WorldWideScience

Sample records for nuclear auxiliary power

  1. Auxiliary System Load Schemes in Large Thermal and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kuzle, I.; Bosnjak, D.; Pandzic, H.

    2010-01-01

    Uninterrupted auxiliary system power supply in large power plants is a key factor for normal operation, transient states, start-ups and shutdowns and particularly during fault conditions. Therefore, there are many challenges in designing the main electrical system as well as the auxiliary systems power supply. Depending upon the type of fuel used and the environmental control system required, a thermal power plant may consume as much as 10% of its total generation for auxiliary power, while a nuclear power plant may require only 4 - 6% auxiliaries. In general, the larger the power generating plant, the higher the voltage selected for the AC auxiliary electric system. Most stations in the 75 to 500 MW range utilize 4,2 kV as the base auxiliary system voltage. Large generating stations 500 - 1000 MW and more use voltage levels of 6,9 kV and more. Some single dedicated loads such as electric driven boiler feed pumps are supplied ba a 13,8 kV bus. While designing the auxiliary electric system, the following areas must be considered: motor starting requirements, voltage regulation requirements, short-circuit duty requirements, economic considerations, reliability and alternate sources. Auxiliary power supply can't be completely generalized and each situation should be studied on its own merits to determine the optimal solution. Naturally, nuclear power plants have more reliability requirements and safety design criteria. Main coolant-pump power supply and continuity of service to other vital loads deserve special attention. This paper presents an overview of some up-to-date power plant auxiliary load system concepts. The main types of auxiliary loads are described and the electric diagrams of the modern auxiliary system supply concepts are given. Various alternative sources of auxiliary electrical supply are considered, the advantages and disadvantages of these are compared and proposals are made for high voltage distribution systems around the thermal and nuclear plant

  2. Analysis of design of auxiliary system of Booshehr Nuclear Power Plant

    International Nuclear Information System (INIS)

    Naseh Hasanzadeh, M.

    1999-01-01

    Power plant's internal auxiliary system has an important role in its safety operation. Because of the decay heat and safety aspects in the nuclear power plants, this role is more important. In this thesis, operation of the nuclear power plant with PWR reactor is studied and deferent nuclear systems described. In the next section all electrical loads in the Booshehr Nuclear Power Plant identified and feeding methods of each load is determined. by use of the single line diagram of the internal auxiliary system, the nominal rating of all electrical devices as transformers, inverters, Ups, diesel generators and etc. is determined. In the following, short circuit calculations performed and by above conclusion, rating values of circuit breakers is determined. At last the starting problems of electrical motors is studied and the results of motor's behavior at starting moment is discussed

  3. Civil engineering in nuclear power stations: design of the turbine building and nuclear auxiliary building

    International Nuclear Information System (INIS)

    Lacroix, R.

    1985-01-01

    After enumerating the specific features of civil engineering in nuclear power stations. One goes on to examine the principal deliberations undertaken with the aim of optimising projects for transition from the P4 to P'4 and then N4 generations of nuclear power stations. The courses of action decided with respect to the design of the machine room and auxiliary equipment building are described [fr

  4. Introduction to deaerator in auxiliary water supply system of nuclear power plant

    International Nuclear Information System (INIS)

    Dong Jianguo; Zhou Xia; Lei Yongxia

    2015-01-01

    The paper introduces the operation theory and thermal calculation and verification requirements for the deaerator in the auxiliary water supply system of nuclear power plant. In addition, it describes the key factors in terms of function, structure, design and fabrication of equipment. (authors)

  5. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  6. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant

    International Nuclear Information System (INIS)

    Araujo, Jefferson Borges

    1998-01-01

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  7. Dynamic analysis of auxiliary buildings in nuclear power plants

    International Nuclear Information System (INIS)

    Subramanian, K.V.; Madhava Rao, A.S.; Warudkar, A.S.

    1989-01-01

    All nuclear power plants have a large number of auxiliary buildings housing various services and control systems required for the operation of the plant. Illustrative examples are turbine building, control building, service building etc. These buildings are seismically qualified as Class I or Class II structures. Usually, these auxiliary buildings are of low rise type with two or three floors and floor heights varying from five to eight meters and of framed construction in steel or concrete or a combination of both the materials. The floors are usually staggered with large cutouts and may not extend over the full area in plan. Some of the bays are often of double story height with the columns continuous over a story in order to accommodate cranes and other equipment. The structural elements supporting the roof may consist of steel roof trusses instead of beams. The seismic analysis of these structures involves the formulation of the analytical model that can simulate the physical behavior of the structure as close as possible taking into consideration the practical aspects. The criteria adopted to formulate the mathematical model has an important bearing on the evaluated dynamic characteristics and seismic response

  8. Considerations on safety against seismic excitations in the project of reactor auxiliary building and control building in nuclear power plants

    International Nuclear Information System (INIS)

    Santos, S.H.C.; Castro Monteiro, I. de

    1986-01-01

    The seismic requests to be considered in the project of main buildings of a nuclear power plant are discussed. The models for global seismic analysis of nuclear power plant structures, as well as models for global strength distribution are presented. The models for analysing reactor auxiliary building and control building, which together with the reactor building and turbine building form the main energy generation complex in a nuclear power plant, are described. (M.C.K.) [pt

  9. Cooling system for auxiliary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Maerker, W.; Mueller, K.; Roller, W.

    1981-01-01

    From the reactor auxiliary and ancillary systems of a nuclear facility heat has to be removed without the hazard arising that radioactive liquids or gases may escape from the safe area of the nuclear facility. A cooling system is described allowing at every moment to make available cooling fluid at a temperature sufficiently low for heat exchangers to be able to remove the heat from such auxiliary systems without needing fresh water supply or water reservoirs. For this purpose a dry cooling tower is connected in series with a heat exchanger that is cooled on the secondary side by means of a refrigerating machine. The cooling pipes are filled with a nonfreezable fluid. By means of a bypass a minimum temperature is guaranteed at cold weather. (orig.) [de

  10. IEEE C37.105-1987: IEEE standard for qualifying Class 1E protective relays and auxiliaries for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the basic principles, requirements, and methods for qualifying Class 1E protective relays and auxiliaries such as test and control switches, terminal blocks, and indicating lamps for applications in nuclear power generating stations. When properly employed it can be used to demonstrate the design adequacy of such equipment under normal, abnormal, design basis event and post design basis event conditions in accordance with ANSI/IEEE Std 323-1983. When protective relays and auxiliaries are located in areas not subject to harsh environments, environmental qualification is not required. Protective relays and auxiliaries located inside primary containment in a nuclear power generating station present special conditions beyond the scope of this document. The qualification procedure presented is generic in nature. Other methods may be used at the discretion of the qualifier, provided the basic precepts of ANSI/IEEE Std 32301983 are satisfied

  11. Full scale vibration test on nuclear power plant auxiliary building: Part I

    International Nuclear Information System (INIS)

    Langer, V.; Tinic, S.; Berger, E.; Zwicky, P.; Prater, E.G.

    1987-01-01

    In connection with the construction of the reinforced concrete auxiliary building housing the two boric water tanks (so-called BOTA building) of the Beznau Nuclear Power Plant in Switzerland the opportunity was given to carry out full scale vibration tests in November 1985. The overall aim of the tests was to validate computational models and parameters widely used in the seismic analysis of the structures and critical components of nuclear power plants. The scope of the experimental investigation was the determination of the eigenfrequencies and damping values for the fundamental soil-structure interaction (SSI) modes. The excitation level was aimed to be as high as feasibly possible. A working group was formed of representatives of the owner, NOK, the consulting firm Basler and Hofmann and the ETH to supervise the project. The project's main phases were the planning and execution of the tests, the evaluation of recorded data, numerical simulation of the tests using different computer models and finally the comparison and interpretation of measured and computed results

  12. ASCERTAINMENT OF ELECTRIC-SUPPLY SCHEMES RELIABILITY FOR THE ATOMIC POWER PLANT AUXILIARIES

    Directory of Open Access Journals (Sweden)

    A. L. Starzhinskij

    2015-01-01

    Full Text Available The paper completes ascertainment of electrical-supply scheme reliability for the auxiliaries of a nuclear power plant. Thereat the author considers the system behavior during the block normal operation, carrying out current maintenance, and capital repairs in combination with initiating events. The initiating events for reactors include complete blackout, i.e. the loss of outside power supply (normal and reserve; emergency switching one of the working turbogenerators; momentary dumping the normal rating to the level of auxiliaries with seating the cutout valve of one turbo-generator. The combination of any initiating event with the repairing mode in case of one of the system elements failure should not lead to blackout occurrence of more than one system of the reliable power supply. This requirement rests content with the help of the reliable power supply system self-dependence (electrical and functional and the emergency power-supply operational autonomy (diesel generator and accumulator batteries.The reliability indicators of the power supply system for the nuclear power plant auxiliaries are the conditional probabilities of conjoined blackout of one, two, and three sections of the reliable power supply conditional upon an initiating event emerging and the blackout of one, two, and three reliable power-supply sections under the normal operational mode. Furthermore, they also are the blackout periodicity of one and conjointly two, three, and four sections of normal operation under the block normal operational mode. It is established that the blackout of one bus section of normal operation and one section of reliable power-supply system of the auxiliaries that does not lead to complete blackout of the plant auxiliaries may occur once in three years. The probability of simultaneous power failure of two or three normal-operation sections and of two reliable power-supply sections during the power plant service life is unlikely.

  13. Systems for Nuclear Auxiliary Power annual report, government fiscal year 1976/TQ

    International Nuclear Information System (INIS)

    1976-01-01

    The overall objective of the Systems for Nuclear Auxiliary Power (SNAP) Program is to continue system and component engineering activities relating to the zirconium hydride (ZrH) reactor. The specific objectives for FY 1976/TQ were to: (1) study standardized ZrH reactor space power systems and components, (2) perform preconceptual analysis and design of ZrH reactor--organic Rankine power systems for subsea applications, (3) conduct fuel and hydrogen barrier investigations, (4) perform system studies in support of the Department of Defense and their contractors as directed by ERDA, (5) test components, and (6) provide for material disposal and facility surveillance. In the study, representative systems which utilize Brayton, Rankine, and Stirling cycle power conversion units as well as thermoelectric modules, are analyzed at power levels of 10, 25, 50, and 75 kWe. Waste heat rejection is accomplished by concentric, cylindrical space radiators which can be nested during launch for space shuttle integration. Subsequent studies, which supported this effort, were completed and provided useful information on system reliability and survivability

  14. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  15. Auxiliary buildings

    International Nuclear Information System (INIS)

    Lakner, I.; Lestyan, E.

    1979-01-01

    The nuclear power station represents a complicated and a particular industrial project. Consequently, the design of the auxiliary buildings serving the power station (offices, kitchen, refreshment room, workshops, depots, water treatment plant building, boiler houses, etc.) requires more attention than usual. This chapter gives a short survey of the auxiliary buildings already completed and discusses the problems of their design, location and structure. (author)

  16. 14 CFR 23.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 23.1142... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on the... power unit. [Doc. No. 26344, 58 FR 18974, Apr. 9, 1993] ...

  17. Effects of Auxiliary-Source Connection in Multichip Power Module

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Wang, Xiongfei

    2017-01-01

    the power loop and the gate loop like how the Kelvin-source connection does, owing to their involvement in the loop of the power source current. Three effects of the auxiliary-source connections are then analyzed, which are 1) the common source stray inductance reduction, 2) the transient drain......Auxiliary-source bond wires and connections are widely used in power modules with paralleled MOSFETs or IGBTs. This paper investigates the operation mechanism of the auxiliary-source connections in multichip power modules. It reveals that the auxiliary-source connections cannot fully decouple......-source current imbalance mitigation, and 3) the influence on the steady-state current distribution. Lastly, simulations and experimental results validate the theoretical analysis....

  18. 14 CFR 25.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 25.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for starting...

  19. 14 CFR 29.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 29.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for starting...

  20. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  1. A reliability centered maintenance model applied to the auxiliary feedwater system of a nuclear power plant; Um modelo de manutencao centrada em confiabilidade aplicada ao sistema de agua de alimentacaco auxiliar de uma usina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson Borges

    1998-01-15

    The main objective of maintenance in a nuclear power plant is to assure that structures, systems and components will perform their design functions with reliability and availability in order to obtain a safety and economic electric power generation. Reliability Centered Maintenance (RCM) is a method of systematic review to develop or optimize Preventive Maintenance Programs. This study presents the objectives, concepts, organization and methods used in the development of RCM application to nuclear power plants. Some examples of this application are included, considering the Auxiliary Feedwater System of a generic two loops PWR nuclear power plant of Westinghouse design. (author)

  2. Operation auxiliary system (SAO)

    International Nuclear Information System (INIS)

    Lolich, J.; Santome, D.; Drexler, J.

    1990-01-01

    This work presents an auxiliary system for nuclear power plants operation (SAO). The development purpose consisted in a computing supervision system to be installed at different sites of a reactor, mainly in the control room. The inclusion of this system to a nuclear power plant minimizes the possibility of human error for the facility operation. (Author) [es

  3. Nuclear reactors with auxiliary boiler circuit

    International Nuclear Information System (INIS)

    George, B.V.; Cook, R.K.

    1976-01-01

    A gas-cooled nuclear reactor has a main circulatory system for the gaseous coolant incorporating one or more main energy converting units, such as gas turbines, and an auxiliary circulatory system for the gaseous coolant incorporating at least one steam generating boiler arranged to be heated by the coolant after its passage through the reactor core to provide steam for driving an auxiliary steam turbine, such an arrangement providing a simplified start-up procedure also providing emergency duties associated with long term heat removal on reactor shut down

  4. Vacuum switchgear for power station auxiliary switchboards

    International Nuclear Information System (INIS)

    Coombs, P.E.

    1992-01-01

    Sizewell B is the first UK power station in which vacuum switchgear is used for the auxiliary switchboards. Previously the 3.3kV, 6.6kV or 11kV switchgear has used air-break circuit breakers and fused air-break contactors, known as motor starting devices or fused switching devices (FSD). The use of vacuum interrupters is therefore a new technology in this application, although it has been established in the UK distribution network and in industrial installations from the mid 1970s. Vacuum switchgear was already in use in the USA for power station auxiliary switchgear at the time that it was proposed for Sizewell B. The Sizewell B high voltage auxiliary switchgear comprises eight Unit and Station Auxiliary Switchboards at 3.3kV and 11kV, and four 3.3kV Essential Switchboards for the essential safety related circuits, making a total of 65 circuit breakers plus FSD panels. (Author)

  5. Auxiliary power unit for moving a vehicle

    Science.gov (United States)

    Akasam, Sivaprasad [Peoria, IL; Johnson, Kris W [Peoria, IL; Johnson, Matthew D [Peoria, IL; Slone, Larry M [Washington, IL; Welter, James Milton [Chillicothe, IL

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  6. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  7. Safety device and machine system of nuclear power plant

    International Nuclear Information System (INIS)

    1978-10-01

    It introduces principle and kinds of heat power including heat balance and nuclear power. It explains a lot of technical terms about the nuclear power system, which are primary loop, reactor, steam generator, primary coolant pump and pressurizer in PWR, chemical and volume control system, component cooling system, safety injection system, and spent fuel cooling and storage system in auxiliary system, liquid solid and gaseous waste disposal system in radwaste disposal, gland sealing system, turbine instrumentation, turning gear, hydrogen cooling system, condenser, feedwater heater, degenerate heater, auxiliary heat exchanger, centrifugal pump, rotary reciprocating and tank and pressure vessel.

  8. Operating experience feedback on lose of offsite power supply for nuclear power plant

    International Nuclear Information System (INIS)

    Jiao Feng; Hou Qinmai; Che Shuwei

    2013-01-01

    The function of the service power system of a nuclear power plant is to provide safe and reliable power supply for the nuclear power plant facilities. The safety of nuclear power plant power supply is essential for nuclear safety. The serious accident of Fukushima Daiichi nuclear power plant occurred due to loss of service power and the ultimate heat sink. The service power system has two independent offsite power supplies as working power and auxiliary power. This article collected events of loss of offsite power supply in operating nuclear power plants at home and abroad, and analyzed the plant status and cause of loss of offsite power supply events, and proposed improvement measures for dealing with loss of offsite power supply. (authors)

  9. Nuclear Reactors for Space Power, Understanding the Atom Series.

    Science.gov (United States)

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  10. A new MV bus transfer scheme for nuclear power plants

    International Nuclear Information System (INIS)

    Chang, C.K.

    2015-01-01

    The auxiliary power system of many generating stations consists of offsite power supply system and onsite power supply system, including emergency diesel generators (EDG) to provide secure power to auxiliary loads. If a normal power supply fails to supply power, then the power source is transferred to a standby power supply. In the case of nuclear power plants (NPP), the unit auxiliary transformer (UAT) and standby auxiliary transformer (SAT) - or station service transformer - are installed and powered from 2 offsite power circuits to meet regulatory requirements. The transfer methods of a motor bus from a normal source to a standby source used in power generating stations are fast bus transfer, in-phase transfer, or residual transfer. Fast bus transfer method is the most popular and residual voltage transfer method that is used as a backup in medium voltage buses in general. The use of the advanced technology like open circuit voltage prediction and digital signal processing algorithms can improve the reliability of fast transfer scheme. However, according to the survey results of the recent operation records in nuclear power plants, there were many instances where the fast transfer scheme has failed. To assure bus transfer in any conditions and circumstances, un-interruptible bus transfer scheme utilizing the state of the art medium voltage UPS (Un-interruptible Power Supply) is discussed and elaborated

  11. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  12. Aging and service wear of auxiliary feedwater pumps for PWR nuclear power plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    This paper describes investigations on auxiliary feedwater pumps being done under the Nuclear Plant Aging Research (NPAR) Program. Objectives of these studies are: to identify and evaluate practical, cost-effective methods for detecting, monitoring, and assessing the severity of time-dependent degradation (aging and service wear); recommend inspection and maintenance practices; establish acceptance criteria; and help facilitate use of the results. Emphasis is given to identifying and assessing methods for detecting failure in the incipient stage and to developing degradation trends to allow timely maintenance, repair or replacement actions. 3 refs

  13. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  14. PWR reactors for BBR nuclear power plants

    International Nuclear Information System (INIS)

    Structure and functioning of the nuclear steam generator system developed by BBR and its components are described. Auxiliary systems, control and load following behaviour and fuel management are discussed and the main data of PWR given. The brochure closes with a perspective of the future of the Muelheim-Kaerlich nuclear power plant. (GL) [de

  15. Procedure of qualification applied to motors driving auxiliaries in fossil fired and nuclear power plants

    International Nuclear Information System (INIS)

    Coperchini, C.; Fises, A.

    1984-01-01

    Twenty year operation have enabled EDF to better understand the factors improving the reliability of powerhouse auxiliary drive induction motors. Progress in the behaviour of such machines are mainly due to analysis and handling of full size test results achieved in the Saint-Denis Motor Test Laboratory. This work led to the printing of recommendations and technical specifications. Service and safety requirements of the nuclear plant new generation lead to examine again the procedures of qualification. The analysis made in this report let appear the justification to maintain the present EDF policy with some necessary adjustments, especially as far as the nuclear safety motors are concerned [fr

  16. Auxiliary facilities on nuclear ship 'MUTSU'

    International Nuclear Information System (INIS)

    Tsujimura, Shotaro; Takigami, Yoshio.

    1989-01-01

    The nuclear ship 'MUTSU' has been moored at SEKINEHAMA, MUTU City in AOMORI Prefecture and several tests and works are being carried out on the ship. The construction of the auxiliary facilities for these works on the ship was completed in safety in August 1988. After that the facilities have fulfilled their function. The outlines of design, fabrication and construction of the facilities are described in this paper. (author)

  17. Nuclear power plant

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1976-01-01

    The invention concerns a quick-acting valve on the main-steam pipe of a nuclear power plant. The engineering design of the valve is to be improved. To the main valve disc, a piston-operated auxiliary valve disc is to be assigned closing a section of the area of the main valve disc. This way it is avoided that the drive of the main valve disc has to carry out different movements. 15 sub-claims. (UWI) [de

  18. A niching genetic algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization

    International Nuclear Information System (INIS)

    Sacco, W.F.; Lapa, Celso M.F.; Pereira, C.M.N.A.; Oliveira, C.R.E. de

    2006-01-01

    This article extends previous efforts on genetic algorithms (GAs) applied to a nuclear power plant (NPP) auxiliary feedwater system (AFWS) surveillance tests policy optimization. We introduce the application of a niching genetic algorithm (NGA) to this problem and compare its performance to previous results. The NGA maintains a populational diversity during the search process, thus promoting a greater exploration of the search space. The optimization problem consists in maximizing the system's average availability for a given period of time, considering realistic features such as: (i) aging effects on standby components during the tests; (ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; (iii) components have distinct test parameters (outage time, aging factors, etc.) and (iv) tests are not necessarily periodic. We find that the NGA performs better than the conventional GA and the island GA due to a greater exploration of the search space

  19. Improved monolithic reinforced concrete construction for nuclear power stations

    International Nuclear Information System (INIS)

    Guenther, P.; Fischer, K.

    1983-01-01

    Experience has shown that in applying monolithic reinforced concrete in nuclear power plant construction the following auxiliary means are useful: measuring sheets in assembling, welding gauges for reaching high tolerance accuracies of prefabricated reinforced concrete members, suitable lining materials, formwork anchorage and formwork release agents, concrete workability agents, mechanized procedures for finishing and assembling. These means were successfully tested in constructing the Greifswald nuclear power station

  20. Optimization of feed water control for auxiliary boiler

    International Nuclear Information System (INIS)

    Li Lingmao

    2004-01-01

    This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)

  1. Health protection and industrial safety. Nuclear power plants

    International Nuclear Information System (INIS)

    1987-03-01

    The standard applies to components of the primary circuit including its auxiliary facilities, and of the secondary circuit of nuclear power plants with pressurized water reactors; to lifting gear and load take-ups for the transport of nuclear fuel and primary circuit components, and to elevators within the containment. Part 2 specifies testing, test periods, test methods, and documentation

  2. CAREM-25. Auxiliary systems

    International Nuclear Information System (INIS)

    Acosta, Eduardo; Amaya, Daniel; Carlevaris, Rodolfo; Patrignani, A.; Ramilo, L.; Santecchia, A.; Vindrola, C.

    2000-01-01

    CAREM is an innovative PWR reactor whose prototype will be of small power generation capacity (100MWt, about 25MWe).CAREM design is based on light water integrated reactor with slightly enriched uranium.In this work, a summary of the functions and most relevant design characteristics of main auxiliary systems associated to the chain of heat removal and physicochemical - radiological treatment of the cooling fluids of the CAREM-25 prototype is presented.Even though these auxiliary systems of the reactor are not safety system, they fulfill functions related with the nuclear safety at different operative modes of the reactor

  3. CAREM-25. Auxiliary systems

    International Nuclear Information System (INIS)

    Acosta, Eduardo; Amaya, Daniel; Carlevaris, Rodolfo; Patrignani, Alberto; Santecchia, Alberto; Vindrola, Carlos; Ramilo, Lucia B.

    2000-01-01

    CAREM is an innovative PWR reactor whose prototype will be of small power generation capacity (100 M Wt, about 25 M We). CAREM design is based on light water integrated reactor with slightly enriched uranium. In this work, a summary of the functions and most relevant design characteristics of main auxiliary systems associated to the chain of heat removal and physicochemical - radiological treatment of the cooling fluids of the CAREM-25 prototype is presented. Even though these auxiliary systems of the reactor are not safety system, they fulfill functions related with the nuclear safety at different operative modes of the reactor. (author)

  4. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine tests in auxiliary power unit (APU... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.96 Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which...

  5. Auxiliary cooling device for power plant

    International Nuclear Information System (INIS)

    Yamanoi, Kozo.

    1996-01-01

    An auxiliary cooling sea water pipeline for pumping up cooling sea water, an auxiliary cooling sea water pipeline and a primary side of an auxiliary cooling heat exchanger are connected between a sea water taking vessel and a sea water discharge pit. An auxiliary cooling water pump is connected to an auxiliary water cooling pipeline on the second side of the auxiliary cooling heat exchanger. The auxiliary cooling water pipeline is connected with each of auxiliary equipments of a reactor system and each of auxiliary equipments of the turbine system connected to a turbine auxiliary cooling water pipeline in parallel. During ordinary operation of the reactor, heat exchange for each of the auxiliary equipments of the reactor and heat exchange for each of the equipments of the turbine system are conducted simultaneously. Since most portions of the cooling devices of each of the auxiliary equipments of the reactor system and each of the auxiliary equipments of the turbine system can be used in common, the operation efficiency of the cooling device is improved. In addition, the space for the pipelines and the cost for the equipments can be reduced. (I.N.)

  6. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-1 NPP is reviewed (beginning of construction 24 April 1972; First controlled reactor power, Reactor Unit 1 (RU1): 27 November 1978, Reactor Unit 2 (RU2): 15 March 1980; Connection to the grid: RU1 17 December 1978, RU2 26 March 1980; Commercial operation: RU1 1 April 1980, RU2 7 January 1981. The scheme of the nuclear reactor WWER 440/V230 is depicted. The major technological equipment (primary circuit, nuclear reactor, steam generators, reactor coolant pumps, primary circuit auxiliary systems, secondary circuit, turbine generators, NPP electrical equipment, and power plant control) are described. Technical data of the Bohunice V-1 NPP are presented

  7. Esfas: An information system on worldwide nuclear power stations

    International Nuclear Information System (INIS)

    Melis, M.

    1990-01-01

    While performing the analysis and transcoding of about 30.000 abnormal events happened in nuclear power stations, in the frame of the AORS - Abnormal Occurrences Reporting System project (CEC-Joint Research Centre, Ispra), it was clear to the transcoders (12 nuclear engineers) that, for a good understanding of the true sequence and safety relevance of events, it was necessary to identify the plant layout and the characteristics of safety and auxiliary systems. This exigence, together with the systematic collection of publicly available information (safety reports, utilities descriptions of plants, etc.) was the starting point for the development of ESFAS - Engineered Safety Features and Auxiliary Systems data base, conceived as a tool for the various phases of nuclear plant/system design, up to operational data analysis

  8. Evolution of Onsite and Offsite Power Systems in US Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mathew, Roy K.

    2015-01-01

    The AC electric power system is the source of power for station auxiliaries during normal operation and for the reactor protection system and emergency safety features during abnormal and accident conditions. Since the construction of early plants in US, the functional adequacy and requirements of the offsite power systems, safety and non safety related onsite electric power systems have changed considerably to ensure that these systems have adequate redundancy, independence, quality, maintenance and testability to support safe shutdown of the nuclear plant. The design of AC systems has evolved from a single train to multiple (up to four) redundant trains in the current evolutionary designs coupled with other auxiliary AC systems. The early plants were designed to cope with a Loss of Offsite Power (LOOP) event through the use of onsite power supplies only. However operating experience has indicated that onsite and offsite power AC power systems can fail due to natural phenomena (earthquakes, lightning strikes, fires, geomagnetic storms, tsunamis, etc.) or operational abnormalities such as loss of a single phase, switching surges or human error. The onsite DC systems may not be adequately sized to support plant safe shutdown over an extended period if AC power cannot be restored within a reasonable time. This paper will discuss the requirements to improve availability and reliability of offsite and onsite alternating current (AC) power sources to U.S. Nuclear Power Plants. In addition, the paper will discuss the requirements and guidance beyond design basis events. (author)

  9. System Study: Auxiliary Feedwater 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the auxiliary feedwater (AFW) system at 69 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the AFW results.

  10. DSNP: a new approach to simulate nuclear power plants

    International Nuclear Information System (INIS)

    Saphier, D.

    1977-01-01

    The DSNP (Dynamic Simulator for Nuclear Power-plants) is a special purpose block oriented simulation language. It provides for simulations of a large variety of nuclear power plants or various parts of the power plant in a simple straightforward manner. The system is composed of five basic elements, namely, the DSNP language, the precompiler-or the DSNP language translator, the components library, the document generator, and the system data files. The DSNP library of modules includes the selfcontained models of components or physical processes found in a nuclear power plant, and various auxiliary modules such as material properties, control modules, integration schemes, various basic transfer functions etc. In its final form DSNP will have four libraries

  11. Parallel island genetic algorithm applied to a nuclear power plant auxiliary feedwater system surveillance tests policy optimization

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Lapa, Celso M.F.

    2003-01-01

    In this work, we focus the application of an Island Genetic Algorithm (IGA), a coarse-grained parallel genetic algorithm (PGA) model, to a Nuclear Power Plant (NPP) Auxiliary Feedwater System (AFWS) surveillance tests policy optimization. Here, the main objective is to outline, by means of comparisons, the advantages of the IGA over the simple (non-parallel) genetic algorithm (GA), which has been successfully applied in the solution of such kind of problem. The goal of the optimization is to maximize the system's average availability for a given period of time, considering realistic features such as: i) aging effects on standby components during the tests; ii) revealing failures in the tests implies on corrective maintenance, increasing outage times; iii) components have distinct test parameters (outage time, aging factors, etc.) and iv) tests are not necessarily periodic. In our experiments, which were made in a cluster comprised by 8 1-GHz personal computers, we could clearly observe gains not only in the computational time, which reduced linearly with the number of computers, but in the optimization outcome

  12. Health protection and industrial safety. Nuclear power plants

    International Nuclear Information System (INIS)

    1987-03-01

    The standard applies to components of the primary circuit including its auxiliary facilities, and of the secondary circuit of nuclear power plants with pressurized water reactors; to lifting gear and load take-ups for the transport of nuclear fuel and primary circuit components; to elevators within the containment, electrical installations, and piping and valves of radiation protection monitoring equipment. Part 1 defines the terms and specifies engineered safety requirements

  13. Automatic acoustic and vibration monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Tothmatyas, Istvan; Illenyi, Andras; Kiss, Jozsef; Komaromi, Tibor; Nagy, Istvan; Olchvary, Geza

    1990-01-01

    A diagnostic system for nuclear power plant monitoring is described. Acoustic and vibration diagnostics can be applied to monitor various reactor components and auxiliary equipment including primary circuit machinery, leak detection, integrity of reactor vessel, loose parts monitoring. A noise diagnostic system has been developed for the Paks Nuclear Power Plant, to supervise the vibration state of primary circuit machinery. An automatic data acquisition and processing system is described for digitalizing and analysing diagnostic signals. (R.P.) 3 figs

  14. General description of the Three Mile Island nuclear power plant

    International Nuclear Information System (INIS)

    Figueras, J.M.

    1980-01-01

    A general description of systems and components of the Three Mile Island-2 nuclear power plant is presented, for the primary system (NSSS), the secondary system (BOP), the energy generation system and for other auxiliaries in the plant. (author)

  15. Project designing of Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Krychtalek, Z.; Linek, V.

    1989-01-01

    The geological and seismic parameters are listed of the Temelin nuclear power plant. The division of the site in building zones is described. The main zones consist of the power generation unit zone with the related auxiliary buildings of hot plants and of the auxiliary buildings of the nonactive part with industrial buildings. The important buildings are interconnected with communication and technology bridges. Cooling towers and spray pools and the entrance area are part of the urbanistic design. The architectonic design of the buildings uses standard building elements and materials. The design of the buildings is based on the requirements on their function and on structural load and on the demands of maximal utilization of the type of the reinforced concrete prefab structure system. The structure is made of concrete or steel cells. The project design is based on Soviet projects. The layout is shown of the main power generation units and a section is presented of a 1,000 MW unit. (J.B.). 2 figs

  16. Development of in-service inspection plans for nuclear components at the Surry 1 nuclear power station

    International Nuclear Information System (INIS)

    Vo, T.V.; Simonen, F.A.; Doctor, S.R.; Smith, B.W.; Gore, B.F.

    1993-01-01

    As part of the nondestructive evaluation reliability program sponsored by the US Nuclear Regulatory Commission at Pacific Northwest Laboratory, a methodology has been developed for establishing in-service inspection priorities of nuclear power plant components. The method uses results of probabilistic risk assessment in conjunction with the techniques of failure modes and effects analysis to identify and prioritize the most risk-important systems and components for inspection at nuclear power plants. Surry nuclear power station unit 1 was selected for demonstrating the methodology. The specific systems selected for analysis were the reactor pressure vessel, the reactor coolant, the low pressure injection including the accumulators, and the auxiliary feedwater. The results provide a risk-based ranking of components that can be used to establish a prioritization of the components and a basis for developing improved in-service inspection plans at nuclear power plants

  17. Review of the Shearon Harris Unit 1 auxiliary feedwater system reliability analysis

    International Nuclear Information System (INIS)

    Fresco, A.; Youngblood, R.; Papazoglou, I.A.

    1986-02-01

    This report presents the results of a review of the Auxiliary Feedwater System Reliability Analysis for the Shearon Harris Nuclear Power Plant (SHNPP) Unit 1. The objective of this report is to estimate the probability that the Auxiliary Feedwater System will fail to perform its mission for each of three different initiators: (1) loss of main feedwater with offsite power available, (2) loss of offsite power, (3) loss of all ac power except vital instrumentation and control 125-V dc/120-V ac power. The scope, methodology, and failure data are prescribed by NUREG-0611 for other Westinghouse plants

  18. Seismic Qualification of Auxiliary Feed Water Control Valve

    International Nuclear Information System (INIS)

    Hwang, K. M.; Jang, J. B.; Kim, J. K.; Suh, Y. P.

    2006-01-01

    Although domestic nuclear power industry has almost accomplished technical independence, Auxiliary Feed Water Control Valve (AFWCV) is still depending on import. In order to jump to advanced nation in nuclear power industry, it is very important to achieve technical independence in designing and manufacturing AFWCV. At last, AFWCV is self-manufactured using the domestic technology under the financial support of the government. Therefore, the seismic qualification is carried out to verify the safety and operability of AFWCV against the earthquake in this study

  19. Micro-structured nuclear fuel and novel nuclear reactor concepts for advanced power production

    International Nuclear Information System (INIS)

    Popa-Simil, Liviu

    2008-01-01

    Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages - possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools. (author)

  20. State of the art and further development of reinforced concrete wall cells for nuclear power plant construction

    International Nuclear Information System (INIS)

    Uhlemann, E.; Wartenberg, J.

    1985-01-01

    Reinforced concrete wall cells have been developed for nuclear power plant construction by the USSR and GDR. In this article, a new type of these cells, which will be used for constructing auxiliary equipment of the Stendal nuclear power plant, is described

  1. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  2. A probabilistic evaluation of the Shearon Harris Nuclear Power Plant auxiliary feedwater isolation system

    International Nuclear Information System (INIS)

    Anoba, R.C.

    1989-01-01

    This paper reports on a fault tree approach that was used to evaluate the safety significance of modifying the Shearon Harris Auxiliary Feedwater Isolation System. The design modification was a result of on-site reviews which identified a single failure in the Auxiliary Feedwater Isolation circuitry

  3. Quality assurance programme of Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Eybl, J.; Nowak, O.

    1988-01-01

    The fundamental principle of the system of quality assurance in Czechoslovak nuclear power is quality assurance at all stages of the construction and operation of nuclear power plants and the grading fo measures taken, this in dependence on the impact on nuclear safety of the respective nuclear installation or its part. The system has been made fully operational during the construction of nuclear power plants in Temelin and Mochovce. State surveillance is executed by the Czechoslovak Atomic Energy Commission, and the Czech and Slovak Offices for Work Safety. Briefly discussed are the tasks of the building subcontractor of the Temelin nuclear power plant with regard to the programme of quality assurance as well as the results of the solution of the respective research tasks. The programme of quality assurance classifies the selected sections of the structure of a nuclear power plant into three safety categories. No part of the structure is classified into the first category, the second category includes, e.g., the reactor building, cooling tanks and diesel generator units, the third includes the reactor building and the building of auxiliary workshops. Attention is also paid to the problems of the qualification of personnel and to inspection activity. (Z.M.). 12 refs

  4. Gas turbine installations in nuclear power plants in Sweden

    International Nuclear Information System (INIS)

    Sevestedt, Lars

    1986-01-01

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  5. Gas turbine installations in nuclear power plants in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sevestedt, Lars [Electrical Equipment and Gas Turbines, Swedish State Power Board, Ringhals Nuclear Power Plant, S-430 22 Vaeroebacka (Sweden)

    1986-02-15

    At each of the four nuclear power stations in Sweden (Ringhals, Forsmark, Oskarshamn, Barsebaeck) gas turbine generating sets have been installed. These units are normally used for peak load operation dictated of grid and System requirements but they are also connected to supply the electrical auxiliary load of the nuclear plant as reserve power sources. The gas turbines have automatic start capability under certain abnormal conditions (such as reactor trips, low frequency grid etc) but they can also be started manually from several different locations. Starting time is approximately 2- 3 minutes from start up to full load. (author)

  6. Common-cause failure analysis of McGuire Unit 2 auxiliary feedwater system

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Fowler, R.D.; Summitt, R.L.; Logan, B.W.

