WorldWideScience

Sample records for nuclear astrophysics study

  1. Experimental studies of nuclear astrophysics

    International Nuclear Information System (INIS)

    He Jianjun; Zhou Xiaohong; Zhang Yuhu

    2013-01-01

    Nuclear astrophysics is an interdisciplinary subject combining micro-scale nuclear physics and macro-scale astrophysics. Its main aims are to understand the origin and evolution of the elements in the universe, the time scale of stellar evolution, the stellar environment and sites, the energy generation of stars from thermonuclear processes and its impact on stellar evolution and the mechanisms driving astrophysical phenomena, and the structure and property of compact stars. This paper presents the significance and current research status of nuclear astrophysics; we introduce some fundamental concepts, the nuclear physics input parameters required by certain astrophysics models, and some widely-used experimental approaches in nuclear astrophysics research. The potential and feasibility of research in this field using China’s current and planned large-scale scientific facilities are analyzed briefly. Finally, the prospects of the establishing a deep underground science and engineering laboratory in China are envisaged. (authors)

  2. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized

  3. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Lehoucq, Roland; Klotz, Gregory

    2015-11-01

    Astronomy deals with the position and observation of the objects in our Universe, from planets to galaxies. It is the oldest of the sciences. Astrophysics is the study of the physical properties of these objects. It dates from the start of the 20. century. Nuclear astrophysics is the marriage of nuclear physics, a laboratory science concerned with the infinitely small, and astrophysics, the science of what is far away and infinitely large. Its aim is to explain the origin, evolution and abundance of the elements in the Universe. It was born in 1938 with the work of Hans Bethe, an American physicist who won the Nobel Prize for physics in 1967, on the nuclear reactions that can occur at the center of stars. It explains where the incredible energy of the stars and the Sun comes from and enables us to understand how they are born, live and die. The matter all around us and from which we are made, is made up of ninety-two chemical elements that can be found in every corner of the Universe. Nuclear astrophysics explains the origin of these chemical elements by nucleosynthesis, which is the synthesis of atomic nuclei in different astrophysical environments such as stars. Nuclear astrophysics provides answers to fundamental questions: - Our Sun and the stars in general shine because nuclear reactions are taking place within them. - The stars follow a sequence of nuclear reaction cycles. Nucleosynthesis in the stars enables us to explain the origin and abundance of elements essential to life, such as carbon, oxygen, nitrogen and iron. - Star explosions, in the form of supernovae, disperse the nuclei formed by nucleosynthesis into space and explain the formation of the heaviest chemical elements such as gold, platinum and lead. Nuclear astrophysics is still a growing area of science. (authors)

  4. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arnould, M.; Takahashi, K.

    1999-01-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  5. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Penionzhkevich, Yu. E.

    2010-01-01

    The International Year of Astronomy 2009 (IYA2009) was declared by the 62nd General Assembly of the United Nations and was also endorsed by UNESCO. Investigations in the realms of particle and nuclear physicsmake a large contribution in the development of our ideas of the properties of the Universe. The present article discusses some problems of the evolution of the Universe, nucleosyntheses, and cosmochronology from the point of view of nuclear and particle physics. Processes occurring in the Universe are compared with the mechanisms of the production and decay of nuclei, as well as with the mechanisms of their interaction at high energies. Examples that demonstrate the potential of nuclearphysics methods for studying cosmic objects and the properties of the Universe are given. The results that come from investigations into nuclear reactions induced by beams of radioactive nuclei and which make it possible to take a fresh look at the nucleosynthesis scenario in the range at light nuclei are presented.

  6. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  7. A New ECR Ion Source for Nuclear Astrophysics Studies

    Science.gov (United States)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  8. The Array for Nuclear Astrophysics Studies with Exotic Nuclei

    Science.gov (United States)

    Linhardt, L. E.; Blackmon, J. C.; Matos, M.; Mondello, L. L.; Zganjar, E. F.; Johnson, E.; Rogachev, G.; Wiedenhover, I.

    2010-11-01

    The Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN) is a charged-particle detector array that is targeted primarily towards reaction studies with radioactive ion beams at FSU and the NSCL. ANASEN consists of 40 double-sided silicon-strip detectors backed with CsI scintillators and an innovative gas counter design that allows operation in a gas target/detector mode and experiments covering a broad range of center-of-mass energies simultaneously. Electronics based on ASIC components are being implemented to achieve a high channel count at low cost. Prototypes of all the detector components have been fabricated and are currently being tested. Performance of the individual components and plans for the first experiments that aim to improve our knowledge of the nuclear reactions important in stellar explosions will be reported.

  9. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Cardenas, M.

    1976-01-01

    It is revised the nuclear reactions which present an interest in astrophysics regarding the explanation of some problems such as the relative quantity of the elements, the structure and evolution of the stars. The principal object of the study is the determination of the experimental possibilities in the field of astrophysics, of an accelerator Van de Graaff's 700 KeV type. Two hundred nuclear reactions approximately, were found, and nothing or very little has been done in the intervals of energy which are of interest. Since the bombardment energies and the involved sections are low in some cases, there are real possibilities, for the largest number of stars to obtain important statistical data with the above mentioned accelerator, taking some necessary precautions. (author)

  10. Topics in Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Chung, K.C.

    1982-01-01

    Some topics in nuclear astrophysics are discussed, e.g.: highly evolved stellar cores, stellar evolution (through the temperature analysis of stellar surface), nucleosynthesis and finally the solar neutrino problem. (L.C.) [pt

  11. Introduction to Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Iliadis, Christian

    2010-01-01

    In the first lecture of this volume, we will present the basic fundamental ideas regarding nuclear processes occurring in stars. We start from stellar observations, will then elaborate on some important quantum-mechanical phenomena governing nuclear reactions, continue with how nuclear reactions proceed in a hot stellar plasma and, finally, we will provide an overview of stellar burning stages. At the end, the current knowledge regarding the origin of the elements is briefly summarized. This lecture is directed towards the student of nuclear astrophysics. Our intention is to present seemingly unrelated phenomena of nuclear physics and astrophysics in a coherent framework.

  12. Nuclear astrophysics at ISAC with DRAGON: Initial studies

    International Nuclear Information System (INIS)

    Olin, Art; Bishop, Shawn; D'Auria, John M.; Lamey, Michael; Liu, Wenjie; Wrede, Chris; Buchmann, Lothar; Chen, Alan; Hunter, Don; Laird, Alison M.; Ottewell, Dave; Rogers, Joel; Chatterjee, Mohan L.; Engel, Sabine; Strieder, Frank; Gigliotti, Dario; Hussein, Ahmed; Greife, Uwe; Jewett, Cybele; Hutcheon, Dave

    2002-01-01

    The new DRAGON recoil separator facility, designed and built to measure directly the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now in operation at the TRIUMF-ISAC radioactive beams facility in Vancouver, Canada. Experiments have been conducted for the first time on the 21Na(p,γ)22Mg reaction. The evolution of nova explosions, and particularly their 22Na abundance, depends sensitively on this reaction rate. The radioactive 21Na beam with an intensity of up to 5 x 108 /s was directed onto a windowless hydrogen gas target (3.8 x 1018 H atoms/cm2). Prompt reaction gamma rays were detected using a BGO array and separated reaction products detected using a silicon strip detector at the end of the 20.8 m recoil mass separator. Yield measurements recording simultaneously singles and coincident signals were performed by scanning in energy over the known resonance reported previously in 22Mg at Ecm = 212 keV, and in addition, over a strong resonance observed at Ecm ≅822 keV. Known resonances in the 21Ne(p,γ)22Na, 20Ne(p,γ)21Na, and 24Mg(p,γ)25Al reactions have been used to calibrate the DRAGON. Studies are in progress to further define the performance of the DRAGON facility. Status of the data analysis and results from system performance studies will be presented along with a brief description of the new ISAC and DRAGON facilities

  13. Nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing

  14. Nuclear physics and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  15. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Arnould, M.; Rayet, M.

    1990-01-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects

  16. Nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Schramm, D.N.; Olinto, A.V.

    1993-06-01

    The authors report on recent progress of research at the interface of nuclear physics and astrophysics. During the past year, the authors continued to work on Big Bang and stellar nucleosynthesis, the solar neutrino problem, the equation of state for dense matter, the quark-hadron phase transition, and the origin of gamma-ray bursts; and began studying the consequences of nuclear reaction rates in the presence of strong magnetic fields. They have shown that the primordial production of B and Be cannot explain recent detections of these elements in halo stars and have looked at spallation as the likely source of these elements. By looking at nucleosynthesis with inhomogeneous initial conditions, they concluded that the Universe must have been very smooth before nucleosynthesis. They have also constrained neutrino oscillations and primordial magnetic fields by Big Bang nucleosynthesis. On the solar neutrino problem, they have analyzed the implications of the SAGE and GALLEX experiments. They also showed that the presence of dibaryons in neutron stars depends weakly on uncertainties of nuclear equations of state. They have started to investigate the consequences of strong magnetic fields on nuclear reactions and implications for neutron star cooling and supernova nucleosynthesis

  17. Nuclear Astrophysics Experiments at CIAE

    International Nuclear Information System (INIS)

    Liu Weiping; Li Zhihong; Bai Xixiang; Lian Gang; Guo Bing; Zeng, Sheng; Yan Shengquan; Wang Baoxiang; Shu Nengchuan; Wu Kaisu; Chen Yongshou

    2005-01-01

    This paper describes nuclear astrophysical studies using the unstable ion beam facility GIRAFFE. We measured the angular distributions for some low energy reactions, such as 7 Be(d, n) 8 B, 11 C(d, n) 12 N, 8 Li(d, n) 9 Be and 8 Li(d, p) 9 Li in inverse kinematics, and indirectly derived the astrophysical S-factors or reaction rates of 7 Be(p, γ) 8 B, 11 C(p, γ) 12 N, 8 Li(n, γ) 9 Li at astrophysically relevant energies

  18. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  19. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  20. Indirect techniques in nuclear astrophysics

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Tribble, R.E.; Blokhintsev, L.D.; Cherubini, S.; Spitaleri, C.; Kroha, V.; Nunes, F.M.

    2005-01-01

    It is very difficult or often impossible to measure in the lab conditions nuclear cross sections at astrophysically relevant energies. That is why different indirect techniques are used to extract astrophysical information. In this talk different experimental possibilities to get astrophysical information using radioactive and stable beams will be addressed. 1. The asymptotic normalization coefficient (ANC) method. 2. Radiative neutron captures are determined by the spectroscopic factors (SP). A new experimental technique to determine the neutron SPs will be addressed. 3. 'Trojan Horse' is another unique indirect method, which allows one to extract the astrophysical factors for direct and resonant nuclear reactions at astrophysically relevant energies. (author)

  1. Computational Infrastructure for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael S.; Hix, W. Raphael; Bardayan, Daniel W.; Blackmon, Jeffery C.; Lingerfelt, Eric J.; Scott, Jason P.; Nesaraja, Caroline D.; Chae, Kyungyuk; Guidry, Michael W.; Koura, Hiroyuki; Meyer, Richard A.

    2006-01-01

    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that is freely available online at nucastrodata.org. Features of, and future plans for, this software suite are given

  2. Nuclear astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Gade, A.

    2010-01-01

    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.

  3. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  4. Studies in nuclear structure relevant to Astrophysics: theoretical and experimental efforts

    International Nuclear Information System (INIS)

    Saha Sarkar, Maitreyee

    2016-01-01

    Experimental and theoretical investigations in the region around doubly magic neutron rich 132 Sn nucleus have recently revealed many intriguing issues concerning some newer aspects of nuclear structure in such exotic environments. These nuclei lie on or close to the path of the astrophysical r-process flow. A glimpse of the implication of these studies on the r-process nucleosynthesis will be discussed. Presently, the Nuclear Physics group in Saha Institute of Nuclear Physics is working for installation of a high-current, low energy Accelerator as the primary component of the Facility for Research in low Energy Nuclear Astrophysics (FRENA), a national facility, at Kolkata. Planning for future experiments has been undertaken for successful utilization of this facility. Implantation technique has been found to be one of the most effective methods to produce isotopically pure targets. We have prepared a few isotopically pure targets using this technique. Being the slowest process of the CNO cycle, study of the 14 N(p, γ) 15 O(Q = 7297 keV) capture reaction is of high astrophysical interest. From an experiment utilizing one of the newly prepared 14 N implanted targets, a preliminary estimate of the lifetime of 6792 keV state in 15 O has been obtained, using Doppler shift attenuation method (DSAM). The sensitivity of the results with respect to the uncertainties in various input quantities has been tested. This endeavour will be helpful to design a better experiment to extract more precise lifetime for this important state

  5. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  6. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  7. White Paper on Nuclear Astrophysics

    OpenAIRE

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Berstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town mee...

  8. Nuclear astrophysics data at ORNL

    International Nuclear Information System (INIS)

    Smith, M.S.; Blackmon, J.C.

    1998-01-01

    There is a new program of evaluation and dissemination of nuclear data of critical importance for nuclear astrophysics within the Physics Division of Oak Ridge National Laboratory. Recent activities include determining the rates of the important 14 O(α,p) 17 F and 17 F(p,γ) 18 Ne reactions, disseminating the Caughlan and Fowler reaction rate compilation on the World Wide Web, and evaluating the 17 O(p,α) 14 N reaction rate. These projects, which are closely coupled to current ORNL nuclear astrophysics research, are briefly discussed along with future plans

  9. Recent results in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Coc, Alain; Kiener, Juergen [CNRS/IN2P3 et Universite Paris Sud 11, UMR 8609, Centre de Sciences Nucleaires et de Sciences de la Matiere (CSNSM), Orsay Campus (France); Hammache, Fairouz [CNRS/IN2P3 et Universite Paris Sud 11, UMR 8608, Institut de Physique Nucleaire d' Orsay (IPNO), Orsay Campus (France)

    2015-03-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified, e.g., {sup 12}C(α, γ){sup 16}O for stellar evolution, or {sup 13}C(α, n){sup 16}O and {sup 22}Ne(α, n){sup 25}Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics, e.g., in gamma-ray emission from solar flares or in the interaction of cosmic rays with matter, and also motivate laboratory experiments. Finally, we show that beyond the historical motivations of nuclear astrophysics, understanding i) the energy sources that drive stellar evolution and ii) the origin of the elements can also be used to give new insights into physics beyond the standard model. (orig.)

  10. Recent results in nuclear astrophysics

    International Nuclear Information System (INIS)

    Coc, Alain; Kiener, Juergen; Hammache, Fairouz

    2015-01-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified, e.g., 12 C(α, γ) 16 O for stellar evolution, or 13 C(α, n) 16 O and 22 Ne(α, n) 25 Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics, e.g., in gamma-ray emission from solar flares or in the interaction of cosmic rays with matter, and also motivate laboratory experiments. Finally, we show that beyond the historical motivations of nuclear astrophysics, understanding i) the energy sources that drive stellar evolution and ii) the origin of the elements can also be used to give new insights into physics beyond the standard model. (orig.)

  11. Nuclear astrophysics at DRAGON

    International Nuclear Information System (INIS)

    Hager, U.

    2014-01-01

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented

  12. Nuclear astrophysics away from stability

    International Nuclear Information System (INIS)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1985-08-01

    Explosive astrophysical environments invariably lead to the production of nuclei away from stability. An understanding of the dynamics and nucleosynthesis in such environments is inextricably coupled to an understanding of the properties of the synthesized nuclei. In this talk a review is presented of the basic explosive nucleosynthesis mechanisms (s-process, r-process, n-process, p-process, and rp-process). Specific stellar model calculations are discussed and a summary of the pertinent nuclear data is presented. Possible experiments and nuclear-model calculations are suggested that could facilitate a better understanding of the astrophysical scenarios. 39 refs., 4 figs

  13. Nuclear astrophysics lessons from INTEGRAL.

    Science.gov (United States)

    Diehl, Roland

    2013-02-01

    Measurements of high-energy photons from cosmic sources of nuclear radiation through ESA's INTEGRAL mission have advanced our knowledge: new data with high spectral resolution showed that characteristic gamma-ray lines from radioactive decays occur throughout the Galaxy in its interstellar medium. Although the number of detected sources and often the significance of the astrophysical results remain modest, conclusions derived from this unique astronomical window of radiation originating from nuclear processes are important, complementing the widely-employed atomic-line based spectroscopy. We review the results and insights obtained in the past decade from gamma-ray line measurements of cosmic sources in the context of their astrophysical questions.

  14. Nuclear astrophysics experiments with Pohang neutron facility

    International Nuclear Information System (INIS)

    Kim, Yeong Duk; Yoo, Gwang Ho

    1998-01-01

    Nuclear astrophysics experiments for fundamental understanding of Big Bang nucleosynthesis was performed at Pohang Neutron Facility. Laboratory experiments, inhomogeneous Big Bang nucleosynthesis and S-process were used for nucleosynthesis. For future study, more study on S-process for the desired data and nuclear network calculation are necessary

  15. An introduction to nuclear astrophysics

    International Nuclear Information System (INIS)

    Norman, E.B.

    1987-09-01

    The role of nuclear reactions in astrophysics is described. Stellar energy generation and heavy element nucleosynthesis is explained in terms of specific sequences of charged-particle and neutron induced reactions. The evolution and final states of stars are examined. 20 refs. 11 figs., 2 tabs

  16. Indirect methods in nuclear astrophysics

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-01-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions. (paper)

  17. Focusing telescopes in nuclear astrophysics

    International Nuclear Information System (INIS)

    Von Ballmoos, P.; Knodlseder, R.; Sazonov, S.; Griffiths, R.; Bastie, P.; Halloin, H.; Pareschi, G.; Ramsey, B.; Jensen, C.; Buis, E.J.; Ulmer, M.; Giommi, P.; Colafrancesco, S.; Comastri, A.; Barret, D.; Leising, M.; Hernanz, M.; Smith, D.; Abrosimov, N.; Smither, B.; Ubertini, P.; Olive, J.F.; Lund, N.; Pisa, A.; Courtois, P.; Roa, D.; Harrison, F.; Pareschi, G.; Frontera, F.; Von Ballmoos, P.; Barriere, N.; Rando, N.; Borde, J.; Hinglais, E.; Cledassou, R.; Duchon, P.; Sghedoni, M.; Huet, B.; Takahashi, T.; Caroli, E.; Quadrinin, L.; Buis, E.J.; Skinner, G.; Krizmanic, J.; Pareschi, G.; Loffredo, G.; Wunderer, C.; Weidenspointner, G.; Wunderer, C.; Koechlin, L.; Bignami, G.; Von Ballmoos, P.; Tueller, J.; Andritschke, T.; Laurens, A.; Evrard, J.

    2005-01-01

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations

  18. Focusing telescopes in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Von Ballmoos, P; Knodlseder, R; Sazonov, S; Griffiths, R; Bastie, P; Halloin, H; Pareschi, G; Ramsey, B; Jensen, C; Buis, E J; Ulmer, M; Giommi, P; Colafrancesco, S; Comastri, A; Barret, D; Leising, M; Hernanz, M; Smith, D; Abrosimov, N; Smither, B; Ubertini, P; Olive, J F; Lund, N; Pisa, A; Courtois, P; Roa, D; Harrison, F; Pareschi, G; Frontera, F; Von Ballmoos, P; Barriere, N; Rando, N; Borde, J; Hinglais, E; Cledassou, R; Duchon, P; Sghedoni, M; Huet, B; Takahashi, T; Caroli, E; Quadrinin, L; Buis, E J; Skinner, G; Krizmanic, J; Pareschi, G; Loffredo, G; Wunderer, C; Weidenspointner, G; Wunderer, C; Koechlin, L; Bignami, G; Von Ballmoos, P; Tueller, J; Andritschke, T; Laurens, A; Evrard, J

    2005-07-01

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations.

  19. Exotic nuclear beta transitions astrophysical examples

    CERN Document Server

    Takahashi, K

    1981-01-01

    A theoretical study of nuclear beta -transitions under various astrophysical circumstances is reviewed by illustrative examples: 1) continuum-state electron captures in a matter in the nuclear statistical equiplibrium, and ii) bound-state beta -decays in stars in connection with a cosmochronometer and with the s-process branchings. (45 refs).

  20. Recent progress in ab-initio studies of nuclear reactions of astrophysical interest with A ≤ 3

    Science.gov (United States)

    Marcucci, Laura E.

    2018-03-01

    We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the consequences for the solar neutrino fluxes of the recent determination for the astrophysical S-factor of the proton weak capture by proton, and on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis.

  1. Nuclear data needs for studying the astrophysical r- and p-processes

    International Nuclear Information System (INIS)

    Howard, W.M.; Meyer, B.S.

    1991-09-01

    Recent advances in understanding the astrophysical sites for the r-, p- and 3-processes has led to an increased understanding of the nuclear physics requires to calculate the thermonuclear origin of the heavy elements in nature. We review specific examples of where nuclear information obtained with Radioactive Nuclear Beams can greatly help our understanding of the thermonuclear origin of the elements in nature. 4 figs

  2. Nuclear Astrophysics at DANCE

    International Nuclear Information System (INIS)

    Reifarth, R.; Bredeweg, T.A.; Esch, E.-I.; Haight, R.C.; Kronenberg, A.; O'Donnell, J.M.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wouters, J.M.; Alpizar-Vicente, A.; Hatarik, R.; Greife, U.

    2005-01-01

    One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements

  3. A new experimental setup established for low-energy nuclear astrophysics studies

    International Nuclear Information System (INIS)

    Chen, S.Z.; Xu, S.W.; He, J.J.; Hu, J.; Rolfs, C.E.; Zhang, N.T.; Ma, S.B.; Zhang, L.Y.; Hou, S.Q.; Yu, X.Q.; Ma, X.W.

    2014-01-01

    An experimental setup for low-energy nuclear astrophysics studies has been recently established at the Institute of Modern Physics (IMP), Lanzhou, China. The driver machine is a 320 kV high voltage platform, which can provide intense currents of proton, alpha and many heavy ion beams. The energy of a proton beam was calibrated against the nominal platform high voltage by using a well-known resonant reaction of 11 B(p,γ) 12 C and a non-resonant reaction 12 C(p,γ) 13 N. The accuracy was achieved to be better than ±0.5 keV. The detection system consists of a Clover-type high-purity germanium detector, a silicon detector and a plastic scintillator. The performance of the detectors was tested by several experiments. The astrophysical S-factors of the 7 Li(p,γ) 8 Be and 7 Li(p,α) 3 He reactions were measured with this new setup, and our data agree with the values found in the literature. In addition, the upgrade of our driver machine and experimental setup has been discussed. As a future goal, a fascinating National Deep Underground Laboratory in China, the deepest underground laboratory all over the world, is prospected

  4. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Fueloep, Zs.

    2005-01-01

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  5. Nuclear astrophysics of supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ 0 , and then /rho/ > /rho/ 0 and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs

  6. CASPAR - Nuclear Astrophysics Underground

    Science.gov (United States)

    Senarath, Chamaka; Caspar Collaboration

    2017-09-01

    The CASPAR mainly focuses on Stellar Nucleosynthesis, its impact on the production of heavy elements and study the strength of stellar neutron sources that propels the s-process, 13C(α,n)16O and 22Ne(α,n)25Mg. Currently, implementation of a 1MV fully refurbished Van de Graaff accelerator that can provide a high intensity Î+/- beam, is being done at the Sanford Underground Research Facility (SURF). The accelerator is built among a collaboration of South Dakota School of Mines and Technology, University of Notre Dame and Colorado School of Mines. It is understood that cosmic ray neutron background radiation hampers experimental Nucleosynthesis studies, hence the need to go underground in search for a neutron free environment, to study these reactions at low energies is evident. The first beam was produced in the middle of summer 2017. The entire accelerator will be run before the end of this year. A detailed overview of goals of CASPAR will be presented. NFS Grant-1615197.

  7. Nuclear astrophysics with indirect methods

    International Nuclear Information System (INIS)

    Shubhchintak

    2016-01-01

    In the area of astrophysics, it is well known that several different type of nuclear reactions are involved in the production of elements and for energy generation in stars. The knowledge of rates and cross section of these reactions is necessary in order to understand the origin of elements in the universe. Particularly, interests are there in the processes like pp-chain, CNO cycle, r-process and s-process, which are responsible for the formation of majority of the nuclei via various reactions like (p, γ), (n, γ), (α, γ) etc

  8. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  9. Nuclear astrophysics of the sun

    International Nuclear Information System (INIS)

    Kocharov, G.E.

    1980-01-01

    In the first chapter we will discuss the problem of nuclear reactions in the interior of the sun and consider the modern aspects of the neutrino astrophysics of the Sun. The second chapter is devoted to the high energy interactions in the solar atmosphere during the flares. Among a great number of events during the solar flares we shall consider mainly the nuclear reactions. Special attention will be paid to the genetic connection between the different components of solar electromagnetic and corpuscular radiation. The idea of the unity of processes in different parts of the Sun, from hot and dense interior up to the rare plasma of the solar corona will be the main line of the book. (orig./WL) 891 WL/orig.- 892 HIS

  10. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  11. Nuclear astrophysics: a new era

    Energy Technology Data Exchange (ETDEWEB)

    Wiescher, Michael; Aprahamian, Ani [Department of Physics, University of Notre Dame (United States); Regan, Paddy [Department of Physics, University of Surrey (United Kingdom)

    2002-02-01

    The latest generation of radioactive-ion-beam facilities promises to shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. The most fundamental question in nature is where do we come from, or, put another way, what are we made of? The late Carl Sagan poetically said that we are all made of stardust, but the origin of the elements has fascinated scientists for thousands of years. Many of the greatest medieval and renaissance scientists dabbled in alchemy, trying to create the elements that make up the cosmos, but we had to wait until the early 20th century to recognize that elements are really defined by the number of protons in the nucleus. According to our current understanding, after the big bang most of the normal or baryonic material in the universe consisted of the lightest two elements, hydrogen and helium, with only trace amounts of lithium and beryllium. All the heavier elements that occur naturally on Earth were created from this original material via a series of nuclear reactions in the cores of stars or in stellar explosions. Over the last decade, ground-based telescopes and satellite-based Observatories have opened new windows on the stars across the electromagnetic spectrum, from infrared to gamma radiation. New technology now makes it possible to observe and analyse short-lived stellar explosions. Indeed, the distribution of elements in 'planetary nebula' and in the ejecta of supernovae and novae give a direct glimpse of individual nucleosynthesis processes. In the February issue of Physics World, Michael Wiescher, Paddy Regan and Ani Aprahamian describe how sate-of-the-art facilities are set to plug many of the gaps in our understanding of nuclear astrophysics. (U.K.)

  12. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arcones, Almudena; Bardayan, Dan W.

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.

  13. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    the conference dinner banquet at the Dan hotel. An excursion to the 'Red Canyon' in the Eilat Mountains on Wednesday afternoon was one of the social highlights of the conference. A total number of 140 scientists attended NPA5 and about 30 accompanying persons; about 25% of these were young participants (less than 36 years old). 23 participants were from Israel, and 27 were from outside of Europe (including two from Africa). The subjects covered at the conference in Eilat concentrated mainly on the spirit of the original idea - to probe experimental and theoretical activity in nuclear structure and reactions that is directly related to the physics of the Universe. There were also sessions of general interest in astrophysics, as well as a poster session on Tuesday evening featuring 40 posters. The topics included: Nuclear Structure - Theory and Experiment Big-Bang Nucleosynthesis and Formation of First Stars Stellar Reactions and Solar Neutrinos Explosive Nucleosynthesis, Radioactive Beams and Exotic Nuclei-New Facilities and Future Possibilities for Astrophysics Neutrino Physics - the Low and High-Energy Frontiers Rare events, Dark Matter, Double beta-decay, Symmetries The conference started with an excellent exposé of the progress made in the discovery of super-heavy elements and the study of their properties. The progress in this field is enormous, and this subject should be communicated to more general audiences. The role of the nuclear equation of state and of the precise determination of nuclear masses in nucleosynthesis was emphasized in several talks. The role of neutrinos in astrophysics was discussed extensively in several sessions. One of the highlights of this was the presentation about the IceCube and DeepCore detectors operating deep in the Antarctic ice. These facilities are able to detect cosmogenic neutrinos in a wide energy range, from 10 GeV to 1010 GeV. The subject of solar neutrinos was discussed in a number of talks. Topics related to properties

  14. Theoretical nuclear structure and astrophysics at FAIR

    International Nuclear Information System (INIS)

    Rodríguez, Tomás R

    2014-01-01

    Next generation of radioactive ion beam facilities like FAIR will open a bright future for nuclear structure and nuclear astrophysics research. In particular, very exotic nuclei (mainly neutron rich) isotopes will be produced and a lot of new exciting experimental data will help to test and improve the current nuclear models. In addition, these data (masses, reaction cross sections, beta decay half-lives, etc.) combined with the development of better theoretical approaches will be used as the nuclear physics input for astrophysical simulations. In this presentation I will review some of the state-of-the-art nuclear structure methods and their applications.

  15. Stopping Power Measurements: Implications in Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Carmen Angulo; Thierry Delbar; Jean-Sebastien Graulich; Pierre Leleux

    1999-01-01

    The stopping powers of C, CH 2 , Al, Ni, and polyvinylchloride (PVC) for several light ions ( 9 Be, 11 B, 12 C, 14 N, 16 O, 19 F, 20 Ne) with an incident energy of 1 MeV/amu have been measured at the Louvain-la-Neuve cyclotron facility. Stopping powers are given relative to the one for 5.5 MeV 4 He ions with an uncertainty of less than 1%. We compare our results with two widely used semiempirical models and we discuss some implications in nuclear astrophysics studies

  16. Nuclear Data on Unstable Nuclei for Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Meyer, Richard A; Lingerfelt, Eric; Scott, J.P.; Hix, William Raphael; Ma, Zhanwen; Bardayan, Daniel W.; Blackmon, Jeff C.; Guidry, Mike W.; KOZUB, RAYMOND L.; Chae, Kyung YuK.

    2004-01-01

    Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. We discuss these evaluations, as well as the development of a new computational infrastructure to enable the rapid incorporation of the latest nuclear physics results in astrophysics models. This infrastructure includes programs that simplify the generation of reaction rates, manage rate databases, and visualize reaction rates, all hosted at a new website http://www.nucastrodata.org

  17. Nuclear astrophysics and nuclei far from stability

    International Nuclear Information System (INIS)

    Schatz, H.

    2003-01-01

    Unstable nuclei play a critical role in a number of astrophysical scenarios and are important for our understanding of the origin of the elements. Among the most important scenarios are the r-process (Supernovae), Novae, X-ray bursters, and Superbursters. For these astrophysical events I review the open questions, recent developments in astronomy, and how nuclear physics, in particular experiments with radioactive beams, needs to contribute to find the answers. (orig.)

  18. The Trojan Horse method as an indirect approach for nuclear astrophysics studies

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A; Spitaleri, C; Cherubini, S; Cognata, M La; Lamia, L; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L, E-mail: tumino@lns.infn.i [Laboratori Nazionali del Sud - INFN, Catania (Italy)

    2010-01-01

    The Trojan Horse method (THM) is a powerful indirect technique that provides a successful alternative path to determine the bare nucleus astrophysical S(E) factor for rearrangement reactions down to astrophysical energies. This is done by measuring the cross section for a suitable three body process in the quasi-free kinematics regime. Prescriptions and basic features will be presented together with some applications to demonstrate how THM works.

  19. Nuclear astrophysics and the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Laboratori Nazionali del Sud - INFN, Catania (Italy); La Cognata, M.; Pizzone, R.G. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Lamia, L. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Mukhamedzhanov, A.M. [Texas A and M University, Cyclotron Institute, College Station, TX (United States)

    2016-04-15

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach. (orig.)

  20. Nuclear Data for Astrophysics: Resources, Challenges, Strategies, and Software Solutions

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Lingerfelt, Eric J.; Nesaraja, Caroline D.; Hix, William Raphael; Roberts, Luke F.; Koura, Hiroyuki; Fuller, George M.; Tytler, David

    2008-01-01

    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos -- the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual 'pipeline' leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research.

  1. Nuclear data for astrophysics: resources, challenges, strategies, and software solutions

    International Nuclear Information System (INIS)

    Smith, M.S.; Lingerfelt, E.J.; Nesaraja, C.D.; Raphael Hix, W.; Roberts, L.F.; Hiroyuki, Koura; Fuller, G.M.; Tytler, D.

    2008-01-01

    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos - the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual - pipeline - leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the Bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research. (authors)

  2. Nuclear properties for astrophysical applications

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, P.; Nix, J.R. [Los Alamos National Lab., NM (United States); Kratz, K.L. [Mainz Univ. (Germany). Inst. fuer Kernchemie

    1994-09-23

    We tabulate the ground-state odd-proton and odd-neutron spins, proton and neutron pairing gaps, binding energies, neuton separation energies, quantities related to {beta}-delayed one, two and three neutron emission probabilities, {beta}-decay Q values and half-lives with respect to Gamow-Teller decay, proton separation energies, and {alpha}-decay Q values and half-lives. The starting point of the calculations is a calculation of nuclear ground-states and (information based on the finite-range droplet model and the folded-Yukawa single-particle model published in a previous issue of ATOMIC DATA AND NUCLEAR DATA TABLES. The {beta}-delayed neutron-emission probabilities and Gamow-Teller {beta}-decay rates are obtained from a QRPA model that uses single-particle levels and wave-functions at the calculated nuclear ground-state shape as the starting point.

  3. Nuclear data needs in nuclear astrophysics: Charged-particle reactions

    International Nuclear Information System (INIS)

    Smith, Michael S.

    2001-01-01

    Progress in understanding a diverse range of astrophysical phenomena - such as the Big Bang, the Sun, the evolution of stars, and stellar explosions - can be significantly aided by improved compilation, evaluation, and dissemination of charged-particle nuclear reaction data. A summary of the charged-particle reaction data needs in these and other astrophysical scenarios is presented, along with recommended future nuclear data projects. (author)

  4. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  5. The Texas-Edinburgh-Catania Silicon Array (TECSA): A detector for nuclear astrophysics and nuclear structure studies with rare isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, B.T., E-mail: broeder@comp.tamu.ed [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); McCleskey, M.; Trache, L.; Alharbi, A.A.; Banu, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Cherubini, S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Davinson, T. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Goldberg, V.Z. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Gulino, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Pizzone, R.G. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Simmons, E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Sparta, R. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Spiridon, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Spitaleri, C. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Wallace, J.P. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Tribble, R.E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Woods, P.J. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2011-04-01

    We present the details of the construction and commissioning of the Texas-Edinburgh-Catania Silicon Array (TECSA). TECSA is composed of up to 16 Micron Semiconductor Ltd. type-YY1 silicon strip detectors and associated electronics, which is designed for use in studies of nuclear astrophysics and nuclear structure with rare isotope beams. TECSA was assembled at the Texas A and M University Cyclotron Institute and will be housed there for the next few years. The array was commissioned in a recent experiment where the d({sup 14}C,p){sup 15}C reaction at 11.7 MeV/u was measured in inverse kinematics. The results of the measurement and a discussion of the future use of this array are presented.

  6. The Texas-Edinburgh-Catania Silicon Array (TECSA): A detector for nuclear astrophysics and nuclear structure studies with rare isotope beams

    International Nuclear Information System (INIS)

    Roeder, B.T.; McCleskey, M.; Trache, L.; Alharbi, A.A.; Banu, A.; Cherubini, S.; Davinson, T.; Goldberg, V.Z.; Gulino, M.; Pizzone, R.G.; Simmons, E.; Sparta, R.; Spiridon, A.; Spitaleri, C.; Wallace, J.P.; Tribble, R.E.; Woods, P.J.

    2011-01-01

    We present the details of the construction and commissioning of the Texas-Edinburgh-Catania Silicon Array (TECSA). TECSA is composed of up to 16 Micron Semiconductor Ltd. type-YY1 silicon strip detectors and associated electronics, which is designed for use in studies of nuclear astrophysics and nuclear structure with rare isotope beams. TECSA was assembled at the Texas A and M University Cyclotron Institute and will be housed there for the next few years. The array was commissioned in a recent experiment where the d( 14 C,p) 15 C reaction at 11.7 MeV/u was measured in inverse kinematics. The results of the measurement and a discussion of the future use of this array are presented.

  7. Nuclear Data and Reaction Rate Databases in Nuclear Astrophysics

    Science.gov (United States)

    Lippuner, Jonas

    2018-06-01

    Astrophysical simulations and models require a large variety of micro-physics data, such as equation of state tables, atomic opacities, properties of nuclei, and nuclear reaction rates. Some of the required data is experimentally accessible, but the extreme conditions present in many astrophysical scenarios cannot be reproduced in the laboratory and thus theoretical models are needed to supplement the empirical data. Collecting data from various sources and making them available as a database in a unified format is a formidable task. I will provide an overview of the data requirements in astrophysics with an emphasis on nuclear astrophysics. I will then discuss some of the existing databases, the science they enable, and their limitations. Finally, I will offer some thoughts on how to design a useful database.

  8. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov (United States)

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group fundamental and applied theoretical research in applied and fundamental nuclear physics, particle physics

  9. Summary of sessions on nuclear astrophysics

    Science.gov (United States)

    Rolfs, C.

    In the minds of some there exists the patronizing belief that nuclear physics is a mature science. The same is not believed about nuclear astrophysics, which has been an active branch of astrophysics for over fifty years, but is now in the midst of an exciting revival in experimental and theoretical research around the world. The ultimate goal is to understand how nuclear processes generate the energy of stars over their lifetimes and, in doing so, synthesize heavier elements from the primordial hydrogen and helium produced in the Big Bang, which led to the expanding universe. Impressive progress has been made in this goal and this was rewarded. However, there are major puzzles, such as the solar neutrino problem to name just one, which challenge the fundaments of the field. To solve these problems, new nuclear physics data are needed employing novel experimental techniques such as radioactive ion beams and underground accelerator facilities. Without such new data, much of the work done so far will - in an optimistic view - be incomplete and - in a pessimistic view - be possibly wrong. Thus, new data do not represent a fine structure information or a cleaning-up job, but they represent the major next step in this exciting field&

  10. Nuclear Data for Astrophysics Research: A New Online Paradigm

    International Nuclear Information System (INIS)

    Smith, Michael Scott

    2011-01-01

    Our knowledge of a wide range of astrophysical processes depends crucially on nuclear physics data. While new nuclear information is being generated at an ever-increasing rate, the methods to process this information into astrophysical simulations have changed little over the decades and cannot keep pace. Working online, 'cloud computing', may be the methodology breakthrough needed to ensure that the latest nuclear data quickly gets into astrophysics codes. The successes of the first utilization of cloud computing for nuclear astrophysics will be described. The advantages of cloud computing for the broader nuclear data community are also discussed.

