a suboptimal patient setup. We propose a fully automated, robust method based on dynamic programming (DP) for segmenting radiopaque fiducial markers in CBCT projection images, which are then used to automatically optimize the treatment couch position and/or gating window bounds. The mean of the absolute 2D segmentation error of our DP algorithm is 1.3+/- 1.0 mm for 87 markers on 39 patients. Intrafraction images were acquired every 3 s during treatment at two different institutions. For gated patients from Institution A (8 patients, 40 fractions), the DP algorithm increased the delivery accuracy (96+/- 6% versus 91+/- 11% , p  CBCT to the mean position. Our proposed automated patient setup algorithm only takes 1-2 s to run, requires no user intervention, and performs as well as or better than the current clinical setup.

  11. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  12. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  13. Building a Universal Nuclear Energy Density Functional (UNEDF). SciDAC-2 Project

    Energy Technology Data Exchange (ETDEWEB)

    Vary, James P. [Iowa State University, Ames, IA (United States); Carlson, Joe; Furnstahl, Dick; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witek; Ng, Esmond; Thompson, Ian

    2012-09-29

    An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out. The UNEDF SciDAC project has developed several key computational codes and algorithms for reaching the goal of solving the nuclear quantum many-body problem throughout the chart of nuclei. Without such developments, scientific progress would not be possible. In addition the UNEDF SciDAC successfully applied these developments to solve many forefront research problems.

  14. Automated chemical monitoring in new projects of nuclear power plant units

    Science.gov (United States)

    Lobanok, O. I.; Fedoseev, M. V.

    2013-07-01

    The development of automated chemical monitoring systems in nuclear power plant units for the past 30 years is briefly described. The modern level of facilities used to support the operation of automated chemical monitoring systems in Russia and abroad is shown. Hardware solutions suggested by the All-Russia Institute for Nuclear Power Plant Operation (which is the General Designer of automated process control systems for power units used in the AES-2006 and VVER-TOI Projects) are presented, including the structure of additional equipment for monitoring water chemistry (taking the Novovoronezh 2 nuclear power plant as an example). It is shown that the solutions proposed with respect to receiving and processing of input measurement signals and subsequent construction of standard control loops are unified in nature. Simultaneous receipt of information from different sources for ensuring that water chemistry is monitored in sufficient scope and with required promptness is one of the problems that have been solved successfully. It is pointed out that improved quality of automated chemical monitoring can be supported by organizing full engineering follow-up of the automated chemical monitoring system's equipment throughout its entire service life.

  15. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  16. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    Energy Technology Data Exchange (ETDEWEB)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  17. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  18. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared to a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output

  19. Advance: research project on aging electrical wiring in nuclear power plants; Advance: proyecto de investigacion de envejecimiento en cableado electrico en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Cano, J. C.; Ruiz, S.

    2013-07-01

    As Nuclear Power Plants get older it is more important to know the real condition of low voltage, instrumentation, power and control cables. Additionally, as new plants are being built, the election of cables and the use of in-situ monitoring techniques to get reliable aging indicators, can be very useful during the plant life. The goal of this Project is to adapt, optimize and asses Condition Monitoring techniques for Nuclear Power Plants cables. These techniques, together with the appropriate acceptance criteria, would allow specialists to know the state of the cable over its entire length and estimate its residual life. In the Project, accelerated ageing is used in cables installed in European NPPs in order to evaluate different techniques to detect local and global ageing. Results are compared with accepted tests to validate its use for the estimation of cables residual life. This paper describes the main stages of the Project and some results. (Author)

  20. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M; Yuan, Y; Rosenzweig, K; Lo, Y [The Mount Sinai Medical Center, New York, NY (United States); Brousmiche, S [Ion Beam Application, Louvain-la-neuve (Belgium)

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.

  1. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  2. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Science.gov (United States)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  3. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K. [Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047 (Japan)

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  4. The SPARC project: a high-brightness electron beam source at LNF to drive a SASE-FEL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bertolucci, S.; Biagini, M.E.; Biscari, C.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; Esposito, A.; Ferrario, M. E-mail: massimo.ferrario@lnf.infn.it; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Laurelli, P.; Ligi, C.; Marcellini, F.; Migliorati, M.; Milardi, C.; Palumbo, L.; Pellegrino, L.; Preger, M.; Raimondi, P.; Ricci, R.; Sanelli, C.; Sgamma, F.; Spataro, B.; Serio, M.; Stecchi, A.; Stella, A.; Tazzioli, F.; Vaccarezza, C.; Vescovi, M.; Vicario, C.; Zobov, M.; Acerbi, E.; Alessandria, F.; Barni, D.; Bellomo, G.; Boscolo, I.; Broggi, F.; Cialdi, S.; DeMartinis, C.; Giove, D.; Maroli, C.; Petrillo, V.; Rome' , M.; Serafini, L.; Chiadroni, E.; Felici, G.; Levi, D.; Mastrucci, M.; Mattioli, M.; Medici, G.; Petrarca, G.S.; Catani, L.; Cianchi, A.; D' Angelo, A.; Di Salvo, R.; Fantini, A.; Moricciani, D.; Schaerf, C.; Bartolini, R.; Ciocci, F.; Dattoli, G.; Doria, A.; Flora, F.; Gallerano, G.P.; Giannessi, L.; Giovenale, E.; Messina, G.; Mezi, L.; Ottaviani, P.L.; Picardi, L.; Quattromini, M.; Renieri, A.; Ronsivalle, C.; Avaldi, L.; Carbone, C.; Cricenti, A.; Pifferi, A.; Perfetti, P.; Prosperi, T.; Albertini, V. Rossi; Quaresima, C.; Zema, N

    2003-07-11

    The Project Sorgente Pulsata e Amplificata di Radiazione Coerente (SPARC), proposed by a collaboration among ENEA-INFN-CNR-Universita' di Tor Vergata-INFM-ST, was recently approved by the Italian Government and will be built at LNF. The aim of the project is to promote an R and D activity oriented to the development of a coherent ultra-brilliant X-ray source in Italy. This collaboration has identified a program founded on two main issues: the generation of ultra-high peak brightness electron beams and of resonant higher harmonics in the SASE-FEL process, as presented in this paper.

  5. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-09-20

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project.

  6. Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, N. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy)], E-mail: nicolas.barriere@iasf-roma.inaf.it; Ballmoos, P. von [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Abrosimov, N.V. [IKZ, Max Born-Str. 2, D-12489 Berlin (Germany); Bastie, P. [LSP UMR 5588, 140 Av. de la physique, 38402 Saint Martin d' Heres (France); Camus, T. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Courtois, P.; Jentschel, M. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Knoedlseder, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Natalucci, L. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy); Roudil, G.; Rousselle, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Wunderer, C.B. [SSL, University of California at Berkeley, CA 94708 (United States); Kurlov, V.N. [Institute of Solid State Physics of Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)

    2009-10-21

    Nuclear astrophysics presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. But in order to take full advantage of this potential, telescopes should be at least an order of magnitude more sensitive than present technologies. Today, Laue lenses have demonstrated their capability of focusing gamma-rays in the 100 keV-1 MeV domain, enabling the possibility of building a new generation of instruments for which sensitive area is decoupled from collecting area. Thus we have now the opportunity of dramatically increase the signal/background ratio and hence improve significantly the sensitivity. With a lens, the best detector is no longer the largest possible within a mission envelope. The point spread function of a Laue lens measures a few centimeters in diameter, but the field of view is limited by the detector size. Requirements for a focal plane instrument are presented in the context of the Gamma-Ray Imager mission (proposed to European Space Agency, ESA in the framework of the first Cosmic Vision AO): a 15-20 cm a side finely pixellated detector capable of Compton events reconstruction seems to be optimal, giving polarization and background rejection capabilities and 30 arcsec of angular resolution within a field of view of 5 arc min.

  7. Lanthanides in Nuclear Medicine. The Production of Terbium-149 by Heavy Ion Beams

    CERN Document Server

    Dmitriev, S N; Zaitseva, N G; Maslov, O D; Molokanova, L G; Starodub, G Ya; Shishkin, S V; Shishkina, T V

    2001-01-01

    Among radioactive isotopes of lanthanide series elements, finding the increasing using in nuclear medicine, alpha-emitter {149}Tb (T_{1/2} = 4.118 h; EC 76.2 %; beta^+ 7.1 %; alpha 16.7 %) is considered as a perspective radionuclide for radioimmunotherapy. The aim of the present work is to study experimental conditions of the {149}Tb production in reactions Nd({12}C, xn){149}Dy (4.23 min; beta^+, EC)\\to {149}Tb when the Nd targets have been irradiated by heavy ions of carbon. On the basis of results of formation and decay of {149}Dy\\to{149}Tb evaluation of the {149}Tb activity, is made which can be received under optimum conditions (enriched {142}Nd target, {12}C ions with the energy 120 MeV and up to current 100 mu A, time of irradiating 8-10 hours). Under these conditions {149}Tb can be obtained up to 30 GBq (up to 0.8 Ci).

  8. Physics studies with brilliant narrow-width -beams at the new ELI-NP Facility

    Indian Academy of Sciences (India)

    Dimiter L Balabanski; ELI-NP Science Team

    2014-11-01

    The Extreme Light Infrastructure Nuclear Physics (ELI-NP) Facility in Magurele is a European research centre for ultrahigh intensity lasers, laser–matter interaction, nuclear science and material science using laser-driven radiation beams. It is the first project within the European Strategic Forum for Research Infrastructure (ESFRI) agenda financed by the European Regional Development Fund. The nuclear physics research programme of the facility is focussed on studies with brilliant narrow-width -beams and experiments in extreme laser fields.

  9. Effect of low dose electron beam irradiation on the alteration layer formed during nuclear glass leaching

    Science.gov (United States)

    Mougnaud, S.; Tribet, M.; Renault, J.-P.; Jollivet, P.; Panczer, G.; Charpentier, T.; Jégou, C.

    2016-12-01

    This investigation concerns borosilicate glass leaching mechanisms and the evolution of alteration layer under electron beam irradiation. A simple glass doped with rare earth elements was selected in order to access mechanistic and structural information and better evaluate the effects of irradiation. It was fully leached in initially pure water at 90 °C and at high glass surface area to solution volume ratio (S/V = 20 000 m-1) in static conditions. Under these conditions, the system quickly reaches the residual alteration rate regime. A small particle size fraction (2-5 μm) was sampled in order to obtain a fairly homogeneous altered material enabling the use of bulk characterization methods. External irradiations with 10 MeV electrons up to a dose of 10 MGy were performed either before or after leaching, to investigate respectively the effect of initial glass irradiation on its alteration behavior and the irradiation stability of the alteration layer. Glass dissolution rate was analyzed by regular leachate samplings and the alteration layer structure was characterized by Raman, luminescence (continuous or time-resolved), and 29Si MAS NMR and EPR spectroscopy. It was shown that the small initial glass evolutions under irradiation did not induce any modification of the leaching kinetic nor of the structure of the alteration layer. The alteration process seemed to "smooth over" the created defects. Otherwise, the alteration layer and initial glass appeared to have different behaviors under irradiation. No Eu3+ reduction was detected in the alteration layer after irradiation and the defect creation efficiency was much lower than for initial glass. This can possibly be explained by the protective role of pore water contained in the altered material (∼20%). Moreover, a slight depolymerization of the silicon network of the altered glass under irradiation with electrons was evidenced, whereas in the initial glass it typically repolymerizes.

  10. Nuclear knowledge management initiatives of the Regional Cooperative Agreement undertaken by the Electronic Networking and Outreach project

    Energy Technology Data Exchange (ETDEWEB)

    Alawiah Musa [Information and Technology Centre, Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Kajang 43000 (Malaysia)]. E-mail: alawiah@mint.gov.my; Ainul Hayati Daud; Mohamad Safuan Sulaiman [Information and Technology Centre, Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Kajang 43000 (Malaysia)

    2005-07-01

    The Regional Cooperative Agreement (RCA) in the Asia Pacific region is one of the cooperative agreements under the aegis of the International Atomic Energy Agency and currently consists of 17 member states. Since the region covered by the RCA is undergoing a rapid expansion in nuclear power development, many activities have been carried out under the RCA. The Electronic Networking and Outreach (ENO) Project under the RCA was used as a vehicle for the RCA programme for the dissemination of valuable information to end-users. This paper will describe the initiatives undertaken by the ENO project to initially establish an information and knowledge-sharing environment as an initiative towards a nuclear knowledge management system within the RCA community. It will also discuss the challenges and issues peculiar to the region that have been encountered during the project cycle. Then it will try to offer a conceptual framework of a nuclear knowledge management system for the RCA region. (author)

  11. The Challenge of Interfacing the Primary Beam Lines for the AWAKE Project at CERN

    CERN Document Server

    Bracco, C; Gschwendtner, E; Meddahi, M; Petrenko, A; Velotti, FM

    2014-01-01

    The Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) at CERN foresees the simultaneous operation of a proton, a laser and an electron beam. The first stage of the experiment will consist in proving the self-modulation, in the plasma, of a long proton bunch into micro-bunches. The success of this experiment requires an almost perfect concentricity of the proton and laser beam, over the full length of the plasma cell. The complexity of integrating the laser into the proton beam line and fulfilling the strict requirements in terms of pointing precision of the proton beam at the plasma cell are described. The second stage of the experiment foresees also the injection of electron bunches to probe the accelerating wakefields driven by the proton beam. Studies were performed to evaluate the possibility of injecting the electron beam parallel and with an offset to the beam axis. This option would imply that protons and electrons will have to share the last few meters of a common beam line. Issues and po...

  12. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

  13. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  14. Spent Nuclear Fuel Project (SNFP) gas generation from N-Fuel in multi-canister overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, T.D.