    1982-01-01

    A powerful method for qualitative common cause failure analysis (CCFA) of nuclear power plant systems was developed by EG and G Idaho at the Idaho National Engineering Laboratory. As a cooperative project to demonstrate and evaluate the usefulness of the method, the Duke Power Company agreed to allow a CCFA of the auxiliary feedwater system (AFWS) in their McGuire Nuclear Station Unit 2. The results of the CCFA are the subject of this discussion

  7. Health protection and industrial safety. Nuclear power plants

    International Nuclear Information System (INIS)

    1987-03-01

    The standard applies to primary circuit components including its auxiliary facilities, and of the secondary circuit of nuclear power plants with pressurized water reactors; to lifting gear and load take-ups for the transport of nuclear fuel and primary circuit components; to elevators within the containment, and to electrical installations. Part 3 specifies the behaviour of workers in conformity with safety provisions during operation, inspection, lifetime surveillance, functional testing, and maintenance. Special demands are made on the water regime and on elevators, lifting gear, and load take-ups

  8. Auxiliary feedwater system risk-based inspection guide for the Ginna Nuclear Power Plant

    International Nuclear Information System (INIS)

    Pugh, R.; Gore, B.F.; Vo, T.V.; Moffitt, N.E.

    1991-09-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Ginna was selected as the eighth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Ginna plant. 23 refs., 1 fig., 1 tab

  9. Radiation burden of population in nuclear power plant siting

    International Nuclear Information System (INIS)

    Navratil, J.

    The significance is discussed of the determination of the radiobiological consequences of normal operation and design basis accidents in nuclear power plant siting. The basic diagram and brief description is given of the programme for calculating the radiation load of the population in the surroundings of the nuclear power plant. The programme consists of two subprogrammes, i.e., the dispersion of radioactive gases (for normal operation and for accidents), the main programme for the determination of biological consequences and one auxiliary programme (the distribution of the population in the surroundings of the power plant). The four most important types of exposure to ionizing radiation are considered, namely inhalation, external irradiation from a cloud, ingestion (water, milk, vegetables), external irradiation from the deposit. (B.S.)

  10. PCB transformer fires: the risk in nuclear power plants

    International Nuclear Information System (INIS)

    Blackmon, K.

    1988-01-01

    It is estimated that 1/2 of the present nuclear power plants operate with PCB-filled transformer equipment. In an attempt to obtain better estimates of clean-up costs in a nuclear power plant under reasonable-loss scenarios, a study was commissioned. This study was a joint venture between Blackmon-Mooring Steamatic Technologies, Inc., (BMS-TECH) and M and M Protection Consultants. This joint study was conducted at a typical pressurized-water reactor plant consisting of two 1000-MW units. Three specific scenarios were selected and analyzed for this typical power plant. These scenarios were: (1) an electrical failure of a transformer in an isolated switch gear room; (2) a transformer exposed to a 55-gallon transient combustion oil fire in the auxiliary building; and (3) a PCB transformer involved in a major turbine lube fire in the turbine building. Based on results of this study, the insurance carriers for this industry implemented an adjustment in their rate structures for nuclear power plants that have PCB equipment

  11. Dynamic Simulator for Nuclear Power Plants (DSNP)

    International Nuclear Information System (INIS)

    Saphier, D.

    1976-01-01

    A new simulation language DSNP (Dynamic Simulator for Nuclear Power Plants) is being developed. It is a simple block oriented simulation language with an extensive library of component and auxiliary modules. Each module is a self-contained unit of a part of a physical component to be found in nuclear power plants. Each module will be available in four levels of sophistication, the fourth being a user supplied model. A module can be included in the simulation by a single statement. The precompiler translates DSNP statements into FORTRAN statements, takes care of the module parameters and the intermodular communication blocks, prepares proper data files and I/0 statements and searches the various libraries for the appropriate component modules. The documentation is computerized and all the necessary information for a particular module can be retrieved by a special document generator. The DSNP will be a flexible tool which will allow dynamic simulations to be performed on a large variety of nuclear power plants or specific components of these plants

  12. Sea water take-up facility for cooling reactor auxiliary

    International Nuclear Information System (INIS)

    Numata, Noriko; Mizutani, Akira; Hirako, Shizuka; Uchiyama, Yuichi; Oda, Atsushi.

    1997-01-01

    The present invention provides an improvement of a cooling sea water take-up facility for cooling auxiliary equipments of nuclear power plant. Namely, an existent sea water take-up facility for cooling reactor auxiliary equipments has at least two circulation water systems and three independent sea water systems for cooling reactor auxiliary equipments. In this case, a communication water channel is disposed, which connects the three independent sea water systems for cooling reactor auxiliary equipments mutually by an opening/closing operation of a flow channel partitioning device. With such a constitution, even when any combination of two systems among the three circulation water systems is in inspection at the same time, one system for cooling the reactor auxiliary equipments can be kept operated, and one system is kept in a stand-by state by the communication water channel upon periodical inspection of water take-up facility for cooling the auxiliary equipments. As a result, the sea water take-up facility for cooling auxiliary equipments of the present invention have operation efficiency higher than that of a conventional case while keeping the function and safety at the same level as in the conventional case. (I.S.)

  13. Auxiliary feedwater system risk-based inspection guide for the North Anna nuclear power plants

    International Nuclear Information System (INIS)

    Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1992-10-01

    In a study sponsored by the US Nuclear regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. North Anna was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the North Anna plant

  14. Study of the Utilization BWR Type Nuclear Power Reactor for Desalination Process

    International Nuclear Information System (INIS)

    Itjeu Karliana; Sumijanto; Dhandhang Purwadi, M.

    2008-01-01

    The needs of fresh water increased by rapid population growth and industrials expansion, but these demands can not be prepared naturally. Following this case, seawater desalination becomes the primer option which can fulfill the need through the nuclear desalination technology. The coupled nuclear power reactor enables to supply thermal energy for auxiliary equipment and pumps operation. The utilization study of power reactor type BWR coupled with desalination process has been performed. The goal of study is to obtain characteristic data of desalted water specification which desalination system coupling with nuclear power plant produced energy for desalination process. The study is carried out by browsing data and information, and comprehensive review of thermal energy correlation between NPP with desalination process installation. According to reviewing are found that the thermal energy and electric power utilization from the nuclear power reactor are enable to remove the seawater to produce desalted water and also to operate auxiliary equipments. The assessment results is VK-300 reactor prototype, BWR type 250 MW(e) power are cogeneration unit can supplied hot steam temperature 285 °C to the extraction turbine to empower 150 MW electric power, and a part of hot steam 130 °C is use to operate desalination process and remind heat is distribute to the municipal and offices at that region. The coupled of VK-300 reactor power type BWR with desalination installation of MED type enable to produce desalted water with high quality distillate. Based on the economic calculation that the VK-300 reactor power of BWR type produced water distillate capacity is 300.000 m 3 /hour with cost US$ 0.58/m 3 . The coupling VK-300 reactor power type BWR with MED desalination plant is competitive economically. (author)

  15. Evaluation of the pressure loads generated by hydrogen explosion in auxiliary nuclear building

    International Nuclear Information System (INIS)

    Ahmed Bentaib; Alexandre Bleyer; Pierre Pailhories; Jean-Pierre L'heriteau; Bernard Chaumont; Jerome Dupas; Jerome Riviere

    2005-01-01

    Full text of publication follows: In the framework of nuclear safety, a hydrogen leaks in the auxiliary nuclear building would raise a explosion hazard. A local ignition of the combustible mixture would give birth initially to a slow flame, rapidly accelerated by obstacles. This flame acceleration is responsible for high pressure loads that can damage the auxiliary building and destroy safety equipments in it. In this paper, we evaluate the pressure loads generated by an hydrogen explosion for both bounding and realistic explosion scenarios. The bounding scenarios use stoichiometric hydrogen-air mixtures and the realistic scenarios correspond to hydrogen leaks with mass flow rate varying between 1 g/s and 9 g/s. For every scenario, the impact of the ignition location and ignition time are investigated. The hydrogen dispersion and explosion are computed using the TONUS code. The dispersion model used is based on a finite element solver and the explosion is simulated by a structured finite volumes EULER equation solver and the combustion model CREBCOM which simulates the hydrogen/air turbulent flame propagation, taking into account 3D complex geometry and reactants concentration gradients. The pressure loads computed are then used to investigate the occurrence of a mechanical failure of the tanks located in the auxiliary nuclear building and containing radioactive fluids. The EUROPLEXUS code is used to perform 3D mechanical calculations because the loads are non uniform and of rather short deviation. (authors)

  16. Sensitivity Analysis of Core Damage by Loss of Auxiliary Feed Water during the Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo Jae; Chung, Soon Il; Hwang, Su Hyun; Lee, Kyung Jin; Lee, Byung Chul [FNC Tech., Yongin (Korea, Republic of); Yun, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, the reactor core damage time for OPR1000 type Nuclear Power Plant (NPP) was analyzed to develop a strategy to handle ELAP and to apply to the EOP. The reactor core damage time in the ELAP condition was calculated according to the time of Auxiliary Feedwater (AFW) loss. Fukushima accident was caused by long hours of Station Black Out (SBO) caused by natural disaster beyond Design Based Accident (DBA) criteria. It led to the reactor core damage. After the accident, the regulatory authorities of each country (Japan, US, EU, IAEA, and etc.) recommended developing the necessary systems and strategies in order to cover up the Extended Loss of All AC Power (ELAP) such as one occurred in the Fukushima accident. And the need of procedure or guideline to cope with ELAP has been raised through the stress test for Wolsong Nuclear Power Plant unit 1. Current Emergency Operating Procedures (EOP) used in domestic nuclear power plant are seemed to be insufficient to cope with ELAP. Therefore, it has been required to be improved. As the result, the time of AFW loss in the ELAP condition influences greatly on core damage time.

  17. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  18. Optimum voltage of auxiliary systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Tokumitsu, Iwao; Segawa, Motomichi

    1979-01-01

    In the power plants in Japan, their unit power output has been greatly enhanced since the introduction of new powerful thermal power plants from 1950's to 1960's. In both thermal and nuclear power plants, 1,000 MW machines have been already in operation. The increase of unit power output results in the increase of in-plant load capacity. Of these the voltage adopted for in-plant low voltage systems is now mainly 440 V at load terminals, and the voltage for in-plant high voltage systems has been changing to 6 kV level via 3 kV and 4 kV levels. As plant capacity increases, the load of low voltage systems significantly increases, and it is required to raise the voltage of 400 V level. By the way, the low voltage in AC is specified to be not higher than 600 V. This makes the change within the above range comparatively easy. Considering these conditions, it is recommended to change the voltage for low voltage systems to 575 V at power source terminals and 550 V at load terminals. Some merits in constructing power systems and in economy by raising the voltage were examined. Though demerits are also found, they are only about 15% of total merits. The most advantageous point in raising the voltage is to be capable of increasing the supplying range to low voltage system loads. (Wakatsuki, Y.)

  19. VISIT - Virtual visits to nuclear power plants

    International Nuclear Information System (INIS)

    Mollaret, Jean-Christophe

    2001-01-01

    For more than twenty years, EDFs Communication Division has conducted a policy of opening its generation sites to the general public. Around 300,000 people visit a nuclear power plant every year. However, for the security of persons and the safety of facilities, those parts of the plant situated in controlled areas are not accessible to visitors. For the sake of transparency, EDF has taken an interest in the technologies offered by virtual reality to show the general public what a nuclear power plant is really like, so as to initiate dialogue on nuclear energy, particularly with young people. Visit has been developed with virtual reality technologies. It serves to show the invisible (voyage to the core of fission), the inaccessible and to immerse the visitors in environments which are usually closed to the general public (discovery of the controlled area of a nuclear power plant). Visit is used in Public Information Centres which receive visitors to EDF power plants and during international exhibitions and conferences. Visit allows a virtual tour of the following controlled areas: locker room hot area/cold area, a necessary passage before entering the controlled areas; reactor building; fuel building; waste auxiliary building (liquid, solid and gaseous effluents). It also includes a tour of the rooms or equipment usually accessible to the general public: control room, turbine hall, transformer, air cooling tower

  20. Auxiliary feedwater system risk-based inspection guide for the Palo Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Sloan, J.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Palo Verde was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Palo Verde plants

  1. Auxiliary feedwater system risk-based inspection guide for the McGuire nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1994-05-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. McGuire was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the McGuire plant

  2. Auxiliary feedwater system risk-based inspection guide for the Maine Yankee Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gore, B.F.; Vo, T.V.; Moffitt, N.E.; Bumgardner, J.D.

    1992-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. The information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Maine Yankee was selected as one of a series of plants for study. ne product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Maine Yankee plant

  3. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Vehec, T.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant

  4. General design criteria for diesel-generator sets for nuclear power plants

    International Nuclear Information System (INIS)

    Rangarao, G.

    1975-01-01

    The design criteria for diesel-generators for nuclear power plants are examined. Applicable standards, loading, design performance, and characteristics to be considered in the selection of diesel-generator set and its auxiliary system are discussed. Also, engineered safety features loads together with loss of power safe shutdown loads and their starting sequence, analysis of voltage and frequency response and the diesel-generator ability to start various load blocks successfully to meet the reactor emergency core cooling requirements are discussed

  5. Improvement of the nuclear plant analyzer for Korean Standard Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Sung Soo; Han, Byoung Sub; Suh, Jae Seung; Son, Dae Seong

    2005-04-01

    Accurate analysis of the operating characteristics of Nuclear Power Plants provides valuable information for both norman and abnormal operation. The information can be used for the enhancement of plant performance and safety. Usually, such analysis is performed using computer codes used for plant design or simulators. However, their usages are limited because special expertise is required to use the computer codes and simulators are not portable. Therefore, it deemed necessary to develop an NPA which minimizes those limitations and can be used for the analysis and simulation of Nuclear Power Plants. The purpose of this study is to develop a real-time best-estimate NPA for the Korean Nuclear Power Plants(KSNP). The NPA is an interactive, high fidelity engineering simulator. NPA combines the process model simulating the plant behavior with the latest computer technology such as Graphical User Interface(GUI) and simulation executive for enhanced user interface. The process model includes models for a three-dimensional reactor core, the NSSS, secondary system including turbine and feedtrain, safety auxiliary systems, and various control systems. Through the verification and validation of the NPA, it was demonstrated that the NPA can realistically simulate the plant behaviors during transient and accident conditions

  6. Safe decommissioning of mobile nuclear power plant

    International Nuclear Information System (INIS)

    Paliukhovich, V.M.

    2002-01-01

    The paper addresses some issues for ensuring radiation safety during the process of decommissioning the 630 kW 'Pamir-630D' mobile nuclear power plant (MNPP). That nuclear power plant consisted of a gas cooled reactor (weight of 76.5t), gas turbine-driven set (76t), two control units (2'20t), and an auxiliary unit (20t). The reactor and turbine-driven set were supposed to be put on transport platforms and carried by tractors. The control and auxiliary units were set on track beds. The 'Pamir-630D' was constructed and tested in an appropriate building. The set-up time was no greater than six hours after all units of the MNPP had reached the site. The 'Pamir-630D' was ready to be moved to another site in 30 hours after the shut down. Service lifetime of 'Pamir-630D' was 10 years: 7 years of storage and 3 years of operation. Operational lifetime was no less than 10000 hours (non-stop operational period was no longer than 2000 hours). Dose rate at the boundary of the restrictive area was no more than 6.5 mR/h at the time of reactor operation and no greater than 300 mR/h on the side surface and 1000 mR/h on the end surface of the biological shielding of the reactor, 24 hours after shut down. (author)

  7. Method for removing radioactive waste from a nuclear power plant

    International Nuclear Information System (INIS)

    1978-01-01

    By using the existing safety and auxiliary systems in a nuclear power plant a bunker-type building is to be linked up with the region of the main airlock, in which the radioactive material to be disposed of may pass through the necessary mechanical and chemical process while being handled in mobile containers. The constructional and engineering measures are described by a design example. (TK) [de

  8. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Hao; Shih, Chunkuan [National Tsing Hua Univ., Taiwan (China). Inst. of Nuclear Engineering and Science; Wang, Jong-Rong; Lin, Hao-Tzu [Atomic Energy Council, Taiwan (China). Inst. of Nuclear Energy Research

    2013-07-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  9. Trace analysis of auxiliary feedwater capacity for Maanshan PWR loss-of-normal-feedwater transient

    International Nuclear Information System (INIS)

    Chen, Che-Hao; Shih, Chunkuan; Wang, Jong-Rong; Lin, Hao-Tzu

    2013-01-01

    Maanshan nuclear power plant is a Westinghouse PWR of Taiwan Power Company (Taipower, TPC). A few years ago, TPC has made many assessments in order to uprate the power of Maanshan NPP. The assessments include NSSS (Nuclear Steam Supply System) parameters calculation, uncertainty acceptance, integrity of pressure vessel, reliability of auxiliary systems, and transient analyses, etc. Since the Fukushima Daiichi accident happened, it is necessary to consider transients with multiple-failure. Base on the analysis, we further study the auxiliary feedwater capability for Loss-of-Normal-Feedwater (LONF) transient. LONF is the limiting transient of non-turbine trip initiated event for ATWS (Anticipated Transient Without Scram) which results in a reduction in capability of the secondary system to remove the heat generated in the reactor core. If the turbine fails to trip immediately, the secondary water inventory will decrease significantly before the actuation of auxiliary feedwater (AFW) system. The heat removal from the primary side decreases, and this leads to increases of primary coolant temperature and pressure. The water level of pressurizer also increases subsequently. The heat removal through the relief valves and the auxiliary feedwater is not sufficient to fully cope with the heat generation from primary side. The pressurizer will be filled with water finally, and the RCS pressure might rise above the set point of relief valves for water discharge. RCS pressure depends on steam generator inventory, primary coolant temperature, negative reactivity feedback, and core power, etc. The RCS pressure may reach its peak after core power reduction. According to ASME Code Level C service limit criteria, the Reactor Coolant System (RCS) pressure must be under 22.06 MPa. The USNRC is developing an advanced thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development of TRACE is based on TRAC and integrating with RELAP5 and other programs. SNAP

  10. Impact of external grid disturbances on nuclear power plants; Rueckwirkungen von Netzstoerungen auf Kernkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Arains, Robert; Arnold, Simone; Brueck, Benjamin; Mueller, Christian; Quester, Claudia; Sommer, Dagmar

    2017-06-15

    The electrical design of nuclear power plants and the reliability of their electrical power supply including the offsite power supply are of high importance for the safe operation of the plants. The operating experience of recent years has shown that disturbances in the external grid can have impact on the electrical equipment of nuclear power plants. In the course of this project, possible causes and types of grid disturbances were identified. Based on these, scenarios of grid disturbances were developed. In order to investigate the impact of the developed scenarios of grid disturbances on the electrical equipment of nuclear power plants, the auxiliary power supply of a German pressurized water reactor of type Konvoi was simulated using the simulation tool NEPLAN. On the basis of the results of the analyses, it was identified whether there are possible measures to prevent the spread of grid disturbances in the plants which have not been implemented in the nuclear power plants today.

  11. Study of nuclear power plant stability. Trip criteria

    International Nuclear Information System (INIS)

    Beato Castro, D.; Iturbe Uriarte, R.; Wilhelmi Ayza, J.R.

    1993-01-01

    The influence that nuclear power plants and high voltage power systems have on each other when confronted by disturbances in the offsite network may lead, due to dynamic effects, to plant trip. It is therefore necessary to study the disturbances in the network and the effects on plant equipment by means of dynamic simulations which evaluate the unit protection system and the auxiliary services so as to obtain maximum unit availability without jeopardizing its safety. These studies can be conducted since there are models and software tools capable of simulating dynamic behaviour of the electric system, including the excitation systems and specific speed governors obtainment of valid. (author)

  12. Development of the user interface for visualization of the auxiliary systems of the TRIGA Mark III nuclear reactor

    International Nuclear Information System (INIS)

    Merced D, J. E.

    2016-01-01

    The Instituto Nacional de Investigaciones Nucleares (ININ) has a nuclear research reactor type swimming pool with movable core cooled and moderate with light water. The nominal maximum power of the reactor is 1 MW in steady-state operation and can be pulsed at a maximum power of 2,000 MW for approximately 10 milliseconds. This reactor is mainly used to study the effects of radiation on various materials and substances. In 2001 the new control console of the nuclear reactor was installed which was based on two digital computers, one computer controls the bar management mechanisms and the other the systems to the reactor operator. In 2004, the control computer was replaced and the software was updated. Within the modernization and/or updating of the TRIGA Mark III reactor of ININ, is intended (theme of this work) to develop the user interface for the visualization of the auxiliary systems, through a Man-Machine Interface module for the renewal process of the control console. The man-machine interface system to be developed will have communication with the programmable logic controllers that will be constantly monitored and controlled to obtain real-time variables of the reactor behavior. (Author)

  13. STARTER-GENERATOR SYSTEM FOR AUXILIARY POWER UNIT

    Directory of Open Access Journals (Sweden)

    A. V. Levin

    2017-01-01

    Full Text Available The article presents a starter-generator system for an auxiliary power unit of an aircraft. A feature of the presented system is the use of a synchronous generator with excitation from permanent magnets and a semiconductor converter. The main problem of the system is the generation of electric energy of an aircraft on the basis of a synchronous generator with excitation from permanent magnets is the absence of the possibility of regulating the voltage and frequency of electrical energy, in this connection, a semiconductor converter that ensures the conversion of generated electric energy with significant mass-dimensions characteristics.The article proposes an approach to designing a starter-generator system with a parallel connection of a synchronous generator with excitation from permanent magnets and a semiconductor converter. This approach makes it possible to significantly reduce the part of the electrical energy that needs to be converted, as a consequence, the semiconductor converter has significantly smaller mass-and-batch characteristics.In the article the modes of generation of electric energy and the starter mode of operation of the starter-generator system are considered in detail, the circuit realization of the semiconductor converter is shown. A scheme for replacing one phase of the system for generating electric energy and calculating electric parameters is presented.The possibility of creating a highly efficient starter-generator system based on a synchronous generator with excitation from permanent magnets and a semiconductor converter for an auxiliary power plant of aircrafts is shown. Structural and basic schemes for constructing a system for generating electrical energy are proposed. The approach to the choice of rational circuit solutions is substantiated, basic estimates of the electrical parameters of the system are obtained. The possibility of achieving a specific mass of a semiconductor converter for synchronous

  14. Computer determination of event maps with application to auxiliary supply systems

    International Nuclear Information System (INIS)

    Wredenberg, L.; Billinton, R.

    1975-01-01

    A method of evaluating the reliability of sequential operations in systems containing standby and alternate supply facilities is presented. The method is based upon the use of a digital computer for automatic development of event maps. The technique is illustrated by application to a nuclear power plant auxiliary supply system. (author)

  15. Circulating water pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Satoh, Hiroshi; Ohmori, Tsuneaki

    1979-01-01

    Shortly, the nuclear power station with unit power output of 1100 MW will begin the operation, and the circulating water pumps manufactured recently are those of 2.4 to 4 m bore, 840 to 2170 m 3 /min discharge and 2100 to 5100 kW driving power. The circulating water pumps are one of important auxiliary machines, because if they fail, power generation capacity lowers immediately. Enormous quantity of cooling water is required to cool condensers, therefore in Japan, sea water is usually used. As siphon is formed in circulating water pipes, the total head of the pumps is not very high. The discharge of the pumps is determined so as to keep the temperature rise of discharged water lower than 7 deg. C. The quantity of cooling water for nuclear power generation is about 50% more as compared with thermal power generation because of the difference in steam conditions. The total head of the pumps is normally from 8 to 15 m. The circulating water pumps rarely stop after they started the operation, therefore it is economical to determine the motor power so that it can withstand 10% overload for a short period, instead of large power. At present, vertical shaft, oblique flow circulating water pumps are usually employed. Recently, movable blade pumps are adopted. The installation, construction and materials of the pumps and the problems are described. (Kako, I.)

  16. Definitions of engineered safety features and related features for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    In light water moderated, light water cooled nuclear power plants, definitions are given of engineered safety features which are designed to suppress or prevent dispersion of radioactive materials due to damage etc. of fuel at the times of power plant failures, and of related features which are designed to actuate or operate the engineered safety features. Contents are the following: scope of engineered safety features and of related features; classification of engineered safety features (direct systems and indirect systems) and of related features (auxiliaries, emergency power supply, and protective means). (Mori, K.)

  17. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant

  18. Auxiliary feedwater system risk-based inspection guide for the Byron and Braidwood nuclear power plants

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1991-07-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Byron and Braidwood were selected for the fourth study in this program. The produce of this effort is a prioritized listing of AFW failures which have occurred at the plants and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Byron/Braidwood plants. 23 refs., 1 fig., 1 tab

  19. Auxiliary feedwater system risk-based inspection guide for the H. B. Robinson nuclear power plant

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Lloyd, R.C.; Gore, B.F.; Vo, T.V.; Garner, L.W.

    1993-08-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. H. B. Robinson was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the H. B. Robinson plant

  20. Auxiliary feedwater system risk-based inspection guide for the J.M. Farley Nuclear Power Plant

    International Nuclear Information System (INIS)

    Vo, T.V.; Pugh, R.; Gore, B.F.; Harrison, D.G.

    1990-10-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment(PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. J. M. Farley was selected as the second plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important at the J. M. Farley plant. 23 refs., 1 fig., 1 tab

  1. Evaluation of Control and Protection System for Loss of Electrical Power Supply System of Water-Cooling Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Djen Djen; Setyono; Jambiar, Riswan; Rozali, Bang; Setyo P, Dwi; Tjahyono, Hendro

    2000-01-01

    Evaluation of control and protection system for loss of electrical power supply system of water-cooled nuclear power plant has been done. The loss of electrical power supply. The accident covered the loss of external electrical load and loss of ac power to the station auxiliaries. It is analysed by studying and observing the mechanism of electrical power system and mechanism of related control and protection system. The are two condition used in the evaluation i e without turbine trip and with turbine trip. From the evaluation it is concluded that the control and protection system can handled the failure caused by the loss of electrical power system

  2. Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships

    International Nuclear Information System (INIS)

    Strazza, C.; Del Borghi, A.; Costamagna, P.; Traverso, A.; Santin, M.

    2010-01-01

    Fuel cells own the potential for significant environmental improvements both in terms of air quality and climate protection. Through the use of renewable primary energies, local pollutant and greenhouse gas emissions can be significantly minimized over the full life cycle of the electricity generation process, so that marine industry accounts renewable energy as its future energy source. The aim of this paper is to evaluate the use of methanol in Solid Oxide Fuel Cells (SOFC), as auxiliary power systems for commercial vessels, through Life Cycle Assessment (LCA). The LCA methodology allows the assessment of the potential environmental impact along the whole life cycle of the process. The unit considered is a 20 kWel fuel cell system. In a first part of the study different fuel options have been compared (methanol, bio-methanol, natural gas, hydrogen from cracking, electrolysis and reforming), then the operation of the cell fed with methanol has been compared with the traditional auxiliary power system, i.e. a diesel engine. The environmental benefits of the use of fuel cells have been assessed considering different impact categories. The results of the analysis show that fuel production phase has a strong influence on the life cycle impacts and highlight that feeding with bio-methanol represents a highly attractive solution from a life cycle point of view. The comparison with the conventional auxiliary power system shows extremely lower impacts for SOFCs.

  3. Automated control system for the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Labik, V.

    1990-01-01

    Instrumentation of the automated control system of the Temelin nuclear power plant in the section of the main production unit and of the major auxiliary equipment is described, the results of testing are reported, and the present status of design activities is assessed. The suitability of application of Czechoslovak automation facilities to the instrumentation of the automated control system of the power plant was confirmed by the Soviet designer and supplier based on favorable results of polygonal testing. Capacity problems in the development of the designs and user software are alleviated by extensive cooperation. It is envisaged that all tasks will be fulfilled as planned. (P.A.). 1 fig., 5 refs

  4. Steam generator auxiliary systems

    International Nuclear Information System (INIS)

    Heinz, A.

    1982-01-01

    The author deals with damage and defect types obtaining in auxiliary systems of power plants. These concern water/steam auxiliary systems (feed-water tank, injection-control valves, slide valves) and air/fluegas auxiliary systems (blowers, air preheaters, etc.). Operating errors and associated damage are not dealt with; by contrast, weak spots are pointed out which result from planning and design. Damage types and events are collected in statistics in order to facilitate damage evaluation for arriving at improved design solutions. (HAG) [de

  5. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    Science.gov (United States)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  6. Experience with drilling and blasting work during construction of Mochovce nuclear power plant

    International Nuclear Information System (INIS)

    Mraz, M.; Vojta, A.; Podel, R.

    1986-01-01

    The results are discussed of four years of investigating the technical and economic parameters of drilling and blasting equipment employed on the building site of the Mochovce nuclear power plant. The technical and operating characteristics are given of tested breaking and drilling sets manufactured by various foreign companies. The final choice was based on output, hard currency prices, power demand, operating reliability and number of personnel required for operation. The optimal set consists of two Hausherr HBM 70 drilling systems (holes with a diameter of 130 to 150 mm) and two ROC 601-02 Atlas Copco machines (auxiliary work, breaking foundation holes for nuclear reactors). (J.C.)

  7. Accuracy requirements on operational measurements in nuclear power plants with regard to balance methodology

    International Nuclear Information System (INIS)

    Holecek, C.

    1986-01-01

    Accurate in-service measurement is necessary for power balancing of nuclear power plants, i.e., the determination of fuel consumption, electric power generation, heat delivery and the degree of fuel power utilization. The only possible method of determining the input of total consumed energy from the fuel is the balance of the primary coolant circuit. This is because for the purposes of power balancing it is not possible to measure the amount of power generated from nuclear fuel. Relations are presented for the calculation of basic indices of the power balance. It is stated that for the purposes of power balancing and analyses the precision of measuring instrument at the input and output of balancing circuits is of primary importance, followed by the precision of measuring instruments inside balancing circuits and meters of auxiliary parameters. (Z.M.). 7 refs., 1 tab

  8. Brazilian nuclear power plants decommissioning plan for a multiple reactor site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys B.; Moreira, Joao M.L.; Maiorino, Jose R., E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas. Programa de Pos-Graduacao em Energia e Engenharia da Energia

    2015-07-01

    Actually, Brazil has two operating Nuclear Power Plants and a third one under construction, all at Central Nuclear Almirante Alvaro Alberto - CNAAA. To comply with regulatory aspects the power plants operator, Eletronuclear, must present to Brazilian Nuclear Regulatory Agency, CNEN, a decommissioning plan. Brazilian experience with decommissioning is limited because none of any nuclear reactor at the country was decommissioned. In literature, decommissioning process is well described despite few nuclear power reactors have been decommissioned around the world. Some different approach is desirable for multiple reactors sites, case of CNAAA site. During the decommissioning, a great amount of wastes will be produced and have to be properly managed. Particularly, the construction of Auxiliary Services on the site could be a good choice due to the possibility of reducing costs. The present work intends to present to the Eletronuclear some aspects of the decommissioning concept and decommissioning management, storage and disposal de wastes, based on the available literature, regulatory standards of CNEN and international experience as well as to suggest some solutions to be implemented at CNAAA site before starts the decommissioning project in order to maximize the benefits. (author)

  9. Brazilian nuclear power plants decommissioning plan for a multiple reactor site

    International Nuclear Information System (INIS)

    Monteiro, Deiglys B.; Moreira, Joao M.L.; Maiorino, Jose R.

    2015-01-01

    Actually, Brazil has two operating Nuclear Power Plants and a third one under construction, all at Central Nuclear Almirante Alvaro Alberto - CNAAA. To comply with regulatory aspects the power plants operator, Eletronuclear, must present to Brazilian Nuclear Regulatory Agency, CNEN, a decommissioning plan. Brazilian experience with decommissioning is limited because none of any nuclear reactor at the country was decommissioned. In literature, decommissioning process is well described despite few nuclear power reactors have been decommissioned around the world. Some different approach is desirable for multiple reactors sites, case of CNAAA site. During the decommissioning, a great amount of wastes will be produced and have to be properly managed. Particularly, the construction of Auxiliary Services on the site could be a good choice due to the possibility of reducing costs. The present work intends to present to the Eletronuclear some aspects of the decommissioning concept and decommissioning management, storage and disposal de wastes, based on the available literature, regulatory standards of CNEN and international experience as well as to suggest some solutions to be implemented at CNAAA site before starts the decommissioning project in order to maximize the benefits. (author)

  10. PEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tinton Dwi Atmaja

    2012-02-01

    Full Text Available Page HeaderOpen Journal SystemsJournal HelpUser You are logged in as...aulia My Journals My Profile Log Out Log Out as UserNotifications View (27 new ManageJournal Content SearchBrowse By Issue By Author By Title Other JournalsFont SizeMake font size smaller Make font size default Make font size largerInformation For Readers For Authors For LibrariansKeywords CBPNN Displacement FLC LQG/LTR Mixed PMA Ventilation bottom shear stress direct multiple shooting effective fuzzy logic geoelectrical method hourly irregular wave missile trajectory panoramic image predator-prey systems seawater intrusion segmentation structure development pattern terminal bunt manoeuvre Home About User Home Search Current Archives ##Editorial Board##Home > Vol 23, No 1 (2012 > AtmajaPEMFC Optimization Strategy with Auxiliary Power Source in Fuel Cell Hybrid VehicleTinton Dwi Atmaja, Amin AminAbstractone of the present-day implementation of fuel cell is acting as main power source in Fuel Cell Hybrid Vehicle (FCHV. This paper proposes some strategies to optimize the performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC implanted with auxiliary power source to construct a proper FCHV hybridization. The strategies consist of the most updated optimization method determined from three point of view i.e. Energy Storage System (ESS, hybridization topology and control system analysis. The goal of these strategies is to achieve an optimum hybridization with long lifetime, low cost, high efficiency, and hydrogen consumption rate improvement. The energy storage system strategy considers battery, supercapacitor, and high-speed flywheel as the most promising alternative auxiliary power source. The hybridization topology strategy analyzes the using of multiple storage devices injected with electronic components to bear a higher fuel economy and cost saving. The control system strategy employs nonlinear control system to optimize the ripple factor of the voltage and the current

  11. Boiler systems for nuclear powered reactors

    International Nuclear Information System (INIS)

    Cook, R.K.; George, B.V.

