WorldWideScience

Sample records for nuclear astrophysics results

  1. Recent results in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Coc, Alain; Kiener, Juergen [CNRS/IN2P3 et Universite Paris Sud 11, UMR 8609, Centre de Sciences Nucleaires et de Sciences de la Matiere (CSNSM), Orsay Campus (France); Hammache, Fairouz [CNRS/IN2P3 et Universite Paris Sud 11, UMR 8608, Institut de Physique Nucleaire d' Orsay (IPNO), Orsay Campus (France)

    2015-03-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified, e.g., {sup 12}C(α, γ){sup 16}O for stellar evolution, or {sup 13}C(α, n){sup 16}O and {sup 22}Ne(α, n){sup 25}Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics, e.g., in gamma-ray emission from solar flares or in the interaction of cosmic rays with matter, and also motivate laboratory experiments. Finally, we show that beyond the historical motivations of nuclear astrophysics, understanding i) the energy sources that drive stellar evolution and ii) the origin of the elements can also be used to give new insights into physics beyond the standard model. (orig.)

  2. Recent results in nuclear astrophysics

    International Nuclear Information System (INIS)

    Coc, Alain; Kiener, Juergen; Hammache, Fairouz

    2015-01-01

    In this review, we emphasize the interplay between astrophysical observations, modeling, and nuclear physics laboratory experiments. Several important nuclear cross sections for astrophysics have long been identified, e.g., 12 C(α, γ) 16 O for stellar evolution, or 13 C(α, n) 16 O and 22 Ne(α, n) 25 Mg as neutron sources for the s-process. More recently, observations of lithium abundances in the oldest stars, or of nuclear gamma-ray lines from space, have required new laboratory experiments. New evaluation of thermonuclear reaction rates now includes the associated rate uncertainties that are used in astrophysical models to i) estimate final uncertainties on nucleosynthesis yields and ii) identify those reactions that require further experimental investigation. Sometimes direct cross section measurements are possible, but more generally the use of indirect methods is compulsory in view of the very low cross sections. Non-thermal processes are often overlooked but are also important for nuclear astrophysics, e.g., in gamma-ray emission from solar flares or in the interaction of cosmic rays with matter, and also motivate laboratory experiments. Finally, we show that beyond the historical motivations of nuclear astrophysics, understanding i) the energy sources that drive stellar evolution and ii) the origin of the elements can also be used to give new insights into physics beyond the standard model. (orig.)

  3. Nuclear astrophysics: Recent results on CNO-cycle reactions and AGB nucleosynthesis

    International Nuclear Information System (INIS)

    La Cognata, M.

    2011-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 100 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method and new experimental facilities such as deep underground laboratories have been devised yielding new cutting-edge results.

  4. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Lehoucq, Roland; Klotz, Gregory

    2015-11-01

    Astronomy deals with the position and observation of the objects in our Universe, from planets to galaxies. It is the oldest of the sciences. Astrophysics is the study of the physical properties of these objects. It dates from the start of the 20. century. Nuclear astrophysics is the marriage of nuclear physics, a laboratory science concerned with the infinitely small, and astrophysics, the science of what is far away and infinitely large. Its aim is to explain the origin, evolution and abundance of the elements in the Universe. It was born in 1938 with the work of Hans Bethe, an American physicist who won the Nobel Prize for physics in 1967, on the nuclear reactions that can occur at the center of stars. It explains where the incredible energy of the stars and the Sun comes from and enables us to understand how they are born, live and die. The matter all around us and from which we are made, is made up of ninety-two chemical elements that can be found in every corner of the Universe. Nuclear astrophysics explains the origin of these chemical elements by nucleosynthesis, which is the synthesis of atomic nuclei in different astrophysical environments such as stars. Nuclear astrophysics provides answers to fundamental questions: - Our Sun and the stars in general shine because nuclear reactions are taking place within them. - The stars follow a sequence of nuclear reaction cycles. Nucleosynthesis in the stars enables us to explain the origin and abundance of elements essential to life, such as carbon, oxygen, nitrogen and iron. - Star explosions, in the form of supernovae, disperse the nuclei formed by nucleosynthesis into space and explain the formation of the heaviest chemical elements such as gold, platinum and lead. Nuclear astrophysics is still a growing area of science. (authors)

  5. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  6. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    Energy Technology Data Exchange (ETDEWEB)

    Cognata, M. La; Pizzone, R. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Gulino, M.; Tumino, A. [Kore University, Enna, Italy and Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  7. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    International Nuclear Information System (INIS)

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-01-01

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance

  8. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  9. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arcones, Almudena; Bardayan, Dan W.

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It also summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21–23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9–10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). Our white paper is informed informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12–13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. Answers to long standing key questions are well within reach in the coming decade because of the developments outlined in this white paper.

  10. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Arnould, M.; Takahashi, K.

    1999-01-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  11. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized

  12. Experimental studies of nuclear astrophysics

    International Nuclear Information System (INIS)

    He Jianjun; Zhou Xiaohong; Zhang Yuhu

    2013-01-01

    Nuclear astrophysics is an interdisciplinary subject combining micro-scale nuclear physics and macro-scale astrophysics. Its main aims are to understand the origin and evolution of the elements in the universe, the time scale of stellar evolution, the stellar environment and sites, the energy generation of stars from thermonuclear processes and its impact on stellar evolution and the mechanisms driving astrophysical phenomena, and the structure and property of compact stars. This paper presents the significance and current research status of nuclear astrophysics; we introduce some fundamental concepts, the nuclear physics input parameters required by certain astrophysics models, and some widely-used experimental approaches in nuclear astrophysics research. The potential and feasibility of research in this field using China’s current and planned large-scale scientific facilities are analyzed briefly. Finally, the prospects of the establishing a deep underground science and engineering laboratory in China are envisaged. (authors)

  13. Introduction to Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Iliadis, Christian

    2010-01-01

    In the first lecture of this volume, we will present the basic fundamental ideas regarding nuclear processes occurring in stars. We start from stellar observations, will then elaborate on some important quantum-mechanical phenomena governing nuclear reactions, continue with how nuclear reactions proceed in a hot stellar plasma and, finally, we will provide an overview of stellar burning stages. At the end, the current knowledge regarding the origin of the elements is briefly summarized. This lecture is directed towards the student of nuclear astrophysics. Our intention is to present seemingly unrelated phenomena of nuclear physics and astrophysics in a coherent framework.

  14. Indirect techniques in nuclear astrophysics

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Tribble, R.E.; Blokhintsev, L.D.; Cherubini, S.; Spitaleri, C.; Kroha, V.; Nunes, F.M.

    2005-01-01

    It is very difficult or often impossible to measure in the lab conditions nuclear cross sections at astrophysically relevant energies. That is why different indirect techniques are used to extract astrophysical information. In this talk different experimental possibilities to get astrophysical information using radioactive and stable beams will be addressed. 1. The asymptotic normalization coefficient (ANC) method. 2. Radiative neutron captures are determined by the spectroscopic factors (SP). A new experimental technique to determine the neutron SPs will be addressed. 3. 'Trojan Horse' is another unique indirect method, which allows one to extract the astrophysical factors for direct and resonant nuclear reactions at astrophysically relevant energies. (author)

  15. Nuclear astrophysics lessons from INTEGRAL.

    Science.gov (United States)

    Diehl, Roland

    2013-02-01

    Measurements of high-energy photons from cosmic sources of nuclear radiation through ESA's INTEGRAL mission have advanced our knowledge: new data with high spectral resolution showed that characteristic gamma-ray lines from radioactive decays occur throughout the Galaxy in its interstellar medium. Although the number of detected sources and often the significance of the astrophysical results remain modest, conclusions derived from this unique astronomical window of radiation originating from nuclear processes are important, complementing the widely-employed atomic-line based spectroscopy. We review the results and insights obtained in the past decade from gamma-ray line measurements of cosmic sources in the context of their astrophysical questions.

  16. Advances in instrumentation for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    S. D. Pain

    2014-04-01

    Full Text Available The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

  17. Nuclear astrophysics with radioactive beams

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Gade, A.

    2010-01-01

    The quest to comprehend how nuclear processes influence astrophysical phenomena is driving experimental and theoretical research programs worldwide. One of the main goals in nuclear astrophysics is to understand how energy is generated in stars, how elements are synthesized in stellar events and what the nature of neutron stars is. New experimental capabilities, the availability of radioactive beams and increased computational power paired with new astronomical observations have advanced the present knowledge. This review summarizes the progress in the field of nuclear astrophysics with a focus on the role of indirect methods and reactions involving beams of rare isotopes.

  18. Nuclear physics in astrophysics. Part 2. Abstracts

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Fueloep, Zs.

    2005-01-01

    The proceedings of the 20. International Nuclear Physics Divisional Conference of the European Physical Society covers a wide range of topics in nuclear astrophysics. The topics addressed are big bang nucleosynthesis, stellar nucleosynthesis, measurements and nuclear data for astrophysics, nuclear structure far from stability, neutrino physics, and rare-ion-beam facilities and experiments. The perspectives of nuclear physics and astrophysics are also overviewed. 77 items are indexed separately for the INIS database. (K.A.)

  19. Computational Infrastructure for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael S.; Hix, W. Raphael; Bardayan, Daniel W.; Blackmon, Jeffery C.; Lingerfelt, Eric J.; Scott, Jason P.; Nesaraja, Caroline D.; Chae, Kyungyuk; Guidry, Michael W.; Koura, Hiroyuki; Meyer, Richard A.

    2006-01-01

    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that is freely available online at nucastrodata.org. Features of, and future plans for, this software suite are given

  20. White Paper on Nuclear Astrophysics

    OpenAIRE

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Berstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib

    2016-01-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town mee...

  1. Building better optical model potentials for nuclear astrophysics applications

    International Nuclear Information System (INIS)

    Bauge, Eric; Dupuis, Marc

    2004-01-01

    In nuclear astrophysics, optical model potentials play an important role, both in the nucleosynthesis models, and in the interpretation of astrophysics related nuclear physics measurements. The challenge of nuclear astrophysics resides in the fact that it involves many nuclei far from the stability line, implying than very few (if any) experimental results are available for these nuclei. The answer to this challenge is a heavy reliance on microscopic optical models with solid microscopic physics foundations that can predict the relevant physical quantities with good accuracy. This use of microscopic information limits the likelihood of the model failing spectacularly (except if some essential physics was omitted in the modeling) when extrapolating away from the stability line, in opposition to phenomenological models which are only suited for interpolation between measured data points and not for extrapolating towards unexplored areas of the chart of the nuclides.We will show how these microscopic optical models are built, how they link to our present knowledge of nuclear structure, and how they affect predictions of nuclear astrophysics models and the interpretation of some key nuclear physics measurements for astrophysics

  2. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Arnould, M.; Rayet, M.

    1990-01-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects

  3. Nuclear astrophysics data at ORNL

    International Nuclear Information System (INIS)

    Smith, M.S.; Blackmon, J.C.

    1998-01-01

    There is a new program of evaluation and dissemination of nuclear data of critical importance for nuclear astrophysics within the Physics Division of Oak Ridge National Laboratory. Recent activities include determining the rates of the important 14 O(α,p) 17 F and 17 F(p,γ) 18 Ne reactions, disseminating the Caughlan and Fowler reaction rate compilation on the World Wide Web, and evaluating the 17 O(p,α) 14 N reaction rate. These projects, which are closely coupled to current ORNL nuclear astrophysics research, are briefly discussed along with future plans

  4. Direct measurement of nuclear cross-section of astrophysical interest: Results and perspectives

    Science.gov (United States)

    Cavanna, Francesca; Prati, Paolo

    2018-03-01

    Stellar evolution and nucleosynthesis are interconnected by a wide network of nuclear reactions: the study of such connection is usually known as nuclear astrophysics. The main task of this discipline is the determination of nuclear cross-section and hence of the reaction rate in different scenarios, i.e. from the synthesis of a few very light isotopes just after the Big Bang to the heavy element production in the violent explosive end of massive stars. The experimental determination of reaction cross-section at the astrophysical relevant energies is extremely difficult, sometime impossible, due to the Coulomb repulsion between the interacting nuclei which turns out in cross-section values down to the fbar level. To overcome these obstacles, several experimental approaches have been developed and the adopted techniques can be roughly divided into two categories, i.e. direct and indirect methods. In this review paper, the general problem of nuclear astrophysics is introduced and discussed from the point of view of experimental approach. We focus on direct methods and in particular on the features of low-background experiments performed at underground laboratory facilities. The present knowledge of reactions involved in the Big Bang and stellar hydrogen-burning scenarios is discussed as well as the ongoing projects aiming to investigate mainly the helium- and carbon-burning phases. Worldwide, a new generation of experiment in the MeV range is in the design phase or at the very first steps and decisive progresses are expected to come in the next years.

  5. Recent Results In Nuclear Astrophysics At The n_TOF Facility At CERN

    CERN Document Server

    Tagliente, Giuseppe; Andrzejewski, J; Audouin, L; Bacak, M; Balibrea, J; Barbagallo, M; Bečvář, F; Berthoumieux, E; Billowes, J; Bosnar, D; Brown, A; Caamaño, M; Calviño, F; Calviani, M; Cano-Ott, D; Cardella, R; Casanovas, A; Cerutti, F; Chen, Y H; Chiaveri, E; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Cosentino; Damone, L A; Diakaki, M; Domingo-Pardo, C; Dressler, L R; Dupont, E; Durán, I; Fernández-Domínguez, B; Ferrari, A; Ferreira, P; Finocchiaro, P; Furman, V; Göbel, K; García, A R; Gawlik, A; Gilardoni, S; Glodariu, T; Gonçalves, I F; González, E; Griesmayer, E; Guerrero, C; Gunsing, F; Harada, H; Heinitz, S; Heyse, J; Jenkins, D G; Jericha, E; Käppeler, F; Kadi, Y; Kalamara, A; Kavrigin, P; Kimura, A; Kivel, N; Kokkoris, M; Krtička, M; Kurtulgil, D; Leal-Cidoncha, E; Lederer, C; Lerendegui-Marco, J; Leeb, H; Lo Meo, S; Lonsdale, S J; Macina, D; Marganiec, J; Martínez, T; Masi, A; Massimi, C; Mastinu, P; Mastromarco, M; Maugeri, E A; Mazzone, A; Mendoza, E; Mengoni, A; Mingrone, F; Milazzo, P M; Musumarra, A; Negret, A; Nolte, R; Oprea, A; Patronis, N; Pavlik, A; Perkowski, J; Porras, I; Praena, J; Quesada, J M; Radeck, D; Rauscher, T; Reifarth, R; Rubbia, C; Ryan, J A; Sabaté-Gilarte, M; Saxena, A; Schillebeeckx, P; Schumann, D; Sedyshev, P; Smith, A G; Sosnin, N V; Stamatopoulos, A; Tain, J L; Tarifeño-Saldivia, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Vlachoudis, V; Vlastou, R; Wallner, A; Warren, S; Woods, P J; Żugec, P Č

    2017-01-01

    The neutron time of flight (n_TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n_TOF facility are presented.

  6. Nuclear Data and Reaction Rate Databases in Nuclear Astrophysics

    Science.gov (United States)

    Lippuner, Jonas

    2018-06-01

    Astrophysical simulations and models require a large variety of micro-physics data, such as equation of state tables, atomic opacities, properties of nuclei, and nuclear reaction rates. Some of the required data is experimentally accessible, but the extreme conditions present in many astrophysical scenarios cannot be reproduced in the laboratory and thus theoretical models are needed to supplement the empirical data. Collecting data from various sources and making them available as a database in a unified format is a formidable task. I will provide an overview of the data requirements in astrophysics with an emphasis on nuclear astrophysics. I will then discuss some of the existing databases, the science they enable, and their limitations. Finally, I will offer some thoughts on how to design a useful database.

  7. Nuclear Data for Astrophysics Research: A New Online Paradigm

    International Nuclear Information System (INIS)

    Smith, Michael Scott

    2011-01-01

    Our knowledge of a wide range of astrophysical processes depends crucially on nuclear physics data. While new nuclear information is being generated at an ever-increasing rate, the methods to process this information into astrophysical simulations have changed little over the decades and cannot keep pace. Working online, 'cloud computing', may be the methodology breakthrough needed to ensure that the latest nuclear data quickly gets into astrophysics codes. The successes of the first utilization of cloud computing for nuclear astrophysics will be described. The advantages of cloud computing for the broader nuclear data community are also discussed.

  8. Nuclear data needs in nuclear astrophysics: Charged-particle reactions

    International Nuclear Information System (INIS)

    Smith, Michael S.

    2001-01-01

    Progress in understanding a diverse range of astrophysical phenomena - such as the Big Bang, the Sun, the evolution of stars, and stellar explosions - can be significantly aided by improved compilation, evaluation, and dissemination of charged-particle nuclear reaction data. A summary of the charged-particle reaction data needs in these and other astrophysical scenarios is presented, along with recommended future nuclear data projects. (author)

  9. VI European Summer School on Experimental Nuclear Astrophysics

    Science.gov (United States)

    The European Summer School on Experimental Nuclear Astrophysics has reached the sixth edition, marking the tenth year's anniversary. The spirit of the school is to provide a very important occasion for a deep education of young researchers about the main topics of experimental nuclear astrophysics. Moreover, it should be regarded as a forum for the discussion of the last-decade research activity. Lectures are focused on various aspects of primordial and stellar nucleosynthesis, including novel experimental approaches and detectors, indirect methods and radioactive ion beams. Moreover, in order to give a wide educational offer, some lectures cover complementary subjects of nuclear astrophysics such as gamma ray astronomy, neutron-induced reactions, short-lived radionuclides, weak interaction and cutting-edge facilities used to investigate nuclear reactions of interest for astrophysics. Large room is also given to young researcher oral contributions. Traditionally, particular attention is devoted to the participation of students from less-favoured countries, especially from the southern coast of the Mediterranean Sea. The school is organised by the Catania Nuclear Astrophysics research group with the collaboration of Dipartimento di Fisica e Astromomia - Università di Catania and Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare.

  10. Nuclear Astrophysics Experiments at CIAE

    International Nuclear Information System (INIS)

    Liu Weiping; Li Zhihong; Bai Xixiang; Lian Gang; Guo Bing; Zeng, Sheng; Yan Shengquan; Wang Baoxiang; Shu Nengchuan; Wu Kaisu; Chen Yongshou

    2005-01-01

    This paper describes nuclear astrophysical studies using the unstable ion beam facility GIRAFFE. We measured the angular distributions for some low energy reactions, such as 7 Be(d, n) 8 B, 11 C(d, n) 12 N, 8 Li(d, n) 9 Be and 8 Li(d, p) 9 Li in inverse kinematics, and indirectly derived the astrophysical S-factors or reaction rates of 7 Be(p, γ) 8 B, 11 C(p, γ) 12 N, 8 Li(n, γ) 9 Li at astrophysically relevant energies

  11. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  12. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Cardenas, M.

    1976-01-01

    It is revised the nuclear reactions which present an interest in astrophysics regarding the explanation of some problems such as the relative quantity of the elements, the structure and evolution of the stars. The principal object of the study is the determination of the experimental possibilities in the field of astrophysics, of an accelerator Van de Graaff's 700 KeV type. Two hundred nuclear reactions approximately, were found, and nothing or very little has been done in the intervals of energy which are of interest. Since the bombardment energies and the involved sections are low in some cases, there are real possibilities, for the largest number of stars to obtain important statistical data with the above mentioned accelerator, taking some necessary precautions. (author)

  13. Nuclear astrophysics away from stability

    International Nuclear Information System (INIS)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1985-08-01

    Explosive astrophysical environments invariably lead to the production of nuclei away from stability. An understanding of the dynamics and nucleosynthesis in such environments is inextricably coupled to an understanding of the properties of the synthesized nuclei. In this talk a review is presented of the basic explosive nucleosynthesis mechanisms (s-process, r-process, n-process, p-process, and rp-process). Specific stellar model calculations are discussed and a summary of the pertinent nuclear data is presented. Possible experiments and nuclear-model calculations are suggested that could facilitate a better understanding of the astrophysical scenarios. 39 refs., 4 figs

  14. Topics in Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Chung, K.C.

    1982-01-01

    Some topics in nuclear astrophysics are discussed, e.g.: highly evolved stellar cores, stellar evolution (through the temperature analysis of stellar surface), nucleosynthesis and finally the solar neutrino problem. (L.C.) [pt

  15. Theoretical nuclear structure and astrophysics at FAIR

    International Nuclear Information System (INIS)

    Rodríguez, Tomás R

    2014-01-01

    Next generation of radioactive ion beam facilities like FAIR will open a bright future for nuclear structure and nuclear astrophysics research. In particular, very exotic nuclei (mainly neutron rich) isotopes will be produced and a lot of new exciting experimental data will help to test and improve the current nuclear models. In addition, these data (masses, reaction cross sections, beta decay half-lives, etc.) combined with the development of better theoretical approaches will be used as the nuclear physics input for astrophysical simulations. In this presentation I will review some of the state-of-the-art nuclear structure methods and their applications.

  16. Nuclear and Particle Physics, Astrophysics and Cosmology : T-2 : LANL

    Science.gov (United States)

    linked in Search T-2, Nuclear and Particle Physics, Astrophysics and Cosmology T-2 Home T Division Focus Areas Nuclear Information Service Nuclear Physics Particle Physics Astrophysics Cosmology CONTACTS Group fundamental and applied theoretical research in applied and fundamental nuclear physics, particle physics

  17. The Nuclear Astrophysics program at n_TOF (CERN

    Directory of Open Access Journals (Sweden)

    Colonna N.

    2017-01-01

    Full Text Available An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neutron sources and primordial nucleosynthesis.

  18. Nuclear energy and astrophysics applications of ENDF/B-VII.1 evaluated nuclear library

    International Nuclear Information System (INIS)

    Pritychenko, B.

    2012-01-01

    Recently released ENDF/B-VII.1 evaluated nuclear library contains the most up-to-date evaluated neutron cross section and covariance data. These data provide new opportunities for nuclear science and astrophysics application development. The improvements in neutron cross section evaluations and more extensive utilization of covariance files, by the Cross Section Evaluation Working Group (CSEWG) collaboration, allowed users to produce neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates, and provide additional insights on the currently available neutron-induced reaction data. Nuclear reaction calculations using the ENDF/B-VII.1 library and current computer technologies will be discussed and new results will be presented

  19. Nuclear Data for Astrophysics: Resources, Challenges, Strategies, and Software Solutions

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Lingerfelt, Eric J.; Nesaraja, Caroline D.; Hix, William Raphael; Roberts, Luke F.; Koura, Hiroyuki; Fuller, George M.; Tytler, David

    2008-01-01

    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos -- the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual 'pipeline' leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research.

  20. Nuclear information needs for the astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1986-01-01

    The astrophysical s-process is a sequence of neutron-capture and beta-decay reactions on a slow time scale compared to beta-decay lifetimes near the line of stability. This detailed sequence of neutron capture, continuum and bound-state beta decay, positron decay, and electron-capture reactions that comprise the s-process has been studied for a broad range of astrophysical environments. The results are then compared with the solar-system abundancies of heavy elements to determine the range of physical conditions responsible for their nucleosynthesis. The nuclear data needs are extensive but have begun to be precise enough to allow for a consistent interpretation of the astrophysical site for the s-process.

  1. Nuclear information needs for the astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, G.J.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1985-05-01

    The astrophysical s-process is a sequence of neutron-capture and beta-decay reactions on a slow time scale compared to beta-decay lifetimes near the line of stability. We systematically study this detailed sequence of neutron capture, continuum and bound-state beta decay, positron decay, and electron-capture reactions that comprise the s-process for a broad range of astrophysical environments. Our results are then compared with the solar-system abundances of heavy elements to determine the range of physical conditions responsible for their nucleosynthesis. The nuclear data needs are extensive but have begun to be precise enough to allow for a consistent interpretation of the astrophysical site for the s-process.

  2. Nuclear data for astrophysics: resources, challenges, strategies, and software solutions

    International Nuclear Information System (INIS)

    Smith, M.S.; Lingerfelt, E.J.; Nesaraja, C.D.; Raphael Hix, W.; Roberts, L.F.; Hiroyuki, Koura; Fuller, G.M.; Tytler, D.

    2008-01-01

    One of the most exciting utilizations of nuclear data is to help unlock the mysteries of the Cosmos - the creation of the chemical elements, the evolution and explosion of stars, and the origin and fate of the Universe. There are now many nuclear data sets, tools, and other resources online to help address these important questions. However, numerous serious challenges make it important to develop strategies now to ensure a sustainable future for this work. A number of strategies are advocated, including: enlisting additional manpower to evaluate the newest data; devising ways to streamline evaluation activities; and improving communication and coordination between existing efforts. Software projects are central to some of these strategies. Examples include: creating a virtual - pipeline - leading from the nuclear laboratory to astrophysics simulations; improving data visualization and management to get the most science out of the existing datasets; and creating a nuclear astrophysics data virtual (online) community. Recent examples will be detailed, including the development of two first-generation software pipelines, the Computational Infrastructure for Nuclear Astrophysics for stellar astrophysics and the Bigbangonline suite of codes for cosmology, and the coupling of nuclear data to sensitivity studies with astrophysical simulation codes to guide future research. (authors)

  3. New Features in the Computational Infrastructure for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Lingerfelt, Eric; Scott, J. P.; Nesaraja, Caroline D; Chae, Kyung YuK.; Koura, Hiroyuki; Roberts, Luke F.; Hix, William Raphael; Bardayan, Daniel W.; Blackmon, Jeff C.

    2006-01-01

    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that are freely available online at http://nucastrodata.org. The newest features of, and future plans for, this software suite are given

  4. From dripline to dripline: Nuclear astrophysics in the laboratory

    International Nuclear Information System (INIS)

    Meisel, Zach

    2016-01-01

    For the better part of a century the field of nuclear astrophysics has aimed to answer fundamental questions about nature, such as the origin of the elements and the behavior of high-density, low-temperature matter. Sustained and concerted efforts in nuclear experiment have been key to achieving progress in these areas and will continue to be so. Here I will briefly review recent accomplishments and open questions in experimental nuclear astrophysics. (paper)

  5. Improved predictions of nuclear data: A continued challenge in astrophysics

    International Nuclear Information System (INIS)

    Goriely, S.

    2001-01-01

    Although important effort has been devoted in the last decades to measure reaction cross sections and decay half-lives of interest in astrophysics, most of the nuclear astrophysics applications still require the use of theoretical predictions to estimate experimentally unknown rates. The nuclear ingredients to the reaction or weak interaction models should preferentially be estimated from microscopic or semi-microscopic global predictions based on sound and reliable nuclear models which, in turn, can compete with more phenomenological highly-parametrized models in the reproduction of experimental data. The latest developments made in deriving the nuclear inputs of relevance in astrophysics applications are reviewed. It mainly concerns nuclear structure properties (atomic masses, deformations, radii, etc...), nuclear level densities, nucleon and α-optical potentials, γ-ray and Gamow-Teller strength functions

  6. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  7. Exotic nuclear beta transitions astrophysical examples

    CERN Document Server

    Takahashi, K

    1981-01-01

    A theoretical study of nuclear beta -transitions under various astrophysical circumstances is reviewed by illustrative examples: 1) continuum-state electron captures in a matter in the nuclear statistical equiplibrium, and ii) bound-state beta -decays in stars in connection with a cosmochronometer and with the s-process branchings. (45 refs).