  11. Art as a Vehicle for Nuclear Astrophysics

    Science.gov (United States)

    Kilburn, Micha

    2013-04-01

    One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.

  12. Some nuclear data needs in astrophysics

    International Nuclear Information System (INIS)

    Mathews, G.J.; Bauer, R.W.; Bloom, S.D.; Haight, R.C.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1985-05-01

    In this paper we discuss a number of astrophysical environments and how improved nuclear data could facilitate a better understanding of them. One area of interest includes proton and alpha-particle reactions with unstable nuclei which are necessary for understanding the nucleosynthesis and energy generation in hot hydrogen-burning environments. Efforts underway at LLNL and elsewhere to develop the technology for the measurement of these reaction rates are discussed. Heavy-element nucleosynthesis in the late stages of red-giant stars and supernovae requires a complete network of neutron capture rates and beta-decay rates for nuclei near and far from stability. Experimental and theoretical efforts at LLNL to supply the input data and to model the nucleosynthetic environments will be outlined. Suggestions are made as to which nuclear data are most critical for the various scenarios. 42 refs., 11 figs., 1 tab

  13. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  14. Applications of the Trojan Horse method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio, E-mail: spitaleri@lns.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud-INFN, Catania (Italy)

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  15. Nuclear information needs for the astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1986-01-01

    The astrophysical s-process is a sequence of neutron-capture and beta-decay reactions on a slow time scale compared to beta-decay lifetimes near the line of stability. This detailed sequence of neutron capture, continuum and bound-state beta decay, positron decay, and electron-capture reactions that comprise the s-process has been studied for a broad range of astrophysical environments. The results are then compared with the solar-system abundancies of heavy elements to determine the range of physical conditions responsible for their nucleosynthesis. The nuclear data needs are extensive but have begun to be precise enough to allow for a consistent interpretation of the astrophysical site for the s-process.

  16. Nuclear information needs for the astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1985-05-01

    The astrophysical s-process is a sequence of neutron-capture and beta-decay reactions on a slow time scale compared to beta-decay lifetimes near the line of stability. We systematically study this detailed sequence of neutron capture, continuum and bound-state beta decay, positron decay, and electron-capture reactions that comprise the s-process for a broad range of astrophysical environments. Our results are then compared with the solar-system abundances of heavy elements to determine the range of physical conditions responsible for their nucleosynthesis. The nuclear data needs are extensive but have begun to be precise enough to allow for a consistent interpretation of the astrophysical site for the s-process.

  17. New Features in the Computational Infrastructure for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Lingerfelt, Eric; Scott, J. P.; Nesaraja, Caroline D; Chae, Kyung YuK.; Koura, Hiroyuki; Roberts, Luke F.; Hix, William Raphael; Bardayan, Daniel W.; Blackmon, Jeff C.

    2006-01-01

    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that are freely available online at http://nucastrodata.org. The newest features of, and future plans for, this software suite are given

  18. Trojan horse particle invariance: The impact on nuclear astrophysics

    International Nuclear Information System (INIS)

    Pizzone, R. G.; La Cognata, M.; Spitaleri, C.; Bertulani, C. A.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Lamia, L.; Spartá, R.; Tumino, A.

    2014-01-01

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and 6 Li(d,α) 4 He reactions, which were tested using different quasi-free break-up's, namely 6 Li and 3 He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions

  19. Trojan horse particle invariance: The impact on nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Pizzone, R. G.; La Cognata, M. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Spitaleri, C. [Universitá di Catania and Laboratori Nazionali del Sud - INFN (Italy); Bertulani, C. A. [Texas A and M University, Commerce (United States); Mukhamedzhanov, A. M. [Texas A and M University, College Station, Texas (United States); Blokhintsev, L. D. [Moscow State University, Moscow (Russian Federation); Lamia, L.; Spartá, R. [Universitá di Catania and Laboratori Nazionali del Sud - INFN, Catania (Italy); Tumino, A. [Universitá Kore, Enna (Italy)

    2014-05-02

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and {sup 6}Li(d,α){sup 4}He reactions, which were tested using different quasi-free break-up's, namely {sup 6}Li and {sup 3}He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions.

  20. From dripline to dripline: Nuclear astrophysics in the laboratory

    International Nuclear Information System (INIS)

    Meisel, Zach

    2016-01-01

    For the better part of a century the field of nuclear astrophysics has aimed to answer fundamental questions about nature, such as the origin of the elements and the behavior of high-density, low-temperature matter. Sustained and concerted efforts in nuclear experiment have been key to achieving progress in these areas and will continue to be so. Here I will briefly review recent accomplishments and open questions in experimental nuclear astrophysics. (paper)

  1. Alpha resonant scattering for astrophysical reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  2. Alpha resonant scattering for astrophysical reaction studies

    International Nuclear Information System (INIS)

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-01-01

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7 Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7 Be(α,γ) reaction, and proposed a new cluster band in 11 C

  3. Preface: Eighth European Summer School on Experimental Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Claudio, Spitaleri; Livio, Lamia; Gianluca, Pizzone Rosario

    2016-01-01

    In this book a collection of the lecture notes given during the Eighth European Summer School on Experimental Nuclear Astrophysics is given. The school, whose first edition was first held in 2003, took place from 13 to 20 of September 2015 in Santa Tecla, a small village about 15 km north of Catania, characterized by its position on the volcanic shores of the Ionian Sea, surrounded by the spectacular “Timpa” area, a green protected park specific for its mediterranean vegetation. 80 young students and researchers from more than 20 countries attended the lectures and were also encouraged to present their work and results. The school, has tried once more to present to the young students the global picture of nuclear astrophysics research in the last years. Thus the scientific program of the school covered a wide range of topics dealing with various aspects of nuclear astrophysics, such as stellar evolution and nucleosynthesis, neutrino physics, the Big Bang, direct and indirect methods and radioactive ion beams. Nuclear astrophysics plays a key role in understanding energy production in stars, stellar evolution and the concurrent synthesis of the chemical elements and their isotopes. It is also a fundamental tool to explain the ashes of the early universe, to determine the age of the universe through the study of pristine stellar objects and to predict the evolution of the Sun or Stars. The “bone structure” for the above aspects is based on nuclear reactions, whose rates need to be determined in laboratories. Although impressive progress has been made over the past decades, which was rewarded by Nobel prizes, several open questions are still unsolved, which challenge the basis of the present understanding. A list of the lecture topics is given below: —Big Bang Nucleosynthesis —Stellar evolution and Nucleosynthesis —radioactive ion beams —detector and facilities for nuclear astrophysics —indirect methods in nuclear astrophysics —plasma physics An

  4. Nuclear Astrophysics from View Point of Few-Body Problems

    International Nuclear Information System (INIS)

    Tumino, A.; Spitaleri, C.; Bertulani, C.; Mukhamedzhanov, A.M.

    2013-01-01

    Few-body systems provide very useful tools to solve different problems for nuclear astrophysics. This is the case of indirect techniques, developed to overcome some of the limits of direct measurements at astrophysical energies. Here the Coulomb dissociation, the asymptotic normalization coefficient and the Trojan Horse method are discussed. (author)

  5. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Directory of Open Access Journals (Sweden)

    Utsunomiya Hiroaki

    2018-01-01

    Full Text Available We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032.

  6. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Science.gov (United States)

    Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji

    2018-05-01

    We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).

  7. Asymptotic normalization coefficients, nuclear vertex constants and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Yarmukhamedov, R.; Artemov, S.V.; Igamov, S.B.; Burtebaev, N.; Peterson, R.J.

    2007-01-01

    Full text: We will review the results of a comprehensive analysis of the experimental astrophysical S- factors S(E) for the t(α, γ ) 7 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 B, 12 C(p , γ) 13 N and 13 C(p,γ) 14 N reactions at extremely low energies, performed within a three-sided collaboration (Uzbekistan-Kazakhstan-USA). In the analysis, the new experimental data for the 12 C(p, γ) 13 N reaction are also included, as measured with the accelerator UKP-2-1 at the Institute of Nuclear Physics in Kazakhstan. The analysis is carried out within the framework of a new two-body potential approach and the R-matrix method, taking into account information about the asymptotic normalization coefficient (ANC) (or the respective nuclear vertex constant for virtual decay of the residual nuclei into two fragments of the initial states of the aforesaid reactions, which belong to the fundamental nuclear constants). Nowadays ANC's are obtained from analysis of peripheral one nucleon transfer reactions by method combining dispersion theory and DWBA (CM). It is shown that ANC can be also reliably obtained from analysis of proton capture reactions at astrophysical energies by new modified two-body potential method where the CM is used. A comparative analysis of the results obtained by different authors in the framework of different methods is also done

  8. Improved predictions of nuclear data: A continued challenge in astrophysics

    International Nuclear Information System (INIS)

    Goriely, S.

    2001-01-01

    Although important effort has been devoted in the last decades to measure reaction cross sections and decay half-lives of interest in astrophysics, most of the nuclear astrophysics applications still require the use of theoretical predictions to estimate experimentally unknown rates. The nuclear ingredients to the reaction or weak interaction models should preferentially be estimated from microscopic or semi-microscopic global predictions based on sound and reliable nuclear models which, in turn, can compete with more phenomenological highly-parametrized models in the reproduction of experimental data. The latest developments made in deriving the nuclear inputs of relevance in astrophysics applications are reviewed. It mainly concerns nuclear structure properties (atomic masses, deformations, radii, etc...), nuclear level densities, nucleon and α-optical potentials, γ-ray and Gamow-Teller strength functions

  9. VI European Summer School on Experimental Nuclear Astrophysics

    Science.gov (United States)

    The European Summer School on Experimental Nuclear Astrophysics has reached the sixth edition, marking the tenth year's anniversary. The spirit of the school is to provide a very important occasion for a deep education of young researchers about the main topics of experimental nuclear astrophysics. Moreover, it should be regarded as a forum for the discussion of the last-decade research activity. Lectures are focused on various aspects of primordial and stellar nucleosynthesis, including novel experimental approaches and detectors, indirect methods and radioactive ion beams. Moreover, in order to give a wide educational offer, some lectures cover complementary subjects of nuclear astrophysics such as gamma ray astronomy, neutron-induced reactions, short-lived radionuclides, weak interaction and cutting-edge facilities used to investigate nuclear reactions of interest for astrophysics. Large room is also given to young researcher oral contributions. Traditionally, particular attention is devoted to the participation of students from less-favoured countries, especially from the southern coast of the Mediterranean Sea. The school is organised by the Catania Nuclear Astrophysics research group with the collaboration of Dipartimento di Fisica e Astromomia - Università di Catania and Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare.

  10. Building better optical model potentials for nuclear astrophysics applications

    International Nuclear Information System (INIS)

    Bauge, Eric; Dupuis, Marc

    2004-01-01

    In nuclear astrophysics, optical model potentials play an important role, both in the nucleosynthesis models, and in the interpretation of astrophysics related nuclear physics measurements. The challenge of nuclear astrophysics resides in the fact that it involves many nuclei far from the stability line, implying than very few (if any) experimental results are available for these nuclei. The answer to this challenge is a heavy reliance on microscopic optical models with solid microscopic physics foundations that can predict the relevant physical quantities with good accuracy. This use of microscopic information limits the likelihood of the model failing spectacularly (except if some essential physics was omitted in the modeling) when extrapolating away from the stability line, in opposition to phenomenological models which are only suited for interpolation between measured data points and not for extrapolating towards unexplored areas of the chart of the nuclides.We will show how these microscopic optical models are built, how they link to our present knowledge of nuclear structure, and how they affect predictions of nuclear astrophysics models and the interpretation of some key nuclear physics measurements for astrophysics

  11. The Trojan Horse Method in nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; Del Zoppo, A.; Di Pietrob, A.; Figuerab, P.; Gulino, M.; Lattuadab, M.; Miljanic, Dstroke; Musumarra, A.; Pellegriti, M.G.; Pizzone, R.G.; Rolfs, C.; Romano, S.; Tudisco, S.; Tumino, A.

    2003-01-01

    The basic features of the Trojan Horse Method are discussed together with a review of recent applications, aimed to extract the bare astrophysical S(E)-factor for several two-body processes. In this framework information on electron screening potential U e was obtained from the comparison with direct experiments

  12. Nuclear astrophysics with radioactive beams: a TRIUMF perspective

    International Nuclear Information System (INIS)

    Shotter, A.C.

    2003-01-01

    Explosive nuclear burning in stellar environments involves reactions with a wide range of isotopes. For isotopes that are unstable, information on relevant reaction rates can only generally be obtained at radioactive beam facilities. The ISAC facility at TRIUMF is purpose built to provide a wide range of radioactive beams for nuclear astrophysics purposes as well as a range of other science

  13. Influences of the astrophysical environment on nuclear decay rates

    International Nuclear Information System (INIS)

    Norman, E.B.

    1987-09-01

    In many astronomical environments, physical conditions are so extreme that nuclear decay rates can be significantly altered from their laboratory values. Such effects are relevant to a number of current problems in nuclear astrophysics. Experiments related to these problems are now being pursued, and will be described in this talk. 19 refs., 5 figs

  14. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  15. Direct reactions for nuclear structure and nuclear astrophysics

    International Nuclear Information System (INIS)

    Jones, Katherine Louise

    2014-01-01

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106 Sn at the NSCL, and on 131 Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  16. Direct Reactions for Nuclear Structure and Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine Louise [Univ. of Tennessee, Knoxville, TN (United States). Experimental Low-Energy Nuclear Physics Group

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  17. The Trojan horse method in nuclear astrophysics

    International Nuclear Information System (INIS)

    Aliotta, M.; Rolfs, C.; Lattuada, M.; Pellegriti, M.G.; Pizzone, R.G.; Spitaleri, C.; Miljanic, Dj.; Typel, S.; Wolter, H.H.

    2001-01-01

    Because of the Coulomb barrier, reaction cross sections in astrophysics cannot be accessed directly at the relevant Gamow energies, unless very favourable conditions are met (e.g. LUNA--underground experiments). Theoretical extrapolations of available data are then needed to derive the astrophysical S(0)-factor. Various indirect processes have been used in order to obtain additional information on the parameters entering these extrapolations. The Trojan Horse Method is an indirect method which might help to bypass some of the problems typically encountered in direct measurements, namely the presence of the Coulomb barrier and the effect of the electron screening. However, a comparison with direct data in an appropriate energy region (e.g. around the Coulomb barrier) is crucial before extending the method to the relevant Gamow energy. Additionally, experimental and theoretical tests are needed to validate the assumptions underlying the method. The application of the Trojan Horse Method to some cases of interest is discussed

  18. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Moeller, P.; Kratz, K.L.

    1992-01-01

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  19. Trojan Horse Method: recent applications in nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Pizzone, R.G.; Romano, S.; Sergi, M.L.; Tumino, A.

    2010-01-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  20. Trojan Horse Method: recent applications in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Mukhamedzhanov, A. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Pizzone, R.G.; Romano, S.; Sergi, M.L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Tumino, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy)

    2010-03-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  1. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-01-01

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the 18 F+p→ 15 O+α process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  2. The Trojan Horse Method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C., E-mail: spitaleri@lns.infn.it [Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia (Italy); Mukhamedzhanov, A. M. [Texas A and M University, Cyclotron Institute (United States); Blokhintsev, L. D. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Cognata, M. La [Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia (Italy); Pizzone, R. G.; Tumino, A. [INFN, Laboratori Nazionali del Sud (Italy)

    2011-12-15

    The study of energy production and nucleosynthesis in stars requires an increasingly precise knowledge of the nuclear reaction rates at the energies of interest. To overcome the experimental difficulties arising from the small cross sections at those energies and from the presence of the electron screening, the Trojan Horse Method has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available.

  3. Nuclear astrophysics. Irfu - IN2P3 prospective of 2012

    International Nuclear Information System (INIS)

    Assie, M.; Hammache, F.; Khan, E.; Margueron, J.; Sereville, N. de; Bastin, B.; Oliveira Santos, F. de; Ploszajczak, M.; Sorlin, O.; Bernard, D.; Chieze, J.-P.; Decourchelle, A.; Ducret, J. E.; Foglizzo, T.; Gilles, D.; Schanne, S.; Turck-Chieze, S.; Coc, A.; Duprat, J.; Kiener, J.; Lefebvre-Schuhl, A.; Tatischeff, V.; Courtin, S.; Dufour, M.; Haas, F.; Gulminelli, F.; Gunsing, F.; Obertelli, A.; Maurin, D.; Renaud, M.; Smirnova, N.

    2011-01-01

    This document proposes a rather detailed overview of the different research works performed by nuclear astrophysicists belonging to the Irfu and to the IN2P3. It also presents the main results and envisaged researches. These issues are herein presented by distinguishing four main themes. The first one concerns the main issues of the field: cosmology and nuclear physics, hydrostatic nucleosynthesis and stellar evolution, explosive nucleosynthesis (supernovae, novae, X-bursts), neutron stars and protostars, galactic cosmic radiation and nuclear astrophysics, formation of the Solar System. The second theme concerns means of observation: astro-seismology, X astronomy, nuclear gamma astronomy, meteorites and micro-meteorites. The third theme concerns measurements in laboratory: steady beam accelerators, radioactive beam accelerators, neutron beams, production of radioactive targets, power lasers, isotopic analysis of extraterrestrial matter. The fourth theme concerns nuclear theories for astrophysics. Appendices propose summaries of objectives of current projects, and tables indicating involved staff and budgets

  4. 2nd International Conference on Nuclear Physics in Astrophysics

    CERN Document Server

    Fülöp, Zsolt; Somorjai, Endre; The European Physical Journal A : Volume 27, Supplement 1, 2006

    2006-01-01

    Launched in 2004, "Nuclear Physics in Astrophysics" has established itself in a successful topical conference series addressing the forefront of research in the field. This volume contains the selected and refereed papers of the 2nd conference, held in Debrecen in 2005 and reprinted from "The European Physical Journal A - Hadrons and Nuclei".

  5. Few-Body Problems in Experimental Nuclear Astrophysics

    DEFF Research Database (Denmark)

    Fynbo, H.O.U.

    2013-01-01

    The 3α-reaction is one of the key reactions in nuclear astrophysics. Since it is a three-body reaction direct measurement is impossible, and therefore the reaction rate must be estimated theoretically. In this contribution I will discuss uncertainties in this reaction rate both at very low...

  6. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1986-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of both an equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model is the basis of the former. We are refining it to include both curvature corrections to the surface energy nuclear force parameters which are in better agreement with recently determined experimental quantities. Our study of the equation of state has the added bonus that our results can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes a fast, but accurate, approximation to the complete LLPR equation of state. We model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures. Complementary studies include modelling both mass accretion in the nuclei of galaxies and investigating both galaxy clustering and the large scale structure of the universe. These studies are intended to shed light on the early history of the universe, in which both nuclear and elementary particle physics play a crucial role

  7. Consequences of fine structure of β-strength function in the nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Wene, C.O.

    1980-01-01

    The consequences of structural effects in the β-strength function Ssub(β) in different fields of nuclear physics and astrophysics are considered. The given structure is shown to affect essentially the lifetimes relative to β-decay, emission of delayed particles, delayed fission and, consequently, all the calculations of synthesis of heavy and superheavy elements in astrophysical and thermonuclear processes. A table of experimental procedures applied for studying the β-strength function in different reactions is given

  8. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  9. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  10. Some topics on nuclear astrophysics and neutrino astronomy

    International Nuclear Information System (INIS)

    Nakazato, Ken'ichiro

    2010-01-01

    Massive stars make a gravitational collapse at the end of their lives emitting a large amount of neutrinos. In this process, the density and temperature of matter become high. Therefore neutrino detection of stellar collapse can teach us properties of hot and/or dense nuclear matter. In this article, some subjects on the nuclear astrophysics and/or neutrino astronomy, on which we are now working, are reported. (author)

  11. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  12. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    International Nuclear Information System (INIS)

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance

  13. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  14. Asymptotic normalization coefficients in nuclear astrophysics

    Czech Academy of Sciences Publication Activity Database

    Kroha, Václav; Azhari, A.; Bém, Pavel; Burjan, Václav; Gagliardi, C. A.; Mukhamedzhanov, A. M.; Novák, Jan; Piskoř, Štěpán; Šimečková, Eva; Tang, X.; Trache, L.; Tribble, R. E.; Vincour, Jiří

    2003-01-01

    Roč. 719, - (2003), s. 119C-122C ISSN 0375-9474 R&D Projects: GA ČR GA202/01/0709; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : S-factor * C-13(p,gamma)N-14 * Be-9(p, gamma)B-10 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.761, year: 2003

  15. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1984-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe

  16. Nuclear astrophysics: Recent results on CNO-cycle reactions and AGB nucleosynthesis

    International Nuclear Information System (INIS)

    La Cognata, M.

    2011-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 100 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method and new experimental facilities such as deep underground laboratories have been devised yielding new cutting-edge results.

  17. The Nuclear Astrophysics program at n_TOF (CERN

    Directory of Open Access Journals (Sweden)

    Colonna N.

    2017-01-01

    Full Text Available An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neutron sources and primordial nucleosynthesis.

  18. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  19. The weak interaction in nuclear, particle and astrophysics

    International Nuclear Information System (INIS)

    Grotz, K.; Klapdor, H.V.

    1989-01-01

    This book is an introduction to the concepts of weak interactions and their importance and consequences for nuclear physics, particle physics, neutrino physics, astrophysics and cosmology. After a general introduction to elementary particles and interactions the Fermi theory of weak interactions is described together with its connection with nuclear structure and beta decay including the double beta decay. Then, after a general description of gauge theories the Weinberg-Salam theory of the electroweak interactions is introduced. Thereafter the weak interactions are considered in the framework of grand unification. Then the physics of neutrinos is discussed. Thereafter connections of weak interactions with astrophysics are considered with special regards to the gravitational collapse and the synthesis of heavy elements in the r-process. Finally, the connections of grand unified theories and cosmology are considered. (HSI) With 141 figs., 39 tabs

  20. Personal comments on the history of nuclear astrophysics

    International Nuclear Information System (INIS)

    Hoyle, Fred.

    1986-01-01

    The author reviews his personal career in nuclear astrophysics from just before World War II to 1966. It concentrates on the work carried out in conjunction with colleagues, especially those in Cambridge and at the California Institute of Technology in Pasadena, on the development of various models to explain nucleosynthesis and the evaluation of stars. The paper also covers a wide variety of other topics, touching on isotope abundances, the helium abundance in particular, and the relict radiation. (UK)

  1. “Other” indirect methods for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Trache Livius

    2017-01-01

    Full Text Available In the house of Trojan Horse Method (THM, I will say a few words about “other” indirect methods we use in Nuclear Physics for Astrophysics. In particular those using Rare Ion Beams that can be used to evaluate radiative proton capture reactions. I add words about work done with the Professore we celebrate today. With a proposal, and some results with TECSA, for a simple method to produce and use isomeric beam of 26mAl.

  2. Theoretical nuclear structure and astrophysics. Progress report for 1996

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops

  3. Selected topics in nuclear- and astro-physics

    International Nuclear Information System (INIS)

    Sujkowski, Z.; Szeflinska, G.

    1991-11-01

    The subjects cover the properties of hot and dense matter created in laboratory (the dynamics of the nucleus-nucleus collisions, the structure of hot and spinning nuclei), the properties of hot and dense stellar matter, the nuclear reactions of astrophysical interest (including the latest developments of the tools such as e.g. the radioactive beams) and the nucleosynthesis (esp. R-processes). (author)

  4. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1990-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. We have been actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; in fact, nuclear matter properties, especially supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered prior to its explosion. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We have also extended models of the neutrino emission and cooling of neutron stars to include the effects of rotation. The Lattimer compressible liquid drop model is the basis of our equation of state. We have developed a rapid version for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. We have also focused on the nuclei-nuclear matter phase transition just below nuclear matter density, including the probable nuclear deformations and the possible ''inside-out'' phase of bubbles, which could be of major importance in supernovae models. Work also progressed toward understanding the origin of the r-process elements, through focusing on the neutron star decompression model

  5. Impact of Precision Mass Measurements on Nuclear Physics and Astrophysics

    CERN Document Server

    Kreim, Susanne; Dilling, Jens; Litvinov, Yuri A

    2013-01-01

    Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of neutron and proton number, N and Z, respectively. The data obtained through mass measurements provide details of the nuclear interaction and thus apply to a variety of physics topics. Some of the most crucial questions to be addressed by mass spectrometry of unstable radionuclides are, on the one hand, nuclear forces and structure, describing phenomena such as the so-called neutron-halos or the evolution of magic numbers when moving towards the borders of nuclear existence. On the other hand, the understanding of the processes of element formation in the Universe poses a challenge and requires an accurate knowledge of nuclear astrophysics. Here, precision atomic mass values of a large number of exotic nuclei participating in nucleosynthesis processes are among the key input data in large-scale reaction network calculations.

  6. Wanted! Nuclear Data for Dark Matter Astrophysics

    International Nuclear Information System (INIS)

    Gondolo, P.

    2014-01-01

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei

  7. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1991-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching the astrophysics of gravitational collapse, neutron star birth and neutrino emission, and neutron star cooling, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; some nuclear matter properties might be best delineated by astrophysical considerations. Our research has focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. We are modifying our hydrodynamical code to use implicit differencing and to include multi-group neutrino diffusion and general relativity. In parallel, we are extending calculations of core collapse supernovae to long times after collapse by using a hybrid explicit-implicit hydrodynamical code and by using simplified neutrino transport. We hope to establish the existence or non-existence of the so-called long-term supernova mechanism. We are also extending models of the neutrino emission and cooling of neutron stars to include the effects of rotation and the direct Urca process that we recently discovered to be crucial. We have developed a rapid version of the dense matter equation of state for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. This version also has the great advantage that nuclear physics inputs, such as the nuclear incompressibility, symmetry, energy, and specific heat, can be specified

  8. Studying shocks in model astrophysical flows

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.

    1989-01-01

    We briefly discuss some properties of the shocks in the existing models for quasi two-dimensional astrophysical flows. All of these models which allow the study of shock analytically have some unphysical characteristics due to inherent assumptions made. We propose a hybrid model for a thin flow which has fewer unpleasant features and is suitable for the study of shocks. (author). 5 refs

  9. Recent Efforts in Data Compilations for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Dillmann, Iris

    2008-01-01

    Some recent efforts in compiling data for astrophysical purposes are introduced, which were discussed during a JINA-CARINA Collaboration meeting on 'Nuclear Physics Data Compilation for Nucleosynthesis Modeling' held at the ECT* in Trento/Italy from May 29th-June 3rd, 2007. The main goal of this collaboration is to develop an updated and unified nuclear reaction database for modeling a wide variety of stellar nucleosynthesis scenarios. Presently a large number of different reaction libraries (REACLIB) are used by the astrophysics community. The 'JINA Reaclib Database' on http://www.nscl.msu.edu/~nero/db/ aims to merge and fit the latest experimental stellar cross sections and reaction rate data of various compilations, e.g. NACRE and its extension for Big Bang nucleosynthesis, Caughlan and Fowler, Iliadis et al., and KADoNiS.The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, http://nuclear-astrophysics.fzk.de/kadonis) project is an online database for neutron capture cross sections relevant to the s process. The present version v0.2 is already included in a REACLIB file from Basel university (http://download.nucastro.org/astro/reaclib). The present status of experimental stellar (n,γ) cross sections in KADoNiS is shown. It contains recommended cross sections for 355 isotopes between 1 H and 210 Bi, over 80% of them deduced from experimental data.A ''high priority list'' for measurements and evaluations for light charged-particle reactions set up by the JINA-CARINA collaboration is presented. The central web access point to submit and evaluate new data is provided by the Oak Ridge group via the http://www.nucastrodata.org homepage. 'Workflow tools' aim to make the evaluation process transparent and allow users to follow the progress

  10. Recent Efforts in Data Compilations for Nuclear Astrophysics

    Science.gov (United States)

    Dillmann, Iris

    2008-05-01

    Some recent efforts in compiling data for astrophysical purposes are introduced, which were discussed during a JINA-CARINA Collaboration meeting on ``Nuclear Physics Data Compilation for Nucleosynthesis Modeling'' held at the ECT* in Trento/Italy from May 29th-June 3rd, 2007. The main goal of this collaboration is to develop an updated and unified nuclear reaction database for modeling a wide variety of stellar nucleosynthesis scenarios. Presently a large number of different reaction libraries (REACLIB) are used by the astrophysics community. The ``JINA Reaclib Database'' on http://www.nscl.msu.edu/~nero/db/ aims to merge and fit the latest experimental stellar cross sections and reaction rate data of various compilations, e.g. NACRE and its extension for Big Bang nucleosynthesis, Caughlan and Fowler, Iliadis et al., and KADoNiS. The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, http://nuclear-astrophysics.fzk.de/kadonis) project is an online database for neutron capture cross sections relevant to the s process. The present version v0.2 is already included in a REACLIB file from Basel university (http://download.nucastro.org/astro/reaclib). The present status of experimental stellar (n,γ) cross sections in KADoNiS is shown. It contains recommended cross sections for 355 isotopes between 1H and 210Bi, over 80% of them deduced from experimental data. A ``high priority list'' for measurements and evaluations for light charged-particle reactions set up by the JINA-CARINA collaboration is presented. The central web access point to submit and evaluate new data is provided by the Oak Ridge group via the http://www.nucastrodata.org homepage. ``Workflow tools'' aim to make the evaluation process transparent and allow users to follow the progress.

  11. Nuclear Physics Constraints on the Characteristics of Astrophysical Thermonuclear Flashes

    International Nuclear Information System (INIS)

    Truran, James W

    2012-01-01

    We review the nuclear physics that is associated with the outbursts of Type Ia (thermonuclear) supernova explosions and with the thermonuclear runaway events that define the outbursts of both classical novae and recurrent novae. We describe how distinguishing characteristics of these two classes of astrophysical explosion are strongly dependent both upon fuel ignition in degenerate matter and upon the rates of critical charged-particle reaction rates and weak interaction rates. In this centennial celebration of the important contributions of Rutherford and his collaborators to our understanding of the structure of the nucleus of an atom, it is quite interesting to note the evolution of the α-particle scattering experiments described in Rutherford's seminal paper (Rutherford 1911) to current studies of α-particle induced reactions and their defining roles in studies of stellar, nova, and supernova nucleosynthesis. We identify and discuss for example: (1) the manner in which (α, p) reactions in proximity to the Z = N line carry the major flows from 12 C and 16 O to 56 Ni in Type Ia supernovae; and (2) the critical role of the 15 O(α, γ) 19 Ne reaction in possibly effecting 'breakout' of the Hot CNO cycles at the highest temperatures achievable in Classical Novae. In this contribution, we first review the current status our understanding of Type Ia supernova events and then that of Classical Novae.

  12. MAX: Development of a Laue diffraction lens for nuclear astrophysics

    International Nuclear Information System (INIS)

    Barriere, N.; Ballmoos, P. von; Skinner, G.; Smither, B.; Bastie, P.; Hinglais, E.; Abrosimov, N.; Alvarez, J.M.; Andersen, K.; Courtois, P.; Halloin, H.; Harris, M.; Isern, J.; Jean, P.; Knoedlseder, J.; Ubertini, P.; Vedrenne, G.; Weidenspointner, G.; Wunderer, C.

    2006-01-01

    The next generation of instrumentation for nuclear astrophysics will have to achieve an improvement in sensitivity by a factor of 10-100 over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge and propose to combine the required sensitivity with high spectral and angular resolution, and the capability to measure the polarization of the photons. MAX is a space-borne crystal diffraction telescope, featuring a broad-band Laue lens optimized for the observation of compact sources in two wide energy bands of high astrophysical relevance. Gamma rays will be focused from the large collecting area of a crystal diffraction lens onto a very small detector volume. As a consequence, the signal to background ratio is greatly enhanced, leading to unprecedented sensitivities

  13. Nuclear astrophysics with DRAGON at ISAC

    International Nuclear Information System (INIS)

    D'Auria, J.M.

    2003-01-01

    A new facility, DRAGON, designed specifically to measure radiative proton and alpha capture reaction rates using short-lived, radioactive beams is almost installed at the new ISAC accelerated radioactive beam facility. A description of the planned experimental program, status of the installation (as of July 2001), results from commissioning studies, and the planned schedule are provided in this report. (orig.)

  14. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    Energy Technology Data Exchange (ETDEWEB)

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E. [Texas A and M University, College Station, TX 77845 (United States); Saastamoinen, A.; Jokinen, A.; Aysto, J. [University of Jyvaskyla, Jyvaskyla (Finland); Davinson, T.; Woods, P. J. [University of Edinburgh, Edinburgh (United Kingdom); Pollacco, E.; Kebbiri, M. [CEA/IRFU Saclay (France); Pascovici, G. [IKP, Universitaet zu Koeln (Germany)

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  15. Nuclear astrophysics of worlds in the string landscape

    International Nuclear Information System (INIS)

    Hogan, Craig J.

    2006-01-01

    Motivated by landscape models in string theory, cosmic nuclear evolution is analyzed allowing the standard model Higgs expectation value w to take values different from that in our world (w≡1), while holding the Yukawa couplings fixed. Thresholds are estimated, and astrophysical consequences are described, for several sensitive dependences of nuclear behavior on w. The dependence of the neutron-proton mass difference on w is estimated based on recent calculations of strong isospin symmetry breaking, and is used to derive the threshold of neutron-stable worlds, w≅0.6±0.2. The effect of a stable neutron on nuclear evolution in the big bang and stars is shown to lead to radical differences from our world, such as a predominance of heavy r-process and s-process nuclei and a lack of normal galaxies, stars, and planets. Rough estimates are reviewed of w thresholds for deuteron stability and the pp and pep reactions dominant in many stars. A simple model of nuclear resonances is used to estimate the w dependence of overall carbon and oxygen production during normal stellar nucleosynthesis; carbon production is estimated to change by a fraction ≅15(1-w). Radical changes in astrophysical behavior seem to require changes in w of more than a few percent, even for the most sensitive phenomena

  16. Charged-particle transfer reactions and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Duysebaev, A.; Kadyrzhanov, K.K.

    2002-01-01

    In the report a review of the recent results of calculation of the astrophysical S-factors S(E) for the D(α, γ) 6 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 Be, 12,13 C(p, γ) 13, 14 N and 12 C(p,γ) 16 O* reactions at extremely low energies E, including value E=0 , performed within the framework of a new method taking into account the additional information about the nuclear vertex constant (Nc) (or the respective asymptotic normalization coefficient) are presented. The required values of Nc can be obtained from an analysis of measured differential cross-sections of proton and α-particle transfer reactions (for example A( 3 He,d)B, 6 Li(d, 6 Li)d, 6 Li(α, 6 Li)α, 12 C( 6 Li, d) 16 O* etc.). A comparative analysis between the results obtained by different authors is also done. Taking into account an important role of the NVC's values for the nuclear astrophysical A(p, γ)B and A(α, γ)B reactions, a possibility of obtaining the reliable NVC values for the virtual decay B→A+p and B→A+α from the analysis of differential cross sections both sub- and above-barrier A( 3 He, d) and A( 6,7 Li, 2,3 H)B reactions is discussed in detail. In this line the use the isochronous cyclotron U-150 M, the 'DC-60' heavy ion machine and electrostatic charge-exchanging accelerator UKP-2-1 of Institute of Nuclear Physics of National Nuclear Center of the Republic of Kazakhstan for carrying out the needed experiments is considered and the possibility of the obtained data application for the astrophysical interest is also discussed

  17. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M., E-mail: lacognata@lns.infn.it [Laboratori Nazionali del Sud - INFN, Catania (Italy); Kiss, G. G. [ATOMKI, Debrecen (Hungary); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A& M University, College Station, Texas (United States); Spitaleri, C. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Department of Physics and Astronomy, University of Catania, Catania (Italy); Trippella, O. [Sezione di Perugia - INFN, Perugia (Italy)

    2015-10-15

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization to direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.

  18. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    Science.gov (United States)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  19. Nuclear effects on bremsstrahlung neutrino rates of astrophysical interest

    International Nuclear Information System (INIS)

    Stoica, Sabin; Horvath, J.E.

    2002-01-01

    We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough (T≤20 MeV), the integration over the nuclear part can be done for the general case, ranging from the completely degenerate (D) to the nondegenerate (ND) regime. We find that the inclusion of the full nuclear contribution enhances the neutrino pair production by nn and pp bremsstrahlung by a factor of about 2 in both the D and ND limits when compared with previous calculations. This result may be relevant for the physical conditions of interest in the semitransparent regions near the neutrinosphere in type II supernovae, cooling of neutron stars, and other astrophysical situations

  20. Some perspectives in nuclear astrophysics on non-thermal phenomena

    International Nuclear Information System (INIS)

    Tatischeff, V.

    2012-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author presents and comments his research activities on nuclear phenomena in stellar eruptions (solar eruptions, lithium nucleosynthesis in stellar eruptions), on particle acceleration in shock waves of stellar explosions (diffusive acceleration by shock wave, particle acceleration in symbiotic novae, particle acceleration in radio-detected supernovae), of research on low energy cosmic rays (galactic emission of nuclear gamma rays, non thermal soft X rays as new tracer of accelerated particles), and on the origin of short period radioactivities in the primitive solar system (extinguished radio-activities and formation of the solar system, origin of berylium-10 in the primitive solar system). The author concludes with some perspectives on non thermal phenomena in nuclear astrophysics, and on research and development for the future of medium-energy gamma astronomy [fr

  1. Nuclear beta decay far from stability and astrophysics

    International Nuclear Information System (INIS)

    Klapdor, H.V.

    1988-01-01

    Beta decay data of nuclei far from stability are one of the most important nuclear physics input for the understanding of the element systhesis in the universe and determination of the age of the universe from cosmochronometers and by the latter have implications also for cosmology. The present status of theoretical predictions of beta decay far from stability will be reviewed and the impact on the above astrophysical questions will be outlined. First results of second generation microscopic calculations of β F half lives, which are at present in progress, will be presented. (orig.)