    1979-01-01

    A power generating plant which comprises a heat source, at least one main steam turbine and at least one main boiler heated by heat from the heat source and providing the steam to drive the turbine, comprises additionally at least one further steam turbine, smaller than the main turbine, and at least one further boiler, of lower capacity than the main boiler, and heated from the same heat source and providing steam for the further turbine. Particularly advantageous in nuclear power stations, where the heat source is a nuclear reactor, the invention enables peak loads, above the normal continuous rating of the main generators driven by the main turbines, to be met by the further turbine(s) and one or more further generators driven thereby. This enables the main turbines to be freed from the thermal stresses of rapid load changes, which stresses are more easily accommodated by the smaller and thus more tolerant further turbine(s). Thus auxiliary diesel-driven or other independent power plant may be made partly or wholly unnecessary. Further, low-load running which would be inefficient if achieved by means of the main turbine(s), can be more efficiently effected by shutting them down and using the smaller further turbine(s) instead. These latter may also be used to provide independent power for servicing the generating plant during normal operation or during emergency or other shutdown, and in this latter case may also serve as a heat sink for the shutdown reactor

  12. Pressurizer /Auxiliary Spray Piping Stress Analysis For Determination Of Lead Shielding Maximum Allow Able Load

    International Nuclear Information System (INIS)

    Setjo, Renaningsih

    2000-01-01

    Piping stress analysis for PZR/Auxiliary Spray Lines Nuclear Power Plant AV Unit I(PWR Type) has been carried out. The purpose of this analysis is to establish a maximum allowable load that is permitted at the time of need by placing lead shielding on the piping system on class 1 pipe, Pressurizer/Auxiliary Spray Lines (PZR/Aux.) Reactor Coolant Loop 1 and 4 for NPP AV Unit one in the mode 5 and 6 during outage. This analysis is intended to reduce the maximum amount of radiation dose for the operator during ISI ( In service Inspection) period.The result shown that the maximum allowable loads for 4 inches lines for PZR/Auxiliary Spray Lines is 123 lbs/feet

  13. Thermo hydrodynamical analyses of steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Petelin, S.; Gregoric, M.

    1984-01-01

    SMUP computer code for stationary model of a U-tube steam generator of a PWR nuclear power plant was developed. feed water flow can enter through main and auxiliary path. The computer code is based on the one dimensional mathematical model. Among the results that give an insight into physical processes along the tubes of steam generator are distribution of temperatures, water qualities, heat transfer rates. Parametric analysis permits conclusion on advantage of each design solution regarding heat transfer effects and safety of steam generator. (author)

  14. 75 FR 3639 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Science.gov (United States)

    2010-01-22

    .... 10-24; DA 10-92] Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the... Auxiliary Stations, Including Wireless Microphones, and the Digital Television Transition AGENCY: Federal... language that must be used in the consumer disclosure that is required by Section 15.216 of Appendix B in...

  15. An optimal power management system for a regenerative auxiliary power system for delivery refrigerator trucks

    International Nuclear Information System (INIS)

    Mohagheghi Fard, Soheil; Khajepour, Amir

    2016-01-01

    Highlights: • A new anti-idling system for refrigerator trucks is proposed. • This system enables regenerative braking. • An innovative two-level controller is proposed for the power management system. • A fast dynamic programming technique to find real-time SOC trajectory is proposed. • In addition to idling elimination, this system reduces fuel consumption. - Abstract: Engine idling of refrigerator trucks during loading and unloading contributes to greenhouse gas emissions due to their increased fuel consumption. This paper proposes a new anti-idling system that uses two sources of power, battery and engine-driven generator, to run the compressor of the refrigeration system. Therefore, idling can be eliminated because the engine is turned OFF and the battery supplies auxiliary power when the vehicle is stopped for loading or unloading. This system also takes advantage of regenerative braking for increased fuel savings. The power management of this system needs to satisfy two requirements: it must minimize fuel consumption in the whole cycle and must ensure that the battery has enough energy for powering the refrigeration system when the engine is OFF. To meet these objectives, a two-level controller is proposed. In the higher level of this controller, a fast dynamic programming technique that utilizes extracted statistical features of drive and duty cycles of a refrigerator truck is used to find suboptimal values of the initial and final SOC of any two consecutive loading/unloading stops. The lower level of the controller employs an adaptive equivalent fuel consumption minimization (A-ECMS) to determine the split ratio of auxiliary power between the generator and battery for each segment with initial and final SOC obtained by the high-level controller. The simulation results confirm that this new system can eliminate idling of refrigerator trucks and reduce their fuel consumption noticeably such that the cost of replacing components is recouped in a

  16. Surveillance robot for nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Harvey, H.W.; Satterlee, P.E. Jr.

    1985-01-01

    A demonstration project to determine the feasibility and cost-effectiveness of mobile surveillance robots in nuclear power plants is being conducted by the Remote Technology Corporation (REMOTEC) for the US Nuclear Regulatory Commission. Phase I of the project was completed in March 1984 and included a survey of currently used robotic equipment and the development of a robotics application methodology. Three Tennessee Valley Authority plants were analyzed to identify specific plant areas with a high potential for surveillance robotics. Based on these results, a number of robotic system applications were prepared and evaluated for cost-effectiveness. The system with the highest potential, a mobile surveillance robot, was selected for fabrication and in-plant demonstration testing in a phase II effort. The design, fabrication, and assembly of SURBOT has been completed and cold testing is in process. It will be installed at the Browns Ferry Nuclear Plant early in 1986 for demonstration testing. Current projections are that SURBOT can be used in approx.40 rooms within the auxiliary building and will have annual savings of over 100 person-rem exposure, 1000 sets of C-zone clothing, and 1000 person-hours of labor

  17. Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A

    International Nuclear Information System (INIS)

    Xu Weidong; Xuan Weimin; Yao Lieying; Wang Yingqiao

    2012-01-01

    The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 μs. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.

  18. Management of nuclear power plants lifetime

    International Nuclear Information System (INIS)

    Hutin, J.P.

    2006-01-01

    The factors influencing the management of the service life of nuclear power plants can be of various types and the 'heaviest' ones have to be managed through robust and explicit approaches involving all actors. However, the mastery of the service life starts with the mastery of the technical problems, in particular the physical aging of the facilities. This mastery requires to foresee and anticipate the problems and thus a good understanding of the phenomena involved. This article presents: 1 - the general problem of service life management: lifetime concept, situation of French power plants, service life management policy; 2 - aging mechanisms: embrittlement of steel under irradiation, swelling of materials, thermal aging, fatigue, stress corrosion, aqueous corrosion of metals, corrosion-erosion, mechanisms of concrete degradation, mechanisms of elastomers and polymers degradation, wear; 3 - non-replaceable parts: reactor vessel, containment building; 4 - replaceable parts: cables, instrumentation and control system, core internals, primary loop piping, auxiliary primary piping, pressurizer, primary pump, steam generator tubes, other Ni-Cr-Fe alloy parts, secondary loop piping, turbine, alternator; 5 - non-technical aspects: perenniality of the industrial support, evolution of safety requirements, public acceptance, economical aspects, knowledge and information systems; 6 - situation in foreign countries: status of the world nuclear park, lifetime notion in foreign countries, situation in the USA. (J.S.)

  19. Protection device for use in stopping a turbine generator in nuclear power plant

    International Nuclear Information System (INIS)

    Nagahama, Mizuo.

    1974-01-01

    Object: To supply to as great an extent as possible the residual output of a nuclear reactor to a turbine after the reactor is shutdown and to prevent overpower and motoring of a turbine by connecting a power direction relay to a secondary circuit of a current transformer and an instrumentation transformer at the high voltage side of a main transformer of a transmission bus line. Structure: When the output power of a generator after shuttingdown a nuclear reactor decreases below the sum of the mechanical losses of the turbine and the generator and the power for the house-auxiliaries connected to a fixed bus line, the direction of the current is reversed and the power is supplied from the transmission bus line through a circuit breaker for the generator and a main transformer onto the house-side, whereby a time limit relay of the power direction relay is actuated to disconnect the generator and the turbine. (Kamimura, M.)

  20. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  1. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  2. Monitoring the radioactivity in the secondary systems of a nuclear power plant

    International Nuclear Information System (INIS)

    Labno, L.

    1979-01-01

    The direct water/steam circuit and the waste water and exhaust air systems of a nuclear power plant with boiling water reactor are slightly contaminated with radioactive nuclides during normal operation. In addition some auxiliary and subsidiary systems may show evidence of radioactivity as a result of leakages between the systems. These radioactive substances and those which are discharged to the environment in exhaust air or waste water - although present in quantities far below the admissible limits - still require supervision by a comprehensive activity monitoring system. The article sets out the concept and the technical solution adopted for the activity monitoring system for the secondary section of a nuclear power station. The system is so designed that it provides the information and performs the safety functions important for highly reliable plant operation. Particular importance has been attached to the reliability and dependability of the system, so that incorrect interpretations or reports, such as have been experienced, for example, in the nuclear power plants 'Brunsbuettel' (Federal Republic of Germany) and 'Three Mile Island', near Harrisburg (USA), will not be repeated. (Auth.)

  3. Nuclear Power

    International Nuclear Information System (INIS)

    Douglas-Hamilton, J.; Home Robertson, J.; Beith, A.J.

    1987-01-01

    In this debate the Government's policy on nuclear power is discussed. Government policy is that nuclear power is the safest and cleanest way of generating electricity and is cheap. Other political parties who do not endorse a nuclear energy policy are considered not to be acting in the people's best interests. The debate ranged over the risks from nuclear power, the UK safety record, safety regulations, and the environmental effects of nuclear power. The Torness nuclear power plant was mentioned specifically. The energy policy of the opposition parties is strongly criticised. The debate lasted just over an hour and is reported verbatim. (UK)

  4. Sawtooth Pacing by Real-Time Auxiliary Power Control in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Goodman, T. P.; Felici, F.; Sauter, O.; Graves, J. P.

    2011-01-01

    In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.

  5. A multivariate statistical study on a diversified data gathering system for nuclear power plants

    International Nuclear Information System (INIS)

    Samanta, P.K.; Teichmann, T.; Levine, M.M.; Kato, W.Y.

    1989-02-01

    In this report, multivariate statistical methods are presented and applied to demonstrate their use in analyzing nuclear power plant operational data. For analyses of nuclear power plant events, approaches are presented for detecting malfunctions and degradations within the course of the event. At the system level, approaches are investigated as a means of diagnosis of system level performance. This involves the detection of deviations from normal performance of the system. The input data analyzed are the measurable physical parameters, such as steam generator level, pressurizer water level, auxiliary feedwater flow, etc. The study provides the methodology and illustrative examples based on data gathered from simulation of nuclear power plant transients and computer simulation of a plant system performance (due to lack of easily accessible operational data). Such an approach, once fully developed, can be used to explore statistically the detection of failure trends and patterns and prevention of conditions with serious safety implications. 33 refs., 18 figs., 9 tabs

  6. Safety requirements for a nuclear power plant electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  7. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  8. Integrated equipment for increasing and maintaining coolant pressure in primary circuit of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sykora, D.

    1986-01-01

    An open heat pump circuit is claimed connected to the primary circuit. The pump circuit consists of a steam pressurizer with a built-in steam distributor, a compressor, an expander, a reducing valve, an auxiliary pump, and of water and steam pipes. The operation is described and a block diagram is shown of integrated equipment for increasing and maintaining pressure in the nuclear power plant primary circuit. The appropriate entropy diagram is also shown. The advantage of the open pump circuit consists in reducing the electric power input and electric power consumption for the steam pressurizers, removing entropy loss in heat transfer with high temperature gradient, in the possibility of inserting, between the expander and the auxiliary pump, a primary circuit coolant treatment station, in simplified design and manufacture of the high-pressure steam pressurizer vessel, reducing the weight of the steam pressurizer by changing its shape from cylindrical to spherical, increasing the rate of pressure growth in the primary circuit. (E.S.)

  9. Nuclear power

    International Nuclear Information System (INIS)

    Porter, Arthur.

    1980-01-01

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  10. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  11. Operating experiences and degradation detection for auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Casada, D.; Farmer, W.S.

    1992-01-01

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The results of the study are documented in NUREG/CR-5404, Vol. 1, Auxiliary Feedwater System Aging Study. The study reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results

  12. IAEA programme on water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Nechaev, A.F.; Skjoeldebrand, R.

    1988-01-01

    The paper reviews the past future efforts of the IAEA, directed to ensure optimal water chemistry regimes in nuclear power plants. Corrosion of structural materials resulting from the interaction of the coolant with the internal surfaces comprising the primary heat transfer and auxiliary circuits of water reactors, creates two main problems. The first is an operational problem resulting in an increase in the core pressure drop or overheating of the fuel elements induced by crud buildup on the fuel cladding. The second problem is related to occupational radiation exposures arising from contamination of out-of-flux surfaces by corrosion products activated in the reactor core. These are the problems of reliability and safety which together with economics could be considered as the 'three whales' of nuclear power. The main goals of international cooperation in reactor water chemistry are: (1) to create a balanced and well-grounded methodological basis for corresponding regulatory and engineering solutions on a national level and (2) to improve 'the models and predictive capability of specialists for conditions that are different from or perhaps just beyond the realm of experience'. Continuing efforts are required to guarantee the highest reliability and safety standards under favorable economic indices of nuclear power plants, and to obtain understanding of such significant potential for solving the remaining problems. (Nogami, K.)

  13. Experimental study of the combined utilization of nuclear power heating plants for big towns and industrial complexes

    International Nuclear Information System (INIS)

    Neumann, J.; Barabas, K.

    1977-01-01

    The paper describes a comparison of nuclear power heating plants with an output corresponding to 1000MW(e) with plants of the same output using coal or oil. The economic aspects are compared, both as regards investment and operation costs. The comparison of the environmental aspects is performed on the atmospheric pollution from exhausts and gaseous emission and on the thermal pollutions in hydrosphere and atmosphere. Basic nuclear power plant schemes with two PWRs, each of 1500MW(th), are described. The plant supplies electric power and heat for factories and municipal heating systems (apartments, shops, and other auxiliary municipal facilities). At the same time the basic heat-flow diagram of a nuclear power heating plant is given, together with the relative losses. The study emphasizes the possible utilization of waste heat for heating glasshouses of 200m 2 . The problems of utilizing waste heat, and the needs of a big town and of industrial complexes in the vicinity of the nuclear power heating plant are also considered. (author)

  14. New water intake systems for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Ishchuk, T.B.; Samodel'nikov, B.T.

    1989-01-01

    Problems arising during design of water intake and spillway structures for the auxiliary water supply system of thermal and nuclear power plants connected with the provision of their reliable operation and with the effect on the temperature condition of reservoirs and their ecology are investigated. Design providing for the connection of intake channel and catch drain for a through (transition) channel and supplying a water transition flow by ejecting water outputs is suggested. The variant considered is effective for seas, lakes and reservoirs with adverse conditions for natural cooling and it is suitable for regions with seismicity up to 5-6 balls

  15. On the prohibition of automatic redundant power supply of 6 and 0.4 kV auxiliary sections at Leningrad NPP

    International Nuclear Information System (INIS)

    Mokeev, S.F.

    1987-01-01

    At Leningrad NPP the automatic switching on of the auxiliary power supply sources of 6 and 0.4 kV is prohibited to provide personnel safety and preserve destruction of electroequipment. With excess of current maximum value in the 6 kV section immediate detachment of all electric motors occurs. At that moment by the switchers detechment emergency signal it occurs immediate swithing on of auxiliary systems or emergency switching on of auxiliary supply of the main circulating pumps, that insreases abruptly operation reliability of plant technological department

  16. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2005-01-01

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  17. Nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  18. Nuclear power development

    International Nuclear Information System (INIS)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power

  19. Common cause evaluations in applied risk analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Taniguchi, T.; Ligon, D.; Stamatelatos, M.

    1983-04-01

    Qualitative and quantitative approaches were developed for the evaluation of common cause failures (CCFs) in nuclear power plants and were applied to the analysis of the auxiliary feedwater systems of several pressurized water reactors (PWRs). Key CCF variables were identified through a survey of experts in the field and a review of failure experience in operating PWRs. These variables were classified into categories of high, medium, and low defense against a CCF. Based on the results, a checklist was developed for analyzing CCFs of systems. Several known techniques for quantifying CCFs were also reviewed. The information provided valuable insights in the development of a new model for estimating CCF probabilities, which is an extension of and improvement over the Beta Factor method. As applied to the analysis of the PWR auxiliary feedwater systems, the method yielded much more realistic values than the original Beta Factor method for a one-out-of-three system

  20. Development of the APR+ Auxiliary Building General Arrangement (GA)

    International Nuclear Information System (INIS)

    Moon, Hyung Keun; Park, Young Sheop; Kang, Yong Chul

    2011-01-01

    The general arrangement (GA) drawing of a nuclear power plant is the most basic drawing which contains all of the plant equipment, systems, and rooms. Therefore, it should be issued at an early design stage to provide the contours of the overall plant structure. This type of drawing is typically used widely throughout the design stages. The development project of APR+ (Advanced Power Reactor+), as a succeeding model of the APR1400 (Advanced Power Reactor 1400) design, has its own GA that encompasses all of its power buildings. This was developed starting in October of 2009. Among several of the buildings in this design, the Auxiliary Building (AB) is one of the most important buildings to produce electricity, and to protect against undesirable radiation emissions. This paper focuses on the design characteristics of the general arrangement of the AB

  1. Nuclear power

    International Nuclear Information System (INIS)

    King, P.

    1990-01-01

    Written from the basis of neutrality, neither for nor against nuclear power this book considers whether there are special features of nuclear power which mean that its development should be either promoted or restrained by the State. The author makes it dear that there are no easy answers to the questions raised by the intervention of nuclear power but calls for openness in the nuclear decision making process. First, the need for energy is considered; most people agree that energy is the power to progress. Then the historicalzed background to the current position of nuclear power is given. Further chapters consider the fuel cycle, environmental impacts including carbon dioxide emission and the greenhouse effect, the costs, safety and risks and waste disposal. No conclusion either for or against nuclear power is made. The various shades of opinion are outlined and the arguments presented so that readers can come to their own conclusions. (UK)

  2. Nuclear power plant containment construction

    International Nuclear Information System (INIS)

    Schabert, H.P.; Danisch, R.; Strickroth, E.

    1975-01-01

    The Nuclear Power Plant Containment Construction includes the spherical steel safety enclosure for the reactor and the equipment associated with the reactor and requiring this type of enclosure. This steel enclosure is externally structurally protected against accident by a concrete construction providing a foundation for the steel enclosure and having a cylindrical wall and a hemispherical dome, these parts being dimensioned to form an annular space surrounding the spherical steel enclosure, the latter and the concrete construction heretofore being concentrically arranged with respect to each other. In the disclosed construction the two parts are arranged with their vertical axis horizontally offset from each other so that opposite to the offsetting direction of the concrete construction a relatively large space is formed in the now asymmetrical annular space in which reactor auxiliary equipment not requiring enclosure by the steel containment vessel or safety enclosure, may be located outside of the steel containment vessel and inside of the concrete construction where it is structurally protected by the latter

  3. 46 CFR 58.25-10 - Main and auxiliary steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main and auxiliary steering gear. 58.25-10 Section 58.25... AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-10 Main and auxiliary steering gear. (a) Power-operated main and auxiliary steering gear must be separate systems that are independent throughout their...

  4. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  5. Nuclear power in Czechoslovakia and its development within the CMEA collaboration framework

    International Nuclear Information System (INIS)

    Gavel, S.

    1984-01-01

    The state of and prospects for the development of nuclear pwer and energy machine building in Czechoslovakia are considered. In 1980 the NPPs generated 1.5% of the country's energy. It is envisaged that by 1990 the share of NPPs will rise to 9.2% and by 2000 to 15%. Since 1974, when an agreement with the Soviet Union was signed on cooperation and specialization in producing equipment for NPPs, a new industry, nuclear power machine building, has been successfully developed in Czechoslovakia. The production of steam generators, volume compensators, main gate valves, pipelines, special fittings, special pumps and auxiliary systems of the primary circuit has been mastered. Presently, the Czechoslovakian industry is capable of manufacturing above 80% of the whole servicing equipment of WWER-440 power units. Alongside with the USSR, Czechoslovakia has become the second greatest supplier of equipment for NPPs among the COMECON member-states. By 2000 it is planned to put into operation 12 WWER-440 power unit and 6 WWER-1000 power units with the total capacity of 11280 MW. An experimental agro-nuclear complex will soon be constructed in which NPP heat will be utilized for growing vegetables, fruit, mushrooms and for breeding fish

  6. Auxiliary feedwater system risk-based inspection guide for the Beaver Valley, Units 1 and 2 nuclear power plants

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Vehec, T.A.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Rossbach, L.W.; Sena, P.P. III

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Beaver Valley Units 1 and 2 were selected as two of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at Beaver Valley Units 1 and 2

  7. Strategy of nuclear power in Korea, non-nuclear-weapon state and peaceful use of nuclear power

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2005-01-01

    The nuclear power plant started at Kori in Korea in April, 1978. Korea has carried out development of nuclear power as a national policy. The present capacity of nuclear power plants takes the sixes place in the world. It supplies 42% total power generation. The present state of nuclear power plant, nuclear fuel cycle facility, strategy of domestic production of nuclear power generation, development of next generation reactor and SMART, strategy of export in corporation with industry, government and research organization, export of nuclear power generation in Japan, nuclear power improvement project with Japan, Korea and Asia, development of nuclear power system with nuclear diffusion resistance, Hybrid Power Extraction Reactor System, radioactive waste management and construction of joint management and treatment system of spent fuel in Asia are stated. (S.Y.)

  8. Preoperational radiation measurements at the Angra-I nuclear power plant. Part 1

    International Nuclear Information System (INIS)

    Leao, J.L.B.; Barbosa, W.P.; Oberhofer, M.

    1991-01-01

    During December 10 and 11, 1980, γ-background measurements were performed at the Angra-I nuclear power plant within the reactor containment, within and outside the adjacent building complexes. The dose-rates within the containment averaged around 10,6 μR/h, within the auxiliary building around 14,4 μR/h. The lowest values, 6 μR/h, were measured within the reactor coolant pump and steam generator compartments, the highest value, 25 μR/h, in the charging pump valve operation room, elevation 8,65, close to area monitor No. 4. (author)

  9. Open-Phase Condition Detecting System for Transformers in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ha, Che-Wung; Lee, Do-Hwan

    2015-01-01

    Recently, several events involving the loss of one of the three phases of the offsite power circuit occurred in the US nuclear power plants (NPPs).. In some cases, the open-phase condition existed undetected for an extended period and in other case, was not properly responded to. Accordingly, the Nuclear Regulatory Commission (NRC) requested all license holders to take corrective actions to address the open-phase condition. It was also requested that all holders or applicant for a standard design certification (DC) include a description of a protection system to detect and separate the open circuit into design control document (DCD). Currently, NPPs including Duke Energy, Exelon, and institutes including Electric Power Research Institute (EPRI) are working together to resolve issues associated with detecting an open-phase condition. This paper, using Electromagnetic Transients Program (EMTP), presents a system to detect and address the loss of one of three phases of the offsite power circuit connected to main, auxiliary and standby transformers, which is hard to be detected in the current protection system. This paper, using EMTP, presents a system to detect and address the loss of one of three phases of the offsite power circuit running to MT, UAT or SAT which is hard to be detected in the current protection system. The system presented in this paper will be useful not only for the KHNP to meet the NRC requirement, but also for nuclear power plants at home and abroad to take corrective actions to provide protection from a single phase open circuit condition for offsite power sources

  10. Open-Phase Condition Detecting System for Transformers in Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Che-Wung; Lee, Do-Hwan [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Recently, several events involving the loss of one of the three phases of the offsite power circuit occurred in the US nuclear power plants (NPPs).. In some cases, the open-phase condition existed undetected for an extended period and in other case, was not properly responded to. Accordingly, the Nuclear Regulatory Commission (NRC) requested all license holders to take corrective actions to address the open-phase condition. It was also requested that all holders or applicant for a standard design certification (DC) include a description of a protection system to detect and separate the open circuit into design control document (DCD). Currently, NPPs including Duke Energy, Exelon, and institutes including Electric Power Research Institute (EPRI) are working together to resolve issues associated with detecting an open-phase condition. This paper, using Electromagnetic Transients Program (EMTP), presents a system to detect and address the loss of one of three phases of the offsite power circuit connected to main, auxiliary and standby transformers, which is hard to be detected in the current protection system. This paper, using EMTP, presents a system to detect and address the loss of one of three phases of the offsite power circuit running to MT, UAT or SAT which is hard to be detected in the current protection system. The system presented in this paper will be useful not only for the KHNP to meet the NRC requirement, but also for nuclear power plants at home and abroad to take corrective actions to provide protection from a single phase open circuit condition for offsite power sources.

  11. Thermal stability analysis and auxiliary power feedback control for the tokamak engineering test breeder (TETB-II)

    International Nuclear Information System (INIS)

    Sheng Guangzhao

    1993-01-01

    The thermal stability of TETB-II is analyzed using different methods, viz., POPCON, linear stability analysis and the time evolution calculation of plasma parameters. A thermal instability of the TETB-II is predicted. Auxiliary power feedback control for thermal stability appears feasible and efficient

  12. Impact of Auxiliary Equipments Consumption on Electricity Generation Cost in Selected Power Plants of Pakistan

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR

    2017-04-01

    Full Text Available This study focuses on higher generation cost of electricity in selected TPPs (Thermal Power Plants in Sindh, Pakistan. It also investigates the energy consumed by the auxiliary equipment of the selected TPPs in Sindh, Pakistan. The AC (Auxiliary Consumption of selected TPPs is compared with that in UK and other developed countries. Results show that the AC in selected TPPs in Sindh, Pakistan exceeds the average AC of the TPPs situated in developed countries. Many energy conservation measures such as impeller trimming and de-staging, boiler feed pump, high voltage inverter, variable frequency drive, and upgrading the existing cooling tower fan blades with fiber reinforced plastic are discussed to overcome higher AC. This study shows that harnessing various available energy conservative measures the AC and unit cost can be reduced by 4.13 and 8.8%; also adverse environmental impacts can be mitigated. Results show that the unit cost of electricity can be reduced from Rs.20 to19/kWh in JTPP (Jamshoro Thermal Power Plant, Rs.9 to 8.8/kWh in GTPS (Gas Turbine Power Station Kotri and Rs. 11 to 10.27/ kWh in LPS (Lakhara Power Station. Thus, electricity production can be improved with the existing capacity, which will eventually assist to manage the current energy crisis and ensure its conservation

  13. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  14. Nuclear power economic database

    International Nuclear Information System (INIS)

    Ding Xiaoming; Li Lin; Zhao Shiping

    1996-01-01

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  15. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Science.gov (United States)

    2010-10-01

    ... Intentional Radiators Radiated Emission Limits, Additional Provisions § 15.216 Disclosure requirements for... following disclosure requirements: (1) Such persons must display the consumer disclosure text, as specified... point of sale or lease of each such low power auxiliary station. The text must be displayed in a clear...

  16. Aging assessment of auxiliary feedwater systems

    International Nuclear Information System (INIS)

    Casada, D.A.

    1989-01-01

    A study of Pressurized Water Reactor Auxiliary Feedwater (AFW) Systems has been conducted by Oak Ridge National Laboratory (ORNL) under the auspices of the Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. The study has reviewed historical failure experience and current monitoring practices for the AFW System. This paper provides an overview of the study approach and results. 7 figs

  17. Safety of Ikata Nuclear Power Station from the accident of Three Mile Island

    International Nuclear Information System (INIS)

    Nonaka, Hiroshi

    1979-01-01

    The leak of radioactive substances occurred on March 28, 1979, in the No. 2 plant of Three Mile Island Nuclear Power Station, and this accident must be put to use to prevent similar accidents and to secure safety hereafter in the nuclear power stations being operated in Japan. In the TMI accident, too many problems concerning the operation management seemed to exist in a series of events. In this paper, a few matters related to the TMI accident among the aspects of the operation management in Ikata Nuclear Power Station are reported. As the problems of operation management, it is considered that the operation of the TMI plant was continued as the exit valve of auxiliary feed line was closed, that it took long time to close the root valve for a pressurizer relief valve manually, and that the ECCS was stopped manually. In TMI, the abnormal phenomenon of losing main feed water has occurred 6 times since the attainment of criticality in March, 1978, and the opening and sticking of pressurizer relief valves occurred at least twice in about 150 times of their actuation in the nuclear reactors designed by Babcock and Wilcox Co. In Ikata Nuclear Power Station, these problems are detected early and the suitable measures are taken immediately, therefore it never happens to continue the operation as the problems are left as they are. It is not conceivable that similar troubles occur many times. (Kako, I.)

  18. Catalytic Reforming of Higher Hydrocarbon Fuels to Hydrogen: Process Investigations with Regard to Auxiliary Power Units

    OpenAIRE

    Kaltschmitt, Torsten

    2012-01-01

    This thesis discusses the investigation of the catalytic partial oxidation on rhodium-coated honeycomb catalysts with respect to the conversion of a model surrogate fuel and commercial diesel fuel into hydrogen for the use in auxiliary power units. Furthermore, the influence of simulated tail-gas recycling was investigated.

  19. Auxiliary equipment cooling circuit in nuclear reactors

    International Nuclear Information System (INIS)

    Yanagisawa, Ko.

    1986-01-01

    Purpose: To prevent the propagation of bacterias that transform NO 2 into NO 3 in auxiliary equipment coolants using corrosion inhibitors of nitrite type in BWR type reactors. Method: In auxiliary equipments coolant systems, water quality is controlled by using purified water as supplement water and nitrite such as Na 2 NO 2 as the corrosion inhibitors. However, in the circumstance where dissolved oxygen is present, bacteria propagate to oxidize NO 2 into NO 3 . Thus, NO 2 at 200 ppm is reduced to 20 ppm. In view of the above, a surge tank supplied from water supplement line is connected in series and a deaeration device is disposed thereto. Since the presence of dissolved oxygen causes the bacteria to propagate it is desired that the dissolved oxygen density in the supplement water is less than 5 ppm. Deaeration and pressure reduction in the surge tank can remove the dissolved oxygen, prevent NO 3 increase and also prevent stress corrosion cracks in the system pipeways. (Horiuchi, T.)

  20. Nuclear power controversy

    International Nuclear Information System (INIS)

    Murphy, A.W.

    1976-01-01

    Arthur W. Murphy in the introductory chapter cites the issues, pro and con, concerning nuclear power. In assessing the present stance, he first looks back to the last American Assembly on nuclear power, held October 1957 and notes its accomplishments. He summarizes the six papers of this book, which focus on nuclear power to the end of this century. Chapter I, Safety Aspects of Nuclear Energy, by David Bodansky and Fred Schmidt, deals with the technical aspects of reactor safety as well as waste storage and plutonium diversion. Chapter 2, The Economics of Electric Power Generation--1975-2000, by R. Michael Murray, Jr., focuses specifically on coal-fired and nuclear plants. Chapter 3, How Can We Get the Nuclear Job Done, by Fritz Heimann, identifies actions that must take place to develop nuclear power in the U.S. and who should build the reprocessing plants. Chapter 4, by Arthur Murphy, Nuclear Power Plant Regulation, discusses the USNRC operation and the Price-Anderson Act specifically. Chapter 5, Nuclear Exports and Nonproliferation Strategy, by John G. Palfrey, treats the international aspects of the problem with primary emphasis upon the situation of the U.S. as an exporter of technology. Chapter 6, by George Kistiakowsky, Nuclear Power: How Much Is Too Much, expresses doubt about the nuclear effort, at least in the short run

  1. A minimization procedure for estimating the power deposition and heat transport from the temperature response to auxiliary power modulation

    International Nuclear Information System (INIS)

    Eester, Dirk van

    2004-01-01

    A method commonly used for determining where externally launched power is absorbed inside a tokamak plasma is to examine the temperature response to modulation of the launched power. Strictly speaking, this response merely provides a first good guess of the actual power deposition rather than the deposition profile itself: not only local heat sources but also heat losses and heat wave propagation affect the temperature response at a given position. Making use of this, at first sight non-desirable, effect modulation becomes a useful tool for conducting transport studies. In this paper a minimization method based on a simple conduction-convection model is proposed for deducing the power deposition and transport characteristics from the experimentally measured (electron) energy density response to a modulation of the auxiliary heating power. An L-mode JET example illustrates the potential of the technique

  2. Design of an operator support system for online maintenance at nuclear power plant

    International Nuclear Information System (INIS)

    Chu Yongyue; Li Huwei; Gao Qiang; Yi Yan; Yang Ming

    2013-01-01

    Online maintenance based on reliability centered management is pivotal for the safe and economical operation of Nuclear Power Plant (NPP). This paper presents an operator support system through which the operators can effectively manage plant configuration and identify the weaknesses in plant operation. The proposed operator support system is based on the GO-FLOW, which is a success-oriented availability analysis methodology and can be used for evaluating phased missions. In this paper, the design of the proposed operator support system is introduced through a case study of the Auxiliary Feed Water System (AFWS). (author)

  3. Financing nuclear power

    International Nuclear Information System (INIS)

    Sheriffah Noor Khamseah Al-Idid Syed Ahmad Idid

    2009-01-01

    Global energy security and climate change concerns sparked by escalating oil prices, high population growth and the rapid pace of industrialization are fueling the current interest and investments in nuclear power. Globally, a significant number policy makers and energy industry leaders have identified nuclear power as a favorable alternative energy option, and are presently evaluating either a new or an expanded role for nuclear power. The International Atomic Energy Agency (IAEA) has reported that as of October 2008, 14 countries have plans to construct 38 new nuclear reactors and about 100 more nuclear power plants have been written into the development plans of governments for the next three decades. Hence as new build is expected to escalate, issues of financing will become increasingly significant. Energy supply, including nuclear power, considered as a premium by government from the socio-economic and strategic perspective has traditionally been a sector financed and owned by the government. In the case for nuclear power, the conventional methods of financing include financing by the government or energy entity (utility or oil company) providing part of the funds from its own resources with support from the government. As national financing is, as in many cases, insufficient to fully finance the nuclear power plants, additional financing is sourced from international sources of financing including, amongst others, Export Credit Agencies (ECAs) and Multilateral Development Institutions. However, arising from the changing dynamics of economics, financing and business model as well as increasing concerns regarding environmental degradation , transformations in methods of financing this energy sector has been observed. This paper aims to briefly present on financing aspects of nuclear power as well as offer some examples of the changing dynamics of financing nuclear power which is reflected by the evolution of ownership and management of nuclear power plants

  4. Nuclear power debate

    International Nuclear Information System (INIS)

    Hunwick, Richard

    2005-01-01

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  5. Secondary process for securing emergency cooling in nuclear facilities

    International Nuclear Information System (INIS)

    Bachl, H.

    1975-01-01

    An auxiliary process for securing the emergency cooling of nuclear power plants is described which is characterized in that a two-material heat power auxiliary process is connected at the cold end of the cooling circuit to a main heat power process to obtain mechanical energy from thermal, which in normal operation works as a cold-absorption process, but with failure of the main process changes to a heat power process with full evaporation and subsequent superheating of the two-materials mixture. (RW/LH) [de

  6. Nuclear power prospects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  7. Nuclear power in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Ronald E.

    1998-08-01

    Contains Executive Summary and Chapters on: Nuclear Energy in the Asian context; Types of nuclear power reactors used in Asia; A survey of nuclear power by country; The economics of nuclear power; Fuels, fuel cycles and reprocessing; Environmental issues and waste disposal; The weapons issues and nuclear power; Conclusions. (Author)

  8. The modernization of the nuclear power plants of Asco and Vandellos II

    International Nuclear Information System (INIS)

    Martinez Anton, L.

    2011-01-01

    Since the beginning of their commercial operation, the nuclear power plants of Asco and Vandellos have made design modifications aimed at improving the safety, reliability and operation of the plants. From the moment the management of the three plants was brought together within the Association Nuclear Asco-Vandellos II, and within the assets management process, joint strategic modernisation and improvement plans have been developed on the basis of the status of equipment, the evaluation of their ageing, obsolesce, degradations, manufacturers recommendations and/or the application of new regulations. The article lists the mos important actions already carried out or in the project phase for the 3 plants in the primary and secondary system, electrical and instrumentation systems and auxiliary systems, highlighting the problems and the solutions adopted in the most relevant modifications. (Author)

  9. Nuclear power

    International Nuclear Information System (INIS)

    Bupp, I.C.

    1991-01-01

    Is a nuclear power renaissance likely to occur in the United States? This paper investigates the many driving forces that will determine the answer to that question. This analysis reveals some frequently overlooked truths about the current state of nuclear technology: An examination of the issues also produces some noteworthy insights concerning government regulations and related technologies. Public opinion will play a major role in the unfolding story of the nuclear power renaissance. Some observers are betting that psychological, sociological, and political considerations will hod sway over public attitudes. Others wager that economic and technical concerns will prevail. The implications for the nuclear power renaissance are striking

  10. A pilot application of risk-informed methods to establish inservice inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station. Revision 1

    International Nuclear Information System (INIS)

    Vo, T.V.; Phan, H.K.; Gore, B.F.; Simonen, F.A.; Doctor, S.R.