  8. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  9. An introduction to nuclear astrophysics

    International Nuclear Information System (INIS)

    Norman, E.B.

    1987-09-01

    The role of nuclear reactions in astrophysics is described. Stellar energy generation and heavy element nucleosynthesis is explained in terms of specific sequences of charged-particle and neutron induced reactions. The evolution and final states of stars are examined. 20 refs. 11 figs., 2 tabs

  10. Nuclear astrophysics and the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Laboratori Nazionali del Sud - INFN, Catania (Italy); La Cognata, M.; Pizzone, R.G. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Lamia, L. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Mukhamedzhanov, A.M. [Texas A and M University, Cyclotron Institute, College Station, TX (United States)

    2016-04-15

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach. (orig.)

  11. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    The fifth edition of the bi-annual 'Nuclear Physics in Astrophysics (NPA)' conference series was held in Eilat, Israel on April 3-8, 2011. This Conference is also designated as the 24th Nuclear Physics Divisional Conference of the EPS. The main purpose of this conference, as that of the four previous ones in this series, is to deal with those aspects of nuclear physics that are directly related to astrophysics. The concept of such a meeting was conceived by the Nuclear Physics Board of the European Physical Society in 1998. At that time, the idea of such a conference was quite new and it was decided that this meeting would be sponsored by the EPS. The first meeting, in January 2001, was planned and organized in Eilat, Israel. Due to international circumstances the conference was moved to Debrecen, Hungary. Subsequent conferences were held in Debrecen again, in Dresden, Germany, and in Frascati, Italy (moved from Gran Sasso due to the tragic earthquake that hit the L'Aquila region). After 10 years the conference finally returned to Eilat, the originally envisioned site. Eilat is a resort town located on the shore of the Gulf of Eilat, which connects Israel to the Red Sea and further south to the Indian Ocean. It commands spectacular views of the desert and mountains, offering unique touristic attractions. The local scientific backdrop of the conference is the fact that the Israeli scientific scene exhibits a wide variety of research activities in many areas of nuclear physics and astrophysics. A new accelerator, SARAF at Soreq Nuclear Research Center is presently undergoing final acceptance tests. SARAF will serve as a platform for production of radioactive ion beams and nuclear-astrophysics research in Israel. The meeting in Eilat was organized by four Israeli scientific institutions, Hebrew University, Soreq Nuclear Research Center, Tel Aviv University and the Weizmann Institute of Science. The welcome reception and lectures were held at the King Solomon hotel and

  12. Asymptotic normalization coefficients, nuclear vertex constants and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Yarmukhamedov, R.; Artemov, S.V.; Igamov, S.B.; Burtebaev, N.; Peterson, R.J.

    2007-01-01

    Full text: We will review the results of a comprehensive analysis of the experimental astrophysical S- factors S(E) for the t(α, γ ) 7 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 B, 12 C(p , γ) 13 N and 13 C(p,γ) 14 N reactions at extremely low energies, performed within a three-sided collaboration (Uzbekistan-Kazakhstan-USA). In the analysis, the new experimental data for the 12 C(p, γ) 13 N reaction are also included, as measured with the accelerator UKP-2-1 at the Institute of Nuclear Physics in Kazakhstan. The analysis is carried out within the framework of a new two-body potential approach and the R-matrix method, taking into account information about the asymptotic normalization coefficient (ANC) (or the respective nuclear vertex constant for virtual decay of the residual nuclei into two fragments of the initial states of the aforesaid reactions, which belong to the fundamental nuclear constants). Nowadays ANC's are obtained from analysis of peripheral one nucleon transfer reactions by method combining dispersion theory and DWBA (CM). It is shown that ANC can be also reliably obtained from analysis of proton capture reactions at astrophysical energies by new modified two-body potential method where the CM is used. A comparative analysis of the results obtained by different authors in the framework of different methods is also done

  13. Preface: Eighth European Summer School on Experimental Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Claudio, Spitaleri; Livio, Lamia; Gianluca, Pizzone Rosario

    2016-01-01

    In this book a collection of the lecture notes given during the Eighth European Summer School on Experimental Nuclear Astrophysics is given. The school, whose first edition was first held in 2003, took place from 13 to 20 of September 2015 in Santa Tecla, a small village about 15 km north of Catania, characterized by its position on the volcanic shores of the Ionian Sea, surrounded by the spectacular “Timpa” area, a green protected park specific for its mediterranean vegetation. 80 young students and researchers from more than 20 countries attended the lectures and were also encouraged to present their work and results. The school, has tried once more to present to the young students the global picture of nuclear astrophysics research in the last years. Thus the scientific program of the school covered a wide range of topics dealing with various aspects of nuclear astrophysics, such as stellar evolution and nucleosynthesis, neutrino physics, the Big Bang, direct and indirect methods and radioactive ion beams. Nuclear astrophysics plays a key role in understanding energy production in stars, stellar evolution and the concurrent synthesis of the chemical elements and their isotopes. It is also a fundamental tool to explain the ashes of the early universe, to determine the age of the universe through the study of pristine stellar objects and to predict the evolution of the Sun or Stars. The “bone structure” for the above aspects is based on nuclear reactions, whose rates need to be determined in laboratories. Although impressive progress has been made over the past decades, which was rewarded by Nobel prizes, several open questions are still unsolved, which challenge the basis of the present understanding. A list of the lecture topics is given below: —Big Bang Nucleosynthesis —Stellar evolution and Nucleosynthesis —radioactive ion beams —detector and facilities for nuclear astrophysics —indirect methods in nuclear astrophysics —plasma physics An

  14. Nuclear astrophysics. Irfu - IN2P3 prospective of 2012

    International Nuclear Information System (INIS)

    Assie, M.; Hammache, F.; Khan, E.; Margueron, J.; Sereville, N. de; Bastin, B.; Oliveira Santos, F. de; Ploszajczak, M.; Sorlin, O.; Bernard, D.; Chieze, J.-P.; Decourchelle, A.; Ducret, J. E.; Foglizzo, T.; Gilles, D.; Schanne, S.; Turck-Chieze, S.; Coc, A.; Duprat, J.; Kiener, J.; Lefebvre-Schuhl, A.; Tatischeff, V.; Courtin, S.; Dufour, M.; Haas, F.; Gulminelli, F.; Gunsing, F.; Obertelli, A.; Maurin, D.; Renaud, M.; Smirnova, N.

    2011-01-01

    This document proposes a rather detailed overview of the different research works performed by nuclear astrophysicists belonging to the Irfu and to the IN2P3. It also presents the main results and envisaged researches. These issues are herein presented by distinguishing four main themes. The first one concerns the main issues of the field: cosmology and nuclear physics, hydrostatic nucleosynthesis and stellar evolution, explosive nucleosynthesis (supernovae, novae, X-bursts), neutron stars and protostars, galactic cosmic radiation and nuclear astrophysics, formation of the Solar System. The second theme concerns means of observation: astro-seismology, X astronomy, nuclear gamma astronomy, meteorites and micro-meteorites. The third theme concerns measurements in laboratory: steady beam accelerators, radioactive beam accelerators, neutron beams, production of radioactive targets, power lasers, isotopic analysis of extraterrestrial matter. The fourth theme concerns nuclear theories for astrophysics. Appendices propose summaries of objectives of current projects, and tables indicating involved staff and budgets

  15. Thermonuclear Reaction Rate Libraries and Software Tools for Nuclear Astrophysics Research

    International Nuclear Information System (INIS)

    Smith, Michael S.; Cyburt, Richard; Schatz, Hendrik; Smith, Karl; Warren, Scott; Ferguson, Ryan; Wiescher, Michael; Lingerfelt, Eric; Buckner, Kim; Nesaraja, Caroline D.

    2008-01-01

    Thermonuclear reaction rates are a crucial input for simulating a wide variety of astrophysical environments. A new collaboration has been formed to ensure that astrophysical modelers have access to reaction rates based on the most recent experimental and theoretical nuclear physics information. To reach this goal, a new version of the REACLIB library has been created by the Joint Institute for Nuclear Astrophysics (JINA), now available online at http://www.nscl.msu.edu/~nero/db. A complementary effort is the development of software tools in the Computational Infrastructure for Nuclear Astrophysics, online at nucastrodata.org, to streamline, manage, and access the workflow of the reaction evaluations from their initiation to peer review to incorporation into the library. Details of these new projects will be described

  16. Nuclear astrophysics experiments with Pohang neutron facility

    International Nuclear Information System (INIS)

    Kim, Yeong Duk; Yoo, Gwang Ho

    1998-01-01

    Nuclear astrophysics experiments for fundamental understanding of Big Bang nucleosynthesis was performed at Pohang Neutron Facility. Laboratory experiments, inhomogeneous Big Bang nucleosynthesis and S-process were used for nucleosynthesis. For future study, more study on S-process for the desired data and nuclear network calculation are necessary

  17. Charged-particle transfer reactions and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Duysebaev, A.; Kadyrzhanov, K.K.

    2002-01-01

    In the report a review of the recent results of calculation of the astrophysical S-factors S(E) for the D(α, γ) 6 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 Be, 12,13 C(p, γ) 13, 14 N and 12 C(p,γ) 16 O* reactions at extremely low energies E, including value E=0 , performed within the framework of a new method taking into account the additional information about the nuclear vertex constant (Nc) (or the respective asymptotic normalization coefficient) are presented. The required values of Nc can be obtained from an analysis of measured differential cross-sections of proton and α-particle transfer reactions (for example A( 3 He,d)B, 6 Li(d, 6 Li)d, 6 Li(α, 6 Li)α, 12 C( 6 Li, d) 16 O* etc.). A comparative analysis between the results obtained by different authors is also done. Taking into account an important role of the NVC's values for the nuclear astrophysical A(p, γ)B and A(α, γ)B reactions, a possibility of obtaining the reliable NVC values for the virtual decay B→A+p and B→A+α from the analysis of differential cross sections both sub- and above-barrier A( 3 He, d) and A( 6,7 Li, 2,3 H)B reactions is discussed in detail. In this line the use the isochronous cyclotron U-150 M, the 'DC-60' heavy ion machine and electrostatic charge-exchanging accelerator UKP-2-1 of Institute of Nuclear Physics of National Nuclear Center of the Republic of Kazakhstan for carrying out the needed experiments is considered and the possibility of the obtained data application for the astrophysical interest is also discussed

  18. Nuclear astrophysics and nuclei far from stability

    International Nuclear Information System (INIS)

    Schatz, H.

    2003-01-01

    Unstable nuclei play a critical role in a number of astrophysical scenarios and are important for our understanding of the origin of the elements. Among the most important scenarios are the r-process (Supernovae), Novae, X-ray bursters, and Superbursters. For these astrophysical events I review the open questions, recent developments in astronomy, and how nuclear physics, in particular experiments with radioactive beams, needs to contribute to find the answers. (orig.)

  19. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  20. Summary of sessions on nuclear astrophysics

    Science.gov (United States)

    Rolfs, C.

    In the minds of some there exists the patronizing belief that nuclear physics is a mature science. The same is not believed about nuclear astrophysics, which has been an active branch of astrophysics for over fifty years, but is now in the midst of an exciting revival in experimental and theoretical research around the world. The ultimate goal is to understand how nuclear processes generate the energy of stars over their lifetimes and, in doing so, synthesize heavier elements from the primordial hydrogen and helium produced in the Big Bang, which led to the expanding universe. Impressive progress has been made in this goal and this was rewarded. However, there are major puzzles, such as the solar neutrino problem to name just one, which challenge the fundaments of the field. To solve these problems, new nuclear physics data are needed employing novel experimental techniques such as radioactive ion beams and underground accelerator facilities. Without such new data, much of the work done so far will - in an optimistic view - be incomplete and - in a pessimistic view - be possibly wrong. Thus, new data do not represent a fine structure information or a cleaning-up job, but they represent the major next step in this exciting field&

  1. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1991-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching the astrophysics of gravitational collapse, neutron star birth and neutrino emission, and neutron star cooling, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; some nuclear matter properties might be best delineated by astrophysical considerations. Our research has focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. We are modifying our hydrodynamical code to use implicit differencing and to include multi-group neutrino diffusion and general relativity. In parallel, we are extending calculations of core collapse supernovae to long times after collapse by using a hybrid explicit-implicit hydrodynamical code and by using simplified neutrino transport. We hope to establish the existence or non-existence of the so-called long-term supernova mechanism. We are also extending models of the neutrino emission and cooling of neutron stars to include the effects of rotation and the direct Urca process that we recently discovered to be crucial. We have developed a rapid version of the dense matter equation of state for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. This version also has the great advantage that nuclear physics inputs, such as the nuclear incompressibility, symmetry, energy, and specific heat, can be specified

  2. Indirect methods in nuclear astrophysics

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Shubhchintak; Mukhamedzhanov, A.; Kadyrov, A. S.; Kruppa, A.; Pang, D. Y.

    2016-01-01

    We discuss recent developments in indirect methods used in nuclear astrophysics to determine the capture cross sections and subsequent rates of various stellar burning processes, when it is difficult to perform the corresponding direct measurements. We discuss in brief, the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the Coulomb Dissociation Method, (d,p), and charge-exchange reactions. (paper)

  3. Nuclear Astrophysics from View Point of Few-Body Problems

    International Nuclear Information System (INIS)

    Tumino, A.; Spitaleri, C.; Bertulani, C.; Mukhamedzhanov, A.M.

    2013-01-01

    Few-body systems provide very useful tools to solve different problems for nuclear astrophysics. This is the case of indirect techniques, developed to overcome some of the limits of direct measurements at astrophysical energies. Here the Coulomb dissociation, the asymptotic normalization coefficient and the Trojan Horse method are discussed. (author)

  4. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1990-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. We have been actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; in fact, nuclear matter properties, especially supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered prior to its explosion. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We have also extended models of the neutrino emission and cooling of neutron stars to include the effects of rotation. The Lattimer compressible liquid drop model is the basis of our equation of state. We have developed a rapid version for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. We have also focused on the nuclei-nuclear matter phase transition just below nuclear matter density, including the probable nuclear deformations and the possible ''inside-out'' phase of bubbles, which could be of major importance in supernovae models. Work also progressed toward understanding the origin of the r-process elements, through focusing on the neutron star decompression model

  5. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    International Nuclear Information System (INIS)

    Tumino, A.; Gulino, M.; Spitaleri, C.; Cherubini, S.; Romano, S.; Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G.; Lamia, L.

    2014-01-01

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally

  6. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A.; Gulino, M. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Università degli Studi di Enna Kore, Enna (Italy); Spitaleri, C.; Cherubini, S.; Romano, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy and Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy)

    2014-05-09

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.

  7. Nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing

  8. Nuclear physics and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  9. Art as a Vehicle for Nuclear Astrophysics

    Science.gov (United States)

    Kilburn, Micha

    2013-04-01

    One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.

  10. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J

    2008-01-01

    Context. Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. Aims. The reaction code TALYS has been recently updated to estimate the Maxwellian-averaged reaction rates that are of astrophysical relevance. These new developments enable the reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. Methods. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. Results. It is shown that TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. For the first time, the Maxwellian- averaged (n, 2n) reaction rate is calculated for all nuclei and its competition with the radiative capture rate is discussed. Conclusions. The TALYS code provides a new tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability. (authors)

  11. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  12. “Other” indirect methods for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Trache Livius

    2017-01-01

    Full Text Available In the house of Trojan Horse Method (THM, I will say a few words about “other” indirect methods we use in Nuclear Physics for Astrophysics. In particular those using Rare Ion Beams that can be used to evaluate radiative proton capture reactions. I add words about work done with the Professore we celebrate today. With a proposal, and some results with TECSA, for a simple method to produce and use isomeric beam of 26mAl.

  13. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-01-01

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the 18 F+p→ 15 O+α process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  14. Nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Schramm, D.N.; Olinto, A.V.

    1993-06-01

    The authors report on recent progress of research at the interface of nuclear physics and astrophysics. During the past year, the authors continued to work on Big Bang and stellar nucleosynthesis, the solar neutrino problem, the equation of state for dense matter, the quark-hadron phase transition, and the origin of gamma-ray bursts; and began studying the consequences of nuclear reaction rates in the presence of strong magnetic fields. They have shown that the primordial production of B and Be cannot explain recent detections of these elements in halo stars and have looked at spallation as the likely source of these elements. By looking at nucleosynthesis with inhomogeneous initial conditions, they concluded that the Universe must have been very smooth before nucleosynthesis. They have also constrained neutrino oscillations and primordial magnetic fields by Big Bang nucleosynthesis. On the solar neutrino problem, they have analyzed the implications of the SAGE and GALLEX experiments. They also showed that the presence of dibaryons in neutron stars depends weakly on uncertainties of nuclear equations of state. They have started to investigate the consequences of strong magnetic fields on nuclear reactions and implications for neutron star cooling and supernova nucleosynthesis

  15. Nuclear Data on Unstable Nuclei for Astrophysics

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Meyer, Richard A; Lingerfelt, Eric; Scott, J.P.; Hix, William Raphael; Ma, Zhanwen; Bardayan, Daniel W.; Blackmon, Jeff C.; Guidry, Mike W.; KOZUB, RAYMOND L.; Chae, Kyung YuK.

    2004-01-01

    Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. We discuss these evaluations, as well as the development of a new computational infrastructure to enable the rapid incorporation of the latest nuclear physics results in astrophysics models. This infrastructure includes programs that simplify the generation of reaction rates, manage rate databases, and visualize reaction rates, all hosted at a new website http://www.nucastrodata.org

  16. A New ECR Ion Source for Nuclear Astrophysics Studies

    Science.gov (United States)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  17. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Science.gov (United States)

    Utsunomiya, Hiroaki; Renstrøm, Therese; Tveten, Gry Merete; Gheorghe, Ioana; Filipescu, Dan Mihai; Belyshev, Sergey; Stopani, Konstantin; Wang, Hongwei; Fan, Gongtao; Lui, Yiu-Wing; Symochko, Dmytro; Goriely, Stephane; Larsen, Ann-Cecilie; Siem, Sunniva; Varlamov, Vladimir; Ishkhanov, Boris; Glodariu, Tudor; Krzysiek, Mateusz; Takenaka, Daiki; Ari-izumi, Takashi; Amano, Sho; Miyamoto, Shuji

    2018-05-01

    We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032).

  18. Nuclear astrophysics with radioactive beams: a TRIUMF perspective

    International Nuclear Information System (INIS)

    Shotter, A.C.

    2003-01-01

    Explosive nuclear burning in stellar environments involves reactions with a wide range of isotopes. For isotopes that are unstable, information on relevant reaction rates can only generally be obtained at radioactive beam facilities. The ISAC facility at TRIUMF is purpose built to provide a wide range of radioactive beams for nuclear astrophysics purposes as well as a range of other science

  19. Studies in nuclear structure relevant to Astrophysics: theoretical and experimental efforts

    International Nuclear Information System (INIS)

    Saha Sarkar, Maitreyee

    2016-01-01

    Experimental and theoretical investigations in the region around doubly magic neutron rich 132 Sn nucleus have recently revealed many intriguing issues concerning some newer aspects of nuclear structure in such exotic environments. These nuclei lie on or close to the path of the astrophysical r-process flow. A glimpse of the implication of these studies on the r-process nucleosynthesis will be discussed. Presently, the Nuclear Physics group in Saha Institute of Nuclear Physics is working for installation of a high-current, low energy Accelerator as the primary component of the Facility for Research in low Energy Nuclear Astrophysics (FRENA), a national facility, at Kolkata. Planning for future experiments has been undertaken for successful utilization of this facility. Implantation technique has been found to be one of the most effective methods to produce isotopically pure targets. We have prepared a few isotopically pure targets using this technique. Being the slowest process of the CNO cycle, study of the 14 N(p, γ) 15 O(Q = 7297 keV) capture reaction is of high astrophysical interest. From an experiment utilizing one of the newly prepared 14 N implanted targets, a preliminary estimate of the lifetime of 6792 keV state in 15 O has been obtained, using Doppler shift attenuation method (DSAM). The sensitivity of the results with respect to the uncertainties in various input quantities has been tested. This endeavour will be helpful to design a better experiment to extract more precise lifetime for this important state

  20. Recent Efforts in Data Compilations for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Dillmann, Iris

    2008-01-01

    Some recent efforts in compiling data for astrophysical purposes are introduced, which were discussed during a JINA-CARINA Collaboration meeting on 'Nuclear Physics Data Compilation for Nucleosynthesis Modeling' held at the ECT* in Trento/Italy from May 29th-June 3rd, 2007. The main goal of this collaboration is to develop an updated and unified nuclear reaction database for modeling a wide variety of stellar nucleosynthesis scenarios. Presently a large number of different reaction libraries (REACLIB) are used by the astrophysics community. The 'JINA Reaclib Database' on http://www.nscl.msu.edu/~nero/db/ aims to merge and fit the latest experimental stellar cross sections and reaction rate data of various compilations, e.g. NACRE and its extension for Big Bang nucleosynthesis, Caughlan and Fowler, Iliadis et al., and KADoNiS.The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, http://nuclear-astrophysics.fzk.de/kadonis) project is an online database for neutron capture cross sections relevant to the s process. The present version v0.2 is already included in a REACLIB file from Basel university (http://download.nucastro.org/astro/reaclib). The present status of experimental stellar (n,γ) cross sections in KADoNiS is shown. It contains recommended cross sections for 355 isotopes between 1 H and 210 Bi, over 80% of them deduced from experimental data.A ''high priority list'' for measurements and evaluations for light charged-particle reactions set up by the JINA-CARINA collaboration is presented. The central web access point to submit and evaluate new data is provided by the Oak Ridge group via the http://www.nucastrodata.org homepage. 'Workflow tools' aim to make the evaluation process transparent and allow users to follow the progress

  1. Recent Efforts in Data Compilations for Nuclear Astrophysics

    Science.gov (United States)

    Dillmann, Iris

    2008-05-01

    Some recent efforts in compiling data for astrophysical purposes are introduced, which were discussed during a JINA-CARINA Collaboration meeting on ``Nuclear Physics Data Compilation for Nucleosynthesis Modeling'' held at the ECT* in Trento/Italy from May 29th-June 3rd, 2007. The main goal of this collaboration is to develop an updated and unified nuclear reaction database for modeling a wide variety of stellar nucleosynthesis scenarios. Presently a large number of different reaction libraries (REACLIB) are used by the astrophysics community. The ``JINA Reaclib Database'' on http://www.nscl.msu.edu/~nero/db/ aims to merge and fit the latest experimental stellar cross sections and reaction rate data of various compilations, e.g. NACRE and its extension for Big Bang nucleosynthesis, Caughlan and Fowler, Iliadis et al., and KADoNiS. The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars, http://nuclear-astrophysics.fzk.de/kadonis) project is an online database for neutron capture cross sections relevant to the s process. The present version v0.2 is already included in a REACLIB file from Basel university (http://download.nucastro.org/astro/reaclib). The present status of experimental stellar (n,γ) cross sections in KADoNiS is shown. It contains recommended cross sections for 355 isotopes between 1H and 210Bi, over 80% of them deduced from experimental data. A ``high priority list'' for measurements and evaluations for light charged-particle reactions set up by the JINA-CARINA collaboration is presented. The central web access point to submit and evaluate new data is provided by the Oak Ridge group via the http://www.nucastrodata.org homepage. ``Workflow tools'' aim to make the evaluation process transparent and allow users to follow the progress.

  2. Few-Body Problems in Experimental Nuclear Astrophysics

    DEFF Research Database (Denmark)

    Fynbo, H.O.U.

    2013-01-01

    The 3α-reaction is one of the key reactions in nuclear astrophysics. Since it is a three-body reaction direct measurement is impossible, and therefore the reaction rate must be estimated theoretically. In this contribution I will discuss uncertainties in this reaction rate both at very low...

  3. Stopping Power Measurements: Implications in Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Carmen Angulo; Thierry Delbar; Jean-Sebastien Graulich; Pierre Leleux

    1999-01-01

    The stopping powers of C, CH 2 , Al, Ni, and polyvinylchloride (PVC) for several light ions ( 9 Be, 11 B, 12 C, 14 N, 16 O, 19 F, 20 Ne) with an incident energy of 1 MeV/amu have been measured at the Louvain-la-Neuve cyclotron facility. Stopping powers are given relative to the one for 5.5 MeV 4 He ions with an uncertainty of less than 1%. We compare our results with two widely used semiempirical models and we discuss some implications in nuclear astrophysics studies

  4. Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Directory of Open Access Journals (Sweden)

    Utsunomiya Hiroaki

    2018-01-01

    Full Text Available We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032.

  5. Excitation of compound states in the subsystems as indirect tool in nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Tribble R.E.

    2010-03-01

    Full Text Available Astrophysical reactions proceeding through compound states represent one of the crucial part of nuclear astrophysics. However, due to the presence of the Coulomb barrier, it is often very difficult or even impossible to obtain the astrophysical S (E factor from measurements in the laboratory at astrophysically relevant energies. The Trojan Horse method (THM provides a unique tool to obtain the information about resonant astrophysical reactions at astrophysically relevant energies. Here the theory and application of the THM for the resonant reactions is addressed.

  6. The weak interaction in nuclear, particle and astrophysics

    International Nuclear Information System (INIS)

    Grotz, K.; Klapdor, H.V.

    1989-01-01

    This book is an introduction to the concepts of weak interactions and their importance and consequences for nuclear physics, particle physics, neutrino physics, astrophysics and cosmology. After a general introduction to elementary particles and interactions the Fermi theory of weak interactions is described together with its connection with nuclear structure and beta decay including the double beta decay. Then, after a general description of gauge theories the Weinberg-Salam theory of the electroweak interactions is introduced. Thereafter the weak interactions are considered in the framework of grand unification. Then the physics of neutrinos is discussed. Thereafter connections of weak interactions with astrophysics are considered with special regards to the gravitational collapse and the synthesis of heavy elements in the r-process. Finally, the connections of grand unified theories and cosmology are considered. (HSI) With 141 figs., 39 tabs

  7. Nuclear astrophysics of the sun

    International Nuclear Information System (INIS)

    Kocharov, G.E.

    1980-01-01

    In the first chapter we will discuss the problem of nuclear reactions in the interior of the sun and consider the modern aspects of the neutrino astrophysics of the Sun. The second chapter is devoted to the high energy interactions in the solar atmosphere during the flares. Among a great number of events during the solar flares we shall consider mainly the nuclear reactions. Special attention will be paid to the genetic connection between the different components of solar electromagnetic and corpuscular radiation. The idea of the unity of processes in different parts of the Sun, from hot and dense interior up to the rare plasma of the solar corona will be the main line of the book. (orig./WL) 891 WL/orig.- 892 HIS

  8. Influences of the astrophysical environment on nuclear decay rates

    International Nuclear Information System (INIS)

    Norman, E.B.