  2. Recent astrophysical applications of the Trojan Horse Method to nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Fu, C.; Tribble, R.; Banu, A.; Al-Abdullah, T.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-01-01

    The Trojan Horse Method (THM) is an unique indirect technique allowing to measure astrophysical rearrangement reactions down to astrophysical relevant energies. The basic principle and a review of the recent applications of the Trojan Horse Method are presented. The applications aiming to the extraction of the bare astrophysical S b (E) for some two-body processes are discussed

  3. XVI International symposium on nuclear electronics and VI International school on automation and computing in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Churin, I.N.

    1995-01-01

    Reports and papers of the 16- International Symposium on nuclear electronics and the 6- International school on automation and computing in nuclear physics and astrophysics are presented. The latest achievements in the field of development of fact - response electronic circuits designed for detecting and spectrometric facilities are studied. The peculiar attention is paid to the systems for acquisition, processing and storage of experimental data. The modern equipment designed for data communication in the computer networks is studied

  4. Excitation of compound states in the subsystems as indirect tool in nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Tribble R.E.

    2010-03-01

    Full Text Available Astrophysical reactions proceeding through compound states represent one of the crucial part of nuclear astrophysics. However, due to the presence of the Coulomb barrier, it is often very difficult or even impossible to obtain the astrophysical S (E factor from measurements in the laboratory at astrophysically relevant energies. The Trojan Horse method (THM provides a unique tool to obtain the information about resonant astrophysical reactions at astrophysically relevant energies. Here the theory and application of the THM for the resonant reactions is addressed.

  5. Possibilities at LAMPF for studying nuclei of astrophysical interest

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Bunker, M.E.

    1985-01-01

    Nuclear data needs in astrophysics range from neutron capture cross sections of a number of stable or near-stable nuclei to decay and neutron binding-energy data for highly neutron-rich nuclei. LAMPF has the potential to contribute significantly to these needs. The new Los Alamos Neutron Scattering Center (LANSCE, aka WNR/PSR) offers world-class capabilities for neutron capture studies up to an MeV or so. The study of nuclei far from stability could be extended into some regions of astrophysical interest using a proposed He-jet coupled mass separator system with a target/production chamber in the LAMPF beam stop area. Specific examples of possible studies at each facility are presented

  6. sup 4 sup 4 Ti atom counting for nuclear astrophysics

    CERN Document Server

    Hui, S K; Berkovits, D; Boaretto, E; Ghelberg, S; Hass, M; Hershkowitz, A; Navon, E

    2000-01-01

    The nuclide sup 4 sup 4 Ti (T sub 1 sub / sub 2 =59.2 yr) has recently become an important asset to nuclear astrophysics through the measurement of its cosmic radioactivity, yielding significant information on fresh sup 4 sup 4 Ti nucleosynthesis in supernovae. We propose to use AMS to determine the production rate of sup 4 sup 4 Ti by the main channel believed to be responsible for sup 4 sup 4 Ti astrophysical production, namely sup 4 sup 0 Ca(alpha,gamma). A preliminary experiment conducted at the Koffler 14UD Pelletron accelerator demonstrates a sensitivity of 1x10 sup - sup 1 sup 4 for the sup 4 sup 4 Ti/Ti ratio. The AMS detection was performed using sup 4 sup 4 Ti sup - ions sputtered from a TiO sub 2 sample, reducing considerably the sup 4 sup 4 Ca isobaric interference. The present limit corresponds effectively to sup 4 sup 4 Ti production with resonance strength in the range 10-100 meV for a one-day sup 4 sup 0 Ca(alpha,gamma) activation. Several such resonances are known to be responsible for sup 4 ...

  7. Nuclear astrophysics with DRAGON at ISAC: the 21Na(p, γ)22Mg reaction

    International Nuclear Information System (INIS)

    D'Auria, J.M.

    2003-01-01

    The DRAGON facility at the new intense radioactive beams facility, ISAC, is now operational. It was built to perform studies of radiative alpha and proton capture reactions involving radioactive reactants, and of interest to nuclear astrophysics. The rate of the 21 Na(p, γ) 22 Mg reaction has been measured using inverse kinematics. Resonance strengths have been measured for states of importance for novae explosions. This report will summarize aspects of this study and its impact. (orig.)

  8. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  9. 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    Science.gov (United States)

    Perez-Garcia, M. Angeles; Pons, Jose; Albertus, C.

    2012-02-01

    ORGANIZING COMMITTEE Dr M Ángeles Pérez-García (Área Física Teórica-Universidad de Salamanca & IUFFYM) Dr J A Miralles (Universidad de Alicante) Dr J Pons (Universidad de Alicante) Dr C Albertus (Área Física Nuclear-Universidad de Salamanca & IUFFYM) Dr F Atrio (Área Física Teórica-Universidad de Salamanca & IUFFYM) PREFACE The second Iberian Nuclear Astrophysics meeting was held at the University of Salamanca, Spain on 22-23 September 2011. This volume contains most of the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ibérico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. It is indeed important to emphasize the need for a collaborative approach to the rest of the scientific communities so that we can reach possible new members in this interdisciplinary area and as outreach for the general public. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included. The main scientific topics included: Magnetic fields in compact stars Nuclear structure and in-medium effects in nuclear interaction Equation of state: from nuclear matter to quarks Importance of crust in the evolution of neutron stars Computational simulations of collapsing dense objects Observational phenomenology In particular, leading

  10. Promising lines of research in the realms of laboratory nuclear astrophysics by means of powerful lasers

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.; Lobanov, A. V.; Matafonov, A. P. [Russian Space Agency, Pionerskaya, Central Research Institute for Machine Building (TsNIIMash) (Russian Federation); Bolshakov, V. V.; Savel’ev, A. B.; Mordvintsev, I. M.; Tsymbalov, I. N.; Shulyapov, S. A. [Moscow State University, International Laser Center (Russian Federation); Pikuz, S. A.; Skobelev, I. Yu.; Filippov, E. D.; Faenov, A. Ya. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Krainov, V. P. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-09-15

    Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.

  11. Nuclear energy and astrophysics applications of ENDF/B-VII.1 evaluated nuclear library

    International Nuclear Information System (INIS)

    Pritychenko, B.

    2012-01-01

    Recently released ENDF/B-VII.1 evaluated nuclear library contains the most up-to-date evaluated neutron cross section and covariance data. These data provide new opportunities for nuclear science and astrophysics application development. The improvements in neutron cross section evaluations and more extensive utilization of covariance files, by the Cross Section Evaluation Working Group (CSEWG) collaboration, allowed users to produce neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates, and provide additional insights on the currently available neutron-induced reaction data. Nuclear reaction calculations using the ENDF/B-VII.1 library and current computer technologies will be discussed and new results will be presented

  12. New Horizon in Nuclear Physics and Astrophysics Using Radioactive Nuclear Beams

    Science.gov (United States)

    Tanihata, Isao

    Beams of β- radioactive nuclei, having a lifetime as short as 1 ms have been used for studies of the nuclear structure and reaction relevant to nucleosynthesis in the universe. In nuclear-structure studies, decoupling of the proton and neutron distributions in nuclei has been discovered. The decoupling appeared as neutron halos and neutron skins on the surface of neutron-rich unstable nuclei. In astrophysics, reaction cross sections have been determined for many key reactions of nucleosynthesis involving short-lived nuclei in the initial and final states. One such important reaction, 13N+p → 14O +γ, has been studied using beams of unstable 13N nuclei. Such studies became possible after the invention of beams of radioactive nuclei in the mid-80's. Before that, the available ion beams were restricted to ions of stable nuclei for obvious reasons. In the next section the production method of radioactive beams is presented, then a few selected studies using radioactive beams are discussed in the following sections. In the last section, some useful properties of radioactive nuclei for other applications is shown.

  13. Radioactive targets for nuclear astrophysics research at LANSCE

    International Nuclear Information System (INIS)

    Koehler, P.E.; O'Brien, H.A.; Gursky, J.C.

    1990-01-01

    During the past few years we have made measurements of (n,p) and (n,α) cross sections on several radioactive nuclei of importance to nuclear astrophysics. The measurements were made at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) from thermal neutron energy to approximately 100 keV. Successful measurements have been completed on the radioisotopes 7 Be, 22 Na and 36 Cl while preliminary data have been taken on targets of 54 Mn and 55 Fe. Similar measurements have also been made on the stable isotopes 14 N, 17 O and 35 Cl. We are currently assembling a 4π barium fluoride (BaF 2 ) detector which will allow us to expand our program to (n,γ) measurements. The (n,γ) (and in some cases future (n,p)) measurements will require targets with higher specific activity and greater chemical purity than we have so far been able to use. We discuss the fabrication techniques used for the samples produced so far, the requirements the future (n,γ) targets must meet and our current plans for producing them, and the physics motivations for the measurements

  14. Nuclear Astrophysics Data from Radioactive Beam Facilities. Final report

    International Nuclear Information System (INIS)

    Chen, Alan A.

    2008-01-01

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): 21 Na(p,γ) 22 Mg and 18 Ne(α,p) 21 Na - The importance of the 21 Na(p,γ) 22 Mg and the 18 Ne(α,p) 21 Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope 22 Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: 21 Na(p,γ) 22 Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne(α,p) 21 Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,γ) 26 Si and 13 N(p,γ)14O reactions - For Year 2, we worked on evaluations of the 25 Al(p,γ) 26 Si and 13 N(p,γ) 14 O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The 25 Al(p,γ) 26 Si reaction is a key uncertainty in the understanding the origin of galactic 26 Al, a target radioisotope for gamma ray astronomy; the 13 N(p,γ) 14 O reaction in turn is the trigger

  15. Nuclear astrophysics at Gran Sasso Laboratory: the LUNA experiment

    Science.gov (United States)

    Cavanna, Francesca

    2018-05-01

    LUNA is an experimental approach for the study of nuclear fusion reactions based on an underground accelerator laboratory. Aim of the experiment is the direct measurement of the cross section of nuclear reactions relevant for stellar and primordial nucleosynthesis. In the following the latest results and the future goals will be presented.

  16. Laboratory Astrophysics Experiments to Study Star Formation

    Science.gov (United States)

    Young, Rachel

    As a thesis project, I devised and implemented a scaled accretion shock experiment on the OMEGA laser (Laboratory for Laser Energetics). This effort marked the first foray into the growing field of laser-created magnetized flowing plasmas for the Center for Laser Experimental Astrophysical Research (CLEAR) here at the University of Michigan. Accretion shocks form when streams of accreting material fall to the surface of a young, growing star along magnetic field lines and, due to their supersonic flow, create shocks. As I was concerned with what was happening immediately on the surface of the star where the shock forms, I scaled the system by launching a plasma jet (the "accreting flow") and driving it into a solid surface (the "stellar surface") in the presence of an imposed magnetic field parallel to the jet flow (locally analogous to the dipole field of the star). Early work for this thesis project was dedicated to building a magnetized flowing plasma platform at CLEAR. I investigated a method for launching collimated plasma jets and studied them using Thomson scattering, a method which measures parameters such as temperature and density by scattering a probe beam off the experimental plasma. Although the data were corrupted with probe heating effects, I overcame this problem by finding the mass density of the jets and using it to determine they were isothermal rarefactions with a temperature of 6 eV. Scaling an astrophysical phenomenon to the laboratory requires tailoring the parameters of the experiment to preserve its physics, rather than creating an experiment that merely superficially resembles it. I ensured this by distilling the driving physical processes of the astrophysical system--accretion shocks--into a list of dimensionless number constraints and mapping these into plasma parameter space. Due to this project being the first magnetized flowing plasma effort at CLEAR, it suffered the growing pains typical of a young research program. Of my two primary

  17. Phenomenological correlations in nuclear structure: An opportunity for nuclear astrophysics and a challenge to theory

    International Nuclear Information System (INIS)

    Casten, R.F.; Zamfir, N.V.

    1992-01-01

    Though it often appears daunting in its complexity, nuclear data frequently exhibits remarkable simplicities when viewed from the appropriate perspectives. This realization, which is becoming more and more apparent, is one of the fruits of the vast amount of nuclear data that has been accumulated over many years but, surprisingly, has never been completely digested. This emerging, unified, and simple macroscopic phenomenology, aided by microscopic underpinnings and physical arguments, appears in many guises and often simplifies semi-empirical estimates of structure far from stability in the critical realms where nuclear astrophysics takes place and where it is in need for improved nuclear input. The generality of simple phenomenological relationships begs both for a sound theoretical basis and for the advent of Radioactive Nuclear Beams so that the reliability of their extrapolations can be assessed and tested. These issues will be discussed, and illustrated with a number of specific examples

  18. Direct measurement of nuclear cross-section of astrophysical interest: Results and perspectives

    Science.gov (United States)

    Cavanna, Francesca; Prati, Paolo

    2018-03-01

    Stellar evolution and nucleosynthesis are interconnected by a wide network of nuclear reactions: the study of such connection is usually known as nuclear astrophysics. The main task of this discipline is the determination of nuclear cross-section and hence of the reaction rate in different scenarios, i.e. from the synthesis of a few very light isotopes just after the Big Bang to the heavy element production in the violent explosive end of massive stars. The experimental determination of reaction cross-section at the astrophysical relevant energies is extremely difficult, sometime impossible, due to the Coulomb repulsion between the interacting nuclei which turns out in cross-section values down to the fbar level. To overcome these obstacles, several experimental approaches have been developed and the adopted techniques can be roughly divided into two categories, i.e. direct and indirect methods. In this review paper, the general problem of nuclear astrophysics is introduced and discussed from the point of view of experimental approach. We focus on direct methods and in particular on the features of low-background experiments performed at underground laboratory facilities. The present knowledge of reactions involved in the Big Bang and stellar hydrogen-burning scenarios is discussed as well as the ongoing projects aiming to investigate mainly the helium- and carbon-burning phases. Worldwide, a new generation of experiment in the MeV range is in the design phase or at the very first steps and decisive progresses are expected to come in the next years.

  19. Thermonuclear Reaction Rate Libraries and Software Tools for Nuclear Astrophysics Research

    International Nuclear Information System (INIS)

    Smith, Michael S.; Cyburt, Richard; Schatz, Hendrik; Smith, Karl; Warren, Scott; Ferguson, Ryan; Wiescher, Michael; Lingerfelt, Eric; Buckner, Kim; Nesaraja, Caroline D.

    2008-01-01

    Thermonuclear reaction rates are a crucial input for simulating a wide variety of astrophysical environments. A new collaboration has been formed to ensure that astrophysical modelers have access to reaction rates based on the most recent experimental and theoretical nuclear physics information. To reach this goal, a new version of the REACLIB library has been created by the Joint Institute for Nuclear Astrophysics (JINA), now available online at http://www.nscl.msu.edu/~nero/db. A complementary effort is the development of software tools in the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to streamline, manage, and access the workflow of the reaction evaluations from their initiation to peer review to incorporation into the library. Details of these new projects will be described

  20. Experimental physics 4. Nuclear, particle and astrophysics. 5. ed.; Experimentalphysik 4. Kern-, Teilchen- und Astrophysik

    Energy Technology Data Exchange (ETDEWEB)

    Demtroeder, Wolfgang

    2017-09-01

    The following topics are dealt with: Structure of atomic nuclei, unstable nuclei and radioactivity, experimental techniques in nuclear and high-energy physics, nuclear forces and nuclear models, nuclear reactions, physics of elementary particles, applications of nuclear and high-energy physics, foundations of experimental astronomy and astrophysics, our solar system, birth, life, and death of stars, the development and present structure of the universe. (HSI)

  1. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Uwe, Greife [Colorado School of Mines, Golden, CO (United States)

    2014-08-12

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  2. Development of a high-density gas-jet target for nuclear astrophysics and reaction studies with rare isotope beams. Final Report

    International Nuclear Information System (INIS)

    Uwe, Greife

    2014-01-01

    The purpose of this project was to develop a high-density gas jet target that will enable a new program of transfer reaction studies with rare isotope beams and targets of hydrogen and helium that is not currently possible and will have an important impact on our understanding of stellar explosions and of the evolution of nuclear shell structure away from stability. This is the final closeout report for the project.

  3. Recent Astrophysical Studies with Exotic Beams at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Bardayan, Daniel W [ORNL

    2006-02-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holi led Radioactive Ion Beam Facility (HRIBF), we have made several recent measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  4. Recent Astrophysical Studies with Exotic Beams at ORNL

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.

    2006-01-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holi led Radioactive Ion Beam Facility (HRIBF), we have made several recent measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  5. Theoretical studies of binaries in astrophysics

    Science.gov (United States)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  6. Temperature-tuned Maxwell-Boltzmann neutron spectra for kT ranging from 30 up to 50 keV for nuclear astrophysics studies.

    Science.gov (United States)

    Martín-Hernández, G; Mastinu, P F; Praena, J; Dzysiuk, N; Capote Noy, R; Pignatari, M

    2012-08-01

    The need of neutron capture cross section measurements for astrophysics motivates present work, where calculations to generate stellar neutron spectra at different temperatures are performed. The accelerator-based (7)Li(p,n)(7)Be reaction is used. Shaping the proton beam energy and the sample covering a specific solid angle, neutron activation for measuring stellar-averaged capture cross section can be done. High-quality Maxwell-Boltzmann neutron spectra are predicted. Assuming a general behavior of the neutron capture cross section a weighted fit of the spectrum to Maxwell-Boltzmann distributions is successfully introduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Jiang, C. L.; Lai, J.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Giardina, G.; Eidelman, S.; Venanzoni, G.; Battaglieri, M.; Mandaglio, G.

    2015-01-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work

  8. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    Science.gov (United States)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-06-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  9. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J

    2008-01-01

    Context. Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. Aims. The reaction code TALYS has been recently updated to estimate the Maxwellian-averaged reaction rates that are of astrophysical relevance. These new developments enable the reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. Methods. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. Results. It is shown that TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. For the first time, the Maxwellian- averaged (n, 2n) reaction rate is calculated for all nuclei and its competition with the radiative capture rate is discussed. Conclusions. The TALYS code provides a new tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability. (authors)

  10. Semi empirical model for astrophysical nuclear fusion reactions of 1≤Z≤15

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.; Sridhar, K.N.

    2017-01-01

    The fusion reaction is one of the most important reactions in the stellar evolution. Due to the complicated reaction mechanism of fusion, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects. Low z elements are formed through many fusion reactions such as "4He+"1"2C→"1"6O, "1"2C+"1"2C→"2"0Ne+"4He, "1"2C+"1"2C→"2"3Na, "1"2C+"1"2C→"2"3Mg, "1"6O+"1"6O→"2"8Si+"4He, "1"2C+"1H→"1"3N and "1"3C+"4He→"1"6O. A detail study is required on Coulomb and nuclear interaction in formation of low Z elements in stars through fusion reactions. For astrophysics, the important energy range extends from 1 MeV to 3 MeV in the center of mass frame, which is only partially covered by experiments. In the present work, we have studied the basic fusion parameters such as barrier heights (V_B), positions (R_B), curvature of the inverted parabola (ħω_1) for fusion barrier, cross section and compound nucleus formation probability (P_C_N) and fusion process in the low Z element (1≤Z≤15) formation process. For each isotope, we have studied all possible projectile-target combinations. We have also studied the astrophysical S(E) factor for these reactions. Based on this study, we have formulated the semi empirical relations for barrier heights (V_B), positions (R_B), curvature of the inverted parabola and hence for the fusion cross section and astrophysical S(E) factor. The values produced by the present model compared with the experiments and data available in the literature. (author)

  11. Phase transition and frustration in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Hasnaoui, K.

    2008-10-01

    The thermodynamics of nuclear matter which constitutes the crust of proto-neutron stars and neutron stars is studied in this thesis. Obtaining information on the star matter thermodynamics will enhance the understanding of physical phenomena involved in the cooling of proto-neutron stars, and in the formation of type II supernovae. One of the main goals is to extract the star-matter phase diagram in order to determine if instabilities and/or critical points are present. The work is divided into two parts: in the first one classical approaches are developed, while the second one presents a quantum approach. The classical approaches are based on the Ising model and on the renormalisation group. They give us qualitative information on the phenomenology of phase transitions for star matter, and allow a discussion on the properties of the phase diagram under the generic phenomenon of Coulomb frustration. The quantum approach is based on a fermionic molecular dynamics model that we have developed from the density functional formalism, and numerically implemented using Skyrme forces optimized on neutron rich nuclei and neutron matter. This thesis work shows some first applications to the study the thermodynamics of finite nuclear systems, as well as nuclear structure calculations for light nuclei. A new formalism based on the molecular dynamics model is sketched which will ultimately allow treating the numerical quantum problem for the infinite star matter. (author)

  12. Improved predictions of nuclear reaction rates for astrophysics applications with the TALYS reaction code

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J.

    2008-01-01

    Nuclear reaction rates for astrophysics applications are traditionally determined on the basis of Hauser-Feshbach reaction codes, like MOST. These codes use simplified schemes to calculate the capture reaction cross section on a given target nucleus, not only in its ground state but also on the different thermally populated states of the stellar plasma at a given temperature. Such schemes include a number of approximations that have never been tested, such as an approximate width fluctuation correction, the neglect of delayed particle emission during the electromagnetic decay cascade or the absence of the pre-equilibrium contribution at increasing incident energies. New developments have been brought to the reaction code TALYS to estimate the Maxwellian-averaged reaction rates of astrophysics relevance. These new developments give us the possibility to calculate with an improved accuracy the reaction cross sections and the corresponding astrophysics rates. The TALYS predictions for the thermonuclear rates of astrophysics relevance are presented and compared with those obtained with the MOST code on the basis of the same nuclear ingredients for nuclear structure properties, optical model potential, nuclear level densities and γ-ray strength. It is shown that, in particular, the pre-equilibrium process significantly influences the astrophysics rates of exotic neutron-rich nuclei. The reciprocity theorem traditionally used in astrophysics to determine photo-rates is also shown no to be valid for exotic nuclei. The predictions obtained with different nuclear inputs are also analyzed to provide an estimate of the theoretical uncertainties still affecting the reaction rate prediction far away from the experimentally known regions. (authors)

  13. Nuclear physics and astrophysics. Progress report, July 15, 1991--June 15, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  14. Nuclear interactions in high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1993-01-01

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. 4 He, 16 O, 20 Ne, 28 Si, 56 Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy 16 O, 28 Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs

  15. Coulomb Dissociation as a Tool of Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Utsunomiya, H.

    2000-01-01

    My talk will begin with an introduction of the Coulomb dissociation method, proceed to discussions on Coulomb breakup of 7 Li with respect to the big-bang nucleosynthesis and end with the revision of astrophysical S-factors. The methodology based on the virtual photon source will be introduced in view of experimental techniques. The discussion will include the quantum tunnelling effect in non-resonant breakup, the lifetime of continuum states, and Coulomb distortion of relevant cross sections. Roles of multi-step processes and different multipolarities will also be discussed on the basis of solving a time-dependent Schroedinger equation. My talk will present quantitative results. The theoretical framework of the Coulomb dissociation method and a broad scope of its applications are given by G. Baur. Applications to radioactive nuclei which have quickly become vogue are discussed in the related lecture of J. Kiener. (author)

  16. Coulomb disintegration as an information source for relevant processes in nuclear astrophysics

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    1989-01-01

    The possibility of obtaining the photodisintegration cross section using the equivalent-photon number method first deduced and employed for the Coulomb disintegration processes has been suggested. This is very interesting because there exist radioactive capture processes, related to the photodisintegration through time reversal, that are relevant in astrophysics. In this paper, the recent results of the Karlsruhe and the Texas A and M groups on the Coulomb disintegration of 6 Li and 7 Li and the problems of the method are discussed. The ideas developed in a previous paper (Nucl. Phys. A458 (1986) 188) are confirmed qualitatively. To understand the process quantitatively it is necessary to use a quantum treatment that would imply the introduction of Coulomb excitation effects of higher orders. The Coulomb disintegration of exotic secondary beams is also studied. It is particularly interesting the question about what kind of nuclear structure information, as binding energies of momentum distributions, may be obtained. (Author) [es

  17. Astrophysical r- and rp-processes, and radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    1998-01-01

    The modern description of the r-process follows naturally from α-rich freezeout, thought to occur in the hot neutrino wind just beyond the nascent neutron star in a type II supernova. Initially, all pre-existing nuclei are reduced to α-particles and neutrons. As the environment cools, nuclei up to about mass 90 to 100 u are synthesized, in nuclear statistical equilibrium, in about 1 s. In the next few seconds, the remaining neutrons are captured to form the r-process progenitors, which then decay to the r-process nuclides. The rp-process occurs in a high-temperature H-rich environment. It is one of the processes that synthesize the p-process nuclei, the most neutron-poor nuclei in the periodic table. It is thought to occur during the explosion of a C-O white dwarf in a type Ia supernova or in a binary system during accretion onto a white dwarf or a neutron star. It appears to be capable of forming the p-nuclei up to about mass 90 u. Both processes pass through nuclei that are far from stability. Thus, their description requires the masses, half-lives, decay modes, and structure of these nuclei. The next generation of radioactive beam facilities promises to allow the study of many such nuclei. (author)

  18. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    Energy Technology Data Exchange (ETDEWEB)

    Ilgner, Ch. [Nuclear Astrophysics group, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2015-07-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the

  19. The Trojan horse method in nuclear astrophysics: recent results

    Czech Academy of Sciences Publication Activity Database

    Romano, S.; Spitareli, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Sergi, M. L.; Tudisco, S.; Tumino, A.; Tribble, R. E.; Goldberg, V.Z.; Mukhamedzhanov, A. M.; Tabacaru, G.; Trache, L.; Kroha, Václav; Burjan, Václav; Mrázek, Jaromír; Somorjai, E.; Elekes, Z.; Fülöp, Z.; Gyurky, G.; Kiss, G.

    2008-01-01

    Roč. 35, č. 1 (2008), 014008-1-014008-7 ISSN 0954-3899 R&D Projects: GA ČR GA202/05/0302 Institutional research plan: CEZ:AV0Z10480505 Keywords : cross-sections Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.270, year: 2008

  20. Development of a Laue lens for nuclear astrophysics

    International Nuclear Information System (INIS)

    Rousselle, Julien

    2011-01-01

    In this work, a new type of gamma-ray telescope is presented. It features a crystal diffraction lens that concentrates photons from a large photon collecting area onto a small detector. In such a Laue lens, a large number of crystals are disposed on concentric rings; each crystal can be considered as a little mirror which deviates gamma-rays through Bragg diffraction from the incident beam onto a common focal spot. The principle of the Laue lens for astrophysics was demonstrated with the balloon mission CLAIRE. The objective of this work was to develop the Laue Lens concept into a sensitive, space qualified optics for a future satellite mission. This contribution consisted of two main facets: a) finding appropriate crystal materials and improving the performance of the diffracting crystals, and b) develop a prototype segment for a space qualified lens. Exploring new diffracting media and improving the performance of individual crystals implied the development of numerical simulations of the diffraction process for various types of mosaic and CDP (Curved Diffraction Plane) crystals. These simulations were used to select suitable crystals to be grown and to be tested. Two different X-ray facilities were used to probe the crystalline quality of candidate materials: the European Synchrotron Radiation Facility (ESRF, France) and the high neutron flux reactor at ILL (France). During 10 beam-runs (and a total of 3 months of measurement), a large number of samples were tested, including Ag, Ir, Pt, Au, Pb, Rh, AsGa, SiGe, and Cu crystals. Outstanding performances were established for gold and silver crystals (>500 keV), Cu and Ge (300-500 keV) crystals and SiGe CDP (<300 keV) crystal. The second facet of this work consisted of designing, manufacturing and characterizing a prototype lens segment. This R and D program was completed in collaboration with the CNES and Thales Alenia Space. For a representative sample of metal and semiconductor crystals that were mounted on the

  1. Asymptotic normalization coefficients in nuclear astrophysics an structure

    Czech Academy of Sciences Publication Activity Database

    Gagliardi, C. A.; Azhari, A.; Burjan, Václav; Carstoiu, F.; Kroha, Václav; Mukhamedzhanov, A. M.; Sattarov, A.; Tang, X.; Trache, L.; Tribble, R. E.

    2002-01-01

    Roč. 15, 1/2 (2002), s. 69-73 ISSN 1434-6001 R&D Projects: GA MŠk ME 385; GA ČR GA202/01/0709 Keywords : cross-section measurements * optical-model * S-factor * breakup * B-8 * halo * coulomb * Be-7 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.657, year: 2002

  2. Studying astrophysical reactions with low-energy RI beams at CRIB

    Directory of Open Access Journals (Sweden)

    Yamaguchi H.

    2016-01-01

    Full Text Available Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the radioactive-isotope (RI beams at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study (CNS, the University of Tokyo. A typical measurement performed at CRIB is the elastic resonant scattering with the inverse kinematics. One recent experiment was on the α resonant scattering with 7Li and 7Be beams. This study is related to the astrophysical 7Li/7Be(α,γ reactions, important at hot p-p chain and νp-process in supernovae. There have also been measurements based on other experimental methods. The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α15O reaction at astrophysical energies via the three body reaction 2H(18F, α15On. The 18F(p, α 15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  3. The importance of CNO isotopes in astrophysics

    International Nuclear Information System (INIS)

    Audoze, J.

    1977-01-01

    The research into CNO isotopes in astrophysics includes many different subfields of astrophysics such as meteoretical studies, experimental and theoretical nuclear astrophysics, optical astronomy, radio astronomy, etc. The purpose of this paper is to give some overview of the topic and guideline among these different subfields. (G.T.H.)

  4. Nuclear interactions of high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.

    1992-01-01

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, ''limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays

  5. Developing a Laue Lens for Nuclear Astrophysics: The Challenge of Focusing Soft Gamma-rays

    Science.gov (United States)

    Barriere, Nicolas

    Soft gamma rays provide a unique window on the high-energy Universe, especially for studying nuclear astrophysics through nuclear line emission. However, the sensitivity of state-of-the-art gamma-ray telescopes is severely limited by the intense instrumental background when flown in space. A solution is to decouple the photon collection area from the photon detection area. Focusing source photons from a large collection area onto a small detector volume would dramatically improve the signal-to-noise ratio, and hence provide the long awaited sensitivity leap in this challenging energy band. Laue crystal diffraction can be utilized to focus soft gamma rays when configured in a Laue lens. While this technology has been demonstrated on balloon flights, the type of crystals used and the process of assembling many crystals into a lens have not been optimized yet. We propose to address all the technical aspects of the construction of a scientifically exploitable Laue lens in order to bring this technology to TRL-6. To this end, two small prototypes representative of the diversity of Laue lenses will be built and tested in relevant environments, leveraging the work accomplished under a previous APRA grant. This project will establish the real performances, the cost, and the construction duration of a full-scale lens, allowing us to propose a Laue lens telescope for suborbital or satellite missions.

  6. Theoretical nuclear structure and astrophysics. Progress report for 1993-1995

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-01-01

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops

  7. Proceedings of the 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    CERN Document Server

    Pons, J; Albertus, C

    2012-01-01

    This volume contains most of the links to the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ib\\'erico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included.

  8. The Trojan Horse Method for nuclear astrophysics and its recent applications

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Mazzocco, M.; Boiano, A.; Boiano, C.; Broggini, C.; Caciolli, A.; Depalo, R.; Di Pietro, A.; Figuera, P.; Galtarossa, F.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Kubono, S.; La Cognata, M.; La Commara, M.; La Rana, G.; Lattuada, M.; Menegazzo, R.; Pakou, A.; Parascandolo, C.; Piatti, D.; Pierroutsakou, D.; Pizzone, R. G.; Puglia, S. M. R.; Romano, S.; Rapisarda, G. G.; Sanchez-Benitez, A. M.; Sergi, M. L.; Sgouros, O.; Silva, H.; Soramel, F.; Soukeras, V.; Strano, E.; Torresi, D.; Trippella, O.; Tumino, A.; Yamaguchi, H.; Villante, F. L.; Zhang, G. L.

    2018-01-01

    The Trojan Horse Method (THM) has been applied extensively for the last 25 years to measure nuclear reaction cross sections of interest for astrophysics. Although it has been mainly applied for charged particle-induced reactions, recently it has been found to have also a relevant role for neutron-induced reactions. Here, some advantages of THM will be discussed and the preliminary results of the cosmological relevant 7Be(n,α)4He cross section measurement are discussed.

  9. Recent Results In Nuclear Astrophysics At The n_TOF Facility At CERN

    CERN Document Server

    Tagliente, Giuseppe; Andrzejewski, J; Audouin, L; Bacak, M; Balibrea, J; Barbagallo, M; Bečvář, F; Berthoumieux, E; Billowes, J; Bosnar, D; Brown, A; Caamaño, M; Calviño, F; Calviani, M; Cano-Ott, D; Cardella, R; Casanovas, A; Cerutti, F; Chen, Y H; Chiaveri, E; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Cosentino; Damone, L A; Diakaki, M; Domingo-Pardo, C; Dressler, L R; Dupont, E; Durán, I; Fernández-Domínguez, B; Ferrari, A; Ferreira, P; Finocchiaro, P; Furman, V; Göbel, K; García, A R; Gawlik, A; Gilardoni, S; Glodariu, T; Gonçalves, I F; González, E; Griesmayer, E; Guerrero, C; Gunsing, F; Harada, H; Heinitz, S; Heyse, J; Jenkins, D G; Jericha, E; Käppeler, F; Kadi, Y; Kalamara, A; Kavrigin, P; Kimura, A; Kivel, N; Kokkoris, M; Krtička, M; Kurtulgil, D; Leal-Cidoncha, E; Lederer, C; Lerendegui-Marco, J; Leeb, H; Lo Meo, S; Lonsdale, S J; Macina, D; Marganiec, J; Martínez, T; Masi, A; Massimi, C; Mastinu, P; Mastromarco, M; Maugeri, E A; Mazzone, A; Mendoza, E; Mengoni, A; Mingrone, F; Milazzo, P M; Musumarra, A; Negret, A; Nolte, R; Oprea, A; Patronis, N; Pavlik, A; Perkowski, J; Porras, I; Praena, J; Quesada, J M; Radeck, D; Rauscher, T; Reifarth, R; Rubbia, C; Ryan, J A; Sabaté-Gilarte, M; Saxena, A; Schillebeeckx, P; Schumann, D; Sedyshev, P; Smith, A G; Sosnin, N V; Stamatopoulos, A; Tain, J L; Tarifeño-Saldivia, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Vlachoudis, V; Vlastou, R; Wallner, A; Warren, S; Woods, P J; Żugec, P Č

    2017-01-01

    The neutron time of flight (n_TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n_TOF facility are presented.

  10. Proceedings of the topical conference on nuclear physics, high energy physics and astrophysics (NPHEAP-2010)

    International Nuclear Information System (INIS)

    Vo Van Thuan; Tran Duc Thiep; Le Hong Khiem

    2011-01-01

    There were roughly 80 scientists gathering for the NPHEAP-2010 and there 61 oral talks and posters have been presented. The audience has been introduced to the status of long term nuclear power program of Vietnam up to 2030. One of the highlights for near future activity of Vietnamese nuclear sector should be the manpower training and education for this huge master plan. Most of invited and contributed papers have devoted to both basic nuclear physics at world radioactive beams and applied nuclear instrumentation. In addition to some traditional astronomical papers, there were more contributions on advanced cosmic ray physics and related nuclear astrophysics. A few of papers on high energy and particle physics jointly showed a high interest in flavor physics at LHC, KEK and J-PARC. (NHA)

  11. Nuclear mass formulas and its application for astrophysics

    International Nuclear Information System (INIS)

    Koura, Hiroyuki

    2003-01-01

    Some nuclear mass formulae are reviewed and applied for the calculation of the rapid neutron-capture-process (r-process) nucleosynthesis. A new mass formula composed of the gross term, the even-odd term, and the shell term is also presented. The new mass formula is a revised version of the spherical basis mass formula published in 2001, that is, the even-odd term is treated more carefully, and a considerable improvement is brought about. The root-mean-square deviation of the new formula from experimental masses is 641 keV for Z ≥ 8 and N ≥ 8. Properties on systematic of the neutron-separation energy is compared with some mass formulas. The calculated abundances of the r-process from different mass formulae are compared with use of a simple reaction model, and the relation between the calculated abundances and the corresponding masses are discussed. Furthermore, fission barriers for the superheavy and neutron-rich nuclei are also applied for the endpoint of the r-process. (author)

  12. The new worlds observer: The astrophysics strategic mission concept study

    Directory of Open Access Journals (Sweden)

    Cash W.

    2011-07-01

    Full Text Available We present some results of the Astrophysics Strategic Mission Concept Study for the New Worlds Observer (NWO. We show that the use of starshades is the most effective and affordable path to mapping and understanding our neighboring planetary systems, to opening the search for life outside our solar system, while serving the needs of the greater astronomy community. A starshade-based mission can be implemented immediately with a near term program of technology demonstration.

  13. NATO Advanced Study Institute on Optics in Astrophysics

    CERN Document Server

    Foy, Renaud

    2005-01-01

    Astrophysics is facing challenging aims such as deep cosmology at redshift higher than 10 to constrain cosmology models, or the detection of exoplanets, and possibly terrestrial exoplanets, and several others. It requires unprecedented ambitious R&D programs, which have definitely to rely on a tight cooperation between astrophysics and optics communities. The book addresses most of the most critical interdisciplinary domains where they interact, or where they will do. A first need is to collect more light, i.e. telescopes still larger than the current 8-10 meter class ones. Decametric, and even hectometric, optical (from UV to IR wavelengths) telescopes are being studied. Whereas up to now the light collecting surface of new telescopes was approximately 4 times that of the previous generation, now this factor is growing to 10 to 100. This quantum leap urges to implement new methods or technologies developed in the optics community, both in academic labs and in the industry. Given the astrophysical goals a...

  14. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    International Nuclear Information System (INIS)

    Wu, Q.; Sun, L.T.; Cui, B.Q.; Lian, G.; Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M.; Liu, W.P.