    1996-08-01

    During the conversion from wet pool storage for spent nuclear fuel at Hanford, gases will be generated from both radiolysis and chemical reactions. The gas generation phenomenon needs to be understood as it applies to safety and design issues,specifically over pressurization of sealed storage containers,and detonation/deflagration of flammable gases. This study provides an initial basis to predict the implications of gas generation on the proposed functional processes for spent nuclear fuel conversion from wet to dry storage. These projections are based upon examination of the history of fuel manufacture at Hanford, irradiation in the reactors, corrosion during wet pool storage, available fuel characterization data and available information from literature. Gas generation via radiolysis and metal corrosion are addressed. The study examines gas generation, the boundary conditions for low medium and high levels of sludge in SNF storage/processing containers. The functional areas examined include: flooded and drained Multi-Canister Overpacks, cold vacuum drying, shipping and staging and long term storage.

  15. Sampling and analysis plan for the preoperational environmental survey of the spent nuclear fuel project facilities

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, R.M.

    1999-04-01

    This sampling and analysis plan will support the preoperational environmental monitoring for construction, development, and operation of the Spent Nuclear Fuel (SNF) Project facilities, which have been designed for the conditioning and storage of spent nuclear fuels; particularly the fuel elements associated with the operation of N-Reactor. The SNF consists principally of irradiated metallic uranium, and therefore includes plutonium and mixed fission products. The primary effort will consist of removing the SNF from the storage basins in K East and K West Areas, placing in multicanister overpacks, vacuum drying, conditioning, and subsequent dry vault storage in the 200 East Area. The primary purpose and need for this action is to reduce the risks to public health and safety and to the environment. Specifically these include prevention of the release of radioactive materials into the air or to the soil surrounding the K Basins, prevention of the potential migration of radionuclides through the soil column to the nearby Columbia River, reduction of occupational radiation exposure, and elimination of the risks to the public and to workers from the deterioration of SNF in the K Basins.

  16. The spanish nuclear sector. History, economic impact and projection; El sector nuclear espanol. Historia, impacto economico y proyeccion

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.

    2008-07-01

    Nuclear power has meant an important asset for the spanish economy both from an energy point of view and from an industrial and technological one. In the first case nuclear energy, which had gotten to be close to 40 percent of electricity in the 90's, supplies electricity at a very competitive cost and utilities benefit from its cash flow to finance and expand in alternative energy sources. It also helps to limit the rising costs for costumers. As for the industry it supported the modernisation of the spanish industrial capacities in the 80's and has been an added value activity since then with an important international activity. As a new thrust for nuclear energy is in the making, spanish nuclear energy capacities should help the spanish position under the european union Lisbon strategy. (Author)

  17. Electromagnetic Modeling of a Fast Traveling-Wave Beam Chopper for the SNS Project.

    Science.gov (United States)

    Kurennoy, Sergey

    1998-04-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast --- with the rise time from 2% to 98% less than 2.5 ns --- beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures, based on meander lines, is discussed. Three-dimensional time-domain computer simulations are used to study transient effects in the chopper and to optimize its design.

  18. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    Energy Technology Data Exchange (ETDEWEB)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle

    2012-01-31

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic

  19. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    Akira Ozawa

    2001-08-01

    Recent experimental programs at RIKEN concerning RI beams are reviewed. RIKEN has the ring cyclotron (RRC) with high intense heavy-ion beams and large acceptance fragment separator, RIPS. The complex can provide high intense RI-beams. By using the high intense RI-beams, a variety of experiments have been done. Recently, nuclear structure for unstable nuclei has been paid much attention. In special, disappearance and appearance of magic numbers are discussed experimentally and theoretically. Thus, in this review, related experiments concerning disappearance and appearance of magic numbers are described. Finally, future project in RIKEN, RI-beam factory, is introduced briefly.

  20. From RISING to the DESPEC fast-timing project within NUSTAR at FAIR: Sub-nanosecond nuclear timing spectroscopy with LaBr{sub 3} scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Regan, P.H., E-mail: p.regan@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2012-07-15

    This paper summarises a presentation given at the IRRMA8 conference in June 2011 which reviewed briefly the topic of current research studies in the evolution of nuclear structure with changing proton and neutron numbers. A short review of relevant contemporary spectroscopic studies of the structure of nuclei with highly exotic N/Z ratios using projectile fragmentation and fission reactions is given, together with an overview of some of the physics research aims to be attacked using the proposed Decay Spectroscopy (DESPEC) LaBr{sub 3} Fast-Timing gamma-ray array for the NUSTAR project at the upcoming Facility for Anti-Proton and Ion Research (FAIR). Examples of recent results using both 'isomer' and {beta}{sup -}-delayed gamma-ray decay measurements with the Stopped RISING hyper-pure germanium array at GSI are summarised and used to highlight some of the fundamental physics studies which are expected to become available in this area of research in the coming decade. Examples of the performance of cerium-doped LaBr{sub 3} detectors from 'in-beam' test experiments are presented together with initial plans for the geometry of the planned multi-detector LaBr{sub 3}(Ce) array for DESPEC. - Highlights: Black-Right-Pointing-Pointer The paper presents an overview of nuclear excitation systematics in even-even nuclei. Black-Right-Pointing-Pointer The paper gives a description of the Stopped RISING gamma-ray spectrometer. Black-Right-Pointing-Pointer This paper gives some of the recent scientific results in nuclear spectroscopy of exotic nuclei. Black-Right-Pointing-Pointer The paper shows the use of halide scintillation detectors for gamma-ray decay studies of nuclei. Black-Right-Pointing-Pointer This paper shows the use of LaBr{sub 3} detectors to nuclear excited state lifetimes in the ns regime.

  1. Materials, instrumentation and techniques for the detection of Special Nuclear Material and Radioactive Sources: EU project MODES SNM

    OpenAIRE

    2015-01-01

    MODES SNM project is part of the European Union effort to promote research and innovation in strategic topics; it includes seven participants from five different countries. The project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). The project’s main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioacti...

  2. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II.

  3. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a high-speed, low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming...

  4. History of stochastic beam cooling and its application in many different projects

    CERN Document Server

    Caspers, F

    2012-01-01

    This paper gives an overview of the evolution of stochastic beam cooling from the very beginning (in 1968) until the present-day (2011). The early history, the main achievements and the growing number of the worldwide applications are outlined.

  5. Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kolata, J.J., E-mail: jkolata@nd.edu [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Howard, A.M. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Mittig, W. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Ahn, T. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Becchetti, F.D. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States); Beceiro-Novo, S.; Chajecki, Z. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Febbrarro, M. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Fritsch, A.; Lynch, W.G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Roberts, A. [Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Shore, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Torres-Isea, R.O. [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-11

    The total fusion excitation function for {sup 10}Be+{sup 40}Ar has been measured over the center-of-momentum (c.m.) energy range from 12 to 24 MeV using a time-projection chamber (TPC). The main purpose of this experiment, which was carried out in a single run of duration 90 h using a ≈100 particle per second (pps) {sup 10}Be beam, was to demonstrate the capability of an active-target TPC to determine fusion excitation functions for extremely weak radioactive ion beams. Cross sections as low as 12 mb were measured with acceptable (50%) statistical accuracy. It also proved to be possible to separate events in which charged particles were emitted from the fusion residue from those in which only neutrons were evaporated. The method permits simultaneous measurement of incomplete fusion, break-up, scattering, and transfer reactions, and therefore fully exploits the opportunities presented by the very exotic beams that will be available from the new generation of radioactive beam facilities.

  6. The SUCIMA project: A status report on high granularity dosimetry and proton beam monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Caccia, M. [Dipartimento di Scienze CC.FF.MM., Universita dell' Insubria, Como (Italy)]. E-mail: Massimo.Caccia@uninsubria.it; Badano, L. [Fondazione per Adroterapia Oncologica, Novara (Italy); Berst, D. [Laboratoire d' Electronique et de Physique des Systemes Instrumentaux, Universite Luis Pasteur, Strasbourg (France); Centre National de la Recherce Scientifique/IN2P3 - Paris (France)] (and others)

    2006-05-01

    The SUCIMA collaboration has been developing instruments and methods for real-time, high granularity imaging of extended electron sources. In particular, dosimetry of intravascular brachytherapy {beta} sources has been intensively studied, together with monitoring of hadrontherapy beams by imaging of secondary electrons emitted by a non-disruptive target. The paper reports the latest results on absolute dosimetry with a large-area silicon strip detectors and on beam monitoring with a hybrid pad sensor.

  7. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  8. Technology status in support of refined technical baseline for the Spent Nuclear Fuel project. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Puigh, R.J.; Toffer, H.; Heard, F.J.; Irvin, J.J.; Cooper, T.D.

    1995-10-20

    The Spent Nuclear Fuel Project (SNFP) has undertaken technology acquisition activities focused on supporting the technical basis for the removal of the N Reactor fuel from the K Basins to an interim storage facility. The purpose of these technology acquisition activities has been to identify technology issues impacting design or safety approval, to establish the strategy for obtaining the necessary information through either existing project activities, or the assignment of new work. A set of specific path options has been identified for each major action proposed for placing the N Reactor fuel into a ``stabilized`` form for interim storage as part of this refined technical basis. This report summarizes the status of technology information acquisition as it relates to key decisions impacting the selection of specific path options. The following specific categories were chosen to characterize and partition the technology information status: hydride issues and ignition, corrosion, hydrogen generation, drying and conditioning, thermal performance, criticality and materials accountability, canister/fuel particulate behavior, and MCO integrity. This report represents a preliminary assessment of the technology information supporting the SNFP. As our understanding of the N Reactor fuel performance develops the technology information supporting the SNFP will be updated and documented in later revisions to this report. Revision 1 represents the incorporation of peer review comments into the original document. The substantive evolution in our understanding of the technical status for the SNFP (except section 3) since July 1995 have not been incorporated into this revision.

  9. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant.

  10. Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN

    CERN Document Server

    Colonna, N; Praena, J; Lederer, C; Karadimos, D; Sarmento, R; Domingo-Pardo, C; Plag, R; Massimi, C; Calviani, M; Guerrero, C; Paradela, C; Belloni, F

    2010-01-01

    To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n\\_TOF at CERN is discussed.

  11. The INSIDE project: on-line monitoring and simulation validation with the in-beam PET scanner

    Science.gov (United States)

    Ferrero, V.; INSIDE Collaboration

    2017-05-01

    The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan accuracy. Monitoring using Position Emission Tomography (PET) systems is the only in-vivo non invasive technique employed clinically and has been carried out in particle therapy since 1997. However, the PET monitoring of β + emitter isotopes is typically done after the treatment, resulting in a large fraction of lost data because of the isotopes rapid physical decay. The INSIDE collaboration has recently installed an in-beam PET scanner at the Italian National Center of Oncologic Hadrontherapy in Pavia, Italy. Here, there is an ongoing project in order to start testing the method on patients. This work focuses on the online performances of the scanner with clinical beams.

  12. Independent Verification and Validation Of SAPHIRE 8 Risk Management Project Number: N6423 U.S. Nuclear Regulatory Commission

    Energy Technology Data Exchange (ETDEWEB)

    Kent Norris

    2009-11-01

    This report provides an evaluation of the risk management. Risk management is intended to ensure a methodology for conducting risk management planning, identification, analysis, responses, and monitoring and control activities associated with the SAPHIRE project work, and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  13. Model for deployment of a Quality Assurance System in the nuclear fuel cycle facilities using Project Management techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Ricardo F.; Ribeiro, Saulo F.Q., E-mail: rflage@gmail.com, E-mail: quintao.saulo@gmail.com [Industrias Nucleares do Brasil (INB), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The Nuclear Safety is the main goal in any nuclear facility. In this sense the Norm CNEN-NN-1.16 classifies the quality assurance issue as a management system to be deployed and implemented by the organization to achieving security goals. Quality Assurance is a set of systematic and planned actions necessary to provide adequate confidence ensuring that a structure, system, component or installation will work satisfactorily in s. Hence, the Quality Assurance System (QAS) is a complete and comprehensive methodology, going far beyond a management plan quality from the perspective of project management. The fundamental of QAS requirements is all activities that influence the quality, involving organizational, human resources, procurement, nuclear safety, projects, procedures and communication. Coordination of all these elements requires a great effort by the team responsible because it usually involves different areas and different levels of hierarchy within the organization. The objectives and desired benefits should be well set for everyone to understand what it means to be achieved and how to achieve. The support of senior management is critical at this stage, providing guidelines and resources necessary to get the job elapse clearly and efficiently, on time, cost and certain scope. The methodology of project management processes can be applied to facilitate and expedite the implementation of this system. Many of the principles of the QAS are correlated with knowledge areas of project management. The proposed model for implementation of a QAS in the nuclear fuel cycle facilities considered the best project management practices according to the Project Management Book of Knowledge (PMBOK - 5th edition) of the Project Management Institute (PMI). This knowledge is considered very good practices around the world. Since the model was defined, the deployment process becomes more practical and efficient, providing reduction in deployment time, better management of human

  14. Simulation tools: development and application of nuclear projects; Herramientas de simulacion: desarrollo y aplicacion a proyectos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Huelamo, E.; Perez Vara, R.; Arguello, A.; Garcia, M.