    1987-09-01

    In many astronomical environments, physical conditions are so extreme that nuclear decay rates can be significantly altered from their laboratory values. Such effects are relevant to a number of current problems in nuclear astrophysics. Experiments related to these problems are now being pursued, and will be described in this talk. 19 refs., 5 figs

  9. Some topics on nuclear astrophysics and neutrino astronomy

    International Nuclear Information System (INIS)

    Nakazato, Ken'ichiro

    2010-01-01

    Massive stars make a gravitational collapse at the end of their lives emitting a large amount of neutrinos. In this process, the density and temperature of matter become high. Therefore neutrino detection of stellar collapse can teach us properties of hot and/or dense nuclear matter. In this article, some subjects on the nuclear astrophysics and/or neutrino astronomy, on which we are now working, are reported. (author)

  10. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  11. Improved predictions of nuclear reaction rates for astrophysics applications with the TALYS reaction code

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J.

    2008-01-01

    Nuclear reaction rates for astrophysics applications are traditionally determined on the basis of Hauser-Feshbach reaction codes, like MOST. These codes use simplified schemes to calculate the capture reaction cross section on a given target nucleus, not only in its ground state but also on the different thermally populated states of the stellar plasma at a given temperature. Such schemes include a number of approximations that have never been tested, such as an approximate width fluctuation correction, the neglect of delayed particle emission during the electromagnetic decay cascade or the absence of the pre-equilibrium contribution at increasing incident energies. New developments have been brought to the reaction code TALYS to estimate the Maxwellian-averaged reaction rates of astrophysics relevance. These new developments give us the possibility to calculate with an improved accuracy the reaction cross sections and the corresponding astrophysics rates. The TALYS predictions for the thermonuclear rates of astrophysics relevance are presented and compared with those obtained with the MOST code on the basis of the same nuclear ingredients for nuclear structure properties, optical model potential, nuclear level densities and γ-ray strength. It is shown that, in particular, the pre-equilibrium process significantly influences the astrophysics rates of exotic neutron-rich nuclei. The reciprocity theorem traditionally used in astrophysics to determine photo-rates is also shown no to be valid for exotic nuclei. The predictions obtained with different nuclear inputs are also analyzed to provide an estimate of the theoretical uncertainties still affecting the reaction rate prediction far away from the experimentally known regions. (authors)

  12. Nuclear astrophysics with indirect methods

    International Nuclear Information System (INIS)

    Shubhchintak

    2016-01-01

    In the area of astrophysics, it is well known that several different type of nuclear reactions are involved in the production of elements and for energy generation in stars. The knowledge of rates and cross section of these reactions is necessary in order to understand the origin of elements in the universe. Particularly, interests are there in the processes like pp-chain, CNO cycle, r-process and s-process, which are responsible for the formation of majority of the nuclei via various reactions like (p, γ), (n, γ), (α, γ) etc

  13. Theoretical nuclear structure and astrophysics. Progress report for 1993-1995

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1995-01-01

    This research effort is directed toward theoretical support and guidance for the developing fields of radioactive ion beam (RIB) physics, computational and nuclear astrophysics, and the interface between these disciplines. The authors are concerned both with the application of existing technologies and concepts to guide the initial RIB program, and the development of new ideas and new technologies to influence the longer-term future of nuclear structure physics and astrophysics. The authors report substantial progress in both areas. One measure of progress is publications and invited material. The research described here has led to more than 70 papers that are published, accepted, or submitted to refereed journals, and to 46 invited presentations at conferences and workshops

  14. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Laboratory

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  15. Selected topics in nuclear- and astro-physics

    International Nuclear Information System (INIS)

    Sujkowski, Z.; Szeflinska, G.

    1991-11-01

    The subjects cover the properties of hot and dense matter created in laboratory (the dynamics of the nucleus-nucleus collisions, the structure of hot and spinning nuclei), the properties of hot and dense stellar matter, the nuclear reactions of astrophysical interest (including the latest developments of the tools such as e.g. the radioactive beams) and the nucleosynthesis (esp. R-processes). (author)

  16. Few-body models for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Quantique, C.P. 165/82, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0198 (Japan); Aoyama, S., E-mail: aoyama@cc.niigata-u.ac.jp [Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Arai, K., E-mail: arai@nagaoka-ct.ac.jp [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata 940-8532 (Japan)

    2014-04-15

    We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the {sup 2}H(d, γ){sup 4}He, {sup 2}H(d, p){sup 3}H and {sup 2}H(d, n){sup 3}He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  17. Nuclear beta decay far from stability and astrophysics

    International Nuclear Information System (INIS)

    Klapdor, H.V.

    1988-01-01

    Beta decay data of nuclei far from stability are one of the most important nuclear physics input for the understanding of the element systhesis in the universe and determination of the age of the universe from cosmochronometers and by the latter have implications also for cosmology. The present status of theoretical predictions of beta decay far from stability will be reviewed and the impact on the above astrophysical questions will be outlined. First results of second generation microscopic calculations of β F half lives, which are at present in progress, will be presented. (orig.)

  18. Nuclear effects on bremsstrahlung neutrino rates of astrophysical interest

    International Nuclear Information System (INIS)

    Stoica, Sabin; Horvath, J.E.

    2002-01-01

    We calculate in this work the rates for the neutrino pair production by nucleon-nucleon bremsstrahlung taking into account the full contribution from a nuclear one-pion-exchange potential. It is shown that if the temperatures are low enough (T≤20 MeV), the integration over the nuclear part can be done for the general case, ranging from the completely degenerate (D) to the nondegenerate (ND) regime. We find that the inclusion of the full nuclear contribution enhances the neutrino pair production by nn and pp bremsstrahlung by a factor of about 2 in both the D and ND limits when compared with previous calculations. This result may be relevant for the physical conditions of interest in the semitransparent regions near the neutrinosphere in type II supernovae, cooling of neutron stars, and other astrophysical situations

  19. Nuclear astrophysics of worlds in the string landscape

    International Nuclear Information System (INIS)

    Hogan, Craig J.

    2006-01-01

    Motivated by landscape models in string theory, cosmic nuclear evolution is analyzed allowing the standard model Higgs expectation value w to take values different from that in our world (w≡1), while holding the Yukawa couplings fixed. Thresholds are estimated, and astrophysical consequences are described, for several sensitive dependences of nuclear behavior on w. The dependence of the neutron-proton mass difference on w is estimated based on recent calculations of strong isospin symmetry breaking, and is used to derive the threshold of neutron-stable worlds, w≅0.6±0.2. The effect of a stable neutron on nuclear evolution in the big bang and stars is shown to lead to radical differences from our world, such as a predominance of heavy r-process and s-process nuclei and a lack of normal galaxies, stars, and planets. Rough estimates are reviewed of w thresholds for deuteron stability and the pp and pep reactions dominant in many stars. A simple model of nuclear resonances is used to estimate the w dependence of overall carbon and oxygen production during normal stellar nucleosynthesis; carbon production is estimated to change by a fraction ≅15(1-w). Radical changes in astrophysical behavior seem to require changes in w of more than a few percent, even for the most sensitive phenomena

  20. Applications of the Trojan Horse method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio, E-mail: spitaleri@lns.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and Laboratori Nazionali del Sud-INFN, Catania (Italy)

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  1. Nuclear astrophysics at DRAGON

    International Nuclear Information System (INIS)

    Hager, U.

    2014-01-01

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented

  2. Nuclear data needs for studying the astrophysical r- and p-processes

    International Nuclear Information System (INIS)

    Howard, W.M.; Meyer, B.S.

    1991-09-01

    Recent advances in understanding the astrophysical sites for the r-, p- and 3-processes has led to an increased understanding of the nuclear physics requires to calculate the thermonuclear origin of the heavy elements in nature. We review specific examples of where nuclear information obtained with Radioactive Nuclear Beams can greatly help our understanding of the thermonuclear origin of the elements in nature. 4 figs

  3. Trojan horse particle invariance: The impact on nuclear astrophysics

    International Nuclear Information System (INIS)

    Pizzone, R. G.; La Cognata, M.; Spitaleri, C.; Bertulani, C. A.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Lamia, L.; Spartá, R.; Tumino, A.

    2014-01-01

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and 6 Li(d,α) 4 He reactions, which were tested using different quasi-free break-up's, namely 6 Li and 3 He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions

  4. Trojan horse particle invariance: The impact on nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Pizzone, R. G.; La Cognata, M. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Spitaleri, C. [Universitá di Catania and Laboratori Nazionali del Sud - INFN (Italy); Bertulani, C. A. [Texas A and M University, Commerce (United States); Mukhamedzhanov, A. M. [Texas A and M University, College Station, Texas (United States); Blokhintsev, L. D. [Moscow State University, Moscow (Russian Federation); Lamia, L.; Spartá, R. [Universitá di Catania and Laboratori Nazionali del Sud - INFN, Catania (Italy); Tumino, A. [Universitá Kore, Enna (Italy)

    2014-05-02

    In the current picture of nuclear astrophysics indirect methods and, in particular, the Trojan Horse Method cover a crucial role for the measurement of charged particle induced reactions cross sections of astrophysical interest, in the energy range required by the astrophysical scenarios. To better understand its cornerstones and its applications to physical cases many tests were performed to verify all its properties and the possible future perspectives. The key to the method is the quasi-free break-up and some of its properties will be investigated in the present work. In particular, the Trojan Horse nucleus invariance will be studied and previous studies will be extended to the cases of the binary d(d, p)t and {sup 6}Li(d,α){sup 4}He reactions, which were tested using different quasi-free break-up's, namely {sup 6}Li and {sup 3}He. The astrophysical S(E)-factor were then extracted with the Trojan Horse formalism applied to the two different break-up schemes and compared with direct data as well as with previous indirect investigations. The very good agreement confirms the independence of binary indirect cross section on the chosen spectator particle also for these reactions.

  5. Research in nuclear astrophysics: stellar collapse and supernovae: Annual performance report, December 1, 1987--November 30, 1988

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1988-01-01

    This annual performance report summarizes the activity in the nuclear astrophysics research program in the Earth and Space Scienes Department at Stony Brook. The central themes in the projects that comprise this program are supernovae, neutron star formation, and the equation of state of hot, dense metter. There is a close coupling between the physics of nuclear matter and weak interactions on the one hand, and supernovae and neutron stars on the other. The properties of nuclear matter might at present best be delineated by astrophysical considerations. We have been active in researching both the nuclear physics of the equation of state and the astrophysics of stellar collapse, neutrino emission, and neutron star formation. 11 refs

  6. Some nuclear data needs in astrophysics

    International Nuclear Information System (INIS)

    Mathews, G.J.; Bauer, R.W.; Bloom, S.D.; Haight, R.C.; Howard, W.M.; Takahashi, K.; Ward, R.A.

    1985-05-01

    In this paper we discuss a number of astrophysical environments and how improved nuclear data could facilitate a better understanding of them. One area of interest includes proton and alpha-particle reactions with unstable nuclei which are necessary for understanding the nucleosynthesis and energy generation in hot hydrogen-burning environments. Efforts underway at LLNL and elsewhere to develop the technology for the measurement of these reaction rates are discussed. Heavy-element nucleosynthesis in the late stages of red-giant stars and supernovae requires a complete network of neutron capture rates and beta-decay rates for nuclei near and far from stability. Experimental and theoretical efforts at LLNL to supply the input data and to model the nucleosynthetic environments will be outlined. Suggestions are made as to which nuclear data are most critical for the various scenarios. 42 refs., 11 figs., 1 tab

  7. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  8. 2nd International Conference on Nuclear Physics in Astrophysics

    CERN Document Server

    Fülöp, Zsolt; Somorjai, Endre; The European Physical Journal A : Volume 27, Supplement 1, 2006

    2006-01-01

    Launched in 2004, "Nuclear Physics in Astrophysics" has established itself in a successful topical conference series addressing the forefront of research in the field. This volume contains the selected and refereed papers of the 2nd conference, held in Debrecen in 2005 and reprinted from "The European Physical Journal A - Hadrons and Nuclei".

  9. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  10. The Trojan Horse Method for nuclear astrophysics and its recent applications

    Science.gov (United States)

    Lamia, L.; Spitaleri, C.; Mazzocco, M.; Boiano, A.; Boiano, C.; Broggini, C.; Caciolli, A.; Depalo, R.; Di Pietro, A.; Figuera, P.; Galtarossa, F.; Guardo, G. L.; Gulino, M.; Hayakawa, S.; Kubono, S.; La Cognata, M.; La Commara, M.; La Rana, G.; Lattuada, M.; Menegazzo, R.; Pakou, A.; Parascandolo, C.; Piatti, D.; Pierroutsakou, D.; Pizzone, R. G.; Puglia, S. M. R.; Romano, S.; Rapisarda, G. G.; Sanchez-Benitez, A. M.; Sergi, M. L.; Sgouros, O.; Silva, H.; Soramel, F.; Soukeras, V.; Strano, E.; Torresi, D.; Trippella, O.; Tumino, A.; Yamaguchi, H.; Villante, F. L.; Zhang, G. L.

    2018-01-01

    The Trojan Horse Method (THM) has been applied extensively for the last 25 years to measure nuclear reaction cross sections of interest for astrophysics. Although it has been mainly applied for charged particle-induced reactions, recently it has been found to have also a relevant role for neutron-induced reactions. Here, some advantages of THM will be discussed and the preliminary results of the cosmological relevant 7Be(n,α)4He cross section measurement are discussed.

  11. Focusing telescopes in nuclear astrophysics

    International Nuclear Information System (INIS)

    Von Ballmoos, P.; Knodlseder, R.; Sazonov, S.; Griffiths, R.; Bastie, P.; Halloin, H.; Pareschi, G.; Ramsey, B.; Jensen, C.; Buis, E.J.; Ulmer, M.; Giommi, P.; Colafrancesco, S.; Comastri, A.; Barret, D.; Leising, M.; Hernanz, M.; Smith, D.; Abrosimov, N.; Smither, B.; Ubertini, P.; Olive, J.F.; Lund, N.; Pisa, A.; Courtois, P.; Roa, D.; Harrison, F.; Pareschi, G.; Frontera, F.; Von Ballmoos, P.; Barriere, N.; Rando, N.; Borde, J.; Hinglais, E.; Cledassou, R.; Duchon, P.; Sghedoni, M.; Huet, B.; Takahashi, T.; Caroli, E.; Quadrinin, L.; Buis, E.J.; Skinner, G.; Krizmanic, J.; Pareschi, G.; Loffredo, G.; Wunderer, C.; Weidenspointner, G.; Wunderer, C.; Koechlin, L.; Bignami, G.; Von Ballmoos, P.; Tueller, J.; Andritschke, T.; Laurens, A.; Evrard, J.

    2005-01-01

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations

  12. Focusing telescopes in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Von Ballmoos, P; Knodlseder, R; Sazonov, S; Griffiths, R; Bastie, P; Halloin, H; Pareschi, G; Ramsey, B; Jensen, C; Buis, E J; Ulmer, M; Giommi, P; Colafrancesco, S; Comastri, A; Barret, D; Leising, M; Hernanz, M; Smith, D; Abrosimov, N; Smither, B; Ubertini, P; Olive, J F; Lund, N; Pisa, A; Courtois, P; Roa, D; Harrison, F; Pareschi, G; Frontera, F; Von Ballmoos, P; Barriere, N; Rando, N; Borde, J; Hinglais, E; Cledassou, R; Duchon, P; Sghedoni, M; Huet, B; Takahashi, T; Caroli, E; Quadrinin, L; Buis, E J; Skinner, G; Krizmanic, J; Pareschi, G; Loffredo, G; Wunderer, C; Weidenspointner, G; Wunderer, C; Koechlin, L; Bignami, G; Von Ballmoos, P; Tueller, J; Andritschke, T; Laurens, A; Evrard, J

    2005-07-01

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations.

  13. Recent astrophysical applications of the Trojan Horse Method to nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.; Fu, C.; Tribble, R.; Banu, A.; Al-Abdullah, T.; Goldberg, V.; Mukhamedzhanov, A.; Tabacaru, G.; Trache, L.

    2008-01-01

    The Trojan Horse Method (THM) is an unique indirect technique allowing to measure astrophysical rearrangement reactions down to astrophysical relevant energies. The basic principle and a review of the recent applications of the Trojan Horse Method are presented. The applications aiming to the extraction of the bare astrophysical S b (E) for some two-body processes are discussed

  14. Personal comments on the history of nuclear astrophysics

    International Nuclear Information System (INIS)

    Hoyle, Fred.

    1986-01-01

    The author reviews his personal career in nuclear astrophysics from just before World War II to 1966. It concentrates on the work carried out in conjunction with colleagues, especially those in Cambridge and at the California Institute of Technology in Pasadena, on the development of various models to explain nucleosynthesis and the evaluation of stars. The paper also covers a wide variety of other topics, touching on isotope abundances, the helium abundance in particular, and the relict radiation. (UK)

  15. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    Science.gov (United States)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  16. MAX: Development of a Laue diffraction lens for nuclear astrophysics

    International Nuclear Information System (INIS)

    Barriere, N.; Ballmoos, P. von; Skinner, G.; Smither, B.; Bastie, P.; Hinglais, E.; Abrosimov, N.; Alvarez, J.M.; Andersen, K.; Courtois, P.; Halloin, H.; Harris, M.; Isern, J.; Jean, P.; Knoedlseder, J.; Ubertini, P.; Vedrenne, G.; Weidenspointner, G.; Wunderer, C.

    2006-01-01

    The next generation of instrumentation for nuclear astrophysics will have to achieve an improvement in sensitivity by a factor of 10-100 over present technologies. With the focusing gamma-ray telescope MAX we take up this challenge and propose to combine the required sensitivity with high spectral and angular resolution, and the capability to measure the polarization of the photons. MAX is a space-borne crystal diffraction telescope, featuring a broad-band Laue lens optimized for the observation of compact sources in two wide energy bands of high astrophysical relevance. Gamma rays will be focused from the large collecting area of a crystal diffraction lens onto a very small detector volume. As a consequence, the signal to background ratio is greatly enhanced, leading to unprecedented sensitivities

  17. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    Energy Technology Data Exchange (ETDEWEB)

    La Cognata, M., E-mail: lacognata@lns.infn.it [Laboratori Nazionali del Sud - INFN, Catania (Italy); Kiss, G. G. [ATOMKI, Debrecen (Hungary); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A& M University, College Station, Texas (United States); Spitaleri, C. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Department of Physics and Astronomy, University of Catania, Catania (Italy); Trippella, O. [Sezione di Perugia - INFN, Perugia (Italy)

    2015-10-15

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization to direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.

  18. Experimental physics 4. Nuclear, particle and astrophysics. 5. ed.; Experimentalphysik 4. Kern-, Teilchen- und Astrophysik

    Energy Technology Data Exchange (ETDEWEB)

    Demtroeder, Wolfgang

    2017-09-01

    The following topics are dealt with: Structure of atomic nuclei, unstable nuclei and radioactivity, experimental techniques in nuclear and high-energy physics, nuclear forces and nuclear models, nuclear reactions, physics of elementary particles, applications of nuclear and high-energy physics, foundations of experimental astronomy and astrophysics, our solar system, birth, life, and death of stars, the development and present structure of the universe. (HSI)

  19. Proceedings of the 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    CERN Document Server

    Pons, J; Albertus, C

    2012-01-01

    This volume contains most of the links to the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ib\\'erico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included.

  20. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    Science.gov (United States)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  1. Some perspectives in nuclear astrophysics on non-thermal phenomena

    International Nuclear Information System (INIS)

    Tatischeff, V.

    2012-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author presents and comments his research activities on nuclear phenomena in stellar eruptions (solar eruptions, lithium nucleosynthesis in stellar eruptions), on particle acceleration in shock waves of stellar explosions (diffusive acceleration by shock wave, particle acceleration in symbiotic novae, particle acceleration in radio-detected supernovae), of research on low energy cosmic rays (galactic emission of nuclear gamma rays, non thermal soft X rays as new tracer of accelerated particles), and on the origin of short period radioactivities in the primitive solar system (extinguished radio-activities and formation of the solar system, origin of berylium-10 in the primitive solar system). The author concludes with some perspectives on non thermal phenomena in nuclear astrophysics, and on research and development for the future of medium-energy gamma astronomy [fr

  2. Impact of Precision Mass Measurements on Nuclear Physics and Astrophysics

    CERN Document Server

    Kreim, Susanne; Dilling, Jens; Litvinov, Yuri A

    2013-01-01

    Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of neutron and proton number, N and Z, respectively. The data obtained through mass measurements provide details of the nuclear interaction and thus apply to a variety of physics topics. Some of the most crucial questions to be addressed by mass spectrometry of unstable radionuclides are, on the one hand, nuclear forces and structure, describing phenomena such as the so-called neutron-halos or the evolution of magic numbers when moving towards the borders of nuclear existence. On the other hand, the understanding of the processes of element formation in the Universe poses a challenge and requires an accurate knowledge of nuclear astrophysics. Here, precision atomic mass values of a large number of exotic nuclei participating in nucleosynthesis processes are among the key input data in large-scale reaction network calculations.

  3. Theoretical nuclear structure and astrophysics. Progress report for 1996

    International Nuclear Information System (INIS)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-01-01

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops

  4. Consequences of fine structure of β-strength function in the nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Wene, C.O.

    1980-01-01

    The consequences of structural effects in the β-strength function Ssub(β) in different fields of nuclear physics and astrophysics are considered. The given structure is shown to affect essentially the lifetimes relative to β-decay, emission of delayed particles, delayed fission and, consequently, all the calculations of synthesis of heavy and superheavy elements in astrophysical and thermonuclear processes. A table of experimental procedures applied for studying the β-strength function in different reactions is given

  5. 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    Science.gov (United States)

    Perez-Garcia, M. Angeles; Pons, Jose; Albertus, C.

    2012-02-01

    ORGANIZING COMMITTEE Dr M Ángeles Pérez-García (Área Física Teórica-Universidad de Salamanca & IUFFYM) Dr J A Miralles (Universidad de Alicante) Dr J Pons (Universidad de Alicante) Dr C Albertus (Área Física Nuclear-Universidad de Salamanca & IUFFYM) Dr F Atrio (Área Física Teórica-Universidad de Salamanca & IUFFYM) PREFACE The second Iberian Nuclear Astrophysics meeting was held at the University of Salamanca, Spain on 22-23 September 2011. This volume contains most of the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ibérico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. It is indeed important to emphasize the need for a collaborative approach to the rest of the scientific communities so that we can reach possible new members in this interdisciplinary area and as outreach for the general public. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included. The main scientific topics included: Magnetic fields in compact stars Nuclear structure and in-medium effects in nuclear interaction Equation of state: from nuclear matter to quarks Importance of crust in the evolution of neutron stars Computational simulations of collapsing dense objects Observational phenomenology In particular, leading

  6. Phenomenological correlations in nuclear structure: An opportunity for nuclear astrophysics and a challenge to theory

    International Nuclear Information System (INIS)

    Casten, R.F.; Zamfir, N.V.

    1992-01-01

    Though it often appears daunting in its complexity, nuclear data frequently exhibits remarkable simplicities when viewed from the appropriate perspectives. This realization, which is becoming more and more apparent, is one of the fruits of the vast amount of nuclear data that has been accumulated over many years but, surprisingly, has never been completely digested. This emerging, unified, and simple macroscopic phenomenology, aided by microscopic underpinnings and physical arguments, appears in many guises and often simplifies semi-empirical estimates of structure far from stability in the critical realms where nuclear astrophysics takes place and where it is in need for improved nuclear input. The generality of simple phenomenological relationships begs both for a sound theoretical basis and for the advent of Radioactive Nuclear Beams so that the reliability of their extrapolations can be assessed and tested. These issues will be discussed, and illustrated with a number of specific examples

  7. Nuclear interactions in high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.; Guzik, T.G.

    1993-01-01

    The overall objective is to study the mechanisms and the energy dependence of heavy ion fragmentation by studying the reactions of heavy ion projectiles (e.g. 4 He, 16 O, 20 Ne, 28 Si, 56 Fe) in a variety of targets (H, He, C, Si, Cu, Pb) and at a number of beam energies exceeding 0.1 GeV/nucleon. The results have application to questions in high-energy nuclear astrophysics. Most of the discussion is on low-energy 16 O, 28 Si data analysis. The description includes analysis procedures and techniques, detector calibrations, data selections and normalizations. Cross section results for the analysis are also presented. 83 figs., 6 tabs., 73 refs

  8. Laboratory astrophysics. Model experiments of astrophysics with large-scale lasers

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    2012-01-01

    I would like to review the model experiment of astrophysics with high-power, large-scale lasers constructed mainly for laser nuclear fusion research. The four research directions of this new field named 'Laser Astrophysics' are described with four examples mainly promoted in our institute. The description is of magazine style so as to be easily understood by non-specialists. A new theory and its model experiment on the collisionless shock and particle acceleration observed in supernova remnants (SNRs) are explained in detail and its result and coming research direction are clarified. In addition, the vacuum breakdown experiment to be realized with the near future ultra-intense laser is also introduced. (author)

  9. Promising lines of research in the realms of laboratory nuclear astrophysics by means of powerful lasers

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.; Lobanov, A. V.; Matafonov, A. P. [Russian Space Agency, Pionerskaya, Central Research Institute for Machine Building (TsNIIMash) (Russian Federation); Bolshakov, V. V.; Savel’ev, A. B.; Mordvintsev, I. M.; Tsymbalov, I. N.; Shulyapov, S. A. [Moscow State University, International Laser Center (Russian Federation); Pikuz, S. A.; Skobelev, I. Yu.; Filippov, E. D.; Faenov, A. Ya. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Krainov, V. P. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-09-15

    Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.

  10. The path to improved reaction rates for astrophysics

    International Nuclear Information System (INIS)

    Rauscher, T.

    2011-01-01

    This review focuses on nuclear reactions in astrophysics and, more specifically, on reactions with light ions (nucleons and α particles) proceeding via the strong interaction. It is intended to present the basic definitions essential for studies in nuclear astrophysics, to point out the differences between nuclear reactions taking place in stars and in a terrestrial laboratory, and to illustrate some of the challenges to be faced in theoretical and experimental studies of those reactions. The discussion revolves around the relevant quantities for astrophysics, which are the astrophysical reaction rates. The sensitivity of the reaction rates to the uncertainties in the prediction of various nuclear properties is explored and some guidelines for experimentalists are also provided. (author)

  11. Nuclear astrophysics: a new era

    Energy Technology Data Exchange (ETDEWEB)

    Wiescher, Michael; Aprahamian, Ani [Department of Physics, University of Notre Dame (United States); Regan, Paddy [Department of Physics, University of Surrey (United Kingdom)

    2002-02-01

    The latest generation of radioactive-ion-beam facilities promises to shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. The most fundamental question in nature is where do we come from, or, put another way, what are we made of? The late Carl Sagan poetically said that we are all made of stardust, but the origin of the elements has fascinated scientists for thousands of years. Many of the greatest medieval and renaissance scientists dabbled in alchemy, trying to create the elements that make up the cosmos, but we had to wait until the early 20th century to recognize that elements are really defined by the number of protons in the nucleus. According to our current understanding, after the big bang most of the normal or baryonic material in the universe consisted of the lightest two elements, hydrogen and helium, with only trace amounts of lithium and beryllium. All the heavier elements that occur naturally on Earth were created from this original material via a series of nuclear reactions in the cores of stars or in stellar explosions. Over the last decade, ground-based telescopes and satellite-based Observatories have opened new windows on the stars across the electromagnetic spectrum, from infrared to gamma radiation. New technology now makes it possible to observe and analyse short-lived stellar explosions. Indeed, the distribution of elements in 'planetary nebula' and in the ejecta of supernovae and novae give a direct glimpse of individual nucleosynthesis processes. In the February issue of Physics World, Michael Wiescher, Paddy Regan and Ani Aprahamian describe how sate-of-the-art facilities are set to plug many of the gaps in our understanding of nuclear astrophysics. (U.K.)