    2016-01-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H + , 10 emA He + and 2.0 emA He 2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  15. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, L.T., E-mail: sunlt@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, B.Q.; Lian, G. [China Institute of Atomic Energy, Beijing 102413 (China); Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.P. [China Institute of Atomic Energy, Beijing 102413 (China)

    2016-09-11

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H{sup +}, 10 emA He{sup +} and 2.0 emA He{sup 2+} beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  16. Nuclear astrophysics deep underground the case of the 15N(p,γ)16O reaction at LUNA

    CERN Document Server

    Mazzocchi, Chiara

    2010-01-01

    Measuring nuclear reactions of astrophysical interest at the relevant energies is not always possible on the Earth’s surface because of the cosmic-ray background that dominates the spectra. The LUNA collaboration exploits the lowbackground enviroment of Gran Sasso National Laboratory to study these reactions at or close to the Gamow peak. The latest experimental efforts included the measurement of the 15N(p,γ)16O at beam energies between 77 and 350 keV. The status of these measurements is summarised in this contribution.

  17. The History and Impact of the CNO Cycles in Nuclear Astrophysics

    Science.gov (United States)

    Wiescher, Michael

    2018-03-01

    The carbon cycle, or Bethe-Weizsäcker cycle, plays an important role in astrophysics as one of the most important energy sources for quiescent and explosive hydrogen burning in stars. This paper presents the intellectual and historical background of the idea of the correlation between stellar energy production and the synthesis of the chemical elements in stars on the example of this cycle. In particular, it addresses the contributions of Carl Friedrich von Weizsäcker and Hans Bethe, who provided the first predictions of the carbon cycle. Further, the experimental verification of the predicted process as it developed over the following decades is discussed, as well as the extension of the initial carbon cycle to the carbon-nitrogen-oxygen (CNO) multi-cycles and the hot CNO cycles. This development emerged from the detailed experimental studies of the associated nuclear reactions over more than seven decades. Finally, the impact of the experimental and theoretical results on our present understanding of hydrogen burning in different stellar environments is presented, as well as the impact on our understanding of the chemical evolution of our universe.

  18. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, J. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, C. [Texas A & M Univ., College Station, TX (United States)

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  19. Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, N. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy)], E-mail: nicolas.barriere@iasf-roma.inaf.it; Ballmoos, P. von [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Abrosimov, N.V. [IKZ, Max Born-Str. 2, D-12489 Berlin (Germany); Bastie, P. [LSP UMR 5588, 140 Av. de la physique, 38402 Saint Martin d' Heres (France); Camus, T. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Courtois, P.; Jentschel, M. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Knoedlseder, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Natalucci, L. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy); Roudil, G.; Rousselle, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Wunderer, C.B. [SSL, University of California at Berkeley, CA 94708 (United States); Kurlov, V.N. [Institute of Solid State Physics of Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)

    2009-10-21

    Nuclear astrophysics presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. But in order to take full advantage of this potential, telescopes should be at least an order of magnitude more sensitive than present technologies. Today, Laue lenses have demonstrated their capability of focusing gamma-rays in the 100 keV-1 MeV domain, enabling the possibility of building a new generation of instruments for which sensitive area is decoupled from collecting area. Thus we have now the opportunity of dramatically increase the signal/background ratio and hence improve significantly the sensitivity. With a lens, the best detector is no longer the largest possible within a mission envelope. The point spread function of a Laue lens measures a few centimeters in diameter, but the field of view is limited by the detector size. Requirements for a focal plane instrument are presented in the context of the Gamma-Ray Imager mission (proposed to European Space Agency, ESA in the framework of the first Cosmic Vision AO): a 15-20 cm a side finely pixellated detector capable of Compton events reconstruction seems to be optimal, giving polarization and background rejection capabilities and 30 arcsec of angular resolution within a field of view of 5 arc min.

  20. Study of aluminum emission spectra in astrophysical plasmas

    International Nuclear Information System (INIS)

    Jin Zhan; Zhang Jie

    2001-01-01

    High temperature, high density and strong magnetic fields in plasmas produced by ultra-high intensity and ultrashort laser pulses are similar to the main characteristics of astrophysical plasmas. This makes it possible to simulate come astrophysical processes at laboratories. The author presents the theoretic simulation of aluminum emission spectra in astrophysical plasmas. It can be concluded that using laser produced plasmas, the authors can obtain rich information on astrophysical spectroscopy, which is unobservable for astronomer

  1. Development of a Laue lens for nuclear astrophysics

    International Nuclear Information System (INIS)

    Barriere, N.

    2008-04-01

    The Laue lenses we study focuses in the domain of 0.1-1 MeV thanks to Bragg diffraction in the volume of a large number of small crystal tiles. The focal length of a typical Laue lens system is of the order of 100 m. This requirement calls for two formation flying satellites maintaining lens and detector at the focal distance. The major breakthrough of Laue lenses is to decouple collecting area from detector area. Concentrating a signal from the large area of a Laue lens onto a small focal spot dramatically increases the signal over background ratio with respect to present technologies. Here is the reason for the long awaited leap in sensitivity. The objective of the present thesis was to improve the concept, finding viable technical solutions towards a future space mission. Two aspects of the lens development have been highlighted in this thesis: the first one is an analytical model of the lens that is used to calculate and improve the performance of a certain configuration, the second aspect concerns the search and the characterization of diffracting media of interest. The lens model developed relies on a fast semi-analytical simulation library, permitting to build several design- and optimisation-tools. For the configuration of a given lens, this code computes the resulting effective area and point spread function in a handful of seconds. The model helps finding lens configurations (mass, pack ratio of the lens rings,...) which are automatically refined to match with effective area and energy coverage constraints. These tools have been used to investigate various design aspects, such as the influence of focal length, size, mosaic spread, structure and materials of crystals, etc... The central evaluation criterion in the model is a figure of merit, based on the compactness of the focal spot and the intensity of the collected signal. The second part of this work addresses the actual search and characterization of crystals potentially interesting for Laue lenses

  2. Research in nuclear astrophysics: stellar collapse and supernovae: Annual performance report, December 1, 1987--November 30, 1988

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1988-01-01

    This annual performance report summarizes the activity in the nuclear astrophysics research program in the Earth and Space Scienes Department at Stony Brook. The central themes in the projects that comprise this program are supernovae, neutron star formation, and the equation of state of hot, dense metter. There is a close coupling between the physics of nuclear matter and weak interactions on the one hand, and supernovae and neutron stars on the other. The properties of nuclear matter might at present best be delineated by astrophysical considerations. We have been active in researching both the nuclear physics of the equation of state and the astrophysics of stellar collapse, neutrino emission, and neutron star formation. 11 refs

  3. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  4. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  5. Studies of nuclear processes

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1993-01-01

    Results for the period 1 Sep 92 through 31 Aug 93 are presented in nearly a hundred brief papers, some of which present new but preliminary data. Activities reported may be grouped as follows: Fundamental symmetries in the nucleus (parity-mixing measurements, time reversal invariance measurements, signatures of quantum chaos in nuclei), Internucleon reactions (neutron -- proton interactions, the neutron -- neutron scattering length, reactions between deuterons and very light nuclei), Dynamics of very light nuclei (measurements of D states of very light nuclei by transfer reactions, nuclear reactions between very light nuclei, radiative capture reactions with polarized sources), The many-nucleon problem (nuclear astrophysics, high-spin spectroscopy and superdeformation, the nuclear mean field: Dispersive relations and nucleon scattering, configuration mixing in 56 Co and 46 Sc using (d,α) reactions, radiative capture studies, high energy resolution resonance studies at 100--400 keV, nuclear data evaluation for A=3--20), Nuclear instruments and methods (FN tandem accelerator operation, KN accelerator operation and maintenance, atomic beam polarized ion source, development of techniques for determining the concentration of SF 6 in the accelerator insulating gas mixture, production of beams and targets, detector systems, updating of TeX, Psprint, and associated programs on the VAX cluster), and Educational Activities

  6. XVI International symposium on nuclear electronics and VI International school on automation and computing in nuclear physics and astrophysics; XVI Mezhdunarodnyj simpozium po yadernoj ehlektronike i VI Mezhdunarodnaya shkola po avtomatizatsii issledovanij v yadernoj fizike i astrofizike

    Energy Technology Data Exchange (ETDEWEB)

    Churin, I N [ed.

    1996-12-31

    Reports and papers of the 16- International Symposium on nuclear electronics and the 6- International school on automation and computing in nuclear physics and astrophysics are presented. The latest achievements in the field of development of fact - response electronic circuits designed for detecting and spectrometric facilities are studied. The peculiar attention is paid to the systems for acquisition, processing and storage of experimental data. The modern equipment designed for data communication in the computer networks is studied.

  7. Nuclear Reaction Data File for Astrophysics (NRDF/A) in Hokkaido University Nuclear Reaction Data Center

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Kimura, Masaaki; Furutachi, Naoya; Makinaga, Ayano; Togashi, Tomoaki; Otuka, Naohiko

    2010-01-01

    The activities of the Japan Nuclear Reaction Data Centre is explained. The main task of the centre is data compilation of Japanese nuclear reaction data in collaboration of the International Network of Nuclear Reaction Data Centres. As one of recent activities, preparation of a new database (NRDF/A) and evaluation of astronuclear reaction data are reported. Collaboration in the nuclear data activities among Asian countries is proposed.

  8. Investigations of astrophysically interesting nuclear reactions by the use of gas target techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J W [Inst. fuer Strahlenphysik, Univ. Stuttgart, Stuttgart (Germany)

    1998-06-01

    A brief review of the common properties of windowless and recirculating gas targets is presented. As example the Stuttgart gas target facility Rhinoceros in the extended and in the supersonic jet mode with its properties and techniques is explained, also with respect to gas purification techniques. Furthermore several typical experiments from the field of nuclear astrophysics with characteristic results are described (D({alpha},{gamma}){sup 6}Li, {sup 15}N({alpha},{gamma}){sup 19}F, {sup 16}O(p,{gamma}){sup 17}F, {sup 16}O({alpha},{gamma}){sup 20}Ne, {sup 20}Ne({alpha},{gamma}){sup 24}Mg, {sup 21}Ne({alpha},n){sup 24}Mg, {sup 18}O({alpha},n){sup 21}Ne, {sup 17}O({alpha},n){sup 20}Ne). In several cases the experimental sensitivity could be raised by up to a factor of 10{sup 6}. (orig.)

  9. Progress of the Felsenkeller Shallow-Underground Accelerator for Nuclear Astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cavanna, F.; Cowan, T. E.; Grieger, M.; Hensel, T.; Junghans, A. R.; Ludwig, F.; Müller, S. E.; Rimarzig, B.; Reinicke, S.; Schulz, S.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M. P.; Wagner, A.; Wagner, L.; Zuber, K.

    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 µA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.

  10. Strategic field No.5 'the origin of matter and the universe'. Toward interdisciplinary researches in particle, nuclear and astrophysics

    International Nuclear Information System (INIS)

    Aoki, Shinya

    2011-01-01

    Four main research subjects in the strategic field No. 5 'The origin of matter and the universe', planned to be investigated on 'Kei' super computer, are explained in detail, by focusing on interdisciplinary aspect of researches among particle, nuclear and astrophysics. (author)

  11. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D. (Nuclear Engineering Division); (Univ. of Massachusetts); (Univ. of Surrey)

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  12. Recent Progresses in Ab-Initio Studies of Low-Energy Few-Nucleon Reactions of Astrophysical Interest

    Science.gov (United States)

    Marcucci, Laura E.

    2017-03-01

    We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis. Related to this, we will discuss also the most recent calculation of tritium β -decay. Two frameworks will be considered, the conventional and the chiral effective field theory approach.

  13. Workshop Summary: Fundamental Neutron Physics in the United States: An Opportunity in Nuclear, Particle, and Astrophysics for the Next Decade

    International Nuclear Information System (INIS)

    Greene, G.

    2001-01-01

    Low-energy neutrons from reactor and spallation neutron sources have been employed in a wide variety of investigations that shed light on important issues in nuclear, particle, and astrophysics; in the elucidation of quantum mechanics; in the determination of fundamental constants; and in the study of fundamental symmetry violation (Appendix A, Glossary). In many cases, these experiments provide important information that is not otherwise available from accelerator-based nuclear physics facilities or high energy accelerators. An energetic research community in the United States is engaged in ''fundamental'' neutron physics. With exciting recent results, the possibility of new and upgraded sources, and a number of new experimental ideas, there is an important opportunity for outstanding science in the next decade. ''Fundamental'' neutron physics experiments are usually intensity limited. Researchers require the highest flux neutron sources available, which are either high-flux reactors (continuous sources) or spallation neutron sources (pulsed sources). The primary mission of these major facilities is neutron scattering for materials science research. Notwithstanding this condensed matter focus, essentially all neutron scattering facilities have accepted the value of an on-site fundamental physics program and have typically allocated 5 to 10% of their capabilities (i.e., beam lines) toward nuclear and particle physics research activities

  14. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    International Nuclear Information System (INIS)

    Chipps, K.A.; Greife, U.; Bardayan, D.W.; Blackmon, J.C.; Kontos, A.; Linhardt, L.E.; Matos, M.; Pain, S.D.; Pittman, S.T.; Sachs, A.; Schatz, H.; Schmitt, K.T.; Smith, M.S.; Thompson, P.

    2014-01-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10 18 atoms/cm 2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far

  15. Nuclear Astrophysics at ELI-NP: the ELISSA prototype tested at Laboratori Nazionali del Sud

    Science.gov (United States)

    Guardo, Giovanni Luca; Anzalone, Antonello; Balabanski, Dimiter; Chesnevskaya, Svetlana; Crucillá, Walter; Filipescu, Dan; Gulino, Marisa; La Cognata, Marco; Lattuada, Dario; Matei, Catalin; Pizzone, Rosario Gianluca; Rapisarda, Giuseppe; Romano, Stefano; Spitaleri, Claudio; Taffara, Alessandra; Tumino, Aurora; Xu, Yi

    2018-01-01

    The Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility, under construction in Magurele near Bucharest in Romania, will provide high-intensity and high-resolution gamma ray beams that can be used to address hotly debated problems in nuclear astrophysics, such as the accurate measurements of the cross sections of the 24Mg(γ,α)20Ne reaction, that is fundamental to determine the effective rate of 28Si destruction right before the core collapse and the subsequent supernova explosion. For this purpose, a silicon strip detector array (named ELISSA, acronym for Extreme Light Infrastructure Silicon Strip Array) will be realized in a common effort by ELI-NP and Laboratori Nazionali del Sud (INFN-LNS), in order to measure excitation functions and angular distributions over a wide energy and angular range. A prototype of ELISSA was built and tested at INFN-LNS in Catania (Italy) with the support of ELI-NP. In this occasion, we have carried out experiments with alpha sources and with a 11 MeV 7Li beam. Thanks to our approach, the first results of those tests show up a very good energy resolution (better than 1%) and very good position resolution, of the order of 1 mm. Moreover, a threshold of 150 keV can be easily achieved with no cooling.

  16. Laboratory Studies Of Astrophysically-interesting Phosphorus-bearing Molecules

    Science.gov (United States)

    Ziurys, Lucy M.; Halfen, D. T.; Sun, M.; Clouthier, D. J.

    2009-05-01

    Over the past year, there has been a renewed interest in the presence of phosphorus-containing molecules in the interstellar medium. Recent observations have increased the number of known interstellar phosphorus-bearing species from two (PN, CP) to six with the identification of HCP, CCP, and PH3 in the carbon-rich circumstellar shell of IRC+10216 and PO in the oxygen-rich envelope of VY Canis Majoris. More species of this type may be present in the ISM, but laboratory rest frequencies, necessary for such detections, are not generally known for many potential molecules. To fill in this gap, we have been conducting measurements of the pure rotational spectra of phosphorus-containing molecules of astrophysical interest, using both millimeter/submm direct absorption and Fourier transform microwave (FTMW) spectroscopy. We have developed a new phosphorus source for this purpose. These methods cover the frequency ranges 65-850 GHz and 4-40 GHz, respectively. Our recent study of the CCP radical (X2Πr) using both of these techniques has resulted in its identification in IRC+10216. Rotational spectra of other molecules such as PCN, HPS, and CH3PH2 have been recorded. We will report on these species and additional new laboratory developments

  17. European Research Council supports an extensive study of the astrophysical p-process

    International Nuclear Information System (INIS)

    Gyuerky, Gy.

    2008-01-01

    Complete text of publication follows. The astrophysical p-process, the production mechanism of the heavy proton rich isotopes (the so-called p-nuclei) is still one of the least understood processes of nucleosynthesis. The modeling of the process requires a huge network of thousands of reactions where the rates of the involved reactions represent one of the biggest uncertainty in the resulting abundances of p-nuclei. In lack of experimental data the required reaction rates are taken from statistical model calculations which proved to be inaccurate in the mass and energy range relevant for the p-process. The systematic experimental study of the relevant reactions is therefore crucial to test the calculated reaction rates, to select the best input parameters for the calculations and, consequently, to contribute to a better understanding of the astrophysical p-process. The European Research Council (ERC) has acknowledged this need for experimental data when they decided to support a project devoted to this subject. In 2007 the first call of the ERC Frontier Research Scheme (Starting Grants) has been launched within the FP7 Specific Programme 'IDEAS'. From the very high number of applications, the peer reviewers of the ERC Scientific Council has recommended for funding the proposal entitled 'Nuclear reaction studies relevant to the astrophysical p-process nucleosynthesis'. An amount of 750,000 Euro has been allocated to the project for a 5 year duration. The starting date of the project was 1st July, 2008. With the ERC support, an extensive experimental study of the p-process is being carried out. The experiments will be carried out almost exclusively with the accelerators of the ATOMKI. The financial support allows to largely improve the available experimental technique. The purchase of two large volume HPGe detectors is in progress as a result of a public procurement. The upgrade of the nuclear electronics and data acquisition system used for p-process related

  18. Creating stars, supernovae, and the big bang in the laboratory: Nuclear Astrophysics with the National Ignition Facility

    International Nuclear Information System (INIS)

    Mathews, G.J.

    1994-02-01

    This talk has been prepared for the Symposium on Novel Approaches to Nuclear Astrophysics hosted by the ACS Division of Nuclear Chemistry and Technology for the San Diego ACS meeting. This talk indeed describes a truly novel approach. It discusses a proposal for the construction of the National Ignition Facility which could provide the most powerful concentration of laser energy yet attempted. The energy from such a facility could be concentrated in such a way as to reproduce, for the first time in a terrestrial laboratory, an environment which nearly duplicates that which occurs within stars and during the first few moments of cosmic creation during the big bang. These miniature versions of cosmic explosions may allow us to understand better the tumultuous astrophysical environments which have profoundly influenced the origin and evolution of the universe

  19. Accelerator Mass Spectrometry at the Nuclear Science Laboratory: Applications to Nuclear Astrophysics

    Science.gov (United States)

    Collon, P.; Bauder, W.; Bowers, M.; Lu, W.; Ostdiek, K.; Robertson, D.

    The Accelerator Mass Spectrometry (AMS) program at the Nuclear Science Laboratory of the University of Notre Dame is focused on measurements related to galactic radioactivity and to nucleosynthesis of main stellar burning as well as the production of so called Short-Lived Radionuclides (SLRs) in the Early Solar System (ESS). The research program is based around the 11MV FN tandem accelerator and the use of the gas-filled magnet technique for isobar separation. Using a technique that evolved from radiocarbon dating, this paper presents a number of research programs that rely on the use of an 11MV tandem accelerator at the center of the AMS program.

  20. Laboratory studies of photoionized plasma related to astrophysics

    International Nuclear Information System (INIS)

    Yang Peiqiang; Wang Feilu; Zhao Gang

    2011-01-01

    Photoionized plasma is universal in astronomy and has great importance on account of its close relation to compact astrophysical objects such as black holes. Recently, with the development of high energy density lasers and Z-pinch facilities, it has become possible to simulate astronomical photoionized plasma in the laboratory. These experiments help us to benchmark and modify the photoionization models, and to understand the photoionization processes to diagnose related astronomical plasma environments. (authors)

  1. Indirect Techniques in Nuclear Astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Blokhintsev, L.D.; Brown, S.

    2007-01-01

    We address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique to determine the astrophysical factor for the 13 C(α, n) 16 O reaction which is one of the neutron generators for the s processes in AGB stars. The TH method is a unique indirect technique allowing one to measure astrophysical S factors for rearrangement reactions down to astrophysically relevant energies. We derive equations connecting the cross sections for the binary direct and resonant reactions determined from the indirect TH reactions to direct cross sections measurements

  2. Future coordinated researches by Argonne (USA), Tashkent (Uzbekistan) and Almaty (Kazakhstan) nuclear centres on the nuclear reactions and astrophysics

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Kadyrzhanov, K.K.; Rehm, K.E.

    2004-01-01

    An actual problem of modern nuclear physics and astrophysics is realistic evaluation of astrophysical S-factors and rates of the nuclear reactions, which are responsible for the energy generation and nucleosynthesis in Universe. The essential progress in understanding of these processes has been made in the last decade. Those are the discovery of neutrino oscillations, obtaining new precise data on the reactions cross sections at rather low energies, development of methods of extrapolation to the stellar energy region. Nevertheless, the available experimental data close to stellar energies are very poor especially for unstable particles interactions, and uncertainties remain rather remarkable. It leads to large errors when measured data are extrapolated to astrophysical important super low energy region. The experimental possibilities for improvement the accuracy of the data using 'indirect' measurements are discussed. One of them is based on the peripheral character of charged particles interaction at low energy in which the asymptotical normalization coefficients (ANC) of overlapping functions are used for extrapolation. In this case the differential cross-section of the particle transfer reaction is expressed via the product of ANCs squares of participating particles. Their values may be obtained from the peripheral reactions at larger energies where the accuracy of measurement is higher. From this point of view the particle transfer A(x,y)B reactions are the most preferable, where (x,y) are ( 13 N, 12 C) or ( 17 F, 16 O) (proton transfer) and ( 13 C, 12 C) or ( 17 O, 16 O) (neutron transfer). We should know firstly the ANCs for 13 C→ 12 C+n ( 17 O→ 16 O+n) and 13 N→ 12 C+p ( 17 F→ 16 O+p) systems, and all other ANCs B→ A+p(n) are expressed through these values. The nucleon separation energies ε N are relatively small for these nuclei (ε 13N → 12C+p =1.943 MeV; ε 17F → 16O+p =0.6003 MeV; ε 13C → 12C+n =4.946 MeV and ε 17O → 16O+n =4.143 Me

  3. Astrophysics at RIA (ARIA) Working Group

    International Nuclear Information System (INIS)

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-01-01

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities

  4. Nuclear structure studies

    International Nuclear Information System (INIS)

    Walters, W.B.

    1992-01-01

    New results are reported for the decay and nuclear orientation of 114,116 I and 114 Sb as well as data for the structure of daughter nuclides 114,116 Te. New results for IBM-2 calculations for the structure of 126 Xe are also reported. A new approach to the problem of the underproduction of A = 120 nuclides in the astrophysical r-process is reported

  5. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report, December 1, 1981-November 30, 1984

    International Nuclear Information System (INIS)

    Mazurek, T.J.; Lattimer, J.M.

    1981-01-01

    The implications of nuclear theory for the final collapse of massive stars will be examined. Development of an appropriate nuclear equation of state and its implementation in hydrodynamic studies will be continued. The influence of nuclear dissociation and neutrino emission on the formation and propagation of shocks will be studied. The long term evolution of collapsed stellar cores after the initial hydrodynamic bounce will be investigated. Neutrino production and emission in all phases will be derived. Potential effects of pion condensation and neutrino instabilities will be explored

  6. A Laboratory Astrophysical Jet to Study Canonical Flux Tubes

    Energy Technology Data Exchange (ETDEWEB)

    You, Setthivoine [Univ. of Washington, Seattle, WA (United States)

    2017-12-20

    Understanding the interaction between plasma flows and magnetic fields remains a fundamental problem in plasma physics, with important applications to astrophysics, fusion energy, and advanced space propulsion. For example, flows are of primary importance in astrophysical jets even if it is not fully understood how jets become so long without becoming unstable. Theories for the origin of magnetic fields in the cosmos rely on flowing charged fluids that should generate magnetic fields, yet this remains to be demonstrated experimentally. Fusion energy reactors can be made smaller with flows that improve stability and confinement. Advanced space propulsion could be more efficient with collimated and stable plasma flows through magnetic nozzles but must eventually detach from the nozzle. In all these cases, there appears to be a spontaneous emergence of flowing and/or magnetic structures, suggesting a form of self-organization in plasmas. Beyond satisfying simple intellectual curiosity, understanding plasma self-organization could enable the development of methods to control plasma structures for fusion energy, space propulsion, and other applications. The research project has therefore built a theory and an experiment to investigate the interaction between magnetic fields and plasma flows. The theory is called canonical field theory for short, and the experiment is called Mochi after a rice cake filled with surprising, yet delicious fillings.

  7. Nuclear structure and astrophysics with accelerated beams of radioactive ions: A new multidisciplinary research tool

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1995-01-01

    After a brief discussion of the techniques for producing accelerated radioactive ion beams (RIBs), several recent scientific applications are mentioned. Three general nuclear structure topics, which can be addressed using RIBs, are discussed in some detail: possible modifications of the nuclear shell structure near the particle drip lines; various possibilities for decoupling the proton and neutron mass distributions for weakly bound nuclei; and tests of fundamental nuclear symmetries for self-conjugate and nearly self-conjugate nuclei. The use of RIBs to study r- and rp-process nucleosynthesis also is discussed

  8. Indirect techniques in nuclear astrophysics. Asymptotic normalization coefficient and trojan horse

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Gagliardi, C.A.; Pirlepesov, F.; Trache, L.; Tribble, R.E.; Blokhintsev, L.D.; Brown, B.A.; Nunes, F.M.; Burjan, V.; Kroha, V.; Cherubini, S.; Pizzone, R.G.; Romano, S.; Spitaleri, C.; Tumino, A.; Irgaziev, B.F.; Tang, X.D.

    2006-01-01

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reactions down to astrophysically relevant energies. We explain why there is no Coulomb barrier in the sub-process amplitudes extracted from the TH reaction. The expressions for the TH amplitude for direct and resonant cases are presented. (orig.)

  9. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    International Nuclear Information System (INIS)

    Tumino, A.; Gulino, M.; Spitaleri, C.; Cherubini, S.; Romano, S.; Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G.; Lamia, L.

    2014-01-01

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally

  10. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A.; Gulino, M. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Università degli Studi di Enna Kore, Enna (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.

  11. Study of nuclear level densities for exotic nuclei

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Sepiani, M.

    2012-01-01

    Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.

  12. Stellar astrophysics

    International Nuclear Information System (INIS)

    1987-01-01

    A number of studies in the field of steller astrophysics were undertaken by the South African Astronomical Observatory in 1986. These studies included; evolutionary effects on the surface abundances of an early-type supergiant; hydrogen deficient stars; t tauri stars; rotational modulation and flares on RS CVn and BY Dra stars; carbon and heavy element stars, and slow variability and circumstellar shells of red variable stars. 4 figs

  13. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  14. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report and renewal proposal

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1982-01-01

    The interaction between nuclear theory and the problem of stellar collapse and supernovae is examined. Experimentally determined nuclear parameters (compressibility, symmetry energies, level densities) are being used to determine a finite temperature equation of state. Detailed studies of shock propagation, neutrino transport and electron capture in stellar collapse are continued. The long-term evolution of collapsed stars (hot proto-neutron stars) is extended to find characteristic signatures of the neutrino spectrum, important for the experiments that can detect extraterrestrial neutrinos. A novel, conservative hydrodynamical code is used to alleviate the requirement of using artificial viscosity to follow shocks. This is coupled with a new, fast numerical scheme for the equation of state

  15. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  16. Recent applications of the the Trojan Horse method to nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio [Dipartimento di Fisica e Astronomia, Catania University (Italy) and INFN-Laboratoti Nazionali del Sud, Catania (Italy)

    2012-11-20

    Light elements lithium, beryllium and boron (LiBeB) have been used in the last years as possible probes for stellar structure. They are mainly destroyed by (p,a) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent new results about the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be and {sup 7}Li(p,{alpha}){sup 4}He reactions are shown.

  17. Development of a low-level setup for gamma spectroscopy: Application for nuclear astrophysics using reverse kinematics

    International Nuclear Information System (INIS)

    Genard, G.; Nuttens, V.E.; Bouchat, V.; Terwagne, G.

    2010-01-01

    It is more and more necessary to improve the sensitivity of gamma-ray spectroscopy systems, especially in nuclear astrophysics. In the case of radiative proton capture reactions, one means is to avoid the reactions on the target impurities by using reverse kinematics. This technique is possible with the LARN accelerator and can provide very clean cross-section measurements. For that purpose, a hydrogen standard has been carried out by means of ion implantation in silicon. In addition, a low-level setup has been put in place on a new beam line of the accelerator. A high efficiency and high resolution germanium detector is used conjointly with a double shielding. A passive lead castle shielding system is used to reduce the natural radioactivity and an active shielding consisting of an anti-cosmic veto is provided by an anticoincidence between the plastic scintillator and the gamma-ray detector. The setup allows a reduction of 70% of the background interference and provides an approximately 200 fold sensitivity gain of between 600 and 3000 keV. Some other developments have also been carried out to optimize the setup. The entire setup and the reverse kinematics have been validated by measuring the cross-section of the 13 C(p,γ) 14 N and 15 N(p,γ) 16 O reactions that present some astrophysical interest.

  18. Cognitive and Social Structure of the Elite Collaboration Network of Astrophysics: A Case Study on Shifting Network Structures

    Science.gov (United States)

    Heidler, Richard

    2011-01-01

    Scientific collaboration can only be understood along the epistemic and cognitive grounding of scientific disciplines. New scientific discoveries in astrophysics led to a major restructuring of the elite network of astrophysics. To study the interplay of the epistemic grounding and the social network structure of a discipline, a mixed-methods…

  19. Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Tsoneva, N., E-mail: Nadia.Tsoneva@theo.physik.uni-giessen.de [Frankfurt Institute for Advanced Studies (FIAS) (Germany); Lenske, H. [Universität Gießen, Institut für Theoretische Physik (Germany)

    2016-11-15

    During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capture reaction rates of astrophysical importance. A comparison to available experimental data is discussed.

  20. The path to improved reaction rates for astrophysics

    International Nuclear Information System (INIS)

    Rauscher, T.

    2011-01-01

    This review focuses on nuclear reactions in astrophysics and, more specifically, on reactions with light ions (nucleons and α particles) proceeding via the strong interaction. It is intended to present the basic definitions essential for studies in nuclear astrophysics, to point out the differences between nuclear reactions taking place in stars and in a terrestrial laboratory, and to illustrate some of the challenges to be faced in theoretical and experimental studies of those reactions. The discussion revolves around the relevant quantities for astrophysics, which are the astrophysical reaction rates. The sensitivity of the reaction rates to the uncertainties in the prediction of various nuclear properties is explored and some guidelines for experimentalists are also provided. (author)

  1. Astrophysical Hydrodynamics An Introduction

    CERN Document Server

    Shore, Steven N

    2007-01-01

    This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of ""Tapestry of Modern Astrophysics"" -- has been updated and revised to reflect the newest research results. Suitable for AS0000 and AS0200 courses, as well as advanced astrophysics and astronomy lectures, this is an indispensable theoretical backup for studies on celestial body formation and astrophysics. Includes exercises with solutions.

  2. Astrophysical parameters of ten poorly studied open star clusters

    International Nuclear Information System (INIS)

    Tadross, Ashraf Latif; El-Bendary, Reda; Osman, Anas; Ismail, Nader; Bakry, Abdel Aziz

    2012-01-01

    We present the fundamental parameters of ten open star clusters, nominated from Kronberger et al. who presented some newly discovered stellar groups on the basis of the Two Micron All Sky Survey photometry and Digitized Sky Survey visual images. Star counts and photometric parameters (radius, membership, distance, color excess, age, luminosity function, mass function, total mass, and dynamical relaxation time) have been determined for these ten clusters for the first time. In order to calibrate our procedures, the main parameters (distance, age, and color excess) have been re-estimated for another five clusters, which are also studied by Kronberger et al. (research papers)

  3. Sensitivity studies for the main r process: nuclear masses

    Directory of Open Access Journals (Sweden)

    A. Aprahamian

    2014-02-01

    Full Text Available The site of the rapid neutron capture process (r process is one of the open challenges in all of physics today. The r process is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncertainties associated with astrophysical conditions that are needed to allow an r process to occur and a vast lack of knowledge about the properties of nuclei far from stability. One way is to disentangle the nuclear and astrophysical components of the question. On the nuclear physics side, there is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. On the astrophysics side, various astrophysical scenarios for the production of the heaviest elements have been proposed but open questions remain. This paper reports on a sensitivity study of the r process to determine the most crucial nuclear masses to measure using an r-process simulation code, several mass models (FRDM, Duflo-Zuker, and HFB-21, and three potential astrophysical scenarios.

  4. 1997 report of the scientific evaluation committee of DAPNIA (Department of astrophysics, particle physics, nuclear physics and instrumentation)

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The DAPNIA is a department of CEA, its main characteristic is to manage scientific teams working on astrophysics, nuclear physics, elementary particles and instrumentation. Every 2 years DAPNIA's activities are submitted to an evaluation made by a scientific committee whose members are experts independent from CEA. This committee reviews the work done, gives an opinion about the options chosen for the projects to come and writes out a report. In 1997 the committee had a very positive opinion of the work done by DAPNIA teams. The contributions to various and important national or international programs have been successful, we can quote: Ulysse mission, soho, iso, integral for spatial programs, aleph, delphi, H1 at Hera, atlas, cms, na48, nomad, babar, antares for particle physics and spiral, smc, compass for nuclear physics. The committee advises DAPNIA to favour more contacts between the theoreticians and the experimentalists who work on quantum chromodynamics and hadron physics. The committee shows its concern about improving the balance between the means dedicated to instrumentation designing and those dedicated to the analysis and interpretation of the experimental data collected. (A.C.)

  5. Nuclear interactions of high energy heavy ions and applications in astrophysics. Final technical report

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1998-01-01

    Projectile fragmentation experiments have been conducted at the LBL Bevalac accelerator, utilizing both the B40 and the HISS facilities, to produce a dataset of 36 beam/energy combinations covering projectiles from 4 He to 58 Ni and various energies from 170--2100 MeV/nucleon. While some runs were subject to beam instabilities, magnet problems or low statistics, there remains a large dataset which is still being analyzed. The results will be used to investigate the physics of the intermediate energy fragmentation process and will find application in the astrophysics of cosmic ray propagation in the galaxy. An overview of the science goals and rationale is followed by presentation of the experimental techniques and apparatus that has been employed. Data analysis, including both detector subsystem and accelerator calibration, is discussed with emphasis on the unique features of the dataset and the analysis problems being addressed. Results from the experiments are presented throughout to illustrate the status of the analysis, e.g., momentum distribution widths. Total, Elemental and Isotopic cross sections from various beam/energy combinations are presented, including the first data on 32 S fragmentation and the complete isotopic fragmentation cross sections for 28 Si interacting in both Carbon and Hydrogen targets. The new results are compared to any existing data and to formulae used to predict unmeasured cross sections. The size and complexity of the dataset and the required detail of the analysis precluded finishing the full analysis under the subject grant. Plans for additional analysis are presented, and these will be carried out in coming years as time and resources permit

  6. Measurement of the d({sup 26}Al{sup m},p){sup 27}Al reaction for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, B.T.; Trache, L.; Iacob, V.E.; McCleskey, M.; Simmons, E.; Spiridon, A.; Tribble, R.E. [Texas A and M Univ., TX (United States); Davinson, T.; Lotay, G.; Woods, P.J. [University of Edinburgh (United Kingdom); La Cognata, M.; Pizzone, R.G.; Rapisarda, G.G.; Sparta, R.; Spitaleri, C. [Istituto Nazionale di Fisica Nucleare (LNS/INFN), Catania (Italy). Lab. Nazionali del Sud

    2012-07-01

    Full text: The detection of gamma rays from the decay of the {sup 26}Al ground state in the galaxy gives evidence that nucleosynthesis is occurring in present-day stars, but its origin is not yet clear. This implies that reactions involving {sup 26}Al are important for astrophysical processes. In a recent experiment at the Cyclotron Institute at Texas A and M University, reactions with the ground state and isomeric state of {sup 26}Al were investigated with the Texas A and M-Edinburgh-Catania Silicon detector Array (TECSA). TECSA is a collaborative effort to build a high-efficiency detector Si array useful for measuring reactions of interest for nuclear astrophysics and nuclear structure. The array consists of up to 16 Micron Semiconductor YY1 detectors that are each 300 μm thick. Each detector has 16 annular ring sectors to measure the energy and the scattering angle of the detected particles. Using TECSA, we measured d({sup 26}Al{sup g},p){sup 27}Al and d({sup 26}Al{sup m},p){sup 27}Al with a {sup 26}Al secondary beam prepared in-flight with the MARS spectrometer. First, the composition of the {sup 26}Al beam was determined by measuring the ratio of beta-decays to {sup 26}Al ions produced. It was found that at different spectrometer rigidities, beams of 2/3 isomer to ground state ratio or vice-versa could be obtained. Then, in the second part of the experiment, angular distributions were measured for both reactions at backward angles with TECSA. The protons were measured in TECSA in coincidence with timing signals from the beam detected by a scintillator and with the cyclotron radio-frequency. Details of the experiment and preliminary results from the analysis of the d({sup 26}Al{sup m},p){sup 27}Al and d({sup 26}Al{sup g},p){sup 27}Al data will be presented. They will give information about the proton capture reactions {sup 26}Al{sup m}(p,γ){sup 27}Si and {sup 26}Al{sup g}(p,γ){sup 27}Si taking place in stars. (author)

  7. About the necessity of the modification of the nuclear chronometry methods in astrophysics and geophysics

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Dolinska, M.E.; Doroshko, N.L.

    2009-01-01

    In practically all known till now methods of nuclear chronometry there were usually taken into account the life-times of only fundamental states of α-radioactive nucleus. But in the processes of nuclear synthesis in stars and under the influence of the constant cosmic radiation on surfaces of planets the excitations of the α-radioactive nuclei are going on. Between them there are the states with the excited α-particles inside the parent nuclei and so with much smaller life-times. And inside the large masses of stellar, terrestrial and meteoric substances the transitions between different internal conditions of radioactive nuclei are accompanied by infinite chains of the γ-radiations with the subsequent γ-absorptions, the further γ-radiations etc. For the description of the α-decay evolution with considering of such excited states and multiple γ-radiations and γ-absorptions inside stars and under the influence of the cosmic radiation on the earth surface we present the quantum-mechanical approach, which is based on the generalized Krylov-Fock theorem. Some simple estimations are also presented. They bring to the conclusion that the usual (non-corrected) 'nuclear clocks' do really indicate not to realistic values but to the upper limits of the durations of the a-decay stellar and planet processes

  8. The light element formation: a signature of high energy nuclear astrophysics

    International Nuclear Information System (INIS)

    Audouze, J.; Meneguzzi, M.; Reeves, H.