    2012-11-01

    In this paper we present some simulation models of system and equipment from nuclear power plants, builded-up with EcosimPro, a simulation tool created by Empresarios Agrupados. It was developed as a general simulation engine, as a tool devoted to the resolution of DAE's (ordinary differential and algebraic equations sets), doing abstraction of what physical system they represent. Component libraries must be added to the calculation engine, as needed by the discipline object of simulation, in order to be able of building up models. From first ECOSIM version there were already builded models applied to thermal and nuclear power plants. (Author)

  15. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-01-15

    Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations were performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for reconstructing

  16. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  17. Roman Pot Insertions in High-Intensity Beams for the CT-PPS Project at LHC

    CERN Document Server

    Deile, Mario; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Salvant, Benoit; Valentino, Gianluca

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) at the LHC IP5 aims at exploring diffractive physics at high luminosity in standard LHC fills. It is based on 14 Roman Pots (RPs), designed to host tracking and time-of-flight detectors for measuring the kinematics of leading protons. To reach the physics goals, the RPs will finally have to approach the beams to distances of 15 beam σs (i.e. ~1.5 mm) or closer. After problems with showers and impedance heating in first high-luminosity RP insertions in 2012, the LS1 of LHC was used for upgrades in view of impedance minimisation and for adding new collimators to intercept RP-induced showers. In 2015 the effectiveness of these improvements was shown by successfully inserting the RPs in all LHC beam intensity steps to a first-phase distance of ~25 σs. This contribution reviews the measurements of debris showers and impedance effects, i.e. the data from Beam Loss Monitors, beam vacuum gauges and temperature sensors. The dependences of the observables on the lu...

  18. A study on the implementation of joint research projects in the field of nuclear technology between Korea and China

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Joon Keuk; Suh, In Suk; Lee, Eui Jin; Kim, Kyoung Pyo; Lee, Jeong Kong; Lee, Byung Wook; Yang, Maeng Ho; Lee, Tae Jun; Chung, Whan Sam; Lee, Man Ki; Lee, Hyo Se; Jun, Byung Jin; Park, Byung Bae; Hong, Young Don; Lee, Chang Woo; Chung, Moon Ki; Sim, Suk Ku; Hwang, Dae Hyun; Oh, Won Zin

    1999-11-01

    In an effort to achieve the objectives, the following provisions were made. First of all, the current status of energy industry was carefully reviewed. An increase of energy consumption, both in industrial and home purposes, implored introduction of nuclear power as an alternative energy production source. Secondly, the current status of China's nuclear development programs together with future prospects was reviewed. Through this review, more effective implementation of nuclear cooperative programs could be devised. Thirdly, China's newly developed nuclear infrastructure was analyzed. The re-structuring of the CNNC was reviewed. Based on this analysis, future cooperative programs could be identified. Lastly, proper strategies for future cooperation between the two countries on a complementary basis were studied. Recommendations for better cooperation programs, particularly for the nuclear policy-making process, were presented. For fruitful cooperation, it is naturally needed match funds to support the implementation of joint projects. It is basically China's idea that Korea provides the funds and China provides manpower. China has a great potential market. The Korean Governments support for key funds for cooperative programs will thus have a sincere meaning. For fruitful cooperation, it is naturally needed match funds to support the implementation of joint projects. It is basically China's idea that Korea provides the funds and China provides manpower. China has a great potential market. The Korean Governments support for key funds for cooperative programs will thus have a sincere meaning. The findings of this study could serve as the database for future nuclear cooperation between the two countries. It is hoped that all local nuclear related organizations in Korea could use some valuable references derived from the study. Information generated from the study could also be used as a benchmark for continued cooperation with China. Various

  19. Integrated Project Risk Management of Nuclear Power Projects%核电工程项目中的风险管理

    Institute of Scientific and Technical Information of China (English)

    高金翎

    2013-01-01

    随着社会的发展,我国的经济、政治等都取得了突破性的进步,其中核电工程作为我国一项重要的事业,涉及土建、机械等众多领域,从范畴上也增添了很多新的元素,为此核电工程项目的风险管理也遇到了一定的问题。本文从项目风险识别、估计、评价、规划和控制五大角度对国内现有的核电工程项目的风险管理理论和研究方法进行了概括和总结,以期为核电工程项目的决策和发展提供一定的依据和基础。%With the development of the society, the economy and politics are making more and more progress. As a new area in the science, nuclear power projects are playing a more and more im-portant role and also add many new elements from the category. At the same time, integrated project risk management of nuclear power projects are also faced with a number of problems. In this paper, the author explains the way that risk management is ap-plied to the nuclear power projects. Summaries of the theories and methods about risk identification, estimation, evaluation, planning and control of domestic existing are also made in the paper in order to provide certain basis and foundation for the de-velopment of nuclear power projects.

  20. Development of a fast traveling-wave beam chopper for the SNS project

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.; Power, J.F.

    1998-12-31

    High current and stringent restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns--beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures based on meander lines is discussed. Three-dimensional time-domain computer simulations with MAFIA are used to study transient effects in the chopper and to optimize current structure design. Two options for the fast pulsed voltage generator--based on FETs and vacuum tubes--are considered, and their advantages and shortcomings for the SNS chopper are discussed.

  1. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  2. A beam test of prototype time projection chamber using micro-pattern gas detectors at KEK

    Indian Academy of Sciences (India)

    Makoto Kobayashi; on behalf of part of the ILC{TPC Collaboration

    2007-12-01

    We conducted a series of beam tests of prototype TPCs for the international linear collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype operated successfully in a test beam at KEK under an axial magnetic field of up to 1 T. The analysis of data is now in progress and some of the preliminary results obtained with GEMs and MicroMEGAS are presented along with our interpretation. Also given is the extrapolation of the obtained spatial resolution to that of a large TPC expected as the central tracker of the ILC experiment.

  3. Design and performance of the beam transfer lines for the HIE-ISOLDE Project

    CERN Document Server

    Parfenova, A; Bauche, J; Cantero, E D; Farantatos, P; Fraser, M A; Goddard, B; Kadi, Y; Kolehmainen, A J; Lanaia, D; Martino, M; Mompo, R; Siesling, E; Sosa, A G; Timmins, M; Vandoni, G; Voulot, D; Zografos, E

    2013-01-01

    Beam design and beam optics studies for the HIE-ISOLDE transfer lines [1] have been carried out in MadX [2], and benchmarked against Trace3D results [3, 4]. Magnet field errors and alignment imperfections leading to deviations from design parameters have been treated explicitly, and the sensitivity of the machine lattice to different individual error sources was studied. As a result, the tolerances for the various error-contributions have been specified for the different equipment systems. The design choices for the expected magnet field and power supply quality, alignment tolerances, instrument resolution and physical aperture were validated. The methodology and results of the studies are presented.

  4. A Coordinated Research Project on the Implementation of Nuclear Techniques to Improve Food Traceability

    Science.gov (United States)

    Frew, Russell; Cannavan, Andrew; Zandric, Zora; Maestroni, Britt; Abrahim, Aiman

    2013-04-01

    Traceability systems play a key role in assuring a safe and reliable food supply. Analytical techniques harnessing the spatial patterns in distribution of stable isotope and trace element ratios can be used for the determination of the provenance of food. Such techniques offer the potential to enhance global trade by providing an independent means of verifying "paper" traceability systems and can also help to prove authenticity, to combat fraudulent practices, and to control adulteration, which are important issues for economic, religious or cultural reasons. To address some of the challenges that developing countries face in attempting to implement effective food traceability systems, the IAEA, through its Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture, has initiated a 5-year coordinated research project involving institutes in 15 developing and developed countries (Austria, Botswana, Chile, China, France, India, Lebanon, Morocco, Portugal, Singapore, Sweden, Thailand, Uganda, UK, USA). The objective is to help in member state laboratories to establish robust analytical techniques and databases, validated to international standards, to determine the provenance of food. Nuclear techniques such as stable isotope and multi-element analysis, along with complementary methods, will be applied for the verification of food traceability systems and claims related to food origin, production, and authenticity. This integrated and multidisciplinary approach to strengthening capacity in food traceability will contribute to the effective implementation of holistic systems for food safety and control. The project focuses mainly on the development of techniques to confirm product authenticity, with several research partners also considering food safety issues. Research topics encompass determination of the geographical origin of a variety of commodities, including seed oils, rice, wine, olive oil, wheat, orange juice, fish, groundnuts, tea, pork, honey and

  5. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  6. Spent nuclear fuel project multi-year work plan WBS {number_sign}1.4.1

    Energy Technology Data Exchange (ETDEWEB)

    Wells, J.L.

    1997-03-01

    The Spent Nuclear Fuel (SNF) Project Multi-Year Work Plan (MYWP) is a controlled living document that contains the current SNF Project Technical, Schedule and Cost Baselines. These baselines reflect the current Project execution strategies and are controlled via the change control process. Other changes to the MYWP document will be controlled using the document control process. These changes will be processed as they are approved to keep the MYWP a living document. The MYWP will be maintained continuously as the project baseline through the life of the project and not revised annually. The MYWP is the one document which summarizes and links these three baselines in one place. Supporting documentation for each baseline referred to herein may be impacted by changes to the MYWP, and must also be revised through change control to maintain consistency.

  7. Design of a medium-energy beam-transport line with an anti-chopper for the JAERI/KEK project

    CERN Document Server

    Wang Sheng; Kato, T

    2002-01-01

    The medium-energy beam-transport line (MEBT) plays an important role in reducing beam loss in the JAERI/KEK project. A MEBT was designed two years ago, with good beam matching and lower beam loss. To further reduce beam loss during the transient time of the chopper to meet the new requirement from the DTL, a medium-energy beam-transport line with an anti-chopper has been designed. The 3.5 m long transport line consists of nine quadrupole magnets, three bunchers and four chopper/anti-chopper cavities. It accomplishes two tasks: matching the beam from the RFQ to the acceptance of the DTL and chopping the beam to produce gaps for injection into the rapid-cycling ring, which follows the linac. A RF Chopper and an anti-chopper have been adopted in the lattice, resulting in a clean chopping effect and no beam losses during the transient time. Details of the beam dynamics analysis are given

  8. Efficient projection and backprojection scheme for spherically symmetric basis functions in divergent beam geometry.

    Science.gov (United States)

    Ziegler, Andy; Köhler, Thomas; Nielsen, Tim; Proksa, Roland

    2006-12-01

    In cone-beam transmission tomography the measurements are performed with a divergent beam of x-rays. The reconstruction with iterative methods is an approach that offers the possibility to reconstruct the corresponding images directly from these measurements. Another approach based on spherically symmetric basis functions (blobs) has been reported with results demonstrating a better image quality for iterative reconstruction algorithms. When combining the two approaches (i.e., using blobs in iterative cone-beam reconstruction of divergent rays) the problem of blob sampling without introducing aliasing must be addressed. One solution to this problem is to select a blob size large enough to ensure a sufficient sampling, but this prevents a high resolution reconstruction, which is not desired. Another solution is a heuristic low-pass filtering, which removes this aliasing, but neglects the different contributions of blobs to the absorption depending on the spatial position in the volume and, therefore, cannot achieve the best image quality. This article presents a model of sampling the blobs which is motivated by the beam geometry. It can be used for high resolution reconstruction and can be implementedefficiently.

  9. Feedback from uncertainties propagation research projects conducted in different hydraulic fields: outcomes for engineering projects and nuclear safety assessment.

    Science.gov (United States)

    Bacchi, Vito; Duluc, Claire-Marie; Bertrand, Nathalie; Bardet, Lise

    2017-04-01

    In recent years, in the context of hydraulic risk assessment, much effort has been put into the development of sophisticated numerical model systems able reproducing surface flow field. These numerical models are based on a deterministic approach and the results are presented in terms of measurable quantities (water depths, flow velocities, etc…). However, the modelling of surface flows involves numerous uncertainties associated both to the numerical structure of the model, to the knowledge of the physical parameters which force the system and to the randomness inherent to natural phenomena. As a consequence, dealing with uncertainties can be a difficult task for both modelers and decision-makers [Ioss, 2011]. In the context of nuclear safety, IRSN assesses studies conducted by operators for different reference flood situations (local rain, small or large watershed flooding, sea levels, etc…), that are defined in the guide ASN N°13 [ASN, 2013]. The guide provides some recommendations to deal with uncertainties, by proposing a specific conservative approach to cover hydraulic modelling uncertainties. Depending of the situation, the influencing parameter might be the Strickler coefficient, levee behavior, simplified topographic assumptions, etc. Obviously, identifying the most influencing parameter and giving it a penalizing value is challenging and usually questionable. In this context, IRSN conducted cooperative (Compagnie Nationale du Rhone, I-CiTy laboratory of Polytech'Nice, Atomic Energy Commission, Bureau de Recherches Géologiques et Minières) research activities since 2011 in order to investigate feasibility and benefits of Uncertainties Analysis (UA) and Global Sensitivity Analysis (GSA) when applied to hydraulic modelling. A specific methodology was tested by using the computational environment Promethee, developed by IRSN, which allows carrying out uncertainties propagation study. This methodology was applied with various numerical models and in

  10. Emergency Management and Radiation Moni-toring in Nuclear and Radiological Accidents. Summary Report on the NKS Project EMARAD

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, J. [Radiation and Nuclear Safety Authority (STUK) (Finland)

    2006-04-15

    In order to manage various nuclear or radiological emergencies the authorities must have pre-prepared plans. The purpose of the NKS project EMARAD (Emergency Management and Radiation Monitoring in Nuclear and Radiological Accidents) was to produce and gather various data and information that could be useful in drawing up emergency plans and radiation monitoring strategies. One of the specific objectives of the project was to establish a www site that would contain various radiation-threat and radiation-monitoring related data and documents and that could be accessed by all Nordic countries. Other important objectives were discussing various factors affecting measurements in an emergency, efficient use of communication technology and disseminating relevant information on such topics as urban dispersion and illicit use of radiation. The web server is hosted by the Radiation and Nuclear Safety Authority (STUK) of Finland. The data stored include pre-calculated consequence data for nuclear power plant accidents as well as documents and presentations describing e.g. general features of monitoring strategies, the testing of the British urban dispersion model UDM and the scenarios and aspects related to malicious use of radiation sources and radioactive material. As regards the last item mentioned, a special workshop dealing with the subject was arranged in Sweden in 2005 within the framework of the project. (au)

  11. On the computational implementation of forward and back-projection operations for cone-beam computed tomography.

    Science.gov (United States)

    Karimi, Davood; Ward, Rabab

    2016-08-01

    Forward- and back-projection operations are the main computational burden in iterative image reconstruction in computed tomography. In addition, their implementation has to be accurate to ensure stable convergence to a high-quality image. This paper reviews and compares some of the variations in the implementation of these operations in cone-beam computed tomography. We compare four algorithms for computing the system matrix, including a distance-driven algorithm, an algorithm based on cubic basis functions, another based on spherically symmetric basis functions, and a voxel-driven algorithm. The focus of our study is on understanding how the choice of the implementation of the system matrix will influence the performance of iterative image reconstruction algorithms, including such factors as the noise strength and spatial resolution in the reconstructed image. Our experiments with simulated and real cone-beam data reveal the significance of the speed-accuracy trade-off in the implementation of the system matrix. Our results suggest that fast convergence of iterative image reconstruction methods requires accurate implementation of forward- and back-projection operations, involving a direct estimation of the convolution of the footprint of the voxel basis function with the surface of the detectors. The required accuracy decreases by increasing the resolution of the projection measurements beyond the resolution of the reconstructed image. Moreover, reconstruction of low-contrast objects needs more accurate implementation of these operations. Our results also show that, compared with regularized reconstruction methods, the behavior of iterative reconstruction algorithms that do not use a proper regularization is influenced more significantly by the implementation of the forward- and back-projection operations.