  12. Recent progress in ab-initio studies of nuclear reactions of astrophysical interest with A ≤ 3

    Science.gov (United States)

    Marcucci, Laura E.

    2018-03-01

    We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the consequences for the solar neutrino fluxes of the recent determination for the astrophysical S-factor of the proton weak capture by proton, and on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis.

  13. The Array for Nuclear Astrophysics Studies with Exotic Nuclei

    Science.gov (United States)

    Linhardt, L. E.; Blackmon, J. C.; Matos, M.; Mondello, L. L.; Zganjar, E. F.; Johnson, E.; Rogachev, G.; Wiedenhover, I.

    2010-11-01

    The Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN) is a charged-particle detector array that is targeted primarily towards reaction studies with radioactive ion beams at FSU and the NSCL. ANASEN consists of 40 double-sided silicon-strip detectors backed with CsI scintillators and an innovative gas counter design that allows operation in a gas target/detector mode and experiments covering a broad range of center-of-mass energies simultaneously. Electronics based on ASIC components are being implemented to achieve a high channel count at low cost. Prototypes of all the detector components have been fabricated and are currently being tested. Performance of the individual components and plans for the first experiments that aim to improve our knowledge of the nuclear reactions important in stellar explosions will be reported.

  14. Astrophysics at nTOF facility

    International Nuclear Information System (INIS)

    Tagliente, G.; Colonna, N.; Maronne, S.; Terlizzi, R.; Abondanno, U.; Fujii, K.; Milazzo, P.M.; Moreau, C.; Belloni, F.; Aerts, G.; Berthoumieux, E.; Andriamonje, S.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M.C.; Gonzalez-Romero, E.; Andrzejewski, J.; Marganiec, J.; Assimakopoulos, P.; Karamanis, D.; Audouin, L.; Dillman, I.; Heil, M.; Kappeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wissak, K.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M.T.; Baumann, P.; David, S.; Kerveno, M.; Rudolf, G.; Lukic, S.; Becvar, F.; Krticka, M.; Bisterzo, S.; Ferrant, L.; Gallino, R.; Calvino, F.; Poch, A.; Pretel, C.; Calviani, M.; Gramegna, F.; Mastinu, P.; Capote, R.; Mengoni, A.; Capote, R.; Lozano, M.; Quesada, J.; Carrapico, C.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dominga-Pardo, C.; Tain, J.L.; Eleftheriadis, C.; Lamboudis, C.; Savvidis, I.; Stephan, C.; Tassan-Got, L.; Furman, W.; Haas, B.; Haight, R.; Reifarth, R.; Igashira, M.; Koehler, P.; Massimi, C.; Vannini, G.; Papadopoulos, C.; Pavlik, A.; Pavlopoulos, P.; Plomen, A.; Rullhusen, P.; Rauscher, T.; Rubbia, C.; Ventura, A.

    2009-01-01

    The neutron time of flight (n T OF) facility at CERN is a neutron spallation source, its white neutron energy spectrum ranges from thermal to several GeV, covering the full energy range of interest for nuclear astrophysics, in particular for measurements of the neutron capture cross-section required in s-process nucleosynthesis. This contribution gives an overview on the astrophysical program made at n T OF facility, the results and the implications will be considered.

  15. Astrophysics at RIA (ARIA) Working Group

    International Nuclear Information System (INIS)

    Smith, Michael S.; Schatz, Hendrik; Timmes, Frank X.; Wiescher, Michael; Greife, Uwe

    2006-01-01

    The Astrophysics at RIA (ARIA) Working Group has been established to develop and promote the nuclear astrophysics research anticipated at the Rare Isotope Accelerator (RIA). RIA is a proposed next-generation nuclear science facility in the U.S. that will enable significant progress in studies of core collapse supernovae, thermonuclear supernovae, X-ray bursts, novae, and other astrophysical sites. Many of the topics addressed by the Working Group are relevant for the RIKEN RI Beam Factory, the planned GSI-Fair facility, and other advanced radioactive beam facilities

  16. Trojin horse method for indirect measurement of astrophysic S factor

    International Nuclear Information System (INIS)

    Fu Yuanyong; Zhou Shuhua; Li Chengbo; Wen Qungang

    2014-01-01

    The nuclear reaction rates in the astrophysical environment are indispensable input parameters in different astrophysics theories, and play important roles in understanding the astrophysical nuclear synthesis and the evolution of the universe. However, at the astrophysical temperature, the nuclear reactions proceed at very low energies. Due to the Coulomb barrier the reaction cross sections are very small, so that the direct measurement is almost impossible. The Trojin horse theory provides a useful method to measure indirectly the low energy two body cross sections by measuring the suitable three body reactions. Some approximations are applied in the theory to get convenient formula. This paper introduces the Trojin horse theory and its application in astrophysics nuclear reactions. (authors)

  17. New Horizon in Nuclear Physics and Astrophysics Using Radioactive Nuclear Beams

    Science.gov (United States)

    Tanihata, Isao

    Beams of β- radioactive nuclei, having a lifetime as short as 1 ms have been used for studies of the nuclear structure and reaction relevant to nucleosynthesis in the universe. In nuclear-structure studies, decoupling of the proton and neutron distributions in nuclei has been discovered. The decoupling appeared as neutron halos and neutron skins on the surface of neutron-rich unstable nuclei. In astrophysics, reaction cross sections have been determined for many key reactions of nucleosynthesis involving short-lived nuclei in the initial and final states. One such important reaction, 13N+p → 14O +γ, has been studied using beams of unstable 13N nuclei. Such studies became possible after the invention of beams of radioactive nuclei in the mid-80's. Before that, the available ion beams were restricted to ions of stable nuclei for obvious reasons. In the next section the production method of radioactive beams is presented, then a few selected studies using radioactive beams are discussed in the following sections. In the last section, some useful properties of radioactive nuclei for other applications is shown.

  18. Direct Reactions for Nuclear Structure and Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine Louise [Univ. of Tennessee, Knoxville, TN (United States). Experimental Low-Energy Nuclear Physics Group

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  19. Direct reactions for nuclear structure and nuclear astrophysics

    International Nuclear Information System (INIS)

    Jones, Katherine Louise

    2014-01-01

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106 Sn at the NSCL, and on 131 Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  20. XVI International symposium on nuclear electronics and VI International school on automation and computing in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Churin, I.N.

    1995-01-01

    Reports and papers of the 16- International Symposium on nuclear electronics and the 6- International school on automation and computing in nuclear physics and astrophysics are presented. The latest achievements in the field of development of fact - response electronic circuits designed for detecting and spectrometric facilities are studied. The peculiar attention is paid to the systems for acquisition, processing and storage of experimental data. The modern equipment designed for data communication in the computer networks is studied

  1. Nuclear astrophysics

    International Nuclear Information System (INIS)

    Penionzhkevich, Yu. E.

    2010-01-01

    The International Year of Astronomy 2009 (IYA2009) was declared by the 62nd General Assembly of the United Nations and was also endorsed by UNESCO. Investigations in the realms of particle and nuclear physicsmake a large contribution in the development of our ideas of the properties of the Universe. The present article discusses some problems of the evolution of the Universe, nucleosyntheses, and cosmochronology from the point of view of nuclear and particle physics. Processes occurring in the Universe are compared with the mechanisms of the production and decay of nuclei, as well as with the mechanisms of their interaction at high energies. Examples that demonstrate the potential of nuclearphysics methods for studying cosmic objects and the properties of the Universe are given. The results that come from investigations into nuclear reactions induced by beams of radioactive nuclei and which make it possible to take a fresh look at the nucleosynthesis scenario in the range at light nuclei are presented.

  2. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Smith, M.S.

    1994-01-01

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, γ) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented

  3. The Texas-Edinburgh-Catania Silicon Array (TECSA): A detector for nuclear astrophysics and nuclear structure studies with rare isotope beams

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, B.T., E-mail: broeder@comp.tamu.ed [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); McCleskey, M.; Trache, L.; Alharbi, A.A.; Banu, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Cherubini, S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Davinson, T. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Goldberg, V.Z. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Gulino, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Pizzone, R.G. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Simmons, E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Sparta, R. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Spiridon, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Spitaleri, C. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, I95123 Catania (Italy); Wallace, J.P. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Tribble, R.E. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Woods, P.J. [University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2011-04-01

    We present the details of the construction and commissioning of the Texas-Edinburgh-Catania Silicon Array (TECSA). TECSA is composed of up to 16 Micron Semiconductor Ltd. type-YY1 silicon strip detectors and associated electronics, which is designed for use in studies of nuclear astrophysics and nuclear structure with rare isotope beams. TECSA was assembled at the Texas A and M University Cyclotron Institute and will be housed there for the next few years. The array was commissioned in a recent experiment where the d({sup 14}C,p){sup 15}C reaction at 11.7 MeV/u was measured in inverse kinematics. The results of the measurement and a discussion of the future use of this array are presented.

  4. The Texas-Edinburgh-Catania Silicon Array (TECSA): A detector for nuclear astrophysics and nuclear structure studies with rare isotope beams

    International Nuclear Information System (INIS)

    Roeder, B.T.; McCleskey, M.; Trache, L.; Alharbi, A.A.; Banu, A.; Cherubini, S.; Davinson, T.; Goldberg, V.Z.; Gulino, M.; Pizzone, R.G.; Simmons, E.; Sparta, R.; Spiridon, A.; Spitaleri, C.; Wallace, J.P.; Tribble, R.E.; Woods, P.J.

    2011-01-01

    We present the details of the construction and commissioning of the Texas-Edinburgh-Catania Silicon Array (TECSA). TECSA is composed of up to 16 Micron Semiconductor Ltd. type-YY1 silicon strip detectors and associated electronics, which is designed for use in studies of nuclear astrophysics and nuclear structure with rare isotope beams. TECSA was assembled at the Texas A and M University Cyclotron Institute and will be housed there for the next few years. The array was commissioned in a recent experiment where the d( 14 C,p) 15 C reaction at 11.7 MeV/u was measured in inverse kinematics. The results of the measurement and a discussion of the future use of this array are presented.

  5. The importance of CNO isotopes in astrophysics

    International Nuclear Information System (INIS)

    Audoze, J.

    1977-01-01

    The research into CNO isotopes in astrophysics includes many different subfields of astrophysics such as meteoretical studies, experimental and theoretical nuclear astrophysics, optical astronomy, radio astronomy, etc. The purpose of this paper is to give some overview of the topic and guideline among these different subfields. (G.T.H.)

  6. Nuclear interactions of high energy heavy ions and applications in astrophysics

    International Nuclear Information System (INIS)

    Wefel, J.P.

    1992-01-01

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, ''limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays

  7. International Conference on Particle Physics and Astrophysics

    CERN Document Server

    2015-01-01

    The International Conference on Particle Physics and Astrophysics (ICPPA-2015) will be held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Basic Research and Particle Physics of National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. Therefore we will bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. ICPPA-2015, aims to present the most recent results in astrophysics and collider physics and reports from the main experiments currently taking data. The working languages of the conference are English and Russian.

  8. sup 4 sup 4 Ti atom counting for nuclear astrophysics

    CERN Document Server

    Hui, S K; Berkovits, D; Boaretto, E; Ghelberg, S; Hass, M; Hershkowitz, A; Navon, E

    2000-01-01

    The nuclide sup 4 sup 4 Ti (T sub 1 sub / sub 2 =59.2 yr) has recently become an important asset to nuclear astrophysics through the measurement of its cosmic radioactivity, yielding significant information on fresh sup 4 sup 4 Ti nucleosynthesis in supernovae. We propose to use AMS to determine the production rate of sup 4 sup 4 Ti by the main channel believed to be responsible for sup 4 sup 4 Ti astrophysical production, namely sup 4 sup 0 Ca(alpha,gamma). A preliminary experiment conducted at the Koffler 14UD Pelletron accelerator demonstrates a sensitivity of 1x10 sup - sup 1 sup 4 for the sup 4 sup 4 Ti/Ti ratio. The AMS detection was performed using sup 4 sup 4 Ti sup - ions sputtered from a TiO sub 2 sample, reducing considerably the sup 4 sup 4 Ca isobaric interference. The present limit corresponds effectively to sup 4 sup 4 Ti production with resonance strength in the range 10-100 meV for a one-day sup 4 sup 0 Ca(alpha,gamma) activation. Several such resonances are known to be responsible for sup 4 ...

  9. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1986-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of both an equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model is the basis of the former. We are refining it to include both curvature corrections to the surface energy nuclear force parameters which are in better agreement with recently determined experimental quantities. Our study of the equation of state has the added bonus that our results can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes a fast, but accurate, approximation to the complete LLPR equation of state. We model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures. Complementary studies include modelling both mass accretion in the nuclei of galaxies and investigating both galaxy clustering and the large scale structure of the universe. These studies are intended to shed light on the early history of the universe, in which both nuclear and elementary particle physics play a crucial role

  10. Nuclear physics and astrophysics. Progress report, July 15, 1991--June 15, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.; Olinto, A.V.

    1992-09-01

    We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

  11. Creating stars, supernovae, and the big bang in the laboratory: Nuclear Astrophysics with the National Ignition Facility

    International Nuclear Information System (INIS)

    Mathews, G.J.

    1994-02-01

    This talk has been prepared for the Symposium on Novel Approaches to Nuclear Astrophysics hosted by the ACS Division of Nuclear Chemistry and Technology for the San Diego ACS meeting. This talk indeed describes a truly novel approach. It discusses a proposal for the construction of the National Ignition Facility which could provide the most powerful concentration of laser energy yet attempted. The energy from such a facility could be concentrated in such a way as to reproduce, for the first time in a terrestrial laboratory, an environment which nearly duplicates that which occurs within stars and during the first few moments of cosmic creation during the big bang. These miniature versions of cosmic explosions may allow us to understand better the tumultuous astrophysical environments which have profoundly influenced the origin and evolution of the universe

  12. Proceedings of the topical conference on nuclear physics, high energy physics and astrophysics (NPHEAP-2010)

    International Nuclear Information System (INIS)

    Vo Van Thuan; Tran Duc Thiep; Le Hong Khiem

    2011-01-01

    There were roughly 80 scientists gathering for the NPHEAP-2010 and there 61 oral talks and posters have been presented. The audience has been introduced to the status of long term nuclear power program of Vietnam up to 2030. One of the highlights for near future activity of Vietnamese nuclear sector should be the manpower training and education for this huge master plan. Most of invited and contributed papers have devoted to both basic nuclear physics at world radioactive beams and applied nuclear instrumentation. In addition to some traditional astronomical papers, there were more contributions on advanced cosmic ray physics and related nuclear astrophysics. A few of papers on high energy and particle physics jointly showed a high interest in flavor physics at LHC, KEK and J-PARC. (NHA)

  13. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  14. Trojan Horse Method: recent applications in nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Pizzone, R.G.; Romano, S.; Sergi, M.L.; Tumino, A.

    2010-01-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  15. Trojan Horse Method: recent applications in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C.; Cherubini, S.; La Cognata, M.; Lamia, L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Mukhamedzhanov, A. [Cyclotron Institute, Texas A and M University, College Station, Texas (United States); Pizzone, R.G.; Romano, S.; Sergi, M.L. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Chimiche e Fisiche per l' Ingegneria, Universita di Catania (Italy); Tumino, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); Universita degli Studi di Enna ' Kore' , Enna (Italy)

    2010-03-01

    The Trojan Horse Method (THM) is a powerful indirect technique to extract the bare nucleus cross section (or equivalently the bare nucleus astrophysical factor) for astrophysically relevant reactions. The theory has been discussed in many works in relation to the different types of reactions studied. Here we present the methodology to select the quasi free mechanism in order to extract this important parameter.

  16. The Trojan horse method in nuclear astrophysics: recent results

    Czech Academy of Sciences Publication Activity Database

    Romano, S.; Spitareli, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Sergi, M. L.; Tudisco, S.; Tumino, A.; Tribble, R. E.; Goldberg, V.Z.; Mukhamedzhanov, A. M.; Tabacaru, G.; Trache, L.; Kroha, Václav; Burjan, Václav; Mrázek, Jaromír; Somorjai, E.; Elekes, Z.; Fülöp, Z.; Gyurky, G.; Kiss, G.

    2008-01-01

    Roč. 35, č. 1 (2008), 014008-1-014008-7 ISSN 0954-3899 R&D Projects: GA ČR GA202/05/0302 Institutional research plan: CEZ:AV0Z10480505 Keywords : cross-sections Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.270, year: 2008

  17. A new experimental setup established for low-energy nuclear astrophysics studies

    International Nuclear Information System (INIS)

    Chen, S.Z.; Xu, S.W.; He, J.J.; Hu, J.; Rolfs, C.E.; Zhang, N.T.; Ma, S.B.; Zhang, L.Y.; Hou, S.Q.; Yu, X.Q.; Ma, X.W.

    2014-01-01

    An experimental setup for low-energy nuclear astrophysics studies has been recently established at the Institute of Modern Physics (IMP), Lanzhou, China. The driver machine is a 320 kV high voltage platform, which can provide intense currents of proton, alpha and many heavy ion beams. The energy of a proton beam was calibrated against the nominal platform high voltage by using a well-known resonant reaction of 11 B(p,γ) 12 C and a non-resonant reaction 12 C(p,γ) 13 N. The accuracy was achieved to be better than ±0.5 keV. The detection system consists of a Clover-type high-purity germanium detector, a silicon detector and a plastic scintillator. The performance of the detectors was tested by several experiments. The astrophysical S-factors of the 7 Li(p,γ) 8 Be and 7 Li(p,α) 3 He reactions were measured with this new setup, and our data agree with the values found in the literature. In addition, the upgrade of our driver machine and experimental setup has been discussed. As a future goal, a fascinating National Deep Underground Laboratory in China, the deepest underground laboratory all over the world, is prospected

  18. Resolving astrophysical uncertainties in dark matter direct detection

    CERN Document Server

    Frandsen, Mads T; McCabe, Christopher; Sarkar, Subir; Schmidt-Hoberg, Kai

    2012-01-01

    We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without implicit assumptions concerning the dark matter halo. We extend this framework to include the annual modulation signal, as well as multiple target elements. Recent results from DAMA, CoGeNT and CRESST-II can be brought into agreement if the velocity distribution is very anisotropic and thus allows a large modulation fraction. However constraints from CDMS and XENON cannot be evaded by appealing to such astrophysical uncertainties alone.

  19. Nuclear astrophysics with DRAGON at ISAC: the 21Na(p, γ)22Mg reaction

    International Nuclear Information System (INIS)

    D'Auria, J.M.

    2003-01-01

    The DRAGON facility at the new intense radioactive beams facility, ISAC, is now operational. It was built to perform studies of radiative alpha and proton capture reactions involving radioactive reactants, and of interest to nuclear astrophysics. The rate of the 21 Na(p, γ) 22 Mg reaction has been measured using inverse kinematics. Resonance strengths have been measured for states of importance for novae explosions. This report will summarize aspects of this study and its impact. (orig.)

  20. Progress of the Felsenkeller Shallow-Underground Accelerator for Nuclear Astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cavanna, F.; Cowan, T. E.; Grieger, M.; Hensel, T.; Junghans, A. R.; Ludwig, F.; Müller, S. E.; Rimarzig, B.; Reinicke, S.; Schulz, S.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M. P.; Wagner, A.; Wagner, L.; Zuber, K.

    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 µA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.

  1. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D. (Nuclear Engineering Division); (Univ. of Massachusetts); (Univ. of Surrey)

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  2. Strategic field No.5 'the origin of matter and the universe'. Toward interdisciplinary researches in particle, nuclear and astrophysics

    International Nuclear Information System (INIS)

    Aoki, Shinya

    2011-01-01

    Four main research subjects in the strategic field No. 5 'The origin of matter and the universe', planned to be investigated on 'Kei' super computer, are explained in detail, by focusing on interdisciplinary aspect of researches among particle, nuclear and astrophysics. (author)

  3. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  4. Investigations of astrophysically interesting nuclear reactions by the use of gas target techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J W [Inst. fuer Strahlenphysik, Univ. Stuttgart, Stuttgart (Germany)

    1998-06-01

    A brief review of the common properties of windowless and recirculating gas targets is presented. As example the Stuttgart gas target facility Rhinoceros in the extended and in the supersonic jet mode with its properties and techniques is explained, also with respect to gas purification techniques. Furthermore several typical experiments from the field of nuclear astrophysics with characteristic results are described (D({alpha},{gamma}){sup 6}Li, {sup 15}N({alpha},{gamma}){sup 19}F, {sup 16}O(p,{gamma}){sup 17}F, {sup 16}O({alpha},{gamma}){sup 20}Ne, {sup 20}Ne({alpha},{gamma}){sup 24}Mg, {sup 21}Ne({alpha},n){sup 24}Mg, {sup 18}O({alpha},n){sup 21}Ne, {sup 17}O({alpha},n){sup 20}Ne). In several cases the experimental sensitivity could be raised by up to a factor of 10{sup 6}. (orig.)

  5. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    Energy Technology Data Exchange (ETDEWEB)

    Ilgner, Ch. [Nuclear Astrophysics group, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2015-07-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the

  6. Coulomb disintegration as an information source for relevant processes in nuclear astrophysics

    International Nuclear Information System (INIS)

    Bertulani, C.A.

    1989-01-01

    The possibility of obtaining the photodisintegration cross section using the equivalent-photon number method first deduced and employed for the Coulomb disintegration processes has been suggested. This is very interesting because there exist radioactive capture processes, related to the photodisintegration through time reversal, that are relevant in astrophysics. In this paper, the recent results of the Karlsruhe and the Texas A and M groups on the Coulomb disintegration of 6 Li and 7 Li and the problems of the method are discussed. The ideas developed in a previous paper (Nucl. Phys. A458 (1986) 188) are confirmed qualitatively. To understand the process quantitatively it is necessary to use a quantum treatment that would imply the introduction of Coulomb excitation effects of higher orders. The Coulomb disintegration of exotic secondary beams is also studied. It is particularly interesting the question about what kind of nuclear structure information, as binding energies of momentum distributions, may be obtained. (Author) [es

  7. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    International Nuclear Information System (INIS)

    Chipps, K.A.; Greife, U.; Bardayan, D.W.; Blackmon, J.C.; Kontos, A.; Linhardt, L.E.; Matos, M.; Pain, S.D.; Pittman, S.T.; Sachs, A.; Schatz, H.; Schmitt, K.T.; Smith, M.S.; Thompson, P.

    2014-01-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10 18 atoms/cm 2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far

  8. Nuclear astrophysics at ISAC with DRAGON: Initial studies

    International Nuclear Information System (INIS)

    Olin, Art; Bishop, Shawn; D'Auria, John M.; Lamey, Michael; Liu, Wenjie; Wrede, Chris; Buchmann, Lothar; Chen, Alan; Hunter, Don; Laird, Alison M.; Ottewell, Dave; Rogers, Joel; Chatterjee, Mohan L.; Engel, Sabine; Strieder, Frank; Gigliotti, Dario; Hussein, Ahmed; Greife, Uwe; Jewett, Cybele; Hutcheon, Dave

    2002-01-01

    The new DRAGON recoil separator facility, designed and built to measure directly the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now in operation at the TRIUMF-ISAC radioactive beams facility in Vancouver, Canada. Experiments have been conducted for the first time on the 21Na(p,γ)22Mg reaction. The evolution of nova explosions, and particularly their 22Na abundance, depends sensitively on this reaction rate. The radioactive 21Na beam with an intensity of up to 5 x 108 /s was directed onto a windowless hydrogen gas target (3.8 x 1018 H atoms/cm2). Prompt reaction gamma rays were detected using a BGO array and separated reaction products detected using a silicon strip detector at the end of the 20.8 m recoil mass separator. Yield measurements recording simultaneously singles and coincident signals were performed by scanning in energy over the known resonance reported previously in 22Mg at Ecm = 212 keV, and in addition, over a strong resonance observed at Ecm ≅822 keV. Known resonances in the 21Ne(p,γ)22Na, 20Ne(p,γ)21Na, and 24Mg(p,γ)25Al reactions have been used to calibrate the DRAGON. Studies are in progress to further define the performance of the DRAGON facility. Status of the data analysis and results from system performance studies will be presented along with a brief description of the new ISAC and DRAGON facilities

  9. S-factor for radiative capture reactions for light nuclei at astrophysical energies

    Science.gov (United States)

    Ghasemi, Reza; Sadeghi, Hossein

    2018-06-01

    The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A theoretical methods.

  10. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Jiang, C. L.; Lai, J.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Giardina, G.; Eidelman, S.; Venanzoni, G.; Battaglieri, M.; Mandaglio, G.

    2015-01-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work

  11. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    Science.gov (United States)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-06-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  12. Radioactive targets for nuclear astrophysics research at LANSCE

    International Nuclear Information System (INIS)

    Koehler, P.E.; O'Brien, H.A.; Gursky, J.C.

    1990-01-01

    During the past few years we have made measurements of (n,p) and (n,α) cross sections on several radioactive nuclei of importance to nuclear astrophysics. The measurements were made at the Manuel Lujan, Jr., Neutron Scattering Center (LANSCE) from thermal neutron energy to approximately 100 keV. Successful measurements have been completed on the radioisotopes 7 Be, 22 Na and 36 Cl while preliminary data have been taken on targets of 54 Mn and 55 Fe. Similar measurements have also been made on the stable isotopes 14 N, 17 O and 35 Cl. We are currently assembling a 4π barium fluoride (BaF 2 ) detector which will allow us to expand our program to (n,γ) measurements. The (n,γ) (and in some cases future (n,p)) measurements will require targets with higher specific activity and greater chemical purity than we have so far been able to use. We discuss the fabrication techniques used for the samples produced so far, the requirements the future (n,γ) targets must meet and our current plans for producing them, and the physics motivations for the measurements

  13. First results of Trojan horse method using radioactive ion beams: 18F(p,α) at astrophysical energies

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Puglia, S.; Rapisarda, G.; Romano, S.; Gulino, M.; La Cognata, M.; Lamia, L.; Kubono, S.; Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Binh, D.; Bishop, S.; Coc, A.; De Séréville, N.; Hammache, F.