    1976-01-01

    Light elements D, 6 Li, 9 Be, 10 B and 11 B (and possibly also 7 Li) are not produced by the general nucleosynthetic processes occurring in stars. They appear to be synthesized by high energy processes occuring either during the interaction of galactic cosmic rays with the interstellar medium or in supernovae envelopes. These formation processes are discussed. It is emphasized that the most coherent scenario regarding the formation of the light elements is obtained by taking also into account the nuclear processes which may have occurred during hot phases of the early Universe (Big Bang). Implications on chemical evolution of galaxies and on cosmology are briefly recalled. (Auth.)

  9. Astrophysical Flows

    Science.gov (United States)

    Pringle, James E.; King, Andrew

    2003-07-01

    Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas

  10. Nuclear reactions in AGB nucleosynthesis: the 19F(α, p22Ne at energies of astrophysical relevance

    Directory of Open Access Journals (Sweden)

    D’Agata G.

    2017-01-01

    Full Text Available The abundance of 19F in the universe is strictly related to standard and extra-mixing processes taking place inside AGB-stars, that are considered to be the most important sites for its production. Nevertheless the way in which it is destroyed is far from being well understood. For this reason we studied the 19F(α,p22Ne reaction, that is supposed to be the main destruction channel in the Helium-rich part of the star. In this experiment, the reaction has been studied in the energy range of relevance for astrophysics (0÷1 MeV via the Trojan Horse Method (THM, using the three-body reaction 6Li(19F,p22Ned.

  11. A space Fresnel imager concept assessment study led by CNES for astrophysical applications

    Science.gov (United States)

    Hinglais, Emmanuel

    2011-06-01

    In 2009, the Centre National d'Etudes Spatiales (CNES) carried out an assessment study on a "Fresnel telescope" concept based on a two-spacecraftformation flying configuration. This concept uses a binary Fresnel zone plate, and the principle of diffraction focusing, which allows high resolution optical imaging for astrophysics. In addition to CNES, the Laboratoire d'Astrophysique de Toulouse Tarbes (LATT) was deeply involved at two levels: through Research & Technology (R&T) studies to simulate and validate on a test bench the Fresnel concept performance, and through active participation in the CNES team for the optical aspects and to define the astrophysical fields of Fresnel-based space missions. The study was conducted within the technical limitations that resulted from a compromise between the R&T state of the art and the potential scientific domains of interest. The main technical limitations are linked to the size of the primary Fresnel array and to its usable spectral bandwidth. In this framework, the study covers ambitious architectures, correlating the technology readiness of the main critical components with the time-scale and programmatic horizons. The possible scientific topics arise from this range of missions. In this paper, I present a mission launched by a Soyuz, dedicated to astrophysics in the Ultra Violet (UV) band: 120 to 300 nm using a 4-m Fresnel array. It could be competitive in the next fifteen years, whereas a 10-m aperture mission in different bands; UV, visible or Infra Red (IR) (up to 6 μm) could be achievable in the future. Larger missions, using a primary array larger than 20 m, request technologies not yet available but that will probably be based on new inflatable structures with membranes, as already tested in the USA for other ends.

  12. An astrophysical engine that stores gravitational work as nuclear Coulomb energy

    Science.gov (United States)

    Clayton, Donald

    2014-03-01

    I describe supernovae gravity machines that store large internal nuclear Coulomb energy, 0.80Z2A- 1 / 3MeV per nucleus. Excess of it is returned later by electron capture and positron emission. Decay energy manifests as (1) observable gamma-ray lines (2) light curves of supernovae (3) chemical energy of free carbon dissociated from CO molecules (4) huge abundances of radiogenic daughters. I illustrate by rapid silicon burning, a natural epoch in SN II. Gravitational work produces the high temperatures that photoeject nucleons and alpha particles from heavy nuclei. These are retained by other nuclei to balance photoejection rates (quasiequilibrium). The abundance distribution adjusts slowly as remaining abundance of Z = N 28Si decomposes, so p, n, α recaptures hug the Z = N line. This occurs in milliseconds, too rapidly for weak decay to alter bulk Z/N ratio. The figure displays those quasiequilibrium abundances color-coded to their decays. Z = N = 2k nuclei having k 10 are radioactive owing to excess Coulomb energy. Weak decays radiate that excess energy weeks later to fuel the four macroscopic energetic phenomena cited. How startling to think of the Coulomb nuclear force as storing cosmic energy and its weak decay releasing macroscopic activation to SNII.

  13. A broad band X-ray imaging spectrophotometer for astrophysical studies

    Science.gov (United States)

    Lum, Kenneth S. K.; Lee, Dong Hwan; Ku, William H.-M.

    1988-01-01

    A broadband X-ray imaging spectrophotometer (BBXRIS) has been built for astrophysical studies. The BBXRIS is based on a large-imaging gas scintillation proportional counter (LIGSPC), a combination of a gas scintillation proportional counter and a multiwire proportional counter, which achieves 8 percent (FWHM) energy resolution and 1.5-mm (FWHM) spatial resolution at 5.9 keV. The LIGSPC can be integrated with a grazing incidence mirror and a coded aperture mask to provide imaging over a broad range of X-ray energies. The results of tests involving the LIGSPC and a coded aperture mask are presented, and possible applications of the BBXRIS are discussed.

  14. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  15. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    Science.gov (United States)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  16. Nuclear forensics case studies

    International Nuclear Information System (INIS)

    Fedchenko, Vitaly

    2016-01-01

    The objective of this presentation is to share three case studies from the Institute of Transuranium Elements (ITU) which describe the application of nuclear forensics to events where nuclear and other radioactive material was found to be out of regulatory control

  17. Study of the hydroxyl radical: Experimental advances in microwave spectroscopy, theoretical model and astrophysical consequences

    International Nuclear Information System (INIS)

    Destombes, Jean-Luc

    1978-01-01

    This research thesis mainly addresses the experimental and theoretical study of the hydroxyl radical, and the consequences of the obtained results in astrophysics which are studied with a model of pumping by the far infrared. After a recall of notions related to microwave spectroscopy and to molecular radio-astronomy, the author more particularly discusses different aspects of microwave spectroscopy in the interstellar environment and in laboratory. He also reviews different types of spectrometers for unsteady molecules. In the second part, he addresses issues related to the hydroxyl radical (OH): presentation of spectrometers, study of the reaction environment, study of the radical microwave spectrum, identification of transitions by frequency measurements. In the last parts, the author addresses some aspects of interstellar OH masers, and reports the application of some results to simple models of pumping by the far infra red

  18. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  19. Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay

    Science.gov (United States)

    Trache, L.; Banu, A.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B. T.; Simmons, E.; Spiridon, A.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Äysto, J.; Davinson, T.; Lotay, G.; Woods, P. J.; Pollacco, E.

    2012-02-01

    In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of 23Al, 27P, 31Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions 22Na(p,γ)23Mg (crucial for the depletion of 22Na in novae), 26mAl(p,γ)27Si and 30P(p,γ)31S (bottleneck in novae and XRB burning), respectively. Lastly, results with a new detector that allowed us to measure down to about 80 keV proton energy are announced.

  20. Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay

    International Nuclear Information System (INIS)

    Trache, L; Banu, A; Hardy, J C; Iacob, V E; McCleskey, M; Roeder, B T; Simmons, E; Spiridon, A; Tribble, R E; Saastamoinen, A; Jokinen, A; Äysto, J; Davinson, T; Lotay, G; Woods, P J; Pollacco, E

    2012-01-01

    In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A and M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of 23 Al, 27 P, 31 Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions 22 Na(p,γ) 23 Mg (crucial for the depletion of 22 Na in novae), 26m Al(p,γ) 27 Si and 30 P(p,γ) 31 S (bottleneck in novae and XRB burning), respectively. Lastly, results with a new detector that allowed us to measure down to about 80 keV proton energy are announced.

  1. Neutron induced reaction of light nuclei and its role in nuclear astrophysics

    International Nuclear Information System (INIS)

    Nagai, Y.

    2000-01-01

    Recently, much interest has arisen in the abundance of the s-process isotopes in stars of various metallicity to construct models of the chemical evolution of the Galaxy. Efforts involving both observations and yield estimations of these isotopes are being made for a wide range of metallicities and stellar masses to compare the chemical evolution models with the observational data. So far, in the models of the chemical evolution of the s-isotopes the yields of the isotopes versus the abundance of either 56 Fe (seed) nuclei or 16 O (source) nuclei have been suggested to be linear. However, it has now been shown to be nonlinear for low-metallicity massive stars. The nonlinearity was due to neutron poison by abundant light nuclei. Namely, if the neutron capture cross sections of the light nuclei would be large, the yields of heavier s-isotopes would decrease; the relationship of the yields versus the abundance of either 56 Fe (seed) or 16 O (source) nuclei becomes nonlinear; furthermore, the yields of p-process nuclei would decrease, since the s-process nuclei are the immediate predecessors of the p-nuclei. Therefore, in order to construct models to predict the s- and p-isotope productions as functions of the metallicity and stellar mass, it is necessary to know the neutron capture cross sections of light nuclei at stellar neutron energy. In the lecture, I discuss detailed motive of the study, together with results recently obtained. (author)

  2. Coulomb Dissociation of {sup 17}Ne and its role for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Marganiec, Justyna [ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Aumann, Thomas; Wamers, Felix [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Institut fuer Kernphysik, TU, Darmstadt (Germany); Heil, Michael [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Plag, Ralf [Kernreaktion und Nuklear Astrophysik, GSI, Darmstadt (Germany); Goethe-Universitaet, Frankfurt am Main (Germany); Collaboration: R3B-Collaboration

    2011-07-01

    The study of the Coulomb break up of {sup 17}Ne gives us an access to information about the time-reversed reaction {sup 15}O(2p,{gamma}){sup 17}Ne, which could serve as a bypass of {sup 15}O waiting point during the rp process, and move the initial CNO material towards heavier nuclei. The three-body radiative capture can proceed sequentially (J. Goerres, et al., Phys. Rev. C 51, 392, 1995) or directly from the three-body continuum (L.V. Grigorenko, M.V. Zhukov, Phys. Rev. C 72, 015803, 2005). It has been suggested that the reaction rate can be enhanced by a few orders of magnitude by taking into account the three-body continuum. In order to verify these calculations, the {sup 15}O(2p,{gamma}){sup 17}Ne cross section has been investigated. The experiment has been performed at the LAND/R{sup 3}B setup at GSI, using the fragment separator FRS to select a {sup 17}Ne secondary beam.

  3. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    Science.gov (United States)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  4. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  5. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  6. Study of astrophysically important resonant states in 26Si by the 28Si(4He,6He)26Si reaction

    Science.gov (United States)

    Kwon, Young Kwan; Lee, C. S.; Moon, J. Y.; Lee, J. H.; Kim, J. Y.; Kubono, S.; Iwasa, N.; Inafiki, K.; Yamaguchi, H.; He, J. J.; Saito, A.; Wakabayashi, Y.; Fukijawa, H.; Amadio, G.; Khiem, L. H.; Tanaka, M.; Chen, A.; Kato, S.

    PoS(NIC-IX)024 , b, H. Yamaguchia, J. J. Hea , A. Saitoa , Y. Wakabayashia, H. Fujikawaa, G. The emission of 1.809 MeV gamma-ray from the first excited state of 26 Mg followed by beta- decay of 26 Al in its ground state (denoted as 26 Alg.s. ) has been identified by gamma-ray telescopes such the Compton Gamma-Ray Observatory (CGRO) [1]. To resolve controversy over the pos- sible sources of the observational 1.809 MeV gamma-rays, one needs accurate knowledge of the production rate of 26 Al. The 25 Al(p,γ)26Si reaction which is the competition reaction for produc- tion of 26 Alg.s. is one of the important subjects to be investigated. In this work, the astrophysically important 26 Si states above the proton threshold were studied via the 28 Si(4 He,6 He)26 Si reaction. We have preformed an angular distribution measurement using the high resolution QDD spectro- graph (PA) at Center for Nuclear Study (CNS), University of Tokyo. The experimental results and data analysis will be presented.

  7. Trends in nuclear astrophysics

    International Nuclear Information System (INIS)

    Reeves, H.

    1986-07-01

    Two instances in which the good success of standard Big Bang nucleosynthesis in reproducing the abundance observations of the light elements has been used for the development of high energy physics and of early cosmological models have been described. The first case is in relation with the families of elementary particles the other case is in the formulation of multidimensional cosmologies (as superstring theories) taking into account the observed constancies of the 4-D versions of the coupling constants

  8. Nuclear astrophysics at FRANZ

    Science.gov (United States)

    Reifarth, R.; Dababneh, S.; Fiebiger, S.; Glorius, J.; Göbel, K.; Heil, M.; Hillmann, P.; Heftrich, T.; Langer, C.; Meusel, O.; Plag, R.; Schmidt, S.; Slavkovská, Z.; Veltum, D.; Weigand, M.; Wiesner, C.; Wolf, C.; Zadeh, A.

    2018-01-01

    The neutron capture cross section of radioactive isotopes for neutron energies in the keV region will be measured by a time-of-flight (TOF) experiment. NAUTILUS will provide a unique facility realizing the TOF technique with an ultra-short flight path at the FRANZ setup at Goethe-University Frankfurt am Main, Germany. A highly optimized spherical photon calorimeter will be built and installed at an ultra-short flight path. This new method allows the measurement of neutron capture cross sections on extremely small sample as needed in the case of 85Kr, which will be produced as an isotopically pure radioactive sample. The successful measurement will provide insights into the dynamics of the late stages of stars, an important independent check of the evolution of the Universe and the proof of principle.

  9. Bio-inspired computational heuristics to study Lane-Emden systems arising in astrophysics model.

    Science.gov (United States)

    Ahmad, Iftikhar; Raja, Muhammad Asif Zahoor; Bilal, Muhammad; Ashraf, Farooq

    2016-01-01

    This study reports novel hybrid computational methods for the solutions of nonlinear singular Lane-Emden type differential equation arising in astrophysics models by exploiting the strength of unsupervised neural network models and stochastic optimization techniques. In the scheme the neural network, sub-part of large field called soft computing, is exploited for modelling of the equation in an unsupervised manner. The proposed approximated solutions of higher order ordinary differential equation are calculated with the weights of neural networks trained with genetic algorithm, and pattern search hybrid with sequential quadratic programming for rapid local convergence. The results of proposed solvers for solving the nonlinear singular systems are in good agreements with the standard solutions. Accuracy and convergence the design schemes are demonstrated by the results of statistical performance measures based on the sufficient large number of independent runs.

  10. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  11. Astrophysics today

    International Nuclear Information System (INIS)

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more

  12. THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE (19)F(p, alpha(0))(16)O REACTION AT ASTROPHYSICAL ENERGIES

    Czech Academy of Sciences Publication Activity Database

    La Cognata, M.; Mukhamedzhanov, A. M.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, Václav; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Zdeněk; Kiss, G.G.; Kroha, Václav; Lamia, L.; Mrázek, Jaromír; Palmerini, S.; Piskoř, Štěpán; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.

    2011-01-01

    Roč. 739, č. 2 (2011), L54 ISSN 2041-8205 R&D Projects: GA MŠk LC07050; GA ČR GAP203/10/0310 Institutional research plan: CEZ:AV0Z10480505 Keywords : ASYMPTOTIC GIANT BRANCH * CORONAE-BOREALIS STARS * NUCLEAR ASTROPHYSICS * COULOMB BARRIER * CROSS-SECTION * LOW-MASS * NUCLEOSYNTHESIS * CARBON Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.526, year: 2011

  13. Why should we study nuclear physics?

    International Nuclear Information System (INIS)

    Darriulat, Pierre

    2015-01-01

    After a brief look at the history of nuclear science and technology in the past hundred years, arguments are given for the study of Nuclear Physics, very different of course from what they were in the middle of the past century. Nuclear physics no longer appears as a good bet to study the strong force. Problems left open by QCD are better addressed by relativistic ion accelerators, RHIC and LHC/Alice. Radioactive Ion Beams have caused a renaissance of experimental nuclear physics. They explore the nuclear equation of state far from the stability valley, discovering new isotopes and new forms of dynamics, such as halo nuclei. They contribute essential data to nuclear astrophysics. They have new applications in medicine and industry. They enjoy strong support all around the world; in Asia, Japan is a leader and Korea and China are joining the club. Nuclear processes are ubiquitous in astrophysics: Big bang nucleosynthesis, Main Sequence stars, evolved stars (Asymptotic Giant Branch and Supernovae). Understanding what is going on requires knowledge from laboratory measurements; at the same time astrophysics gives nuclear physics a laboratory having no equivalent on Earth. Applications of nuclear physics pervade modern societies. Medicine and material sciences, make ample use of radioactive sources and ion beams, as do all branches of agriculture and industry. Accelerators are now commercially available and part of the industrial landscape. Implications on training competent scientists, technicians and engineers are enormous. Particularly crucial are matters of safety. Nuclear Power Plants are a major element of the Vietnamese energy policy in the decades to come. Their safe and efficient operation requires high level skills and competence that cover a broad spectrum of scientific and technical, but also socio-economic and geo-political issues. Nuclear physics must be taught to the young generation in a form that takes proper account of the current scientific

  14. Observational astrophysics

    CERN Document Server

    Léna, Pierre; Lebrun, François; Mignard, François; Pelat, Didier

    2012-01-01

    This is the updated, widely revised, restructured and expanded third edition of Léna et al.'s successful work Observational Astrophysics. It presents a synthesis on tools and methods of observational astrophysics of the early 21st century. Written specifically for astrophysicists and graduate students, this textbook focuses on fundamental and sometimes practical limitations on the ultimate performance that an astronomical system may reach, rather than presenting particular systems in detail. In little more than a decade there has been extraordinary progress in imaging and detection technologies, in the fields of adaptive optics, optical interferometry, in the sub-millimetre waveband, observation of neutrinos, discovery of exoplanets, to name but a few examples. The work deals with ground-based and space-based astronomy and their respective fields. And it also presents the ambitious concepts behind space missions aimed for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spec...

  15. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  16. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  17. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-01-01

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research)

  18. Nuclear war effects studied

    Science.gov (United States)

    Widespread starvation resulting from changes in climate in the aftermath of a large-scale nuclear war could kill far more people than would the bombs themselves. That prediction was made in a recent study by the Scientific Committee on Problems of the Environment (SCOPE), an a rm of the International Council of Scientific Unions (ICSU). “Noncombatant and combatant countries alike” would risk mass starvation; SCOPE predicted that all told, 2.5 billion people could die as a result of crop failures and breakdowns in food distribution after a nuclear war.

  19. Nuclear Industry Family Study

    International Nuclear Information System (INIS)

    1993-01-01

    This is a copy of the U.K.A.E.A. Question and Answer brief concerning an epidemiological study entitled the Nuclear Industry Family Study, to investigate the health of children of AEA, AWE, and BNFL Workers. The study is being carried out by an independent team of medical research workers from the London School of Hygiene and Tropical Medicine, and the Imperial Cancer Research Fund. (UK)

  20. Experimental study by infrared spectroscopy of irradiation effects in silicates and ices, applied to astrophysics

    International Nuclear Information System (INIS)

    Rocard, F.

    1986-05-01

    This thesis presents the study of the radiation effects (erosion and synthesis) with ions of low energy (a few KeV/u) in silicates and ices. The erosion of the H 2 O ice is analysed by infrared spectroscopy versus different parameters: ion beam flux, mass and energy of the ions, and the thickness of the samples. The interpretation is that the erosion of the ice comes mainly from the dissociation, along the ion range, of the H 2 O molecules. A study of the synthesis in SiO 2 and H 2 O by carbon, nitrogen and hydrogen implantation leads to the characterization of the synthesized molecules and the determination of the yields. The irradiation of ices mixtures (H 2 O, CO 2 and NH 3 ) leads to the synthesis of a great variety of molecules which are identified. The experimental results are extrapolated to different astrophysical situations in the solar cavity (Moon, satellites of giant planets, comets) and in the interstellar medium (molecular clouds) [fr

  1. Calculation of the nuclear vertex constant for the virtual decay 6LI→α + d in the three- body model and its astrophysical application

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Igamov, S.B.; Nishonov, MM; Yarmukhamedov, R; Kamimura, M.

    2003-01-01

    The d(α, γ) 6 Li reaction is one of the sources of 6 Li production in the Big-Bang nuclear synthesis. At present extremely large uncertainties exist on this prediction mainly due to the absence of reliable directly measured cross section (or astrophysical S-factor, S(E)) at astrophysical relevant energies E, including E=0. As far theoretical calculation of the S(E) that have rather large spread. On the other hand, the d(α, γ) 6 Li reaction is predominantly of peripheral character at extremely low energies. Therefore the calculated S(E) at extremely low energies is mainly determined by the nuclear vertex constant (NVC) (or respective asymptotic normalization constant (ANC)) for the virtual decay 6 Li→α + d. Taking into account this circumstance we develop a method of calculation of the NVC for the virtual decay 6 Li→α + d for the subsequent application of the calculated one to the direct radiative capture d(α, γ) 6 Li cross - section (or astrophysical S-factor) calculation at extremely low energies E, including E=0. The developed method is based on the three-body Faddeev approach which is applied for the α-d scattering by using different forms of the NN- and αN-potentials. As a result the values of NVC and respective ANC for 6 Li→α + d virtual decay are obtained using two forms both for NN- and for αN-potential. They are the separable potentials with Yamaguchi type form factor and Paris potential with PEST 16 form factor for the NN- potential and Yamaguchi type form factor and Sack-Biedenharn-Breit potential for the αN- potential. A noticeable sensitivity to used forms of the NN- and αN- potential occurs both for the calculated NVC (or ANC) and astrophysical S- factor S(E) of the direct radiative capture d(α, γ) 6 Li reaction at extremely low energies E (≤100 keV), including the value E=0. The calculated S(E) have been obtained using the information about the NVC values. The obtained values of NVC and S(E) are compared with those of obtained

  2. Astrophysical cosmology

    Science.gov (United States)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  3. Astrophysical cosmology

    International Nuclear Information System (INIS)

    Bardeen, J.M.

    1986-01-01

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe. 47 refs

  4. Nuclear Structure Studies with Gamma-Ray Beams

    Directory of Open Access Journals (Sweden)

    Tonchev Anton

    2015-01-01

    Full Text Available In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR in contrast to the Giant Dipole Resonance (GDR that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.

  5. Nuclear Structure Studies with Gamma-Ray Beams

    Science.gov (United States)

    Tonchev, Anton; Bhatia, Chitra; Kelley, John; Raut, Rajarshi; Rusev, Gencho; Tornow, Werner; Tsoneva, Nadia

    2015-05-01

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.

  6. Nuclear site selection studies

    International Nuclear Information System (INIS)

    Gharib, A.; Zohoorian Izadpanah, A.A.; Iranmanesh, H.

    2000-01-01

    It is of special importance, especially from the nuclear safety viewpoint, to select suitable sites for different nuclear structures with the considered future activities. Site selection sometimes involves high costs not necessarily for merely selecting of site but for some preliminary measures to be taken so as the site may have the necessary characteristics. The more suitable the natural characteristics of the site for the considered project, the more successful and efficient the project, the lower the project costs and the longer the project operation period. If so, the project will cause the growth of public culture and sustainable socioeconomic development. This paper is the result of the conclusion of numerous massive reports of this activity in the preliminary phase based on theories, practices and the related safety principles on this ground as well as the application of data and information of the past and a glance to the future. The conception of need for a site for medium structures and nuclear research projects and how to perform this process are presented step by step here with a scientific approach to its selection during the investigations. In this study, it is practically described how the site is selected, by determining and defining the characteristics of research and nuclear projects with medium structures and also its fitting to the optimum site. The discovered sites typically involve the best advantages in technical and economic aspects and no particular contrast with the concerned structures

  7. The new astrophysics

    International Nuclear Information System (INIS)

    Longair, M.

    1989-01-01

    The author offers a review of advances in astrophysics since 1945 when astronomers started to explore the universe beyond the bounds of the optical wavelength of the electromagnetic spectrum, especially in the fields of radio, x ray and gamma ray, cosmic ray, ultraviolet and infrared astronomies, as well as neutral hydrogen and molecular line studies. Theoretical and technological advances have also kept pace. An overview of the new astrophysics is offered focusing on the large-scale distribution of matter and the background microwave radiation, galaxies, stellar evolution and the interstellar media (dust, gas and high energy particles). Nucleosynthesis in stars is mentioned in a broader discussion of stellar evolution, and dead stars including supernovae. Active galaxies and quasars are discussed. After considering what should be included in astrophysical cosmology, the author looks to the future of the science. (U.K.)

  8. Nuclear standardization development study

    International Nuclear Information System (INIS)

    Pan Jianjun

    2010-01-01

    Nuclear industry is the important part of national security and national economic development is key area of national new energy supported by government. nuclear standardization is the important force for nuclear industry development, is the fundamental guarantee of nuclear safe production, is the valuable means of China's nuclear industry technology to the world market. Now nuclear standardization faces to the new development opportunity, nuclear standardization should implement strategy in standard system building, foreign standard research, company standard building, and talented people building to meet the requirement of nuclear industry development. (author)

  9. Large area isotopic silicon targets for astrophysical reaction rate studies in Si-26

    NARCIS (Netherlands)

    Greene, JP; Berg, GPA

    2005-01-01

    For measurements of stellar reaction rates of proton rich nuclei involving resonance levels just above threshold, targets of Si-28 were used in studies of the Si-21(He-4, He-6)Si-26 reaction using the Research Center for Nuclear Physics (RCNP) Ring Cyclotron at Osaka University. Resonance structure

  10. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    Science.gov (United States)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  11. The X-Ray Surveyor mission concept study: forging the path to NASA astrophysics 2020 decadal survey prioritization

    Science.gov (United States)

    Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey

    2016-07-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  12. Nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  13. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R ampersand D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  14. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1988-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections 2A, 2B, 2C, and 2D, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  15. Nuclear spectroscopic studies

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1991-01-01

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility, the SuperHILAC at Berkeley, and Chalk River Tandem Accelerator. Also, we have joined a collaboration to study ultra-relativistic heavy ion physics and one of our group has spent all of 1987 at CERN to work on the WA80 experiment. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document in sections IIA, IIB, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  16. Exotic nuclei and astrophysics

    Directory of Open Access Journals (Sweden)

    Penionzhkevich Yu.

    2012-12-01

    Full Text Available In recent years, nuclear physics investigations of the laws of the microscopic world contributed significantly to extension of our knowledge of phenomena occurring in the macroscopic world (Universe and made a formidable contribution to the development of astrophysical and cosmological theories. First of all, this concerns the expanding universe model, the evolution of stars, and the abundances of elements, as well as the properties of various stars and cosmic objects, including “cold” and neutron stars, black holes, and pulsars. Without claiming to give a full account of all cosmological problems, we will dwell upon those of them that, in my opinion, have much in common with nuclear-matter properties manifesting themselves in nuclear interactions.

  17. Ti-44, Al-26 and Mn-53 samples for nuclear astrophysics: The needs, the possibilities and the sources

    CERN Document Server

    Dressler, R; Bemmerer, D; Bunka, M; Dai, Y; Lederer, C; Fallis, J; Murphy, A StJ; Pignatari, M; Schumann, D; Stora, T; Stowasser, T; Thielemann, F K; Woods, P J

    2012-01-01

    Exploration of the physics involved in the production of cosmogenic radionuclides requires experiments using the same rare, radioactive nuclei in sufficient quantities. For this work, such exotic radionuclides have been extracted from previously proton-irradiated stainless steel samples using wet chemistry separation techniques. The irradiated construction material has arisen from an extended material research programme at the Paul Scherrer Institute, called STIP (SINQ Target Irradiation Program), where several thousand samples of different materials were irradiated with protons and neutrons of energies up to 570 MeV. In total, 8 Oe 10(17) atoms of (44)Ti, -10(16) atoms of (26)Al and -10(19) atoms of (53)Mn are available from selected samples. These materials may now be used to produce targets or radioactive beams for nuclear reaction studies with protons, neutrons and alpha-particles. The work is part of the ERAWAST initiative (Exotic Radionuclides from Accelerator Waste for Science and Technology), aimed at...

  18. A study of visual double stars with early type primaries. IV. Astrophysical data

    International Nuclear Information System (INIS)

    Lindroos, K.P.

    1985-01-01

    Astrophysical parameters (MK class, colour excess, absolute magnitude, distance, effective temperature mass and age) are derived from calibrations of the uvbyβ indices for the members of 253 double stars with O or B type primaries and faint secondaries. The photometric spectral classification is compared to the MK classes and the agreement is very good. The derived data together with spectroscopic and JHKL data are used for deciding which pairs are likely to be physical and which are optical and it is shown that 98 (34%) of the secondaries are likely to be members of physical systems. For 90% of the physical pairs the projected separations between the components is less than 25000 AU. A majority of the physical secondaries are late type stars and 50% of them are contracting towards the zero-age main-sequence. Also presented are new uvbyβ data for 43 secondaries and a computer programme for determining astrophysical parameters from uvbyβ data

  19. Charge state distribution of 16O from the 4He(12C,16O)γ reaction of astrophysical interest studied both experimentally and theoretically

    International Nuclear Information System (INIS)

    Liu, Shengjin; Sakurai, Makoto; Sagara, Kenshi; Teranishi, Takashi; Fujita, Kunihiro; Yamaguchi, Hiroyuki; Matsuda, Sayaka; Mitsuzumi, Tatsuki; Iwazaki, Makoto; Rosary, Mariya T.; Kato, Daiji; Tolstikhina, I.Yu.

    2014-01-01

    In astrophysics, 4 He( 12 C, 16 O)γ reaction places an important role. At Kyushu University Tandem accelerator Laboratory (KUTL), the measurement of 4 He( 12 C, 16 O)γ cross section is in progress in the energy range of astrophysical nuclear reaction. Since the charge state of product 16 O ions after passing through the gas target is spread and only one charge state can be measured at terminal detector, it is necessary to know the charge state distribution of 16 O ions passing through the He gas target precisely. Here, we report the charge state distribution of the 16 O recoils both experimentally and theoretically. Experimentally, we measured the equilibrium charge state distribution of 16 O ions in the windowless helium gas target with the beam energy of primary 16 O ions at 7.2, 4.5, and 3.45 MeV at KUTL. The measured results showed a Gaussian distribution for the charge state fraction. Theoretically, we proposed a framework for the charge state distribution study. Charge state distribution was computed by solving a set of differential equations including a series of charge exchange cross sections. For the ionization cross section, plane-wave Born approximation was applied and modified by taking target atomic screening as a function of momentum transfer into account. For the capture cross section, continuum distorted wave approximation was applied and the influence of the gas target density was taken into account in the process of electron capture. Using above charge exchange cross sections, the charge state evolution was simulated. According to the equilibrium distribution, we compared the theoretical calculation to the experimental data. After taking into account the density effects in the charge exchange process, the theoretical charge state distributions shows a good agreement with the experimental data. Both experimental and theoretical results are useful to understand the charge fraction of recoil oxygen created via 4 He( 12 C, 16 O)γ reaction

  20. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  1. Nuclear medicine technology study guide

    CERN Document Server

    Patel, Dee

    2011-01-01

    Nuclear Medicine Technology Study Guide presents a comprehensive review of nuclear medicine principles and concepts necessary for technologists to pass board examinations. The practice questions and content follow the guidelines of the Nuclear Medicine Technology Certification Board (NMTCB) and American Registry of Radiological Technologists (ARRT), allowing test takers to maximize their success in passing the examinations. The book is organized by sections of increasing difficulty, with over 600 multiple-choice questions covering all areas of nuclear medicine, including radiation safety; radi

  2. Experimental study of the 6Li(d,α)4He reaction and its astrophysical implications via the Trojan Horse Method

    International Nuclear Information System (INIS)

    Pizzone, R.G.; Aliotta, M.; Pellegriti, M.G.; Spitaleri, C.; Blagus, S.; Milin, M.; Miljanic, D.; Rendic, D.; Soic, N.; Zadro, M.; Cherubini, S.; Figuera, P.; Romano, S.; Lattuada, M.; Zappala, R. A.

    2000-01-01

    The 6 Li(d,α) 4 He reaction, whose astrophysical importance is connected to the primordial nucleosynthesis in the framework of the Inhomogeneous Big Bang, has been studied by using the Trojan Horse Method (THM). We derive and discuss the cross section and the astrophysical S(E)-factor for E cm =0.025-0.7 MeV. Results are compared with data from a direct measurement

  3. Relation between proton and neutron asymptotic normalization coefficients for light mirror nuclei and its relevance for nuclear astrophysics)

    International Nuclear Information System (INIS)

    Timofeyuk, N.K.; Johnson, R.C.; Descouvemont, P.

    2005-01-01

    In this talk, relation between proton and neutron Asymptotic Normalization Coefficients (ANCs) for light mirror nuclei will be discussed. This relation follows from charge symmetry of nucleon-nucleon interactions and is given by a simple approximate analytical formula which involves proton and neutron separation energies, charges of residual nuclei and the range of their strong interaction with the last nucleon. This relation is valid both for particle-bound mirror nuclear levels and for mirror pairs in which one of the levels is a narrow resonance. In the latter case, the width of this resonance is related to the ANC of its mirror particle-stable analog. Our theoretical study of mirror ANCs for several light nuclei within a framework of microscopic two-, three- and four-cluster models, have shown that the ratio of mirror ANCs changes as predicted by the simple approximate analytical formula. We will also compare the results from our microscopic calculations to the predictions of the single-particle model and discuss mirror symmetry of spectroscopic factors and single-particle ANCs. (author)

  4. Resolving astrophysical uncertainties in dark matter direct detection

    CERN Document Server

    Frandsen, Mads T; McCabe, Christopher; Sarkar, Subir; Schmidt-Hoberg, Kai

    2012-01-01

    We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without implicit assumptions concerning the dark matter halo. We extend this framework to include the annual modulation signal, as well as multiple target elements. Recent results from DAMA, CoGeNT and CRESST-II can be brought into agreement if the velocity distribution is very anisotropic and thus allows a large modulation fraction. However constraints from CDMS and XENON cannot be evaded by appealing to such astrophysical uncertainties alone.

  5. Nuclear transfer reaction measurements at the ESR—for the investigation of the astrophysical 15O(α,γ)19Ne reaction

    International Nuclear Information System (INIS)

    Doherty, D T; Woods, P J; Davinson, T; Estrade, A; Lotay, G; Litvinov, Yu A; Brandau, C; Dillmann, I; Egelhof, P; Evdokimov, A; Gumberidze, A; Heil, M; Litvinov, S A; Kiselev, O; Najafi, M Ali; Bagchi, S; Kalantar-Nayestanaki, N; Bishop, S; Bo, M; Lederer, C

    2015-01-01

    Astrophysical x-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The 15 O(α,γ) 19 Ne reaction is one reaction that allows breakout from these CNO cycles and into the rp-process to fuel outbursts. The reaction is expected to be dominated by a single 3/2 + resonance at 4.033 MeV in 19 Ne, however, limited information is available on this key state. This work reports on a pioneering study of the 20 Ne(p,d) 19 Ne reaction, performed in inverse kinematics at the experimental storage ring (ESR) as a means of accessing the astrophysically important 4.033 MeV state in 19 Ne. The unique, background free, high luminosity conditions of the storage ring were utilized for this, the first transfer reaction performed at the ESR. The results of this pioneering test experiment are presented along with suggestions for future measurements at storage ring facilities. (paper)

  6. Thermonuclear astrophysics

    International Nuclear Information System (INIS)

    Clayton, D.D.; Woosley, S.E.

    1974-01-01

    We discuss the types of thermonuclear reactions that are of importance to stellar evolution and nucleosynthesis, with particular attention to the explosive ejection of shells of He, C, O, and Si. We present tables of the reactions important in the various burning phases, including the reason for their importance and an estimate of the value of a carefully measured rate. This format is chosen for dual purpose: (1) to clarify the nuclear needs by evaluating the importance of specific reactions within the astronomical settings and (2) by assigning a value scale for cross-section measurements

  7. Collision excitation studies useful for plasma diagnostics in astrophysics and fusion research

    International Nuclear Information System (INIS)

    Man Mohan; Aggarwal, Sunny

    2015-01-01

    The urgent research for energy sources has led many countries to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction of International Thermonuclear Experimental Reactor in France. Data on highly charged ions with high Z will be important in this quest. Atomic data such as energy levels, radiative rates and collision excitation plays an important role in fusion research and extensive knowledge of atomic parameters is needed for plasma diagnostics. There is a very limited knowledge so far about the heavy atoms due to involvement of strong relativistic effects. For heavy atoms, electron correlation effects and relativistic effects are strongly coupled making it necessary to use a relativistic theory which also incorporates 'electron correlations effects on the same footing. For treating heavy atoms there have been new developments and many codes in the relativistic domain have been developed by various authors. Among them, multi-configuration Hartree (Dirac) Fock (MCDF) model based codes have been found very useful in ab-initio investigations. We have calculated the energy levels, radiative rates and lifetimes for heavy charged F, Na and Mg like tungsten ions using MCDF and FAC and compared our results with the other available theoretical and experimental results. Also, we have performed collision excitation calculations for F, Na and Mg like tungsten ions which will be useful for astrophysical and fusion, plasma. Also, we have compared our collision excitation results with distorted wave calculations and they are found to be in good agreement. The main goal of this paper is to provide useful atomic physics data for use in fusion research and in astrophysical and industrial plasmas. (author)

  8. Occultations of Astrophysical Radio Sources as Probes of Planetary Environments: A Case Study of Jupiter and Possible Applications to Exoplanets

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Paul [Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Vogt, Marissa F. [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2017-02-10

    Properties of planetary atmospheres, ionospheres, and magnetospheres are difficult to measure from Earth. Radio occultations are a common method for measuring these properties, but they traditionally rely on radio transmissions from a spacecraft near the planet. Here, we explore whether occultations of radio emissions from a distant astrophysical radio source can be used to measure magnetic field strength, plasma density, and neutral density around planets. In a theoretical case study of Jupiter, we find that significant changes in polarization angle due to Faraday rotation occur for radio signals that pass within 10 Jupiter radii of the planet and that significant changes in frequency and power occur from radio signals that pass through the neutral atmosphere. There are sufficient candidate radio sources, such as pulsars, active galactic nuclei, and masers, that occultations are likely to occur at least once per year. For pulsars, time delays in the arrival of their emitted pulses can be used to measure plasma density. Exoplanets, whose physical properties are very challenging to observe, may also occult distant astrophysical radio sources, such as their parent stars.