  12. Field cage development for a time-projection chamber to constrain the nuclear symmetry energy

    Science.gov (United States)

    Estee, J.; Barney, J.; Chajecki, Z.; Famiano, M.; Dunn, J.; Lu, F.; Lynch, W. G.; McIntosh, A. B.; Isobe, T.; Murakami, T.; Sakurai, H.; Shane, R.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Yennello, S.

    2012-10-01

    The SAMURAI time-projection chamber (sTPC) is being developed for use in the dipole magnet of the newly-commissioned SAMURAI spectrometer at the RIBF facility in Japan. The main scientific objective of the sTPC is to provide constraints on the nuclear symmetry energy at supra-saturation densities. The TPC allows for tracking and identification of light charged particles such as pions, protons, tritons and ^3He. The sTPC must have a Cartesian geometry to match the symmetry of the dipole magnet. The walls of the field cage (FC) detector volume consist of sections of rigid, two-layer circuit boards. Inside and outside copper strips form decreasing equipotentials via a resistor chain, and create a uniform electric field with a maximum of 400 V/cm. The FC volume is hermetically sealed from the enclosure volume to create an insulation volume which can be filled with dry N2 to inhibit corona discharge. I will be presenting the current status of the design and assembly of the sTPC field cage.

  13. Construction strategies and lifetime uncertainties for nuclear projects: A real option analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Shashi, E-mail: s.jain@cwi.nl [TU Delft, Delft Institute of Applied Mathematics, Delft (Netherlands); Nuclear Research Group, Petten (Netherlands); Roelofs, Ferry, E-mail: roelofs@nrg.eu [Nuclear Research Group, Petten (Netherlands); Oosterlee, Cornelis W., E-mail: c.w.oosterlee@cwi.nl [CWI – Centrum Wiskunde and Informatica, Amsterdam (Netherlands); TU Delft, Delft Institute of Applied Mathematics, Delft (Netherlands)

    2013-12-15

    Highlights: • Real options can be used to value flexibility of modular reactors. • Value of NPPs increases with implementation of long term cost reductions. • Levels of uncertainties affect the choice between projects. -- Abstract: Small and medium sized reactors, SMRs (according to IAEA, ‘small’ are reactors with power less than 300 MWe, and ‘medium’ with power less than 700 MWe) are considered as an attractive option for investment in nuclear power plants. SMRs may benefit from flexibility of investment, reduced upfront expenditure, and easy integration with small sized grids. Large reactors on the other hand have been an attractive option due to economy of scale. In this paper we focus on the advantages of flexibility due to modular construction of SMRs. Using real option analysis (ROA) we help a utility determine the value of sequential modular SMRs. Numerical results under different considerations, like possibility of rare events, learning, uncertain lifetimes are reported for a single large unit and modular SMRs.

  14. Compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Volchok, H L; Chieco, N [comps.

    1986-10-01

    Following the accident at the Chernobyl nuclear reactor power station in the USSR on April 26, 1986, the Environmental Measurements Laboratory (EML) initiated a number of research projects as follows: (1) selected sites in both the Deposition and Surface Air networks were alerted and their sampling protocols adjusted to accommodate the anticipated arrival times and activity concentrations of the Chernobyl debris; (2) a number of cooperative programs involving field work, sampling, analysis and data interpretation were set up with institutions and scientists in other countries; (3) EML's Regional Baseline Station at Chester, NJ, as well as the roof of the Laboratory in New York City, provided bases for sampling and measurements to study the radionuclide concentrations, radiation levels, physical characteristics and potential biological implications of the Chernobyl fallout on the northeastern United States; and (4) the resulting fallout from the Chernobyl accident provided an 'experiment of opportunity' in that it enabled us to study fresh fission product deposition using collection systems resurrected from the 1950's and 1960's for comparison with current state-of-the-art methodology. The 13 reports of this volume have been entered separately into the data base.

  15. The International Remote Monitoring Project -- First results of the Argentina nuclear power station field trial

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, A.; Pizarro, L.; Perez, A. [Ente Nacional Regulador Nuclear, Buenos Aires (Argentina); Schoeneman, J.L.; Dupree, S.A.; Martinez, R.L. [Sandia National Labs., Albuquerque, NM (United States); Maxey, C. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    As part of the International Remote Monitoring Project field trials, during the month of March, 1995 a Remote Monitoring System (RMS) was installed at the Embalse Nuclear Power Station in Embalse, Argentina. This system monitors the status of four typical Candu spent fuel dry storage silos. The monitoring equipment for each silo consists of analog temperature and gamma radiation sensors and digital motion and electronic fiber-optic seals connected to a wireless Authenticate Item Monitoring System (AIMS). All sensor data are authenticated and transmitted via RF link to Receiver Processor Units (RPU) coupled to Remote Monitoring System equipment located in a nearby IAEA/ENREN inspector office. One of these RPUs is connected to Remote Monitoring equipment capable of information transmission (via commercial telephone links) to Data Review Stations (DRS) at ENREN laboratories in Buenos Aires, Argentina, and at Sandia National Laboratories, Albuquerque, New Mexico. The other RPU is used for on-site data storage and analysis. It is anticipated that this information will soon be transmitted to a DRS at the ABACC facility in Rio de Janeiro, Brazil. During these trials site data will be collected and analyzed periodically from Buenos Aires, Albuquerque, and Rio de Janeiro. Installation detail and data analysis will be presented in this paper.

  16. Nuclear emergency planning in Spain. The PLABEN review project; Planificacion de emergencias radiologicas en Espana. Revision del Plan Basico de Eergencia Nuclear (PLABEN)

    Energy Technology Data Exchange (ETDEWEB)

    Lentijo Lentijo, J. C.; Vila Pena, M. [Consejo de Seguridad Nuclear. Madrid (Spain)

    2002-07-01

    The international rules and recommendations for nuclear emergency planning and the Spanish experience gained in the management of event with radiological risk have noticed that is necessary to review the planning radiological bases for emergencies in nuclear power plants and to define the planning radiological bases for radiological emergencies that could happen in radioactive facilities or in activities out of the regulatory framework. The paper focuses on CSN actions concerning the Plaben review project related to define the new radiological principles taking into account the current international recommendations for interventions, make a proposal about the organisation and operation of the provincial radiological action group and the national support level for radiological emergency response. (Author) 7 refs.

  17. Environmental impact statements: Nuclear industry waste disposal and isotope separation projects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The bibliography contains citations concerning draft and final impact statements relating to environmental radiation hazards. Prepared by the Department of Energy (DOE), Nuclear Regulatory Commission, Oak Ridge National Laboratory, and others, these reports discuss environmental data affecting DOE decisions on proposed construction and decommissioning of nuclear power plants, radioactive waste disposal facilities and sites, and isotope separation projects. The effects of Federal guidelines and atomic facility location on community awareness are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Physics of thermo-nuclear fusion and the ITER project; La physique de la fusion thermonucleaire et le projet ITER

    Energy Technology Data Exchange (ETDEWEB)

    Garin, P. [CEA Cadarache, Dept. de Recherches sur la Fusion Controlee - DRFC, 13 - Saint-Paul-lez-Durance (France)

    2003-01-01

    This document gathers the slides of the 6 contributions to the workshop 'the physics of thermo-nuclear fusion and the ITER project': 1) the feasibility of magnetic confinement and the issue of heat recovery, 2) heating and current generation in tokamaks, 3) the physics of wall-plasma interaction, 4) recent results at JET, 5) inertial confinement and fast ignition, and 6) the technology of fusion machines based on magnetic confinement. This document presents the principles of thermo-nuclear fusion machines and gives a lot of technical information about JET, Tore-Supra and ITER.

  19. EC Project 'GUIDELINES ON MPE': proposed qualification and curriculum frameworks and the MPE in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Caruana, C J, E-mail: carmel.j.caruana@um.edu.mt [EFOMP Representative on the EC ' Guidelines on MPE' Project and Biomedical Physics, Faculty of Health Sciences, University of Malta (Malta)

    2011-09-23

    The objectives of EC project 'Guidelines on Medical Physics Expert' are to provide for improved implementation of the provisions relating to the Medical Physics Expert within Council Directive 97/43/EURATOM and the proposed recast Basic Safety Standards directive. This includes harmonisation of the mission statement for Medical Physics Services as well as the education and training of the MPE. It also includes detailed knowledge-skills-competence inventories for the Medical Physics Expert in each of Diagnostic and Interventional Radiology, Nuclear Medicine and Radiotherapy. This paper presents the proposed Qualification and Curriculum Frameworks and their application to the Medical Physics Expert in Nuclear Medicine.

  20. FY2017 Pilot Project Plan for the Nuclear Energy Knowledge and Validation Center Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-30

    To prepare for technical development of computational code validation under the Nuclear Energy Knowledge and Validation Center (NEKVAC) initiative, several meetings were held by a group of experts of the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory (ORNL) to develop requirements of, and formulate a structure for, a transient fuel database through leveraging existing resources. It was concluded in discussions of these meetings that a pilot project is needed to address the most fundamental issues that can generate immediate stimulus to near-future validation developments as well as long-lasting benefits to NEKVAC operation. The present project is proposed based on the consensus of these discussions. Analysis of common scenarios in code validation indicates that the incapability of acquiring satisfactory validation data is often a showstopper that must first be tackled before any confident validation developments can be carried out. Validation data are usually found scattered in different places most likely with interrelationships among the data not well documented, incomplete with information for some parameters missing, nonexistent, or unrealistic to experimentally generate. Furthermore, with very different technical backgrounds, the modeler, the experimentalist, and the knowledgebase developer that must be involved in validation data development often cannot communicate effectively without a data package template that is representative of the data structure for the information domain of interest to the desired code validation. This pilot project is proposed to use the legendary TREAT Experiments Database to provide core elements for creating an ideal validation data package. Data gaps and missing data interrelationships will be identified from these core elements. All the identified missing elements will then be filled in with experimental data if available from other existing sources or with dummy data if nonexistent. The resulting hybrid

  1. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: Effects of nuclear fragmentation and its simulation with PHITS

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, Takuya [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamashita, Shinichi; Taguchi, Mitsumasa [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Baldacchino, Gerard [CEA Saclay, IRAMIS, UMR 3299 CEA-CNRS SIS2M, Laboratoire de Radiolyse, F-91191 Gif sur Yvette Cedex (France); Sihver, Lembit [Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Department of Nuclear Engineering, Texas A and M University, TX 77843-3133 (United States); Department of Roanoke College, Salem, VA 24153 (United States); Department of Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Murakami, Takeshi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-12-15

    The G(OH) values in aqueous coumarin-3-carboxylic-acid (3-CCA) solutions irradiated with {sup 12}C{sup 6+} beams having the energies of 135, 290 and 400 MeV/u were measured by a fluorescent method around the Bragg peak, with 0.6 mm intervals, and quartz cells of 1 cm optical lengths, at the Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences (NIRS). For each ion, the G(OH) has been calculated as a function of dose average LET and position. The calculated results have been compared to measurements, and the results, reproducibility and reliability of the calculations are discussed in the paper. - Highlights: > Therapeutic ion beam has energy of several hundred MeV/u because it is necessary for a few tens cm range. > With such high energy, nuclear fragmentations of carbon ions occur resulting in production of lighter ions. > In this study, OH yield in water radiolysis near the Bragg peak of therapeutic ion beams was measured. > Measured yields are discussed considering nuclear fragmentation by PHITS code.

  2. Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam

    CERN Document Server

    Arneodo, F; Bonesini, M; Borio di Tigliole, A; Boschetti, B; Bueno, A; Calligarich, E; Casagrande, F; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, E; Cline, D; Curioni, A; De Mitri, I; De Vecchi, C; Dolfini, R; Ferrari, A; Ghezzi, A; Guglielmi, A; Kisiel, J; Mannocchi, G; Martinez de la Ossa, A; Matthey, C; Mauri, F; Montanari, C; Navas, S; Negri, P; Nicoletto, Marino; Otwinowski, S; Paganoni, M; Palamara, O; Pepato, Adriano; Periale, L; Piano Mortari, G; Picchi, P; Pietropaolo, F; Puccini, A; Pullia, A; Ragazzi, S; Rancati, T; Rappoldi, A; Raselli, G L; Redaelli, N; Rondio, E; Rubbia, André; Rubbia, Carlo; Sala, P R; Sergiampietri, F; Sobczyk, J; Suzuki, S; Tabarelli de Fatis, T; Terrani, M; Terranova, F; Tonazzo, A; Ventura, Sandro; Vignoli, C; Wang, H; Zalewska A

    2006-01-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.