    2014-01-01

    The abundance of 18 F in Nova explosions is considered to be an important piece of information for the understanding of this astrophysical phenomenon. It is then necessary to study the nuclear processess that both produce and destroy this isotope in Novae. Among these latter reactions, the 18 F(p,α) 15 O is one of the most important 18 F destruction channels. Here we report on an experiment performed using the CRIB apparatus of the Center for Nuclear Study of the University of Tokyo. This was the first experiment that used the Trojan Horse method applied to a Radioactive Ion Beam induced reaction

  14. Indirect techniques in nuclear astrophysics. Asymptotic normalization coefficient and trojan horse

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Gagliardi, C.A.; Pirlepesov, F.; Trache, L.; Tribble, R.E.; Blokhintsev, L.D.; Brown, B.A.; Nunes, F.M.; Burjan, V.; Kroha, V.; Cherubini, S.; Pizzone, R.G.; Romano, S.; Spitaleri, C.; Tumino, A.; Irgaziev, B.F.; Tang, X.D.

    2006-01-01

    Owing to the presence of the Coulomb barrier at astrophysically relevant kinetic energies it is very difficult, or sometimes impossible, to measure astrophysical reaction rates in the laboratory. That is why different indirect techniques are being used along with direct measurements. Here we address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique for calculation of the astrophysical processes in the presence of subthreshold bound states, in particular, two different mechanisms are discussed: direct capture to the subthreshold state and capture to the low-lying bound states through the subthreshold state, which plays the role of the subthreshold resonance. The ANC technique can also be used to determine the interference sign of the resonant and nonresonant (direct) terms of the reaction amplitude. The TH method is unique indirect technique allowing one to measure astrophysical rearrangement reactions down to astrophysically relevant energies. We explain why there is no Coulomb barrier in the sub-process amplitudes extracted from the TH reaction. The expressions for the TH amplitude for direct and resonant cases are presented. (orig.)

  15. The History and Impact of the CNO Cycles in Nuclear Astrophysics

    Science.gov (United States)

    Wiescher, Michael

    2018-03-01

    The carbon cycle, or Bethe-Weizsäcker cycle, plays an important role in astrophysics as one of the most important energy sources for quiescent and explosive hydrogen burning in stars. This paper presents the intellectual and historical background of the idea of the correlation between stellar energy production and the synthesis of the chemical elements in stars on the example of this cycle. In particular, it addresses the contributions of Carl Friedrich von Weizsäcker and Hans Bethe, who provided the first predictions of the carbon cycle. Further, the experimental verification of the predicted process as it developed over the following decades is discussed, as well as the extension of the initial carbon cycle to the carbon-nitrogen-oxygen (CNO) multi-cycles and the hot CNO cycles. This development emerged from the detailed experimental studies of the associated nuclear reactions over more than seven decades. Finally, the impact of the experimental and theoretical results on our present understanding of hydrogen burning in different stellar environments is presented, as well as the impact on our understanding of the chemical evolution of our universe.

  16. The Trojan horse method in nuclear astrophysics

    International Nuclear Information System (INIS)

    Aliotta, M.; Rolfs, C.; Lattuada, M.; Pellegriti, M.G.; Pizzone, R.G.; Spitaleri, C.; Miljanic, Dj.; Typel, S.; Wolter, H.H.

    2001-01-01

    Because of the Coulomb barrier, reaction cross sections in astrophysics cannot be accessed directly at the relevant Gamow energies, unless very favourable conditions are met (e.g. LUNA--underground experiments). Theoretical extrapolations of available data are then needed to derive the astrophysical S(0)-factor. Various indirect processes have been used in order to obtain additional information on the parameters entering these extrapolations. The Trojan Horse Method is an indirect method which might help to bypass some of the problems typically encountered in direct measurements, namely the presence of the Coulomb barrier and the effect of the electron screening. However, a comparison with direct data in an appropriate energy region (e.g. around the Coulomb barrier) is crucial before extending the method to the relevant Gamow energy. Additionally, experimental and theoretical tests are needed to validate the assumptions underlying the method. The application of the Trojan Horse Method to some cases of interest is discussed

  17. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  18. The Trojan Horse Method in nuclear astrophysics

    International Nuclear Information System (INIS)

    Spitaleri, C.; Cherubini, S.; Del Zoppo, A.; Di Pietrob, A.; Figuerab, P.; Gulino, M.; Lattuadab, M.; Miljanic, Dstroke; Musumarra, A.; Pellegriti, M.G.; Pizzone, R.G.; Rolfs, C.; Romano, S.; Tudisco, S.; Tumino, A.

    2003-01-01

    The basic features of the Trojan Horse Method are discussed together with a review of recent applications, aimed to extract the bare astrophysical S(E)-factor for several two-body processes. In this framework information on electron screening potential U e was obtained from the comparison with direct experiments

  19. Indirect Techniques in Nuclear Astrophysics. Asymptotic Normalization Coefficient and Trojan Horse

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Blokhintsev, L.D.; Brown, S.

    2007-01-01

    We address two important indirect techniques, the asymptotic normalization coefficient (ANC) and the Trojan Horse (TH) methods. We discuss the application of the ANC technique to determine the astrophysical factor for the 13 C(α, n) 16 O reaction which is one of the neutron generators for the s processes in AGB stars. The TH method is a unique indirect technique allowing one to measure astrophysical S factors for rearrangement reactions down to astrophysically relevant energies. We derive equations connecting the cross sections for the binary direct and resonant reactions determined from the indirect TH reactions to direct cross sections measurements

  20. Semi empirical model for astrophysical nuclear fusion reactions of 1≤Z≤15

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.; Sridhar, K.N.

    2017-01-01

    The fusion reaction is one of the most important reactions in the stellar evolution. Due to the complicated reaction mechanism of fusion, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects. Low z elements are formed through many fusion reactions such as "4He+"1"2C→"1"6O, "1"2C+"1"2C→"2"0Ne+"4He, "1"2C+"1"2C→"2"3Na, "1"2C+"1"2C→"2"3Mg, "1"6O+"1"6O→"2"8Si+"4He, "1"2C+"1H→"1"3N and "1"3C+"4He→"1"6O. A detail study is required on Coulomb and nuclear interaction in formation of low Z elements in stars through fusion reactions. For astrophysics, the important energy range extends from 1 MeV to 3 MeV in the center of mass frame, which is only partially covered by experiments. In the present work, we have studied the basic fusion parameters such as barrier heights (V_B), positions (R_B), curvature of the inverted parabola (ħω_1) for fusion barrier, cross section and compound nucleus formation probability (P_C_N) and fusion process in the low Z element (1≤Z≤15) formation process. For each isotope, we have studied all possible projectile-target combinations. We have also studied the astrophysical S(E) factor for these reactions. Based on this study, we have formulated the semi empirical relations for barrier heights (V_B), positions (R_B), curvature of the inverted parabola and hence for the fusion cross section and astrophysical S(E) factor. The values produced by the present model compared with the experiments and data available in the literature. (author)

  1. Exotic nuclei and astrophysics

    Directory of Open Access Journals (Sweden)

    Penionzhkevich Yu.

    2012-12-01

    Full Text Available In recent years, nuclear physics investigations of the laws of the microscopic world contributed significantly to extension of our knowledge of phenomena occurring in the macroscopic world (Universe and made a formidable contribution to the development of astrophysical and cosmological theories. First of all, this concerns the expanding universe model, the evolution of stars, and the abundances of elements, as well as the properties of various stars and cosmic objects, including “cold” and neutron stars, black holes, and pulsars. Without claiming to give a full account of all cosmological problems, we will dwell upon those of them that, in my opinion, have much in common with nuclear-matter properties manifesting themselves in nuclear interactions.

  2. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  3. Nuclear Astrophysics at ELI-NP: the ELISSA prototype tested at Laboratori Nazionali del Sud

    Science.gov (United States)

    Guardo, Giovanni Luca; Anzalone, Antonello; Balabanski, Dimiter; Chesnevskaya, Svetlana; Crucillá, Walter; Filipescu, Dan; Gulino, Marisa; La Cognata, Marco; Lattuada, Dario; Matei, Catalin; Pizzone, Rosario Gianluca; Rapisarda, Giuseppe; Romano, Stefano; Spitaleri, Claudio; Taffara, Alessandra; Tumino, Aurora; Xu, Yi

    2018-01-01

    The Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility, under construction in Magurele near Bucharest in Romania, will provide high-intensity and high-resolution gamma ray beams that can be used to address hotly debated problems in nuclear astrophysics, such as the accurate measurements of the cross sections of the 24Mg(γ,α)20Ne reaction, that is fundamental to determine the effective rate of 28Si destruction right before the core collapse and the subsequent supernova explosion. For this purpose, a silicon strip detector array (named ELISSA, acronym for Extreme Light Infrastructure Silicon Strip Array) will be realized in a common effort by ELI-NP and Laboratori Nazionali del Sud (INFN-LNS), in order to measure excitation functions and angular distributions over a wide energy and angular range. A prototype of ELISSA was built and tested at INFN-LNS in Catania (Italy) with the support of ELI-NP. In this occasion, we have carried out experiments with alpha sources and with a 11 MeV 7Li beam. Thanks to our approach, the first results of those tests show up a very good energy resolution (better than 1%) and very good position resolution, of the order of 1 mm. Moreover, a threshold of 150 keV can be easily achieved with no cooling.

  4. The 2nd International Conference on Particle Physics and Astrophysics

    CERN Document Server

    Soldatov, Evgeny; ICPPA 2016

    2016-01-01

    The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016) will be held in Moscow, Russia, (from the 10th to 14th of October). The conference is organized by the National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and to develop new ideas in fundamental research. Therefore we will bring together experts and young scientists working in experimental and theoretical aspects of nuclear physics, particle physics (including astroparticle physics), and cosmology. ICPPA-2016 aims to present the most recent results in astrophysics and collider physics from the main experiments actively taking data as well as any upgrades for the methods of experimental particle physics. Furthermore, one special workshop will be held within the framework of this conference: «SiPM development and application». The working language of the conference is English

  5. First results of Trojan horse method using radioactive ion beams: {sup 18}F(p,α) at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, S.; Spitaleri, C.; Puglia, S.; Rapisarda, G.; Romano, S. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); Gulino, M. [Università KORE, Enna, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy); La Cognata, M. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Lamia, L. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Kubono, S.; Wakabayashi, Y. [Center for Nuclear Study, University of Tokyo, Tokyo, Japan and present address RIKEN Nishina Center, Wako, Saitama (Japan); Yamaguchi, H.; Hayakawa, S.; Kurihara, Y. [Center for Nuclear Study, University of Tokyo, Tokyo (Japan); Binh, D. [Center for Nuclear Study, University of Tokyo, Tokyo, Japan and present address Institute of Physics and Electronics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Bishop, S. [RIKEN Nishina Center, Wako, Saitama, Japan and present address Physik Department E12, Technische Universität München, Garching (Germany); Coc, A. [Centre de Spectrométrie Nucléaire et de Spectrométrie de masse, IN2P3, Orsay (France); De Séréville, N.; Hammache, F. [Institut de Physique Nucléaire, IN2P3, Orsay (France)

    2014-05-02

    The abundance of {sup 18}F in Nova explosions is considered to be an important piece of information for the understanding of this astrophysical phenomenon. It is then necessary to study the nuclear processess that both produce and destroy this isotope in Novae. Among these latter reactions, the {sup 18}F(p,α){sup 15}O is one of the most important {sup 18}F destruction channels. Here we report on an experiment performed using the CRIB apparatus of the Center for Nuclear Study of the University of Tokyo. This was the first experiment that used the Trojan Horse method applied to a Radioactive Ion Beam induced reaction.

  6. Research in nuclear astrophysics: stellar collapse and supernovae. Progress report

    International Nuclear Information System (INIS)

    Burrows, A.; Lattimer, J.M.; Yahil, A.

    1984-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe

  7. Charged-particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, Cornelia; Angulo, C.; Arnould, M.

    2000-01-01

    The rapidly growing wealth of nuclear data becomes less and less easily accessible to the astrophysics community. Mastering this volume of information and making it available in an accurate and usable form for incorporation into stellar evolution or nucleosynthesis models become urgent goals of prime necessity. we report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal motivation for the setting-up of the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged-particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. When cross section data are not available in the whole needed range of energies, the theoretical predictions obtained in the framework of the Hauser-Feshbach model is used. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. Reverse reaction rates and analytical approximations of the adopted rates are also provided. (authors)

  8. Charged-particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, Cornelia

    1999-01-01

    The rapidly growing wealth of nuclear data becomes less and less easily accessible to the astrophysics community. Mastering this volume of information and making it available in an accurate and usable form for incorporation into stellar evolution or nucleosynthesis models become urgent goals of prime necessity. We report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal motivation for the setting-up of the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged -particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. When cross section data are not available in the whole needed range of energies the theoretical predictions obtained in the framework of the Hauser-Feshbach model are used. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. Reverse reaction rates and analytical approximations of the adopted rates are also provided. (author)

  9. The impact of recent advances in laboratory astrophysics on our understanding of the cosmos

    International Nuclear Information System (INIS)

    Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G

    2012-01-01

    An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena—the radiation and particle spectra we observe—have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.

  10. Universality and the astrophysical sites for the r-process

    International Nuclear Information System (INIS)

    Otsuki, Kaori; Mathews, Grant J.; Wilson, James; Kajino, Toshitaka; Aoki, Wako; Honda, Satoshi

    2003-01-01

    Several observations of r-process elements in metal-deficient halo stars have been reported which show a Z>56 formed abundance distribution pattern similar to the Solar-system r-process distribution. It was believed that r-process elements for Z>56 in the same ratio and their astrophysical origin is unique because of this. However, quite recently, several controversial observational results have been reported. We calculated nucleosynthesis in various environments using a dynamical code. We find it is possible to reproduce the observed universal abundance distribution for stable Z>56 elements in various environments. Our results do not support a unique astrophysical site for Z>56 elements. These results significantly affect nuclear chronology using actinide elements. We also introduce a recent r-process nucleosynthesis calculation based on a supernovae simulation. Our tentative results indicate over-production of lighter elements and a shortage of actinide elements. (author)

  11. Studying astrophysical reactions with low-energy RI beams at CRIB

    Directory of Open Access Journals (Sweden)

    Yamaguchi H.

    2016-01-01

    Full Text Available Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the radioactive-isotope (RI beams at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study (CNS, the University of Tokyo. A typical measurement performed at CRIB is the elastic resonant scattering with the inverse kinematics. One recent experiment was on the α resonant scattering with 7Li and 7Be beams. This study is related to the astrophysical 7Li/7Be(α,γ reactions, important at hot p-p chain and νp-process in supernovae. There have also been measurements based on other experimental methods. The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α15O reaction at astrophysical energies via the three body reaction 2H(18F, α15On. The 18F(p, α 15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.

  12. Nuclear astrophysics deep underground the case of the 15N(p,γ)16O reaction at LUNA

    CERN Document Server

    Mazzocchi, Chiara

    2010-01-01

    Measuring nuclear reactions of astrophysical interest at the relevant energies is not always possible on the Earth’s surface because of the cosmic-ray background that dominates the spectra. The LUNA collaboration exploits the lowbackground enviroment of Gran Sasso National Laboratory to study these reactions at or close to the Gamow peak. The latest experimental efforts included the measurement of the 15N(p,γ)16O at beam energies between 77 and 350 keV. The status of these measurements is summarised in this contribution.

  13. Astrophysical Hydrodynamics An Introduction

    CERN Document Server

    Shore, Steven N

    2007-01-01

    This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of ""Tapestry of Modern Astrophysics"" -- has been updated and revised to reflect the newest research results. Suitable for AS0000 and AS0200 courses, as well as advanced astrophysics and astronomy lectures, this is an indispensable theoretical backup for studies on celestial body formation and astrophysics. Includes exercises with solutions.

  14. Minicourses in Astrophysics, Modular Approach, Vol. II.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  15. Resolving astrophysical uncertainties in dark matter direct detection

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Kahlhoefer, Felix; McCabe, Christopher

    2012-01-01

    We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without...... implicit assumptions concerning the dark matter halo. We extend this framework to include the annual modulation signal, as well as multiple target elements. Recent results from DAMA, CoGeNT and CRESST-II can be brought into agreement if the velocity distribution is very anisotropic and thus allows a large...

  16. Calculation of the nuclear vertex constant for the virtual decay 6LI→α + d in the three- body model and its astrophysical application

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Igamov, S.B.; Nishonov, MM; Yarmukhamedov, R; Kamimura, M.

    2003-01-01

    The d(α, γ) 6 Li reaction is one of the sources of 6 Li production in the Big-Bang nuclear synthesis. At present extremely large uncertainties exist on this prediction mainly due to the absence of reliable directly measured cross section (or astrophysical S-factor, S(E)) at astrophysical relevant energies E, including E=0. As far theoretical calculation of the S(E) that have rather large spread. On the other hand, the d(α, γ) 6 Li reaction is predominantly of peripheral character at extremely low energies. Therefore the calculated S(E) at extremely low energies is mainly determined by the nuclear vertex constant (NVC) (or respective asymptotic normalization constant (ANC)) for the virtual decay 6 Li→α + d. Taking into account this circumstance we develop a method of calculation of the NVC for the virtual decay 6 Li→α + d for the subsequent application of the calculated one to the direct radiative capture d(α, γ) 6 Li cross - section (or astrophysical S-factor) calculation at extremely low energies E, including E=0. The developed method is based on the three-body Faddeev approach which is applied for the α-d scattering by using different forms of the NN- and αN-potentials. As a result the values of NVC and respective ANC for 6 Li→α + d virtual decay are obtained using two forms both for NN- and for αN-potential. They are the separable potentials with Yamaguchi type form factor and Paris potential with PEST 16 form factor for the NN- potential and Yamaguchi type form factor and Sack-Biedenharn-Breit potential for the αN- potential. A noticeable sensitivity to used forms of the NN- and αN- potential occurs both for the calculated NVC (or ANC) and astrophysical S- factor S(E) of the direct radiative capture d(α, γ) 6 Li reaction at extremely low energies E (≤100 keV), including the value E=0. The calculated S(E) have been obtained using the information about the NVC values. The obtained values of NVC and S(E) are compared with those of obtained

  17. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    Energy Technology Data Exchange (ETDEWEB)

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E. [Texas A and M University, College Station, TX 77845 (United States); Saastamoinen, A.; Jokinen, A.; Aysto, J. [University of Jyvaskyla, Jyvaskyla (Finland); Davinson, T.; Woods, P. J. [University of Edinburgh, Edinburgh (United Kingdom); Pollacco, E.; Kebbiri, M. [CEA/IRFU Saclay (France); Pascovici, G. [IKP, Universitaet zu Koeln (Germany)

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  18. Nuclear Weak Rates and Detailed Balance in Stellar Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Misch, G. Wendell, E-mail: wendell@sjtu.edu, E-mail: wendell.misch@gmail.com [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2017-07-20

    Detailed balance is often invoked in discussions of nuclear weak transitions in astrophysical environments. Satisfaction of detailed balance is rightly touted as a virtue of some methods of computing nuclear transition strengths, but I argue that it need not necessarily be strictly obeyed in astrophysical environments, especially when the environment is far from weak equilibrium. I present the results of shell model calculations of nuclear weak strengths in both charged-current and neutral-current channels at astrophysical temperatures, finding some violation of detailed balance. I show that a slight modification of the technique to strictly obey detailed balance has little effect on the reaction rates associated with these strengths under most conditions, though at high temperature the modified technique in fact misses some important strength. I comment on the relationship between detailed balance and weak equilibrium in astrophysical conditions.

  19. The Trojan Horse method as an indirect approach for nuclear astrophysics studies

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A; Spitaleri, C; Cherubini, S; Cognata, M La; Lamia, L; Pizzone, R G; Puglia, S M R; Rapisarda, G G; Romano, S; Sergi, M L, E-mail: tumino@lns.infn.i [Laboratori Nazionali del Sud - INFN, Catania (Italy)

    2010-01-01

    The Trojan Horse method (THM) is a powerful indirect technique that provides a successful alternative path to determine the bare nucleus astrophysical S(E) factor for rearrangement reactions down to astrophysical energies. This is done by measuring the cross section for a suitable three body process in the quasi-free kinematics regime. Prescriptions and basic features will be presented together with some applications to demonstrate how THM works.

  20. Astrophysical Flows

    Science.gov (United States)

    Pringle, James E.; King, Andrew

    2003-07-01

    Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas

  1. [Nuclear theory

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion

  2. An invitation to astrophysics

    CERN Document Server

    Padmanabhan, Thanu

    2006-01-01

    This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help s

  3. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Moeller, P.; Kratz, K.L.

    1992-01-01

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  4. The goals of gamma-ray spectroscopy in high energy astrophysics

    Science.gov (United States)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  5. Alpha resonant scattering for astrophysical reaction studies

    International Nuclear Information System (INIS)

    Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.

    2014-01-01

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7 Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7 Be(α,γ) reaction, and proposed a new cluster band in 11 C

  6. Neutrino astrophysics

    International Nuclear Information System (INIS)

    Roulet, E.

    2001-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  7. Important plasma problems in astrophysics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1995-01-01

    In astrophysics, plasmas occur under very extreme conditions. For example, there are ultrastrong magnetic fields in neutron stars, relativistic plasmas around black holes and in jets, extremely energetic particles such as cosmic rays in the interstellar medium, extremely dense plasmas in accretion disks, and extremely large magnetic Reynolds numbers in the interstellar medium. These extreme limits for astrophysical plasmas make plasma phenomena much simpler to analyze in astrophysics than in the laboratory. An understanding of such phenomena often results in an interesting way, by simply taking the extreme limiting case of a known plasma theory. The author will describe one of the more exciting examples and will attempt to convey the excitement he felt when he was first exposed to it. However, not all plasma astrophysical phenomena are so simple. There are certain important plasma phenomena in astrophysics that have not been so easily resolved. In fact, a resolution of them is blocking significant progress in astrophysical research. They have not yet yielded to attacks by theoretical astrophysicists nor to extensive numerical simulation. The author will attempt to describe one of the more important of these plasma--astrophysical problems, and discuss why its resolution is so important to astrophysics. This significant example is fast, magnetic reconnection. Another significant example is the large-magnetic-Reynolds number magnetohydrodynamics (MHD) dynamos

  8. Latest results from LUNA

    Science.gov (United States)

    Depalo, Rosanna; LUNA Collaboration

    2018-01-01

    A precise knowledge of the cross section of nuclear fusion reactions is a crucial ingredient in understanding stellar evolution and nucleosynthesis. At stellar temperatures, fusion cross sections are extremely small and difficult to measure. Measuring nuclear cross sections at astrophysical energies is a challenge that triggered a huge amount of experimental work. A breakthrough in this direction was the first operation of an underground accelerator at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso, Italy. The 1400 meters of rocks above the laboratory act as a natural shield against cosmic radiation, suppressing the background by orders of magnitude. The latest results achieved at LUNA are discussed, with special emphasis on the 22Ne(p,γ)23Na reaction. Future perspectives of the LUNA experiment are also illustrated.

  9. Coulomb Dissociation as a Tool of Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Utsunomiya, H.

    2000-01-01

    My talk will begin with an introduction of the Coulomb dissociation method, proceed to discussions on Coulomb breakup of 7 Li with respect to the big-bang nucleosynthesis and end with the revision of astrophysical S-factors. The methodology based on the virtual photon source will be introduced in view of experimental techniques. The discussion will include the quantum tunnelling effect in non-resonant breakup, the lifetime of continuum states, and Coulomb distortion of relevant cross sections. Roles of multi-step processes and different multipolarities will also be discussed on the basis of solving a time-dependent Schroedinger equation. My talk will present quantitative results. The theoretical framework of the Coulomb dissociation method and a broad scope of its applications are given by G. Baur. Applications to radioactive nuclei which have quickly become vogue are discussed in the related lecture of J. Kiener. (author)

  10. Indirect study of B-11(p,alpha(0))Be-8 and B-10(p,alpha)Be-7 reactions at astrophysical energies by means of the Trojan Horse Method: recent results

    Czech Academy of Sciences Publication Activity Database

    Lamia, L.; Puglia, S. M. R.; Spitaleri, C.; Romano, S.; Del Santo, M. G.; Carlin, N.; Munhoz, M. G.; Cherubini, S.; Kiss, G. G.; Kroha, Václav; Kubono, S.; La Cognata, M.; Li, C. B.; Pizzone, R. G.; Wen, Q. G.; Sergi, M. L.; de Toledo, A. S.; Wakabayashi, Y.; Yamaguchi, H.; Zhou, S. H.

    2010-01-01

    Roč. 834, 1-4 (2010), 655C-657C ISSN 0375-9474. [10th International Conference on Nucleus-Nucleus Collisions (NN2009). Beijing, 16.08.2009-21.08.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : CROSS-SECTIONS * NUCLEAR ASTROPHYSICS * RELEVANT Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.986, year: 2010

  11. Workshop Summary: Fundamental Neutron Physics in the United States: An Opportunity in Nuclear, Particle, and Astrophysics for the Next Decade

    International Nuclear Information System (INIS)

    Greene, G.

    2001-01-01

    Low-energy neutrons from reactor and spallation neutron sources have been employed in a wide variety of investigations that shed light on important issues in nuclear, particle, and astrophysics; in the elucidation of quantum mechanics; in the determination of fundamental constants; and in the study of fundamental symmetry violation (Appendix A, Glossary). In many cases, these experiments provide important information that is not otherwise available from accelerator-based nuclear physics facilities or high energy accelerators. An energetic research community in the United States is engaged in ''fundamental'' neutron physics. With exciting recent results, the possibility of new and upgraded sources, and a number of new experimental ideas, there is an important opportunity for outstanding science in the next decade. ''Fundamental'' neutron physics experiments are usually intensity limited. Researchers require the highest flux neutron sources available, which are either high-flux reactors (continuous sources) or spallation neutron sources (pulsed sources). The primary mission of these major facilities is neutron scattering for materials science research. Notwithstanding this condensed matter focus, essentially all neutron scattering facilities have accepted the value of an on-site fundamental physics program and have typically allocated 5 to 10% of their capabilities (i.e., beam lines) toward nuclear and particle physics research activities

  12. Penning-trap mass spectrometry of radioactive, highly charged ions. Measurements of neutron-rich Rb and Sr nuclides for nuclear astrophysics and development of a novel Penning trap for cooling highly charged ions

    International Nuclear Information System (INIS)

    Simon, Vanessa Veronique

    2012-01-01

    High-precision atomic mass measurements are vital for the description of nuclear structure, investigations of nuclear astrophysical processes, and tests of fundamental symmetries. The neutron-rich A ∼ 100 region presents challenges for modeling the astrophysical r-process because of sudden nuclear shape transitions. This thesis reports on high-precision masses of short-lived neutron-rich 94,97,98 Rb and 94,97-99 Sr isotopes using the TITAN Penning-trap mass spectrometer at TRIUMF. The isotopes were charge-bred to q = 15+; uncertainties of less than 4 keV were achieved. Results deviate by up to 11σ compared to earlier measurements and extend the region of nuclear deformation observed in the A∼100 region. A parameterized r-process model network calculation shows that mass uncertainties for the elemental abundances in this region are now negligible. Although beneficial for the measurement precision, the charge breeding process leads to an increased energy spread of the ions on the order of tens of eV/q. To eliminate this drawback, a Cooler Penning Trap (CPET) has been developed as part of this thesis. The novel multi-electrode trap structure of CPET forms nested potentials to cool HCI sympathetically using either electrons or protons to increase the overall efficiency and precision of the mass measurement. The status of the off-line setup and initial commissioning experiments are presented.