  9. Contributions to the study of astrophysical plasmas. From accretion-ejection flows to particle acceleration in shocks

    International Nuclear Information System (INIS)

    Casse, Fabien

    2013-01-01

    After having outlined that the study of turbulence is a point of convergence between mathematics and physics, and that magnetic turbulence is omnipresent in astrophysical plasmas and also present in the interstellar medium, in stars and in their environment, in accretion disks, at the vicinity of shocks, and so on, the author proposes an overview of his research works which started with a research thesis on magnetised accretion disks and transport of relativistic particles in a magnetic turbulence. So, in this report for an accreditation to supervise research (HDR), he first focuses on physics of systems in accretion, and particularly on magnetised accretion-ejection structures. He evokes his work on a stationary modelling of these structures, on magnetohydrodynamics digital simulation of these systems, and on some instabilities in accretion disks and their interest in astrophysics. In a second part, the author reports his works on numerical assessment of coefficients of spatial diffusion of cosmic rays in a magnetic turbulence, and the description of multi-scale environments such as supernovae debris or different regions of extra-galactic jets.

  10. Study of nuclear material accounting

    International Nuclear Information System (INIS)

    Ruderman, H.

    1977-01-01

    The implications of deliberate diversion of nuclear materials on materials accounting, the validity of the MUF concept to establish assurance concerning the possible diversion of special nuclear materials, and an economic analysis to permit cost comparison of varying the inventory frequency are being studied. An inventory cost model, the statistical hypothesis testing approach, the game theoretic approach, and analysis of generic plants are considered

  11. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1996-01-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei 30 P and 34 Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using 166 Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented

  12. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1995--31 August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1996-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers parts of the second and third year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas: precision test of parity-invariance violation in resonance neutron scattering at LANSCE/LANL; parity violation measurements using charged-particle resonances in A = 20--40 targets and the A = 4 system at TUNL; chaotic behavior in the nuclei {sup 30}P and {sup 34}Cl from studies of eigenvalue fluctuations in nuclear level schemes; search for anomalies in the level density (pairing phase transition) in 1f-2p shell nuclei using GEANIE at LANSCE/LANL; parity-conserving time-reversal noninvariance tests using {sup 166}Ho resonances at Geel, ORELA, or LANSCE/LANL; nuclear astrophysics; few-body nuclear systems; Nuclear Data evaluation for A = 3--20 for which TUNL is now the international center. Developments in technology and instrumentation are vital to the research and training program. Innovative work was continued in: polarized beam development; polarized target development; designing new cryogenic systems; designing new detectors; improving high-resolution beams for the KN and FN accelerators; development of an unpolarized Low-Energy Beam Facility for radiative capture studies of astrophysical interest. Preliminary research summaries are presented.

  13. FLARE STARS—A FAVORABLE OBJECT FOR STUDYING MECHANISMS OF NONTHERMAL ASTROPHYSICAL PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, 206 Allison Lab., Auburn University, Auburn, AL 36849 (United States); Gershberg, R. E. [Crimean Astrophysical Observatory, Nauchny, Bakhchisaray region, Crimea, 298409 (Russian Federation)

    2016-03-01

    We present a spectroscopic method for diagnosing a low-frequency electrostatic plasma turbulence (LEPT) in plasmas of flare stars. This method had been previously developed by one of us and successfully applied to diagnosing the LEPT in solar flares. In distinction to our previous applications of the method, here we use the latest advances in the theory of the Stark broadening of hydrogen spectral lines. By analyzing observed emission Balmer lines, we show that it is very likely that the LEPT was developed in several flares of AD Leo, as well as in one flare of EV Lac. We found the LEPT (though of different field strengths) both in the explosive/impulsive phase and at the phase of the maximum, as well as at the gradual phase of the stellar flares. While for solar flares our method allows diagnosing the LEPT only in the most powerful flares, for the flare stars it seems that the method allows revealing the LEPT practically in every flare. It should be important to obtain new and better spectrograms of stellar flares, allowing their analysis by the method outlined in the present paper. This can be the most favorable way to the detailed understanding of the nature of nonthermal astrophysical phenomena.

  14. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  15. Theoretical studies in nuclear physics

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1991-01-01

    This report discusses research in nuclear theory in the following areas: Isospin effects and charge exchange; inelastic and charge exchange scattering; momentum space proton scattering; pion scattering from nuclei; and antiproton studies. 14 refs

  16. Studying explosive phenomena in astrophysics by the example of gamma-ray bursts and supernovae

    International Nuclear Information System (INIS)

    Filina, Anastasia

    2015-01-01

    The formation of the first stars hundreds of millions of years after the Big-Bang marks the end of the Dark Ages. Currently, we have no direct observations on how the primordial stars formed, but according to modern theory of stellar evolution these stars should be very massive (about 100 Msun) Population III stars have a potential to produce probably most energetic flashes in the Universe - gamma-ray bursts. GRBs may provide one of the most promising methods to probe directly final stage of life of primordial stars. Today's telescopes cannot look far enough into the cosmic past to observe the formation of the first stars, but the new generation of telescopes will test theoretical ideas about the formation of the first stars.Thanks to many years of observations we have good GRB's data -statistics of occurrence, spectrum, light curves. But there are still a lot of questions in the theory of GRBs. We know that GRBs are related to the death of stars and that they are connected with supernovae. So gamma-ray bursts are one of the classes of explosive processes in stellar physics that should have a lot of common with supernovae explosions. In that case GRBs should follow the same physical laws of explosion as supernovae. This work tries to approach the problem of GRBs as a problem of stellar explosion.Necessary instruments of studying stellar explosion were developed as a part of doctoral research: code for solving systems of nuclear reaction equations was incorporated into hydrodynamical code. These tools were applied for supernovae simulations in order to find possible connection with GRBs. Basing on analysis of supernovae simulations spectral analysis of GRBs was performed. (author)

  17. Detailed Study of the Formation of Sugar Derivatives Produced from the UV Irradiation of Astrophysical Ice Analogs

    Science.gov (United States)

    Nuevo, Michel; Cooper, George; Saunders, John; Buffo, Christina E.; Materese, Christopher K.; Sandford, Scott A.

    2018-01-01

    Carbonaceous meteorites such as Murchison contain a large variety of organic compounds of astrobiological interest such as amino acids, other amphiphilic compounds, functionalized nitrogen heterocycles (including nucleobases), functionalized polycylic aromatic hydro-carbons (including quinones), and sugar derivatives. The presence of such a broad variety of organics in meteorites strongly suggests that molecules essential to life can form abiotically under astrophysical conditions. This hypothesis is strongly supported by laboratory studies in which astrophysical ice analogs (i.e., mixtures of H2O, CO, CO2, CH3OH, CH4, NH3, etc.) are subjected to ultraviolet (UV) irradiation at low temperature (less than 15 K) to simulate cold interstellar environments. These studies have shown that the organic residues recovered at room temperature after irradiation contain organic compounds that are very similar to those found in meteorites. No systematic search for the presence of sugar derivatives in laboratory residues had been carried out until the recent detection of ribose, the sugar of RNA, as well as other sugars, sugar alcohols, and sugar acids in one residue produced from the UV irradiation of an ice mixture containing H2O, CH3OH, and NH3 at 80 K. In this work, we present a detailed study of the formation of sugar derivatives contained in organic residues that are produced from the UV irradiation of ice mixtures of different starting compositions (H2O, CH3OH, CO, CO2, and/or NH3) at less than 15 K. While the presence of sugar alcohols, sugars, and sugar acids-in some cases with up to 6 carbon atoms-could be confirmed in all these residues, their distribution was shown to vary with the composition of the starting ices. In particular, only a few ices result in the formation of sugar derivatives displaying a distribution that resembles that of meteorites, in which sugar alcohols and sugar acids are very abundant while sugars are mostly absent.

  18. Astrophysics at nTOF facility

    International Nuclear Information System (INIS)

    Tagliente, G.; Colonna, N.; Maronne, S.; Terlizzi, R.; Abondanno, U.; Fujii, K.; Milazzo, P.M.; Moreau, C.; Belloni, F.; Aerts, G.; Berthoumieux, E.; Andriamonje, S.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M.C.; Gonzalez-Romero, E.; Andrzejewski, J.; Marganiec, J.; Assimakopoulos, P.; Karamanis, D.; Audouin, L.; Dillman, I.; Heil, M.; Kappeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wissak, K.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M.T.; Baumann, P.; David, S.; Kerveno, M.; Rudolf, G.; Lukic, S.; Becvar, F.; Krticka, M.; Bisterzo, S.; Ferrant, L.; Gallino, R.; Calvino, F.; Poch, A.; Pretel, C.; Calviani, M.; Gramegna, F.; Mastinu, P.; Capote, R.; Mengoni, A.; Capote, R.; Lozano, M.; Quesada, J.; Carrapico, C.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dominga-Pardo, C.; Tain, J.L.; Eleftheriadis, C.; Lamboudis, C.; Savvidis, I.; Stephan, C.; Tassan-Got, L.; Furman, W.; Haas, B.; Haight, R.; Reifarth, R.; Igashira, M.; Koehler, P.; Massimi, C.; Vannini, G.; Papadopoulos, C.; Pavlik, A.; Pavlopoulos, P.; Plomen, A.; Rullhusen, P.; Rauscher, T.; Rubbia, C.; Ventura, A.

    2009-01-01

    The neutron time of flight (n T OF) facility at CERN is a neutron spallation source, its white neutron energy spectrum ranges from thermal to several GeV, covering the full energy range of interest for nuclear astrophysics, in particular for measurements of the neutron capture cross-section required in s-process nucleosynthesis. This contribution gives an overview on the astrophysical program made at n T OF facility, the results and the implications will be considered.

  19. Astrophysical techniques

    CERN Document Server

    Kitchin, CR

    2013-01-01

    DetectorsOptical DetectionRadio and Microwave DetectionX-Ray and Gamma-Ray DetectionCosmic Ray DetectorsNeutrino DetectorsGravitational Radiation Dark Matter and Dark Energy Detection ImagingThe Inverse ProblemPhotographyElectronic ImagingScanningInterferometrySpeckle InterferometryOccultationsRadarElectronic ImagesPhotometryPhotometryPhotometersSpectroscopySpectroscopy SpectroscopesOther TechniquesAstrometryPolarimetrySolar StudiesMagnetometryComputers and The Internet.

  20. Astrophysical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kitchin, C R

    1984-01-01

    The subject is covered in chapters, entitled: detectors (optical and infrared detection; radio and microwave detection; X-ray and gamma-ray detection; cosmic ray detectors; neutrino detectors; gravitational radiation); imaging (photography; electronic imaging; scanning; interferometry; speckle interferometry; occultations; radar); photometry and photometers; spectroscopy and spectroscopes; other techniques (astrometry; polarimetry; solar studies; magnetometry). Appendices: magnitudes and spectral types of bright stars; north polar sequence; standard stars for the UBV photometric system; standard stars for the UVBY photometric system; standard stars for MK spectral types; standard stars for polarimetry; Julian date; catalogues; answers to the exercises.

  1. Stellar astrophysics

    International Nuclear Information System (INIS)

    1988-01-01

    Enhanced mass loss occurs at critical stages in the evolution of stars over a wide range of stellar mass. Observationally, these stages are difficult to identify because of their short duration and because the star is often obscured by dust which condenses in the ejecta. A study of a G-type star, of which only the outer envelope was directly visible, was undertaken by the South African Astronomical Observatory (SAAO). The star itself was obscured by dust clouds and its light was only feebly seen by reflection from some of these clouds. Other studies of the galaxy undertaken by the SAAO include observations of the following: the extreme carbon star IRAS 15194-5115; RV Tauri and T Tauri stars; pre-main sequence stars; the properties of circumstellar dust; rotational modulation and flares on RS CVn and BY Dra stars; heavy-element stars; hydrogen-deficient stars; the open cluster NGC6192; stars in Omega Centauri, and lunar occulations of stars. Simultaneous x-ray, radio and optical data of the flare star YZ CMi were also obtained. 1 fig

  2. Study of the reaction of astrophysical interest 60Fe(n,γ)61Fe via (d,pγ) transfer reaction

    International Nuclear Information System (INIS)

    Giron, S.

    2011-12-01

    60 Fe is of special interest in nuclear astrophysics. Indeed the recent observations of 60 Fe characteristic gamma-ray lines by the RHESSI and INTEGRAL spacecrafts allowed to measure the total flux of 60 Fe over the Galaxy. Moreover the observation in presolar grains of an excess of the daughter-nuclei of 60 Fe, 60 Ni, gives constraints on the conditions of formation of the early solar system. However, the cross-sections of some reactions involved in 60 Fe nucleosynthesis and included to stellar models are still uncertain. The destruction reaction of 60 Fe, 60 Fe(n, γ) 61 Fe, is one of them. The total cross-section can be separate into two contributions: the direct one, involving states below the neutron separation threshold of 61 Fe, and the resonant one.We improved 61 Fe spectroscopy in order to evaluate the direct capture part of the 60 Fe(n, γ) 61 Fe reaction cross-section. 60 Fe(n, γ) 61 Fe was thus studied via d( 60 Fe, pγ) 61 Fe transfer reaction with the CATS/MUST2/EXOGAM setup at LISE-GANIL. DWBA analysis of experimental proton differential cross-sections allowed to extract orbital angular momentum and spectroscopic factors of different populated states identified below the neutron threshold. A comparison of experimental results for 61 Fe with experimental results for similar nuclei and with shell-model calculations was also performed. (author) [fr

  3. Mass-23 nuclei in astrophysics

    International Nuclear Information System (INIS)

    Fraser, P R; Amos, K; Van der Kniff, D; Canton, L; Karataglidis, S; Svenne, J P

    2015-01-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22 Na puzzle of ONe white dwarf novae, where the abundance of 22 Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22 Ne, a necessary step in studying the mass-23 nuclei mentioned above. (paper)

  4. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that

  5. Nuclear materials management storage study

    International Nuclear Information System (INIS)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs' Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites

  6. [Nuclear theory

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion

  7. A Study on the Nuclear Foreign Policy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Oh, K. B.; Yang, M. H.; Lee, K. S

    2007-12-15

    This study approaches the international trends related to nuclear non-proliferation in four aspects. First, this study analyzes the trend of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime and proposals for assurance of nuclear fuel supply. Second, this study analyzes the trend of international nuclear organizations, which includes the International Atomic Energy Agency (IAEA), a central body of development of nuclear technology and international nuclear diplomacy, and the Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), a intergovernmental organization to consist of a group of nuclear advanced countries. Third, this study analyzes the trends of the U.S.'s nuclear foreign policies, particularly nuclear non-proliferation. Fourth, this study analyzes the nuclear issues of North Korea and Iran as they cause serious concerns to a international society.

  8. A Study on the Nuclear Foreign Policy

    International Nuclear Information System (INIS)

    Lee, Byung Wook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Oh, K. B.; Yang, M. H.; Lee, K. S.

    2007-12-01

    This study approaches the international trends related to nuclear non-proliferation in four aspects. First, this study analyzes the trend of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime and proposals for assurance of nuclear fuel supply. Second, this study analyzes the trend of international nuclear organizations, which includes the International Atomic Energy Agency (IAEA), a central body of development of nuclear technology and international nuclear diplomacy, and the Organization for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), a intergovernmental organization to consist of a group of nuclear advanced countries. Third, this study analyzes the trends of the U.S.'s nuclear foreign policies, particularly nuclear non-proliferation. Fourth, this study analyzes the nuclear issues of North Korea and Iran as they cause serious concerns to a international society

  9. A study on the nuclear foreign policy

    International Nuclear Information System (INIS)

    Lee, Byungwook; Lee, H. M.; Ko, H. S.; Ryu, J. S.; Noh, B. C.

    2008-12-01

    This study addresses four arenas to effectively assist national nuclear foreign policies under international nuclear nonproliferation regimes and organizations. Firstly, this study analyzes the trends of the international nuclear non-proliferation regime, which includes the Treaty on the Non-proliferation of Nuclear Weapons (NPT), the international nuclear export control regime, and proposals for assurance of nuclear fuel supply. Secondly, this study analyzes the trends of international nuclear organizations, which include the IAEA as a central body of international nuclear diplomacy and technical cooperation and the OECD/NEA as a intergovernmental organization to consist of nuclear advanced countries. Thirdly, this study predicts the nuclear foreign policy of Obama Administration and reviews U. S.-India nuclear cooperation. Lastly, this study analyzes the nuclear issues of North Korea and current issues for regulation of nuclear materials.

  10. Titles of Scientific Letters and Research Papers in Astrophysics: A Comparative Study of Some Linguistic Aspects and Their Relationship with Collaboration Issues

    Science.gov (United States)

    Méndez, David I.; Alcaraz, M. Ángeles

    2017-01-01

    In this study we compare the titles of scientific letters and those of research papers published in the field of astrophysics in order to identify the possible differences and/or similarities between both genres in terms of several linguistic and extra-linguistic variables (length, lexical density, number of prepositions, number of compound…

  11. Penning-trap mass spectrometry of radioactive, highly charged ions. Measurements of neutron-rich Rb and Sr nuclides for nuclear astrophysics and development of a novel Penning trap for cooling highly charged ions

    International Nuclear Information System (INIS)

    Simon, Vanessa Veronique

    2012-01-01

    High-precision atomic mass measurements are vital for the description of nuclear structure, investigations of nuclear astrophysical processes, and tests of fundamental symmetries. The neutron-rich A ∼ 100 region presents challenges for modeling the astrophysical r-process because of sudden nuclear shape transitions. This thesis reports on high-precision masses of short-lived neutron-rich 94,97,98 Rb and 94,97-99 Sr isotopes using the TITAN Penning-trap mass spectrometer at TRIUMF. The isotopes were charge-bred to q = 15+; uncertainties of less than 4 keV were achieved. Results deviate by up to 11σ compared to earlier measurements and extend the region of nuclear deformation observed in the A∼100 region. A parameterized r-process model network calculation shows that mass uncertainties for the elemental abundances in this region are now negligible. Although beneficial for the measurement precision, the charge breeding process leads to an increased energy spread of the ions on the order of tens of eV/q. To eliminate this drawback, a Cooler Penning Trap (CPET) has been developed as part of this thesis. The novel multi-electrode trap structure of CPET forms nested potentials to cool HCI sympathetically using either electrons or protons to increase the overall efficiency and precision of the mass measurement. The status of the off-line setup and initial commissioning experiments are presented.

  12. Gravity, particles and astrophysics

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1980-01-01

    The author deals with the relationship between gravitation and elementary particle physics, and the implications of these subjects for astrophysics. The text is split up into two parts. The first part represents a relatively non-technical overview of the subject, while the second part represents a technical examination of the most important aspects of non-Einsteinian gravitational theory and its relation to astrophysics. Relevant references from the fields of gravitation, elementary particle theory and astrophysics are included. (Auth.)

  13. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  14. Trojin horse method for indirect measurement of astrophysic S factor

    International Nuclear Information System (INIS)

    Fu Yuanyong; Zhou Shuhua; Li Chengbo; Wen Qungang

    2014-01-01

    The nuclear reaction rates in the astrophysical environment are indispensable input parameters in different astrophysics theories, and play important roles in understanding the astrophysical nuclear synthesis and the evolution of the universe. However, at the astrophysical temperature, the nuclear reactions proceed at very low energies. Due to the Coulomb barrier the reaction cross sections are very small, so that the direct measurement is almost impossible. The Trojin horse theory provides a useful method to measure indirectly the low energy two body cross sections by measuring the suitable three body reactions. Some approximations are applied in the theory to get convenient formula. This paper introduces the Trojin horse theory and its application in astrophysics nuclear reactions. (authors)

  15. Annual report of Laboratory of Nuclear Studies, Osaka University, 1980

    International Nuclear Information System (INIS)

    1981-01-01

    This is the progress report of the research activities in the Laboratory of Nuclear Studies during the period from April, 1980, to March, 1981. The activities were carried out by the OULNS staffs and also by outsiders at the OULNS. In this period, the X-ray astrophysics group, the radiation physics group and the high energy physics group joined the OULNS. The main accelerators in the OULNS are a 110 cm variable energy cyclotron and a 4.7 MeV Van de Graaff machine. The detailed experimental studies on inbeam e-gamma spectroscopy and beta-decay were carried out at two accelerator laboratories. The radiochemistry facility and a mass spectrometer were fully used. The research activities extended to high energy physics by utilizing national facilities, such as a 230 cm cyclotron in the Research Center for Nuclear Physics and a proton synchrotron in the National Laboratory for High Energy Physics. The theoretical studies on elementary particles and nuclear physics were carried out also. It is important that the facilities in the OULNS were used by the outsiders in Osaka University, such as solid state physics group and particle-induced X-ray group. The activities of the divisions of cyclotron, Van de Graaff, high energy physics, accelerator development and nuclear instrumentation, mass spectroscopy, radioisotope, solid state and theoretical physics are reported. (Kako, I.)

  16. Nuclear material shipment study

    International Nuclear Information System (INIS)

    Shepherd, E.W.

    1980-01-01

    The Radioactive Material Transport Assessment Study is expected to provide a flexible set of capabilities and useful information to the public, industry and government users by using a system design to assure obtaining high quality data from selected industry sources at acceptable cost. It is expected that the shipping record approach coupled with an efficient sampling strategy will accomplish this. The study is also designed to yield analytical capabilities and statistical output to serve public, industry and government users. The information provided by the study will make a valuable contribution to environmental and accident risk assessment, policy development and operational planning and management activities

  17. Nuclear fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    For the metal-matrix encapsulation of radioactive waste, brittle-fracture, leach-rate, and migration studies are being conducted. For fuel reprocessing, annular and centrifugal contactors are being tested and modeled. For the LWBR proof-of-breeding project, the full-scale shear and the prototype dissolver were procured and tested. 5 figures

  18. Nuclear reaction studies

    International Nuclear Information System (INIS)

    Alexander, J.M.; Lacey, R.A.

    1994-01-01

    Research focused on the statistical and dynamical properties of ''hot'' nuclei formed in symmetric heavy-ion reactions. Theses included ''flow'' measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study 40 Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs

  19. Studying the emerging nuclear suppliers

    International Nuclear Information System (INIS)

    Rydell, R.F.

    1990-01-01

    None of these events---nor any of the many others that are cited in the case studies of this book---can be singled out as heralding a revolutionary transformation of the global nuclear marketplace. The cumulative effect of such developments, however, may well be the emergence of a market in the year 2000 that is far less concentrated than today's market for nuclear reactors and fuel cycle technology. If this gradual structural transformation is accompanied by the entry into the market of new buyers and sellers that do not accept the Nuclear Non-Proliferation Treaty (NPT), safeguards administered by the IAEA, or other international norms directed at preventing the spread of nuclear weapon capabilities, the result may indeed have revolutionary dimensions for the business, diplomacy, and research of nuclear energy. A similar outcome could arise even f these norms are widely accepted but are not matched by an increase in the resources available to national governments and key international agencies that implement these norms. This paper identifies some of the pitfalls that researchers often encounter in researching the emerging suppliers and will outline some basic ground rules to guide the collection and interpretation of empirical evidence on supplier behavior

  20. Space astronomy and astrophysics program by NASA

    Science.gov (United States)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  1. Advanced nuclear systems. Review study

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph; Baehr, Roland; Hahn, Lothar

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  2. Astrophysical Institute, Potsdam

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Built upon a tradition of almost 300 years, the Astrophysical Institute Potsdam (AIP) is in an historical sense the successor of one of the oldest astronomical observatories in Germany. It is the first institute in the world which incorporated the term `astrophysical' in its name, and is connected with distinguished scientists such as Karl Schwarzschild and Albert Einstein. The AIP constitutes on...

  3. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  4. Plasma in astrophysics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1982-10-01

    Two examples of plasma phenomena of importance to astrophysics are reviewed. These are examples where astrophysical understanding hinges on further progress in plasma physics understanding. The two examples are magnetic reconnection and the collisionless interaction between a population of energetic particles and a cooler gas or plasma, in particular the interaction between galactic cosmic rays and the interstellar medium

  5. Chemistry aided nuclear physics studies

    NARCIS (Netherlands)

    Even, Julia

    2016-01-01

    Studies of the superheavy elements bring several challenges through low production yields, short half-lives, and high background rates. This paper describes the possibilities of chemical separations as techniques to overcome the background problematic and to investigate the nuclear properties of the

  6. Proposal of experimental facilities for studies of nuclear data and radiation engineering in the Intense Proton Accelerator Project

    CERN Document Server

    Baba, M; Nagai, Y; Ishibashi, K

    2003-01-01

    A proposal is given on the facilities and experiments in the Intense Proton Accelerator Project (J-PARC) relevant to the nuclear data and radiation engineering, nuclear astrophysics, nuclear transmutation, accelerator technology and space technology and so on. (3 refs).

  7. Nuclear transfer reaction measurements at the ESR-for the investigation of the astrophysical O-15(alpha,gamma)Ne-19 reaction

    NARCIS (Netherlands)

    Doherty, D. T.; Woods, P. J.; Litvinov, Yu A.; Najafi, M. Ali; Bagchi, S.; Bishop, S.; Bo, M.; Brandau, C.; Davinson, T.; Dillmann, I.; Estrade, A.; Egelhof, P.; Evdokimov, A.; Gumberidze, A.; Heil, M.; Lederer, C.; Litvinov, S. A.; Lotay, G.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kozhuharov, C.; Kroell, T.; Mahjour-Shafei, M.; Mutterer, M.; Nolden, F.; Petridis, N.; Popp, U.; Reifarth, R.; Rigollet, C.; Roy, S.; Steck, M.; Stoehlker, Th; Streicher, B.; Trotsenko, S.; von Schmid, M.; Yan, X. L.; Zamora, J. C.

    Astrophysical x-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The O-15(alpha,gamma)Ne-19 reaction is one reaction that allows breakout from these CNO

  8. Nuclear transfer reaction measurements at the ESR-for the investigation of the astrophysical O-15(alpha,gamma)Ne-19 reaction

    NARCIS (Netherlands)

    Doherty, D. T.; Woods, P. J.; Litvinov, Yu A.; Najafi, M. Ali; Bagchi, S.; Bishop, S.; Bo, M.; Brandau, C.; Davinson, T.; Dillmann, I.; Estrade, A.; Egelhof, P.; Evdokimov, A.; Gumberidze, A.; Heil, M.; Lederer, C.; Litvinov, S. A.; Lotay, G.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kozhuharov, C.; Kroell, T.; Mahjour-Shafei, M.; Mutterer, M.; Nolden, F.; Petridis, N.; Popp, U.; Reifarth, R.; Rigollet, C.; Roy, S.; Steck, M.; Stoehlker, Th; Streicher, B.; Trotsenko, S.; von Schmid, M.; Yan, X. L.; Zamora, J. C.

    2015-01-01

    Astrophysical x-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The O-15(alpha,gamma)Ne-19 reaction is one reaction that allows breakout from these CNO

  9. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  10. Astrophysics days and MHD

    International Nuclear Information System (INIS)

    Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien

    2001-05-01

    This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number

  11. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  12. Innovation in the teaching of astrophysics and space science - spacecraft design group study

    International Nuclear Information System (INIS)

    Castelli, C

    2003-01-01

    This paper describes how the design of a scientific satellite can be used to provide both a stimulating and effective subject for a physics based group study. The group study divides the satellite into distinct subsystems and small teams of two or three students carry out the detailed design of each subsystem. The aim is to produce a complete satellite system design along with the choice of launch vehicle, orbit and communications system so that all the mission requirements can be met. An important feature of the group study is that it is a student led activity with staff acting as mentors. The development of key skills and important learning outcomes from the group study is discussed along with the method for assessment, structuring and resourcing the study

  13. Nuclear spectroscopic studies: Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1989-01-01

    The Nuclear Physics Group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led experiments at the Holifield Heavy Ion Research Facility (HHIRF) and the Niels Bohr Institute Tandem Accelerator. Also, we are active in a collaboration (WA80) to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland. Our experimental work is four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. These results will be described in this document. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions

  14. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2007-01-01

    A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation. In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a N

  15. An invitation to astrophysics

    CERN Document Server

    Padmanabhan, Thanu

    2006-01-01

    This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help s

  16. Interventional studies in nuclear medicine

    International Nuclear Information System (INIS)

    Saha, G.B.; Swanson, D.P.; Hladik, W.B. III

    1987-01-01

    Pharmacological interventions in nuclear medicine studies have been in practice for a long time. The triiodothyronine (T/sub 3/) suppression, Thyroid-stimulating hormone (TSH) stimulation, and perchlorate discharge tests are common examples of well-established diagnostic interventional studies. In recent years, pharmacologic and physiologic interventions in other nuclear medicine procedures have drawn considerable attention. The primary purpose of these interventions is to augment, complement or, more often, differentiate the information obtained from conventional nuclear medicine diagnostic studies. Pharmacologic interventions involve the administration of a specific drug before, during, or after the administration of radiopharmaceutical for a given study. The change in information due to intervention of the drug offers clues to differentiating various disease conditions. These changes can be brought about by physiologic interventions also, e.g., exercise in radionuclide ventriculography. In the latter interventions, the physiologic function of an organ is enhanced or decreased by physical maneuvers, and the changes observed can be used to differentiate various disease conditions

  17. New Approach to Concept Feasibility and Design Studies for Astrophysics Missions

    Science.gov (United States)

    Deutsch, M. J.; McLaughlin, W.; Nichols, J.

    1998-01-01

    JPL has assembled a team of multidisciplinary experts with corporate knowledge of space mission and instrument development. The advanced Concept Design Team, known as Team X, provides interactive design trades including cost as a design parameter, and advanced visualization for pre-Phase A Studies.

  18. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Oh, K. B.; Lee, K. S.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, I.; Lee, J. H.

    2007-02-01

    The objective of the study was to make policy-proposals for enhancing the effectiveness and efficiency of national nuclear technology R and D programs. To do this, environmental changes of international nuclear energy policy and trends of nuclear technology development were surveyed and analyzed. This Study analyzed trends of nuclear technology policies and developed the nuclear energy R and D innovation strategy in a viewpoint of analyzing the changes in the global policy environment associated with nuclear technology development and development of national nuclear R and D strategy

  19. Status of nuclear transmutation study

    International Nuclear Information System (INIS)

    Takizuka, Takakazu

    1999-01-01

    JAERI is carrying out R and Ds on partitioning and transmutation under the OMEGA Program. The R and Ds include the design study of accelerator-driven transmutation systems and the development of transmutation experimental facilities. Accelerator-driven systems have received much interests due to their potential role as dedicated transmuters in the nuclear fuel cycle for minimizing long-lived waste. Principles of accelerator-driven system, its history, JAERI proposed system concepts, and the experimental program are overviewed. (author)

  20. Minicourses in Astrophysics, Modular Approach, Vol. II.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  1. Irradiation of astrophysical ice grains by cosmic-ray ions: a REAX simulation study

    Science.gov (United States)

    Mainitz, Martin; Anders, Christian; Urbassek, Herbert M.

    2016-07-01

    Context. The impact of cosmic rays on ice grains delivers considerable energy, inducing chemical reactions and molecule ejection. Aims: We study the effects of cosmic ray impact on ice grains, including shock wave expansion, grain heating, molecule fragmentation, formation of chemical reaction products, sputtering and evaporation. Methods: Molecular-dynamics simulations using the REAX potential allow us to follow the processes occurring in the irradiated ice grain; the mechanical, thermal and chemical consequences are simulated. The ice grain consists of a mixture of water, carbon dioxide, methanol and ammonia. The case of 1 keV/nm energy deposition is studied as an example. Results: The ion track emits a shock wave into the ambient grain. Due to the strong heating, abundant molecule fragmentation is observed; several of the fragments either recombine or form new product molecules. Prompt sputtering from the ion track is followed by evaporation from the surface of the heated grain. We present mass spectra of the chemically transformed species in the grain and in the ejecta.

  2. Study of the fragmentation of astrophysical interest molecules (CnHm) induced by high velocity collision

    International Nuclear Information System (INIS)

    Tuna, Th.

    2008-07-01

    This work shows the study of atom-molecule collision processes in the high velocity domain (v=4,5 a.u). The molecules concerned by this work are small unsaturated hydrocarbons C 1-4 H and C 3 H 2 . Molecules are accelerated with the Tandem accelerator in Orsay and their fragmentation is analyzed by the 4π, 100% efficient detector, AGAT. Thanks to a shape analysis of the current signal from the silicon detectors in association with the well known grid method, we are able to measure all the fragmentation channels of the incident molecule. These dissociation measurements have been introduced in the modelization of two objects of the interstellar medium in which a lot of hydrocarbon molecules have been observed (TMC1, horse-head nebula). We have extended our branching ratios obtained by high velocity collision to other electronic processes included in the chemical database like photodissociation and dissociative recombination. This procedure is feasible under an assumption of the statistical point of view of the molecular fragmentation. The deviations following our modification are very small in the modelization of TMC1 but significant in the photodissociation region. The first part is dedicated to the description of the experimental setting that has enabled us to study the fragmentation of C n H m molecules: the Orsay's Tandem accelerator and the Agat detector. The second part deals with negative ion sources and particularly with the Sahat source that is based on electronic impact and has shown good features for the production of anions and correct stability for its use with accelerators. The third part is dedicated to the experimental results in terms of cross-sections, number of fragments and branching ratios, associated to the various collisional processes. The last part presents an application of our measurement of fragmentation data to astro-chemistry. In this field, the simulation codes of the inter-stellar medium require databases of chemical reactions that

  3. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  4. 2004 ASTRONOMY & ASTROPHYSICS

    Indian Academy of Sciences (India)

    user

    This publication of the Academy on Astronomy and Astrophysics is unique in ... bring out position papers on societal issues where science plays a major ..... funding agencies, the Astronomical Society of ..... orbit very close to the parent star.

  5. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  6. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  7. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  8. Nonlinear dynamics and astrophysics

    International Nuclear Information System (INIS)

    Vallejo, J. C.; Sanjuan, M. A. F.

    2000-01-01

    Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)

  9. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  10. Theoretical studies in nuclear reactions and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  11. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e + e - problem and heavy ion dynamics

  12. Indirect study of B-11(p,alpha(0))Be-8 and B-10(p,alpha)Be-7 reactions at astrophysical energies by means of the Trojan Horse Method: recent results

    Czech Academy of Sciences Publication Activity Database

    Lamia, L.; Puglia, S. M. R.; Spitaleri, C.; Romano, S.; Del Santo, M. G.; Carlin, N.; Munhoz, M. G.; Cherubini, S.; Kiss, G. G.; Kroha, Václav; Kubono, S.; La Cognata, M.; Li, C. B.; Pizzone, R. G.; Wen, Q. G.; Sergi, M. L.; de Toledo, A. S.; Wakabayashi, Y.; Yamaguchi, H.; Zhou, S. H.

    2010-01-01

    Roč. 834, 1-4 (2010), 655C-657C ISSN 0375-9474. [10th International Conference on Nucleus-Nucleus Collisions (NN2009). Beijing, 16.08.2009-21.08.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : CROSS-SECTIONS * NUCLEAR ASTROPHYSICS * RELEVANT Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.986, year: 2010

  13. Photonuclear reactions: astrophysical implications

    International Nuclear Information System (INIS)

    Nedorezov, V.G.

    2005-01-01

    Full text: Brief review on astrophysical aspects in photonuclear studies is presented. Main attention is paid on the two kind experiments. The first one was performed at ESRF by GRAAL collaboration using the back scattering laser photons technique to study light speed anisotropy with respect to the dipole of the Cosmic Microwave Background (CMB) radiation. This is a modern analog of the Michelson - Morley experiment. The results obtained are not only methologically different from those of the above mentioned experiments but also provide stronger constrains on the light speed anisotropy in CMB frame. Second subject is related to the electron scattering on exotic nuclei which can play significant role in explosive phenomena such as novae, supernovae and neutron stars. Such approach may be considered as the alternative to traditional low energy accelerator experiments. Exotic nuclei for these purposes can be obtained at CSI (ELISe project). The experiment is foreseen to be installed at the New Experimental Storage Ring (NESR) at RAIR where cooled secondary beams of radioactive ions will collide with an intense electron beam circulating in a small electron storage beam

  14. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    Science.gov (United States)

    Takabe, Hideaki

    2016-10-01

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  15. A Study on the Nuclear Foreign Policy

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Oh, K. B.; Lee, H. M.; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Lee, K. S.

    2006-12-01

    In this study, the changes in international nuclear environments related to nuclear non-proliferation regimes and international nuclear cooperation activities are investigated in order to suggest recommendations for actions and measures in the national policy of Korea, focusing on the trends for strengthening international nuclear non-proliferation regimes, international discussions of multi-lateral fuel supply assurances, USA nuclear energy policy and nuclear cooperation between USA and India. International nuclear non-proliferation regime is expected to be continuously strengthened during the 21st century. Assurance of a fuel supply is a critical issue in the national nuclear power industry of Korea due to a complete dependency of its uranium enrichment services on foreign countries and the declaration of a non-possession of facilities for a uranium enrichment and nuclear reprocessing in Korea. Nuclear energy is indispensable for a national energy security and securing a competitive power of nuclear technologies, and the development and export of nuclear industry products are also very important. It is recommended to strengthen the international cooperation and diplomatic efforts of Korea for protecting the national interests in the international nuclear communities and enhancing for a national power supply as well as securing of confidence and transparency of the national nuclear policy and relevant activities

  16. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    International Nuclear Information System (INIS)

    Ludwig, E.J.