    1997-02-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest National Laboratory has developed risk-informed approaches for inservice inspection plans of nuclear power plants. This method uses probabilistic risk assessment (PRA) results to identify and prioritize the most risk-important components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot application of this methodology. This report, which incorporates more recent plant-specific information and improved risk-informed methodology and tools, is Revision 1 of the earlier report (NUREG/CR-6181). The methodology discussed in the original report is no longer current and a preferred methodology is presented in this Revision. This report, NUREG/CR-6181, Rev. 1, therefore supersedes the earlier NUREG/CR-6181 published in August 1994. The specific systems addressed in this report are the auxiliary feedwater, the low-pressure injection, and the reactor coolant systems. The results provide a risk-informed ranking of components within these systems

  11. Study of the reliability of the Auxiliary Feedwater System of a LWR nuclear power plant through the Fault Tree and Bayesian Network

    International Nuclear Information System (INIS)

    Lava, Deise Diana

    2016-01-01

    This paper aims to present a study of the reliability of the Auxiliary Feedwater System (AFWS) through the methods of Fault Tree and Bayesian Network. Therefore, the paper consists of a literature review of the history of nuclear energy and the methodologies used. The AFWS is responsible for providing water system to cool the secondary circuit of nuclear reactors of the PWR type when normal feeding water system failure. How this system operates only when the primary system fails, it is expected that the AFWS failure probability is very low. The AFWS failure probability is divided into two cases: the first is the probability of failure in the first eight hours of operation and the second is the probability of failure after eight hours of operation, considering that the system has not failed within the first eight hours. The calculation of the probability of failure of the second case was made through the use of Fault Tree and Bayesian Network, that it was constructed from the Fault Tree. The results of the failure probability obtained were very close, on the order of 10 -3 . (author)

  12. Nuclear power in perspective

    International Nuclear Information System (INIS)

    Addinall, E.; Ellington, H.

    1982-01-01

    The subject is covered in chapters: (the nature of nuclear power) the atomic nucleus - a potential source of energy; how nuclear reactors work; the nuclear fuel cycle; radioactivity - its nature and biological effects; (why we need nuclear power) use of energy in the non-communist world -the changing pattern since 1950; use of energy - possible future scenarios; how our future energy needs might be met; (a possible long term nuclear strategy) the history of nuclear power; a possible nuclear power strategy for the Western World; (social and environmental considerations) the hazards to workers in the nuclear power industry; the hazards to the general public (nuclear power industry; reactor operation; transport of radioactive materials; fuel reprocessing; radioactive waste disposal; genetic hazards); the threat to democratic freedom and world peace. (U.K.)

  13. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  14. Nuclear power

    International Nuclear Information System (INIS)

    Abd Khalik Wood

    2003-01-01

    This chapter discuss on nuclear power and its advantages. The concept of nucleus fission, fusion, electric generation are discussed in this chapter. Nuclear power has big potential to become alternative energy to substitute current conventional energy from coal, oil and gas

  15. 75 FR 34347 - Airworthiness Directives; Honeywell International Inc. Auxiliary Power Unit Models GTCP36-150(R...

    Science.gov (United States)

    2010-06-17

    ... Airworthiness Directives; Honeywell International Inc. Auxiliary Power Unit Models GTCP36-150(R) and GTCP36-150...) models GTCP36- 150(R) and GTCP36-150(RR). This AD requires inspecting the fuel control unit (FCU...-150(R) and GTCP36-150(RR). We published the proposed AD in the Federal Register on December 23, 2009...

  16. A pilot application of risk-based methods to establish in-service inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station

    International Nuclear Information System (INIS)

    Vo, T.; Gore, B.; Simonen, F.; Doctor, S.

    1994-08-01

    As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest Laboratory is developing a method that uses risk-based approaches to establish in-service inspection plans for nuclear power plant components. This method uses probabilistic risk assessment (PRA) results and Failure Modes and Effects Analysis (FEMA) techniques to identify and prioritize the most risk-important systems and components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot applications of this method. The specific systems addressed in this report are the reactor pressure vessel, the reactor coolant, the low-pressure injection, and the auxiliary feedwater. The results provide a risk-based ranking of components within these systems and relate the target risk to target failure probability values for individual components. These results will be used to guide the development of improved inspection plans for nuclear power plants. To develop inspection plans, the acceptable level of risk from structural failure for important systems and components will be apportioned as a small fraction (i.e., 5%) of the total PRA-estimated risk for core damage. This process will determine target (acceptable) risk and target failure probability values for individual components. Inspection requirements will be set at levels to assure that acceptable failure probabilistics are maintained

  17. Energy Balance of Nuclear Power Generation. Life Cycle Analyses of Nuclear Power

    International Nuclear Information System (INIS)

    Wallner, A.; Wenisch, A.; Baumann, M.; Renner, S.

    2011-01-01

    The accident at the Japanese nuclear power plant Fukushima in March 2011 triggered a debate about phasing out nuclear energy and the safety of nuclear power plants. Several states are preparing to end nuclear power generation. At the same time the operational life time of many nuclear power plants is reaching its end. Governments and utilities now need to take a decision to replace old nuclear power plants or to use other energy sources. In particular the requirement of reducing greenhouse gas emissions (GHG) is used as an argument for a higher share of nuclear energy. To assess the contribution of nuclear power to climate protection, the complete life cycle needs to be taken into account. Some process steps are connected to high CO2 emissions due to the energy used. While the processes before and after conventional fossil-fuel power stations can contribute up to 25% of direct GHG emission, it is up to 90 % for nuclear power (Weisser 2007). This report aims to produce information about the energy balance of nuclear energy production during its life cycle. The following key issues were examined: How will the forecasted decreasing uranium ore grades influence energy intensity and greenhouse emissions and from which ore grade on will no energy be gained anymore? In which range can nuclear energy deliver excess energy and how high are greenhouse gas emissions? Which factors including ore grade have the strongest impact on excess energy? (author)

  18. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.

    2009-06-01

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  19. Power program and nuclear power

    International Nuclear Information System (INIS)

    Chernilin, Yu.F.

    1990-01-01

    Main points of the USSR power program and the role of nuclear power in fuel and power complex of the country are considered. Data on dynamics of economic indices of electric power generation at nuclear power plants during 1980-1988 and forecasts till 2000 are presented. It is shown that real cost of 1 kW/h of electric power is equal to 1.3-1.8 cop., and total reduced cost is equal to 1.8-2.4 cop

  20. Energy consumption of auxiliary systems of electric cars

    Directory of Open Access Journals (Sweden)

    Evtimov Ivan

    2017-01-01

    Full Text Available The paper analyzes the power demand of the auxiliary systems of electric cars. On the basis of existing electric cars an analysis of energy consumption of different auxiliary systems is done. As a result possibilities for rational use of these systems have been proposed, which can increase the mileage per one charge of the battery.

  1. Description of the local dose rate measuring system for the Angra 2 nuclear power plant

    International Nuclear Information System (INIS)

    Costa, Lilian Rose Sobral da; Souza Mendes, Jorge Eduardo de

    1995-01-01

    The equipment used and the measured value processing involved in the Local Dose Rate Measuring System is described including the installation points for the measuring equipment in the reactor building, the auxiliary building and at the main gate of Angra 2 Nuclear Power Plant. Under normal operating conditions protecting of the personnel is ensured by measuring the local dose rate at those points which are generally accessible. In some cases , fixed sensors are not suitable so that mobile equipment is used. (author). 2 refs., 1 fig

  2. Nuclear power revisited

    International Nuclear Information System (INIS)

    Grear, B.

    2008-01-01

    Modern development of nuclear power technology and the established framework of international agreements and conventions are responding to the major political, economic and environmental issues - high capital costs, the risks posed by nuclear wastes and accidents, and the proliferation of nuclear weaponry - that until recently hindered the expansion of nuclear power.

  3. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    Cao Ruiding; Chen Guorong; Chen Xianfeng; Zhang Yishu

    1996-01-01

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  4. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    Energy Technology Data Exchange (ETDEWEB)

    Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  5. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-01

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  6. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  7. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-01

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  8. Operation status display and monitoring system for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Wakabayashi, Yasuo; Hayakawa, Hiroyasu; Kawamura, Atsuo; Kaneda, Mitsunori.

    1982-01-01

    Lately, the development of the system has been made for BWR plants, which monitors the operating status not only in normal operation but also in abnormal state and also for plant safety. Recently, the improvement of man-machine interface has been tried through the practical use of technique which displays data collectively on a CRT screen relating them mutually. As one of those results, the practical use of an electronic computer and color CRT display for No. 1 unit in the Fukushima No. 2 Nuclear Power Station (2F-1), Tokyo Electric Power Co., is described. Also, new centralized control panels containing such systems were used for the 1100 MWe BWR nuclear power plants now under construction, No. 3 unit of the Fukushima No. 2 Power Station and No. 1 unit of Kashiwazaki-Kariwa Nuclear Power Station (2F-3 and K-1, respectively). The display and monitoring system in 2F-1 plant is the first one in which a computer and color CRTs were practically employed for a BWR plant in Japan, and already in commercial operation. The advanced operating status monitoring system, to which the result of evaluation of the above system was added, was incorporated in the new centralized control panels presently under production for 2F-3 and K-1 plants. The outline of the system, the functions of an electronic computer, plant operating status monitor, surveillance test guide, the automation of plant operation and auxiliary operation guide are reported for these advanced monitoring system. It was confirmed that these systems are useful means to improve the man-machine communication for plant operation minitoring. (Wakatsuki, Y.)

  9. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Choi, Chang Tong

    1996-01-01

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  10. Development of the user interface for visualization of the auxiliary systems of the TRIGA Mark III nuclear reactor; Desarrollo de la interface de usuario para la visualizacion de los sistemas auxiliares del reactor nuclear Triga Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Merced D, J. E.

    2016-07-01

    The Instituto Nacional de Investigaciones Nucleares (ININ) has a nuclear research reactor type swimming pool with movable core cooled and moderate with light water. The nominal maximum power of the reactor is 1 MW in steady-state operation and can be pulsed at a maximum power of 2,000 MW for approximately 10 milliseconds. This reactor is mainly used to study the effects of radiation on various materials and substances. In 2001 the new control console of the nuclear reactor was installed which was based on two digital computers, one computer controls the bar management mechanisms and the other the systems to the reactor operator. In 2004, the control computer was replaced and the software was updated. Within the modernization and/or updating of the TRIGA Mark III reactor of ININ, is intended (theme of this work) to develop the user interface for the visualization of the auxiliary systems, through a Man-Machine Interface module for the renewal process of the control console. The man-machine interface system to be developed will have communication with the programmable logic controllers that will be constantly monitored and controlled to obtain real-time variables of the reactor behavior. (Author)

  11. The politics of nuclear power

    International Nuclear Information System (INIS)

    Elliott, D.

    1978-01-01

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  12. The reality of nuclear power

    International Nuclear Information System (INIS)

    Murphy, D.

    1979-01-01

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  13. Similarities and differences between conventional power and nuclear power

    International Nuclear Information System (INIS)

    Wang Yingrong

    2011-01-01

    As the implementation of the national guideline of 'proactively promoting nuclear power development', especially after China decided in 2006 to introduce Westinghouse's AP1000 technology, some of the power groups specialized in conventional power generation, have been participating in the preliminary work and construction of nuclear power projects in certain degrees. Meanwhile, such traditional nuclear power corporations as China National Nuclear Corporation (CNNC) and China Guangdong Nuclear Power Corporation (CGNPC) have also employed some employees with conventional power generation experience. How can these employees who have long been engaged in conventional power generation successfully adapt to the new work pattern, ideology, knowledge, thinking mode and proficiency of nuclear power, so that they can fit in with the work requirements of nuclear power and become qualified as soon as possible? By analyzing the technological, managerial and cultural features of nuclear power, as well as some issues to be kept in mind when engaged in nuclear power, this paper intends to make some contribution to the nuclear power development in the specific period. (author)

  14. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  15. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  16. Experimental simulation of a light aircraft crash on to a nuclear power plant auxiliary building roof

    International Nuclear Information System (INIS)

    Barnes, D.; Barr, P.; Garton, G.; Howe, W.D.; Neilson, A.J.

    1984-08-01

    The experiments described were conducted at a reduced scale with geometric dimensions of prototype structures of one-fifth full size. The target was based on the auxiliary buildings for the proposed Sizewell PWR. Descriptions of the simulated aircraft model and the test panels are given, together with the instrumentation. Details are given of the test programme and the results are summarized and discussed. Comparison is made of the model aircraft tests with an equivalent hard missile impact. (U.K.)

  17. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  18. Analysis and Measurement of NOx Emissions in Port Auxiliary Vessels

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2013-09-01

    Full Text Available This paper is made NOx pollution emitted by port auxiliary vessels, specifically by harbour tugs, due to its unique operating characteristics of operation, require a large propulsion power changes discontinuously, also possess some peculiar technical characteristics, large tonnage and high propulsive power, that differentiate them from other auxiliary vessels of the port. Taking into account all the above features, there are no studies of the NOx emission engines caused by different working regimes of power because engine manufacturers have not measured these emissions across the range of operating power, but usually we only report the pollution produced by its engines to a maximum continuous power.

  19. Nuclear Power in Korea

    International Nuclear Information System (INIS)

    Ha, Duk-Sang

    2009-01-01

    Full text: Korea's nuclear power program has been promoted by step-by-step approach; the first stage was 1970's when it depended on the foreign contractors' technology and the second was 1980's when it accumulated lots of technology and experience by jointly implementing the project. Lastly in the third stage in 1990's, Korea successfully achieved the nuclear power technological self-reliance and developed its standard nuclear power plant, so-called Optimized Power Reactor 1000 (OPR 1000). Following the development of OPR 1000, Korea has continued to upgrade the design, known as the Advanced Power Reactor 1400 (APR 1400) and APR+. Korea is one of the countries which continuously developed the nuclear power plant projects during the last 30 years while the other advanced countries ceased the project, and therefore, significant reduction of project cost and construction schedule were possible which benefits from the repetition of construction project. And now, its nuclear industry infrastructure possesses the strong competitiveness in this field.The electricity produced from the nuclear power is 150,958 MWh in 2008, which covers approximately 36% of the total electricity demand in Korea, while the installed capacity of nuclear power is 17,716 MW which is 24% of the total installed capacity. We are currently operating 20 units of nuclear power plants in Korea, and also are constructing 8 additional units (9,600 MW). Korea's nuclear power plants have displayed their excellent operating performance; the average plant capacity factor was 93.4% in 2008, which are about 15% higher than the world average of 77.8%. Moreover, the number of unplanned trips per unit was only 0.35 in 2008, which is the world top class performance. Also currently we are operating four CANDU nuclear units in Korea which are the same reactor type and capacity as the Cernavoda Units. They have been showing the excellent operating performance, of which capacity in 2008 is 92.8%. All the Korean

  20. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Royen, J.

    1981-01-01

    Worldwide nuclear power (WNP) is a companion volume to UPDATE. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of the Assistant Secretary for Nuclear Energy from reports obtained from foreign Embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data

  1. Nuclear power generation

    International Nuclear Information System (INIS)

    Hirao, Katumi; Sato, Akira; Kaimori, Kimihiro; Kumano, Tetsuji

    2001-01-01

    Nuclear power generation for commercial use in Japan has passed 35 years since beginning of operation in the Tokai Nuclear Power Station in 1966, and has 51 machines of reactor and about 44.92 MW of total output of equipment scale in the 21st century. However, an environment around nuclear energy becomes severer at present, and then so many subjects to be overcome are remained such as increased unreliability of the public on nuclear energy at a chance of critical accident of the JCO uranium processing facility, delay of pull-thermal plan, requirement for power generation cost down against liberalization of electric power, highly aging countermeasure of power plant begun its operation as its Genesis, and so on. Under such conditions, in order that nuclear power generation in Japan survives as one of basic electric source in future, it is necessary not only to pursue safety and reliability of the plant reliable to the public, but also to intend to upgrade its operation and maintenance by positively adopting good examples on operational management method on abroad and to endeavor further upgrading of application ratio of equipments and reduction of generation cost. Here were outlined on operation conditions of nuclear power stations in Japan, and introduced on upgrading of their operational management and maintenance management. (G.K.)

  2. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  3. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  4. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  5. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Chu, I.H.

    1985-01-01

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  6. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  7. The reliability of nuclear power plant safety systems

    International Nuclear Information System (INIS)

    Susnik, J.

    1978-01-01

    A criterion was established concerning the protection that nuclear power plant (NPP) safety systems should afford. An estimate of the necessary or adequate reliability of the total complex of safety systems was derived. The acceptable unreliability of auxiliary safety systems is given, provided the reliability built into the specific NPP safety systems (ECCS, Containment) is to be fully utilized. A criterion for the acceptable unreliability of safety (sub)systems which occur in minimum cut sets having three or more components of the analysed fault tree was proposed. A set of input MTBF or MTTF values which fulfil all the set criteria and attain the appropriate overall reliability was derived. The sensitivity of results to input reliability data values was estimated. Numerical reliability evaluations were evaluated by the programs POTI, KOMBI and particularly URSULA, the last being based on Vesely's kinetic fault tree theory. (author)

  8. Accelerating nuclear power standards development and promoting sound nuclear power development in China

    International Nuclear Information System (INIS)

    Yang Changli

    2008-01-01

    The paper expounds the importance of quickening establishment and perfection of nuclear power standard system in China, analyzes achievements made and problems existed during the development of nuclear power standards, put forward proposals to actively promote the work in this regard, and indicates that CNNC will further strengthen the standardization work, enhance coordination with those trades related to nuclear power standards, and jointly promote the development of nuclear power standards. (authors)

  9. Implications of Extension of Station Blackout Cooping Capability on Nuclear Power Plant Safety

    International Nuclear Information System (INIS)

    Volkanovski, Andrija

    2015-01-01

    The safety of the nuclear power plant depends on the availability of the continuous and reliable sources of electrical energy during all modes of operation of the plant. The station blackout corresponds to a total loss of all alternate current (AC) power as a result of complete failure of both offsite and on-site AC power sources. The electricity for the essential systems during station blackout is provided from the batteries installed in the nuclear power plant. The results of the probabilistic safety assessment show that station blackout is one of the main and frequently the dominant contributor to the core damage frequency. Results of the analysis of the implications of the strengthening of the SBO mitigation capability on safety of the NPP will be presented. The assessment is done with state-of-art deterministic and probabilistic methods and tolls with application on reference models of nuclear power plants. The safety analysis is done on reference model of the nuclear power plant. Obtained results show large decrease of the core damage frequency with strengthening of the station blackout mitigation capability. The time extension of blackout coping capability results in the delay of the core heat up for at least the extension time interval. Availability and operation of the steam driven auxiliary feedwater system maintains core integrity up to 72 h after the successful shutdown, even in the presence of the reactor coolant pumps seal leakage. The largest weighted decrease of the core damage frequency considering the costs for the modification is obtained for the modification resulting in extension of the station blackout coping capability. The importance of the common cause failures of the emergency diesel generators for the obtained decrease of the core damage frequency and overall safety of the plant is identified in the obtained results. (authors)

  10. Assessment of the fire resistance of a nuclear power plant subjected to a large commercial aircraft crash

    International Nuclear Information System (INIS)

    Jeon, Se-Jin; Jin, Byeong-Moo; Kim, Young-Jin

    2012-01-01

    Highlights: ► A procedure to assess fire resistance of structure for aircraft crash is proposed. ► Fire scenario of containment and auxiliary building is determined for aircraft crash. ► Heat transfer and thermal stress analyses are performed to obtain section forces. ► Fire endurance time is evaluated by load–moment strength interaction diagram. - Abstract: The safety assessment of infrastructures, such as a nuclear power plant, for the crash of a large commercial aircraft has been performed worldwide after the terrorism that occurred in the U.S. on September 11, 2001. The assessment, however, has mainly focused on the techniques of impact analysis. In this study, a systematic procedure to assess the fire resistance of containment and auxiliary buildings subjected to such an aircraft crash is proposed. The intensity, duration and distribution of the fire are determined based on aircraft crash analyses and characteristics of jet fuel. A three-dimensional detailed finite element model of the containment and auxiliary buildings is established and used for heat transfer and thermal stress analyses, taking into account the material properties at an elevated temperature. Section forces can then be obtained that are based on a nonlinear stress–strain relationship. The fire resistance of the structure is assessed by comparing the fire-induced section forces with the section resistance which is evaluated using the load–moment strength interaction diagram. The study addresses the problem whereby the conventional assessment that only considers the flexural behaviour is less accurate. The assessment results support the general conclusion that the nuclear power plant structures can maintain structural integrity against external fire due to their relatively thick sections. The proposed procedure can be extensively applied to evaluate the fire endurance time of any type of structure subjected to an arbitrary fire.

  11. Nuclear Power Today and Tomorrow

    International Nuclear Information System (INIS)

    Bychkov, Alexander

    2013-01-01

    Worldwide, with 437 nuclear power reactors in operation and 68 new reactors under construction, nuclear power's global generating capacity reached 372.5 GW(e) at the end of 2012. Despite public scepticism, and in some cases fear, which arose following the March 2011 Fukushima Daiichi nuclear accident, two years later the demand for nuclear power continues to grow steadily, albeit at a slower pace. A significant number of countries are pressing ahead with plans to implement or expand their nuclear power programmes because the drivers toward nuclear power that were present before Fukushima have not changed. These drivers include climate change, limited fossil fuel supply, and concerns about energy security. Globally, nuclear power looks set to continue to grow steadily, although more slowly than was expected before the Fukushima Daiichi nuclear accident. The IAEA's latest projections show a steady rise in the number of nuclear power plants in the world in the next 20 years. They project a growth in nuclear power capacity by 23% by 2030 in the low projection and by 100% in the high projection. Most new nuclear power reactors planned or under construction are in Asia. In 2012 construction began on seven nuclear power plants: Fuqing 4, Shidaowan 1, Tianwan 3 and Yangjiang 4 in China; Shin Ulchin 1 in Korea; Baltiisk 1 in Russia; and Barakah 1 in the United Arab Emirates. This increase from the previous year's figures indicates an on-going interest and commitment to nuclear power and demonstrates that nuclear power is resilient. Countries are demanding new, innovative reactor designs from vendors to meet strict requirements for safety, national grid capacity, size and construction time, which is a sign that nuclear power is set to keep growing over the next few decades.

  12. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  13. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  14. Liquid waste management at nuclear power plant with WWER

    International Nuclear Information System (INIS)

    Sabouni, Zahra.

    1995-07-01

    Management of radioactive wastes have become an area of ever increasing important in nuclear power plants. This is due to the fact that national and international regulations will only allow activity release to the environment based on ALARA principles. Radioactive liquids in the nuclear power plant originate as leakage from equipment, as drains from reactor and auxiliary systems, from decontamination and cleaning operations, from active laundry and from personnel showers. They will collected through the controlled zone of the plant in sumps and automatically pumped to large tanks and then to treatment system. The radioactive wastes are separated and categorized according to their main physical and chemical properties. Methods most frequently applied for low and intermediate level; liquid wastes are: chemical treatment (precipitation), ion exchange, and evaporation, and the decontamination ors are a few hundred, 10 2 -10 4 and 10 3 -10 6 , respectively. As a result of the treatment of radioactive liquids by mentioned methods a concentration of activity takes place in filter media, ion exchange resins, and evaporator concentrates. Before the semi-solid wastes shipped for storage, it has to be solidified in order to handle and transport in easier way. The solidification of wastes can take place by different methods. The general methods are: cementation, and bituminization processes. The selection of each process will depend on many factors which should be considered during the design phase. (author)

  15. Reliability analysis of the auxiliary feedwater system of Angra-1 including common cause failures using the multiple greek letter model

    International Nuclear Information System (INIS)

    Lapa, Celso Marcelo Franklin.

    1996-05-01

    The use of redundancy to increase the reliability of industrial systems make them subject to the occurrence of common cause events. The industrial experience and the results of safety analysis studies have indicated that common cause failures are the main contributors to the unreliability of plants that have redundant systems, specially in nuclear power plants. In this Thesis procedures are developed in order to include the impact of common cause failures in the calculation of the top event occurrence probability of the Auxiliary Feedwater System in a typical two-loop Nuclear Power Plant (PWR). For this purpose the Multiple Greek Letter Model is used. (author). 14 refs., 10 figs., 11 tabs

  16. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  17. 75 FR 3622 - Revisions to Rules Authorizing the Operation of Low Power Auxiliary Stations in the 698-806 MHz...

    Science.gov (United States)

    2010-01-22

    ... translators, and Class A stations are continuing to operate in the 700 MHz Band after the transition. The..., marketing, and packaging materials, including online materials, related to such devices. The labeling must... display (including online display) any low power auxiliary stations, including wireless microphones, that...

  18. Safety analysis of Oi nuclear power plant

    International Nuclear Information System (INIS)

    1979-01-01

    The transient phenomena in Oi nuclear power plant were analyzed, especially on the water level fluctuation and the capability of natural circulation in the primary loop, under the assumptions that the feed water for steam generators is totally lost, and the relief valve on the pressurizer, which is actuated due to the pressure rise in the primary system, is stuck and kept open. These assumptions are related to the TMI accident. The analysing conditions are 1) the main feed water flow is totally lost suddenly during the rated power operation of the reactor, 2) two motor-driven auxiliary feed water pumps are started manually fifteen minutes after the accident initiation, 3) one relief valve on the pressurizer is opened fifteen seconds after the accident initiation and kept open, 4) the reactor is scrammed thirty three seconds after the accident initiation, 5) the turbine is tripped 33.5 seconds after the accident initiation, etc. Two cases were analysed, namely 3,800 seconds and 1,200 seconds after the accident initiation. The analytical code RELEP4/Mod5/U2/J1 was utilized for this analysis. The level fluctuation in the pressurizer after the accident initiation, the flow rate fluctuation through the pressurizer relief valve, especially that of steam, liquid single phase and two phase flows, the water level in the upper plenum in the pressure vessel, the change of flow rate at core inlet, the average pressure in the core, and the temperature fluctuation of coolant in the core, the variation of void fraction in the core, and the change of surface temperature of fuel rods are presented as the analysis results, and they are evaluated. It is recognized that the plant safety is kept under the assumed accident conditions in the Oi nuclear power plant. (Nakai, Y.)

  19. Progress on radio frequency auxiliary heating system designs in ITER

    International Nuclear Information System (INIS)

    Makowski, M.; Bosia, G.; Elio, F.

    1996-09-01

    ITER will require over 100 MW of auxiliary power for heating, on- and off-axis current drive, accessing the H-mode, and plasma shut-down. The Electron Cyclotron Range of Frequencies (ECRF) and Ion Cyclotron Range of Frequencies (ICRF) are two forms of Radio Frequency (RF) auxiliary power being developed for these applications. Design concepts for both the ECRF and ICRF systems are presented, key features and critical design issues are discussed, and projected performances outlined

  20. Nuclear power experience

    International Nuclear Information System (INIS)

    1983-01-01

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  1. Worldwide nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Worldwide Nuclear Power (WNP) is a companion volume to Update. Our objective in the publication of WNP is to provide factual information on nuclear power programs and policies in foreign countries to U.S. policymakers in the Federal Government. Facts about the status of nuclear activities abroad should be available to those who are instrumental in defining the direction of nuclear power in the U.S. WNP is prepared by the Office of Nuclear Energy from reports obtained from foreign embassies in Washington, U.S. Embassies overseas, foreign and domestic publications, participation in international studies, and personal communications. It consists of two types of information, tabular and narrative. Domestic nuclear data is included only where its presence is needed to provide easy and immediate comparisons with foreign data. In general, complete U.S. information will be found in Update

  2. The modernization of the nuclear power plants of Asco and Vandellos II; Modernizacion de las centrales nucleares de Asco y Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Anton, L.

    2011-07-01

    Since the beginning of their commercial operation, the nuclear power plants of Asco and Vandellos have made design modifications aimed at improving the safety, reliability and operation of the plants. From the moment the management of the three plants was brought together within the Association Nuclear Asco-Vandellos II, and within the assets management process, joint strategic modernisation and improvement plans have been developed on the basis of the status of equipment, the evaluation of their ageing, obsolesce, degradations, manufacturers recommendations and/or the application of new regulations. The article lists the mos important actions already carried out or in the project phase for the 3 plants in the primary and secondary system, electrical and instrumentation systems and auxiliary systems, highlighting the problems and the solutions adopted in the most relevant modifications. (Author)

  3. Nuclear power in Canada

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  4. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  5. Development of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-01-15

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  6. Development of nuclear power

    International Nuclear Information System (INIS)

    1962-01-01

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  7. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  8. Development of nuclear power

    International Nuclear Information System (INIS)

    1960-01-01

    The discussion on the development of nuclear power took place on 28 September 1960 in Vienna. In his opening remarks, Director General Cole referred to the widespread opinion that 'the prospect of cheap electricity derived from nuclear energy offers the most exciting prospect for improving the lot of mankind of all of the opportunities for uses of atomic energy'. He then introduced the four speakers and the moderator of the discussion, Mr. H. de Laboulaye, IAEA Deputy Director General for Technical Operations. n the first part of the discussion the experts addressed themselves in turn to four topics put forward by the moderator. These were: the present technical status of nuclear power, the present costs of nuclear power, prospects for future reductions in the cost of nuclear power, and applications of nuclear power in less-developed areas

  9. Helium heater design for the helium direct cycle component test facility. [for gas-cooled nuclear reactor power plant

    Science.gov (United States)

    Larson, V. R.; Gunn, S. V.; Lee, J. C.

    1975-01-01

    The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.

  10. Nuclear power: European report

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    In 2004, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 206 power reactors with a gross power of 181,941 MWe and a net power of 172,699 MWe were in operation at the end of the year. In 2004, one nuclear power plant was commissioned in Russia (Kalinin 3), two (Kmelnitzki 2 and Rowno 4) in Ukraine. Five nuclear power plants were decommissioned in Europe in the course of 2004. As announced in 2000, the Chapelcross 1 to Chapelcross 4 plants in Britain were shut down for economic reasons. In Lithuania, the Ignalina 1 unit was disconnected from the power grid, as had been demanded by the EU Commission within the framework of the negotiations about the country's accession to the EU. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.5 GW. In late 2004, four nuclear generating units were under construction in Finland (1), Romania (1), and Russia (2). 150 nuclear power plants were operated in thirteen states of the European Union (EU-25), which is sixteen more than the year before as a consequence of the accession of new countries. They had an aggregate gross power of 137,943 MWe and a net power of 131,267 MWe, generating approx. 983 billion gross kWh of electricity in 2003, thus again contributing some 32% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in Lithuania (80%), followed by 78% in France, 57% in the Slovak Republic, 56% in Belgium, and 46% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as

  11. Integrated approach to fire safety at the Krsko nuclear power plant - fire protection action plan

    International Nuclear Information System (INIS)

    Lambright, J.A.; Cerjak, J.; Spiler, J.; Ioannidi, J.

    1998-01-01

    Nuclear Power Plant Krsko (NPP Krsko) is a Westinghouse design, single-unit, 1882 Megawatt thermal (MWt), two-loop, pressurized water nuclear power plant. The fire protection program at NPP Krsko has been reviewed and reports issued recommending changes and modifications to the program, plant systems and structures. Three reports were issued, the NPP Krsko Fire Hazard Analysis (Safe Shout down Separation Analysis Report), the ICISA Analysis of Core Damage Frequency Due to Fire at the NPP Krsko and IPEEE (Individual Plant External Event Examination) related to fire risk. The Fire Hazard Analysis Report utilizes a compliance - based deterministic approach to identification of fire area hazards. This report focuses on strict compliance from the perspective of US Nuclear Regulatory Commission (USNRC), standards, guidelines and acceptance criteria and does not consider variations to comply with the intent of the regulations. The probabilistic analysis methide used in the ICISA and IPEEE report utilizes a risk based nad intent based approach in determining critical at-risk fire areas. NPP Krsko has already completed the following suggestions/recommendations from the above and OSART reports in order to comply with Appendix R: Installation of smoke detectors in the Control Room; Installation of Emergency Lighting in some plant areas and of Remote Shout down panels; Extension of Sound Power Communication System; Installation of Fire Annunciator Panel at the On-site Fire Brigade Station; Installation of Smoke Detection System in the (a) Main Control Room Panels, (b) Essential Service Water Building. (c) Component Cooling Building pump area, chiller area and HVAC area, (d) Auxiliary Building Safety pump rooms, (e) Fuel Handling room, (f) Intermediate Building AFFW area and compressor room, and (g) Tadwaste building; inclusion of Auxiliary operators in the Fire Brigade; training of Fire Brigade Members in Plant Operation (9 week course); Development of Fire Door Inspection and

  12. Summary of in-situ tests of filter systems in nuclear power stations

    International Nuclear Information System (INIS)

    Hesboel, R.; Persson, M.

    1980-04-01

    Iodine filter installations at nuclear power plants are systematically tested regarding light assembly and retention of iodine. Studsvik Energiteknik AB has collected a sizeable amount of test data over the years. The filter installations and test methods are described, followed by an analysis of test results and experience over the past 10 years. As a rule in-situ tests have been carried out at low relative humidity, in 90% of them below 50% relative humidity. Variations in flow have been larger than expected, and the variations in operative conditions affect test results. The test method is, however, regarded acceptable for off-gas filter systems. Additional test methods are required for the auxiliary and energency systems. (G.B.)

  13. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  14. The future of nuclear power

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1987-01-01

    Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs

  15. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  16. Aging and low-flow degradation of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Adams, M.L.

    1991-01-01

    This paper documents the results of research done under the auspices of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program. It examines the degradation imparted to safety Auxiliary Feedwater System pumps at nuclear plants due to the low flow operation. The Auxiliary Feedwater (AFW) System is normally a stand-by system. As such it is operated most often in the test mode. Since few plants are equipped with full flow test loops, most testing is accomplished at minimum flow conditions in pump by-pass lines. It is the vibration and hydraulic forces generated at low flow conditions that have been shown to be the major causes of AFW pump aging and degradation. The wear can be manifested in a number of ways, such as impeller or diffuser breakage, thrust bearing and/or balance device failure due to excessive loading, cavitation damage on such stage impellers, increase seal leakage or failure, sear injection piping failure, shaft or coupling breakage, and rotating element seizure

  17. Nuclear power and modern society

    International Nuclear Information System (INIS)

    Komarek, A.

    1999-01-01

    A treatise consisting of the following sections: Development of modern society (Origin of modern society; Industrial society; The year 1968; Post-industrial society; Worldwide civic society); Historic breaks in the development of the stationary power sector (Stationary thermal power; Historic breaks in the development of nuclear power); Czech nuclear power engineering in the globalization era (Major causes of success of Czech nuclear power engineering; Future of Czech nuclear power engineering). (P.A.)

  18. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  19. Development of the nuclear plant analyzer for Korean standard Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Hwan; Kim, Hyeong Heon; Song, In Ho; Hong, Eon Yeong; Oh, Yeong Taek [Korea Power Engineering Company Inc., Yongin (Korea, Republic of)

    2000-12-15

    The purpose of this study is to develop an NPA for the Ulchin Nuclear Power Plant Unit 3 and 4, the first KSNP type plant. In this study, the process model simulating the overall plant systems, GUI and simulation executive which provide the functions of an engineering simulator were developed, and the NPA was completed by integrating them. The contents and the scope of this study are as follows : main feedwater system, auxiliary feedwater system, Chemical and Volume Control System(CVCS), Safety Injection System(SIS), Shutdown Cooling System(SCS), electric power supply system, Core Protection Calculator(CPC), various plant control system, development of the graphics screens for each system, real-time simulation, simulation control for the enhancement of functional capabilities, user friendly GUI, collection of the design and operating data, establishment of the NPA database, integration of the GUI and simulation control program with process model, collection of the data for the verification and validation of the developed NPA, collection of the plant test data, collection and review of the results of other computer codes, verification of the simulation accuracy by comparing the NPA results with the actual plant data, validation of the simulation capability of the NPA, comparison against available data from other analysis suing different computer codes.

  20. Electric power system / emergency power supply

    International Nuclear Information System (INIS)

    Dorn, P.G.

    1980-01-01

    One factor of reliability of reactor safety systems is the integrity of the power supply. The purpose of this paper is a review and a discussion of the safety objectives required for the planning, licensing, manufacture and erection of electrical power systems and components. The safety aspects and the technical background of the systems for - the electric auxiliary power supply system and - the emergency power supply system are outlined. These requirements result specially from the safety standards which are the framework for the studies of safety analysis. The overall and specific requirements for the electrical power supply of the safety systems are demonstrated on a 1300 MW standard nuclear power station with a pressurized water reactor. (orig.)