  13. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  14. Nuclear Physics Constraints on the Characteristics of Astrophysical Thermonuclear Flashes

    International Nuclear Information System (INIS)

    Truran, James W

    2012-01-01

    We review the nuclear physics that is associated with the outbursts of Type Ia (thermonuclear) supernova explosions and with the thermonuclear runaway events that define the outbursts of both classical novae and recurrent novae. We describe how distinguishing characteristics of these two classes of astrophysical explosion are strongly dependent both upon fuel ignition in degenerate matter and upon the rates of critical charged-particle reaction rates and weak interaction rates. In this centennial celebration of the important contributions of Rutherford and his collaborators to our understanding of the structure of the nucleus of an atom, it is quite interesting to note the evolution of the α-particle scattering experiments described in Rutherford's seminal paper (Rutherford 1911) to current studies of α-particle induced reactions and their defining roles in studies of stellar, nova, and supernova nucleosynthesis. We identify and discuss for example: (1) the manner in which (α, p) reactions in proximity to the Z = N line carry the major flows from 12 C and 16 O to 56 Ni in Type Ia supernovae; and (2) the critical role of the 15 O(α, γ) 19 Ne reaction in possibly effecting 'breakout' of the Hot CNO cycles at the highest temperatures achievable in Classical Novae. In this contribution, we first review the current status our understanding of Type Ia supernova events and then that of Classical Novae.

  15. Development of a low-level setup for gamma spectroscopy: Application for nuclear astrophysics using reverse kinematics

    International Nuclear Information System (INIS)

    Genard, G.; Nuttens, V.E.; Bouchat, V.; Terwagne, G.

    2010-01-01

    It is more and more necessary to improve the sensitivity of gamma-ray spectroscopy systems, especially in nuclear astrophysics. In the case of radiative proton capture reactions, one means is to avoid the reactions on the target impurities by using reverse kinematics. This technique is possible with the LARN accelerator and can provide very clean cross-section measurements. For that purpose, a hydrogen standard has been carried out by means of ion implantation in silicon. In addition, a low-level setup has been put in place on a new beam line of the accelerator. A high efficiency and high resolution germanium detector is used conjointly with a double shielding. A passive lead castle shielding system is used to reduce the natural radioactivity and an active shielding consisting of an anti-cosmic veto is provided by an anticoincidence between the plastic scintillator and the gamma-ray detector. The setup allows a reduction of 70% of the background interference and provides an approximately 200 fold sensitivity gain of between 600 and 3000 keV. Some other developments have also been carried out to optimize the setup. The entire setup and the reverse kinematics have been validated by measuring the cross-section of the 13 C(p,γ) 14 N and 15 N(p,γ) 16 O reactions that present some astrophysical interest.

  16. Alpha resonant scattering for astrophysical reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  17. Measurement of the d({sup 26}Al{sup m},p){sup 27}Al reaction for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, B.T.; Trache, L.; Iacob, V.E.; McCleskey, M.; Simmons, E.; Spiridon, A.; Tribble, R.E. [Texas A and M Univ., TX (United States); Davinson, T.; Lotay, G.; Woods, P.J. [University of Edinburgh (United Kingdom); La Cognata, M.; Pizzone, R.G.; Rapisarda, G.G.; Sparta, R.; Spitaleri, C. [Istituto Nazionale di Fisica Nucleare (LNS/INFN), Catania (Italy). Lab. Nazionali del Sud

    2012-07-01

    Full text: The detection of gamma rays from the decay of the {sup 26}Al ground state in the galaxy gives evidence that nucleosynthesis is occurring in present-day stars, but its origin is not yet clear. This implies that reactions involving {sup 26}Al are important for astrophysical processes. In a recent experiment at the Cyclotron Institute at Texas A and M University, reactions with the ground state and isomeric state of {sup 26}Al were investigated with the Texas A and M-Edinburgh-Catania Silicon detector Array (TECSA). TECSA is a collaborative effort to build a high-efficiency detector Si array useful for measuring reactions of interest for nuclear astrophysics and nuclear structure. The array consists of up to 16 Micron Semiconductor YY1 detectors that are each 300 μm thick. Each detector has 16 annular ring sectors to measure the energy and the scattering angle of the detected particles. Using TECSA, we measured d({sup 26}Al{sup g},p){sup 27}Al and d({sup 26}Al{sup m},p){sup 27}Al with a {sup 26}Al secondary beam prepared in-flight with the MARS spectrometer. First, the composition of the {sup 26}Al beam was determined by measuring the ratio of beta-decays to {sup 26}Al ions produced. It was found that at different spectrometer rigidities, beams of 2/3 isomer to ground state ratio or vice-versa could be obtained. Then, in the second part of the experiment, angular distributions were measured for both reactions at backward angles with TECSA. The protons were measured in TECSA in coincidence with timing signals from the beam detected by a scintillator and with the cyclotron radio-frequency. Details of the experiment and preliminary results from the analysis of the d({sup 26}Al{sup m},p){sup 27}Al and d({sup 26}Al{sup g},p){sup 27}Al data will be presented. They will give information about the proton capture reactions {sup 26}Al{sup m}(p,γ){sup 27}Si and {sup 26}Al{sup g}(p,γ){sup 27}Si taking place in stars. (author)

  18. Nuclear properties for astrophysical applications

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, P.; Nix, J.R. [Los Alamos National Lab., NM (United States); Kratz, K.L. [Mainz Univ. (Germany). Inst. fuer Kernchemie

    1994-09-23

    We tabulate the ground-state odd-proton and odd-neutron spins, proton and neutron pairing gaps, binding energies, neuton separation energies, quantities related to {beta}-delayed one, two and three neutron emission probabilities, {beta}-decay Q values and half-lives with respect to Gamow-Teller decay, proton separation energies, and {alpha}-decay Q values and half-lives. The starting point of the calculations is a calculation of nuclear ground-states and (information based on the finite-range droplet model and the folded-Yukawa single-particle model published in a previous issue of ATOMIC DATA AND NUCLEAR DATA TABLES. The {beta}-delayed neutron-emission probabilities and Gamow-Teller {beta}-decay rates are obtained from a QRPA model that uses single-particle levels and wave-functions at the calculated nuclear ground-state shape as the starting point.

  19. XVI International symposium on nuclear electronics and VI International school on automation and computing in nuclear physics and astrophysics; XVI Mezhdunarodnyj simpozium po yadernoj ehlektronike i VI Mezhdunarodnaya shkola po avtomatizatsii issledovanij v yadernoj fizike i astrofizike

    Energy Technology Data Exchange (ETDEWEB)

    Churin, I N [ed.

    1996-12-31

    Reports and papers of the 16- International Symposium on nuclear electronics and the 6- International school on automation and computing in nuclear physics and astrophysics are presented. The latest achievements in the field of development of fact - response electronic circuits designed for detecting and spectrometric facilities are studied. The peculiar attention is paid to the systems for acquisition, processing and storage of experimental data. The modern equipment designed for data communication in the computer networks is studied.

  20. Future coordinated researches by Argonne (USA), Tashkent (Uzbekistan) and Almaty (Kazakhstan) nuclear centres on the nuclear reactions and astrophysics

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Kadyrzhanov, K.K.; Rehm, K.E.

    2004-01-01

    An actual problem of modern nuclear physics and astrophysics is realistic evaluation of astrophysical S-factors and rates of the nuclear reactions, which are responsible for the energy generation and nucleosynthesis in Universe. The essential progress in understanding of these processes has been made in the last decade. Those are the discovery of neutrino oscillations, obtaining new precise data on the reactions cross sections at rather low energies, development of methods of extrapolation to the stellar energy region. Nevertheless, the available experimental data close to stellar energies are very poor especially for unstable particles interactions, and uncertainties remain rather remarkable. It leads to large errors when measured data are extrapolated to astrophysical important super low energy region. The experimental possibilities for improvement the accuracy of the data using 'indirect' measurements are discussed. One of them is based on the peripheral character of charged particles interaction at low energy in which the asymptotical normalization coefficients (ANC) of overlapping functions are used for extrapolation. In this case the differential cross-section of the particle transfer reaction is expressed via the product of ANCs squares of participating particles. Their values may be obtained from the peripheral reactions at larger energies where the accuracy of measurement is higher. From this point of view the particle transfer A(x,y)B reactions are the most preferable, where (x,y) are ( 13 N, 12 C) or ( 17 F, 16 O) (proton transfer) and ( 13 C, 12 C) or ( 17 O, 16 O) (neutron transfer). We should know firstly the ANCs for 13 C→ 12 C+n ( 17 O→ 16 O+n) and 13 N→ 12 C+p ( 17 F→ 16 O+p) systems, and all other ANCs B→ A+p(n) are expressed through these values. The nucleon separation energies ε N are relatively small for these nuclei (ε 13N → 12C+p =1.943 MeV; ε 17F → 16O+p =0.6003 MeV; ε 13C → 12C+n =4.946 MeV and ε 17O → 16O+n =4.143 Me

  1. Recent applications of the the Trojan Horse method to nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, Claudio [Dipartimento di Fisica e Astronomia, Catania University (Italy) and INFN-Laboratoti Nazionali del Sud, Catania (Italy)

    2012-11-20

    Light elements lithium, beryllium and boron (LiBeB) have been used in the last years as possible probes for stellar structure. They are mainly destroyed by (p,a) reactions and cross section measurements for such channels are then needed. The Trojan Horse Method (THM) allows one to extract the astrophysical S(E)-factor without the experience of tunneling through the Coulomb barrier. In this work a resume of the recent new results about the {sup 11}B(p,{alpha}{sub 0}){sup 8}Be and {sup 7}Li(p,{alpha}){sup 4}He reactions are shown.

  2. New Improved Indirect Measurement of the F-19(p, alpha)O-16 Reaction at Energies of Astrophysical Relevance

    Czech Academy of Sciences Publication Activity Database

    Indelicato, I.; La Cognata, M.; Spitaleri, C.; Burjan, Václav; Cherubini, S.; Gulino, M.; Hayakawa, S.; Hons, Zdeněk; Kroha, Václav; Lamia, L.; Mazzocco, M.; Mrázek, Jaromír; Pizzone, R. G.; Romano, S.; Strano, E.; Torresi, D.; Tumino, A.

    2017-01-01

    Roč. 845, č. 1 (2017), č. článku 19. ISSN 0004-637X Institutional support: RVO:61389005 Keywords : nuclear reactions * nucleosynthesis * abundances Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.533, year: 2016

  3. Developing a Laue Lens for Nuclear Astrophysics: The Challenge of Focusing Soft Gamma-rays

    Science.gov (United States)

    Barriere, Nicolas

    Soft gamma rays provide a unique window on the high-energy Universe, especially for studying nuclear astrophysics through nuclear line emission. However, the sensitivity of state-of-the-art gamma-ray telescopes is severely limited by the intense instrumental background when flown in space. A solution is to decouple the photon collection area from the photon detection area. Focusing source photons from a large collection area onto a small detector volume would dramatically improve the signal-to-noise ratio, and hence provide the long awaited sensitivity leap in this challenging energy band. Laue crystal diffraction can be utilized to focus soft gamma rays when configured in a Laue lens. While this technology has been demonstrated on balloon flights, the type of crystals used and the process of assembling many crystals into a lens have not been optimized yet. We propose to address all the technical aspects of the construction of a scientifically exploitable Laue lens in order to bring this technology to TRL-6. To this end, two small prototypes representative of the diversity of Laue lenses will be built and tested in relevant environments, leveraging the work accomplished under a previous APRA grant. This project will establish the real performances, the cost, and the construction duration of a full-scale lens, allowing us to propose a Laue lens telescope for suborbital or satellite missions.

  4. Promising lines of investigations in the realms of laboratory astrophysics with the aid of powerful lasers

    International Nuclear Information System (INIS)

    Belyaev, V. S.; Batishchev, P. A.; Bolshakov, V. V.; Elkin, K. S.; Karabadzhak, G. F.; Kovkov, D. V.; Matafonov, A. P.; Raykunov, G. G.; Yakhin, R. A.; Pikuz, S. A.; Skobelev, I. Yu.; Faenov, A. Ya.; Fortov, V. E.; Krainov, V. P.; Rozanov, V. B.

    2013-01-01

    The results of work on choosing and substantiating promising lines of research in the realms of laboratory astrophysics with the aid of powerful lasers are presented. These lines of research are determined by the possibility of simulating, under laboratory conditions, problematic processes of presentday astrophysics, such as (i) the generation and evolution of electromagnetic fields in cosmic space and the role of magnetic fields there at various spatial scales; (ii) the mechanisms of formation and evolution of cosmic gamma-ray bursts and relativistic jets; (iii) plasma instabilities in cosmic space and astrophysical objects, plasma jets, and shock waves; (iv) supernova explosions and mechanisms of the explosion of supernovae featuring a collapsing core; (v) nuclear processes in astrophysical objects; (vi) cosmic rays and mechanisms of their production and acceleration to high energies; and (vii) astrophysical sources of x-ray radiation. It is shown that the use of existing powerful lasers characterized by an intensity in the range of 10 18 –10 22 W/cm 2 and a pulse duration of 0.1 to 1 ps and high-energy lasers characterized by an energy in excess of 1 kJ and a pulse duration of 1 to 10 ns makes it possible to perform investigations in laboratory astrophysics along all of the chosen promising lines. The results obtained by experimentally investigating laser plasma with the aid of the laser facility created at Central Research Institute of Machine Building (TsNIIMash) and characterized by a power level of 10 TW demonstrate the potential of such facilities for performing a number of experiments in the realms of laboratory astrophysics.

  5. Possibilities at LAMPF for studying nuclei of astrophysical interest

    International Nuclear Information System (INIS)

    Talbert, W.L. Jr.; Bunker, M.E.

    1985-01-01

    Nuclear data needs in astrophysics range from neutron capture cross sections of a number of stable or near-stable nuclei to decay and neutron binding-energy data for highly neutron-rich nuclei. LAMPF has the potential to contribute significantly to these needs. The new Los Alamos Neutron Scattering Center (LANSCE, aka WNR/PSR) offers world-class capabilities for neutron capture studies up to an MeV or so. The study of nuclei far from stability could be extended into some regions of astrophysical interest using a proposed He-jet coupled mass separator system with a target/production chamber in the LAMPF beam stop area. Specific examples of possible studies at each facility are presented

  6. Properties of the nuclear medium

    International Nuclear Information System (INIS)

    Baldo, M; Burgio, G F

    2012-01-01

    We review our knowledge on the properties of the nuclear medium that have been studied, over many years, on the basis of many-body theory, laboratory experiments and astrophysical observations. Throughout the presentation particular emphasis is placed on the possible relationship and links between the nuclear medium and the structure of nuclei, including the limitations of such an approach. First we consider the realm of phenomenological laboratory data and astrophysical observations and the hints they can give on the characteristics that the nuclear medium should possess. The analysis is based on phenomenological models, that however have a strong basis on physical intuition and an impressive success. More microscopic models are also considered, and it is shown that they are able to give invaluable information on the nuclear medium, in particular on its equation of state. The interplay between laboratory experiments and astrophysical observations is particularly stressed, and it is shown how their complementarity enormously enriches our insights into the structure of the nuclear medium. We then introduce the nucleon–nucleon interaction and the microscopic many-body theory of nuclear matter, with a critical discussion about the different approaches and their results. The Landau–Fermi liquid theory is introduced and briefly discussed, and it is shown how fruitful it can be in discussing the macroscopic and low-energy properties of the nuclear medium. As an illustrative example, we discuss neutron matter at very low density, and it is shown how it can be treated within the many-body theory. The general bulk properties of the nuclear medium are reviewed to indicate at which stage of our knowledge we stand, taking into account the most recent developments both in theory and experiments. A section is dedicated to the pairing problem. The connection with nuclear structure is then discussed, on the basis of the energy density functional method. The possibility of

  7. Large-Scale Astrophysical Visualization on Smartphones

    Science.gov (United States)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  8. Astrophysics Update 2

    CERN Document Server

    Mason, John W

    2006-01-01

    "Astrophysics Updates" is intended to serve the information needs of professional astronomers and postgraduate students about areas of astronomy, astrophysics and cosmology that are rich and active research spheres. Observational methods and the latest results of astronomical research are presented as well as their theoretical foundations and interrelations. The contributed commissioned articles are written by leading exponents in a format that will appeal to professional astronomers and astrophysicists who are interested in topics outside their own specific areas of research. This collection of timely reviews may also attract the interest of advanced amateur astronomers seeking scientifically rigorous coverage.

  9. Energy–density functional plus quasiparticle–phonon model theory as a powerful tool for nuclear structure and astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Tsoneva, N., E-mail: Nadia.Tsoneva@theo.physik.uni-giessen.de [Frankfurt Institute for Advanced Studies (FIAS) (Germany); Lenske, H. [Universität Gießen, Institut für Theoretische Physik (Germany)

    2016-11-15

    During the last decade, a theoretical method based on the energy–density functional theory and quasiparticle–phonon model, including up to three-phonon configurations was developed. The main advantages of themethod are that it incorporates a self-consistentmean-field and multi-configuration mixing which are found of crucial importance for systematic investigations of nuclear low-energy excitations, pygmy and giant resonances in an unified way. In particular, the theoretical approach has been proven to be very successful in predictions of new modes of excitations, namely pygmy quadrupole resonance which is also lately experimentally observed. Recently, our microscopically obtained dipole strength functions are implemented in predictions of nucleon-capture reaction rates of astrophysical importance. A comparison to available experimental data is discussed.

  10. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  11. Nuclear astrophysics at Gran Sasso Laboratory: the LUNA experiment

    Science.gov (United States)

    Cavanna, Francesca

    2018-05-01

    LUNA is an experimental approach for the study of nuclear fusion reactions based on an underground accelerator laboratory. Aim of the experiment is the direct measurement of the cross section of nuclear reactions relevant for stellar and primordial nucleosynthesis. In the following the latest results and the future goals will be presented.

  12. Nuclear Astrophysics Data from Radioactive Beam Facilities. Final report

    International Nuclear Information System (INIS)

    Chen, Alan A.

    2008-01-01

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): 21 Na(p,γ) 22 Mg and 18 Ne(α,p) 21 Na - The importance of the 21 Na(p,γ) 22 Mg and the 18 Ne(α,p) 21 Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope 22 Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: 21 Na(p,γ) 22 Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne(α,p) 21 Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,γ) 26 Si and 13 N(p,γ)14O reactions - For Year 2, we worked on evaluations of the 25 Al(p,γ) 26 Si and 13 N(p,γ) 14 O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The 25 Al(p,γ) 26 Si reaction is a key uncertainty in the understanding the origin of galactic 26 Al, a target radioisotope for gamma ray astronomy; the 13 N(p,γ) 14 O reaction in turn is the trigger

  13. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    Energy Technology Data Exchange (ETDEWEB)

    Lederer, C., E-mail: claudia.lederer@ed.ac.uk [University of Vienna, Faculty of Physics, 1090 Vienna (Austria); Johann-Wolfgang-Goethe Universität, 60438 Frankfurt (Germany); Giubrone, G. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Massimi, C. [Dipartimento di Fisica, Università di Bologna, and Sezione INFN di Bologna, 40100 Bologna (Italy); Žugec, P. [Department of Physics, Faculty of Science, University of Zagreb, 10002 Zagreb (Croatia); Barbagallo, M.; Colonna, N. [Istituto Nazionale di Fisica Nucleare, 70125 Bari (Italy); Domingo-Pardo, C. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Guerrero, C. [European Organization for Nuclear Research (CERN), CH-1211 Geneva (Switzerland); Gunsing, F. [Commissariat à l' Énergie Atomique (CEA) Saclay – Irfu, 91191 Gif-sur-Yvette (France); Käppeler, F. [Karlsruhe Institute of Technology, Campus Nord, Institut für Kernphysik, 76021 Karlsruhe (Germany); Tain, J.L. [Instituto de Física Corpuscular, CSIC-Universidad de Valencia, 46071 Valencia (Spain); Altstadt, S. [Johann-Wolfgang-Goethe Universität, 60438 Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, 90131 Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 – IPN, 91406 Orsay (France); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid (Spain); Bečvář, F. [Faculty of Mathematics and Physics, Charles University, CZ-180 00 Prague (Czech Republic); and others

    2014-06-15

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n{sub T}OF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  14. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1991-06-01

    This report contains abstracts of ongoing projects in the following areas: strong interaction physics; relativistic heavy ion physics; nuclear structure and nuclear many-body theory; and nuclear astrophysics

  15. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  16. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    International Nuclear Information System (INIS)

    Wu, Q.; Sun, L.T.; Cui, B.Q.; Lian, G.; Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M.; Liu, W.P.

    2016-01-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H + , 10 emA He + and 2.0 emA He 2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  17. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, L.T., E-mail: sunlt@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, B.Q.; Lian, G. [China Institute of Atomic Energy, Beijing 102413 (China); Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.P. [China Institute of Atomic Energy, Beijing 102413 (China)

    2016-09-11

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H{sup +}, 10 emA He{sup +} and 2.0 emA He{sup 2+} beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  18. ''DIANA'' - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    International Nuclear Information System (INIS)

    Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

    2009-01-01

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges

  19. Electric Currents along Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    Ioannis Contopoulos

    2017-10-01

    Full Text Available Astrophysical black holes and their surrounding accretion disks are believed to be threaded by grand design helical magnetic fields. There is strong theoretical evidence that the main driver of their winds and jets is the Lorentz force generated by these fields and their associated electric currents. Several researchers have reported direct evidence for large scale electric currents along astrophysical jets. Quite unexpectedly, their directions are not random as would have been the case if the magnetic field were generated by a magnetohydrodynamic dynamo. Instead, in all kpc-scale detections, the inferred electric currents are found to flow away from the galactic nucleus. This unexpected break of symmetry suggests that a battery mechanism is operating around the central black hole. In the present article, we summarize observational evidence for the existence of large scale electric currents and their associated grand design helical magnetic fields in kpc-scale astrophysical jets. We also present recent results of general relativistic radiation magnetohydrodynamic simulations which show the action of the Cosmic Battery in the vicinity of astrophysical black holes.

  20. Toward observational neutrino astrophysics

    International Nuclear Information System (INIS)

    Koshiba, M.

    1988-01-01

    It is true that: (1) The first observation of the neutrino burst from the supernova SN1987a by Kamiokande-II which was immediately confirmed by IBM; and (2) the first real-time, directional, and spectral observation of solar 8 B neutrinos also by Kamiokande-II could perhaps be considered as signalling the birth of observational astrophysics. The field, however, is still in its infancy and is crying out for tender loving care. Namely, while the construction of astronomy requires the time and the direction of the signal and that of astrophysics requires, in addition to the spectral information, the observations of (1) could not give the directional information and the results of both (1) and (2) are still suffering from the meager statistics. How do we remedy this situation to let this new born science of observational neutrino astrophysics grow healthy. This is what the author addresses in this talk. 15 refs., 8 figs

  1. Exploring the Cosmic Frontier Astrophysical Instruments for the 21st Century

    CERN Document Server

    Lobanov, Andrei P; Cesarsky, Catherine; Diamond, Phillip J

    2007-01-01

    In the coming decades, astrophysical science will benefit enormously from the construction and operation of several major international ground- and space based facilities, such as ALMA, Herschel/Planck, and SKA in the far infrared to radio band, Extremely Large Telescopes, JWST and GAIA in the optical to near infrared regime, XEUS and Constellation-X in the X-ray, and GLAST in the Gamma-ray regime. These and other new instruments will have a major impact in a wide range of scientific topics including the cosmological epoch of reionization, galactic dynamics and nuclear activity, stellar astronomy, extra-solar planets, gamma-ray bursts, X-ray binaries, and many others. On May 18-21, 2004, the Max-Planck-Society’s Harnack-Haus in Dahlem, Berlin hosted the international symposium "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century". The symposium in Berlin was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting ...

  2. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    Science.gov (United States)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  3. Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics

    Science.gov (United States)

    Diaz-Torres, Alexis; Wiescher, Michael

    2018-05-01

    A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.

  4. New high accuracy measurement of the O-17(p,alpha)N-14 reaction rate at astrophysical temperatures

    Czech Academy of Sciences Publication Activity Database

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Coc, A.; Mukhamedzhanov, A.; Burjan, Václav; Cherubini, S.; Crucilla, V.; Gulino, M.; Hammache, F.; Hons, Zdeněk; Irgaziev, B.; Kiss, G.G.; Kroha, Václav; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; de Sereville, N.; Somorjai, E.; Tudisco, S.; Tumino, A.

    2010-01-01

    Roč. 82, č. 3 (2010), 032801/1-032801/5 ISSN 0556-2813 Institutional research plan: CEZ:AV0Z10480505 Keywords : ASYMPTOTIC GIANT BRANCH * CNO CYCLE * NUCLEAR ASTROPHYSICS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.416, year: 2010

  5. Magnetohydrodynamic models of astrophysical jets

    International Nuclear Information System (INIS)

    Beskin, Vasily S

    2010-01-01

    In this review, analytical results obtained for a wide class of stationary axisymmetric flows in the vicinity of compact astrophysical objects are analyzed, with an emphasis on quantitative predictions for specific sources. Recent years have witnessed a great increase in understanding the formation and properties of astrophysical jets. This is due not only to new observations but also to advances in analytical theory which has produced fairly simple relations, and to what can undoubtedly be called a breakthrough in numerical simulation which has enabled confirmation of theoretical predictions. Of course, we are still very far from fully understanding the physical processes occurring in compact sources. Nevertheless, the progress made raises hopes for near-future test observations that can give insight into the physical processes occurring in active astrophysical objects. (reviews of topical problems)

  6. Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Science.gov (United States)

    Bonolis, Luisa

    2017-06-01

    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.

  7. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.; Tanihata, I.

    1992-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides. One goal, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell modelclose quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. 25 refs., 7 figs

  8. Physics with radioactive nuclear beams

    International Nuclear Information System (INIS)

    Boyd, R.N.