    1995-01-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in 30 P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized γ-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary

  17. Studies of nuclear processes at the Triangle Universities Nuclear Laboratory. Progress report, 1 September 1994--31 August 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1995-09-01

    The Triangle Universities Nuclear Laboratory (TUNL)--a collaboration of Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill--has had a very productive year. This report covers the second year of a three-year grant between the US Department of Energy and the three collaborating universities. The TUNL research program focuses on the following areas of nuclear physics: parity violation in neutron and charged-particle resonances--the mass and energy dependence of the weak interaction spreading width; chaotic behavior in {sup 30}P from studies of eigenvalue fluctuations in nuclear level schemes; studies of few-body systems; nuclear astrophysics; nuclear data evaluation for A = 3--20, for which TUNL is now the international center; high-spin spectroscopy and superdeformation in nuclei, involving collaborations at Argonne National Laboratory. Developments in technology and instrumentation have been vital to the research and training program. In this progress report the author describes: a proposed polarized {gamma}-beam facility at the Duke Free Electron Laser Laboratory; cryogenic systems and microcalorimeter development; continuing development of the Low Energy Beam Facility. The research summaries presented in this progress report are preliminary.

  18. Toward observational neutrino astrophysics

    International Nuclear Information System (INIS)

    Koshiba, M.

    1988-01-01

    It is true that: (1) The first observation of the neutrino burst from the supernova SN1987a by Kamiokande-II which was immediately confirmed by IBM; and (2) the first real-time, directional, and spectral observation of solar 8 B neutrinos also by Kamiokande-II could perhaps be considered as signalling the birth of observational astrophysics. The field, however, is still in its infancy and is crying out for tender loving care. Namely, while the construction of astronomy requires the time and the direction of the signal and that of astrophysics requires, in addition to the spectral information, the observations of (1) could not give the directional information and the results of both (1) and (2) are still suffering from the meager statistics. How do we remedy this situation to let this new born science of observational neutrino astrophysics grow healthy. This is what the author addresses in this talk. 15 refs., 8 figs

  19. Numerical simulation in astrophysics

    International Nuclear Information System (INIS)

    Miyama, Shoken

    1985-01-01

    There have been many numerical simulations of hydrodynamical problems in astrophysics, e.g. processes of star formation, supernova explosion and formation of neutron stars, and general relativistic collapse of star to form black hole. The codes are made to be suitable for computing such problems. In astrophysical hydrodynamical problems, there are the characteristics: problems of self-gravity or external gravity acting, objects of scales very large or very short, objects changing by short period or long time scale, problems of magnetic force and/or centrifugal force acting. In this paper, we present one of methods of numerical simulations which may satisfy these requirements, so-called smoothed particle methods. We then introduce the methods briefly. Then, we show one of the applications of the methods to astrophysical problem (fragmentation and collapse of rotating isothermal cloud). (Mori, K.)

  20. Large scale nuclear structure studies

    International Nuclear Information System (INIS)

    Faessler, A.

    1985-01-01

    Results of large scale nuclear structure studies are reported. The starting point is the Hartree-Fock-Bogoliubov solution with angular momentum and proton and neutron number projection after variation. This model for number and spin projected two-quasiparticle excitations with realistic forces yields in sd-shell nuclei similar good results as the 'exact' shell-model calculations. Here the authors present results for a pf-shell nucleus 46 Ti and results for the A=130 mass region where they studied 58 different nuclei with the same single-particle energies and the same effective force derived from a meson exchange potential. They carried out a Hartree-Fock-Bogoliubov variation after mean field projection in realistic model spaces. In this way, they determine for each yrast state the optimal mean Hartree-Fock-Bogoliubov field. They apply this method to 130 Ce and 128 Ba using the same effective nucleon-nucleon interaction. (Auth.)

  1. Hanford Nuclear Energy Center study

    International Nuclear Information System (INIS)

    Harty, H.

    1976-01-01

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants

  2. Hanford Nuclear Energy Center study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-03-16

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants.

  3. A study on the nuclear foreign policy

    International Nuclear Information System (INIS)

    Oh, Keun Bae; Choi, Y. M.; Lee, D. J.; Lee, K. S.; Lee, B. W.; Ko, H. S.

    1997-12-01

    The objective of this study is to analyze and foresee the international trends related to nuclear activities, especially nuclear non-proliferation activities among others, and to suggest desirable policy direction so as to mitigate hurdles that may hinder the expansion of utilization and development of nuclear energy in Korea. This study approaches the trends of international nuclear arena in five aspects as follows. First, this study analyzes the trends of the global multilateral nuclear non-proliferation regime in Chapter II, which includes the NPT, the IAEA safeguards system, the international export control regime, the CTBT, and the treaties on nuclear weapon-free zone. Second, this study analyzes the trends of various international nuclear organizations in Chapter III, which include IAEA, OECD/NEA, and CTBTO. Third, this study reviews and analyzes regional situations in the northeast Asia surrounding Korea in Chapter IV, inter alia, pending concerns over the North Korean nuclear activities and proposed Northeast Asian nuclear cooperatively bodies such as ASIATOM, etc. Fourth, in Chapter V, this study analyzes issues concerning bilateral nuclear relationship. Especially this study analyzes nuclear cooperating agreements in general, and suggests a model agreement for the government to use when negotiating nuclear cooperation agreements with other countries. Furthermore, this study analyzes the trends of bilateral cooperation with the U.S., Canada, and Australia focusing on the standing bilateral nuclear committees. Fifth, Chapter VI especially deals with the framework of the U. S.'s nuclear non-proliferation policy, focusing on the issues such as the disposition of weapons-usable excess plutonium and the nuclear cooperation with China. (author). 44 refs., 15 tabs., 2 figs

  4. Technology Development for a Neutrino Astrophysical Observatory

    International Nuclear Information System (INIS)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-01-01

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory

  5. Astrophysics Update 2

    CERN Document Server

    Mason, John W

    2006-01-01

    "Astrophysics Updates" is intended to serve the information needs of professional astronomers and postgraduate students about areas of astronomy, astrophysics and cosmology that are rich and active research spheres. Observational methods and the latest results of astronomical research are presented as well as their theoretical foundations and interrelations. The contributed commissioned articles are written by leading exponents in a format that will appeal to professional astronomers and astrophysicists who are interested in topics outside their own specific areas of research. This collection of timely reviews may also attract the interest of advanced amateur astronomers seeking scientifically rigorous coverage.

  6. Astrophysical opacity library

    International Nuclear Information System (INIS)

    Huebner, W.F.; Merts, A.L.; Magee, N.H. Jr.; Argo, M.F.

    1977-08-01

    The astrophysical elements opacity library includes equation of state data, various mean opacities, and 2000 values of the frequency-dependent extinction coefficients in equally spaced intervals u identical with hν/kT from 0 to 20 for 41 degeneracy parameters eta from -28 (nondegenerate) to 500 and 46 temperatures kT from 1 eV to 100 keV. Among available auxiliary quantities are the free electron density, mass density, and plasma cutoff frequency. A library-associated program can produce opacities for mixtures with up to 20 astrophysically abundant constituent elements at 4 levels of utility for the user

  7. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  8. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2016-01-01

    Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

  9. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  10. Resolving astrophysical uncertainties in dark matter direct detection

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Kahlhoefer, Felix; McCabe, Christopher

    2012-01-01

    We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without...... implicit assumptions concerning the dark matter halo. We extend this framework to include the annual modulation signal, as well as multiple target elements. Recent results from DAMA, CoGeNT and CRESST-II can be brought into agreement if the velocity distribution is very anisotropic and thus allows a large...

  11. Nuclear communication management. Case study: the Nuclear Agency of Cuba

    International Nuclear Information System (INIS)

    Contreras Izquierdo, Marta Alicia

    2011-01-01

    The development of the science is a hallmark of our time. Thousands of products, processes and services incorporated into daily newspaper innovations that are result of basic and applied research. A primary mechanism of existence and development of the science is the communication of its results, in both disclose, transmit and validate the science allows. For an institution in the sector nuclear is doubly important due to the ignorance of the technology and the public perception that it generates. The study responds to the need of the Nuclear Energy Agency and Advanced technologies to manage the communication of their activities and increase the visibility of their results in science and innovation. In response to the approach of the problem assessed the management of the communication of the agency taking into account four nuclear activity basic elements: the existence of policies, training, assessment or diagnosis and planning. The diagnosis of internal and external communication It was through a study of image. For the diagnosis was developed a method, from those used internationally for imaging studies. The results of the diagnostic allowed to conclude that insufficient visibility of the nuclear activity of the AENTA is due to internal and external factors related to communication. The study allowed to design a communication strategy for the Agency's Nuclear energy and advanced technologies for nuclear activities and develop a methodological proposal for the design of strategies of communication with the Agency. (author)

  12. Nuclear Structure Studies at the Future FAIR facility

    International Nuclear Information System (INIS)

    Rubio, Berta

    2010-01-01

    This article is intended to be an introduction to studies of nuclear structure at the future FAIR facility. It addresses interested readers not necessarily expert in the field. It outlines the physics aims and experiments to be carried out at FAIR in the field of nuclear structure and astrophysics. Starting with a brief description of what can be achieved in experiments with intense, high quality stable beams the article leads the reader to how beams of unstable radioactive nuclei will be produced and exploited at FAIR. The characteristics of the beams from the main separation device, the Super-FRS, are outlined and the limitations they impose on experiment are discussed. The various setups at the three experimental branches associated with the Super-FRS are described. The aims of the various experimental setups, how they complement each other and the physics they will address are all explained. The concept of the r-process of nucleosynthesis is outlined at the beginning and used as a running example of how useful it will be to be able to carry out experiments with beams of short-lived, exotic ions.

  13. A Study on the Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Lim, C. Y.; Yang, M. H. (and others)

    2008-03-15

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI.

  14. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Lim, C. Y.; Yang, M. H.

    2008-03-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI

  15. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Lim, C. Y.; Lee, K. S.; Jeong, I.; Lee, J. H.

    2009-04-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, recent changes of international nuclear energy policy and trends of nuclear technology R and D was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed the trends of nuclear technology policies and (2) discussed the mid and long term strategy of nuclear energy R and D. To put it in more detail, each subject was further explored as follows; (1) analyzed the trends of nuclear technology policies - Trend and prospects of the international and domestic nuclear policies - Investigation of development of small and medium sized policies - International collaboration for advanced nuclear technologies (2) discussed the mid and long term strategy of nuclear energy R and D - The long term development plan for future nuclear energy system - The facilitation of technology commercialization

  16. A study on the nuclear technology policy

    International Nuclear Information System (INIS)

    Yang, M. H.; Kim, H. J.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, Ik

    2002-01-01

    This study was carried out as a part of institutional activities of KAERI. This study suggested the effective and systematic alternatives for the development of domestic industry through nuclear long-term R and D program while timely responding to the environmental change in local and global sense. First of all, this study investigated the current status and prospect of nuclear power supply, the global technological change of nuclear fuel cycle, the nuclear policy changes of major countries and the role of nuclear energy in East Asian countries. Second, some policy alternatives are suggested in association with the role of national R and D in enhancing industrial competitiveness, the effective management of nuclear long-term R and D program to facilitate technological innovation and the way to enlarge the utilization of nuclear R and D results and radiation technology

  17. When neutrinos attack - the impact of agressive neutrinos in astrophysics.

    Science.gov (United States)

    Kneller, James

    2004-11-01

    Of all the constituents within the standard model of particle physics our understanding of the neutrino has benefited the most from the interaction of astrophysics and `terraphysics'. Much has been learned about the properties of the neutrino from each: experiments here on Earth temper our appreciation of the role that neutrinos play in the cosmos while astrophysics can provide the densities and temperatures in which the neutrinos do more than simply flee. But their reluctance to interact means that it is not until we venture into the most extreme environments of astrophysics that we observe neutrinos pushing back' as hard as they are being pushed'. We review two sites where this occurs: the early Universe and the accretion disk, engines' of gamma ray bursts. Neutrinos play an important role in the evolution of the early Universe with a particular focus upon the electron neutrino in determining the primordial elemental composition via its participation in the most important reaction at that time. Within gamma ray burst accretion disks we again see the electron neutrinos at work in the nuclear reactions and through their function as the coolant' for the disk. Removal of the disk energy, and its deposition into the remnants of the massive star surrounding the disk, may lead to the formation of highly relativistic jets that will later be observed as the burst. We show what has been learned so far about the neutrino and its properties from the study of such environments and discuss where future research is heading.

  18. Astrophysical Russian Dolls

    OpenAIRE

    Loeb, Abraham; Imara, Nia

    2017-01-01

    Are there examples of "astrophysical Russian dolls," and what could we learn from their similarities? In this article, we list a few such examples, including disks, filaments, and clusters. We suggest that forging connections across disciplinary borders enhances our perception of beauty, while simultaneously leading to a more comprehensive understanding of the Universe.

  19. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  20. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  1. Antiprotonic Radioactive Atom for Nuclear Structure Studies

    International Nuclear Information System (INIS)

    Wada, M.; Yamazaki, Y.

    2005-01-01

    A future experiment to synthesize antiprotonic radioactive nuclear ions is proposed for nuclear structure studies. Antiprotonic radioactive nuclear atom can be synthesized in a nested Penning trap where a cloud of antiprotons is prestored and slow radioactive nuclear ions are bunch-injected into the trap. By observing of the ratio of π+ and π- produced in the annihilation process, we can deduce the different abundance of protons and neutrons at the surface of the nuclei. The proposed method would provide a unique probe for investigating the nuclear structure of unstable nuclei

  2. Hydrodynamic instabilities in astrophysics and ICF

    International Nuclear Information System (INIS)

    Paul Drake, R.

    2005-01-01

    Inertial fusion systems and astrophysical systems both involve hydrodynamic effects, including sources of pressure, shock waves, rarefactions, and plasma flows. In the evolution of such systems, hydrodynamic instabilities naturally evolve. As a result, a fundamental understanding of hydrodynamic instabilities is necessary to understand their behavior. In addition, high-energy-density facilities designed for ICF purposes can be used to provide and experimental basis for understanding astrophysical processes. In this talk. I will discuss the instabilities that appear in astrophysics and ICF from the common perspective of the basic mechanisms at work. Examples will be taken from experiments aimed at ICF, from astrophysical systems, and from experiments using ICF systems to address issues in astrophysics. The high-energy-density research facilities of today can accelerate small but macroscopic amounts of material to velocities above 100 km/s, can heat such material to temperature above 100 eV, can produce pressures far above a million atmospheres (10''12 dybes/cm''2 or 0.1 TPascal), and can do experiments under these conditions that address basic physics issues. This enables on to devise experiments aimed directly at important process such as the Rayleigh Taylor instability at an ablating surface or at an embedded interface that is accelerating, the Richtmeyer Meshkov evolution of shocked interfaces, and the Kelvin-Helmholtz instability of shear flows. The talk will include examples of such phenomena from the laboratory and from astrophysics, and will discuss experiments to study them. (Author)

  3. Encyclopedia of Astronomy and Astrophysics

    CERN Document Server

    2002-01-01

    Interstellar medium, Light, Magnetisphere, Matter, Planet Earth, Public Impact, Solar Activity, Solar Heliosphere, Solar Interior, Solar Systems, Space, Stellar Astrophysics, Stellar Populations, Telescopes, Time The Encyclopedia of Astronomy and Astrophysics covers 30 major subject areas, such as Active galaxies, Astrometry, Astrophysical theory, Atmospheres, Binary stars, Biography, Clusters, Coordinates, Cosmology, Earth, Education, Galaxies,

  4. Preliminary nuclear decommissioning cost study

    International Nuclear Information System (INIS)

    Sissingh, R.A.P.

    1981-04-01

    The decommissioning of a nuclear power plant may involve one or more of three possible options: storage with surveillance (SWS), restricted site release (RSR), and unrestricted site use(USU). This preliminary study concentrates on the logistical, technical and cost aspects of decommissioning a multi-unit CANDU generating station using Pickering GS as the reference design. The procedure chosen for evaluation is: i) removal of the fuel and heavy water followed by decontamination prior to placing the station in SWS for thiry years; ii) complete dismantlement to achieve a USU state. The combination of SWS and USU with an interim period of surveillance allows for radioactive decay and hence less occupational exposure in achieving USU. The study excludes the conventional side of the station, assumes waste disposal repositories are available 1600 km away from the station, and uses only presently available technologies. The dismantlement of all systems except the reactor core can be accomplished using Ontario Hydro's current operating, maintenance and construction procedures. The total decommissioning period is spread out over approximately 40 years, with major activities concentrated in the first and last five years. The estimated dose would be approximately 1800 rem. Overall Pickering GS A costs would be $162,000,000 (1980 Canadian dollars)

  5. International Conference on Particle Physics and Astrophysics

    CERN Document Server

    2015-01-01

    The International Conference on Particle Physics and Astrophysics (ICPPA-2015) will be held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Basic Research and Particle Physics of National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. Therefore we will bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. ICPPA-2015, aims to present the most recent results in astrophysics and collider physics and reports from the main experiments currently taking data. The working languages of the conference are English and Russian.

  6. Is Photolytic Production a Viable Source of HCN and HNC in Astrophysical Environments? A Laboratory-based Feasibility Study of Methyl Cyanoformate

    Science.gov (United States)

    Wilhelm, Michael J.; Martínez-Núñez, Emilio; González-Vázquez, Jesús; Vázquez, Saulo A.; Smith, Jonathan M.; Dai, Hai-Lung

    2017-11-01

    Motivated by the possibility that cyano-containing hydrocarbons may act as photolytic sources for HCN and HNC in astrophysical environments, we conducted a combined experimental and theoretical investigation of the 193 nm photolysis of the cyano-ester, methyl cyanoformate (MCF). Experimentally, nanosecond time-resolved infrared emission spectroscopy was used to detect the emission from nascent products generated in the photolysis reaction. The time-resolved spectra were analyzed using a recently developed spectral reconstruction analysis, which revealed spectral bands assignable to HCN and HNC. Fitting of the emission band shape and intensity allowed determination of the photolysis quantum yields of HCN, HNC, and {CN}({A}2{{{\\Pi }}}1) and an HNC/HCN ratio of ˜0.076 ± 0.059. Additionally, multiconfiguration self-consistent field calculations were used to characterize photoexcitation-induced reactions in the ground and four lowest singlet excited states of MCF. At 193 nm excitation, dissociation is predicted to occur predominantly on the repulsive S 2 state, with minor pathways via internal conversion from S 2 to highly excited ground state. An automated transition-state search algorithm was employed to identify the corresponding ground-state dissociation channels, and Rice-Ramsperger-Kassel-Marcus and Kinetic Monte Carlo simulations were used to calculate the associated branching ratios. The proposed mechanisms were validated using the experimentally measured and quasi-classical trajectory-deduced nascent internal energy distributions of HCN and HNC. This work, along with previous studies, illustrates the propensity for cyano-containing hydrocarbons to act as photolytic sources for astrophysical HCN and HNC and may help explain the observed overabundance of HNC in astrophysical environments.

  7. Theoretical studies in nuclear physics

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1991-01-01

    This report discusses: Imaginary Optical Potential; Isospin Effects; Scattering and Charge Exchange Reactions; Pairing Effects; bar K Interactions; Momentum Space Proton Scattering; Computational Nuclear Physics; Pion-Nucleus Interactions; and Antiproton Interactions

  8. Nuclear Structure Studies On Exotic Nuclei With Radioactive Beams - Present Status And Future Perspectives At FAIR

    International Nuclear Information System (INIS)

    Peter Egelhof

    2011-01-01

    The investigation of nuclear reactions using radioactive beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The basic concept and the methods involved are briefly discussed, and an overview including some selected examples of recent results obtained with radioactive beams from the present fragment separator at GSI Darmstadt is presented. The experimental conditions expected at the future international facility FAIR will, among others, allow for a substantial improvement in intensity and quality of radioactive beams as compared to present facilities. Therefore, it is expected that FAIR will provide unique opportunities for nuclear structure studies on nuclei far off stability, and will allow to explore new regions in the chart of nuclides of high interest for nuclear structure and nuclear astrophysics. A brief overview on the new facility, and on the experimental setups planned for nuclear structure research with radioactive beams is given. For nuclear reaction studies several complex, highly efficient, high resolution, and universal detection systems such as R 3 B, EXL, ELISe, etc. are presently under design and construction. A brief overview on the research objectives and the technical realization will be presented. (author)

  9. Distance Measurement Solves Astrophysical Mysteries

    Science.gov (United States)

    2003-08-01

    distance. "Our measurements showed that the pulsar is about 950 light-years from Earth, essentially the same distance as the supernova remnant," said Steve Thorsett, of the University of California, Santa Cruz. "That means that the two almost certainly were created by the same supernova blast," he added. With that problem solved. the astronomers then turned to studying the pulsar's neutron star itself. Using a variety of data from different telescopes and armed with the new distance measurement, they determined that the neutron star is between 16 and 25 miles in diameter. In such a small size, it packs a mass roughly equal to that of the Sun. The next result of learning the pulsar's actual distance was to provide a possible answer to a longstanding question about cosmic rays. Cosmic rays are subatomic particles or atomic nuclei accelerated to nearly the speed of light. Shock waves in supernova remnants are thought to be responsible for accelerating many of these particles. Scientists can measure the energy of cosmic rays, and had noted an excess of such rays in a specific energy range. Some researchers had suggested that the excess could come from a single supernova remnant about 1000 light-years away whose supernova explosion was about 100,000 years ago. The principal difficulty with this suggestion was that there was no accepted candidate for such a source. "Our measurement now puts PSR B0656+14 and the Monogem Ring at exactly the right place and at exactly the right age to be the source of this excess of cosmic rays," Brisken said. With the ability of the VLBA, one of the telescopes of the NRAO, to make extremely precise position measurements, the astronomers expect to improve the accuracy of their distance determination even more. "This pulsar is becoming a fascinating laboratory for studying astrophysics and nuclear physics," Thorsett said. In addition to Brisken and Thorsett, the team of astronomers includes Aaron Golden of the National University of Ireland, Robert

  10. A study on the nuclear technology policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Oh, K. B.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, Ik

    2005-01-01

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. Acknowledging the importance of the relationship between the external environment and the national nuclear R and D strategic planning for changing of environment of surrounding nuclear technology and development in the world, this study focused on the three major subjects: (1) investigation and analysis of international nuclear environmental and technological change; (2) developing nuclear R and D strategy based on the analysis of national and global environment surrounding nuclear technology development and diffusion; (3) the evaluation of role of nuclear technology and environment from the point of views of environmental effects. In order to enhance the role of national nuclear R and D program and to cope with the environmental and technological change surrounding nuclear energy, it is recommended that active participation should be done in ongoing international collaboration on future innovative nuclear technology for absorption of advanced technologies and strategic R and D planning should be centered on core technology field based on long-term vision and suggested NuTRM considering future energy-environmental surroundings for maximized use of domestic technology capabilities and resources

  11. Scaling law in laboratory astrophysics

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jie

    2001-01-01

    The use of state-of-the-art lasers makes it possible to produce, in the laboratory, the extreme conditions similar to those in astrophysical processes. The introduction of astrophysics-relevant ideas in laser-plasma interaction experiments is propitious to the understanding of astrophysical phenomena. However, the great difference between laser-produced plasma and astrophysical objects makes it awkward to model the latter by laser-plasma experiments. The author presents the physical reasons for modeling astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. This allows the creation of experimental test beds where observation and models can be quantitatively compared with laboratory data

  12. High-resolution study of levels in the astrophysically important nucleus 26Mg and resulting updated level assignments

    Science.gov (United States)

    Adsley, P.; Brümmer, J. W.; Faestermann, T.; Fox, S. P.; Hammache, F.; Hertenberger, R.; Meyer, A.; Neveling, R.; Seiler, D.; de Séréville, N.; Wirth, H.-F.

    2018-04-01

    Background: The 22Ne(α ,n )25Mg reaction is an important source of neutrons for the s -process. Direct measurement of this reaction and the competing 22Ne(α ,γ )26Mg reaction are challenging due to the gaseous nature of both reactants, the low cross section and the experimental challenges of detecting neutrons and high-energy γ rays. Detailed knowledge of the resonance properties enables the rates to be constrained for s -process models. Purpose: Previous experimental studies have demonstrated a lack of agreement in both the number and excitation energy of levels in 26Mg. To try to resolve the disagreement between different experiments, proton and deuteron inelastic scattering from 26Mg have been used to identify excited states. Method: Proton and deuteron beams from the tandem accelerator at the Maier-Leibnitz Laboratorium at Garching, Munich, were incident upon enriched 26MgO targets. Scattered particles were momentum-analyzed in the Q3D magnetic spectrograph and detected at the focal plane. Results: Reassignments of states around Ex=10.8 -10.83 MeV in 26Mg suggested in previous works have been confirmed. In addition, new states in 26Mg have been observed, two below and two above the neutron threshold. Up to six additional states above the neutron threshold may have been observed compared to experimental studies of neutron reactions on 25Mg, but some or all of these states may be due to 24Mg contamination in the target. Finally, inconsistencies between measured resonance strengths and some previously accepted Jπ assignments of excited 26Mg states have been noted. Conclusion: There are still a large number of nuclear properties in 26Mg that have yet to be determined and levels that are, at present, not included in calculations of the reaction rates. In addition, some inconsistencies between existing nuclear data exist that must be resolved in order for the reaction rates to be properly calculated.

  13. A study on nuclear technology policy

    International Nuclear Information System (INIS)

    Yang, M. H.; Kim, H. J.; Chung, W. S.; Yun, S. W.; Kim, H. S.

    2001-01-01

    This study was carried out as a part of institutional activities of KAERI. Major research area are as follows; Future directions and effects for national nuclear R and D to be resulted from restructuring of electricity industry are studied. Comparative study was carried out between nuclear energy and other energy sources from the point of views of environmental effects by introducing life cycle assessment(LCA) method. Japanese trends of reestablishment of nuclear policy such as restructuring of nuclear administration system and long-term plan of development and use of nuclear energy are also investigated, and Russian nuclear development program and Germany trends for phase-out of nuclear electricity generation are also investigated. And trends of the demand and supply of energy in eastern asian countries in from the point of view of energy security and tension in the south china sea are analyzed and investigation of policy trends of Vietnam and Egypt for the development and use of nuclear energy for the promotion of nuclear cooperation with these countries are also carried out. Due to the lack of energy resources and high dependence of imported energy, higher priority should be placed on the use of localized energy supply technology such as nuclear power. In this connection, technological development should be strengthened positively in order to improve economy and safety of nuclear energy and proliferation resistance of nuclear fuel cycle and wide ranged use of radiation and radioisotopes and should be reflected in re-establishment of national comprehensive promotion plan of nuclear energy in progress

  14. A study on nuclear technology policy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M H; Kim, H J; Chung, W S; Yun, S W; Kim, H S

    2001-01-01

    This study was carried out as a part of institutional activities of KAERI. Major research area are as follows; Future directions and effects for national nuclear R and D to be resulted from restructuring of electricity industry are studied. Comparative study was carried out between nuclear energy and other energy sources from the point of views of environmental effects by introducing life cycle assessment(LCA) method. Japanese trends of reestablishment of nuclear policy such as restructuring of nuclear administration system and long-term plan of development and use of nuclear energy are also investigated, and Russian nuclear development program and Germany trends for phase-out of nuclear electricity generation are also investigated. And trends of the demand and supply of energy in eastern asian countries in from the point of view of energy security and tension in the south china sea are analyzed and investigation of policy trends of Vietnam and Egypt for the development and use of nuclear energy for the promotion of nuclear cooperation with these countries are also carried out. Due to the lack of energy resources and high dependence of imported energy, higher priority should be placed on the use of localized energy supply technology such as nuclear power. In this connection, technological development should be strengthened positively in order to improve economy and safety of nuclear energy and proliferation resistance of nuclear fuel cycle and wide ranged use of radiation and radioisotopes and should be reflected in re-establishment of national comprehensive promotion plan of nuclear energy in progress.

  15. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  16. Astrophysics a new approach

    CERN Document Server

    Kundt, Wolfgang

    2005-01-01

    For a quantitative understanding of the physics of the universe - from the solar system through the milky way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be wary of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. -- This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena in astrophysical research. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize. The...

  17. Astrophysics of Red Supergiants

    Science.gov (United States)

    Levesque, Emily M.

    2017-12-01

    'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.

  18. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  19. Allen's astrophysical quantities

    CERN Document Server

    2000-01-01

    This new, fourth, edition of Allen's classic Astrophysical Quantities belongs on every astronomer's bookshelf. It has been thoroughly revised and brought up to date by a team of more than ninety internationally renowned astronomers and astrophysicists. While it follows the basic format of the original, this indispensable reference has grown to more than twice the size of the earlier editions to accommodate the great strides made in astronomy and astrophysics. It includes detailed tables of the most recent data on: - General constants and units - Atoms, molecules, and spectra - Observational astronomy at all wavelengths from radio to gamma-rays, and neutrinos - Planetary astronomy: Earth, planets and satellites, and solar system small bodies - The Sun, normal stars, and stars with special characteristics - Stellar populations - Cataclysmic and symbiotic variables, supernovae - Theoretical stellar evolution - Circumstellar and interstellar material - Star clusters, galaxies, quasars, and active galactic nuclei ...

  20. The new astrophysics

    International Nuclear Information System (INIS)

    Longair, M.

    1993-01-01

    The various themes developed are: radioastronomy, X-ray and gamma-ray astronomy, cosmic ray, ultraviolet, neutral hydrogen and molecular line astronomy, optical and theoretical astronomy; the large scale distribution of matter and radiation in the universe, the galaxies, stars and stellar evolution, the interstellar medium (gas, dust) and star formation, galaxies and clusters of galaxies, active galaxies and quasars, astrophysical cosmology, the astronomy of the future. 86 figs., 60 refs

  1. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  2. A strategy study on international nuclear cooperation

    International Nuclear Information System (INIS)

    Chang, Hong Rae; Kim, Kyung Pyo; Kim, Young Min; Shin, Kyung Hye; Yoon, Sung Won; Lee, Myung Ho; Lee, Jong Hee; Hong Young Don

    1995-12-01

    The implementing methodologies suggested from this study cover the following: 1) strategies for the promotion of the nation's leading roles in such international organizations as the IAEA and OECD/NEA; 2) strategies for the implementation of national nuclear policy, positively coping with international nuclear trends; 3) strategies for the promotion of technical cooperation with the Russian Federation to introduce essential nuclear technology by utilizing its new environment of science and technology. 39 tabs., 28 figs., 64 refs. (Author)

  3. Nuclear biological studies in France

    International Nuclear Information System (INIS)

    Coursaget, J.

    1961-01-01

    On the occasion of a colloquium on radiobiological research programmes, a number of documents dealing with French accomplishments and projects in this field were collected together. We felt that it would be useful to assemble these papers in one report; although they are brief and leave gaps to be filled in, they provide certain data, give an overall view of the situation, and can also suggest a rough plan for the general policy to adopt in the field of 'nuclear' biological research; i.e. research based on the nuclear tracer method or devoted to the action of ionising radiations. (author) [fr

  4. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Lederer, C., E-mail: claudia.lederer@ed.ac.uk [University of Vienna, Faculty of Physics, 1090 Vienna (Austria); Johann-Wolfgang-Goethe Universität, 60438 Frankfurt (Germany); Giubrone, G. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Massimi, C. [Dipartimento di Fisica, Università di Bologna, and Sezione INFN di Bologna, 40100 Bologna (Italy); Žugec, P. [Department of Physics, Faculty of Science, University of Zagreb, 10002 Zagreb (Croatia); Barbagallo, M.; Colonna, N. [Istituto Nazionale di Fisica Nucleare, 70125 Bari (Italy); Domingo-Pardo, C. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Guerrero, C. [European Organization for Nuclear Research (CERN), CH-1211 Geneva (Switzerland); Gunsing, F. [Commissariat à l' Énergie Atomique (CEA) Saclay – Irfu, 91191 Gif-sur-Yvette (France); Käppeler, F. [Karlsruhe Institute of Technology, Campus Nord, Institut für Kernphysik, 76021 Karlsruhe (Germany); Tain, J.L. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Altstadt, S. [Johann-Wolfgang-Goethe Universität, 60438 Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, 90131 Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, 91406 Orsay (France); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid (Spain); Bečvář, F. [Faculty of Mathematics and Physics, Charles University, CZ-180 00 Prague (Czech Republic); and others

    2014-06-15

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n{sub T}OF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  5. Nuclear Reactions Studies in Laser-Plasmas at the forthcoming ELI-NP facilities

    Science.gov (United States)

    Lanzalone, G.; Muoio, A.; Altana, C.; Frassetto, M.; Malferrari, L.; Mascali, D.; Odorici, F.; Tudisco, S.; Gizzi, L. A.; Labate, L.; Puglia, S. M. R.; Trifirò, A.

    2018-05-01

    This work aim to prepare a program of studies on nuclear physics and astrophysics, which will be conducted at the new ELI-NP Laser facility, which actually is under construction in Bucharest, Romania. For the arguments treated, such activity has required also a multidisciplinary approach and knowledge in the fields of nuclear physics, astrophysics, laser and plasma physics join with also some competences on solid state physics related to the radiation detection. A part of this work has concerned to the experimental test, which have been performed in several laboratories and in order to study and increase the level of knowledge on the different parts of the project. In particular have been performed studies on the laser matter interaction at the ILIL laboratory of Pisa Italy and at the LENS laboratory in Catania, where (by using different experimental set-ups) has been investigated some key points concerning the production of the plasma stream. Test has been performed on several target configurations in terms of: composition, structure and size. All the work has been devoted to optimize the conditions of target in order to have the best performance on the production yields and on energies distribution of the inner plasma ions. A parallel activity has been performed in order to study the two main detectors, which will constitute the full detections system, which will be installed at the ELI-NP facility.

  6. Study of astrophysically important resonant states in 30 S using the 32S(p,t30 S reaction

    Directory of Open Access Journals (Sweden)

    Wrede C.

    2010-03-01

    Full Text Available A small fraction (< 1% of presolar SiC grains is suggested to have been formed in the ejecta of classical novae. The 29P(p,γ30S reaction plays an important role in understanding the Si isotopic abundances in such grains, which in turn provide us with information on the nature of the probable white dwarf progenitor’s core, as well as the peak temperatures achieved during nova outbursts, and thus the nova nucleosynthetic path. The 29P(p,γ30S reaction rate at nova temperatures is determined by two low-lying 3+ and 2+ resonances above the proton threshold at 4399 keV in 30S. Despite several experimental studies in the past, however, only one of these two states has only been observed very recently. We have studied the 30S nuclear structure via the 32S(p,t 30S reaction at 5 laboratory angles between 9° to 62°. We have observed 14 states, eleven of which are above the proton threshold, including two levels at 4692.7 ± 4.5 keV and 4813.8 ± 3.4 keV that are candidates for the 3+ and the previously “issing” 2+ state, respectively.

  7. New frontiers in nuclear structure studies

    International Nuclear Information System (INIS)

    Zwarts, D.; Walet, N.R.; Wolters, A.A.; Glaudemans, P.W.M.; VandeGraff, R.J.

    1985-01-01

    The need to go to larger model spaces for more detailed studies of the atomic nucleus has led to the introduction of the supercomputer to nuclear physics. In this report a brief survey of the nuclear shell model is presented and the performance of some of the relevant programs on different computer systems is compared

  8. Indirect study of {sup 11}B(p,alpha{sub 0}){sup 8}Be and {sup 10}B(p,alpha){sup 7}Be reactions at astrophysical energies by means of the Trojan Horse Method: recent results

    Energy Technology Data Exchange (ETDEWEB)

    Lamia, L.; Puglia, S.M.R.; Spitaleri, C.; Romano, S. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Del Santo, M. Gimenez; Carlin, N.; Munhoz, M. Gameiro [Departamento de Fisica Nuclear, Universitade de Sao Paulo, Sao Paulo (Brazil); Cherubini, S. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Kiss, G.G. [Laboratori Nazionali del Sud, Catania (Italy); Atomki, Debrecen (Hungary); Kroha, V. [Institute for Nuclear Physics, Prague (Czech Republic); Kubono, S. [CNS, University of Tokyo, Tokyo (Japan); La Cognata, M. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Li Chengbo [China Institute of Atomic Energy, Department of Physics, Beijing (China); Pizzone, R.G. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Wen Qungang [China Institute of Atomic Energy, Department of Physics, Beijing (China); Sergi, M.L. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Szanto de Toledo, A. [Departamento de Fisica Nuclear, Universitade de Sao Paulo, Sao Paulo (Brazil); Wakabayashi, Y. [CNS, University of Tokyo, Tokyo (Japan); Advanced Science Research Center - JAEA - Ibaraki (Japan); Yamaguchi, H. [CNS, University of Tokyo, Tokyo (Japan); Zhou Shuhua [China Institute of Atomic Energy, Department of Physics, Beijing (China)

    2010-03-01

    Nuclear (p,alpha) reactions destroying the so-called 'light-elements' lithium, beryllium and boron have been largely studied in the past mainly because their role in understanding some astrophysical phenomena, i.e. mixing-phenomena occurring in young F-G stars [A.M. Boesgaard et al., Astr. Phys. J, 991, 2005, 621]. Such mechanisms transport the surface material down to the region close to the nuclear destruction zone, where typical temperatures of the order of approx10{sup 6} K are reached. The corresponding Gamow energy E{sub 0}=1.22(Z{sub x}{sup 2}Z{sub X}{sup 2}T{sub 6}{sup 2}){sup 1/3} keV [C. Rolfs and W. Rodney, 'Cauldrons in the Cosmos', The Univ. of Chicago press, 1988] is about approx10 keV if one considers the 'boron-case' and replaces in the previous formula Z{sub x}=1, Z{sub X}=5 and T{sub 6}=5. Direct measurements of the two {sup 11}B(p,alpha{sub 0}){sup 8}Be and {sup 10}B(p,alpha){sup 7}Be reactions in correspondence of this energy region are difficult to perform mainly because the combined effects of Coulomb barrier penetrability and electron screening [H.J. Assenbaum, K. Langanke and C. Rolfs, Z. Phys., 327, 1987, 461]. The indirect method of the Trojan Horse (THM) [G. Baur et al., Phys. Lett. B, 178, 1986, 135; G. Calvi et al., Nucl. Phys. A, 621, 1997, 139; C. Spitaleri et al., Phys. Rev. C, 493, 1999, 206] allows one to extract the two-body reaction cross section of interest for astrophysics without the extrapolation-procedures. Due to the THM formalism, the extracted indirect data have to be normalized to the available direct ones at higher energies thus implying that the method is a complementary tool in solving some still open questions for both nuclear and astrophysical issues [S. Cherubini et al., Astr. Phys. J, 457, 1996, 855; C. Spitaleri et al., Phys. Rev. C, 63, 2001, 005801; C. Spitaleri et al., Phys. Rev. C, 63, 2004, 055806; A. Tumino et al., Phys. Rev. Lett., 98, 2007, 252502; M. La Cognata et al., Phys

  9. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  10. Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics

    Science.gov (United States)

    Diaz-Torres, Alexis; Wiescher, Michael

    2018-05-01

    A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.