  1. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  2. Role of nuclear power

    International Nuclear Information System (INIS)

    Eklund, S.

    1982-01-01

    A survey of world nuclear installations, the operating experiences of power reactors, and estimates of future nuclear growth leads to the conclusion that nuclear power's share of world electric power supply will grow slowly, but steadily during this decade. This growth will lead advanced countries to use the commercial breeder by the end of the century. Nuclear power is economically viable for most industrialized and many developing countries if public acceptance problems can be resolved. A restructuring of operational safety and regulations must occur first, as well as a resolution of the safeguards and technology transfer issue. 7 figures, 7 tables

  3. Safety analysis program for steam generators replacement and power uprate at Tihange 2 nuclear power plant

    International Nuclear Information System (INIS)

    Delhaye, X.; Charlier, A.; Damas, Ph.; Druenne, H.; Mandy, C.; Parmentier, F.; Pirson, J.; Zhang, J.

    2002-01-01

    The Belgian Tihange 2 nuclear power plant went into commercial operation in 1983 producing a thermal power of 2785 MW. Since the commissioning of the plant the steam generators U-tubes have been affected by primary stress corrosion cracking. In order to avoid further degradation of the performance and an increase in repair costs, Electrabel, the owner of the plant, decided in 1997 to replace the 3 steam generators. This decision was supported by the feasibility study performed by Tractebel Energy Engineering which demonstrated that an increase of 10% of the initial power together with a fuel cycle length of 18 months was achieved. Tractebel Energy Engineering was entrusted by Electrabel as the owner's engineer to manage the project. This paper presents the role of Tractebel Energy Engineering in this project and the safety analysis program necessary to justify the new operation point and the fuel cycle extension to 18 months re-analysis of FSAR chapter 15 accidents and verification of the capacity of the safety and auxiliary systems. The FSAR chapter 15 accidents were reanalyzed jointly by Framatome and Tractebel Energy Engineering while the systems verifications were carried out by Tractebel Energy Engineering. (author)

  4. Mathematics applied to nuclear geophysics

    International Nuclear Information System (INIS)

    Pereira, E.B.; Nordemann, D.J.R.

    1987-01-01

    One of the powerful auxiliary to nuclear geophysics is the obtention and interpretation of the alpha and gamma radiation spectra. This work discuss, qualitative and quantitative, the lost information problem, motivated by the noise in the process of information codification. The decodification process must be suppield by the appropriate mathematical model on the measure system to recovery the information from nuclear source. (C.D.G.) [pt

  5. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  6. Banning nuclear power at sea

    International Nuclear Information System (INIS)

    Handler, J.

    1993-01-01

    This article argues that now that the East-West conflict is over, nuclear-powered vessels should be retired. Nuclear-powered ships and submarines lack military missions, are expensive to build and operate, generate large amounts of long-lived deadly nuclear waste from their normal operations and when they are decommissioned, and are subject to accidents or deliberate attack which can result in the sinking of nuclear reactors and the release of radiation. With the costs of nuclear-powered vessels mounting, the time has come to ban nuclear power at sea. (author)

  7. The need for nuclear power

    International Nuclear Information System (INIS)

    1977-12-01

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  8. Nuclear power statistics 1985

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1986-06-01

    In this report an attempt is made to collect literature data on nuclear power production and to present it on graphical form. Data is given not only for 1985, but for a number of years so that the trends in the development of nuclear power can be seen. The global capacity of nuclear power plants in operation and those in operation, under construction, or on order is considered. Further the average capacity factor for nuclear plants of a specific type and for various geographical areas is given. The contribution of nuclear power to the total electricity production is considered for a number of countries and areas. Finally, the accumulated years of commercial operation for the various reactor types up to the end of 1985 is presented. (author)

  9. Nuclear power economics

    International Nuclear Information System (INIS)

    Moynet, G.

    1987-01-01

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  10. Energy policy and nuclear power. Expectations of the power industry

    International Nuclear Information System (INIS)

    Harig, H.D.

    1995-01-01

    In the opinion of the power industry, using nuclear power in Germany is a responsible attitude, while opting out of nuclear power is not. Electricity utilities will build new nuclear power plants only if the structural economic and ecological advantages of nuclear power are preserved and can be exploited in Germany. The power industry will assume responsibility for new complex, capital-intensive nuclear plants only if a broad societal consensus about this policy can be reached in this country. The power industry expects that the present squandering of nuclear power resources in Germany will be stopped. The power industry is prepared to contribute to finding a speedy consensus in energy policy, which would leave open all decisions which must not be taken today, and which would not constrain the freedom of decision of coming generations. The electricity utilities remain committed proponents of nuclear power. However, what they sell to their customers is electricity, not nuclear power. (orig.) [de

  11. The ethical justification of nuclear power

    International Nuclear Information System (INIS)

    Van Wyk, J.H.

    1985-01-01

    This study pamphlet deals with the questions of ethics, nuclear power and the ethical justification of nuclear power. Nuclear power is not only used for warfare but also in a peaceful way. Ethical questions deal with the use of nuclear weapons. Firstly, a broad discussion of the different types of ethics is given. Secondly, the peaceful uses of nuclear power, such as nuclear power plants, are discussed. In the last place the application of nuclear power in warfare and its disadvantages are discussed. The author came to the conclusion that the use of nuclear power in warfare is in contrary with all Christian ethics

  12. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-06-01

    The actualized version (June 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  13. Italian nuclear power industry after nuclear power moratorium: Current state and future prospects

    International Nuclear Information System (INIS)

    Adinolfi, R.; Previti, G.

    1992-01-01

    Following Italy's nuclear power referendum results and their interpretation, all construction and operation activities in the field of nuclear power were suspended by a political decision with consequent heavy impacts on Italian industry. Nevertheless, a 'nuclear presidium' has been maintained, thanks to the fundamental contribution of activities abroad, succeeding in retaining national know-how and developing the new technologies called for the new generation of nuclear power plants equipped with intrinsic and/or passive reactor safety systems

  14. Nuclear power in Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, Z.H.; Qureshi, I.H.

    2005-01-01

    Pakistan started its nuclear power program by installing a 137 M We Canadian Deuterium Reactor (Candu) at Karachi in 1971 which became operational in 1972. The post-contract technical support for the Karachi Nuclear Power Plant (KANUPP) was withdrawn by Canada in 196 as a consequence of Indian nuclear device test in 1974. In spite of various difficulties PAEC resolved to continue to operate KANUPP and started a process for the indigenous fabrication of spare parts and nuclear fuel. The first fuel bundle fabricated in Pakistan was loaded in the core in 1980. Since then KANUPP has been operating on the indigenously fabricated fuel. The plant computer systems and the most critical instrumentation and Control system were also replaced with up-to date technology. In 2002 KANUPP completed its original design life of 30 year. A program for the life extension of the plant had already been started. The second nuclear power plant of 300 M We pressurized water reactor purchased from China was installed in Chashma in 1997, which started commercial operations in 2001. Another unit of 300 M We will be installed at Chashma in near future. These nuclear power plants have been operating under IAEA safeguards agreements. PAEC through the long-term performance of the two power plants has demonstrated its competence to safely and successfully operate and maintain nuclear power plants. Pakistan foresees an increasingly important and significant share of nuclear power in the energy sector. The Government has recently allocated a share of 8000 MWe for nuclear energy in the total energy scenario of Pakistan by the year 2025. (author)

  15. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1988-06-01

    The percentage of electricity generated by nuclear energy in each of the 26 countries that operated nuclear power plants in 1987 is given. The current policy and programs of some of these countries is described. News concerning uranium mining, enrichment, reprocessing and waste management is also included. Data in the form of a generalized status summary for all power reactors (> 30 MWEN) prepared from the nuclear power reactor data files of ANSTO is shown

  16. Without nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    The arguments put forward by the SPD point to the following: Backing out of nuclear power is a must, because of the awful quality of the hazards involved; because there can be no real separation guaranteed between civil and military utilisation of nuclear energy; for reasons of international responsibility; because we must not pass the buck on to the next generation; because social compatibility must be achieved; because the story of the 'cheap' nuclear generation of electricity is a fairy tale; because nuclear power pushes back coal as an energy source; because current ecological conditions call for abandonment of nuclear power, and economic arguments do not really contradict them. A reform of our energy system has to fulfill four requirements: Conserve energy; reduce and avoid environmental pollution; use renewable energy sources as the main sources; leave to the next generation the chance of choosing their own way of life. (HSCH) [de

  17. IEC 61850. Integrated supervision of auxiliary power equipment; IEC 61850. Prozess und Eigenbedarf wachsen zusammen

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, Robert; Jung, Matthias [Siemens AG, Erlangen (Germany)

    2009-07-01

    It is state of technology today: Having process control and auxiliary power control integrated in one DCS. The integration is based on the international standard IEC 61850 which allows standardization of electrical structures from the process interface up to the DCS level. Modern control systems are designed to realize a system structure according to IEC 61850. A wide range of systems is available from systems with interfaces to realize a standardized data exchange up to systems with a complete integration of the standard IEC 61850. (orig.)

  18. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  19. EDF's approach to determine specifications for nuclear power plant bulk chemicals

    International Nuclear Information System (INIS)

    Basile, Alix; Dijoux, Michel; Le-Calvar, Marc; Gressier, Frederic; Mole, Didier

    2012-09-01

    Chemical impurities in the primary, secondary and auxiliary nuclear power plants circuits generate risks of corrosion of the fuel cladding, steel and nickel based alloys. The PMUC (Products and Materials Used in plants) organization established by EDF intends to limit this risk by specifying maximum levels of impurities in products and materials used for the operation and maintenance of Nuclear Power Plants (NPPs). Bulk chemicals specifications, applied on primary and secondary circuit chemicals and hydrogen and nitrogen gases, are particularly important to prevent chemical species to be involved in the corrosion of the NPPs materials. The application of EDF specifications should lead to reasonably exclude any risk of degradation of the first and second containment barriers and auxiliary circuits Important to Safety (IPS) by limiting the concentrations of chlorides, fluorides, sulfates... The risk of metal embrittlement by elements with low melting point (mercury, lead...) is also included. For the primary circuit, the specifications intend to exclude the risk of activation of impurities introduced by the bulk chemicals. For the first containment barrier, to reduce the risk of deposits like zeolites, PMUC products specifications set limit values for calcium, magnesium, aluminum and silica. EDF's approach for establishing specifications for bulk chemicals is taking also into account the capacity of industrial production, as well as costs, limitations of analytical control methods (detection limits) and environmental releases issues. This paper aims to explain EDF's approach relative to specifications of impurities in bulk chemicals. Also presented are the various parameters taken into account to determine the maximum pollution levels in the chemicals, the theoretical hypothesis to set the specifications and the calculation method used to verify that the specifications are suitable. (authors)

  20. Nuclear power in Asia

    International Nuclear Information System (INIS)

    2007-01-01

    The Australian Uranium Association reports that Asia is the only region in the world where electricity generating capacity and specifically nuclear power is growing significantly. In East and South Asia, there are over 109 nuclear power reactors in operation, 18 under construction and plans to build about a further 100. The greatest growth in nuclear generation is expected in China, Japan, South Korea and India. As a member of the SE Asian community, Australia cannot afford to ignore the existence and growth of nuclear power generation on its door step, even if it has not, up to now, needed to utilise this power source

  1. Nuclear power

    International Nuclear Information System (INIS)

    1987-01-01

    ''Nuclear Power'' describes how a reactor works and examines the different designs including Magnox, AGR, RBMK and PWR. It charts the growth of nuclear generation in the world and its contributions to world energy resources. (author)

  2. Competitiveness of nuclear power generation

    International Nuclear Information System (INIS)

    Sumi, Yoshihiko

    1998-01-01

    In view of the various merits of nuclear power generation, Japanese electric utilities will continue to promote nuclear power generation. At the same time, however, it is essential to further enhance cost performance. Japanese electric utilities plan to reduce the cost of nuclear power generation, such as increasing the capacity factor, reducing operation and maintenance costs, and reducing construction costs. In Asia, nuclear power will also play an important role as a stable source of energy in the future. For those countries planning to newly introduce nuclear power, safety is the highest priority, and cost competitiveness is important. Moreover, financing will be an essential issue to be resolved. Japan is willing to support the establishment of nuclear power generation in Asia, through its experience and achievements. In doing this, support should not only be bilateral, but should include all nuclear nations around the Pacific rim in a multilateral support network. (author)

  3. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  4. Nuclear power 2005: European report

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In 2005, nuclear power plants were operated and/or built in eighteen European countries. Thirteen of these countries are members of EU-25. Five of the ten countries joining the European Union on May 1, 2004 operate nuclear power stations. A total of 204 power reactors with a gross power of 181,030 MWe and a net power of 171,8479 MWe were in operation at the end of the year. In 2005, no nuclear power plant was commissioned. Two nuclear power plants were decommissioned in Europe in the course of 2005. In Germany the Obrigheim NPP and in Sweden the Barsebaeck 2 NPP have been permanently shut down due to political decisions. As a result of ongoing technical optimization in some plants, involving increases in reactor power or generator power as well as commissioning of plants of higher capacity, nuclear generating capacity increased by approx. 1.6 GW. In late 2005, five nuclear generating units were under construction in Finland (1), Romania (1), and Russia (3). 148 nuclear power plants were operated in thirteen states of the European Union (EU-25). They had an aggregate gross power of 137,023 MWe and a net power of 130,415 MWe, generating approx. 970 billion gross kWh of electricity in 2005, thus again contributing some 31% to the public electricity supply in the EU-25. In largest share of nuclear power in electricity generation is found in France (80%), followed by 72% in Lithuania, 55% in the Slovak Republic, 55% in Belgium, and 51% in Ukraine. In several countries not operating nuclear power plants of their own, such as Italy, Portugal, and Austria, nuclear power makes considerable contributions to public electricity supply as a result of electricity imports. (All statistical data in the country report apply to 2004 unless indicated otherwise. This is the year for which sound preliminary data are currently available for the states listed.) (orig.)

  5. Load following generation in nuclear power plants by latent thermal energy storage

    International Nuclear Information System (INIS)

    Abe, Yoshiyuki; Takahashi, Yoshio; Kamimoto, Masayuki; Sakamoto, Ryuji; Kanari, Katsuhiko; Ozawa, Takeo

    1985-01-01

    The recent increase in nuclear power plants and the growing difference between peak and off-peak demands imperatively need load following generation in nuclear power plants to meet the time-variant demands. One possible way to resolve the problem is, obviously, a prompt reaction conrol in the reactors. Alternatively, energy storage gives another sophisticated path to make load following generation in more effective manner. Latent thermal energy storage enjoys high storage density and allows thermal extraction at nearly constant temperature, i.e. phase change temperature. The present report is an attempt to evaluate the feasibility of load following electric power generation in nuclear plants (actually Pressurized Water Reactors) by latent thermal energy storage. In this concept, the excess thermal energy in the off-peak period is stored in molten salt latent thermal energy storage unit, and additional power output is generated in auxiliary generator in the peak demand duration using the stored thermal energy. The present evaluation gives encouraging results and shows the primary subject to be taken up at first is the compatibility of candidate storage materials with inexpensive structural metal materials. Chapter 1 denotes the background of the present report, and Chapter 2 reviews the previous studies on the peak load coverage by thermal energy storage. To figure out the concept of the storage systems, present power plant systems and possible constitution of storage systems are briefly shown in Chapter 3. The details of the evaluation of the candidate storage media, and the compilation of the materials' properties are presented in Chapter 4. In Chapter 5, the concept of the storage systems is depicted, and the economical feasibility of the systems is evaluated. The concluding remarks are summarized in Chapter 6. (author)

  6. Nuclear power development

    International Nuclear Information System (INIS)

    Povolny, M.

    1980-01-01

    The development and uses of nuclear power in Czechoslovakia and other countries are briefly outlined. In the first stage, the Czechoslovak nuclear programme was oriented to the WWER 440 type reactor while the second stage of the nuclear power plant construction is oriented to the WWER 10O0 type reactor. It is envisaged that 12 WWER 440 type reactors and four to five WWER 1000 type reactors will be commissioned till 1990. (J.P.)

  7. Nuclear power experience

    International Nuclear Information System (INIS)

    Daglish, J.

    1982-01-01

    A report is given of a recent international conference convened by the IAEA to consider the technical and economic experience acquired by the nuclear industry during the past 30 years. Quotations are given from a number of contributors. Most authors shared the opinion that nuclear power should play a major role in meeting future energy needs and it was considered that the conference had contributed to make nuclear power more viable. (U.K.)

  8. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  9. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2012-07-01

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  10. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    Lauritzen, B.; Oelgaard, P.L.; Kampmann, D.; Nystrup, P.E.; Thorlaksen, B.

    2010-05-01

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  11. The problem of nuclear power

    International Nuclear Information System (INIS)

    Heimbrecht, J.; Kade, G.; Krusewitz, K.; Moldenhauer, B.; Steinhaus, K.; Weish, P.

    1977-01-01

    The battle over the problems of nuclear power has gone on in the Federal Republic for several years. The Buergerinitiativen, which used to be small and largely unpolitical, have become a major social force during this time. Subjects: 1) Dangers of nuclear power - can the risk be justified; 2)The necessity of nuclear power; 3) The enforcement of nuclear power - political and economic background; 4) Limits of power generation - limits of growth or limits of the system. (orig./HP) [de

  12. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  13. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki

    2000-01-01

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  14. Nuclear power. Volume 2: nuclear power project management

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables

  15. Development of Czechoslovak nuclear power complex

    International Nuclear Information System (INIS)

    Rajci, T.

    1986-01-01

    The research project ''Development of the Czechoslovak nuclear power complex'' was undertaken by several Czechoslovak institutions and was coordinated by the Research Institute of the Fuel and Power Complex in Bratislava. Involved in the project was a staff of 170 people. 274 reports were pulished and the cost approached 70 mill. Czechoslovak crowns. The results are characterized of all six partial tasks. Basic information was prepared for the forecast of the solution of fuel and power problems in Czechoslovakia up to the year 2000 and their prospects up to the year 2020. Program MORNAP was written for the development of nuclear power, which models the operation of a power generation and transmission system with a selectable number of nuclear power plants. Another partial task related to the fuel cycle of nuclear power plants with respect to long-term provision and management of nuclear fuel. Nuclear safety was split into three problem groups, viz.: system safety of nuclear power plant operation; radiation problems of nuclear power plant safety; quality assurance of nuclear power plant components. The two remaining tasks were devoted to nuclear power engineering and to civil engineering. (Z.M.). 3 tabs., 1 refs

  16. Nuclear power safety

    International Nuclear Information System (INIS)

    1991-11-01

    This paper reports that since the Chernobyl nuclear plant accident in 1986, over 70 of the International Atomic Energy Agency's 112 member states have adopted two conventions to enhance international cooperation by providing timely notification of an accident and emergency assistance. The Agency and other international organizations also developed programs to improve nuclear power plant safety and minimize dangers from radioactive contamination. Despite meaningful improvements, some of the measures have limitations, and serious nuclear safety problems remain in the design and operation of the older, Soviet-designed nuclear power plants. The Agency's ability to select reactors under its operational safety review program is limited. Also, information on the extent and seriousness of safety-related incidents at reactors in foreign countries is not publicly available. No agreements exist among nuclear power countries to make compliance with an nuclear safety standards or principles mandatory. Currently, adherence to international safety standards or principles is voluntary and nonbinding. Some states support the concept of mandatory compliance, but others, including the United States, believe that mandatory compliance infringes on national sovereignty and that the responsibility for nuclear reactor safety remains with each nation

  17. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Hill, J.

    1977-01-01

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  18. The nuclear power decisions

    International Nuclear Information System (INIS)

    Williams, R.

    1980-01-01

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  19. Governance of nuclear power

    International Nuclear Information System (INIS)

    Allison, G.; Carnesale, A.; Zigman, P.; DeRosa, F.

    1981-01-01

    Utility decisions on whether to invest in nuclear power plants are complicated by uncertainties over future power demand, regulatory changes, public perceptions of nuclear power, and capital costs. A review of the issues and obstacles confronting nuclear power also covers the factors affecting national policies, focusing on three institutional questions: regulating the industry, regulating the regulators, and regulatory procedures. The specific recommendations made to improve safety, cost, and public acceptance will still not eliminate uncertainties unless the suggested fundamental changes are made. 29 references

  20. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  1. China and nuclear power

    International Nuclear Information System (INIS)

    Fouquoire-Brillet, E.

    1999-01-01

    This book presents the history of nuclear power development in China from the first research works started in the 1950's for the manufacturing of nuclear weapons to the recent development of nuclear power plants. This study tries to answer the main questions raised by the attitude of China with respect to the civil and military nuclear programs. (J.S.)

  2. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  3. Nuclear power falling to pieces

    International Nuclear Information System (INIS)

    Moberg, Aa.

    1985-01-01

    The international development during the 80s is reviewed. It is stated that the construction of plants has come to a standstill. The forecasting of nuclear power as a simple and cheap source of energy has been erroneous because of cracks and leakage, unsolved waste problems and incidents. Nuclear power companies go into liquidation and reactors are for sale. Sweden has become the country with most nuclear power per capita mainly due to its controlled decommissioning. The civilian nuclear power makes the proliferation of nuclear weapons possible. With 324 reactors all over the world, a conventional war may cause disasters like Hiroshima. It is stated that the nuclear power is a dangerous and expensive source of energy and impossible to manage. (G.B.)

  4. Torness: proposed nuclear power station

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The need for and desirability of nuclear power, and in particular the proposed nuclear power station at Torness in Scotland, are questioned. Questions are asked, and answered, on the following topics: position, appearance and cost of the proposed Torness plant, and whether necessary; present availability of electricity, and forecast of future needs, in Scotland; energy conservation and alternative energy sources; radiation hazards from nuclear power stations (outside, inside, and in case of an accident); transport of spent fuel from Torness to Windscale; radioactive waste management; possibility of terrorists making a bomb with radioactive fuel from a nuclear power station; cost of electricity from nuclear power; how to stop Torness. (U.K.)

  5. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  6. Ecological problems of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Babaev, N S; Demin, V F; Kuz' min, I I; Stepanchikov, V I [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1978-10-01

    Modern power sources including nuclear one are characterized. Basic information on radiation protection of man and biosphere is presented. Problems of radiation effect of nuclear fuel cycle enterprises on population and environment are discussed. Comparative evaluation of nuclear and thermal power effect on biosphere is made. It is shown that nuclear power is the safest power source at the present development state. The conclusion is drawn that the use of nuclear energy controlled and limited by scientifically founded norms does not present radiation hazard for population and environment.

  7. Nuclear power and the UK

    International Nuclear Information System (INIS)

    Murphy, St.

    2009-01-01

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  8. Nuclear power development: History and outlook

    International Nuclear Information System (INIS)

    Char, N.L.; Csik, B.J.

    1987-01-01

    The history of nuclear power development is briefly described (including the boosts from oil price shocks to the promotion of nuclear energy). The role of public opinion in relation to nuclear power is mentioned too, in particular in connection with accidents in nuclear plants. The recent trends in nuclear power development are described and the role of nuclear power is foreseen. Estimates of total and nuclear electrical generating capacity are made

  9. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    Lauritzen, B.; Nonboel, E.; Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J.

    2013-11-01

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  10. Nuclear power perspective in China

    International Nuclear Information System (INIS)

    Liu Xinrong; Xu Changhua

    2003-01-01

    China started developing nuclear technology for power generation in the 1970s. A substantial step toward building nuclear power plants was taken as the beginning of 1980 s. The successful constructions and operations of Qinshan - 1 NPP, which was an indigenous PWR design with the capacity of 300 MWe, and Daya Bay NPP, which was an imported twin-unit PWR plant from France with the capacity of 900 MWe each, give impetus to further Chinese nuclear power development. Now there are 8 units with the total capacity of 6100 MWe in operation and 3 units with the total capacity of 2600 MWe under construction. For the sake of meeting the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a near and middle term electrical power development program will be established soon. It is preliminarily predicted that the total power installation capacity will be 750-800GWe by the year 2020. The nuclear share will account for at least 4.0-4.5 percent of the total. This situation leaves the Chinese nuclear power industry with a good opportunity but also a great challenge. A practical nuclear power program and a consistent policy and strategy for future nuclear power development will be carefully prepared and implemented so as to maintain the nuclear power industry to be healthfully developed. (author)

  11. Nuclear power reactors of new generation

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.; Slesarev, I.S.

    1988-01-01

    The paper presents discussions on the following topics: fuel supply for nuclear power; expansion of the sphere of nuclear power applications, such as district heating; comparative estimates of power reactor efficiencies; safety philosophy of advanced nuclear plants, including passive protection and inherent safety concepts; nuclear power unit of enhanced safety for the new generation of nuclear power plants. The emphasis is that designers of new generation reactors face a complicated but technically solvable task of developing highly safe, efficient, and economical nuclear power sources having a wide sphere of application

  12. On PA of nuclear power

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  13. Coupling technology for dual-purpose nuclear-desalting plants

    International Nuclear Information System (INIS)

    Jones, J.E. Jr.; Anderson, T.D.; Reed, S.A.

    1976-11-01

    Although the basic technology for the various components of nuclear dual-purpose plants is reasonably well developed, the techniques of coupling the elements together to form a reliable, economical system that will satisfy the diverse operating requirements are not well established. The purpose of the study reported is to examine the technical, economic, and safety considerations in coupling nuclear power plants with distillation units to form a dual-purpose power and water distillation plant. The basic coupling arrangement required to provide a large-scale dual-purpose water plant is to supply steam to the water plant from the exhaust of a back-pressure turbine. The principal component at the interface that may require major research and development is the back-pressure turbine. To satisfy the operational requirements, two major auxiliary systems will be needed. These are: (1) a prime-steam bypass system, and (2) auxiliary condensers. These systems will provide a degree of independence between water and power production and can be justified economically

  14. The future of nuclear power

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO 2 ) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  15. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  16. Conflict nuclear power. Theses for current supply with and without nuclear power

    International Nuclear Information System (INIS)

    Schwarz, E.

    2007-01-01

    In the context of a lecture at the 2nd Internationally Renewable Energy Storage Conference at 19th to 21st November, 2007, in Bonn (Federal Republic of Germany), the author of the contribution under consideration reports on theses for current supply with and without nuclear power. (1) Theses for current supply with nuclear energy: Due to a relative amount of 17 % of nuclear energy in the world-wide energy production and due to the present reactor technology, the supplies of uranium amount nearly 50 to 70 years. The security of the nuclear power stations is controversially judged in the public and policy. In a catastrophic accident in a nuclear power station, an amount of nearly 2.5 billion Euro is available for adjustment of damages (cover note). The disposal of radioactive wastes is not solved anywhere in the world. The politically demanded separation between military and civilian use of the nuclear energy technology is not possible. The exit from the nuclear energy is fixed in the atomic law. By any means, the Federal Republic of Germany is not insulated in the European Union according to its politics of nuclear exit. After legal adjustment of the exit from the nuclear energy the Federal Republic of Germany should unfold appropriate activities for the re-orientation of Euratom, Nuclear Energy Agency and the International Atomic Energy Agency. The consideration of the use of nuclear energy in relation to the risks has to result that its current kind of use is not acceptable and to be terminated as fast as possible. (2) Theses for current supply without nuclear energy: The scenario technology enables a transparency of energy future being deliverable for political decisions. In accordance with this scenario, the initial extra costs of the development of the renewable energies and the combined heat and power generation amount approximately 4 billion Euro per year. The conversion of the power generation to renewable energies and combined heat and power generation

  17. Economic benefits of the nuclear power

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1985-01-01

    The historical and projected benefits of nuclear power are estimated as the cost differential between nuclear power and an alternative baseload generating source times the quantity of electricity generated. From 1976 through 1981 coal and nuclear power were close competitors in most regions, with nuclear power holding a small cost advantage overall in 1976 and 1977 that subsequently eroded. When nuclear power costs are contrasted to coal power costs, national benefits from nuclear power are estimated to be $336 million from 1976 to 1981, with an additional $1.8 billion for the present value of existing plants. Fuel oil has been the dominant source of baseload generation in California, Florida, and New England. When nuclear power costs are contrasted to those of fuel oil, the benefits of nuclear power in these three regions are estimated to be $8.3 billion and $28.1 billion in terms of present value. The present value of benefits of future nuclear plants is estimated to be $8.2 billion under a midcase scenario and $43 billion under an optimistic scenario. 18 references, 10 tables

  18. The nuclear power alternative

    International Nuclear Information System (INIS)

    Blix, H.

    1989-04-01

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  19. Reasons for the nuclear power option

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Mauna, T.

    1994-01-01

    Technical, economical and social reasons, strongly supporting the nuclear power option are reviewed. The history of Romanian nuclear power program is outlined with a particular focus on the Cernavoda Nuclear Power Plant project. Finally the prospective of nuclear power in Romania are assessed

  20. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Scurr, I.F.; Silver, J.M.

    1990-01-01

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  1. Nuclear power publications

    International Nuclear Information System (INIS)

    1982-01-01

    This booklet lists 69 publications on nuclear energy available free from some of the main organisations concerned with its development and operation in the UK. Headings are: general information; the need for nuclear energy; the nuclear industry; nuclear power stations; fuel cycle; safety; waste management. (U.K.)

  2. Dictionary of nuclear power

    International Nuclear Information System (INIS)

    Koelzer, W.

    2012-04-01

    The actualized version (April 2012) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear facilities, and radiation protection.

  3. Nuclear power in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S. (Sussex Univ., Brighton (UK). Science Policy Research Unit)

    1991-01-01

    The main aim of this article is that of illustrating the experience of the use of nuclear power in Eastern Europe in order to estimate the degree of adequacy or inadequacy of COMECON's nuclear technology. The author examines four areas of interest concerning: the feasibility of new orders for nuclear plants in Eastern Europe; the pros and cons of completing half-built nuclear power plants; current policy towards existing nuclear power plants; and a review of the available evidence on the operating performance of plants in Eastern Europe. The common belief that the nuclear power experience had by old COMECON countries is uniformly bad does not seem to be fully supported by the limited evidence available. In the author's opinion, the prospects for a successful nuclear power industry in these countries depends on a series on interdependent factors among which, human skills hold a prominent position.

  4. Local society and nuclear power stations

    International Nuclear Information System (INIS)

    1984-02-01

    This report was made by the expert committee on region investigation, Japan Atomic Industrial Forum Inc., in fiscal years 1981 and 1982 in order to grasp the social economic influence exerted on regions by the location of nuclear power stations and the actual state of the change due to it, and to search for the way the promotion of local community should be. The influence and the effect were measured in the regions around the Fukushima No. 1 Nuclear Power Station of Tokyo Electric Power Co., Inc., the Mihama Power Station of Kansai Electric Power Co., Inc., and the Genkai Nuclear Power Station of Kyushu Electric Power Co., Inc. The fundamental recognition in this discussion, the policy of locating nuclear power stations and the management of regions, the viewpoint and way of thinking in the investigation of the regions where nuclear power stations are located, the actual state of social economic impact due to the location of nuclear power stations, the connected mechanism accompanying the location of nuclear power stations, and the location of nuclear power stations and the acceleration of planning for regional promotion are reported. In order to economically generate electric power, the rationalization in the location of nuclear power stations is necessary, and the concrete concept of building up local community must be decided. (Kako, I.)

  5. Consideration of nuclear power

    International Nuclear Information System (INIS)

    Smart, I.

    1982-01-01

    Mr. Smart notes that the optimistic promise of nuclear energy for developing countries has not been met, but feels that nuclear power can still provide a growing share of energy during the transition from oil dependence. He observes that cost-benefit analyses vary for each country, but good planning and management can give nuclear power a positive future for those developing countries which can establish a need for it; have access to the economic, technological, and human resources necessary to develop and operate it; and can make nuclear power compatible with the social, economic, and cultural structure. 11 references

  6. Plant specific safety inspection of German nuclear power plants taking into account the Fukushima-I (Japan) events

    International Nuclear Information System (INIS)

    2011-01-01

    The German Parliament requested (17 March 2011) a comprehensive inspection of German nuclear power plants. For this purpose independent expert commissions should perform a new risk analysis of all German NPPS and nuclear installations with respect to the lessons learned from the Fukushima (Japan) events and other extraordinary damage scenarios. The Reactor safety commission (RSK) was assigned by the German Bundesamt fuer Strahlenschutz to develop a catalogue of requirements for this safety inspection. The contribution summarizes the required inspection volume (status 30.03.2011) including the following events: natural events like earth quakes, floods, weather-based consequences and possible superposition. Additionally the following assumptions have to be considered: event independent postulated common failures or systematic faults, station blackout larger than 2 hours, long-term failure of the auxiliary cooling water supply; aggravating boundary conditions for the performance of emergency measures (non-availability of power supply), hydrogen generation and detonation hazard, restricted personnel availability, non-accessibility due to high radiation levels, impeded technical support from outside. (orig.)

  7. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    Kuczera, Bernhard

    2012-01-01

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  8. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S.

    2014-01-01

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  9. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  10. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  11. Nuclear power: Europa report

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    Last year, 2003, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union (EU-15) nuclear power plants have been operation. In 7 of the 13 EU Candidate Countries (incl. Turkey) nuclear energy was used for power production. A total of 208 plants with an aggregate net capacity of 171 031 MWe and an aggregate gross capacity of 180 263 MWe were in operation at the end of 2003. No unit reached first criticality in 2003 or was connected to the grid. The unit Calder Hall 1 to Calder Hall 4 have been permanently shut down in Great Britain due to economical reasons and an earlier decision. In Germany the NPP Stade was closed. The utility E.ON has decided to shut down the plant due to the efforts of the liberalisation of the electricity markets. Last year, 8 plants were under construction in Romania (1), Russia (3), Slovakia (2 - suspended), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. The consortium led by Framatome ANP was awarded the contract to build the new nuclear power plant (EPR, 1 600 MW) in Olkiluoto. In eight countries of the European Union 136 nuclear power plants have been operated with an aggregate gross capacity of 127 708 MWe and an aggregate net capacity of 121 709 MWe. Net electricity production in 2003 in the EU amounts to approx. 905 TWh gross, which means a share of about 33 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 80% in Lithuania, 78% in France, 57% in the Slovak Republic, 57% in Belgium, and 46% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. (orig.)

  12. Canadian attitudes to nuclear power

    International Nuclear Information System (INIS)

    Davies, J.E.O.

    1977-01-01

    In the past ten years, public interest in nuclear power and its relationship to the environment has grown. Although most Canadians have accepted nuclear power as a means of generating electricity, there is significant opposition to its use. This opposition has effectively forced the Canadian nuclear industry to modify its behaviour to the public in the face of growing concern over the safety of nuclear power and related matters. The paper reviews Canadian experience concerning public acceptance of nuclear power, with special reference to the public information activities of the Canadian nuclear industry. Experience has shown the need for scientific social data that will permit the nuclear industry to involve the public in a rational examination of its concern about nuclear power. The Canadian Nuclear Association sponsored such studies in 1976 and the findings are discussed. They consisted of a national assessment of public attitudes, two regional studies and a study of Canadian policy-makers' views on nuclear energy. The social data obtained were of a base-line nature describing Canadian perceptions of and attitudes to nuclear power at that time. This research established that Canadian levels of knowledge about nuclear power are very low and that there are marked regional differences. Only 56% of the population have the minimum knowledge required to indicate that they know that nuclear power can be used to generate electricity. Nevertheless, 21% of informed Canadians oppose nuclear power primarily on the grounds that it is not safe. Radiation and waste management are seen to be major disadvantages. In perspective, Canadians are more concerned with inflation than with the energy supply. About half of all Canadians see the question of energy supplies as a future problem (within five years), not a present one. A more important aspect of energy is seen by the majority of Canadians to be some form of energy independence. The use of data from these studies is no easy

  13. Progress of China's nuclear power programme

    International Nuclear Information System (INIS)

    Cai Jianping

    1997-01-01

    From a long-term point of view, nuclear power is the only solution for the shortage of energy resource. Nuclear power development strategy has been specified in China according to national condition: The electricity development of nuclear power optimizes the national energy structure and ensure the power supply, particularly in east China. China's first self-designed and self-constructed nuclear power plant--Qinshan Nuclear Power Plant (300MWe PWR) is now well under commercial operation. China is willing to cooperate with IAEA, other countries and regions in the field of nuclear energy for peaceful use on basis of mutual benefit. (author)

  14. Country nuclear power profiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA`s programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA`s programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ``profiles``, to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future. Refs, figs, tabs.