    1995-01-01

    Recently developed facilities allow a wide range of new investigations of the reactions and properties of short-lived nuclei. These studies may help to solve puzzles of nuclear structure and the Big Bang. The purpose of nuclear physics is to measure properties of specific nuclides and infer from them global properties common to all nuclides, for example, is to understand nuclear sizes and matter distributions in terms of basic nuclear forces. Another is to understand the variation throughout the periodic table of the dominant quantum states, which are known as the open-quotes nuclear shell model close quotes states and are characterized, much as are atomic states, by a principal quantum number and by orbital and total angular momentum quantum numbers. In turn other nuclear phenomena, such as the collective excitations known as giant resonances, can be understood in terms of the shell-model configurations and basic nuclear parameters. Radioactive nuclear beam studies of reactions of short-lived nuclides have already yielded results with important ramifications in both nuclear physics and astrophysics. Nuclear physicists expect unstable nuclides to exhibit unusual structures or features that may test their understanding of known nuclear phenomena at extreme conditions, and perhaps even to reveal previously unknown nuclear phenomena, Astrophysicists, for their part, have known for several decades that processes in both Big Bang nucleosynthesis and stellar nucleosynthesis involve short-lived nuclides. Indeed, the original motivation for developing radioactive nuclear beams was astrophysical. (author). 25 refs., 7 figs

  9. The r-process nucleosynthesis: Nuclear physics challenges

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  10. Scaling law in laboratory astrophysics

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jie

    2001-01-01

    The use of state-of-the-art lasers makes it possible to produce, in the laboratory, the extreme conditions similar to those in astrophysical processes. The introduction of astrophysics-relevant ideas in laser-plasma interaction experiments is propitious to the understanding of astrophysical phenomena. However, the great difference between laser-produced plasma and astrophysical objects makes it awkward to model the latter by laser-plasma experiments. The author presents the physical reasons for modeling astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. This allows the creation of experimental test beds where observation and models can be quantitatively compared with laboratory data

  11. 1997 report of the scientific evaluation committee of DAPNIA (Department of astrophysics, particle physics, nuclear physics and instrumentation)

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The DAPNIA is a department of CEA, its main characteristic is to manage scientific teams working on astrophysics, nuclear physics, elementary particles and instrumentation. Every 2 years DAPNIA's activities are submitted to an evaluation made by a scientific committee whose members are experts independent from CEA. This committee reviews the work done, gives an opinion about the options chosen for the projects to come and writes out a report. In 1997 the committee had a very positive opinion of the work done by DAPNIA teams. The contributions to various and important national or international programs have been successful, we can quote: Ulysse mission, soho, iso, integral for spatial programs, aleph, delphi, H1 at Hera, atlas, cms, na48, nomad, babar, antares for particle physics and spiral, smc, compass for nuclear physics. The committee advises DAPNIA to favour more contacts between the theoreticians and the experimentalists who work on quantum chromodynamics and hadron physics. The committee shows its concern about improving the balance between the means dedicated to instrumentation designing and those dedicated to the analysis and interpretation of the experimental data collected. (A.C.)

  12. Hydrodynamic instabilities in astrophysics and ICF

    International Nuclear Information System (INIS)

    Paul Drake, R.

    2005-01-01

    Inertial fusion systems and astrophysical systems both involve hydrodynamic effects, including sources of pressure, shock waves, rarefactions, and plasma flows. In the evolution of such systems, hydrodynamic instabilities naturally evolve. As a result, a fundamental understanding of hydrodynamic instabilities is necessary to understand their behavior. In addition, high-energy-density facilities designed for ICF purposes can be used to provide and experimental basis for understanding astrophysical processes. In this talk. I will discuss the instabilities that appear in astrophysics and ICF from the common perspective of the basic mechanisms at work. Examples will be taken from experiments aimed at ICF, from astrophysical systems, and from experiments using ICF systems to address issues in astrophysics. The high-energy-density research facilities of today can accelerate small but macroscopic amounts of material to velocities above 100 km/s, can heat such material to temperature above 100 eV, can produce pressures far above a million atmospheres (10''12 dybes/cm''2 or 0.1 TPascal), and can do experiments under these conditions that address basic physics issues. This enables on to devise experiments aimed directly at important process such as the Rayleigh Taylor instability at an ablating surface or at an embedded interface that is accelerating, the Richtmeyer Meshkov evolution of shocked interfaces, and the Kelvin-Helmholtz instability of shear flows. The talk will include examples of such phenomena from the laboratory and from astrophysics, and will discuss experiments to study them. (Author)

  13. Mainz University, Institute of Nuclear Chemistry. Annual report 1993

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    1994-03-01

    The report presents the results achieved by the Institute's five working groups in the following fields: Development of chemical separation processes, chemistry of ultraheavy elements; Developments in instrumentation; Nuclear fission and heavy ion reactions; Nuclear astrophysics, decay characteristics, structure of atoms and nuclei; Environmental pollution analysis. (orig./EF) [de

  14. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, J. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, C. [Texas A & M Univ., College Station, TX (United States)

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  15. Exploring the cosmic frontier. Astrophysical instruments for the 21st century

    International Nuclear Information System (INIS)

    Lobanov, A.P.; Zensus, J.A.; Cesarsky, C.; Diamond, P.

    2007-01-01

    In the coming decades, astrophysical science will benefit enormously from the construction and operation of several major international ground- and space based facilities, such as ALMA, Herschel/Planck, and SKA in the far infrared to radio band, Extremely Large Telescopes, JWST and GAIA in the optical to near infrared regime, XEUS and Constellation-X in the X-ray, and GLAST in the Gamma-ray regime. These and other new instruments will have a major impact in a wide range of scientific topics including the cosmological epoch of reionization, galactic dynamics and nuclear activity, stellar astronomy, extra-solar planets, gamma-ray bursts, X-ray binaries, and many others. On May 18-21, 2004, the Max-Planck-Society's Harnack-Haus in Dahlem, Berlin hosted the international symposium ''Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century''. The symposium in Berlin was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting and discussing the fundamental scientific problems that will be addressed by major future astrophysical facilities in the next few decades. This book contains 70 papers from the meeting and is intended to give a lasting account of a snapshot of an evolving scientific discourse and interaction throughout our field of research. (orig.)

  16. Trojan Horse Method and RIBs: The 18F(p,α)15O reaction at astrophysical energies

    International Nuclear Information System (INIS)

    Cherubini, S.; Gulino, M.; Rapisarda, G. G.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, H.; Teranishi, T.; Coc, A.; De Séréville, N.; Hammache, F.

    2012-01-01

    The abundance of 18 F in Nova explosions is an important issue for the understanding of this astrophysical phenomenon. For this reason it is necessary to study the nuclear reactions that produce or destroy this isotope in novae. Among these latter processes, the 18 F(p,α) 15 O is one of the main 18 F destruction channels. We report here on the preliminary results of the first experiment that applies the Trojan Horse Method to a Radioactive Ion Beam induced reaction. The experiment was performed using the CRIB apparatus of the Center for Nuclear Study of The Tokyo University.

  17. Recent Astrophysical Studies with Exotic Beams at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Bardayan, Daniel W [ORNL

    2006-02-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holi led Radioactive Ion Beam Facility (HRIBF), we have made several recent measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  18. Recent Astrophysical Studies with Exotic Beams at ORNL

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.

    2006-01-01

    The availability of exotic beams has produced great opportunities for advances in our understanding of the nucleosynthesis occurring in stellar burning and stellar explosions such as novae, X-ray bursts, and supernovae. In these extreme environments, synthesized radioactive nuclei can undergo subsequent nuclear processing before they decay, and thus to understand these events, we must understand reaction rates involving radioactive nuclei. At the ORNL Holi led Radioactive Ion Beam Facility (HRIBF), we have made several recent measurements using proton-rich beams such as 18F and 7Be and neutron-rich beams such as 82Ge and 84Se that help clarify the structure of astrophysically-important nuclei. We are also poised to begin studies with doubly-magic 132Sn. The experimental methods and results are discussed.

  19. Nuclear data project evaluation activity report. October 1998 - October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Akovali, Y; Blackmon, J; Radford, D; Smith, M [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2001-02-01

    This report summarizes the activities of the ORNL Nuclear Data Project since the IAEA Advisory Group meeting in December 1998. The group's future plans are also included. The ORNL Nuclear Data Project's responsibility includes the compilation/evaluation of astrophysics data, as well as the evaluation and compilation of nuclear structure data. The Nuclear Data Project, therefore, is composed of two groups. The Nuclear Data Project staff through September 2000 is listed below. Accomplishments for the period of October 1998 through September 2000 of the nuclear structure data group and the nuclear astrophysics group are submitted in this Nuclear Data Project report.

  20. Nuclear data project evaluation activity report. October 1998 - October 2000

    International Nuclear Information System (INIS)

    Akovali, Y.; Blackmon, J.; Radford, D.; Smith, M.

    2001-01-01

    This report summarizes the activities of the ORNL Nuclear Data Project since the IAEA Advisory Group meeting in December 1998. The group's future plans are also included. The ORNL Nuclear Data Project's responsibility includes the compilation/evaluation of astrophysics data, as well as the evaluation and compilation of nuclear structure data. The Nuclear Data Project, therefore, is composed of two groups. The Nuclear Data Project staff through September 2000 is listed below. Accomplishments for the period of October 1998 through September 2000 of the nuclear structure data group and the nuclear astrophysics group are submitted in this Nuclear Data Project report

  1. Nuclear structure studies

    International Nuclear Information System (INIS)

    Walters, W.B.

    1992-01-01

    New results are reported for the decay and nuclear orientation of 114,116 I and 114 Sb as well as data for the structure of daughter nuclides 114,116 Te. New results for IBM-2 calculations for the structure of 126 Xe are also reported. A new approach to the problem of the underproduction of A = 120 nuclides in the astrophysical r-process is reported

  2. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  3. Relativistic astrophysics and theory of gravity

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1982-01-01

    A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology

  4. Nuclear theory group. Progress report and renewal proposal

    International Nuclear Information System (INIS)

    1979-01-01

    The work discussed covers a broad range of topics in theoretical nuclear and intermediate-energy physics and nuclear astrophysics. Primary emphasis is placed on understanding the underlying nucleon-nucleon and meson-nucleon interactions. The research is categorized as follows: fundamental interactions; intermediate-energy physics; effective interactions, nuclear models and many-body theory; structure of finite nuclei; nuclear astrophysics; heavy-ion physics; and numerical analysis. Page-length summaries of the work are given; completed work has been or will be published. Staff vitas, recent publications, and a proposed budget complete the report

  5. FIRST LIGHT: MeV ASTROPHYSICS FROM THE MOON

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Richard S. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Lawrence, David J., E-mail: richard.s.miller@uah.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2016-06-01

    We report evidence of the first astrophysical source detected from the Moon at MeV energies. Our detection of Cygnus X-1 is a validation of a new investigative paradigm in which the lunar environment is intrinsic to the detection approach: the Lunar Occultation Technique (LOT). NASA’s Lunar Prospector mission served as a proxy for a dedicated LOT-based mission. The characteristic signature of temporal modulation, generated by repeated lunar occultations and encoded within acquired gamma-ray data (0.5–9 MeV), is consistent with an unambiguous detection of Cygnus X-1 at 5.4 σ significance. Source localization and long-term monitoring capabilities of the LOT are also demonstrated. This “first light” detection verifies the basic tenets of the LOT methodology, reinforces its feasibility as an alternative astronomical detection paradigm for nuclear astrophysics investigations, and is an illustration of the fundamental benefits of the Moon as a platform for science.

  6. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  7. Gordon Conference on Nuclear Research

    International Nuclear Information System (INIS)

    Austin, S.M.

    1983-09-01

    Session topics were: quarks and nuclear physics; anomalons and anti-protons; the independent particle structure of nuclei; relativistic descriptions of nuclear structure and scattering; nuclear structure at high excitation; advances in nuclear astrophysics; properties of nuclear material; the earliest moments of the universe; and pions and spin excitations in nuclei

  8. Nuclear Astrophysics at DANCE

    International Nuclear Information System (INIS)

    Reifarth, R.; Bredeweg, T.A.; Esch, E.-I.; Haight, R.C.; Kronenberg, A.; O'Donnell, J.M.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wouters, J.M.; Alpizar-Vicente, A.; Hatarik, R.; Greife, U.

    2005-01-01

    One of the most interesting nuclear physics challenges is obtaining a detailed understanding of the nucleosynthesis processes of the elements. Knowledge about the stellar sites, and how they are governed by stellar evolution and cosmology are crucial in understanding the overall picture. Information on reaction rates for neutron- and charged-particle-induced reactions have a direct impact on existing stellar models. Except for the stable isotopes, very few neutron-induced reactions in the energy range of interest have been measured to date. DANCE measurements on stable and unstable isotopes will provide many of the missing key reactions that are needed to understand the nucleosynthesis of the heavy elements

  9. Exploring extreme plasma physics in the laboratory and in astrophysics

    Science.gov (United States)

    Silva, L. O.; Grismayer, T.; Fonseca, R. A.; Cruz, F.; Gaudio, F. D.; Martins, J. L.; Vieira, J.; Vranic, M.

    2017-10-01

    The interaction of ultra intense fields with plasmas is at the confluence of several sub-fields ranging from QED, and nuclear physics to high energy astrophysics, and fundamental plasma processes. It requires novel theoretical tools, highly optimised numerical codes and algorithms tailored to these complex scenarios, where physical mechanisms at very disparate temporal and spatial scales are self-consistently coupled in multidimensional geometries. The key developments implemented in Osiris will be presented along with some examples of problems, relevant for laboratory or astrophysical scenarios, that are being addressed resorting to the combination of massively parallel simulations with theoretical models. The relevance for near future experimental facilities such as ELI will also be presented. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  10. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  11. Gravity, particles and astrophysics

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1980-01-01

    The author deals with the relationship between gravitation and elementary particle physics, and the implications of these subjects for astrophysics. The text is split up into two parts. The first part represents a relatively non-technical overview of the subject, while the second part represents a technical examination of the most important aspects of non-Einsteinian gravitational theory and its relation to astrophysics. Relevant references from the fields of gravitation, elementary particle theory and astrophysics are included. (Auth.)

  12. Nuclear theory progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research performed at University of Washington in nuclear theory. Some of the topics discussed are: nuclear astrophysics; symmetry; time reversal invariance; quark matter; superallowed beta decay; exclusive reactions; nuclear probes; soliton model; relativistic heavy ion collisions; supernova explosions; neutrino processes in dense matter; field theories; weak interaction physics; and nuclear structure

  13. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  14. Encyclopedia of Astronomy and Astrophysics

    CERN Document Server

    2002-01-01

    Interstellar medium, Light, Magnetisphere, Matter, Planet Earth, Public Impact, Solar Activity, Solar Heliosphere, Solar Interior, Solar Systems, Space, Stellar Astrophysics, Stellar Populations, Telescopes, Time The Encyclopedia of Astronomy and Astrophysics covers 30 major subject areas, such as Active galaxies, Astrometry, Astrophysical theory, Atmospheres, Binary stars, Biography, Clusters, Coordinates, Cosmology, Earth, Education, Galaxies,

  15. Plasma in astrophysics

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1982-10-01

    Two examples of plasma phenomena of importance to astrophysics are reviewed. These are examples where astrophysical understanding hinges on further progress in plasma physics understanding. The two examples are magnetic reconnection and the collisionless interaction between a population of energetic particles and a cooler gas or plasma, in particular the interaction between galactic cosmic rays and the interstellar medium

  16. Displaying results of direct detection dark matter experiments free of astrophysical uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Ludwig [Max Planck Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: Collaboration XENON 100

    2015-07-01

    A number of experiments try to measure WIMP interactions by using different detector technologies and target elements. Hence, energy thresholds and sensitivities to light or heavy WIMP masses differ. However, due to large systematic uncertainties in the parameters defining the dark matter halo, a comparison of detectors is demanding. By mapping experimental results from the traditional cross section vs. dark matter mass parameter-space into a dark matter halo independent phase space, direct comparisons between experiments can be made. This is possible due to the monotonicity of the velocity integral which enables to combine all astrophysical assumptions into one parameter common to all experiments. In this talk the motivation as well as the mapping method are explained based on the XENON100 data.

  17. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1989-08-01

    This report discusses the following areas of investigation of the Stony Brook Nuclear Theory Group: the physics of hadrons; QCD and the nucleus; QCD at finite temperature and high density; nuclear astrophysics; nuclear structure and many-body theory; and heavy ion physics

  18. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2016-01-01

    Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

  19. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2007-01-01

    A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation. In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a N

  20. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  1. Astrophysical Institute, Potsdam

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Built upon a tradition of almost 300 years, the Astrophysical Institute Potsdam (AIP) is in an historical sense the successor of one of the oldest astronomical observatories in Germany. It is the first institute in the world which incorporated the term `astrophysical' in its name, and is connected with distinguished scientists such as Karl Schwarzschild and Albert Einstein. The AIP constitutes on...

  2. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  3. Computational Laboratory Astrophysics to Enable Transport Modeling of Protons and Hydrogen in Stellar Winds, the ISM, and other Astrophysical Environments

    Science.gov (United States)

    Schultz, David

    As recognized prominently by the APRA program, interpretation of NASA astrophysical mission observations requires significant products of laboratory astrophysics, for example, spectral lines and transition probabilities, electron-, proton-, or heavy-particle collision data. Availability of these data underpin robust and validated models of astrophysical emissions and absorptions, energy, momentum, and particle transport, dynamics, and reactions. Therefore, measured or computationally derived, analyzed, and readily available laboratory astrophysics data significantly enhances the scientific return on NASA missions such as HST, Spitzer, and JWST. In the present work a comprehensive set of data will be developed for the ubiquitous proton-hydrogen and hydrogen-hydrogen collisions in astrophysical environments including ISM shocks, supernova remnants and bubbles, HI clouds, young stellar objects, and winds within stellar spheres, covering the necessary wide range of energy- and charge-changing channels, collision energies, and most relevant scattering parameters. In addition, building on preliminary work, a transport and reaction simulation will be developed incorporating the elastic and inelastic collision data collected and produced. The work will build upon significant previous efforts of the principal investigators and collaborators, will result in a comprehensive data set required for modeling these environments and interpreting NASA astrophysical mission observations, and will benefit from feedback from collaborators who are active users of the work proposed.

  4. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  5. Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, N. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy)], E-mail: nicolas.barriere@iasf-roma.inaf.it; Ballmoos, P. von [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Abrosimov, N.V. [IKZ, Max Born-Str. 2, D-12489 Berlin (Germany); Bastie, P. [LSP UMR 5588, 140 Av. de la physique, 38402 Saint Martin d' Heres (France); Camus, T. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Courtois, P.; Jentschel, M. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Knoedlseder, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Natalucci, L. [INAF - IASF Roma, via Fosso del Cavaliere 100, 00133 Roma (Italy); Roudil, G.; Rousselle, J. [CESR - UMR 5187, 9 Av. du Colonel Roche, 31028 Toulouse (France); Wunderer, C.B. [SSL, University of California at Berkeley, CA 94708 (United States); Kurlov, V.N. [Institute of Solid State Physics of Russian Academy of Sciences, 142432 Chernogolovka (Russian Federation)

    2009-10-21

    Nuclear astrophysics presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. But in order to take full advantage of this potential, telescopes should be at least an order of magnitude more sensitive than present technologies. Today, Laue lenses have demonstrated their capability of focusing gamma-rays in the 100 keV-1 MeV domain, enabling the possibility of building a new generation of instruments for which sensitive area is decoupled from collecting area. Thus we have now the opportunity of dramatically increase the signal/background ratio and hence improve significantly the sensitivity. With a lens, the best detector is no longer the largest possible within a mission envelope. The point spread function of a Laue lens measures a few centimeters in diameter, but the field of view is limited by the detector size. Requirements for a focal plane instrument are presented in the context of the Gamma-Ray Imager mission (proposed to European Space Agency, ESA in the framework of the first Cosmic Vision AO): a 15-20 cm a side finely pixellated detector capable of Compton events reconstruction seems to be optimal, giving polarization and background rejection capabilities and 30 arcsec of angular resolution within a field of view of 5 arc min.

  6. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  7. Isomer beam elastic scattering: 26mAl(p, p) for astrophysics

    Science.gov (United States)

    Kahl, D.; Shimizu, H.; Yamaguchi, H.; Abe, K.; Beliuskina, O.; Cha, S. M.; Chae, K. Y.; Chen, A. A.; Ge, Z.; Hayakawa, S.; Imai, N.; Iwasa, N.; Kim, A.; Kim, D. H.; Kim, M. J.; Kubono, S.; Kwag, M. S.; Liang, J.; Moon, J. Y.; Nishimura, S.; Oka, S.; Park, S. Y.; Psaltis, A.; Teranishi, T.; Ueno, Y.; Yang, L.

    2018-01-01

    The advent of radioactive ground-state beams some three decades ago ultimately sparked a revolution in our understanding of nuclear physics. However, studies with radioactive isomer beams are sparse and have often required sophisticated apparatuses coupled with the technologies of ground-state beams due to typical mass differences on the order of hundreds of keV and vastly different lifetimes for isomers. We present an application of a isomeric beam of 26mAl to one of the most famous observables in nuclear astrophysics: galactic 26Al. The characteristic decay of 26Al in the Galaxy was the first such specific radioactivity to be observed originating from outside the Earth some four decades ago. We present a newly-developed, novel technique to probe the structure of low-spin states in 27Si. Using the Center for Nuclear Study low-energy radioisotope beam separator (CRIB), we report on the measurement of 26mAl proton resonant elastic scattering conducted with a thick target in inverse kinematics. The preliminary results of this on-going study are presented.

  8. Neutron capture cross section of $^{25}$Mg and its astrophysical implications

    CERN Multimedia

    We propose to measure the neutron capture cross section of the stable $^{25}$Mg isotope. This experiment aims at the improvement of existing results for nuclear astrophysics.The measurement will be carried out under similar conditions as for the Mgexperiment that was completed at n_TOF during 2003. A metal $^{25}$Mg-enriched sample will be used in the proposed experiment instead of a MgO powder sample, which was used in the previous measurement and prevented us to minimize the uncertainty of the measured cross section. This experiment will be part of an ongoing study for a comprehensive discussion of the s-process abundances in massive stars.

  9. Minicourses in Astrophysics, Modular Approach, Vol. I.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…

  10. Nuclear Physics Laboratory: Annual report

    International Nuclear Information System (INIS)

    1987-05-01

    Topics covered in this annual report are: astrophysics and cosmology, giant resonances in excited nuclei, heavy ions, fundamental symmetries, nuclear reactions, accelerator mass spectrometry, accelerators and ion sources, nuclear instrumentation, computer systems and the booster linac project

  11. Hydrodynamic Instability, Integrated Code, Laboratory Astrophysics, and Astrophysics

    Science.gov (United States)

    Takabe, Hideaki

    2016-10-01

    This is an article for the memorial lecture of Edward Teller Medal and is presented as memorial lecture at the IFSA03 conference held on September 12th, 2003, at Monterey, CA. The author focuses on his main contributions to fusion science and its extension to astrophysics in the field of theory and computation by picking up five topics. The first one is the anomalous resisitivity to hot electrons penetrating over-dense region through the ion wave turbulence driven by the return current compensating the current flow by the hot electrons. It is concluded that almost the same value of potential as the average kinetic energy of the hot electrons is realized to prevent the penetration of the hot electrons. The second is the ablative stabilization of Rayleigh-Taylor instability at ablation front and its dispersion relation so-called Takabe formula. This formula gave a principal guideline for stable target design. The author has developed an integrated code ILESTA (ID & 2D) for analyses and design of laser produced plasma including implosion dynamics. It is also applied to design high gain targets. The third is the development of the integrated code ILESTA. The forth is on Laboratory Astrophysics with intense lasers. This consists of two parts; one is review on its historical background and the other is on how we relate laser plasma to wide-ranging astrophysics and the purposes for promoting such research. In relation to one purpose, I gave a comment on anomalous transport of relativistic electrons in Fast Ignition laser fusion scheme. Finally, I briefly summarize recent activity in relation to application of the author's experience to the development of an integrated code for studying extreme phenomena in astrophysics.

  12. The new astrophysics

    International Nuclear Information System (INIS)

    Longair, M.

    1989-01-01

    The author offers a review of advances in astrophysics since 1945 when astronomers started to explore the universe beyond the bounds of the optical wavelength of the electromagnetic spectrum, especially in the fields of radio, x ray and gamma ray, cosmic ray, ultraviolet and infrared astronomies, as well as neutral hydrogen and molecular line studies. Theoretical and technological advances have also kept pace. An overview of the new astrophysics is offered focusing on the large-scale distribution of matter and the background microwave radiation, galaxies, stellar evolution and the interstellar media (dust, gas and high energy particles). Nucleosynthesis in stars is mentioned in a broader discussion of stellar evolution, and dead stars including supernovae. Active galaxies and quasars are discussed. After considering what should be included in astrophysical cosmology, the author looks to the future of the science. (U.K.)

  13. Gamma-ray imaging. Applications in nuclear non-proliferation and homeland security

    International Nuclear Information System (INIS)

    Vetter, Kai; Mihailescu, Lucian

    2010-01-01

    This paper provides the motivation and describes implementations of gamma-ray imaging for homeland security applications and more general for national and international nuclear security. As in nuclear medicine and astrophysics, the goal of gamma-ray imaging is the detection and localization of nuclear materials, however, here in a terrestrial environment with distances between nuclear medicine and astrophysics, i.e. in the range of 1-100 meters. Due to the recently increased threat of nuclear terrorism, the detection of illicit nuclear materials and the prevention of nuclear proliferation through the development of advanced gamma-ray imaging concepts and technologies has become and active research field. (author)

  14. THE FLUORINE DESTRUCTION IN STARS: FIRST EXPERIMENTAL STUDY OF THE (19)F(p, alpha(0))(16)O REACTION AT ASTROPHYSICAL ENERGIES

    Czech Academy of Sciences Publication Activity Database

    La Cognata, M.; Mukhamedzhanov, A. M.; Spitaleri, C.; Indelicato, I.; Aliotta, M.; Burjan, Václav; Cherubini, S.; Coc, A.; Gulino, M.; Hons, Zdeněk; Kiss, G.G.; Kroha, Václav; Lamia, L.; Mrázek, Jaromír; Palmerini, S.; Piskoř, Štěpán; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Tumino, A.

    2011-01-01

    Roč. 739, č. 2 (2011), L54 ISSN 2041-8205 R&D Projects: GA MŠk LC07050; GA ČR GAP203/10/0310 Institutional research plan: CEZ:AV0Z10480505 Keywords : ASYMPTOTIC GIANT BRANCH * CORONAE-BOREALIS STARS * NUCLEAR ASTROPHYSICS * COULOMB BARRIER * CROSS-SECTION * LOW-MASS * NUCLEOSYNTHESIS * CARBON Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.526, year: 2011

  15. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  16. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  17. Sensitivity studies for the main r process: nuclear masses

    Directory of Open Access Journals (Sweden)

    A. Aprahamian

    2014-02-01

    Full Text Available The site of the rapid neutron capture process (r process is one of the open challenges in all of physics today. The r process is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncertainties associated with astrophysical conditions that are needed to allow an r process to occur and a vast lack of knowledge about the properties of nuclei far from stability. One way is to disentangle the nuclear and astrophysical components of the question. On the nuclear physics side, there is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. On the astrophysics side, various astrophysical scenarios for the production of the heaviest elements have been proposed but open questions remain. This paper reports on a sensitivity study of the r process to determine the most crucial nuclear masses to measure using an r-process simulation code, several mass models (FRDM, Duflo-Zuker, and HFB-21, and three potential astrophysical scenarios.