  3. Optimizing 4D cone beam computed tomography acquisition by varying the gantry velocity and projection time interval

    Science.gov (United States)

    O'Brien, Ricky T.; Cooper, Benjamin J.; Keall, Paul J.

    2013-03-01

    Four dimensional cone beam computed tomography (4DCBCT) is an emerging clinical image guidance strategy for tumour sites affected by respiratory motion. In current generation 4DCBCT techniques, both the gantry rotation speed and imaging frequency are constant and independent of the patient’s breathing which can lead to projection clustering. We present a mixed integer quadratic programming (MIQP) model for respiratory motion guided-4DCBCT (RMG-4DCBCT) which regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, so that a full set of evenly spaced projections can be taken in a number of phase, or displacement, bins during the respiratory cycle. In each respiratory bin, an image can be reconstructed from the projections to give a 4D view of the patient’s anatomy so that the motion of the lungs, and tumour, can be observed during the breathing cycle. A solution to the full MIQP model in a practical amount of time, 10 s, is not possible with the leading commercial MIQP solvers, so a heuristic method is presented. Using parameter settings typically used on current generation 4DCBCT systems (4 min image acquisition, 1200 projections, 10 respiratory bins) and a sinusoidal breathing trace with a 4 s period, we show that the root mean square (RMS) of the angular separation between projections with displacement binning is 2.7° using existing constant gantry speed systems and 0.6° using RMG-4DCBCT. For phase based binning the RMS is 2.7° using constant gantry speed systems and 2.5° using RMG-4DCBCT. The optimization algorithm presented is a critical step on the path to developing a system for RMG-4DCBCT.

  4. Beam Time Accounting

    CERN Document Server

    Seitova, Diana

    2016-01-01

    ISOLDE is one of the leading research facilities in the field of nuclear physics. A proton beam with an energy 1.4 GeV coming from the Proton Synchrotron Booster (PSB) hits one of the targets at ISOLDE and produces Radioactive Ion Beams (RIBs). Then, the RIBs of interest is selected and delivered to the different experimental stations. In order to deliver the beam to the certain experimental station, the positions of the devices along the beamline should satisfy certain conditions. The purpose of this project is to define the conditions for the beam to pass through the different beamlines and to store the data about device’s status for later analysis and statistics, so it would be possible to know when the beam was used for different experiments. The data with the settings of the different devices is saved in the Timber database and the first steps for making virtual devices to compile the status of the beamlines were completed.

  5. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  6. Consequences of short electron-beam pulses in the FELIX project

    Science.gov (United States)

    Jaroszynski, D. A.; Oepts, D.; Van Der Meer, A. F. G.; Van Amersfoort, P. W.; Colson, W. B.

    1990-10-01

    We discuss the consequences of short micropulses on the output of infrared and far-infrared free electron lasers with special reference to the FELIX project which operates with 3 ps long electron pulses.

  7. Development of ion/proton beam equipment for industrial uses

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho; Lee, J. H.; Cho, Y. S.; Joo, P. K.; Kang, S. S.; Song, W. S.; Kim, H. J.; Chang, G. H.; Bang, S. W

    1999-12-01

    KAERI has possessed design and fabrication technologies of various ion sources including Duoplasmatron and DuoPiGatron developed by R and D projects of the long-term nuclear technology development program. In order to industrialize ion beam equipments utilizing these ion sources, a technology transfer project for a technology transfer project for a domestic firm has been performed. Under this project, engineers of the firm have been trained through classroom lectures of ion beam principles and OJT, an ion/proton beam equipment (DEMO equipment) has been designed, assembled and commissioned jointly with the engineers. Quality of the ion sources has been quantified, and technologies for ion beam equipment construction, functional test and application research have been developed. The DEMO equipment, which consists of an ion source, power supplies, vacuum, cooling and target systems, has been fabricated and tested to secure stability and reliability for industrial uses. Various characteristic tests including high voltage insulation, beam extraction, beam current measuring, etc. have been performed. This DEMO can be utilized for ion sources development as well as ion beam process development for various industrial products. Engineers of the firm have been trained for the industrialization of ion beam equipment and joined in beam application technology development to create industrial needs of beam equipment. (author)

  8. Cell killing, nuclear damage and apoptosis in Chinese hamster V79 cells after irradiation with heavy-ion beams of (16)O, (12)C and (7)Li.

    Science.gov (United States)

    Pathak, Rupak; Dey, Subrata Kumar; Sarma, Asiti; Khuda-Bukhsh, Anisur Rahman

    2007-08-15

    Chinese hamster V79 cells were exposed to high LET (linear energy transfer) (16)O-beam (625keV/mum) radiation in the dose range of 0-9.83Gy. Cell survival, micronuclei (MN), chromosomal aberrations (CA) and induction of apoptosis were studied as a follow up of our earlier study on high LET radiations ((7)Li-beam of 60keV/mum and (12)C-beam of 295keV/mum) as well as (60)Co gamma-rays. Dose dependent decline in surviving fraction was noticed along with the increase of MN frequency, CA frequency as well as percentage of apoptosis as detected by nuclear fragmentation assay. The relative intensity of DNA ladder, which is a useful marker for the determination of the extent of apoptosis induction, was also increased in a dose dependent manner. Additionally, expression of tyrosine kinase lck-1 gene, which plays an important role in response to ionizing radiation induced apoptosis, was increased with the increase of radiation doses and also with incubation time. The present study showed that all the high LET radiations were generally more effective in cell killing and inflicting other cytogenetic damages than that of low LET gamma-rays. The dose response curves revealed that (7)Li-beam was most effective in cell killing as well as inducing other nuclear damages followed by (12)C, (16)O and (60)Co gamma-rays, in that order. The result of this study may have some application in biological dosimetry for assessment of genotoxicity in heavy ion exposed subjects and in determining suitable doses for radiotherapy in cancer patients where various species of heavy ions are now being generally used.

  9. A civil super-Manhattan project in nuclear research for a safer and prosperous world

    CERN Document Server

    Sornette, D

    2015-01-01

    Humankind is confronted with a "nuclear stewardship curse", facing the prospect of needing to manage nuclear products over long time scales in the face of the short-time scales of human polities. I propose a super Manhattan-type effort to rejuvenate the nuclear energy industry to overcome the current dead-end in which it finds itself, and by force, humankind has trapped itself in. A 1% GDP investment over a decade in the main nuclear countries could boost economic growth with a focus on the real world, epitomised by nuclear physics/chemistry/engineering/economics with well defined targets. By investing vigorously to obtain scientific and technological breakthroughs, we can create the spring of a world economic rebound based on new ways of exploiting nuclear energy, both more safely and more durably.

  10. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  11. On Plan of Designing Nuclear Power Project Construction%核电项目工程施工设计计划编制浅探

    Institute of Scientific and Technical Information of China (English)

    倪忠雷

    2014-01-01

    核电项目投资大,建造周期长,工程施工设计计划是贯穿核电工程项目生命周期全过程,对项目范围、投资规模、进度计划、风险管理、质量控制具有全局性影响的项目管理活动。文章根据核电项目的特点,分析核电项目工程施工设计计划编制的要点,并通过具体项目的操作,对核电项目工程施工设计计划的编制进行了探讨。%Nuclear power project has a huge investment with long construction period. Plan of designing nuclear power project construction runs through the whole process of nuclear power engineering project, which has overall and broad influence on the scope of the project, the scale of investment, schedule, risk management and quality control. According to the characteristics of the nuclear power project, this article analyzes the key points of plan of designing nuclear power project construction, and discusses how to develop the plan of designing nuclear power project construction through specific project operation.

  12. Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam

    CERN Document Server

    Tojo, J; Bai, M; Bassalleck, B; Bunce, G M; Deshpande, A A; Doskow, J; Eilerts, S W; Fields, D E; Goto, Y; Huang, H; Hughes, V; Imai, K; Ishihara, M; Kanavets, V P; Kurita, K; Kwiatkowski, K K; Lewis, B; Lozowski, W R; Makdisi, Y I; Meyer, H O; Morozov, B V; Nakamura, M; Von Przewoski, B; Rinckel, T; Roser, T; Rusek, A; Saitô, N; Smith, B; Svirida, D N; Syphers, M J; Taketani, A; Thomas, T L; Underwood, D; Wolfe, D; Yamamoto, K; Zhu, L

    2002-01-01

    The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0\\times10^{-3}<-t<4.1\\times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $\\text{Re} r_5=0.088\\pm 0.058$ and $\\text{Im} r_5=-0.161\\pm 0.226$.

  13. Relationship between electron density and effective densities of body tissues for stopping, scattering and nuclear interaction of proton and ion beams

    CERN Document Server

    Kanematsu, Nobuyuki

    2011-01-01

    In treatment planning of charged-particle radiotherapy, patient heterogeneity is normally modeled as variable-density water to best reproduce the stopping power. This water-based model would cause substantial errors in multiple scattering and nuclear interaction as body tissues may deviate from water in elemental compositions. In this study, we physically defined distinctive effective densities for stopping, scattering, and nuclear interactions of proton and ions and constructed their conversion functions to correct the water-based model, using the standard elemental composition data for body tissues. As we took the electron density for the reference in the formulation, these conversion functions are generally valid for treatment planning systems that normally have a function to convert CT number to electron density or stopping-power ratio. The proposed extension in heterogeneity correction will enable accurate beam dose calculation without seriously sacrificing simplicity or efficiency of the water-based mod...

  14. On the energy gain enhancement of DT+D3He fuel configuration in nuclear fusion reactor driven by heavy ion beams

    Directory of Open Access Journals (Sweden)

    S Khoshbinfar

    2016-09-01

    Full Text Available It is expected that advanced fuels be employed in the second generation of nuclear fusion reactors. Theoretical calculations show that in such a fuel, a high plasma temperature about 100 keV is a requisite for reaction rate improvement of nuclear fusion. However, creating such a temporal condition requires a more powerful driver than we have today. Here, introducing an optimal fuel configuration consisting of DT and D-3He layers, suitable for inertial fusion reactors and driven by heavy ion beams, the optimal energy gain conditions have been simulated and derived for 1.3 MJ system. It was found that, in this new fuel configuration, the ideal energy gain, is 22 percent more comparing with energy gain in corresponding single DT fuel layer. Moreover, the inner DT fuel layer contributed as an ignition trigger, while the outer D3He fuel acts as particle and radiation shielding as well as fuel layer.

  15. Study of Particle Production and Nuclear Fragmentation in Collisions of $^{16}$O Beams with Emulsion Nuclei at 13-200 A GeV

    CERN Multimedia

    2002-01-01

    .SK 2\\\\ \\\\ The aim of the experiment is to study, on an event by event basis, multiplicities of produced charged particles, pseudo-rapidity density distributions globally and in selected regions of pseudo-rapidity, density fluctuations, multiplicity and angular distributions of nuclear fragments and recoiling protons (30-400~A~MeV) and cross sections for production and interation of light and medium (Z=2-8) projectile fragments. \\\\ \\\\ The detectors are emulsion chambers as well as conventional emulsion stacks. The emulsion chambers consist of several layers of a plastic substrate, each coated with nuclear emulsion on both sides. Since the best measurement accuracy is obtained for the particles with the smallest emission angles, this design is especially suited for the pseudo-rapidity determination. The emulsion stacks, of both high and low sensitivity, have been exposed in the conventional way, with the beam parallel to the emulsion sheets. These stacks are used to study the fragmentation of the interaction n...

  16. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a comprehensive understanding of requirements for a facility that could safely conduct effluent treatment for a Nuclear Thermal Propulsion (NTP) rocket...

  17. No 2943. Project of law relative to nuclear transparency and safety; N. 2943. Projet de loi relatif a la transparence et a la securite en matiere nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    This project of law comprises 5 titles dealing with: 1 - general dispositions: definition and scope of nuclear safety, security, radiation protection, operators liability, facilities in concern; 2 - the high nuclear safety authority: role and duties; 3 - public information in the domain of nuclear safety and radiation protection: information right of the public, local information commissions, high committee for nuclear safety transparency and information; 4 - basic nuclear facilities and transport of radioactive materials: applicable rules, police controls and measures, penal dispositions (investigations, sanctions); 5 - miscellaneous dispositions: changes made with respect to previous legislative texts. (J.S.)

  18. The Mechanical Design and Preliminary Testing Results of Beam Position Monitors for the LANSCE Isotope Production Facility and Switchyard Kicker Projects

    Science.gov (United States)

    O'Hara, J. F.; Gilpatrick, J. D.; Ledford, J. E.; Shurter, R. B.; Roybal, R. J.; Bentley, B. E.

    2002-12-01

    The Los Alamos Neutron Science Center (LANSCE-1) Beam Diagnostic Team is providing Beam Position Monitors (BPMs) to the LANSCE Facility for use in two on-going projects: The Isotope Production Facility (IPF) and The Switchyard Kicker Upgrade (SYK). The BPM designs for both projects are very similar. The BPMs are classic, four, micro-stripline units having one end terminated in a 50-ohm load. This paper will discuss the position measurement requirements, mechanical design, fabrication, and alignment issues encountered for both sets of BPMs, as well as report the results obtained from the initial taught wire testing of the IPF BPMs.

  19. The ATLAS3D Project - XXIII. Angular momentum and nuclear surface brightness profiles

    NARCIS (Netherlands)

    Krajnović, Davor; Karick, A. M.; Davies, Roger L.; Naab, Thorsten; Sarzi, Marc; Emsellem, Eric; Cappellari, Michele; Serra, Paolo; de Zeeuw, P. T.; Scott, Nicholas; McDermid, Richard M.; Weijmans, Anne-Marie; Davis, Timothy A.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bureau, Martin; Bournaud, Frederic; Crocker, Alison; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; Morganti, Raffaella; Oosterloo, Tom; Young, Lisa M.