  11. Electromagnetic studies of nuclear structure and reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  12. Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation

  13. Schroedinger’s Code: A Preliminary Study on Research Source Code Availability and Link Persistence in Astrophysics

    Science.gov (United States)

    Allen, Alice; Teuben, Peter J.; Ryan, P. Wesley

    2018-05-01

    We examined software usage in a sample set of astrophysics research articles published in 2015 and searched for the source codes for the software mentioned in these research papers. We categorized the software to indicate whether the source code is available for download and whether there are restrictions to accessing it, and if the source code is not available, whether some other form of the software, such as a binary, is. We also extracted hyperlinks from one journal’s 2015 research articles, as links in articles can serve as an acknowledgment of software use and lead to the data used in the research, and tested them to determine which of these URLs are still accessible. For our sample of 715 software instances in the 166 articles we examined, we were able to categorize 418 records as according to whether source code was available and found that 285 unique codes were used, 58% of which offered the source code for download. Of the 2558 hyperlinks extracted from 1669 research articles, at best, 90% of them were available over our testing period.

  14. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    International Nuclear Information System (INIS)

    Guessoum, N.; Jean, P.; Gillard, W.

    2006-01-01

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM

  15. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Guessoum, N. [American University of Sharjah, Physics Department, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: nguessoum@aus.ac.ae; Jean, P. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France); Gillard, W. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France)

    2006-02-28

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM.

  16. Towards Establishing an Open Access Repository of Indian Publications in Astronomy -- a Case Study of Indian Institute of Astrophysics Repository

    Science.gov (United States)

    Birdie, C.; Vagiswari, A.

    2007-10-01

    The continued escalation of journal prices, and inadequate access to scholarly journals along with a consistent reduction in library resources and the advent of new technologies have all contributed to a change in the present scholarly communication. The initiative towards establishing Open Access communication has been advocated among scholars and researchers. An Institutional Archive for holding pre- and post-prints of articles written by academic and research staff increases the accessibility, visibility and impact of research output. The Indian Institute of Astrophysics (IIA) is one of the astronomical research institutes in India pioneering the Open Access movement. The institute has set up a pilot project to store the institute's publications in an institutional repository (IR). The library at IIA plays an important role in setting up this archive. While the authors and publishers are the key players in this endeavor, the role of librarians needs to be redefined in the present paradigm shift of publishing. When the Institutes decide to develop their own repositories, the skills and expertise of librarians are needed to design, develop, manage and maintain a successful repository. These and the knowledge of copyright issues relevant to the digital content of IRs are highlighted in this paper. This paper also discusses the various opportunities and tools available for librarians to learn the procedures and involve themselves in establishing their institutional repositories.

  17. Improvised Nuclear Device Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, Brooke [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suski, Nancy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-07-12

    Reducing the casualties of catastrophic terrorist attacks requires an understanding of weapons of mass destruction (WMD) effects, infrastructure damage, atmospheric dispersion, and health effects. The Federal Planning Guidance for Response to a Nuclear Detonation provides the strategy for response to an improvised nuclear device (IND) detonation. The supporting science developed by national laboratories and other technical organizations for this document significantly improves our understanding of the hazards posed by such an event. Detailed fallout predictions from the advanced suite of three-dimensional meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory, including extensive global geographical and real-time meteorological databases to support model calculations, are a key part of response planning. This presentation describes the methodology and results to date, including visualization aids developed for response organizations. These products have greatly enhanced the community planning process through first-person points of view and description of the dynamic nature of the event.

  18. Nuclear reaction studies: Progress report

    International Nuclear Information System (INIS)

    Thaler, R.M.

    1986-01-01

    A principal focus of recent research has been the three-body problem. A great deal of effort has been devoted to the creation of a computer program to calculate physical observables in the three body problem below 1 GeV. Successful results have been obtained for the triton. Additional work concerns scattering of K + mesons from nuclei, antinucleon physics, relativistic nuclear physics and inclusive reactions

  19. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    Science.gov (United States)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  20. A study on the nuclear technology policy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Maeng Ho; Ham, C. H.; Kim, H. J.; Chung, W. S.; Lee, T. J.; Lee, B. O.; Yun, S. W.; Choi, Y. M.; Eom, T. Y

    1998-01-01

    This study analyzed the major issues as the research activities for the support of establishment and implementation of national policy. The analyses were focused on the recommendations of the responsive direction of national policy in positive and effective manners in accordance with the changes of international nuclear affairs. This study also analyzed the creation of environmental foundation for effective implementation of the national policy and national R and D investment such as securing national consensus and openings of policy information to the public. The major results of the role and position of nuclear policy, trends of nuclear policy and nuclear R and D activities of USA, France, Japan, Asian developing countries etc. and international trends of small- and medium-sized reactor as well as spin-offs of nuclear R and D activities, were analyzed. (author). 66 refs., 27 tabs., 15 figs

  1. A Study on Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Oh, K. B.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, Ik; Lee, J. H.

    2006-02-01

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. In the investigation and analysis of international environmental and technological change 1. Viability of Nuclear Renaissance 2. Recent of Nuclear Technology Policy in Japan 3. Collaboration for Advanced Nuclear Technologies in GIF, INPRO and INERI 4. Nuclear Energy Utilization and Development in Europe. In the evaluation of nuclear technology and sustainable development from the point of views of environmental change 5. External Cost of Environmental Impact in Electric Power Sector 6. Nuclear Technology Development Direction Considering Changes of the Science and Technology Policy Environment 7. Nuclear Energy Development Strategy for a Sustainable National Energy Supply

  2. A Study on Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K B; Chung, W S; Lee, T J; Yun, S W; Jeong, Ik; Lee, J H

    2006-02-15

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. In the investigation and analysis of international environmental and technological change 1. Viability of Nuclear Renaissance 2. Recent of Nuclear Technology Policy in Japan 3. Collaboration for Advanced Nuclear Technologies in GIF, INPRO and INERI 4. Nuclear Energy Utilization and Development in Europe. In the evaluation of nuclear technology and sustainable development from the point of views of environmental change 5. External Cost of Environmental Impact in Electric Power Sector 6. Nuclear Technology Development Direction Considering Changes of the Science and Technology Policy Environment 7. Nuclear Energy Development Strategy for a Sustainable National Energy Supply.

  3. Astrophysics in 1999

    OpenAIRE

    Trimble, V; Aschwanden, MJ

    2000-01-01

    The year 1999 saw the arrival of a star with three planets, a universe with three parameters, and a solar corona that could be heated at least three ways. In addition, there were at least three papers on every question that has ever been asked in astrophysics, from "Will the Universe expand forever?" to "Does mantle convection occur in one or two layers?" The answers generally were, "Yes," "No," and "None of the above," to each of the questions. The authors have done their best to organize th...

  4. Theoretical studies in nuclear reactions and nuclear structure: Progress report

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1988-09-01

    This report discusses topics in nuclear theory. These general topics are: Quark physics, Quantum field theory, Relativistic nuclear physics, Nuclear dynamics, and Few-body problems and nonrelativistic methods

  5. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  6. Energy and nuclear power planning studies

    International Nuclear Information System (INIS)

    Bennett, L.L.; Molina, P.E.; Mueller, T.

    1990-01-01

    The article focuses on the procedures established by the IAEA for providing assistance to international Member States in conducting studies for the analysis of the economic viability of a nuclear power programme. This article specifically reviews energy and nuclear power planning (ENPP) studies in Algeria, Jordan, and Thailand. It highlights major accomplishments in the context of study objectives and organizations, and the principal lessons learned in the process. 4 figs, 1 tab

  7. A study on nuclear technology policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Oh, K. B.; Lee, K. S.; Chung, W. S.; Lee, T. J.; Yun, S. W.; Jeong, I.

    2004-01-01

    This study was conducted as a part of institutional activities of KAERI, and the objective of the study is to survey and analyze the change of international environment in nuclear use and research and development environment, and to propose systematic alternatives on technology policy for efficiency and effectiveness of research and development through national R and D program while timely responding to the environmental change in local and global sense. Acknowledging the importance of the relationship between the external environment and the national nuclear R and D strategic planning, this study focused on the two major subjects: (1) the international environmental and technological change attached to the development of nuclear power; (2) the direction and strategy of nuclear R and D to improve effectiveness through national R and D programs as role of electricity in the future society, strategic environment of nuclear use and R and D in the future society, energy environment and nuclear technology development scenario in the future, strategic study on future vision of KAERI and technological road-mapping of national nuclear R and D for enhancing competitiveness

  8. Nuclear power planning study for Saudi Arabia

    International Nuclear Information System (INIS)

    Kutbi, I.I.; Matin, Abdul.

    1984-05-01

    The prospects of application of nuclear energy for production of electricity and desalinated water in the Kingdom are evaluated. General economic development of the country and data on reserves, production and consumption of oil and natural gas are reviewed. Electrical power system is described with data on production and consumption. Estimates of future power demand are made using Aoki method. Costs of production of electricity from 600 MW, 900 MW and 1200 MW nuclear and oil-fired power plants are calculated along with the costs of production of desalinated water from dual purpose nuclear and oil-fired plants. The economic analysis indicates that the cost of production of electricity and desalinated water are in general cheaper from the nuclear power plants. Suggests consideration of the use of nuclear energy for production of both electricity and desalinated water from 1415 H. Further detailed studies and prepartory organizational steps in this direction are outlined. 38 Ref

  9. Nuclear spectroscopic studies. Progress report

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-01

    This report describes progress in the experimental nuclear physics program of the University of Tennessee, Knoxville. It presents findings related to properties of high-spin states, low-energy levels of nuclei far from stability, and high-energy heavy-ion physics, as well as a brief description of the Joint Institute of Heavy Ion Research (a collaboration between the University of Tennessee, Vanderbilt University, and Oak Ridge National Laboratory) and its activities (particularly those of the last few years), and a list of publications. 89 refs., 18 figs., 5 tabs

  10. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  11. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  12. Study on nuclear power introduction into Vietnam

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    2000-01-01

    The report presents main results of the study on nuclear power introduction into Vietnam which have been carried out at Vietnam Atomic Energy Commission in collaboration with Ministry of Industry of Vietnam and other countries like Japan, Canada and Korea. The study covers all topics related to the nuclear power introduction into Vietnam such as electricity demands and supply, economics, finance, technology, safety, manpower, site selection etc. (author)

  13. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. BLESSY ELIZABETH BABY. Articles written in Journal of Astrophysics and Astronomy. Volume 39 Issue 1 February 2018 pp 11 Review. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat · M. C. RAMADEVI B. T. RAVISHANKAR ABHILASH ...

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. ABHILASH R. SARWADE. Articles written in Journal of Astrophysics and Astronomy. Volume 39 Issue 1 February 2018 pp 11 Review. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat · M. C. RAMADEVI B. T. RAVISHANKAR ABHILASH R.

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. U. S. Kamath. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 38 Review. Interstellar Medium and Star Formation Studies with the Square Kilometre Array · P. Manoj S. Vig G. Maheswar U. S. Kamath A. Tej.

  16. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. C. Konar. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 471-474. A Multifrequency Study of Five Large Radio Galaxies · A. Pirya S. Nandi D. J. Saikia C. Konar M. Singh · More Details Abstract Fulltext PDF.

  17. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. G. Maheswar. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 38 Review. Interstellar Medium and Star Formation Studies with the Square Kilometre Array · P. Manoj S. Vig G. Maheswar U. S. Kamath A. Tej.

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. MOHAMMED HASAN. Articles written in Journal of Astrophysics and Astronomy. Volume 39 Issue 1 February 2018 pp 11 Review. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat · M. C. RAMADEVI B. T. RAVISHANKAR ABHILASH R.

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. K. Duorah. Articles written in Journal of Astrophysics and Astronomy. Volume 36 Issue 3 September 2015 pp 375-383. A Comparative Study on SN II Progenitors for the Synthesis of Li and B with the help of Neutrinos · N. Lahkar S. Kalita H. L. Duorah K. Duorah.

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. S. Kalita. Articles written in Journal of Astrophysics and Astronomy. Volume 36 Issue 3 September 2015 pp 375-383. A Comparative Study on SN II Progenitors for the Synthesis of Li and B with the help of Neutrinos · N. Lahkar S. Kalita H. L. Duorah ...

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. D. J. Saikia. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 471-474. A Multifrequency Study of Five Large Radio Galaxies · A. Pirya S. Nandi D. J. Saikia C. Konar M. Singh · More Details Abstract ...

  2. Radiation damage studies of nuclear structural materials

    International Nuclear Information System (INIS)

    Barat, P.

    2012-01-01

    Maximum utilization of fuel in nuclear reactors is one of the important aspects for operating them economically. The main hindrance to achieve this higher burnups of nuclear fuel for the nuclear reactors is the possibility of the failure of the metallic core components during their operation. Thus, the study of the cause of the possibility of failure of these metallic structural materials of nuclear reactors during full power operation due to radiation damage, suffered inside the reactor core, is an important field of studies bearing the basic to industrial scientific views.The variation of the microstructure of the metallic core components of the nuclear reactors due to radiation damage causes enormous variation in the structure and mechanical properties. A firm understanding of this variation of the mechanical properties with the variation of microstructure will serve as a guide for creating new, more radiation-tolerant materials. In our centre we have irradiated structural materials of Indian nuclear reactors by charged particles from accelerator to generate radiation damage and studied the some aspects of the variation of microstructure by X-ray diffraction studies. Results achieved in this regards, will be presented. (author)

  3. Resonant elastic scattering, inelastic scattering and astrophysical reactions; Diffusion elastique resonante, diffusion inelastique et reactions astrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira Santos, F. [Grand Accelerateur National d' Ions Lourds, UMR 6415, 14 - Caen (France)

    2007-07-01

    Nuclear reactions can occur at low kinetic energy. Low-energy reactions are characterized by a strong dependence on the structure of the compound nucleus. It turns out that it is possible to study the nuclear structure by measuring these reactions. In this course, three types of reactions are treated: Resonant Elastic Scattering (such as N{sup 14}(p,p)N{sup 14}), Inelastic Scattering (such as N{sup 14}(p,p')N{sup 14*}) and Astrophysical reactions (such as N{sup 14}(p,{gamma})O{sup 15}). (author)

  4. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  5. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  6. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  7. Important plasma problems in astrophysics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1995-01-01

    In astrophysics, plasmas occur under very extreme conditions. For example, there are ultrastrong magnetic fields in neutron stars, relativistic plasmas around black holes and in jets, extremely energetic particles such as cosmic rays in the interstellar medium, extremely dense plasmas in accretion disks, and extremely large magnetic Reynolds numbers in the interstellar medium. These extreme limits for astrophysical plasmas make plasma phenomena much simpler to analyze in astrophysics than in the laboratory. An understanding of such phenomena often results in an interesting way, by simply taking the extreme limiting case of a known plasma theory. The author will describe one of the more exciting examples and will attempt to convey the excitement he felt when he was first exposed to it. However, not all plasma astrophysical phenomena are so simple. There are certain important plasma phenomena in astrophysics that have not been so easily resolved. In fact, a resolution of them is blocking significant progress in astrophysical research. They have not yet yielded to attacks by theoretical astrophysicists nor to extensive numerical simulation. The author will attempt to describe one of the more important of these plasma--astrophysical problems, and discuss why its resolution is so important to astrophysics. This significant example is fast, magnetic reconnection. Another significant example is the large-magnetic-Reynolds number magnetohydrodynamics (MHD) dynamos

  8. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  9. [Studies in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Peterson, R.J.

    1993-01-01

    This report summarizes work carried out between October 1, 1992 and September 30, 1993 at the Nuclear Physics Laboratory of the University of Colorado, Boulder. The experimental program in intermediate-energy nuclear physics is very broadly based; it includes pion-nucleon and pion-nucleus studies at LAMPF and TRIUMF, kaon-nucleus scattering at the AGS, and equipment development for experiments at the next generation of accelerator facilities

  10. Studies of nuclear processes; Progress report, 1 September 1992--31 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, E.J.

    1993-09-01

    Results for the period 1 Sep 92 through 31 Aug 93 are presented in nearly a hundred brief papers, some of which present new but preliminary data. Activities reported may be grouped as follows: Fundamental symmetries in the nucleus (parity-mixing measurements, time reversal invariance measurements, signatures of quantum chaos in nuclei), Internucleon reactions (neutron -- proton interactions, the neutron -- neutron scattering length, reactions between deuterons and very light nuclei), Dynamics of very light nuclei (measurements of D states of very light nuclei by transfer reactions, nuclear reactions between very light nuclei, radiative capture reactions with polarized sources), The many-nucleon problem (nuclear astrophysics, high-spin spectroscopy and superdeformation, the nuclear mean field: Dispersive relations and nucleon scattering, configuration mixing in {sup 56}Co and {sup 46}Sc using (d,{alpha}) reactions, radiative capture studies, high energy resolution resonance studies at 100--400 keV, nuclear data evaluation for A=3--20), Nuclear instruments and methods (FN tandem accelerator operation, KN accelerator operation and maintenance, atomic beam polarized ion source, development of techniques for determining the concentration of SF{sub 6} in the accelerator insulating gas mixture, production of beams and targets, detector systems, updating of TeX, Psprint, and associated programs on the VAX cluster), and Educational Activities.

  11. Radiation processes in astrophysics

    CERN Document Server

    Tucker, Wallace H

    1975-01-01

    The purpose of this book is twofold: to provide a brief, simple introduction to the theory of radiation and its application in astrophysics and to serve as a reference manual for researchers. The first part of the book consists of a discussion of the basic formulas and concepts that underlie the classical and quantum descriptions of radiation processes. The rest of the book is concerned with applications. The spirit of the discussion is to present simple derivations that will provide some insight into the basic physics involved and then to state the exact results in a form useful for applications. The reader is referred to the original literature and to reviews for rigorous derivations.The wide range of topics covered is illustrated by the following table of contents: Basic Formulas for Classical Radiation Processes; Basic Formulas for Quantum Radiation Processes; Cyclotron and Synchrotron Radiation; Electron Scattering; Bremsstrahlung and Collision Losses; Radiative Recombination; The Photoelectric Effect; a...

  12. NASA's Astrophysics Data Archives

    Science.gov (United States)

    Hasan, H.; Hanisch, R.; Bredekamp, J.

    2000-09-01

    The NASA Office of Space Science has established a series of archival centers where science data acquired through its space science missions is deposited. The availability of high quality data to the general public through these open archives enables the maximization of science return of the flight missions. The Astrophysics Data Centers Coordinating Council, an informal collaboration of archival centers, coordinates data from five archival centers distiguished primarily by the wavelength range of the data deposited there. Data are available in FITS format. An overview of NASA's data centers and services is presented in this paper. A standard front-end modifyer called `Astrowbrowse' is described. Other catalog browsers and tools include WISARD and AMASE supported by the National Space Scince Data Center, as well as ISAIA, a follow on to Astrobrowse.

  13. Astrophysics Faces the Millennium

    Science.gov (United States)

    Trimble, Virginia

    2001-03-01

    The Medieval synthesis of Aristotelian philosophy and church doctrine, due largely to Thomas Aquinas, insisted that the universe outside the earth's atmosphere must be immutable, single-centered, fully inventoried, immaculate or perfect, including perfectly spherical, and much else that sounds strange to modern ears. The beginnings of modern astronomy can be largely described as the overthrow of these various concepts by a combination of new technologies and new ways of thinking, and many current questions in astrophysics can be directly tied to developments of those same concepts. Indeed they probably all can be, but not over time, ending with questions like: Do other stars have spots? What does it mean when quasar jets look like they are moving faster than the speed of light? Is there anything special about our star, our galaxy, our planet, or our universe? How did these all form, and what is their long-term fate?

  14. Numerical relativity beyond astrophysics

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  15. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  16. Numerical relativity beyond astrophysics.

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  17. Probing astrophysically important states in the 26Mg nucleus to study neutron sources for the s process

    Science.gov (United States)

    Talwar, R.; Adachi, T.; Berg, G. P. A.; Bin, L.; Bisterzo, S.; Couder, M.; deBoer, R. J.; Fang, X.; Fujita, H.; Fujita, Y.; Görres, J.; Hatanaka, K.; Itoh, T.; Kadoya, T.; Long, A.; Miki, K.; Patel, D.; Pignatari, M.; Shimbara, Y.; Tamii, A.; Wiescher, M.; Yamamoto, T.; Yosoi, M.

    2016-05-01

    Background: The 22Ne(α ,n )25Mg reaction is the dominant neutron source for the slow neutron capture process (s process) in massive stars, and contributes, together with 13C (α ,n )16O, to the production of neutrons for the s process in asymptotic giant branch (AGB) stars. However, the reaction is endothermic and competes directly with 22Ne(α ,γ )26Mg radiative capture. The uncertainties for both reactions are large owing to the uncertainty in the level structure of 26Mg near the α and neutron separation energies. These uncertainties affect the s -process nucleosynthesis calculations in theoretical stellar models. Purpose: Indirect studies in the past have been successful in determining the energies and the γ -ray and neutron widths of the 26Mg states in the energy region of interest. But, the high Coulomb barrier hinders a direct measurement of the resonance strengths, which are determined by the α widths for these states. The goal of the present experiments is to identify the critical resonance states and to precisely measure the α widths by α -transfer techniques. Methods: The α -inelastic scattering and α -transfer measurements were performed on a solid 26Mg target and a 22Ne gas target, respectively, using the Grand Raiden Spectrometer at the Research Center for Nuclear Physics in Osaka, Japan. The (α ,α') measurements were performed at 0 .45∘ , 4 .1∘ , 8 .6∘ , and 11 .1∘ and the (6Li,d ) measurements at 0∘ and 10∘. The scattered α particles and deuterons were detected by the focal plane detection system consisting of multiwire drift chambers and plastic scintillators. The focal plane energy calibration allowed the study of 26Mg levels from Ex = 7.69-12.06 MeV in the (α ,α') measurement and Ex = 7.36-11.32 MeV in the (6Li,d ) measurement. Results: Six levels (Ex = 10717, 10822, 10951, 11085, 11167, and 11317 keV) were observed above the α threshold in the region of interest (10.61-11.32 MeV). The α widths were calculated for these

  18. Study on HVAC system in nuclear facility

    International Nuclear Information System (INIS)

    Baeg, S. Y.; Song, W. S.; Oh, Y. O.; Ju, Y. S.; Hong, K. P.

    2003-01-01

    Heating, Ventilation and Air Conditioning (HVAC) system in nuclear facility should be equipped and constructed more stable and allowable than that in common facility. The purpose of HVAC system is the maintenance of optimum working environment, the protection of worker against a contaminated air and the prevention of atmospheric contamination due to an outward ventilation, etc.. The basic scheme of a safety operation of nuclear facility is to prevent the atmospheric contamination even in low level. The adaptability of HVAC system which is in operation. In this study, the design requirements of HVAC system in nuclear facility and the HVAC systems in foreign countries are reviewed, and the results can be utilized in the design of HVAC system in nuclear facility

  19. A Study on the Nuclear Foreign Policy

    International Nuclear Information System (INIS)

    Yang, Maeng Ho; Oh, K. B.; Lee, H. M.; Lee, B. W.; Ko, H. S.; Ryu, J. S.

    2004-12-01

    It is of the utmost importance in the peaceful use and development of nuclear energy to respond in a timely manner to the changes of international nuclear communities. This study were carried focused on the trends of international movements related to nuclear non-proliferation regime and major trends in the international bi- or multi-lateral technical cooperation activities. This study investigates the major changes of international technical cooperation focusing on nuclear functional organizations, IAEA and OECD/NEA which become competent and important in the international technical cooperation. 9.11 terror and international illegal trafficking of A. Q. Khan network caused the strengthening of international nonproliferation regimes and international efforts and measures against threat of nuclear terror and this movement will kept in the international communities afterwards with GTRI, G8 action plan, UN resolution of WMD and ratification and application of additional protocol of IAEA safeguards agreement into member countries. Upgrade of nuclear diplomatic and technical networks and activities are required to secure the national rights and dignity in the international communities in effective and systematic manners through the enlarged participation and contribution of the national experts to working groups activities of IAEA and OECD/NEA together

  20. Weak interaction studies from nuclear beta decay

    International Nuclear Information System (INIS)

    Morita, M.

    1981-01-01

    The studies performed at the theoretical nuclear physics division of the Laboratory of Nuclear Studies, Osaka University, are reported. Electron spin density and internal conversion process, nuclear excitation by electron transition, beta decay, weak charged current, and beta-ray angular distributions in oriented nuclei have been studied. The relative intensity of internal conversion electrons for the case in which the radial wave functions of orbital electrons are different for electron spin up and down was calculated. The calculated value was in good agreement with the experimental one. The nuclear excitation following the transition of orbital electrons was studied. The calculated probability of the nuclear excitation of Os 189 was 1.4 x 10 - 7 in conformity with the experimental value 1.7 x 10 - 7 . The second class current and other problems on beta-decay have been extensively studied, and described elsewhere. Concerning weak charged current, the effects of all induced terms, the time component of main axial vector, all partial waves of leptons, Coulomb correction for the electrons in finite size nuclei, and radiative correction were studied. The beta-ray angular distribution for the 1 + -- 0 + transition in oriented B 12 and N 12 was investigated. In this connection, investigation on the weak magnetism to include all higher order corrections for the evaluation of the spectral shape factors was performed. Other works carried out by the author and his collaborators are also explained. (Kato, T.)

  1. Survey of Swiss nuclear's cost study 2016

    International Nuclear Information System (INIS)

    Alt, Stefan; Ustohalova, Veronika

    2017-01-01

    The report discusses the Swiss nuclear cost study 2016 concerning the following issues: evaluation of the aspects of the cost study: cost structure, cost classification and risk provision, additional payment liability, option of lifetime extension for Swiss nuclear power plants; specific indications on the report ''cost study 2016 (KS16) - estimation of the decommissioning cost of Swiss nuclear power plants'': decommissioning costs in Germany, France and the USA, indexing the Swiss cost estimation for decommissioning cost, impact factors on the decommissioning costs; specific indications on the report ''cost study 2016 (KS16) - estimation of the disposal cost - interim storage, transport, containers and reprocessing''; specific indications on the report ''cost studies (KS16) - estimation of disposal costs - geological deep disposal'': time scale and costs incurred, political/social risks, retrievability, comparison with other mining costs.

  2. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    International Nuclear Information System (INIS)

    Trauger, D.B.; White, J.D.; Bowers, H.I.

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study

  3. Nuclear Power Options Viability Study. Volume 3. Nuclear discipline topics

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Bowers, H I; Braid, R B; Cantor, R A; Daniels, L; Davis, R M; Delene, J G; Gat, U; Hood, T C

    1986-09-01

    Innovative reactor concepts are described and evaluated in accordance with criteria established in the study. The reactors to be studied were chosen on the basis of three ground rules: (1) the potential for commercialization between 2000-2010, (2) economic competiveness with coal-fired plants, and (3) the degree of passive safety in the design. The concepts, classified by coolants, were light water reactors, liquid metal reactors, and high temperature reactors, and most were of modular design. All the concepts appear to be potentially viable in the time frame selected, but the information available is not adequate for a definitive evaluation of their economic competitiveness. This volume primarily reports in greater detail on several topics from the study. These are: Construction, Economics, Regulation, Safety and Economic Risk, Nuclear Waste Transportation and Disposal, and Market Acceptance. Although treated generically, the topics are presented in the context of the reactor concepts of the study.

  4. Demographics in Astronomy and Astrophysics

    Science.gov (United States)

    Ulvestad, James S.

    2011-05-01

    Astronomy has been undergoing a significant demographic shift over the last several decades, as shown by data presented in the 2000 National Research Council (NRC) report "Federal Funding of Astronomical Research," and the 2010 NRC report, "New Worlds, New Horizons in Astronomy and Astrophysics." For example, the number of advertised postdoctoral positions in astronomy has increased much more rapldly than the number of faculty positions, contributing to a holding pattern of early-career astronomers in multiple postdoctoral positions. This talk will summarize some of the current demographic trends in astronomy, including information about gender and ethnic diversity, and describe some of the possible implications for the future. I thank the members of the Astro2010 Demographics Study Group, as well as numerous white-paper contributors to Astro2010, for providing data and analyses.

  5. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.; Tanihata, I.

    1992-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides. One goal, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell modelclose quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. 25 refs., 7 figs

  6. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.

    1995-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell model close quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. (author). 25 refs., 7 figs

  7. Studies in training nuclear plant personnel

    International Nuclear Information System (INIS)

    Hamlin, K.W.

    1987-01-01

    One of the lessons learned from the Three Mile Island (TMI) accident was that the nuclear industry was ineffective in learning from previous events at other plants. As training programs and methods have improved since TMI, the nuclear industry has searched for effective methods to teach the lessons learned from industry events. The case study method has great potential as a solution. By reviewing actual plant events in detail, trainees can be challenged with solving actual problems. When used in a seminar or discussion format, these case studies also help trainees compare their decision-making processes with other trainees, the instructor, and the personnel involved in the actual case study event

  8. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 1985-1986-1987

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1985-1986-1987 years: 1 - Teams presentation; 2 - Abstracts: On the borderline of spectroscopy; Atomic spectroscopy and low-energy low-spin nuclear structure; high-energy high-spin nuclear structure; Theories and models; Nuclear astrophysics; Accelerator-based mass spectroscopy; Solid State Physics; Study of charged particles irradiation effects in astrophysics, geophysics and material sciences; Technical developments for the RF mass spectrometer and for Obelix; Technical developments for ion beams; Technical developments in electronics and their applications; CNSM's Computer Department; Developments in cryogenics; 3 - Staff and publications

  9. 15th National Conference on Nuclear Structure in China

    CERN Document Server

    Wang, Ning; Zhou, Shan-Gui; Nuclear Structure in China 2014; NSC2014

    2016-01-01

    This volume is a collection of the contributions to the 15th National Conference on Nuclear Structure in China (NSC2014), held on October 25-28, 2014 in Guilin, China and hosted by Guangxi Normal University. It provides an important updated resource in the nuclear physics literature for researchers and graduate students studying nuclear structure and related topics. Recent progress made in the study of nuclear spectroscopy of high-spin states, nuclear mass and half-life, nuclear astrophysics, super-heavy nuclei, unstable nuclei, density functional theory, neutron star and symmetry energy, nuclear matter, and nuclear shell model are covered.

  10. Impact studies and nuclear power stations

    International Nuclear Information System (INIS)

    Chambolle, Thierry

    1981-01-01

    Impact studies form an essential part of environmental protection. The impact study discipline has enabled the EDF to have a better understanding of the effects of nuclear power stations on the environment and to remedy them at the project design stage [fr

  11. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  12. Challenges and opportunities in laboratory plasma astrophysics

    Science.gov (United States)

    Drake, R. Paul

    2017-06-01

    We are in a period of explosive success and opportunity in the laboratory study of plasma phenomena that are relevant to astrophysics. In this talk I will share with you several areas in which recent work, often foreshadowed 20 or 30 years ago, has produced dramatic initial success with prospects for much more. To begin, the talk will provide a brief look at the types of devices used and the regimes they access, showing how they span many orders of magnitude in parameters of interest. It will then illustrate the types of work one can do with laboratory plasmas that are relevant to astrophysics, which range from direct measurement of material properties to the production of scaled models of certain dynamics to the pursuit of complementary understanding. Examples will be drawn from the flow of energy and momentum in astrophysics, the formation and structure of astrophysical systems, and magnetization and its consequences. I hope to include some discussion of collisionless shocks, very dense plasmas, work relevant to the end of the Dark Ages, reconnection, and dynamos. The talk will conclude by highlighting some topics where it seems that we may be on the verge of exciting new progress.The originators of work discussed, and collaborators and funding sources when appropriate, will be included in the talk.

  13. Balance in the NASA Astrophysics Program

    Science.gov (United States)

    Elvis, Martin

    2017-08-01

    The Decadal studies are usually instructed to come up with a “balanced program” for the coming decade of astrophysics initiatives, both on the ground and in space. The meaning of “balance” is left up to the Decadal panels. One meaning is that there should be a diversity of mission costs in the portfolio. Another that there should be a diversity of science questions addressed. A third is that there should be a diversity of signals (across electromagnetic wavebands, and of non-em carriers). It is timely for the astronomy community to debate the meaning of balance in the NASA astrophysics program as the “Statement of Task” (SoT) that defines the goals and process of the 2020 Astrophysics Decadal review are now being formulated.Here I propose some ways in which the Astro2020 SoT could be made more specific in order to make balance more evident and so avoid the tendency for a single science question, and a single mission to answer that question, to dominate the program. As an example of an alternative ambitious approach, I present a proof-of-principle program of 6, mostly “probe-class” missions, that would fit the nominal funding profile for the 2025-2035 NASA Astrophysics Program, while being more diverse in ambitious science goals and in wavelength coverage.

  14. Recent Studies on Trojan Horse Method

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Gulino, M.

    2011-01-01

    The study of nuclear reactions that are important for the understanding of astrophysical problems received an increasing attention over the last decades. The Trojan Horse Method was proposed as a tool to overcome some of the problems connected with the measurement of cross-sections between charged particles at astrophysical energies. Here we present some recent studies on this method. (authors)

  15. Theoretical studies in nuclear physics

    International Nuclear Information System (INIS)

    Landau, R.H.; Madsen, V.A.

    1990-01-01

    This report discusses: microscopic imaginary optical potential; isospin effects and charge exchange; multistep inelastic and charge exchange scattering; momentum space proton scattering; pion scattering from nuclei; antiproton studies; antikaons-nucleon interactions; and quantum mechanics. 11 refs

  16. Patient preparation for nuclear medicine studies

    International Nuclear Information System (INIS)

    Stathis, V.J.; Cantrell, D.W.; Cantrell, T.J.

    1987-01-01

    In this chapter are described methods of patient preparation that can favorably affect the outcome of nuclear medicine studies in specific situations. Some of these practices may be considered essential to the success of the nuclear medicine procedure, whereas others may be thought of simply as a means of obtaining more valid or reliable information. Regardless of relative importance, each of the preparatory methods discussed can contribute to the quality of the respective study and can serve as a means of maximizing the value of nuclear medicine procedures. The specific patient preparation techniques discussed in this chapter may not be readily applicable to every practice setting or situation. These or similar procedures can be used or modified as necessary. It is important, however, that when new protocols are developed, the rationale and theoretical basis of each technique be considered

  17. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  18. Astrophysical implications of periodicity

    International Nuclear Information System (INIS)

    Muller, R.A.

    1988-01-01

    Two remarkable discoveries of the last decade have profound implications for astrophysics and for geophysics. These are the discovery by Alvarez et al., that certain mass extinctions are caused by the impact on the earth of a large asteroid or comet, and the discovery by Raup and Sepkoski that such extinctions are periodic, with a cycle time of 26 to 30 million years. The validity of both of these discoveries is assumed and the implications are examined. Most of the phenomena described depend not on periodicity, but just on the weaker assumption that the impacts on the earth take place primarily in showers. Proposed explanations for the periodicity include galactic oscillations, the Planet X model, and the possibility of Nemesis, a solar companion star. These hypotheses are critically examined. Results of the search for the solar companion are reported. The Deccan flood basalts of India have been proposed as the impact site for the Cretaceous impact, but this hypotheisis is in contradiction with the conclusion of Courtillot et al., that the magma flow began during a period of normal magnetic field. A possible resolution of this contradiction is proposed

  19. Gamma-ray astrophysics

    International Nuclear Information System (INIS)

    Fichtel, C.E.

    1977-01-01

    The most striking feature of the celestial sphere when viewed in the frequency range of γ-rays is the emission from the galactic plane, which is particularly intense in the galactic longitudinal region from 300 0 to 50 0 . The longitudinal and latitudinal distributions are generally correlated with galactic structural features and when studied in detail suggest a non-uniform distribution of cosmic rays in the galaxy. Several point γ-ray sources have now been observed, including four radio pulsars. This last result is particularly striking since only one radio pulsar has been seen at either optical or X-ray frequencies. Nuclear γ-ray lines have been seen from the Sun during a large solar flare and future satellite experiments are planned to search for γ-ray lines from supernovae and their remnants. A general apparently diffuse flux of γ-rays has also been seen whose energy spectrum has interesting implications; however, in view of the possible contribution of point sources and the observation of galactic features such as Gould's belt, its interpretation must await γ-ray experiments with finer spatial and energy resolution, as well as greater sensitivity. (Auth.)

  20. Direct reactions in inverse kinematics for nuclear structure studies far off stability at low incident energies

    International Nuclear Information System (INIS)

    Egelhof, P.

    1997-02-01

    The investigation of light-ion induced direct reactions with exotic beams in inverse kinematics gives access to a wide field of nuclear structure studies in the region far off stability. The present contribution will focus on the investigation of few-nucleon transfer reactions, which turn out to be most favourably studied with good-quality low-energy radioactive beams, as provided by the new generation of radioactive beam facilities presently planned or under construction at Caen, Grenoble, Munich, and elsewhere. An overview on the physics motivation, basically concerning nuclear structure and nuclear astrophysics questions, is given. Of particular interest are the nuclear shell model in the region far off stability, the two-body residual interaction in nuclei, the structure of halo nuclei, as well as the understanding of the r-process scenario. The experimental conditions, along with the experimental concept, for such measurements are discussed with particular emphasis on the kinematical conditions, the observables, as well as the appropriate detection schemes. The concept of a large solid angle TPC ionization chamber as an active target for experiments with low-energy radioactive beams is presented. It turns out to be a highly effective detection scheme, well suited for the present experimental conditions, at least for light exotic beams up to Z∼20. (orig.)