  15. Country nuclear power profiles

    International Nuclear Information System (INIS)

    1998-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  16. Nuclear power in Europe

    International Nuclear Information System (INIS)

    Perera, J.

    2000-01-01

    Currently nuclear power accounts for more than 25% of total electricity production in Europe (including Eastern Europe and the former Soviet Union) However, significant new construction is planned in Central and Eastern Europe only, apart from some in France and, possibly in Finland. Many countries in Western Europe have put nuclear construction plans on hold and several have cancelled their nuclear programs. This report looks at the history of nuclear power and its current status in both Eastern and Western Europe. It provides an outline of nuclear fuel cycle facilities, from uranium procurement to final waste disposal. Economic and environmental issues are discussed, as well as the prospect of increased East-West trade and cooperation in the new poso-cold war world. Detailed profiles are provided of all the countries in Western Europe with significant nuclear power programs, as well as profiles of major energy and nuclear companies

  17. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Mishiro, M.

    2000-01-01

    This article describes the advantages of nuclear energy for Japan. In 1997 the composition of the total primary energy supply (TPES) was oil 52.7%, coal 16.5%, nuclear 16.1% and natural gas 10.7%. Nuclear power has a significant role to play in contributing to 3 national interests: i) energy security, ii) economic growth and iii) environmental protection. Energy security is assured because a stable supply of uranium fuel can be reasonably expected in spite of dependence on import from abroad. Economic growth implies the reduction of energy costs. As nuclear power is capital intensive, the power generation cost is less affected by the fuel cost, therefore nuclear power can realize low cost by favoring high capacity utilization factor. Fossil fuels have substantial impacts on environment such as global warming and acid rain by releasing massive quantities of CO 2 , so nuclear power is a major option for meeting the Kyoto limitations. In Japan, in 2010 nuclear power is expected to reach 17% of TPES and 45% of electricity generated. (A.C.)

  18. Ethical aspects of nuclear power

    International Nuclear Information System (INIS)

    Streithofen, H.B.

    1989-01-01

    The nuclear controversy comprises many ethical aspects, e.g. the waste disposal problem. Nuclear opponents should not neglect the environmental protection aspect; for example, the use of nuclear power alone brought about an 8% reduction of the CO 2 burden in 1987. Our responsibility towards nature and humans in the Third World leaves us no alternative to nuclear power. On the other hand, the nuclear power debate should not become a matter of religious beliefs. (DG) [de

  19. Alternative off-site power supply improves nuclear power plant safety

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Volkanovski, Andrija; Kančev, Duško; Čepin, Marko

    2014-01-01

    Highlights: • Additional power supply for mitigation of the station blackout event in NPP is used. • A hydro power plant is considered as an off-site alternative power supply. • An upgrade of the probabilistic safety assessment from its traditional use is made. • The obtained results show improvement of nuclear power plant safety. - Abstract: A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source

  20. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  1. Nuclear power economics

    International Nuclear Information System (INIS)

    Emsley, Ian; Cobb, Jonathan

    2017-01-01

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  2. International nuclear power status 2001

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  3. Nuclear power - the Hydra's head

    Energy Technology Data Exchange (ETDEWEB)

    Bunyard, P

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead.

  4. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    Csik, B.J.; Konstantinov, L.V.; Dastidar, P.

    1989-09-01

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  5. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  6. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  7. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  8. A re-evaluation of nuclear plant offsite power supplies

    International Nuclear Information System (INIS)

    William E Berger; Robert E Henry

    2005-01-01

    Full text of publication follows: De-regulation of the electric power industry has resulted in separate ownership of the transmission and power generation facilities as well as a revised format for operating the transmission facilities. Currently we see the transfer of large blocks of bulk power between markets which can impact the voltage regulation at the offsite power supply. Where Nuclear Plant operations once knew with a large degree of certainty the operating range of the system supplying the offsite power supply, this may no longer be the case and more challenges to the safety systems could result. These challenges may manifest themselves as either a loss of offsite power or voltage levels approaching the degraded level setpoints. In this paper we will first explore what challenges are caused by deregulation and how they impact offsite power supply operations. Next we will incorporate the knowledge grained regarding accidents and consequences from the Individual Plant Evaluations (IPE's) to see how the offsite power supply could be operated to mitigate the challenges and extend the capacity of the auxiliary power system. Various scenarios will be examined using the Modular Accident Analysis Program (MAAP) as an integral plant model. MAAP simulations that include both the plant thermal hydraulic responses and corresponding electric power demand are presented to demonstrate the impact of alternate approaches to offsite power system operation. The original design phase of the offsite and onsite power distribution system was based on a criterion relating to the starting of all safety loads if a safety injection signal was present independent of the accident or its progression. The IPE and risk informed insights that are readily available today will be applied in the re-analyses of the offsite distribution system response. (authors)

  9. Nuclear power in India

    International Nuclear Information System (INIS)

    Bose, D.K.

    1980-01-01

    India has now nine years of experience with her in nuclear power generation. The system has been acclaimed on various grounds by the authority concerned with its organization in the country. The present paper intends to examine critically the claim for economic superiority of the nuclear power over the thermal power which is asserted often by the spokesmen for the former. Information about the cost of nuclear power that is available to researchers in India is very meagre. Whatever appears in official publications is hardly adequate for working out reasonable estimates for scrutiny. One is therefore left to depend on the public statements made by dignitaries from time to time to form an idea about the economics of nuclear power. Due to gaps in information we are constrained to rely on the foreign literature and make careful guesses about possible costs applicable to India

  10. No to nuclear power

    International Nuclear Information System (INIS)

    2006-01-01

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  11. Eigenstates with the auxiliary field method

    Energy Technology Data Exchange (ETDEWEB)

    Semay, Claude [Service de Physique Nucleaire et Subnucleaire, Universite de Mons-UMONS, 20 Place du Parc, 7000 Mons (Belgium); Silvestre-Brac, Bernard, E-mail: claude.semay@umons.ac.b, E-mail: silvestre@lpsc.in2p3.f [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France)

    2010-07-02

    The auxiliary field method is a powerful technique to obtain approximate closed-form energy formulas for eigenequations in quantum mechanics. Very good results can be obtained for Schroedinger and semirelativistic Hamiltonians with various potentials, even in the case of many-body problems. This method can also provide approximate eigenstates in terms of well-known wavefunctions, for instance harmonic oscillator or hydrogen-like states, but with a characteristic size which depends on quantum numbers. In this paper, we consider two-body Schroedinger equations with linear, logarithmic and exponential potentials and show that analytical approximations of the corresponding eigenstates can be obtained with the auxiliary field method, with very good accuracy in some cases.

  12. Eigenstates with the auxiliary field method

    International Nuclear Information System (INIS)

    Semay, Claude; Silvestre-Brac, Bernard

    2010-01-01

    The auxiliary field method is a powerful technique to obtain approximate closed-form energy formulas for eigenequations in quantum mechanics. Very good results can be obtained for Schroedinger and semirelativistic Hamiltonians with various potentials, even in the case of many-body problems. This method can also provide approximate eigenstates in terms of well-known wavefunctions, for instance harmonic oscillator or hydrogen-like states, but with a characteristic size which depends on quantum numbers. In this paper, we consider two-body Schroedinger equations with linear, logarithmic and exponential potentials and show that analytical approximations of the corresponding eigenstates can be obtained with the auxiliary field method, with very good accuracy in some cases.

  13. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  14. Nuclear power for environmental protection

    International Nuclear Information System (INIS)

    Souza Marques de, J.A.; Bennett, L.L.

    1989-09-01

    Nuclear power does not produce CO 2 or other greenhouse gases, and also does not produce any SO 2 , NO x or other gases which contribute to acid rain. These characteristics of nuclear power are especially important in comparison to coal-fired generation of electricity. As an example, in comparison with a coal-fired power plant of the same size, with abatement systems, a 1300 MW(e) nuclear power plant eliminates annually emissions to the air of about: 2000 t of particulates; 8.5 million t of CO 2 : 12,000 t of SO 2 ; and 6,000 t of NO x , the precise quantities being dependent on coal quality, power plant design and thermal efficiency, and on the effectiveness of the abatement systems. Opponents of nuclear power concede these facts, but argue that nuclear power is such a small part of the world energy balance that it is insignificant to the big issue of CO 2 . This is hardly correct. Today, 16% of the world's electricity (and 5% of the world's total primary energy) is generated using nuclear power. If this electricity were to have been generated using coal, it would have resulted in about 1600 million tons of CO 2 annually. This is 8% of the 20,000 million tons of CO 2 now emitted annually from the burning of fossil fuels, an amount which the Toronto Conference proposed should be cut by 20% up to the year 2005. A further major difference in the two energy systems is that the relatively smaller amount of nuclear wastes is fully isolated from the environment. In addition to discussing the global contributions of nuclear power to environmental improvement, the paper presents actual results achieved in a number of countries, demonstrating the positive contribution which nuclear power has made to reducing the environmental impacts of electricity production. 7 figs, 12 tabs

  15. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  16. Non-power application as an entry point to nuclear power program

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2009-01-01

    Nuclear power is usually viewed as the flagship of nuclear technology. A nuclear power plant complex, visible and prominence, is iconic of the technology. That image makes its presence common knowledge to the extent that nuclear technology is equated almost totally with nuclear power by the general public. The downside of this visibility is that it becomes easy target in public misinformation programs. The non-power applications however are not visible, and devoid of icon. The non-power applications, therefore, can grow quite smoothly, attracting only little attention in the negative and in the positive senses. According to a study conducted in the USA in 2000 and in Japan in 2002, the socio-economic impact of non-power and power applications of nuclear technology are comparable. Involvement in non-power applications can be a good grounding for moving into power applications. This paper discusses the non-power nuclear technology applications and in what manner it can serve to prepare the introduction of nuclear power program. (Author)

  17. Current status of nuclear power development

    International Nuclear Information System (INIS)

    Dias, P.M.

    1994-01-01

    Nuclear power is not a viable energy source for Sri Lanka at present because of a number of reasons, the main reason being the non-availability of small and economically viable nuclear power plants. However several suppliers of nuclear power plants are in the process of developing small and medium power plants (SMPRs) which could be economically competitive with coal. The paper deals with past and future trends of nuclear power plants, their economics and safety. It also deals with environmental effects and public acceptance of nuclear power plants

  18. Nuclear safeguards control in nuclear power stations

    International Nuclear Information System (INIS)

    Boedege, R.; Braatz, U.; Heger, H.

    1976-01-01

    The execution of the Non-Proliferation Treaty (NPT) has initiated a third phase in the efforts taken to ensure peace by limiting the number of atomic powers. In this phase it is important, above all, to turn into workable systems the conditions imposed upon technology by the different provisions of the Verification Agreement of the NPT. This is achieved mainly by elaborating annexes to the Agreement specifically geared to certain model plants, typical representatives selected for LWR power stations being the plants at Garigliano, Italy (BWR), and Stade, Federal Republic of Germany (PWR). The surveillance measures taken to prevent any diversion of special nuclear material for purposes of nuclear weapons manufacture must be effective in achieving their specific objective and must not impede the circumspect management of operations of the plants concerned. A VDEW working party has studied the technical details of the planned surveillance measures in nuclear power stations in the Federal Republic of Germany and now presents a concept of material balancing by units which meets the conditions imposed by the inspection authority and could also be accepted by the operators of nuclear power stations. The concept provides for uninterrupted control of the material balance areas of the nuclear power stations concerned, allows continuous control of the whole nuclear fuel cycle, is based exclusively on existing methods and facilities, and can be implemented at low cost. (orig.) [de

  19. Nuclear power in British politics

    International Nuclear Information System (INIS)

    Pocock, R.F.

    1987-01-01

    The paper concerns the subject of nuclear power in British politics in 1986. The policies of the major political parties towards nuclear power are briefly outlined, along with public attitudes to nuclear energy, Chernobyl, and the rise of the anti-nuclear campaigners. (UK)

  20. Nuclear power in western society

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1977-01-01

    The degree to which problems of public acceptance have contributed to the slowdown in progress of nuclear power in Western European countries and the USA is discussed. Some of the effects on the nuclear power industry, i.e. the electrical utilities, the power station suppliers, and the fuel cycle contractors are described. The problem of the lack of public acceptance is examined by consideration of four areas: the position of the employee working in nuclear installations, opposition from the local community, the question of terrorism and its impact on nuclear policy, and finally, what is felt to constitute the greatest anxiety concerning nuclear power, that of proliferation. (U.K.)

  1. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  2. The future of nuclear power

    International Nuclear Information System (INIS)

    Burtak, F.

    1993-01-01

    Nuclear power in Germany at present is confronting two challenges: On the one hand, technical innovations are required in order to meet the expectations of nuclear proponents while, on the other hand, a public stand must be taken vis-a-vis the demand to opt out of nuclear power. This means that nuclear engineers not only must perform their technical functions, but increasingly also engage themselves socially. Neglecting just one of these two challenges is likely to impair severely the future of nuclear power in Germany. In the absence of a swing in public opinion it will not be possible to build a new nuclear plant, and nuclear power will be doomed to extinction, at least in a number of countries, within a matter of decades. In the absence of technical innovation, today's LWR technology will cause the fissile uranium available naturally to be consumed, thus killing nuclear power for lack of future fissile material. In responding to the two challenges, nuclear technology must safeguard its future by not retreating into an ivory tower of pure technology; on the other hand, technical innovation is a prerequisite for its continued existence. (orig.) [de

  3. Crunch time for nuclear power

    International Nuclear Information System (INIS)

    Edwards, Rob.

    1994-01-01

    The Federal Republic of Germany, one of the most advanced nations, technically has a thriving nuclear power industry. However there is stiff opposition to nuclear power from political parties and environmental groups. General elections due to be held in mid October hold the future of the nuclear industry in the balance. If the present opposition party comes to power, it is committed to a policy of phasing out nuclear power completely. At the centre of the political uproar is the Gorleben ''interim store'' which is intended to house Germany's spent fuel for at least the next forty years. The nuclear industry must resolve the issue of nuclear waste disposal to the voters' satisfaction if it is to have a viable future. (UK)

  4. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  5. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Trofimenko, A.P.; Lips'ka, A.Yi.; Pisanko, Zh.Yi.

    2005-01-01

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  6. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Bunyard, Peter.

    1986-01-01

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  7. International nuclear power status 2002

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  8. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    Valeca, Serban

    2002-01-01

    The Ministry of Education and Research - Department of Research has implemented a national Research and Development program taking into consideration the following: - the requirements of the European Union on research as a factor of development of the knowledge-based society; - the commitments to the assimilation and enforcement of the recommendations of the European Union on nuclear power prompted by the negotiations of the sections 'Science and Research' and ' Energy' of the aquis communautaire; - the major lines of interest in Romania in the nuclear power field established by National Framework Program of Cooperation with IAEA, signed on April 2001; - the short and medium term nuclear options of the Romanian Government; - the objectives of the National Nuclear Plan. The major elements of the nuclear research and development program MENER (Environment, Energy, Resources) supported by the Department of Research of the Ministry of Education and Research are the following: - reactor physics and nuclear fuel management; - operation safety of the Power Unit 1 of Cernavoda Nuclear Electric Power Station; - improved nuclear technological solutions at the Cernavoda NPP; - development of technologies for nuclear fuel cycle; - operation safety of the other nuclear plants in Romania; - assessment of nuclear risks and estimation of the radiological impact on the environment; - behavior of materials under the reactor service conditions and environmental conditions; - design of nuclear systems and equipment for the nuclear power stations and nuclear facilities; - radiological safety; - application of nuclear techniques and technologies in industry, agriculture, medicine and other fields of social life. Research to develop high performance methods and equipment for monitoring nuclear impact on environment are conducted to endorse the measures for radiation protection. Also mentioned are the research on implementing a new type of nuclear fuel cycle in CANDU reactors as well as

  9. 2006 nuclear power world report

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    At the turn of 2006/2007, 437 nuclear power plants were available for energy supply, or were being commissioned, in 31 countries of the world. This is seven plants less than at the turn of 2005/2006. The aggregate gross power of the plants amounted to approx. 389.5 GWe, the aggregate net power, to 370.5 GWe. This indicates a slight decrease of gross power by some 0.15 GWe compared to the level the year before, while the available net power increased, also slightly, by approx. 0.2 GWe. The Tarapur 3 nuclear generating unit in India, a D 2 O PWR of 540 MWe gross power, was newly commissioned. In 2006, 8 nuclear power plants in Europe (4 in the United Kingdom, 2 in Bulgaria, 1 each in the Slovak Republic and in Spain) discontinued power operation for good. 29 nuclear generating units, i.e. 6 plants more than at the end of 2005, were under construction in late 2006 in 9 countries with an aggregate gross power of approx. 25.5 GWe. Worldwide, some 40 new nuclear power plants are in the concrete project design, planning, and licensing phases; in some of these cases, contracts have already been signed. Net electricity generation in nuclear power plants worldwide in 2006 achieved another top ranking level of approx. 2,660 billion kWh (2005: approx. 2,750 billion kWh). Since the first generation of electricity in a nuclear power plant in the EBR-1 fast breeder (USA) on December 20, 1951, cumulated gross production has reached approx. 56,875 billion kWh, and operating experience has grown to some 12,399 reactor years. (orig.)

  10. Nuclear power in the EC

    International Nuclear Information System (INIS)

    Charrault, J.C.

    1991-01-01

    Nuclear power accounts for some 35% of electricity production in the European Community (EC). Using a mathematical analysis, based on different scenarios, i.e. low/high electricity demand and nuclear moratorium/revival, various demand forecasts are made. A pragmatic approach, considering conventional power generation pollution problems, forecasts a revival of nuclear power

  11. The influence nuclear power has on corporate image and the effect of offering merit information of nuclear power

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2006-01-01

    Many electric power companies in Japan, irrespective of their nuclear power generation ratio's difference, have nuclear power plants. These days, corporate brand image is becoming more and more important. Therefore, a survey was carried out to study the effect that nuclear power (including comparison with the other type of industry besides electric power) has on the corporate image of an electric power company. Further more, the survey includes a research about the effect on people's attitude change towards nuclear power before and after discovering the merits or benefits of nuclear power. The possibility of enhancing the corporate brand image of electric power companies by providing merit information of nuclear power was studied. (author)

  12. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  13. Some power uprate issues in nuclear power plants

    International Nuclear Information System (INIS)

    Tipping, Philip

    2008-01-01

    Issues and themes concerned with nuclear power plant uprating are examined. Attention is brought to the fact that many candidate nuclear power plants for uprating have anyway been operated below their rated power for a significant part of their operating life. The key issues remain safety and reliability in operation at all times, irrespective of the nuclear power plant's chronological or design age or power rating. The effects of power uprates are discussed in terms of material aspects and expected demands on the systems, structures and components. The impact on operation and maintenance methods is indicated in terms of changes to the ageing surveillance programmes. Attention is brought to the necessity checking or revising operator actions after power up-rating has been implemented

  14. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  15. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  16. French lessons in nuclear power

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    In stark contrast to the American atomic power experience is that of the French. Even the disaster at Chernobyl in 1986, which chilled nuclear programs throughout Western Europe, did not slow the pace of the nuclear program of the state-owned Electricite de France (EDF), based in Paris. Another five units are under construction and are scheduled to be connected to the French national power grid before the end of 1993. In 1989, the EDF's 58 nuclear reactors supplied 73 percent of French electrical needs, a higher percentage than any other country. In the United States, for example, only about 18 percent of electrical power is derived from the atom. Underpinning the success of nuclear energy in France is its use of standardized plant design and technology. This has been an imperative for the French nuclear power industry since 1974, when an intensive program of nuclear power plant construction began. It was then, in the aftermath of the first oil embargo, that the French government decided to reduce its dependence on imported oil by substituting atomic power sources for hydrocarbons. Other pillars supporting French nuclear success include retrofitting older plants with technological or design advances, intensive training of personnel, using robotic and computer aids to reduce downtime, controlling the entire nuclear fuel cycle, and maintaining a comprehensive public information effort about the nuclear program

  17. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    Namwong, Ratanachai

    2011-01-01

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  18. Steps to nuclear power

    International Nuclear Information System (INIS)

    1975-01-01

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  19. The separation of nuclear power from nuclear proliferation

    International Nuclear Information System (INIS)

    Starr, C.

    1979-01-01

    There exists world wide a strong common desire to limit nuclear weapons proliferation so as to inhibit or remove the threat of nuclear warfare. While this is a primary international political objective, there has also developed a secondary objective to limit any potential contribution to such nuclear weapons proliferation which might arise by the diversion of weapons material from the civilian nuclear power fuel cycle. This secondary objective is the basis of the present US government policy to defer the reprocessing of nuclear fuels anywhere. This policy has been generally recognized as a temporary expedient to provide time for international reexamination of the problems of weapons proliferation associated with nuclear power. A successful development of the proposed combination of the Fast Breeder Reactor and the Civex fuel reprocessing facility would provide an economical nuclear power source for many centuries which inherently separates nuclear power from the issue of weapons material diversion and proliferation. Further, by so doing, it permits great flexibility in international and national planning for nuclear power, as the issues of fuel dependence and terrorist and subnational diversions disappear. In addition, the expansion of the FBR/Civex system would eat into the LWR spent fuel stockpile, diminishing steadily this relatively accessible plutonium source. And finally, a rapid development of the FBR/Civex for the above reasons would substantially reduce the worldwide concern as to the adequacy of uranium ore supply. (Auth.)

  20. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Morrison, R.W.

    1980-01-01

    A few of the essential issues which arise when we consider nuclear power and development together in the context of energy policy are discussed. Ethical concerns must ultimately be expressed through policies and their impact on people. There are ethical issues associated with nuclear power in the developing countries which deserve our attention. Four aspects of the question of nuclear power in developing countries are considered: their energy situation; the characteristics of nuclear power which are relevant to them; whether developing countries will undertake nuclear power programmes; and finally the ethical implications of such programmes. It is concluded that what happens in developing countries will depend more on the ethical nature of major political decisions and actions than on the particular technology they use to generate their electricity. (LL)

  1. The nuclear power generation

    International Nuclear Information System (INIS)

    Serres, R.

    1999-01-01

    The French nuclear generating industry is highly competitive. The installations have an average age of fifteen years and are half way through their expected life. Nuclear power accounts for 70% of the profits of the French generating company, EDF. Nuclear generation has a minimal effect on the atmosphere and France has a level of CO 2 emissions, thought to be the main cause of the greenhouse effect, half that of Europe as a whole. The air in France is purer than in neighbouring countries, mainly because 75% of all electrical power is generated in nuclear plants and 15% in hydroelectric stations. The operations and maintenance of French nuclear power plants in the service and distribution companies out of a total of 100 000 employees in all, 90 % of whom are based in mainland France. (authors)

  2. Nuclear power and safety

    International Nuclear Information System (INIS)

    Saunders, P.; Tasker, A.

    1991-01-01

    Nuclear power currently provides about a fifth of both Britain's and the world's electricity. It is the largest single source of electricity in Western Europe; in France three quarters of electricity is generated by nuclear power stations. This booklet is about the safety of those plants. It approaches the subject by outlining the basic principles and approaches behind nuclear safety, describing the protective barriers and safety systems that are designed to prevent the escape of radioactive material, and summarising the regulations that govern the construction and operation of nuclear power stations. The aim is to provide a general understanding of the subject by explaining the general principles of the Advanced Gas Cooled Reactor and setting out the UKAEA strategy for nuclear safety, the objective being always to minimize risk. (author)

  3. Nuclear power plants in post-war thought

    International Nuclear Information System (INIS)

    Toya, Hiroshi

    2015-01-01

    This paper overviews how nuclear power plants have been talked about in the post-war thought. Science and technology sometimes significantly change the thinking way of humans, and nuclear power generation is an extreme technology. This paper overviews how nuclear power plants and humans are correlated. The following three points are discussed as the major issues of contemporary thought over nuclear power plants. First, on the danger of nuclear power plants, the risk of destructive power that nuclear energy has, and the danger of unreasoning development in science and technology civilization are discussed. Second, on the ethics issues surrounding nuclear power plants, the ethics that are based on unbalanced power relations, and democratic responsibility ethics based on discussion ethics are discussed. Third, on the issues of nuclear power plants and imagination, the limitations of democratic discussion surrounding nuclear power plants, the formation of imagination commensurate with the destructive power of nuclear power plants, and the formation of imagination that can represent the distant future are discussed. (A.O.)

  4. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    Lane, J.A.; Covarrubias, A.J.; Csik, B.J.; Fattah, A.; Woite, G.

    1977-01-01

    This paper is intended to be a companion to similar papers by OECD/NEA and CMEA and will summarize the nuclear power system plans of developing Member States most likely to have nuclear programmes before the year 2000. The information that is presented is derived from various sources such as the Agency 1974 study of the market for nuclear power in developing countries, the annual publication, ''Power Reactors in Member States - 1976 Edition'', various nuclear power planning studies carried out by the Agency during the period 1975 and 1976, direct correspondence with selected Member States and published information in the open literature. A preliminary survey of the prospects for nuclear power in Member States not belonging to the OECD or having centrally planned economies indicates that about 27 of these countries may have operating nuclear power plants by the end of the century. In the 1974 Edition of the ''Market Survey'' it was estimated that the installed nuclear capacity in these countries might reach 24 GW by 1980, 157 GW by 1190 and 490 GW by the year 2000. It now appears that these figures are too high for a number of reasons. These include 1) the diminished growth in electrical demand which has occurred in many Member States during the last several years, 2) the extremely high cost of nuclear plant construction which has placed financial burdens on countries with existing nuclear programmes, 3) the present lack of commercially available small and medium power reactors which many of the smaller Member States would need in order to expand their electric power systems and 4) the growing awareness of Member States that more attention should be paid to exploitation of indigenous energy sources such as hydroelectric power, coal and lignite

  5. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  6. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Beckurts, K.H.

    1985-01-01

    On the occasion of the retirement of the Editor-in-chief of 'atomwirtschaft', the author gave a keynote speech on the development of nuclear power in the Federal Republic of Germany at the headquarters of the Handelsblatt Verlag in Duesseldorf on October 30, 1984. He subdivided the period under discussion into five phases, the first of which comprises the 'founding years' of 1955 to 1960. This was the time when activities in nuclear research and nuclear technology in Germany, which were permitted again in mid-1955, began with the establishment of the national research centers, the first Atomic Power Program, the promulgation of the Atomic Energy Act, the foundation of government organizations, including the Federal Ministry for Atomic Energy, etc. In the second phase, between 1960 and 1970, a solid foundation was laid for the industrial peaceful uses of nuclear power in the construction of the first LWR experimental nuclear power stations, the first successful export contracts, the beginnings of the first nuclear fuel cycle plants, such as the WAK reprocessing plant, the Asse experimental repository, the Almelo agreement on centrifuge enrichment. The third phase, between 1970 and 1975, was a period of euphoria, full of programs and forecasts of a tremendous boom in nuclear generating capacities, which were further enhanced by the 1973 oil squeeze. In 1973 and 1974, construction permits for ten nuclear power plants were applied for. The fourth phase, between 1975 and 1980, became a period of crisis. The fifth phase, the eighties, give rise to hope for a return to reason. (orig./UA) [de

  7. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Sandklef, S.

    2000-01-01

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  8. Nuclear power: achievement and prospects

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1993-01-01

    History of nuclear power generation from the time it was a technological curiosity to the time when it developed into a mature, sizeable international industry is outlined. Nuclear power now accounts for 17% of the world's total electricity generated. However, it is noted that the presently installed capacity of nuclear power generation falls short of early expectations and nuclear power is not as cheap as it was hoped earlier. There is opposition to nuclear power from environmentalists and the public due to fear of radiation and the spread of radioactivity during accidents, even though nuclear reactors by and large have a good safety record. Taking into account the fact that electricity consumption is growing at the rate of 2-3% in the industrialized world and at over 5% in the rest of world and pollution levels are increasing due to burning of fossil fuels and subsequent greenhouse effect, the demand for power will have to be be met by increasing use of non-fossil fuels. One of the most promising non-fossil fuels is the nuclear fuel. In the next 30 years, the nuclear power generation capacity can be increased two to three times the present capacity by: (1) managing economics, (2) extending uranium resources by reprocessing spent fuel and recycling the recovered uranium and plutonium and by using fast reactor technology (3) getting public acceptance of and support for nuclear power by allaying the fear of radiation and the fear of large scale accidents through quantitative risk analysis and (4) establishing public confidence in waste disposal methods. (M.G.B.). 18 refs., 2 tabs

  9. The development of Chinese power industry and its nuclear power

    International Nuclear Information System (INIS)

    Zhou Dabin

    2002-01-01

    The achievements and disparity of Chinese power industry development is introduced. The position and function of nuclear power in Chinese power industry is described. Nuclear power will play a role in ensuring the reliable and safe supply of primary energy in a long-term and economic way. The development prospects of power source construction in Chinese power industry is presented. Challenge and opportunity in developing nuclear power in China are discussed

  10. Nuclear power infrastructure and planning

    International Nuclear Information System (INIS)

    2005-01-01

    There are several stages in the process of introducing nuclear power in a country. These include feasibility studies; technology evaluation; request for proposals and proposal evaluation; project and contracts development and financing; supply, construction, and commissioning; and finally operation. The IAEA is developing guidance directed to provide criteria for assessing the minimum infrastructure necessary for: a) a host country to consider when engaging in the implementation of nuclear power, or b) a supplier country to consider when assessing that the recipient country would be in an acceptable condition to begin the implementation of nuclear power. There are Member States that may be denied the benefits of nuclear energy if the infrastructure requirements are too large or onerous for the national economy. However if co-operation could be achieved, the infrastructure burden could be shared and economic benefits gained by several countries acting jointly. The IAEA is developing guidance on the potential for sharing of nuclear power infrastructure among countries adopting or extending nuclear power programme

  11. Nuclear power: the turning tide

    International Nuclear Information System (INIS)

    Riley, P.J.; Warren, D.S.

    1981-01-01

    During 1980 and 1981, opposition to the expansion of the nuclear power generation programme grew from about 45% of the population to approximately 53%. Women, young people and labour voters are the most strongly opposed to nuclear power but among no section of the population is there a clear majority in favour of building more nuclear power stations. (author)

  12. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  13. Nuclear power and other thermal power

    International Nuclear Information System (INIS)

    Bakke, J.

    1978-01-01

    Some philosophical aspects of mortality statistics are first briefly mentioued, then the environmental problems of, first, nuclear power plants, then fossil fuelled power plants are summarised. The effects of releases of carbon dioxide, sulphur dioxide and nitrogen oxides are briefly discussed. The possible health effects of radiation from nuclear power plants and those of gaseous and particulate effluents from fossil fuel plants are also discussed. It is pointed out that in choosing between alternative evils the worst course is to make no choice at all, that is, failure to install thermal power plants will lead to isolated domestic burning of fossil fuels which is clearly the worst situation regarding pollution. (JIW)

  14. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  15. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  16. Public perception process of nuclear power risk and some enlightenment to public education for nuclear power acceptance

    International Nuclear Information System (INIS)

    Yang Bo

    2013-01-01

    This paper, based on the international research literatures on perception of risks, designs a conceptual model of public perception of nuclear power risk. In this model, it is considered that the public perception of nuclear power risk is a dynamic, complicate and closed system and is a process from subjective perception to objective risk. Based on the features of the public perception of nuclear power risk and multi-faceted dimension influences as discussed, suggestions for the public education for nuclear power acceptance are given in five aspects with indication that the public education for nuclear power acceptance plays an important role in maintaining the public perception of nuclear power risk system. (author)

  17. Nuclear power in competitive electricity markets

    International Nuclear Information System (INIS)

    2000-01-01

    Economic deregulation in the power sector raises new challenges for the prospects of nuclear power. A key issue is to assess whether nuclear power can be competitive in a de-regulated electricity market. Other important considerations include safety, nuclear liability and insurance, the nuclear power infrastructure, and health and environmental protection. This study, conducted by a group of experts from twelve OECD Member countries and three international organisations, provides a review and analysis of these issues, as related to both existing and future nuclear power plants. It will be of particular interest to energy analysts, as well as to policy makers in the nuclear and government sectors. (author)

  18. Abuse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J [UKAEA

    1976-09-01

    This paper reproduces an address by Sir John Hill, Chairman of the United Kingdom Atomic Energy Authority, at a conference in London organised by the Financial Times in July 1976. Actions that, in the author's view, could be regarded as constituting abuse of nuclear power are first summarised, and the various aspects of the use and abuse of nuclear power are discussed. The author considers that achieving the maximum degree of acceptance of the Non-Proliferation Treaty is the most important political objective in nuclear power, but considers that nuclear terrorism would be abortive and that, so far as the UK is concerned, the present precautions are adequate and will remain so. It is considered that much abuse of nuclear power arises from the prevalence of its critics, particularly with reference to Pu hazards, the health of nuclear employees, and possible damage to the health of the public. The Pu problem is considered to be far more emotive than rational. The possibility of lung cancer and leukaemia is discussed. It is concluded that atomic energy is one of the best of industries in which to work, both from the health and interest points of view.

  19. Nuclear power strategy: requirements for technology

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rachkov, V.I.

    2001-01-01

    The possible role of nuclear power in sustainable development demands answers to at least three questions: Is large-scale nuclear power essential to future development? - Is it feasible to have modern nuclear power transformed for large-scale deployment? - When will large-scale nuclear power be practically needed? The questions are analysed with the requirements to be fulfilled concerning present-day technologies

  20. The economics of nuclear power

    International Nuclear Information System (INIS)

    Monto, Geethanjali

    2011-01-01

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO 2 at baseload power plant capture CO 2 at H 2 plant; capture CO 2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H 2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  1. Development of Czechoslovak nuclear power engineering

    International Nuclear Information System (INIS)

    Keher, J.

    1985-01-01

    The output of Czechoslovak nuclear power plants is envisaged at 2200 MW by 1985, 4400 MW by 1990 and 10,280 MW by the year 2000. The operation so far is assessed of Bohunice V-1 and Bohunice V-2 power plants as is the construction of the Dukovany nuclear power plant. International cooperation in the fulfilment of the nuclear power programme is based on the General Agreement on Cooperation in the Prospective Development and Interlinkage of CMEA Power Systems to the year 1990, the Agreement on Multilateral International Specialization and Cooperation of Production and on Mutual Deliveries of Nuclear Power Plant Equipment. The most important factor in international cooperation is the Programme of Cooperation between the CSSR and the USSR. The primary target in the coming period is the Temelin nuclear power plant project and the establishment of unified control of the nuclear power complex. (M.D.)

  2. Nuclear power complexes and economic-ecological problems of nuclear power development

    International Nuclear Information System (INIS)

    Dollezhal', N.A.; Bobolovich, V.N.; Emel'yanov, I.Ya.