    2013-01-01

    We investigate nuclear light profiles in 135 ATLAS3D galaxies for which the Hubble Space Telescope (HST) imaging is available and compare them to the large-scale kinematics obtained with the SAURON integral-field spectrograph. Specific angular momentum, λR, correlates with the shape of nuclear light

  20. Reliability Data for Piping Components in Nordic Nuclear Power Plants 'R-Book'. Project Phase 1. Rev 1

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, Bengt (Scandpower Risk Management Inc., Houston, TX (US)); Olsson, Anders (Relcon Scandpower AB, Stockholm (SE))

    2008-01-15

    This report constitutes a planning document for a new RandD project to develop a piping component reliability parameter handbook for use in probabilistic safety assessment (PSA) and related activities. The Swedish acronym for this handbook is 'R-Book.' The objective of the project is to utilize the OECD Nuclear Energy Agency 'OECD Pipe Failure Data Exchange Project' (OPDE) database to derive piping component failure rates and rupture probabilities for input to internal flooding probabilistic safety assessment, high-energy line break' (HELB) analysis, risk-informed in-service inspection (RI-ISI) program development, and other activities related to PSA. This new RandD project is funded by member organizations of the Nordic PSA Group (NPSAG) - Forsmark AB, OKG AB, Ringhals AB, and the Swedish Nuclear Power Inspectorate (SKI). The history behind the current effort to produce a handbook of piping reliability parameters goes back to 1994 when SKI funded a 5-year RandD project to explore the viability of establishing an international database on the service experience with piping system components in commercial nuclear power plants. An underlying objective behind this 5-year program was to investigate the different options and possibilities for deriving pipe failure rates and rupture probabilities directly from service experience data as an alternative to probabilistic fracture mechanics. The RandD project culminated in an international piping reliability seminar held in the fall of 1997 in Sigtuna (Sweden) and a pilot project to demonstrate an application of the pipe failure database to the estimation of loss-of-coolant-accident (LOCA) frequency (SKI Report 98:30). A particularly important outcome of the 5-year project was a decision by SKI to transfer the pipe failure database including the lessons learned to an international cooperative effort under the auspices of the OECD Nuclear Energy Agency. Following on information exchange and planning

  1. Electron-beam lithography with character projection technique for high-throughput exposure with line-edge quality control

    Science.gov (United States)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-07-01

    The high throughput of character projection (CP) electron-beam (EB) lithography makes it a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as for standard-cell logics and memory arrays. However, non-VLSI applications such as MEMS and MOEMS may not be able to fully utilize the benefits of the CP method due to the wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear because of the EB exposure process often result in intolerable edge roughness, which degrades device performances. In this study, we propose a general EB lithography methodology for such applications utilizing a combination of the CP and variable-shaped beam methods. In the process of layout data conversion with CP character instantiation, several control parameters were optimized to minimize the shot count, improve the edge quality, and enhance the overall device performance. We have demonstrated EB shot reduction and edge-quality improvement with our methodology by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and a high-resolution hydrogen silsesquioxane resist. Atomic force microscope observations were used to analyze the resist edge profiles' quality to determine the influence of the control parameters used in the data conversion process.

  2. Test of the beam effect on vacuum arc occurrence in a high-gradient accelerating structure for the CLIC project

    CERN Document Server

    AUTHOR|(CDS)2130409; Gagliardi, Martino

    A new generation of lepton colliders capable of reaching TeV energies is pres- ently under development, and to succeed in this task it is necessary to show that the technology for such a machine is available. The Compact Linear Collider (CLIC) is a possible design option among the future lepton collider projects. It consists of two normal-conducting linacs. Accelerating structures with a gradient of the order of 100 MV/m are necessary to reach the required high energies within a reasonable machine length. One of the strictest require- ments for such accelerating structures is a relatively low occurrence of vacuum arcs. CLIC prototype structures have been tested in the past, but only in absence of beam. In order to proof the feasibility of the high gradient technology for building a functional collider, it is necessary to understand the effect of the beam presence on the vacuum breakdowns. Tests of this type have never been performed previously. The main goal of this work is to provide a first measurement of t...

  3. Marine radioecology. Final reports from sub-projects within the Nordic nuclear safety research project EKO-1

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E. [Icelandic Radiation Protection Inst. (Iceland)] (ed.)

    2001-04-01

    This report contains a collection of eight papers describing research done in the NKS/EKO-1 project. It also contains a preface giving a summary of the results. The EKO-1 project as a whole has been described in the report NKS(97)FR4. The aim of the project was to make a joint Nordic study on radionuclides in sediments and water and the interaction between these two phaseS. Relatively less emphasis had been put on this factor compared to others in previous Nordic studies on marine radioecology. For some of the participating countries this work was the first of its kind undertaken. The project involved field, laboratory and model studies. The work and results helped to highlight the important role of sediments when assessing the consequences of real or possible releases of radionuclides to the marine environment (au)

  4. Beam physics in future electron hadron colliders

    CERN Document Server

    Valloni, A; Klein, M; Schulte, D; Zimmermann, F

    2013-01-01

    High-energy electron-hadron collisions could support a rich research programme in particle and nuclear physics. Several future projects are being proposed around the world, in particular eRHIC at BNL, MEIC at TJNAF in the US, and LHeC at CERN in Europe. This paper will highlight some of the accelerator physics issues, and describe related technical developments and challenges for these machines. In particular, optics design and beam dynamics studies are discussed, including longitudinal phase space manipulation, coherent synchrotron radiation, beam-beam kink instability, ion effects, as well as mitigation measures for beam break up and for space-charge induced emittance growth, all of which could limit the machine performance. Finally, first steps are presented towards an LHeC R&D facility, which should investigate relevant beam-physics processes.

  5. Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by $^4$He ion beams in a PMMA target

    CERN Document Server

    Marafini, M; Pinci, D; Battistoni, G; Collamati, F; De Lucia, E; Faccini, R; Frallicciardi, P M; Mancini-Terracciano, C; Mattei, I; Muraro, S; Piersanti, L; Rovituso, M; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Camillocci, E Solfaroli; Toppi, M; Traini, G; Voena, C; Patera, V

    2016-01-01

    Nowadays there is a growing interest in Particle Therapy treatments exploiting light ion beams against tumors due to their enhanced Relative Biological Effectiveness and high space selectivity. In particular promising results are obtained by the use of $^4$He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments - protons, deuterons, and tritons - produced by $^4$He ion beams of 102, 125 and 145 MeV/u energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the Treatment Planning Software being developed for clinical use of $^4$He beams in clinical routine and the relative benchmarking of ...

  6. Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by 4He ion beams in a PMMA target

    Science.gov (United States)

    Marafini, M.; Paramatti, R.; Pinci, D.; Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Frallicciardi, P. M.; Mancini-Terracciano, C.; Mattei, I.; Muraro, S.; Piersanti, L.; Rovituso, M.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Patera, V.

    2017-02-01

    Nowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of 4He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments—protons, deuterons, and tritons—produced by 4He ion beams of 102, 125 and 145 MeV u-1 energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the treatment planning software being developed for clinical use of 4He beams in clinical routine and the relative bench-marking of Monte Carlo algorithm predictions.

  7. Framework for monitoring the social and economic impacts associated with the construction of the Skagit Nuclear Project in Skagit County, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Merwin, D.J.; Greene, M.

    1977-09-30

    The paper discusses an information system which has been developed to monitor the social and economic impacts associated with the construction of twin nuclear reactors in Skagit County, Washington, by Puget Sound Power and Light Company. The monitoring system has been specifically designed to track the social and economic impacts of the Skagit Nuclear Project as they occur.

  8. A comprehensive approach to selecting the water chemistry of the secondary coolant circuit in the projects of nuclear power stations equipped with VVER-1200 reactors

    Science.gov (United States)

    Tyapkov, V. F.

    2011-05-01

    The paper presents the results obtained from studies on selecting the water chemistry of the secondary coolant circuit carried out for the project of a nuclear power station equipped with a new-generation VVER-1200 reactor on the basis of case calculations and an analysis of field experience gained at operating nuclear power stations.

  9. Electronic-excitation versus nuclear collision damage by ion-beams in dielectric materials (LiNbO{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, A. [Centro de Micro-Analisis de Materiales (CMAM), Campus de Cantoblanco, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Olivares, J. [Centro de Micro-Analisis de Materiales (CMAM), Campus de Cantoblanco, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Instituto de Optica, CSIC, Madrid (Spain); Garcia, G. [CELLS, Bellaterra, Barcelona (Spain); Agullo-Lopez, F. [Centro de Micro-Analisis de Materiales (CMAM), Campus de Cantoblanco, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Autonoma de Madrid (Spain)], E-mail: fal@uam.es

    2008-06-15

    The lattice disorder generated in LiNbO{sub 3} by electronic excitation is quantitatively assessed and compared to that produced by elastic nuclear collisions. In particular, the main differential features between the two mechanisms are clearly established. The analysis is based on a recent non-radiative exciton decay model. For ions with atomic mass {>=}15, the local damage caused by electronic excitation is strongly enhanced (up to three orders of magnitude) in comparison to that predicted by nuclear collisions.

  10. Experimental verification of proton beam monitoring in a human body by use of activity image of positron-emitting nuclei generated by nuclear fragmentation reaction.

    Science.gov (United States)

    Nishio, Teiji; Miyatake, Aya; Inoue, Kazumasa; Gomi-Miyagishi, Tomoko; Kohno, Ryosuke; Kameoka, Satoru; Nakagawa, Keiichi; Ogino, Takashi

    2008-01-01

    Proton therapy is a form of radiotherapy that enables concentration of dose on a tumor by use of a scanned or modulated Bragg peak. Therefore, it is very important to evaluate the proton-irradiated volume accurately. The proton-irradiated volume can be confirmed by detection of pair-annihilation gamma rays from positron-emitting nuclei generated by the nuclear fragmentation reaction of the incident protons on target nuclei using a PET apparatus. The activity of the positron-emitting nuclei generated in a patient was measured with a PET-CT apparatus after proton beam irradiation of the patient. Activity measurement was performed in patients with tumors of the brain, head and neck, liver, lungs, and sacrum. The 3-D PET image obtained on the CT image showed the visual correspondence with the irradiation area of the proton beam. Moreover, it was confirmed that there were differences in the strength of activity from the PET-CT images obtained at each irradiation site. The values of activity obtained from both measurement and calculation based on the reaction cross section were compared, and it was confirmed that the intensity and the distribution of the activity changed with the start time of the PET imaging after proton beam irradiation. The clinical use of this information about the positron-emitting nuclei will be important for promoting proton treatment with higher accuracy in the future.

  11. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  12. Calculation of Nuclear Particles Production at High-Energy Photon Beams from a Linac Operating at 6, 10 and 15 MV.

    Science.gov (United States)

    Marchesini, Renato; Bettega, Daniela; Calzolari, Paola; Pignoli, Emanuele

    2017-05-01

    Production of photonuclear particles in a tissue-equivalent medium has been calculated for linacs at 6, 10 and 15 MV from Varian TrueBeam. Based on the knowledge of bremsstrahlung fluence spectra and linac photon beam parameters, numerical integration was performed on the cross sections for photoparticle production of the constituent elements of tissue (2H,12C,13C,16O,17O,18O,14N,15N). At 15 MV, at the depth of photon maximum dose, the total absorbed dose due to neutrons, protons, alphas and residual nuclei from photon reactions in tissue (5.5E-05 Gy per Gy of photons) is comparable to that due to neutrons from accelerator head. Results reasonably agree with data reported in the literature using Monte Carlo models simulating linac head components. This work suggests a simple method to estimate the dose contributed by the photon-induced nuclear particles for high-energy photon beams produced by linacs in use, as it might be relevant for late stochastic effects. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  14. Damage-Tolerant, Lightweight, High-Temperature Radiator for Nuclear Powered Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced propulsion technologies such as Nuclear Electric Propulsion (NEP) have been partially limited by the mass of thermal rejection systems. NEP was proposed for...

  15. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle. The...

  16. The Fusion Driven Rocket: Nuclear Propulsion through Direct Conversion of Fusion Energy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a...

  17. Improved CVD Coatings for Carbide Based Nuclear Thermal Propulsion Fuel Elements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the great hurdles to further development and evaluation of nuclear thermal propulsion systems is the issue surrounding the release of radioactive material...

  18. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  19. Principles of designing mobile robots for nuclear applications: Some Soviet development projects

    Energy Technology Data Exchange (ETDEWEB)

    Adamov, E.O.; Ivanov, V.G.; Meieran, H.B.

    1990-01-01

    The I.V. Kurchatov Institute of Atomic Energy and the Research and Design Institute of Power Engineering, both designers of nuclear power plant systems and located in Moscow, USSR, have collectively recognized the positive merits of utilizing mobile robots in the nuclear industry. They have given authority to their subsidiary agency CENOTECH to mount an active campaign to program the development of new generations of mobile robots that will support routine and emergency situation operations in the nuclear industry. CENOTECH's rationale for design and performance requirements of mobile robot units to be utilized in the nuclear industry is presented in this paper. A description of design, performance requirements, and operational characteristics of four mobile robots that have been developed at CENOTECH within the past 3 yr is also presented: the 2-tracked KURSOR ; the 4 hybrid-wheeled TELER; the 12-wheeled BUGGY with articulated platforms; and the 2-tracked SADKO.

  20. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and/or Mars. These reactors require robust automatic control systems using low mass, rapid...