    1977-01-01

    The effect of constructing NPP's at separate sites in densely populated areas on economic efficiency of nuclear power and its ecological implications has been investigated. Locating NPP's and nuclear fuel cycle plants at different sites results in large scale shipments of fresh and spent nuclear fuels and radioactive wastes. The fact increases the risk of a detrimental environmental impact, duration of the external fuel cycle, and worsens, in the end, nuclear power economics. The prudence of creating nuclear parks is discussed. The parks may be especially efficient if the program of developing NPP's with fast breeder reactors is a success. Comparative evaluations show that from economic standpoint deployment of nuclear parks in the European part of the USSR has no disadvantage before construction of separate NPP's and supporting fuel cycle facilities of equivalent capacity, even if the construction of nuclear parks runs dearer by 30% than assumed. The possibility for nuclear parks to meet a part of demand for ''off-peak'' energy production, district heating and process heat production is also shortly discussed

  3. Nuclear security - New challenge to the safety of nuclear power plants

    International Nuclear Information System (INIS)

    Li Ganjie

    2008-01-01

    The safety of nuclear power plants involves two aspects: one is to prevent nuclear accidents resulted from systems and equipments failure or human errors; the other is to refrain nuclear accidents from external intended attack. From this point of view, nuclear security is an organic part of the nuclear safety of power plants since they have basically the same goals and concrete measures with each other. In order to prevent malicious attacks; the concept of physical protection of nuclear facilities has been put forward. In many years, a series of codes and regulations as well as technical standard systems on physical protection had been developed at international level. The United Nations passed No. 1540 resolution as well as 'Convention on the Suppression of Acts of Nuclear terrorism', and revised 'Convention on Physical Protection of Nuclear Materials', which has enhanced a higher level capacity of preparedness by international community to deal with security issues of nuclear facilities. In China, in order to improve the capability of nuclear power plants on preventing and suppressing the external attacks, the Chinese government consecutively developed the related codes and standards as well as technical documents based on the existing laws and regulations, including 'Guide for the Nuclear Security of Nuclear Power Plants' and 'Guide for the Physical Protection of Nuclear Materials', so as to upgrade the legislative requirements for nuclear security in power plants. The government also made greater efforts to support the scientific research and staff training on physical protection, and satisfying the physical protection standards for newly-built nuclear facilities such as large scale nuclear power plants to meet requirement at international level. At the same time old facilities were renovated and the Chinese government established a nuclear emergency preparedness coordination mechanism, developed corresponding emergency preparedness plans, intensified the

  4. Aging assessment of PWR [Pressurized Water Reactor] Auxiliary Feedwater Systems

    International Nuclear Information System (INIS)

    Casada, D.A.

    1988-01-01

    In support of the Nuclear Regulatory Commission's Nuclear Plant Aging Research (NPAR) Program, Oak Ridge National Laboratory is conducting a review of Pressurized Water Reactor Auxiliary Feedwater Systems. Two of the objectives of the NPAR Program are to identify failure modes and causes and identify methods to detect and track degradation. In Phase I of the Auxiliary Feedwater System study, a detailed review of system design and operating and surveillance practices at a reference plant is being conducted to determine failure modes and to provide an indication of the ability of current monitoring methods to detect system degradation. The extent to which current practices are contributing to aging and service wear related degradation is also being assessed. This paper provides a description of the study approach, examples of results, and some interim observations and conclusions. 1 fig., 1 tab

  5. Research of grounding capacitive current of neutral non-grounding auxiliary system in nuclear power plants

    International Nuclear Information System (INIS)

    Yang Shan; Liu Li; Huang Xiaojing

    2014-01-01

    In the domestic and abroad standards, the grounding capacitive current limitation in the non-grounding electric auxiliary system is less than 10 A. Limiting capacitive current in the standard aims to speed up the arc extinguishing to reduce the duration of arc over-voltage, but not to prevent the arc producing, The arc over-voltage harm is related to the multiple, frequency and duration of the over-voltage. When the insulation vulnerabilities appear in the equipment, the arc over-voltage may result in insulation vulnerabilities of the electrical equipment breakdown, which leads to multiple, short-circuit accidents. The cable connector, accessory and electromotor winding are all insulation vulnerabilities. Setting the arc suppression coil which can counteract the grounding capacitive current makes the arc vanish quickly. Using the casting bus which remarkably reduces the ground capacitance of the electric transmission line makes the equipment safer. (authors)

  6. Nuclear power in crisis

    International Nuclear Information System (INIS)

    Blowers, Andrew.; Pepper, David.

    1987-01-01

    Six themes run through this book: nuclear decision making and democratic accountability, nuclear bias and a narrow-based energy policy, scientific discredit and popular expertise, fusing science with social values, managerial competence and the geography of nuclear power. These are covered in thirteen chapters (all indexed separately) grouped into four parts -the political and planning context, nuclear waste, risk and impact - the social dimension and the future of nuclear power. It considers aspects in France, the United States and the United Kingdom with particular references to the Sizewell-B inquiry and the Sellafield reprocessing plant. (UK)

  7. Nuclear power for beginners

    International Nuclear Information System (INIS)

    Croall, S.; Sempler, K.

    1979-01-01

    Witty, critically, and with expert knowledge, 'Atomic power for beginners' describes the development of nuclear power for military purposes and its 'peaceful uses' against the will of the population. Atomic power, the civil baby of the bomb is not only a danger to our lives - it is enemy to all life as all hard technologies are on which economic systems preoccupied with growth put their hopes. Therefore, 'Atomic power for beginners' does not stop at nuclear engineering but proceeds to investigate its consequences, nationally and with a view to the Third World. And since the consequences are so fatal and it is not enough to say no to nuclear power, it gives some thoughts to a better future - with soft technology and alternative production. (orig.) 891 HP/orig. 892 MKO [de

  8. Nuclear power and the environment

    International Nuclear Information System (INIS)

    Blix, H.

    1989-11-01

    The IAEA Director General pointed out that continued and expanded use of nuclear power must be one among several measures to restrain the use of fossil fuels and thereby limit the emissions of greenhouse gases. With regards to future trends in world electricity demands, the Director General emphasized the existing gap between the frequent claims as to what conservation can achieve and actual energy plans. The objections to nuclear power which are related to safety, waste disposal and the risk of proliferation of nuclear weapons are also discussed. His conclusion is that nuclear power can help significantly to meet growing needs of electricity without contributing to global warming, acid rains or dying forests, responsible management and disposal of nuclear wastes is entirely feasible, and the safety of nuclear power must be continuously strengthened through technological improvement and methods of operation

  9. Finite element modeling of AP1000 nuclear island

    International Nuclear Information System (INIS)

    Tinic, S.; Orr, R.

    2003-01-01

    The AP1000 is a standard design developed by Westinghouse and its partners for an advanced nuclear power plant utilizing passive safety features. It is based on the certified design of the AP600 and has been uprated to 1000 MWe. The plant has five principal building structures; the nuclear island, the turbine building; the annex building; the diesel generator building and the radwaste building. The nuclear island consists of the containment building (the steel containment vessel and the containment internal structures), the shield building, and the auxiliary building. These structures are founded on a common basemat and are collectively known as the nuclear island. This paper describes use of the general purpose finite element program ANSYS [2] in structural analyses and qualification of the AP1000 nuclear island buildings. It describes the modeling of the shield building and the auxiliary building and the series of analyses and the flow of information from the global analyses to the detailed analyses and building qualification. (author)

  10. Nuclear power in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, V A

    1981-04-01

    This article examines the role of nuclear power in the USSR. Since the beginning of development of power reactors in the Soviet Union in the 1950s, their contribution had grown to 6% of all electric power by 1980. Reactor development has proceeded rapidly, with a number of reactor designs in use. Fast-breeder reactors and designs for specialized applications are under development. It is anticipated that the contribution of nuclear power will continue to grow. The status of nuclear power stations at 20 locations is summarized in a table.

  11. How nuclear power began

    International Nuclear Information System (INIS)

    Gowing, M.

    1987-01-01

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  12. Investigations of dynamic interactions coupled by soil between neighbouring nuclear power plants of high mass in case of seismic excitation

    International Nuclear Information System (INIS)

    Matthees, W.; Magiera, G.

    1980-01-01

    A sensitivity study for the interaction effects for adjacent structures of nuclear power plants i.e. for main buildings and auxiliary buildings has been performed due to horizontal seismic excitation. An interaction measuring rule for response spectra has been defined as the ratio of amplitude of response calculated inclusive the auxiliary building to the amplitude calculated without the auxiliary building in respect to the proper eigen-frequencies. The calculations of the three-dimensional effects are approximated with the program FLUSH. The accuracy of the achievable response herewith calculated is proven in comparison with other suitable methods. The interaction measuring rule is determined by a parameter investigation including the mathematical model consisting of the soil, the main building, and the auxiliary building. The following assumptions are asserted: 1. the soil characteristics are temporarily constant. Ignorance of the accuracy of the realistic i.e. stress depending soil values is encountered by variation of the decisive characteristics within their applicable band-width. 2. The fineness of the mathematical-mechanical modelling for the structural systems i.e. the number of the degrees of freedom is limited to a minimum. Attention is hereby paid that the eigen-frequencies of the main building as well as the eigen-frequencies of the layered soil system in the range of 0 to 10 Hz are computed with sufficient accuracy. (orig./HP) [de

  13. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  14. Nuclear power in Japan

    International Nuclear Information System (INIS)

    Kishida, J.

    1990-01-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  15. Nuclear power in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, J [Japan Research Institute, Ltd., Tokyo (Japan)

    1990-07-01

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations.

  16. Nuclear power: 2004 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    Last year, 2004, 441 nuclear power plants were available for power supply in 31 countries of the world. Nuclear generating capacity attained its highest level so far at an aggregate gross power of 385,854 MWe and an aggregate net power of 366,682 MWe, respectively. Nine different reactor lines are operated in commercial nuclear power plants. Light water reactors (PWR and BWR) again are in the lead with 362 plants. At year's end, 22 nuclear power plants with an aggregate gross power of 18,553 MWe and an aggregate net power, respectively, of 17,591 MWe were under construction in nine countries. Of these, twelve are light water reactors, nine are CANDU-type reactors, and one is a fast breeder reactor. So far, 104 commercial reactors with powers in excess of 5 MWe have been decommissioned in eighteen countries, most of them low-power prototype plants. 228 nuclear power plants of those in operation, i.e. slightly more than half, were commissioned in the 1980es. Nuclear power plant availabilities in terms of capacity and time again reached record levels. Capacity availability was 84.30%, availability in terms of time, 85.60%. The four nuclear power plants in Finland continue to be world champions in this respect with a cumulated average capacity availability of 90.30%. (orig.)

  17. Country Nuclear Power Profiles - 2009 Edition

    International Nuclear Information System (INIS)

    2009-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2009 edition issued on CD-ROM and Web pages. It updates the country information for 44 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 30 countries that have operating nuclear power plants, as well as 14 countries having past or planned nuclear power programmes (Bangladesh, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Kazakhstan, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2009 edition, 26 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases

  18. Country Nuclear Power Profiles - 2011 Edition

    International Nuclear Information System (INIS)

    2011-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2011 edition issued on CD-ROM and Web pages. It updates the country information for 50 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 21 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Kuwait, Lithuania, Morocco, Nigeria, Philippines, Poland, Syrian Arab Republic, Thailand, Tunisia, Turkey and Vietnam). For the 2011 edition, 23 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases.

  19. Nuclear power: Pt. 3

    International Nuclear Information System (INIS)

    Van Wyk, A.

    1985-01-01

    The use of nuclear power in warfare is viewed from the point of use usefullness, essentiality and demolition. The effects of a H-bomb explosion are discussed as well as the use of nuclear power in warfare, with a Christian ethical background

  20. Nuclear power and public opinion

    International Nuclear Information System (INIS)

    Kazanikov, I.A.; Klykov, S.A.

    2000-01-01

    The public opinion on Nuclear Power is not favorable. A purposeful work with public perception is necessary. One way to create a positive image of the nuclear industry is to improve public radiological education. This challenge can be resolved in the close cooperation with state school and preschool education. The formation about nuclear power should be simple and symbolical. Our society can be divided into 4 parts which can be called as target groups: First group - People from the nuclear industry with special education working at nuclear facilities or related to the industry. Second group - People working in the fields connected with nuclear power. Third group - People not related to nuclear power or even with negative impression to the industry. This group is the largest and the work required is the most difficult. Fourth group - The number of this group's members is the least, but it has strong influence on public opinion. 'Greens' and a broad spectrum of ecological organizations can be included in this group. (Authors)

  1. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  2. Nuclear power and weapons proliferation

    International Nuclear Information System (INIS)

    Greenwood, T.; Rathjens, C.W.; Ruina, J.

    1977-01-01

    The relationship between nuclear weapons development and nuclear electric power is examined. A brief description of nuclear weapons design is first given. This is then followed by a discussion of various aspects of nuclear power technology and of how they affect a nuclear weapon programme. These include fuel cycles, chemical reprocessing of spent fuel, uranium enrichment, and the control of dissemination of nuclear technology. In conclusion there is a discussion of possible political and institutional controls for limiting nuclear proliferation. (U.K.)

  3. Country Nuclear Power Profiles - 2012 Edition

    International Nuclear Information System (INIS)

    2012-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP's main objectives are to consolidate information about the nuclear power infrastructures in participating countries, and to present factors related to the effective planning, decision making and implementation of nuclear power programmes that together lead to safe and economical operations of nuclear power plants. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. Topics such as reactor safety, nuclear fuel cycle, radioactive waste management and research programmes are for the most part not discussed in detail. Statistical data about nuclear plant operations, population, energy and electricity use are drawn from the PRIS, EEDB, World Development Indicators (WDI) of the World Bank and the national contributions. This publication is updated and the scope of coverage expanded annually. This is the 2012 edition, issued on CD-ROM and Web pages. It contains updated country information for 51 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 22 countries with past or planned nuclear power. Each of the 51 profiles in this publication is self-standing, and contains information officially provided by the respective national authorities. For the 2012 edition, 20 countries provided updated or new profiles. These are Argentina, Armenia, Bangladesh, Chile, Germany, Ghana

  4. Country Nuclear Power Profiles. 2016 Edition

    International Nuclear Information System (INIS)

    2016-12-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2016 edition, issued on CD-ROM, contains updated country information for 51 States.

  5. Country Nuclear Power Profiles - 2015 Edition

    International Nuclear Information System (INIS)

    2015-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The publication summarizes organizational and industrial aspects of nuclear power programmes and provides information about the relevant legislative, regulatory and international framework in each State. Its descriptive and statistical overview of the overall economic, energy and electricity situation in each State and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programmes throughout the world. This 2015 edition, issued on CD-ROM, contains updated country information for 51 States

  6. Country Nuclear Power Profiles - 2013 Edition

    International Nuclear Information System (INIS)

    2013-08-01

    The Country Nuclear Power Profiles compile background information on the status and development of nuclear power programmes in Member States. The CNPP summarizes organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. This 2013 edition, issued on CD-ROM and Web pages, contains updated country information for 51 countries

  7. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.) [de

  8. Nuclear power in the United States

    International Nuclear Information System (INIS)

    Johnston, J.B.

    1985-01-01

    All over the world except in the United States, nuclear energy is a low cost, secure, environmentally acceptable form of energy. In the United States, civilian nuclear power is dead. 112 nuclear power plants have been abandoned or cancelled in the last decade, and there has been no new order for nuclear plants since 1978. It will be fortunate to have 125 operating nuclear plants in the United States in the year 2000. There are almost 90 completed nuclear power plants and about 45 under construction in the United States, but several of those under construction will eventually be abandoned. About 20 % of the electricity in the United States will be generated by nuclear plants in 2000 as compared with 13 % supplied in the last year. Under the present regulatory and institutional arrangement, American electric utilities would not consider to order a new nuclear power plant. Post-TMI nuclear plants became very expensive, and there is also ideological opposition to nuclear power. Coal-firing plants are also in the similar situation. The uncertainty about electric power demand, the cost of money, the inflation of construction cost and regulation caused the situation. (Kako, I.)

  9. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    Rathjens, G.

    1979-01-01

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  10. Nuclear power in rock. Principal report

    International Nuclear Information System (INIS)

    1977-06-01

    In September 1975 the Swedish Government directed the Swedish State Power Board to study the question of rock-siting nuclear power plants. The study accounted for in this report aims at clarifying the advantages and disadvantages of siting a nuclear power plant in rock, compared to siting on ground level, considering reactor safety, war protection and sabotage. The need for nuclear power production during war situations and the closing down of nuclear power plants after terminated operation are also dealt with. (author)

  11. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  12. Indicators for Nuclear Power Development

    International Nuclear Information System (INIS)

    2015-01-01

    Considering the scale of nuclear power aspirations, the number of planned nuclear new builds and the prospects of a number of countries constructing their first nuclear power plants, there is a need to assess the broader context of nuclear energy programmes in areas of macro-and socioeconomic conditions, energy systems and nuclear power, and the environment. It is important to assess the degree to which introduction or expansion of nuclear power is beneficial under these specific circumstances. This publication provides a set of indicators for nuclear power development that can serve as a tool to help explore these issues. The indicators are meant to provide a first order assessment of the situation and identify the issues that present the benefits and challenges in a balanced and objective manner and thereby help guide more detailed evaluations in the next stage of planning and preparations. Methodology sheets are provided to help users in data collection, quantification and interpretation of the indicators. The application of the indicators set is flexible. Users can select a subset of indicators that are most relevant for the questions they wish to explore in a given study or decision making process

  13. Public attitudes to nuclear power

    International Nuclear Information System (INIS)

    Margerison, T.A.

    1988-01-01

    The British public is very poorly informed about nuclear power. 55 % express concern about it, but few can explain why. Some of the reasons given are extraordinary: 37 % of the public think nuclear power causes acid rain which pollutes lakes and kills trees; 47 % think coal is a safer fuel for making electricity than nuclear; a quarter think natural radiation is less harmful than that from nuclear stations. And a very large number of people have greatly exaggerated views of the amount of radiation released from power stations and the harm that it is doing people. Also, a quarter of everyone asked thought that nuclear power stations make bombs as well as electricity. Most of these concerns come from the media, and in particular from television which has broadcast many programmes which are strongly anti-nuclear, often inaccurate, and usually sensational. Fortunately, the effect of these stories is less damaging than one might think. At present about 42 % of the adult British population are not in favour of nuclear power, so there is still a majority who are not against. About 44 % are positively in favour, and the remainder are not sure or have no view

  14. Projected role of nuclear power in Egypt and problems encountered in implementing the first nuclear power plant

    International Nuclear Information System (INIS)

    Effat, K.E.A.; Sirry, H.; El-Sharkawy, E.

    1977-01-01

    The increasing rise in fossil-fuel prices has favourably affected the economics of nuclear power generation bringing down the economically competitive size of nuclear units closer to small sizes compatible with grid capacities in developing countries. This encouraged Egypt to turn to nuclear power to fulfil its future power needs. In implementing its first nuclear power plant, Egypt is facing various problems. The capacity of the national electric power system and its inherent characteristics pose certain restrictions on the size and design of the nuclear plant required. The availability of sufficient local qualified management, engineering and technical personnel to participate in both precontractual and construction phases of the plant is quite a major problem. Lack of local developed industry to back up the construction phase implies the dependence to a large extent on imported equipment, materials and technology. The paper reviews the present and projected power demands in Egypt and the factors behind the decision to introduce a nuclear power generation programme. Various problems encountered and anticipated in introducing the first nuclear power plant are also discussed. (author)

  15. World status - nuclear power

    International Nuclear Information System (INIS)

    Holmes, A.

    1984-01-01

    The problems of nuclear power are not so much anti-nuclear public opinion, but more the decrease of electricity consumption growth rate and the high cost of building reactors. Because of these factors, forecasts of world nuclear capacity have had to be reduced considerably over the last three years. The performance of reactors is considered. The CANDU reactor remains the world's best performer and overall tends to out-perform larger reactors. The nuclear plant due to come on line in 1984 are listed by country; this shows that nuclear capacity will increase substantially over a short period. At a time of stagnant demand this will make nuclear energy an important factor in the world energy balance. Nuclear power stations in operation and under construction in 1983 are listed and major developments in commercial nuclear power in 1983 are taken country by country. In most, the report is the same; national reactor ordering cut back because the expected increase in energy demand has not happened. Also the cost-benefit of nuclear over other forms of energy is no longer as favourable. The export opportunities have also declined as many of the less developed countries are unable to afford reactors. (U.K.)

  16. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  17. Nuclear power news no 38

    International Nuclear Information System (INIS)

    1986-01-01

    The following matters are treated: What happened at the Chernobyl accident? - The Russian graphite reactor - a comparison with light water reactors. - The Soviet program for nuclear power. - Serious organizational unsatisfactory state of things at the nuclear power plants of Soviet. - Graphite reactors of the nuclear power program of the world. - The radioactive fallout in Sweden after Chernobyl. - The risks involved in radioactive radiation - an experts conception

  18. The Prospective of Nuclear Power in China

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2018-06-01

    Full Text Available From scratch to current stage, China’s nuclear power technology has experienced rapid development, and now China has begun to export nuclear power technology. As a kind of highly efficient and clean energy source, nuclear energy is also a priority option to solve energy crisis, replace traditional fossil fuels and reduce air pollution. By analyzing the short-term and long-term development trend of nuclear power in China, the paper has reached the following conclusions: (1 Under the current situation of excess supply, due to high investment cost of first-kind reactors, the decline of utilization hours and the additional cost of ancillary service obligations, the levelized cost of energy (LCOE of the third generation nuclear power will significantly increase, and the internal rate of return (IRR will significantly fall. In the short term, market competitiveness of nuclear power will be a major problem, which affects investment enthusiasm. (2 With technology learning of third generation technology, the LCOE of nuclear power will be competitive with that of coal power in 2030. (3 The CO2 emissions reduction potential of nuclear power is greater than coal power with CCS and the avoided CO2 costs of nuclear power is much lower. Therefore, nuclear power is an important option for China’s long-term low-carbon energy system transition. The paper proposes to subsidize the technical learning costs of new technology through clean technology fund at the early commercialization stage. When designing power market rules, the technical characteristics of nuclear power should be fully considered to ensure efficient operation of nuclear power.

  19. Nuclear power development in the Far East

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, W C [Pacific Enegineers and Constructors Ltd., Taipei, Taiwan (China)

    1990-06-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  20. Nuclear power development in the Far East

    International Nuclear Information System (INIS)

    Hsu, W.C.

    1990-01-01

    The nuclear power development of selected Far Eastern countries is presented in this paper. This paper consists of three sections. Section 1 describes the current power/nuclear power status of Japan, South Korea, Taiwan and China. The first three countries already have operating nuclear power units, while mainland China will have a nuclear power commissioned this year according to their schedule. The power development plan for these countries is also presented. All of them have included nuclear power as part of their energy sources for the future. Section 2 briefly describes the nuclear power industry in these countries which basically covers design, manufacturing and R and D activities. Public Acceptance programs (PAPs) will play a significant role in the future of nuclear power. Section 3 discusses the PAPs of these countries. (author)

  1. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    Bigot, B.

    2011-01-01

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  2. Nuclear power: the fifth horseman

    International Nuclear Information System (INIS)

    Hayes, D.

    1976-01-01

    ''Nuclear Power: The Fifth Horseman,'' is published in an attempt to identify and analyze emerging global trends and problems. This paper evaluates the future of nuclear power, subjecting it to several tests--those of economics, safety, adequacy of fuel supplies, environmental impact, and both national and international security. If the world is to ''go nuclear,'' adopting nuclear power as the principal source of energy, each of these criteria should be satisfied. In fact, none may be satisfied. Nuclear power is being re-examined in many quarters. Local communities throughout the world are concerned over reactor safety. Environmentalists and others are deeply concerned about the lack, or even the prospect, of satisfactory techniques for disposing of radioactive waste. Foreign policy analysts express grave concern over the weapons-proliferation implications of the spread of nuclear power, recognizing that sooner or later an unstable political leader or terrorist group will acquire this awesome weaponry. And, in 1975, the corporate executives who head electrical utilities in the United States cancelled or deferred 25 times as many new reactors as they ordered

  3. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  4. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    Kameyama, Masashi

    2013-01-01

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  5. Human resources in nuclear power program

    International Nuclear Information System (INIS)

    Machi, Sueo

    2008-01-01

    Nuclear power utilization within 2020 horizon is expanding in Asia, particularly in Japan, China, India, Republic of Korea, Vietnam and Indonesia. The nuclear energy policy iof Japan sees the increase of nuclear power contribution for energy security and to control CO 2 emission with the contribution ratio through the 21 st century kept at the current level of 30-40% or even higher. Japan expects its first reprocessing plant to be operational in 2007 and its first commercial fast breeder reactor operational in 2050. Starting with her experience with the operation of its first research reactor in 1957, a power demonstration reactor from USA in 1963; the first commercial 166 MW power plant from UK in 1966 and then its first commercial 375 MW light water reactor from USA in 1970, Japan developed her own nuclear reactor technology. Today, Japan has 55 operating nuclear power plants (NPPs) totaling 49 GW which supply 30% of its electricity needs. There are two NPPs under construction and 11 additional NPPs to be completed by 2017. Japan's experience showed that engineers in the nuclear, mechanical, electrical, material and chemical fields are needed to man their nuclear power plant. For the period 1958 to about 1970, there was a rapid increase in the number of students enrolled for their bachelor of science majoring in nuclear science and technology but this number of enrollees leveled off beyond 1970 up to 2002. For those pursuing their masters of science degree in this field, there was a steady but moderate rise in the number of students from 1958 to 2002. The population of students in the Ph.D program in nuclear science and technology had the lowest number of enrollees and lowest level of increase from 1958 to 2002. The courses offered at the university for nuclear power are nuclear reactor physics and engineering, nuclear reactor safety engineering and radiation safety. Prior to graduation, the students undergo training at a nuclear research institute, nuclear power

  6. LDC nuclear power: Brazil

    International Nuclear Information System (INIS)

    Johnson, V.

    1982-01-01

    Brazil has been expanding its nuclear power since 1975, following the Bonn-Brasilia sales agreement and the 1974 denial of US enriched uranium, in an effort to develop an energy mix that will reduce dependence and vulnerability to a single energy source or supplier. An overview of the nuclear program goes on to describe domestic non-nuclear alternatives, none of which has an adequate base. The country's need for transfers of capital, technology, and raw materials raises questions about the advisability of an aggressive nuclear program in pursuit of great power status. 33 references

  7. Nuclear power for developing countries

    International Nuclear Information System (INIS)

    Hirschmann, H.; Vennemann, J.

    1980-01-01

    The paper describes the energy policy quandary of developing countries and explains why nuclear power plants of a suitable size - the KKW 200 MW BWR nuclear power plant for electric power and/or process steam generation is briefly presented here - have an economic advantage over fossil-fuelled power plants. (HP) [de

  8. Modernization and power increase nuclear power plant Laguna Verde (Mexico)

    International Nuclear Information System (INIS)

    Garcia-Serrano, J. L.; Merino, A.; Ruiz Gutierrez, L.

    2011-01-01

    The objective of this project is to perform the modifications on the thermal cycle of the plant required by an Extended Power Uprate, to achieve a safe and reliable operation of the plant at 120% of its original thermal power. The scope includes the design, engineering training, supply of equipment, dismantling, installation, testing and commissioning. The duration of the project is 4 years (82007-2010), and all the modifications have been implemented in four outages, two per unit. The main modification carried out are the change of the condenser, moisture separator and main steam reheaters, the feedwater haters, the turbogenerator and its auxiliaries, transformers, isolated phase bus and main circuit breaker, etc. (Author)

  9. Climate change and nuclear power

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  10. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    2004-09-01

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  11. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  12. Nuclear power in a changing world

    International Nuclear Information System (INIS)

    Taylor, J.

    1996-01-01

    Nuclear power has a future that will only be fully realised if it is shown to be a solution to some of the world's most pressing energy, and associated environmental, problems. This can only be done if nuclear power itself ceases to be perceived as a problem by the public, interest groups, governments and financial institutions. In public relations terms, this means removing the persistent distortions and misconceptions about the nuclear industry. Environmentally, it involves showing that nuclear power is the only alternative energy source which does not contribute to climate change, preserves rare minerals and recycles its raw materials. Governments must be persuaded to see that nuclear power is the only economic answer to the growing energy demand arising from increased industrialisation and population growth. Financiers need convincing that nuclear power is the investment of the future and generators that it is the lowest cost economic and environmental option. The future of nuclear power depends on meeting these challenges. (UK)

  13. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  14. Aspect of nuclear power

    International Nuclear Information System (INIS)

    Haghighi Oskoei, R.; Raeis Hosseiny, N.

    2004-01-01

    Over the next 50 years, unless patterns change dramatically, energy production and use will contribute to global warming through large-scale greenhouse gas emissions-hundreds of billions of tonnes of carbon in the form of carbon dioxide. Nuclear power would be one option for reducing carbon emissions. At present, however, this is unlikely: nuclear power faces stagnation and decline. We decided to study the future of nuclear power because we believe this technology , despite the changes it faces, is an important option for the world to meet future energy needs without emitting carbon dioxide and other atmospheric pollutants. Other options include increased efficiency, renewable and sequestration. We believe that all options should be preserved as nations develop strategies at provide energy while meeting important environmental challenges. The nuclear power option will only be exercised, however if the technology demonstrates better economics, improved safety, successful waste management, and low proliferation risk, and if public policies place a significant value on electricity production that does not produce carbon dioxide

  15. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  16. Nuclear power - facts, trends, problems

    International Nuclear Information System (INIS)

    Spickermann, W.

    1981-01-01

    An attempt has been made to describe the state-of-the-art of nuclear power utilization, particularly for energy production. On the basis of information obtained from study tours through the USSR a rather comprehensive review of nuclear power plants and research establishments in the Soviet Union, of desalination reactors, ship propulsion reactors and fast breeder reactors is given, including nuclear facilities of other countries, e.g. France, USA, GDR. Heat generation, radiation-induced chemical processes and aspects associated with nuclear energy uses, such as risks, environmental protection or radioactive wastes, are also considered. Moreover, the author attempts to outline the social relevance of nuclear power

  17. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  18. Current status of nuclear power

    International Nuclear Information System (INIS)

    Behnke, W.B.

    1984-01-01

    The decision to devote the 1984 conference to nuclear power is timely and appropriate. Illinois has a long, and distinguished history in the development of civilian nuclear power. The concept was born at the University of Chicago, developed at Argonne National Laboratory and demonstrated on the Commonwealth Edison system at our pioneer Dresden Nuclear Station. Today, Illinois ranks number one in the nation in nuclear generation. With over a quarter century of commercial operating experience, nuclear power has proven its worth and become a significant and growing component of electric power supply domestically and throughout the world. Despite its initial acceptance, however, the nuclear power industry in the U.S. is now in the midst of a difficult period of readjustment stemming largely from the economic and regulatory problems of the past decade. As a result, the costs of plants under construction have increased dramatically, causing serious financial difficulties for several projects and their owners. At the same time, the U.S. is facing hard choices concerning its future energy supplies. Conferences such as this have an important role in clarifying the issues and helping to find solutions to today's pressing energy problems. This paper summarizes the status of nuclear power both here and abroad, discussing the implications of current events in the context of national energy policy and economic development here in Illinois

  19. Fire fighting precautions at Bohunice Atomic Power Plants

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Some shortcomings are discussed of the project design of fire protection at the V-1 and V-2 nuclear power plants. The basic shortcoming of the system is insufficient division of the units for fire protection. Fire fighting measures are described for cable areas, switch houses and outside transformers, primary and secondary circuits and auxiliary units. Measures are presented for increasing fire safety in Jaslovske Bohunice proceedi.ng from experience gained with a fire which had occurred at a nuclear power plant in Armenia. (E.S.)

  20. Construction work management for nuclear power stations

    International Nuclear Information System (INIS)

    Yoshikawa, Yuichiro

    1982-01-01

    Nuclear power generation is positioned as the nucleus of petroleum substitution. In the Kansai Electric Power Co., efforts have been made constantly to operate its nuclear power plants in high stability and safety. At present, Kansai Electric Power Co. is constructing Units 3 and 4 in the Takahama Nuclear Power Station in Fukui Prefecture. Under the application of the management of construction works described here, both the nuclear power plants will start operation in 1985. The activities of Kansai Electric Power Co. in the area of this management are described: an outline of the construction works for nuclear power stations, the management of the construction works in nuclear power stations (the stages of design, manufacturing, installation and test operation, respectively), quality assurance activities for the construction works of nuclear power plants, important points in the construction work management (including the aspects of quality control). (J.P.N.)

  1. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  2. The Nuclear Review: the Institution of Nuclear Engineers' response to the Review of Nuclear Power

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The United Kingdom Government's Nuclear Review currently underway, addresses whether and in what form nuclear power should continue to be part of the country's power generation capability. This article sets out the response of the Institution of Nuclear Engineers to the Nuclear Review. This pro-nuclear group emphasises the benefits to be gained from diversity of generation in the energy supply industry. The environmentally benign nature of nuclear power is emphasised, in terms of gaseous emissions. The industry's excellent safety record also argues in favour of nuclear power. Finally, as power demand increases globally, a health U.K. nuclear industry could generate British wealth through power exports and via the construction industry. The Institution's view on radioactive waste management is also set out. (UK)

  3. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  4. Nuclear power in the Soviet Union

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, N.N.

    1989-01-01

    The pros and cons of nuclear power are similar in many countries, but the following pro factors are specific to the Soviet Union: the major sources of conventional fuel are in one area of the country, but energy consumption is concentrated in another; and a large portion of energy is generated using oil and gas. The arguments against nuclear power are as follows: safety requirements and expectations have been increased; and public opinion is negative. A program of nuclear power generation has been developed. New techniques are being implemented to increase safety and enhance operations of different types of nuclear power plants. Its should be obvious in the future that a nuclear power plant has better economic and environmental parameters than existing methods of power generation

  5. Economic competitiveness of nuclear power in China

    International Nuclear Information System (INIS)

    Hu Chuanwen

    2005-01-01

    Development of nuclear power in China has made a good progress. Currently, economic competitiveness of nuclear power compared to fossil-fuelled power plants is one of the major problems which hamper its development. This article presents the economic competitiveness of nuclear power in China with two-level analyses. First, levelized lifetime cost method is adopted for electricity generation cost comparisons. Important factors influencing economic competitiveness of nuclear power are described. Furthermore, a broad economic evaluation of the full fuel chain of nuclear power and fossil-fuelled plants is discussed concerning macro social-economic issues, environmental and health impacts. The comprehensive comparative assessment would be carried out for decision making to implement nuclear power programme. In consideration of external costs and carbon value, the economic competitiveness of nuclear power would be further improved. Facing swift economic growth, huge energy demand and heavy environmental burden, nuclear power could play a significant role in sustainable development in China. (authors)

  6. 1999 Nuclear power world report

    International Nuclear Information System (INIS)

    Wesselmann, C.

    2000-01-01

    Last year, 1999, nuclear power plants were available for energy supply and under construction, respectively, in 33 countries. A total of 436 nuclear power plants with an aggregate net power of 350.228 MWe and an aggregate gross power of 366.988 MWe were in operation in 31 countries. Four units with an aggregate of 2.900 MWe, i.e. Civaux 2 in France, Kaiga 2 and Rajasthan 3 in India, and Wolsung-4 in the Republic of Korea, went critical for the first time or started commercial operation after having been synchronized with the power grid. After 26 years of operation, the BN 350 sodium cooled fast breeder was permanently decommissioned in Kazakhstan. The plant not only generated electricity (its capacity was 135 MWe) but also supplied process heat to a seawater desalination plant. In 1999, however, it did not contribute to the supply of electricity. In Sweden, unit 1 of the Barsebaeck nuclear power station (600 Mwe net) was decommissioned because of political decisions. This step entails financial compensation payments and substitute electricity generating capacity made available to the power plant operators. Net electricity generation in 1999 amounts to approx. 2.395 Twh, which marks a 100 TWh increase over the preceding year. Since the first generation of electricity from nuclear power in 1951, the cumulated world generation amounts to nearly 37.200 TWh of electricity, and experience in the operation of nuclear power plants has increased to 9414 years. Last year, 38 plants were under construction. This slight increase is due to the start of construction of a total of seven projects: Two each in Japan, the Republic of Korea and Taiwan, and one in China. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, and 58 per cent in Belgium. With a share of approx. 20 per cent and more than 720 TWh, the US is the largest producer worldwide of electricity from nuclear power. As far as the aggregate

  7. Nuclear reactors

    International Nuclear Information System (INIS)

    Pearson, K.G.

    1977-01-01

    Reference is made to auxiliary means of cooling the nuclear fuel clusters used in light or heavy water cooled nuclear reactors. One method is to provide one or more spray cooling tubes. From holes in the side walls of those tubes coolant water may be sprayed laterally into the cluster against the rods. The flow of main coolant may thus be supplemented or even replaced by the auxiliary coolant. A difficulty, however, is that only those fuel rods close to a spray cooling tube can readily be reached by the auxiliary coolant. In the arrangement described, where the fuel rods are spaced apart by transverse grids, at least one of the interspaces between the grids is provided with an axially extending auxiliary coolant conduit having lateral holes through which an auxiliary coolant is sprayed into the cluster. A deflector is provided that extends from a transverse grid into a position in front of the holes and deflects auxiliary coolant on to parts of the fuel rods otherwise inaccessible to the auxiliary coolant. The construction of the deflector is described. (U.K.)