  1. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and Mars. These reactors require robust automatic control systems using low mass, rapid...

  2. Low-energy RI beam technology and nuclear clusters in the explosive pp-chain breakout process

    Energy Technology Data Exchange (ETDEWEB)

    Kubono, S. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0 (Japan); Yamaguchi, H.; Kahl, D. M.; Ohshiro, Y.; Watanabe, S.; Yamazaki, N. [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-858 (Japan); Yanagisawa, Y.; Wakabayashi, Y.; Kase, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-81 (Korea, Republic of); Hashimoto, T.; Fukuda, Y. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); He, J. J. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); Goto, A. [Faculty of Medcine, Yamagata University, Yamagata 990-2331 (Japan); Muto, H. [Center of General Education, Tokyo University of Science at Suwa, Chino, Nagano 391-0292 (Japan)

    2014-05-09

    The lecture includes two parts: One is a discussion on the technology for developing RIB beam facility based on the in-flight method and relevant experimental technology. The second part is a discussion on experimental efforts for studying the breakout process from the pp-chain region based on recent works with low energy RI beams. The discussion of the second part specifically covers the problem of the vp-process in type II supernovae in terms of alpha cluster nature for the reactions.

  3. Nuclear data. Situation and future projects; Les donnees nucleaires. Situation et perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Bioux, P.

    1995-01-01

    Nuclear power provides the major part of the electricity generation in France, using a system of highly developed Pressurized Water Reactors. Electricite de France, which is responsible for the exploitation of this system, is concerned to ensure the continuity of the expertise and facilities which provide relevant basic scientific information contributing to the efficient exploitation of the system and, in particular, the continuity of the means for providing relevant nuclear data. The nuclear data requirements for the exploitation of the existing nuclear power system have been largely met. However, there remain some needs, in particular in the field of reactor neutronics. Furthermore if one considers the future (for example, the next 10 years) it is not certain that will be possible to meet the needs which are expected to arise. The review, commissioned on behalf of EDF, about the current status and future expectations for work in this field, has shown certain tendencies in the international situation. In particular one notes a general reduction in the effort both in Western Europe and the United States. This negative tendency can perhaps be explained by the almost general reduction world-wide in new nuclear power developments. However, unresolved problems remain, such as the development of methods for reducing the stocks of plutonium and the incineration and storage of a nuclear waste of long duration. In addition improvements in the accuracy of nuclear data could result in non-negligible economic benefits in the exploitation of the existing nuclear facilities. For these very important reasons it is desirable to reverse the present trend. (author). 2 annexes.

  4. Project report about the motives of the future law project 'security and nuclear clearness'; Projet d'expose des motifs du futur projet de loi ''securite et transparence nucleaire''

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    This project aims to prevent the hazards in relation with nuclear activities for man and his environment, as well to reinforce information on risks associated to these activities and on measures taken to avoid them. (N.C.)

  5. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y. [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry.

  6. The Atlas3D project -- XXXI. Nuclear radio emission in nearby early-type galaxies

    CERN Document Server

    Nyland, Kristina; Wrobel, Joan M; Sarzi, Marc; Morganti, Raffaella; Alatalo, Katherine; Blitz, Leo; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2016-01-01

    We present the results of a high-resolution, 5 GHz, Karl G. Jansky Very Large Array study of the nuclear radio emission in a representative subset of the Atlas3D survey of early-type galaxies (ETGs). We find that 51 +/- 4% of the ETGs in our sample contain nuclear radio emission with luminosities as low as 10^18 W/Hz. Most of the nuclear radio sources have compact (< 25-110 pc) morphologies, although < 10% display multi-component core+jet or extended jet/lobe structures. Based on the radio continuum properties, as well as optical emission line diagnostics and the nuclear X-ray properties, we conclude that the majority of the central 5 GHz sources detected in the Atlas3D galaxies are associated with the presence of an active galactic nucleus (AGN). However, even at sub-arcsecond spatial resolution, the nuclear radio emission in some cases appears to arise from low-level nuclear star formation rather than an AGN, particularly when molecular gas and a young central stellar population is present. This is in...

  7. GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

    CERN Document Server

    Jia, Xun; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. To lower the imaging dose, we have developed a fast GPU-based CBCT reconstruction algorithm. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. Multi-grid technique is also employed. It is found that 20~40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 sec on a NVIDIA Tesla C1060 GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studi...

  8. Advantages of using 3D design tools in the nuclear power plants projects; Ventajas del uso de herramientas de diseno 3D en los proyectos de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, P.; Melendro, J.; Gomez, A.; Hermana, I.

    2011-07-01

    It there is anything that distinguished Iberdrola Ingeneria y Construccion, as part of the Iberdrola Group, it is its firm commitment to innovation and continuous improvement. This is the philosophy that led the company to its interest in three-dimensional design tools back when they were in an early stage of development : very little international implementation, lack of integration with other applications, absence of previous experiences to understand the best possible configuration for each case, etc. Nevertheless, the company was able to see the tremendous advantage of having a construction program in the early months of a project- a detailed program that could predict, and therefore avoid, the problems that, if not anticipated, would arise in the construction phase when they result in higher costs, longer time frames and a multitude of complications. This is precisely what 3D design tools offer prediction and this has been proven in the latest combined cycle projects executed with these tools. A project executed without errors not only decreases cost and time overruns, but also necessarily increases the quality of the end result. Efficiency and quality: these are both basic goals of Iberdrola Ingenieria y Construccion. The knowledge of and skill in the use of these tools have grown at the same time that their development has reached increasingly higher levels. As a result, Iberdrola Ingenieria y Conctruccion now has intensive experience in the use of 3D design tools and is preprared for the future challenges posed by these tools, the capabilities of which have attained such heights that it is possible to take on one of the most technically challenging projects that exists a nuclear power plant. And we are ready. (Author)

  9. Measuring correlations in non-separable vector beams using projective measurements

    CERN Document Server

    Subramanian, Keerthan

    2016-01-01

    In quantum mechanics, two particles are said to be entangled if the composite wavefunction is non-separable. Separating the two particles and measuring their coincidences as was done in the Aspect experiment leads to a modulated correlation between the polarization states of the two particles. In this article we demonstrate a similar experiment to look at a system whose two degrees of freedom (DoF)- polarization and mode - are entangled, ie the system can be modelled as a non-separable function in the Hilbert space. We propose an interferometric method to perform projective measurements that leads to correlations as seen for entangled quantum particles.

  10. The Politics of Forgetting: Otto Hahn and the German Nuclear-Fission Project in World War II

    Science.gov (United States)

    Sime, Ruth Lewin

    2012-03-01

    As the co-discoverer of nuclear fission and director of the Kaiser Wilhelm Institute for Chemistry, Otto Hahn (1879-1968) took part in Germany`s nuclear-fission project throughout the Second World War. I outline Hahn's efforts to mobilize his institute for military-related research; his inclusion in high-level scientific structures of the military and the state; and his institute's research programs in neutron physics, isotope separation, transuranium elements, and fission products, all of potential military importance for a bomb or a reactor and almost all of it secret. These activities are contrasted with Hahn's deliberate misrepresentations after the war, when he claimed that his wartime work had been nothing but "purely scientific" fundamental research that was openly published and of no military relevance.

  11. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    Energy Technology Data Exchange (ETDEWEB)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  12. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept

    Science.gov (United States)

    Lee, Ho; Fahimian, Benjamin P.; Xing, Lei

    2017-03-01

    This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method’s performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.

  13. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept.

    Science.gov (United States)

    Lee, Ho; Fahimian, Benjamin P; Xing, Lei

    2017-03-21

    This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method's performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.

  14. Experimental validation of a Monte Carlo-based kV x-ray projection model for the Varian linac-mounted cone-beam CT imaging system

    Science.gov (United States)

    Lazos, Dimitrios; Pokhrel, Damodar; Su, Zhong; Lu, Jun; Williamson, Jeffrey F.

    2008-03-01

    Fast and accurate modeling of cone-beam CT (CBCT) x-ray projection data can improve CBCT image quality either by linearizing projection data for each patient prior to image reconstruction (thereby mitigating detector blur/lag, spectral hardening, and scatter artifacts) or indirectly by supporting rigorous comparative simulation studies of competing image reconstruction and processing algorithms. In this study, we compare Monte Carlo-computed x-ray projections with projections experimentally acquired from our Varian Trilogy CBCT imaging system for phantoms of known design. Our recently developed Monte Carlo photon-transport code, PTRAN, was used to compute primary and scatter projections for cylindrical phantom of known diameter (NA model 76-410) with and without bow-tie filter and antiscatter grid for both full- and half-fan geometries. These simulations were based upon measured 120 kVp spectra, beam profiles, and flat-panel detector (4030CB) point-spread function. Compound Poisson- process noise was simulated based upon measured beam output. Computed projections were compared to flat- and dark-field corrected 4030CB images where scatter profiles were estimated by subtracting narrow axial-from full axial width 4030CB profiles. In agreement with the literature, the difference between simulated and measured projection data is of the order of 6-8%. The measurement of the scatter profiles is affected by the long tails of the detector PSF. Higher accuracy can be achieved mainly by improving the beam modeling and correcting the non linearities induced by the detector PSF.

  15. Nuclear Ambitions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China will begin to build the world’s first third-generation nuclear power plant at the Sanmen Nuclear Power Project in Sanmen City, coastal Zhejiang Province, in March 2009, accord-ing to the State Nuclear Power Technology Corp.

  16. Preliminary studies of the quickly pulsed synchrotron involved in the Beta-Beam project; Etudes preliminaires du synchrotron rapidement pulse du projet Beta-Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lachaize, A

    2007-07-01

    This study presents a quickly-pulsed synchrotron able to accelerate He{sup 6} and Ne{sup 18} beams from 100 MeV/u till 3.5 GeV (proton equivalent) The accelerator is made up of 48 bending dipoles and 42 focusing quadrupoles. The design of the HF accelerating system, the bunch injection and the correction of errors in beam dynamics are dealt with.

  17. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  18. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    DEFF Research Database (Denmark)

    Bertholet, Jenny; Wan, Hanlin; Toftegaard, Jakob;

    2017-01-01

    algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated....... The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio....... For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations....

  19. IAEA coordinated research project on nuclear data for charged-particle monitor reactions and medical isotope production

    Science.gov (United States)

    Capote, Roberto; Nichols, Alan L.; Nortier, Francois Meiring; Carlson, Brett V.; Engle, Jonathan W.; Hermanne, Alex; Hussain, Mazhar; Ignatyuk, Anatoly V.; Kellett, Mark A.; Kibédi, Tibor; Kim, Guinyun; Kondev, Filip G.; Lebeda, Ondrej; Luca, Aurelian; Naik, Haladhara; Nagai, Yasuki; Spahn, Ingo; Suryanarayana, Saraswatula V.; Tárkányi, Ferenc T.; Verpelli, Marco

    2017-09-01

    An IAEA coordinated research project was launched in December 2012 to establish and improve the nuclear data required to characterise charged-particle monitor reactions and extend data for medical radionuclide production. An international team was assembled to undertake work addressing the requirements for more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. These studies are nearing completion, and are briefly described below.

  20. Nuclear forensic field exercise no.1: work performed in support of CRTI project 04-0030TD. Technical memorandum

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, C. [Defence R and D Canada - Ottawa, Ottawa, Ontario (Canada); Hinton, A. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2006-11-15

    DRDC Ottawa is leading a project designed in part to develop protocols for forensic investigators working in a radiologically contaminated environment. As such, a radiological field exercise was held to review current forensic investigator methods and identify problem areas with respect to the collection of evidence from a contaminated crime scene. The Canadian Nuclear Safety Commission (CNSC), DRDC Ottawa, Royal Canadian Mounted Police (RCMP) and the Ottawa Police Service (OPS) CBRN Forensic Investigation Specialists participated in the exercise. This document provides a description of the scenario and the responder actions during the exercise, and gives lessons learned and recommendations that will feed directly into the forensic investigator protocols. (author)

  1. DECOVALEX III PROJECT. Mathematical Models of Coupled Thermal-Hydro-Mechanical Processes for Nuclear Waste Repositories. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Jing, L.; Stephansson, O. [Royal Inst. of Technology, Stockholm (Sweden). Engineering Geology; Tsang, C.F. [Lawrence Berkely National Laboratory, Berkeley, CA (United States). Earth Science Div.; Mayor, J.C. [ENRESA, Madrid (Spain); Kautzky, F. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)] (eds.)

    2005-02-15

    DECOVALEX is an international consortium of governmental agencies associated with the disposal of high-level nuclear waste in a number of countries. The consortium's mission is the DEvelopment of COupled models and their VALidation against EXperiments. Hence the acronym/name DECOVALEX. Currently, agencies from Canada, Finland, France, Germany, Japan, Spain, Switzerland, Sweden, United Kingdom, and the United States are in DECOVALEX. Emplacement of nuclear waste in a repository in geologic media causes a number of physical processes to be intensified in the surrounding rock mass due to the decay heat from the waste. The four main processes of concern are thermal, hydrological, mechanical and chemical. Interactions or coupling between these heat-driven processes must be taken into account in modeling the performance of the repository for such modeling to be meaningful and reliable. DECOVALEX III is organized around four tasks. The FEBEX (Full-scale Engineered Barriers EXperiment) in situ experiment being conducted at the Grimsel site in Switzerland is to be simulated and analyzed in Task 1. Task 2, centered around the Drift Scale Test (DST) at Yucca Mountain in Nevada, USA, has several sub-tasks (Task 2A, Task 2B, Task 2C and Task 2D) to investigate a number of the coupled processes in the DST. Task 3 studies three benchmark problems: a) the effects of thermal-hydrologic-mechanical (THM) coupling on the performance of the near-field of a nuclear waste repository (BMT1); b) the effect of upscaling THM processes on the results of performance assessment (BMT2); and c) the effect of glaciation on rock mass behavior (BMT3). Task 4 is on the direct application of THM coupled process modeling in the performance assessment of nuclear waste repositories in geologic media. This executive summary presents the motivation, structure, objectives, approaches, and the highlights of the main achievements and outstanding issues of the tasks studied in the DECOVALEX III project

  2. Seismic structural fragility investigation for the San Onofre Nuclear Generating Station, Unit 1 (Project I); SONGS-1 AFWS Project

    Energy Technology Data Exchange (ETDEWEB)

    Wesley, D.A.; Hashimoto, P.S.