  8. Nuclear power industry, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    The intent of this publication is to provide a single volume of resource material that offers a timely, comprehensive view of the nuclear option. Chapter 1 discusses the development of commercial nuclear power from a historical perspective, reviewing the factors and events that have and will influence its progress. Chapters 2 through 5 discuss in detail the nuclear powerplant and its supporting fuel cycle, including various aspects of each element from fuel supply to waste management. Additional dimension is brought to the discussion by Chapters 6 and 7, which cover the Federal regulation of nuclear power and the nuclear export industry. This vast body of thoroughly documented information offers the reader a useful tool in evaluating the record and potential of nuclear energy in the United States

  9. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  10. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    ElBaradei, Mohamed

    2004-01-01

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  11. Nuclear power in the competitive environment

    International Nuclear Information System (INIS)

    Schlissel, D.A.

    1995-01-01

    Nuclear power was originally promoted as being able to produce electricity that would be open-quotes too cheap to meter.close quotes However, large construction cost overruns and rapidly rising operating costs caused many nuclear power plants instead to be very expensive sources of electricity. As a result, many nuclear utilities will face increasing cost pressures in the future competitive environment from lower-cost producers. In fact, the threat to nuclear utilities is so severe that many industry analysts are projecting that more that $70 billion of the utilities' remaining investments in nuclear plants will be open-quotes stranded,close quotes i.e., unrecoverable in the competitive environment. Others in the industry have speculated that many of the 150 major U.S. electric utilities, a large number of which are nuclear, could be swept away by competition, leaving fewer than fifty utilities. This paper will examine how utilities are attempting to improve the cost competitiveness of operating today's nuclear power plants. It will also identify some of the potential consequences of competition for nuclear power and the regulatory role of the U.S. Nuclear Regulatory Commission (NRC). Finally, this paper will address how the changing power markets will affect the prospects for the next generation of nuclear power plants

  12. Nuclear power in Japan and the USA

    International Nuclear Information System (INIS)

    Titterton, E.

    1979-06-01

    The development of the nuclear power industry in Japan and the USA is discussed. The author lists the number of nuclear power plants operating, under construction and planned and considers the contribution made by nuclear power stations to the total electricity generated. The advantages of nuclear power to both countries are outlined and forecasts are made of the role to be played by nuclear power in future years

  13. Bibliography: books and articles on nuclear waste, nuclear power and power supply during the years 1971-1987

    International Nuclear Information System (INIS)

    Djerf, M.; Hedberg, P.

    1988-06-01

    The bibliography provides a list of the supply published Swedish books and articles in periodicals on nuclear waste and nuclear power. Regarding book publication the bibliography comprises publications on questions of nuclear power and nuclear waste on the whole, whereas the bibliography on the periodical articles solely comprises nuclear waste questions. The book bibliography consists of a selective choice of publications, identified by a mapping of the total supply of information on energy- and nuclear power issues in articles and other publications in Sweden. The literature inventory as a whole is part of a grater research project aiming at a study of the role of mass media in forming public opinion about the nuclear power waste question. (O.S.)

  14. World warms to nuclear power

    International Nuclear Information System (INIS)

    Mortimer, N.

    1989-01-01

    The greenhouse effect and global warming is a major environmental issue. The nuclear industry has taken this opportunity to promote itself as providing clean energy without implication in either the greenhouse effect or acid rain. However, it is acknowledged that nuclear power does have its own environment concerns. Two questions are posed -does nuclear power contribute to carbon dioxide emissions and can nuclear power provide a realistic long-term solution to global warming? Although nuclear power stations do not emit carbon dioxide, emissions occur during the manufacture of reactor components, the operation of the nuclear fuel cycle and especially, during the mining and processing of the uranium ore. It is estimated that the supply of high grade ores will last only 23 years, beyond that the carbon dioxide emitted during the processing is estimated to be as great as the carbon dioxide emitted from an coal-fired reactor. Fast breeder reactors are dismissed as unable to provide an answer, so it is concluded that nuclear technology has only a very limited role to play in countering global warming.(UK)

  15. One recommendation of nuclear power export. GDP model application to the countries which expressed nuclear power introduction and consideration

    International Nuclear Information System (INIS)

    Iida, Tekehiko

    2010-01-01

    South Korea has been excited in nuclear business after the success in the contract to build nuclear power plants in UAE. Since more than 60 countries expressed nuclear power introduction and new countries were on the rise with exporting reactor technology accumulated, new era over nuclear renaissance seems to begin. This article at first classified countries, which expressed nuclear power introduction, with an economic level of GDP per capita. Then each classified country's requirements of nuclear power introduction were taken into consideration such as economic development, consumption pattern and technology attitude. As a result recommendation of nuclear power export was proposed. Different approach to each country targeted was suggested as shown in 'nuclear power GDP model'. (T. Tanaka)

  16. Real issue with nuclear power

    International Nuclear Information System (INIS)

    Simpson, J.W.

    1976-01-01

    The voter referendums on nuclear power planned in some states can affect the energy supply and economic health of the public at large more than it affects the industry that provides nuclear power, the author states. He makes the point that those responsible for energy supplies in the U. S.--the President and all relevant Federal agencies, the majority of Congress, the national utility industry, major laboratories, universities and consulting firms, and other energy industries--all favor nuclear power. The complex U.S. energy situation is reviewed, and the hope of alternative energy sources, practice of energy conservation, and benefits of nuclear power are summarized. Specifically, the California Initiative and its three conditions which it says should dictate the future of nuclear power are reviewed. The author does not believe that the reasons that are usually given in opposing nuclear power are the real reasons. He states that ''it seems clear that the principal philosophy behind the initiatives is one of halting economic growth by striking at the energy source that would make that growth possible.'' Attention is called to the morality of nuclear power by asking where is the morality: in leaving future generations an insufficient amount of energy, limiting their abilities to solve the economic and employment problems; in squandering our finite supply of fossil fuels while ignoring nuclear fuels; in forcing the nation into further dependence on unpredictable foreign nations for its energy supply; in expecting other states to provide California with the energy that it does not want to generate itself; and in allowing an arbitrary limit on growth to be set by groups of political activists

  17. Dictionary of nuclear power. upd. ed.

    International Nuclear Information System (INIS)

    Koelzer, W.

    2011-10-01

    The updated dictionary on nuclear power contains definitions and explanations on nuclear physics, nuclear engineering, nuclear power, radiation effects and radiation protection in alphabetic order. Attachments on units, their conversion and physical constants are included.

  18. A decision theoretic approach to an accident sequence: when feedwater and auxiliary feedwater fail in a nuclear power plant

    International Nuclear Information System (INIS)

    Svenson, Ola

    1998-01-01

    This study applies a decision theoretic perspective on a severe accident management sequence in a processing industry. The sequence contains loss of feedwater and auxiliary feedwater in a boiling water nuclear reactor (BWR), which necessitates manual depressurization of the reactor pressure vessel to enable low pressure cooling of the core. The sequence is fast and is a major contributor to core damage in probabilistic risk analyses (PRAs) of this kind of plant. The management of the sequence also includes important, difficult and fast human decision making. The decision theoretic perspective, which is applied to a Swedish ABB-type reactor, stresses the roles played by uncertainties about plant state, consequences of different actions and goals during the management of a severe accident sequence. Based on a theoretical analysis and empirical simulator data the human error probabilities in the PRA for the plant are considered to be too small. Recommendations for how to improve safety are given and they include full automation of the sequence, improved operator training, and/or actions to assist the operators' decision making through reduction of uncertainties, for example, concerning water/steam level for sufficient cooling, time remaining before insufficient cooling level in the tank is reached and organizational cost-benefit evaluations of the events following a false alarm depressurization as well as the events following a successful depressurization at different points in time. Finally, it is pointed out that the approach exemplified in this study is applicable to any accident scenario which includes difficult human decision making with conflicting goals, uncertain information and with very serious consequences

  19. Cooperation of nuclear, thermal and hydroelectric power plants in the power system

    International Nuclear Information System (INIS)

    1984-01-01

    The conference heard 36 papers of which 23 were incorporated in INIS. The subjects discussed were: the development of power industry in Czechoslovakia, methods of statistical analysis of data regarding nuclear power plant operation, the incorporation of WWER nuclear power plants in the power supply system, the standardization of nuclear power plants, the service life of components, use of nuclear energy sources, performance of the reactor accident protection system, the use of nuclear power and heating plants in Hungary, risk analysis, optimization of nuclear power plants, accidents caused by leakage of the primary and secondary circuit. (J.P.)

  20. Nuclear power in Germany

    International Nuclear Information System (INIS)

    Schaefer, A.

    1990-01-01

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  1. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  2. Country Nuclear Power Profiles - 2010 Edition

    International Nuclear Information System (INIS)

    2010-08-01

    The Country Nuclear Power Profiles compiles background information on the status and development of nuclear power programs in Member States. It consists of organizational and industrial aspects of nuclear power programs and provides information about the relevant legislative, regulatory, and international framework in each country. Its descriptive and statistical overview of the overall economic, energy, and electricity situation in each country, and its nuclear power framework is intended to serve as an integrated source of key background information about nuclear power programs in the world. The preparation of Country Nuclear Power Profiles (CNPP) was initiated in 1990s. It responded to a need for a database and a technical publication containing a description of the energy and economic situation, the energy and the electricity sector, and the primary organizations involved in nuclear power in IAEA Member States. This is the 2010 edition issued on CD-ROM and Web pages. It updates the country information for 48 countries. The CNPP is updated based on information voluntarily provided by participating IAEA Member States. Participants include the 29 countries that have operating nuclear power plants, as well as 19 countries having past or planned nuclear power programmes (Bangladesh, Belarus, Chile, Egypt, Ghana, Indonesia, the Islamic Republic of Iran, Italy, Jordan, Kazakhstan, Lithuania, Morocco, Nigeria, Philippines, Poland, Thailand, Tunisia, Turkey and Vietnam). For the 2010 edition, 24 countries provided updated or new profiles. For the other countries, the IAEA updated the profile statistical tables on nuclear power, energy development, and economic indicators based on information from IAEA and World Bank databases. The CNPP reports have been prepared by each Member State in accordance with the IAEA format. The IAEA is not responsible for the content of these reports

  3. Nuclear power 1984: Progressive normalisation

    International Nuclear Information System (INIS)

    Popp, M.

    1984-01-01

    The peaceful use of nuclear power is being integrated into the overall concept of a safe long-term power supply in West Germany. The progress of normalisation is shown particularly in the takeover of all stations of the nuclear fuel circuit by the economy, with the exception of the final storage of radioactive waste, which is the responsibility of the West German Government. Normalisation also means the withdrawal of the state from financing projects after completion of the two prototypes SNR-300 and THTR-300 and the German uranium enrichment plant. The state will, however, support future research and development projects in the nuclear field. The expansion of nuclear power capacity is at present being slowed down by the state of the economy, i.e. only nuclear power projects being built are proceeding. (orig./HP) [de

  4. The economics of nuclear power

    International Nuclear Information System (INIS)

    Hunt, H.; Betteridge, G.

    1978-01-01

    It is stated that nuclear power stations throughout the world are now providing consumers with substantially the cheapest electricity, except in areas with extensive hydro-power or cheap, clean, local coal. Thermal nuclear power stations will continue to provide economic electricity until the cost of uranium rises to several times the present level; fast reactors have the potential to continue to stabilise the cost of electricity and by moderating demand for other fuels will keep down their cost also. Headings of this paper include -The historical perspective; methods of comparing nuclear and fossil generating costs; historical comparisons of UK nuclear and fossil generating costs; waste storage and decommissioning; future changes in costs; criteria for future investment in nuclear power; alternative methods of comparison; total system cost analysis; the economics of fast reactors; and the ultimate role of fast reactors. 13 references. (author)

  5. Public acceptance of nuclear power in Taiwan

    International Nuclear Information System (INIS)

    Liao, T.T.L.

    1992-01-01

    It is necessary to reach the public acceptance for nuclear power development program. During the process of the application for the approval from the government to implement the Fourth Nuclear Power Plant program in Taiwan, we initialized a series of communication program in the last two years and are expecting to convince the public that to develops nuclear power is essential to the country from a viewpoint of energy diversified. The basic strategies of the communication program not only emphasized the new nuclear power project, but also for the long term public acceptance on nuclear power. The strategies include: (1) Preview and implement the promotion program for the performance of the existing nuclear power plants. (2) Designate and communicate with the major communication target groups: elected delegates, journalists, local residents, scholars and experts. (3) Edit and incorporate the basic nuclear knowledge into the preliminary school educational materials. (4) Subsidize the adjacent communities of nuclear power plants for the public well-being construction. In order to implement the mentioned strategies, Taipower has reorganized the public service department and the existing nuclear power plants, setup the nuclear exhibition center, conducted fullscale emergency drill biannually for each of nuclear power plant, and prepared the seminars for the teacher

  6. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    DeMinco, C.; Mukerjee, S.; Grieve, J.; Faville, M.; Noetzel, J.; Perry, M.; Horvath, A.; Prediger, D.; Pastula, M.; Boersma, R.; Ghosh, D.

    2000-01-01

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700 o C. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  7. Canada's steps towards nuclear power

    International Nuclear Information System (INIS)

    Lewis, W.B.

    1958-09-01

    This paper describes the policy development of nuclear power in Canada. Canada has a natural abundance of coal, oil, natural gas, water power and uranium. It was recognized that the demand for nuclear power would only materialize if it met an economically competitive range.

  8. Nuclear power: 2006 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Last year, 2006, 437 nuclear power plants were available for power supply in 31 countries, 7 plants less than in 2005. One unit was commissioned for the first time, 8 nuclear power plants were decommissioned for good in 2006. At a cumulated gross power of 389,488 MWe and a cumulated net power of 370,441 MWe, respectively, worldwide nuclear generating capacity has reached a high level so far. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D 2 O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of the year, 10 countries operated 29 nuclear power plants with an aggregate gross power of 25,367 MWe and an aggregate net power of 23,953 MWe, respectively. Of these, 21 are light water reactors, 5 are CANDU-type reactors, 2 are fast breeder and 1 a LWGR. 123 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants again reached peak levels: 82% for energy availability, and 83% for operating availability. The 4 nuclear power plants in Finland continue to be in the lead worldwide with a cumulated average operating capacity factor of 94%. (orig.)

  9. Nuclear power. 2008 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, 438 nuclear power plants were available for power supply in 31 countries, 1 plant less than in 2007. No unit was commissioned for the first time, 1 nuclear power plant was decommissioned for good in 2008. At a cumulated gross power of 392,597 MWe and a cumulated net power of 372,170 MWe, respectively, worldwide nuclear generating capacity has reached a high level. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D2O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of 2008, in 14 countries 43 nuclear power plants with an aggregate gross power of 39,211 MWe and an aggregate net power of 36,953 MWe were under construction. Of these, 37 are light water reactors, 3 are CANDU-type reactors, 2 are fast breeder and 1 D2O-PWR. 124 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants reached good levels: 80.80% for operating availability and 80,00% for energy availability. The four nuclear power plants in Finland continuecontinue to be in the lead worldwide with a cumulated average operating capacity factor of 91,60%. (orig.)

  10. Benefits and hazards of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    Compilation of a seminar at the KFA Juelich on topical problems of nuclear power. Subjects: Energy demand, its expected development and possibilities of coverage; physical fundamentals and technical realisation of power generation by nuclear fission; fuel cycle problems and solutions; effects of radioactive radiation; safety of nuclear power plants and the nuclear hazard as compared with other hazards. (orig./RW) [de

  11. Energy situation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, M R [Reactor and Neutron physics Department Nuclear Research Center A.E., Cairo (Egypt)

    1997-12-31

    A brief general review is given concerning the requirements of power throughout history with an indication to the world capital reserves of energy. The energy released from the conversion of mass in chemical and nuclear processes is also discussed with comparative analysis between conventional fuel fired plant and nuclear power plant having the same energy output. The advantages and disadvantages arising from having a nuclear power programme are also discussed. 1 fig.

  12. Nuclear power in Spain

    International Nuclear Information System (INIS)

    1979-01-01

    the plans of the Spanish Government to reduce their dependence on oil over the next ten years by a considerable increase in nuclear generating capacity are outlined. Data on the type, generating power, location and commissioning data of a number of nuclear power stations in Spain are tabulated. The use of foreign companies for the design and construction of the nuclear stations and the national organisations responsible for different aspects of the programme are considered. (UK)

  13. The nuclear power station

    International Nuclear Information System (INIS)

    Plettner, B.

    1987-04-01

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG) [de

  14. Instrumentation and control systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. It supplements Safety Standards Series No. NS-R-1: Safety of Nuclear Power Plants: Design (the Requirements for Design), which establishes the design requirements for ensuring the safety of nuclear power plants. This Safety Guide describes how the requirements should be met for instrumentation and control (I and C) systems important to safety. This publication is a revision and combination of two previous Safety Guides: Safety Series Nos 50-SG-D3 and 50-SG-D8, which are superseded by this new Safety Guide. The revision takes account of developments in I and C systems important to safety since the earlier Safety Guides were published in 1980 and 1984, respectively. The objective of this Safety Guide is to provide guidance on the design of I and C systems important to safety in nuclear power plants, including all I and C components, from the sensors allocated to the mechanical systems to the actuated equipment, operator interfaces and auxiliary equipment. This Safety Guide deals mainly with design requirements for those I and C systems that are important to safety. It expands on paragraphs of Ref in the area of I and C systems important to safety. This publication is intended for use primarily by designers of nuclear power plants and also by owners and/or operators and regulators of nuclear power plants. This Safety Guide provides general guidance on I and C systems important to safety which is broadly applicable to many nuclear power plants. More detailed requirements and limitations for safe operation specific to a particular plant type should be established as part of the design process. The present guidance is focused on the design principles for systems important to safety that warrant particular attention, and should be applied to both the design of new I and C systems and the modernization of existing systems. Guidance is provided on how design

  15. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  16. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  17. Renewable and nuclear power: A common future?

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Nuclear power and renewable energy are the main options to bring down the carbon intensity of commercial energy supply. What technology is unlimited backstop supply depends on its performance on the sustainability criteria: democratic decided, globally accessible, environmental benign, low risk, affordable. Renewable power meets all criteria, with affordability under debate. Maximizing energy efficiency as prerequisite, the affordable sustainable option in fact is the twin efficiency/renewable power. Nuclear power falls short on the sustainability criteria and its public acceptance is low. Nuclear proponents now propose nuclear and renewable energy as a suitable couple to address the climate change challenge. The two antagonists however are mutually exclusive on the five major directions of future power systems. First, nuclear power has been architect of the expansive 'business-as-usual' energy economy since the 1950s. Second, add-on by fossil-fuelled power plants is bulky and expansive for nuclear power, but is distributed, flexible and contracting over time for renewable power. Third, power grids for spreading bulky nuclear outputs are other than the interconnection between millions of distributed power sources requires. Fourth, risks and externalities and the proper technology itself of nuclear power limit its development perspectives, while efficiency/renewable power are still in their infancy. Fifth, their stalemate for R and D resources and for production capacities will intensify. Nuclear power and renewable power have no common future in safeguarding 'Our Common Future'

  18. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  19. Manuscripts on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    Park, Ik Su

    1999-12-01

    It is comprised of the manuscripts and recollections on foundation of Korea nuclear power, which includes conversation with Yoon, Se Won, conversation with Choe, Paeng Seop, conversation with Lee, Dong Jip, conversation with Lee, Sang Su, conversation with Kim, Jong Ju, conversation with Lee, Jong Hun, conversation with Youn, Yong Ryeok, conversation with Han, Pil Sun, recollection of my nuclear power by Lee, Chang Gun, recollection of safety regulation in early nuclear power by An, Yeong Ju, recollection of nuclear business in early nuclear power by Lee, Min Ha, recollection of non destructive examination by Je, Hauk, extra story related nuclear power in early period by Heo, Nam and nuclear power and I by Park,Ik Su.

  20. Nuclear power in Japan in 1987

    International Nuclear Information System (INIS)

    Molodtsov, S.D.

    1989-01-01

    Data on the development level of nuclear power in Japan as of 1988 beginning are presented. Total registed electric power of 36 nuclear power units under operation constituted 28046 MW. 13 power units with 12268 MW total power are under construction. In 1987 188.4 TWH electric power was generated at the Japanese NPPs, it constituted 31.7% of total electric power generation. About 360 bil. yens were assigned from the state budget to further development of nuclear power engineering. Efforts to create the improved BWR type reactor, as well as, scientific and research efforts on the development of fast breeder reactors, improvement of uranium enrichment and radioactive waste storage are carried out. It is expected that share of nuclear power in electric power generation in Japan will reach 40% to the beginning of the 21-th century

  1. Operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  2. Nuclear power development in Japan

    International Nuclear Information System (INIS)

    Sugawara, A.

    1994-01-01

    The energy situation in Japan is briefly outlined. Vulnerability in energy structure of the country is shown by a comparison of primary energy supply patterns of Japan and Western countries. Japan's energy policy consists in reducing dependence on oil, promoting efficient use of energy and increasing use of non-fossil fuels. Nuclear power is a core of alternative energy for petroleum because of stable supply of nuclear fuel, low detrimental emissions and less dependence on the fuel. A short historical review of nuclear power development in Japan is presented. Some future issues as development of entire nuclear fuel cycle, social acceptance, reactor safety and nuclear power economics are also discussed. 6 figs. (R.T.)

  3. Investor perceptions of nuclear power

    International Nuclear Information System (INIS)

    Hewlett, J.G.

    1984-05-01

    Evidence is provided that investor concerns about nuclear power have recently been reflected in the common stock returns of all utilities with such facilities and have resulted in a risk premium. In particular, over the 1978-1982 period, three nuclear-related events occurred at the same time as, and therefore appear to have caused, significant drops in the market values of nuclear utilities relative to their non-nuclear counterparts. The three events were as follows: the accident at TMI, which occurred in March 1979; the realization in the summer of 1980 that an accident of the magnitude of TMI could result in cleanup costs of over $1 billion, which are not completely insurable and could therefore result in substantial losses; and the summer 1982 decision by the Tennessee Valley Authority (TVA) to cancel some if its nuclear power plant construction projects, and the Nuclear Regulatory Commission (NRC) decision to stop work on the construction of the Zimmer reactor, followed by a warning that it might close the Indian Point 2 and 3 reactors. If an individual had invested $100 in an average nuclear utility on the day before the TMI accident and reinvested all dividends, the value of this investment would have fallen by 10% relative to an identical investment in the average non-nuclear utility. The risk of investments in nuclear power versus conventional generating technologies shows nuclear power to be a relatively risky investment. However, relative to all investments, nuclear power was less risky in terms of the type of risk that would cause investors to require a premium before purchasing their securities. 6 figures, 6 tables

  4. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  5. Nuclear power: obstacles and solutions

    International Nuclear Information System (INIS)

    Hart, R.S.

    2002-01-01

    Nuclear power has a history extending over more than 50 years; it has been pursued both for military power applications (primarily aircraft carrier and submarine propulsion) and for commercial power applications. Nuclear power has benefited from many hundreds of billions of dollars in research, development, design, construction, and operations expenditures, and has received substantial attention and support world-wide, having being implemented by most developed countries, including all of the G-7 countries, and several developing countries (for example, India, China, and Republic of Korea). In spite of this long history, massive development effort, and unprecedented financial commitment, nuclear power has failed to achieve commercial success, having captured less than 5% of the world's primary energy supply market. There are many factors contributing to the stagnation/decline of the commercial nuclear power business. These factors include: non competitive economics, lengthy construction schedules, large and demanding human resource requirements, safety concerns, proliferation concerns, waste management concerns, the high degree of government financial and political involvement necessary, and the incompatibility of the available nuclear power plant designs with most process heat applications due to their temperature limitations and/or large heat output. An examination of the obstacles to deployment of nuclear power plants of current design suggest a set of requirements for new nuclear power plants, which may overcome or circumvent these obstacles. These requirements include: inherent characteristics that will achieve reactor shutdown under any postulated accident condition; the removal of decay heat by natural and passive means; no safety dependence on operator actions and tolerant to operator error, and malicious or incompetent operator action; and, economic viability in relatively small unit sizes. Many innovative reactor technologies and concepts are under

  6. Nuclear power: obstacles and solutions

    International Nuclear Information System (INIS)

    Hart, R.S.

    2001-01-01

    Nuclear power has a history extending over more than 50 years; it has been pursued both for military power applications (primarily aircraft carrier and submarine propulsion) and for commercial power applications. Nuclear power has benefited from many hundreds of billions of dollars in research, development, design, construction, and operations expenditures, and has received substantial attention and support world-wide, having being implemented by most developed countries, including all of the G-7 countries, and several developing countries (for example, India, China, and Republic of Korea). In spite of this long history, massive development effort, and unprecedented financial commitment, nuclear power has failed to achieve commercial success, having captured less than 5% of the world's primary energy supply market. There are many factors contributing to the stagnation/decline of the commercial nuclear power business. These factors include: non competitive economics, lengthy construction schedules, large and demanding human resource requirements, safety concerns, proliferation concerns, waste management concerns, the high degree of government financial and political involvement necessary, and the incompatibility of the available nuclear power plant designs with most process heat applications due to their temperature limitations and/or large heat output. An examination of the obstacles to deployment of nuclear power plants of current design suggest a set of requirements for new nuclear power plants, which may overcome or circumvent these obstacles. These requirements include: inherent characteristics that will achieve reactor shutdown under any postulated accident condition; the removal of decay heat by natural and passive means; no safety dependence on operator actions and tolerant to operator error, and malicious or incompetent operator action; and, economic viability in relatively small unit sizes. Many innovative reactor technologies and concepts are under

  7. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin

    2013-01-01

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  8. Preliminary Study on Impact Resistances of Fiber Reinforced Concrete Applied Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Byeong Moo; Kim, Young Jin; Jeon, Se Jin [Daewoo E and C Co. Ltd., Suwon (Korea, Republic of)

    2013-10-15

    Studies to improve the impact resistance depending upon design parameters for fiber reinforced concrete, such as type of fibers and application ratio, are in progress. Authors assessed first the impact resistance of concrete walls depending upon fiber types and missile impact velocities. The safety assessment of nuclear power plants against large civil aircraft crashes have been accomplished for normal concrete and fiber reinforced concretes in this study. Studies on the safety assessments on the nuclear power plants against large civil aircraft crashes are ongoing actively. As a step of evaluating the applicability of fiber reinforced concrete in means of ensuring more structural safety of the nuclear power plants against impact, the impact resistance for the 1% steel and 2% polyamide fiber reinforced concretes have been evaluated. For reactor containment building structures, it seem there is no impact resistance enhancement of fiber reinforced concrete applied to reactor containment building in the cases of impact velocity 150 m/sec considered in this study. However this results from the pre-stressing forces which introduce compressive stresses in concrete wall and dome section of reactor containment building. Nonetheless there may be benefits to apply fiber reinforced concrete to nuclear power plants. For double containment type reactor containment building, the outer structure is a reinforced concrete structure. The impact resistances for non pre-stressed cylindrical reactor containment buildings are enhanced by 23 to 47 % for 2 % polyamide fiber reinforced concretes and 1 % steel fiber reinforced concretes respectively. For other buildings such as auxiliary building, compound building and fuel storage building surrounding the reactor containment building, there are so many reinforced concrete walls which are anticipated some enhancements of impact resistance by using fiber reinforced concretes. And heavier or faster large civil aircraft impacts produce higher

  9. Nuclear power and the private sector

    International Nuclear Information System (INIS)

    Miller, D.J.

    1989-01-01

    The world scene is sketched in which nuclear power already contributes 600 Mtce/year to world energy but where public attitudes in the developed world have become largely hostile. This is despite the proven technology of nuclear power, its safety record (Chernobyl notwithstanding) and its environmentally benign aspects. The United Kingdom government's determination to ensure a continuing role for nuclear power in a privatized electricity supply industry is seen against this background. The structure of the British nuclear power industry undoubtedly presents difficulties for privatization but solutions are available and precedents for private sector nuclear power exist in other countries. Private sector operators will be required to meet the exacting standards set by the independent licensing authority but in view of the public concern redoubled efforts and new approaches will be necessary in public persuasion. Waste disposal is another issue which may have implications for the acceptability of nuclear power in the public sector. Finally, the prospects for investment in new nuclear plant by private generation companies are examined. (U.K.)

  10. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  11. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  12. Public opinion factors regarding nuclear power

    International Nuclear Information System (INIS)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible

  13. Balakovo nuclear power station

    International Nuclear Information System (INIS)

    1996-01-01

    A key means of improving the safety and reliability of nuclear power plants is through effective training of plant personnel. The goal of this paper is to show the progress of the training at the Balakovo Nuclear Power Plant, and the important role that international cooperation programs have played in that progress

  14. The Economics of Nuclear Power: Is Nuclear Power a Cost-Effective Way to Tackle Climate Change

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The role nuclear power can play in combating climate change is limited by the fact that nuclear can have little role in the transport sector, one of the two major emitters of greenhouse gases. However, nuclear power is often portrayed as the most important potential measure to reduce emissions in the other major emitter of greenhouse gases, the power generation sector. For nearly a decade, there has been talk of a 'nuclear renaissance'. Under this, a new generation of nuclear power plants, so called generation III+ designs, would revitalize ordering in markets, especially Europe and North America, that had seen no orders since the 1980s or earlier. This renaissance and the potential role of nuclear power in combating climate change raise a number of issues, including: 1) Is nuclear power the most cost-effective way to replace fossil fuel power generation? 2) Can the issues that nuclear power brings with it, including environmental impact, safety, waste disposal and weapons proliferation be dealt with effectively enough that they will not be a barrier to the use of nuclear power? 3) Are uranium resources sufficient to allow deployment of nuclear power on the scale necessary to have a significant impact on greenhouse gas emissions with existing technologies or would unproven and even more controversial technologies that use natural uranium more sparingly, such as fast reactors, be required? This paper focuses on the first question and in particular, it examines whether economic factors are behind the failure of the long-forecast 'nuclear renaissance' to materialize in Europe and North America. It examines factors such as the construction cost escalation, difficulties of finance and the cost of capital, the financial crisis of 2008/09, the delays in getting regulatory approval for the new designs, and skills and equipment shortages. It concludes that the main factors behind the delays in new orders are: 1) Poor construction experience with the only two new orders

  15. International nuclear power status 2000

    International Nuclear Information System (INIS)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  16. The nuclear power development policy of Taipower

    International Nuclear Information System (INIS)

    Chen, J.H.

    1987-01-01

    Taipower began its nuclear power epoch in 1978 when the first unit of its First Nuclear Power Station was synchronized to the system on November 1977. At present, Taipower has six units installed in three nuclear power plants, totalling 5144 MW in operation. These units are the mainstay of the 16,600 MW system and have played a significant role in the energy supply of Taiwan. This paper will firstly give a brief overview of Taipower's system, then introduce Taipower's nuclear power policies within the frame of issues on nuclear power economy, nuclear fuel cycle management, nuclear safety and environmental concerns, radioactive waste management, public communications and personnel training. At last, this paper will present the prospect for future nuclear power development in Taiwan with reference to the above discussion. (author)

  17. 2002 Nuclear Power World Report - Evaluation

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    Last year, in 2002, 441 nuclear power plants were available for power supply in 31 countries in the world. With an aggregate gross power of 377,359 MWe, and an aggregate net power of 359,429 MWe, respectively, the nuclear generating capacity reached its highest level so far. Nine different reactor lines are used in commercial facilities. Light water reactors (PWR and BWR) contribute 355 plants, which makes them the most common reactor line. In twelve countries, 32 nuclear power plants with an aggregate gross power of 26,842 MWe and an aggregate net power of 25,546 MWe, respectively, are under construction. Of these, 25 units are light water reactors while eight are CANDU-type plants. In eighteen countries, 94 commercial reactors with more than 5 MWe power have been decommissioned so far. Most of these plants are prototypes with low powers. 228 of the nuclear power plants currently in operation, i.e. slightly more than half of them, were commissioned in the eighties. The oldest commercial nuclear power plant, Calder Hall unit 1, supplied power into the public grid in its 47th year of operation in 2002. The availability in terms of time and capacity of nuclear power plants rose from 74.23% in 1991 to 83.40% in 2001. A continued rise to approx. 85% is expected for 2002. In the same way, the non-availability in terms of time (unscheduled) dropped from 6.90% to 3.48%. The four nuclear power plants in Finland are the world's leaders with a cumulated average capacity availability of 90.00%. (orig.) [de

  18. Nuclear Power in the 21st Century

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2013-01-01

    The International Atomic Energy Agency helps its Member States to use nuclear technology for a broad range of peaceful purposes, one of the most important of which is generating electricity. The accident at the Fukushima Daiichi nuclear power plant in Japan in March 2011 caused anxiety about nuclear safety throughout the world and raised questions about the future of nuclear power. Two years on, it is clear that the use of nuclear power will continue to grow in the coming decades, although growth will be slower than was anticipated before the accident. Many countries with existing nuclear power programmes plan to expand them. Many new countries, both developed and developing, plan to introduce nuclear power. The factors contributing to this growing interest include increasing global demand for energy, as well as concerns about climate change, volatile fossil fuel prices, and security of energy supply. It will be difficult for the world to achieve the twin goals of ensuring sustainable energy supplies and curbing greenhouse gases without nuclear power. The IAEA helps countries that opt for nuclear power to use it safely and securely. Countries that have decided to phase out nuclear power will have to deal with issues such as plant decommissioning, remediation, and waste management for decades to come. The IAEA also assists in these areas. I am grateful to the Russian Federation for hosting the 2013 International Ministerial Conference on Nuclear Power in the 21st Century in St Petersburg in June. This timely conference provides a valuable opportunity to take stock of nuclear power in the wake of the Fukushima Daiichi accident. A high level of public confidence in the safety of nuclear power is essential for the future of the sector. Much valuable work has been done in the past two years to improve safety. But much remains to be done. It is vitally important that the momentum is maintained and that everything is done to ensure that nuclear power is as safe as humanly

  19. Country nuclear power profiles. 2000 ed

    International Nuclear Information System (INIS)

    2001-03-01

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA programme on assessment and feedback of nuclear power plant performance. It responded to a need for a database and a technical document containing a description of the economic situation, the energy and the electricity sector and the primary organizations involved in nuclear power in IAEA Member States. In 1998, the first edition of the Country Nuclear Power Profiles was published focusing on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. The compilation was made based on of 29 Member States with operating nuclear power plants by the end of 1995 and incorporated the 'Fact Sheets' on international, multilateral and bilateral agreements as collected by EXPO. In May 1999, an Advisory Group Meeting was organized with the purpose of updating the information in the Country Nuclear Power Profiles of each country, to reflect the new approaches and conditions of the national nuclear power programmes. The impact of the open electricity market, privatization and deregulation on the nuclear sector was an important aspect recommended by the experts to be taken in consideration. It was also recommended to periodically review the status and trends of nuclear industries in IAEA Member States and exchange information among experts of the lessons learned from the countries engaged in nuclear programmes, with a view to update the profiles at two year intervals. This second edition covers the changes in the new environment in the electricity as well as in the nuclear sector, be it that the situation differs from country to country. In general, the information is updated to 1999. For the preparation of this second edition, the IAEA received contributions from all 31 countries with operating power plants by the end of 1999, as well as Italy and the Islamic Republic of Iran. A database has been

  20. Nuclear accidents and safety measures of domestic nuclear power plants

    International Nuclear Information System (INIS)

    Song Zurong; Che Shuwei; Pan Xiang

    2012-01-01

    Based on the design standards for the safety of nuclear and radiation in nuclear power plants, the three accidents in the history of nuclear power are analyzed. And the main factors for these accidents are found out, that is, human factors and unpredicted natural calamity. By combining the design and operation parameters of domestic nuclear plants, the same accidents are studied and some necessary preventive schemes are put forward. In the security operation technology of domestic nuclear power plants nowadays, accidents caused by human factors can by prevented completely. But the safety standards have to be reconsidered for the unpredicted neutral disasters. How to reduce the hazard of nuclear radiation and leakage to the level that can be accepted by the government and public when accidents occur under extreme conditions during construction and operation of nuclear power plants must be considered adequately. (authors)