    1982-04-01

    An evaluation of the seismic capacities of several of the San Onofre Nuclear Generating Station, Unit 1 (SONGS-1) structures was conducted to determine input to the overall probabilistic methodology developed by Lawrence Livermore National Laboratory. Seismic structural fragilities to be used as input consist of median seismic capacities and their variabilities due to randomness and uncertainty. Potential failure modes were identified for each of the SONGS-1 structures included in this study by establishing the seismic load-paths and comparing expected load distributions to available capacities for the elements of each load-path. Particular attention was given to possible weak links and details. The more likely failure modes were screened for more detailed investigation.

  3. Effluent Scrubbing of Engine Exhaust of a Nuclear Thermal Propulsion Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project identified specific knowledge and expertise in radioactive hydrogen effluent filter technology, so that internal resources on NTP engine exhaust...

  4. Somatotopic direct projections from orofacial areas of secondary somatosensory cortex to trigeminal sensory nuclear complex in rats.

    Science.gov (United States)

    Haque, T; Akhter, F; Kato, T; Sato, F; Takeda, R; Higashiyama, K; Moritani, M; Bae, Y-C; Sessle, B J; Yoshida, A

    2012-09-06

    Little is known about the projections from the orofacial areas of the secondary somatosensory cortex (S2) to the pons and medulla including the second-order somatosensory neuron pools. To address this in rats, we first examined the distribution of S2 neurons projecting to the trigeminal principal nucleus (Vp) or oral subnucleus (Vo) of the trigeminal sensory nuclear complex (TSNC) after injections of a retrograde tracer, Fluorogold (FG), into five regions in the Vp/Vo which were responsive to stimulation of trigeminal nerves innervating the orofacial tissues. A large number of FG-labeled neurons were found with a somatotopic arrangement in the dorsal areas of S2 (orofacial S2 area). This somatotopic arrangement in the orofacial S2 area was shown to closely match that of the orofacial afferent inputs by recording cortical surface potentials evoked by stimulation of the trigeminal nerves. We then examined the morphology of descending projections from these electrophysiologically defined areas of the orofacial S2 to the pons and medulla after injections of an anterograde tracer, biotinylated dextranamine (BDA), into the areas. A large number of BDA-labeled axon fibers and terminals were seen only in some of the second-order somatosensory neuron pools, most notably in the contralateral TSNC, although the labeled terminals were not seen in certain rostrocaudal levels of the contralateral TSNC including the rostrocaudal middle level of the trigeminal interpolar subnucleus. The projections to the TSNC showed somatotopic arrangements in dorsoventral, superficial-deep and rostrocaudal directions. The somatotopic arrangements in the Vp/Vo closely matched those of the electrophysiologically defined central projection sites of the orofacial trigeminal afferents in the TSNC. The present results suggest that the orofacial S2 projects selectively to certain rostrocaudal levels of the contralateral TSNC, and the projections may allow the orofacial S2 to accurately modulate

  5. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT.

    Science.gov (United States)

    Maier, Andreas; Wigstrom, Lars; Hofmann, Hannes G; Hornegger, Joachim; Zhu, Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-11-01

    processing (from 1336 to 150 s). Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.

  6. THE NUCLEAR ENCOUNTER PROBABILITY

    NARCIS (Netherlands)

    SMULDERS, PJM

    1994-01-01

    This Letter dicusses the nuclear encounter probability as used in ion channeling analysis. A formulation is given, incorporating effects of large beam angles and beam divergence. A critical examination of previous definitions is made.

  7. Implementation of manufacturing data management application in the scientific research project. Case: CERN, the European Organization for Nuclear Research

    CERN Document Server

    Saifoulina, Margarita

    2010-01-01

    This Bachelor’s thesis examined the implementation process of an MTF (Manufacturing and Test Folder) application in the CLIC (Compact Linear Collider) Radio Frequency Structure Development project for manufacturing data management purposes. The primary goal of the study was to investigate how MTF implementation and its integration with CERN EDMS (Engineering and Equipment Data Management System) system could facilitate product life cycle through the supply chain, and could affect on manufacturing operations performance in internaland external levels. The aim of the study was also to find out implementation differences within CERN (European Organization for Nuclear Research) projects. The study is divided into two parts: a qualitative theory section and an empirical section. In the theory section differences of features between PDM (Product Data Management), EDM (Engineering Data Management) and PLM (Product Life Cycle Management) systems were studied. The thesis examined the benefits and managerial challeng...

  8. Assembling of a low energy ion beam analysis facility and use of Nuclear Microprobe techniques in geological studies

    Energy Technology Data Exchange (ETDEWEB)

    Utui, R.

    1996-11-01

    In this work, both PIXE and ion beam induced luminescence, or just Ionoluminescence (IL) were used for geochemical studies. The possibility of rapid absolute quantification of elements in the ppm level by PIXE combined with the yet higher sensitivity of IL to transition metals and Rare Earth Elements (REE) activators, in the absence of quenching phenomena, allow for a synergic use of the two methods in geological applications with enhanced sensitivity. IL and PIXE were combined for studying REE distribution in apatite minerals and ion beam induced damage in inorganic material in general with emphasis to synthetically grown zircon crystals doped with REE. Due to the sensitivity of IL to changes in chemical bonding in the material, beam damage effects can be studied even at low integrated doses, through wavelength shift or fading of the induced light. Micro PIXE technique was used for studying profile concentrations of trace elements in pyrite grains and of elements used as geothermometers. Geothermometry allowed to assess the cooling rates in iron meteorites and the mineralization conditions in metamorphic rocks, attempting to describe the tectonic history of the terranes, with application in petrologic studies and geological prospecting. 148 refs.

  9. The Research of Project Schedule Plan and Control on UPS Design in Nuclear Island of Z Nuclear Power Plant%Z核电站核岛UPS设备设计进度计划及控制研究

    Institute of Scientific and Technical Information of China (English)

    林建

    2012-01-01

    采用工作分解结构分解了Z核电站核岛UPS设备设计项目,并用关键路径法编制了该项目进度,结合项目特点,基于PDCA控制流程对项目实施进度控制,确保项目顺利实施.%This paper uses work breakdown structure to break down the UPS design project in nuclear island of Z nuclear power plant, uses critical path method to build the schedule of the project, combined with the characteristics of the project, based on the PDCA control flow, controls the progress of project implementation and ensures the smooth implementation of the project.

  10. Nuclear Photonics

    CERN Document Server

    Habs, D; Jentschel, M; Thirolf, P G

    2012-01-01

    With new gamma-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest with 10^13 g/s and a bandwidth of Delta E_g/E_g ~10^-3, a new era of g-beams with energies <=20 MeV comes into operation, compared to the present world-leading HIGS facility (Duke Univ., USA) with 10^8 g/s and Delta E_g/E_g~0.03. Even a seeded quantum FEL for g-beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused g-beams. We describe a new experiment at the g-beam of the ILL reactor (Grenoble), where we observed for the first time that the index of refraction for g-beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for g-beams are being developed. Thus we have to optimize the system of the g-beam facility, the g-beam optics and g-detectors. We can trade g-intensity for band width, going down to Delta E_g/E_g ~ 10^-6 and address individual nuclear levels. 'Nuclear pho...

  11. Nuclear data project in Korea and resonance parameter evaluation of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jonghwa; Oh, Soo-Youl [Korea Atomic Energy Research Institute, Yusong, Taejon (Korea)

    2000-03-01

    Nuclear data activities in the fields of evaluation, processing, measurement, and service in Korea are presented in this paper. As one of the current activities, the neutron resonance parameters for stable or long-lived nineteen fission products have been evaluated and the results are presented here. (author)

  12. Learning Nuclear Chemistry through Practice: A High School Student Project Using PET in a Clinical Setting

    Science.gov (United States)

    Liguori, Lucia; Adamsen, Tom Christian Holm

    2013-01-01

    Practical experience is vital for promoting interest in science. Several aspects of chemistry are rarely taught in the secondary school curriculum, especially nuclear and radiochemistry. Therefore, we introduced radiochemistry to secondary school students through positron emission tomography (PET) associated with computer tomography (CT). PET-CT…

  13. 76 FR 68511 - STP Nuclear Operating Company; South Texas Project, Units 1 and 2; Exemption

    Science.gov (United States)

    2011-11-04

    ... systems for light-water nuclear power reactors,'' and Appendix K to 10 CFR part 50, ``ECCS Evaluation... regulations presume the use of zircaloy or ZIRLO \\TM\\ fuel rod cladding. Thus, an exemption from the requirements of 10 CFR 50.46 and Appendix K is needed to support the use of a different fuel rod...

  14. Nuclear Policy and World Order: Why Denuclearization. World Order Models Project. Occasional Paper Number Two.

    Science.gov (United States)

    Falk, Richard A.

    The monograph examines the relationship of nuclear power to world order. The major purpose of the document is to stimulate research, education, dialogue, and political action for a just and peaceful world order. The document is presented in five chapters. Chapter I stresses the need for a system of global security to counteract dangers brought…

  15. Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4

    Energy Technology Data Exchange (ETDEWEB)

    Denning, J.L.

    1994-09-01

    The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

  16. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  17. Nuclear photonics

    Science.gov (United States)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  18. RI-induced reaction studies by new energy-degrading beam line, OEDO

    Science.gov (United States)

    Michimasa, Shin'ichiro

    2014-09-01

    The RI beam factory (RIBF) has expanded variety of accessible nuclei, and provides very intense RI beams. However, the beams are energy range of above 100 MeV/u, and are not necessarily suitable to some kinds of nuclear reactions. Therefore, deceleration of intense RI beams from RIBF open potentially new scientific opportunities to access various states in exotic nuclei by using characteristics probes, such as transfer reactions at several ten MeV/u and fusion reactions at several MeV/u. For energy degrading of nuclear beams, the degrader is generally used. This method easily controls beam energy, while multiple scattering effect and energy straggling in the material broaden the beam spot size at the downstream foci. Therefore, a key issue for reaction measurements is achievement of ion transport to reduce the beam emittance at the secondary target. For this purpose, CNS has set up OEDO (Optimized Energy Degrading Optics for RI beam) project for production of high-quality low energy RI beams. The OEDO beam line scheme is planned to be achieved by re-arrangement of magnets of the high-resolution beam line, where the SHARAQ spectrometer is useful as a spectrograph for low-energy reaction spectroscopy. In this presentation, I will discuss scientific opportunities in the OEDO beam line and the SHARAQ spectrometer.

  19. Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina.

    Science.gov (United States)

    Pow, David V; Sullivan, Robert K P

    2007-05-01

    Tissues often respond to damage by recapitulating developmental programs. We have investigated whether anatomical signs of developmental recapitulation are evident in cone photoreceptors of the aged and AMD-afflicted human retina. Radial migration of cell nuclei mediated by microtubules is a characteristic feature of cells in the developing retina. Similarly, neurite outgrowth is a feature of developing neurons. We have examined whether nuclear kinesis and neurite outgrowth from cone photoreceptors is evident. Calbindin-positive cone photoreceptor nuclei are normally positioned as a single layer of somata at the outer border of the outer nuclear layer. In AMD-afflicted retinae, many nuclei are translocated, with some somata abutting the outer plexiform layer (OPL) and others outside the outer limiting membrane whilst many nuclei are present at intermediate levels. The axonal processes of many cones were also aberrant, displaying tortuous pathways as they projected to the OPL, with occasional evidence for bifurcation at points where the axon changed direction. We suggest that tangential extension of collateral neurites and the rapid retraction of the original process may give rise to the tortuous axonal projections observed. Since microtubules are key mediators of both neurite extension and nuclear kinesis we examined expression of microtubule associated protein 2 (MAP2) which is an important regulator of neurite extension. The strong expression of MAP2 observed in those cells with aberrant morphologies supports the notion that abnormal microtubule-mediated remodelling events are present in the AMD retina and to a lesser extent in normal aged retinas, allowing cone photoreceptors to recapitulate two key features of development.

  20. Environmental Projects. Volume 17; Biological Assessment, Opinion, and New 34-Meter Beam-Waveguide Antenna (DSS 24) at Apollo Site

    Science.gov (United States)

    Bengelsdorf, Irving

    1996-01-01

    This report deals with the Biological Assessment, Biological Opinion and Final Report on the construction of a high- efficiency 34-meter, multifrequency beam-waveguide antenna at the Apollo Site of the Goldstone Deep Space Communications Complex, operated by JPL. According to the Endangered Species Act of 1973, a Biological Assessment must be conducted and a Biological Opinion, with terms and conditions, rendered (the Opinion by the U.S. Department of the Interior) before construction of any federal project that may affect endangered or threatened flora or fauna. After construction, a final report is filed with the Department. The desert tortoise, designated "threatened" by the U.S. Fish and Wildlife Service, and the Mojave ground squirrel and the Lane Mountain milk vetch, both designated "candidate threatened," required the reporting specified by the Act. The Assessment found no significant danger to the animal species if workers are educated about them. No stands of the plant species were observed in the surveyed construction area. The Department issued a Biological Opinion to safeguard the two animal species. The Service and the California Department of Fish and Game both issued a Biological Concurrence that JPL had satisfied all environmental criteria for preserving threatened species.