  18. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 1992-1994

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1992-1994 years: 1 - Nuclear structure; 2 - Nuclear astrophysics; 3 - Basic symmetries; 4 - Accelerator-based mass spectroscopy; 5 - Solid State Astrophysics; 6 - Physics and Chemistry of Irradiation; 7 - Solid State Physics; 8 - SEMIRAMIS (ion source and ion beam handling); 9 - Computer Department; 10 - Electronics Group; 11 - Mechanics Department; 12 - Permanent training; 13 - Health and safety; 14 - Seminars; 15 - Dissertations; 16 - Publications; 17 - Staff

  19. Astrophysical S-factor of the 32He(α,γ) 733 7Be reaction in the Big-Bang nucleosynthesis

    Science.gov (United States)

    Ghamary, Motahareh; Sadeghi, Hossein; Mohammadi, Saeed

    2018-05-01

    In the present work, we have studied the properties of the 23He(α , γ) 47Be reaction. The direct radiative capture nuclear reactions in the Big-Bang nucleosynthesis mainly, are done in the external areas of inter-nuclear interaction range and play an essential role in nuclear astrophysics. Among of these reactions, the 23He(α , γ) 47Be reaction with Q = 1.586 MeV is the main part of the Big-Bang nucleosynthesis chain reactions. This reaction can be used to understand the physical and chemical properties of the sun as well as can be justified the lake of the observed solar neutrino in the detector of the Earth. Since product neutrino fluxes are predicated in the center of the sun by the decay of 7Be and 8B, and almost are proportional to the astrophysical S-factor for the 23He(α , γ) 47Be reaction, S34. The 23He(α , γ) 47Be reaction is considered the key to solve the solar neutrino puzzle. Finally, we have astrophysical S-factor obtained for the ground S1,3/2-, first excited S1,1/2-and total S34 states by modern nucleon-nucleon two-body local potential models. We have also compared the obtained S-factor with experimental data and other theoretical works.

  20. Space astronomy and astrophysics program by NASA

    Science.gov (United States)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. K. Anilkumar. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 30 Review Article. Large Area X-Ray Proportional Counter (LAXPC) Instrument on AstroSat and Some Preliminary Results from its Performance in the Orbit.

  2. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. Monica Trasatti. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 589-598. LOFAR: Recent Imaging Results and Future Prospects · George Heald Michael R. Bell Andreas Horneffer André R. Offringa ...

  3. Research at the Institute of Astronomy and Astrophysics of the Université Libre de Bruxelles

    Science.gov (United States)

    Karinkuzhi, Drisya; Chamel, Nicolas; Goriely, Stéphane; Jorissen, Alain; Pourbaix, Dimitri; Siess, Lionel; Van Eck, Sophie

    2018-04-01

    Over the years, a coherent research strategy has developed in the field of stellar physics at the Institute of Astronomy and Astrophysics (IAA). It involves observational studies (chemical composition of giant stars, binary properties, tomography of stellar atmospheres) that make use of the large ESO telescopes as well as of other major instruments. The presence of a high-resolution spectrograph on the 3.6-m Devasthal Optical Telescope (DOT) would therefore be highly beneficial to IAA research. These observations are complemented and supported by theoretical studies of mass transfer in binary systems, of standard and non-standard stellar evolution (including the modelling of stellar hydrodynamical nuclear burning for application to certain thermonuclear supernovae) and of nuclear astrophysics (a field in which IAA has been recognized for a long time as an international centre of excellence), including the theory of nucleosynthesis. IAA also addresses the end-points of stellar evolution as it is carrying out research on the compact remnants of stellar evolution of massive stars: neutron stars.

  4. Nuclear theory progress report, April 1991--April 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research in nuclear theory on the following topics: nuclear astrophysics; quantum chromodynamics; quark matter; symmetry breaking; heavy ion reactions; hadronic form factors; neutrino processes; nuclear structure; weak interaction physics; and other related topics

  5. Nuclear matter and electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sick, I [Dept. fuer Physik und Astronomie, Univ. Basel (Switzerland)

    1998-06-01

    We show that inclusive electron scattering at large momentum transfer allows a measurement of short-range properties of nuclear matter. This provides a very valuable constraint in selecting the calculations appropriate for predicting nuclear matter properties at the densities of astrophysical interest. (orig.)

  6. Trojan Horse Method and RIBs: The {sup 18}F(p,{alpha}){sup 15}O reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, S.; Gulino, M.; Rapisarda, G. G.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y.; Iwasa, N.; Kato, S.; Komatsubara, H.; Teranishi, T.; Coc, A.; De Sereville, N.; Hammache, F. [Dipartimento di Fisica ed Astronomia, Universita di Catania and INFN-LNS, Catania (Italy); INFN-LNS, Catania (Italy) and UniKORE, Enna (Italy)

    2012-11-12

    The abundance of {sup 18}F in Nova explosions is an important issue for the understanding of this astrophysical phenomenon. For this reason it is necessary to study the nuclear reactions that produce or destroy this isotope in novae. Among these latter processes, the {sup 18}F(p,{alpha}){sup 15}O is one of the main {sup 18}F destruction channels. We report here on the preliminary results of the first experiment that applies the Trojan Horse Method to a Radioactive Ion Beam induced reaction. The experiment was performed using the CRIB apparatus of the Center for Nuclear Study of The Tokyo University.

  7. [Experimental nuclear physics

    International Nuclear Information System (INIS)

    1990-04-01

    This report contains brief discussion on the following tapes: giant resonances; nucleus-nucleus reactions; nuclear astrophysics; polarization; fundamental symmetries and interactions; accelerator mass spectrometry; instrumentation; accelerators and in sources; and computer systems

  8. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. V. Girish. Articles written in Journal of Astrophysics and Astronomy. Volume 26 Issue 2-3 June-September 2005 pp 203-211. HD 12098 and Other Results from Nainital–Cape Survey · V. Girish · More Details Abstract Fulltext PDF. Nainital;Cape Survey was started ...

  9. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 2001-2002

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2001-2002 years: 1 - Foreword; 2 - Research topics: Nuclear structure; EFIX: study of exotic nuclei-induced fission; Nuclear Astrophysics; Accelerator-based mass spectroscopy; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics; SEMIRAMIS (ion source and ion beam handling); Digest science; 3 - Publications; 4 - Dissertations; 5 - Seminars; 6 - Technical services: Computer Department; Electronics Group; Mechanics Department; Permanent training; Health and safety; 7 - Staff

  10. NASA Astrophysics Funds Strategic Technology Development

    Science.gov (United States)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  11. Rounding Up the Astrophysical Weeds

    Science.gov (United States)

    McMillan, James P.

    2016-09-01

    New instruments used for astronomy such as ALMA, Herschel, and SOFIA have greatly increased the quality of available astrophysical data. These improved data contain spectral lines and features which are not accounted for in the quantum mechanical (QM) catalogs. A class of molecules has been identified as being particularly problematic, the so-called "weeds". These molecules have numerous transitions, of non-trivial intensity, which are difficult to model due to highly perturbed low lying vibrational states. The inability to properly describe the complete contribution of these weeds to the astrophysical data has led directly to the misidentification of other target molecules. Ohio State's Microwave Laboratory has developed an alternative approach to this problem. Rather than relying on complex QM calculations, we have developed a temperature dependent approach to laboratory based terahertz spectroscopy. We have developed a set of simple packages, in addition to traditional line list catalogs, that enable astronomers to successfully remove the weed signals from their data. This dissertation will detail my laboratory work and analysis of three keys weeds: methanol, methyl formate and methyl cyanide. Also, discussed will be the analytical technique I used to apply these laboratory results to astrophysical data.

  12. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    Science.gov (United States)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  13. The Nuclear Physics Programme at CERN (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This lecture series will focus on the two major facilities at CERN for nuclear physics: ISOLDE and nToF. ISOLDE is one of the world's leading radioactive beam facilities which can produce intense beams of unstable nuclei. Some of these beams can also be re-acclerated to energies around the Coulomb barrier and undergo nuclear reactions in turn. ISOLDE can address a wide range of Physics from nuclear structure to nuclear astrophysics (the origin of the chemical elements) and fundamental physics. The second major facility is nToF which is a neutron time-of-flight facility. Intense neutron beams are used to study nuclear reactions important both for nuclear astrophysics and for present and future reactor cycles. An overview will be given of these two facilities including highlights of their Physics programmes and the perspectives for the future.

  14. Japan Nuclear Reaction Data Centre (JCPRG) Progress Report

    International Nuclear Information System (INIS)

    2011-01-01

    In this report, we give a brief review of the activities carried out by the ''Japan Nuclear Reaction Data Centre (JCPRG)'' since the last NRDC meeting in 2009. The main subjects of our activities are; (1) reaction data compilation, (2) evaluation of the astrophysical nuclear reaction data for light nuclei, and (3) cooperation of nuclear data activities in Asia. Our activities in detail are as follows. a) New reaction data compilation (NRDF and EXFOR) b) Conversion of old NRDF to EXFOR c) Bibliography compilation (CINDA) d) Evaluation of astrophysical nuclear reaction data based on theoretical calculations for light nuclei e) Collaboration among nuclear data physicists in Asia for the EXFOR compilation to form a stable base f) Database maintenance and services (NRDF, EXFOR/ENDF and CINDA) g) Development of software systems (GSYS) h) Customer services

  15. Hirschegg '03: Nuclear structure and dynamics at the limits. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Knoll, J.; Noerenberg, W.; Wambach, J.

    2003-01-01

    The following topics were dealt with: Nuclear structure ans symmetries, nuclei near the drip line, halo nuclei and nuclear resonances, superheavy elements and fission, fragmentation and multifragmentation, nuclear astrophysics. (HSI)

  16. An introduction to observational astrophysics

    CERN Document Server

    Gallaway, Mark

    2016-01-01

    Observational Astrophysics follows the general outline of an astrophysics undergraduate curriculum targeting practical observing information to what will be covered at the university level. This includes the basics of optics and coordinate systems to the technical details of CCD imaging, photometry, spectography and radio astronomy.  General enough to be used by students at a variety of institutions and advanced enough to be far more useful than observing guides targeted at amateurs, the author provides a comprehensive and up-to-date treatment of observational astrophysics at undergraduate level to be used with a university’s teaching telescope.  The practical approach takes the reader from basic first year techniques to those required for a final year project. Using this textbook as a resource, students can easily become conversant in the practical aspects of astrophysics in the field as opposed to the classroom.

  17. Nonlinear dynamics and astrophysics

    International Nuclear Information System (INIS)

    Vallejo, J. C.; Sanjuan, M. A. F.

    2000-01-01

    Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)

  18. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 2007-2009

    International Nuclear Information System (INIS)

    2010-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2007-2009 years: Nuclear Astrophysics; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics and cryogenic detectors; Solid State Physics, Condensed Matter and Irradiation; Structure of the Atomic Nucleus; Teaching and training activities; Spreading scientific culture; Administrative services; Electronics Group; Computer Department; Mechanics Department; RESET Service (Radiation-Environment-Safety- Maintenance-Work); SEMIRAMIS (ion source and ion beam handling)

  19. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 2010-2012

    International Nuclear Information System (INIS)

    2013-07-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2010-2012 years: Nuclear Astrophysics; Solid State Astrophysics; Physics and Chemistry of Irradiation; Solid State Physics Group; Condensed Matter and Irradiation: from fundamental to functional; Structure of the Atomic Nucleus; Teaching activities; Spreading scientific culture; Administrative services; Electronics Group; Computer Department; Mechanics Department; RESET Service (Radiation-Environment-Safety- Maintenance-Work); SEMIRAMIS (ion source and ion beam handling)

  20. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 2002-2004

    International Nuclear Information System (INIS)

    2005-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 2002-2004 years: 1 - Foreword; 2 - Nuclear structure; 3 - EFIX: study of exotic nuclei-induced fission; 4 - Nuclear Astrophysics; 5 - Atomic mass; 6 - Solid state astrophysics; 7 - Accelerator-based mass spectroscopy; 8 - Solid State Physics; 9 - Physics and Chemistry of Irradiation; 10 - Activities of general interest; 11 - SEMIRAMIS (ion source and ion beam handling); 12 - Computer Department; 13 - Electronics Group; 14 - Mechanics Department; 15 - Health and safety; 16 - Permanent training; 17 - Seminars; 18 - PhDs; 19 - Staff

  1. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 1985-1986-1987

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1985-1986-1987 years: 1 - Teams presentation; 2 - Abstracts: On the borderline of spectroscopy; Atomic spectroscopy and low-energy low-spin nuclear structure; high-energy high-spin nuclear structure; Theories and models; Nuclear astrophysics; Accelerator-based mass spectroscopy; Solid State Physics; Study of charged particles irradiation effects in astrophysics, geophysics and material sciences; Technical developments for the RF mass spectrometer and for Obelix; Technical developments for ion beams; Technical developments in electronics and their applications; CNSM's Computer Department; Developments in cryogenics; 3 - Staff and publications

  2. Gamma-ray bursts: astrophysical puzzle of the century

    International Nuclear Information System (INIS)

    Hudec, R.

    1998-01-01

    An overview is given of the problems of gamma-ray bursts /GRB/. As GRB became one of the greatest mysteries in modern astrophysics, this field of astrophysics is a subject of intensive research. The article covers some topical aspects of experiments related to the indentification of gamma-ray bursts. The preparation and results of experiments in the Astronomical Institute of the Academy of Sciences of the Czech Republic are described. (Z.J.)

  3. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  4. VI School on Cosmic Rays and Astrophysics

    International Nuclear Information System (INIS)

    2017-01-01

    VI School on Cosmic Rays and Astrophysics 17-25 November 2015, Chiapas, Mexico The VI School on Cosmic Rays and Astrophysics was held at the MCTP, at the Autonomous University of Chiapas (UNACH), Tuxtla Gutiérrez, Chiapas, Mexico thanks to the Science for Development ICTP-UNACH-UNESCO Regional Seminar, 17-25 November 2015 (http://mctp.mx/e-VI-School-on-Cosmic-Rays-and-Astrophysics.html). The School series started in La Paz, Bolivia in 2004 and it has been, since then, hosted by several Latin American countires: 1.- La Paz, Bolivia (August, 2004), 2.- Puebla, Mexico (September, 2006), 3.- Arequipa, Peru (September, 2008), 4.- Santo André, Brazil (September, 2010), 5.- La Paz, Bolivia (August, 2012). It aims to promote Cosmic Ray (CR) Physics and Astrophysics in the Latin American community and to provide a general overview of theoretical and experimental issues on these topics. It is directed to undergraduates, postgraduates and active researchers in the field. The lectures introduce fundamental Cosmic Ray Physics and Astrophysics with a review of standards of the field. It is expected the school continues happening during the next years following a tradition. In this edition, the list of seminars included topics such as experimental techniques of CR detection, development of CR showers and hadronic interactions, composition and energy spectrum of primary CR, Gamma-Ray Bursts (GRBs), neutrino Astrophysics, spacecraft detectors, simulations, solar modulation, and the current state of development and results of several astroparticle physics experiments such as The Pierre Auger Observatory in Argentina, HAWC in Mexico, KASCADE and KASCADE Grande, HESS, IceCube, JEM-EUSO, Fermi-LAT, and others. This time the school has been complemented with the ICTP-UNACH-UNESCO Seminar of theory on Particle and Astroparticle Physics. The organization was done by MCTP, the Mesoamerican Centre for Theoretical Physics. The school had 46 participants, 30 students from Honduras, Brazil

  5. Asymptotic normalization coefficients in nuclear astrophysics

    Czech Academy of Sciences Publication Activity Database

    Kroha, Václav; Azhari, A.; Bém, Pavel; Burjan, Václav; Gagliardi, C. A.; Mukhamedzhanov, A. M.; Novák, Jan; Piskoř, Štěpán; Šimečková, Eva; Tang, X.; Trache, L.; Tribble, R. E.; Vincour, Jiří

    2003-01-01

    Roč. 719, - (2003), s. 119C-122C ISSN 0375-9474 R&D Projects: GA ČR GA202/01/0709; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1048901 Keywords : S-factor * C-13(p,gamma)N-14 * Be-9(p, gamma)B-10 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.761, year: 2003

  6. Astrophysical opacity library

    International Nuclear Information System (INIS)

    Huebner, W.F.; Merts, A.L.; Magee, N.H. Jr.; Argo, M.F.

    1977-08-01

    The astrophysical elements opacity library includes equation of state data, various mean opacities, and 2000 values of the frequency-dependent extinction coefficients in equally spaced intervals u identical with hν/kT from 0 to 20 for 41 degeneracy parameters eta from -28 (nondegenerate) to 500 and 46 temperatures kT from 1 eV to 100 keV. Among available auxiliary quantities are the free electron density, mass density, and plasma cutoff frequency. A library-associated program can produce opacities for mixtures with up to 20 astrophysically abundant constituent elements at 4 levels of utility for the user

  7. Numerical simulation in astrophysics

    International Nuclear Information System (INIS)

    Miyama, Shoken

    1985-01-01

    There have been many numerical simulations of hydrodynamical problems in astrophysics, e.g. processes of star formation, supernova explosion and formation of neutron stars, and general relativistic collapse of star to form black hole. The codes are made to be suitable for computing such problems. In astrophysical hydrodynamical problems, there are the characteristics: problems of self-gravity or external gravity acting, objects of scales very large or very short, objects changing by short period or long time scale, problems of magnetic force and/or centrifugal force acting. In this paper, we present one of methods of numerical simulations which may satisfy these requirements, so-called smoothed particle methods. We then introduce the methods briefly. Then, we show one of the applications of the methods to astrophysical problem (fragmentation and collapse of rotating isothermal cloud). (Mori, K.)

  8. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  9. Astronomy & Astrophysics: an international journal

    Science.gov (United States)

    Bertout, C.

    2011-07-01

    After a brief historical introduction, we review the scope, editorial process, and production organization of A&A, one of the leading journals worldwide dedicated to publishing the results of astrophysical research. We then briefly discuss the economic model of the Journal and some current issues in scientific publishing.

  10. Argonne Nuclear Data Program

    Energy Technology Data Exchange (ETDEWEB)

    Kondev, F. [US Nuclear Data Program, U.S. DOE/SC (United States)

    2013-08-15

    Nuclear Data Compilations and Evaluations: - Nuclear structure and decay data compilations and evaluations for the International NSDD network (ENSDF and XUNDL); - AME12 and NuBase12 - in collaboration with G. Audi and M. MacCormick, CSNSM (Orsay), M. Wang, IMP (Lanzhou) and B. Pfeiffer, GSI (Darmstadt) - presentation by M. Wang; - DDEP coordinator - completed; - Horizontal nuclear data evaluation activities -IAEA CRP's, Isomers, Medical Isotopes; Complementary ND research Activities: - CARIBU, FRIB and other RIB facilities, Gretina, IAEA-CRP - emphasis on nuclear structure physics and astrophysics, and their intersection with applied nuclear physics programs.

  11. Modeling the astrophysical dynamical process with laser-plasmas

    International Nuclear Information System (INIS)

    Xia Jiangfan; Zhang Jun; Zhang Jie

    2001-01-01

    The use of the state-of-the-art laser facility makes it possible to create conditions of the same or similar to those in the astrophysical processes. The introduction of the astrophysics-relevant ideas in laser-plasma experiments is propitious to the understanding of the astrophysical phenomena. However, the great difference between the laser-produced plasmas and the astrophysical processes makes it awkward to model the latter by laser-plasma experiments. The author addresses the physical backgrounds for modeling the astrophysical plasmas by laser plasmas, connecting these two kinds of plasmas by scaling laws. Thus, allowing the creation of experimental test beds where observations and models can be quantitatively compared with laser-plasma data. Special attentions are paid on the possibilities of using home-made laser facilities to model astrophysical phenomena

  12. Nuclear Science Division: 1993 Annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations

  13. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  14. Nuclear Level Densities

    International Nuclear Information System (INIS)

    Grimes, S.M.

    2005-01-01

    Recent research in the area of nuclear level densities is reviewed. The current interest in nuclear astrophysics and in structure of nuclei off of the line of stability has led to the development of radioactive beam facilities with larger machines currently being planned. Nuclear level densities for the systems used to produce the radioactive beams influence substantially the production rates of these beams. The modification of level-density parameters near the drip lines would also affect nucleosynthesis rates and abundances

  15. Necessity of long term nuclear data development for various applications needing nuclear data

    International Nuclear Information System (INIS)

    Fukahori, Tokio

    2001-01-01

    Necessity of long term nuclear data development for accelerator-driven system target design, high-energy radiation shielding, medical application, space and astrophysical applications, etc. is described in this paper. For each application field needing nuclear data, considered were importance of nuclear data in determining the success or failure of the application, important gaps remaining in the nuclear data and feasibility of filling the gaps with a modest research effort. It can be concluded much more international discussions are required. (author)

  16. The Explorer program for astronomy and astrophysics

    International Nuclear Information System (INIS)

    Savage, B.D.; Becklin, E.E.; Cassinelli, J.P.; Dupree, A.K.; Elliot, J.L.; Hoffmann, W.F.; Hudson, H.S.; Jura, M.; Kurfess, J.; Murray, S.S.

    1986-01-01

    This report was prepared to provide NASA with a strategy for proceeding with Explorer-class programs for research in space astronomy and astrophysics. The role of Explorers in astronomy and astrophysics and their past accomplishments are discussed, as are current and future astronomy and astrophysics Explorers. Specific cost needs for an effective Explorer program are considered

  17. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  18. Limits of Astrophysics with Gravitational-Wave Backgrounds

    Directory of Open Access Journals (Sweden)

    Thomas Callister

    2016-08-01

    Full Text Available The recent Advanced LIGO detection of gravitational waves from the binary black hole GW150914 suggests there exists a large population of merging binary black holes in the Universe. Although most are too distant to be individually resolved by advanced detectors, the superposition of gravitational waves from many unresolvable binaries is expected to create an astrophysical stochastic background. Recent results from the LIGO and Virgo Collaborations show that this astrophysical background is within reach of Advanced LIGO. In principle, the binary black hole background encodes interesting astrophysical properties, such as the mass distribution and redshift distribution of distant binaries. However, we show that this information will be difficult to extract with the current configuration of advanced detectors (and using current data analysis tools. Additionally, the binary black hole background also constitutes a foreground that limits the ability of advanced detectors to observe other interesting stochastic background signals, for example, from cosmic strings or phase transitions in the early Universe. We quantify this effect.

  19. Results from KamLAND

    OpenAIRE

    井上, 邦雄

    2006-01-01

    Origin of matter and evolution of galaxies : internatinal symposium on origin of matter and evolution of galaxies 2005 : new horizon of nuclear astrophysics and cosmology, Tokyo, Japan 8-11 November 2005 / editors, S. Kubono ... [et al.

  20. Minutes of the third annual meeting of the Panel on Reference Nuclear Data

    International Nuclear Information System (INIS)

    Burrows, T.W.; Stewart, L.; Coyne, J.J.

    1979-05-01

    The major activities of the meeting were as follows: welcome; organization, approval of minutes of the second meeting, and approval of agenda; review of nuclear data compilation and evaluation efforts (national and international efforts, master data files, publications); summary of 1977 panel meeting; definition of reference nuclear data; discussion of specific data needs and possible data center contributions (reactor physics, medicine and biology, controlled thermonuclear reactors and astrophysics); establishment of current interest and future direction of the panel; adjournment. Recommendations and action items are listed. Tables on nuclear data needs in applied physics, medicine and biology, and controlled thermonuclear reactors and astrophysics are presented. Appendixes include membership lists of various committees, summaries of publication activities, survey results, correspondence, and portions of the documents Proceedings of the Magnetic Fusion Energy Blanket and Shield Workshop and National Needs for Critically Evaluated Physical and Chemical Data

  1. Exploring Astrophysical Magnetohydrodynamics in the Laboratory

    Science.gov (United States)

    Manuel, Mario

    2014-10-01

    Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.

  2. Nuclear structure studies with low-energy light ions: fundamental and applied

    International Nuclear Information System (INIS)

    Mazumdar, I.

    2016-01-01

    Studies in low and medium energy nuclear physics have been dominated by heavy-ion induced reactions for last five decades. Heavy-ion induced nuclear reactions have enriched our knowledge of the structural evolutions and intricacies of reaction dynamics of the nuclear many-body systems. However, the emergence and rise of heavy-ion physics have seen a general decline in studies with low- and medium-energy light-ion beams. The harsh reality of dwindling number of low-energy light ion facilities adversely affect research in nuclear physics. Very low-energy and high current light-ion facilities immediately conjures up in our minds the studies in nuclear astrophysics. Measurements of light-ion capture cross sections and astrophysical S factors are the major themes of research at most of the light-ion facilities. However, the importance low energy light-ion beams is multifarious. A variety of measurements providing vital support and inputs to heavy-ion research can only be carried out at the low-energy, light-ion facilities. Light-ion beams are also useful for generation of mono-energetic neutron beams. In this talk I will draw from some of our recent measurements to show the importance of light-ion beams in nuclear astrophysics and also in applied nuclear physics. (author)

  3. Nuclear transfer reaction measurements at the ESR-for the investigation of the astrophysical O-15(alpha,gamma)Ne-19 reaction

    NARCIS (Netherlands)

    Doherty, D. T.; Woods, P. J.; Litvinov, Yu A.; Najafi, M. Ali; Bagchi, S.; Bishop, S.; Bo, M.; Brandau, C.; Davinson, T.; Dillmann, I.; Estrade, A.; Egelhof, P.; Evdokimov, A.; Gumberidze, A.; Heil, M.; Lederer, C.; Litvinov, S. A.; Lotay, G.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kozhuharov, C.; Kroell, T.; Mahjour-Shafei, M.; Mutterer, M.; Nolden, F.; Petridis, N.; Popp, U.; Reifarth, R.; Rigollet, C.; Roy, S.; Steck, M.; Stoehlker, Th; Streicher, B.; Trotsenko, S.; von Schmid, M.; Yan, X. L.; Zamora, J. C.

    2015-01-01

    Astrophysical x-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The O-15(alpha,gamma)Ne-19 reaction is one reaction that allows breakout from these CNO

  4. Nuclear transfer reaction measurements at the ESR-for the investigation of the astrophysical O-15(alpha,gamma)Ne-19 reaction

    NARCIS (Netherlands)

    Doherty, D. T.; Woods, P. J.; Litvinov, Yu A.; Najafi, M. Ali; Bagchi, S.; Bishop, S.; Bo, M.; Brandau, C.; Davinson, T.; Dillmann, I.; Estrade, A.; Egelhof, P.; Evdokimov, A.; Gumberidze, A.; Heil, M.; Lederer, C.; Litvinov, S. A.; Lotay, G.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kozhuharov, C.; Kroell, T.; Mahjour-Shafei, M.; Mutterer, M.; Nolden, F.; Petridis, N.; Popp, U.; Reifarth, R.; Rigollet, C.; Roy, S.; Steck, M.; Stoehlker, Th; Streicher, B.; Trotsenko, S.; von Schmid, M.; Yan, X. L.; Zamora, J. C.

    Astrophysical x-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The O-15(alpha,gamma)Ne-19 reaction is one reaction that allows breakout from these CNO

  5. Refining mass formulas for astrophysical applications: A Bayesian neural network approach

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2017-10-01

    Background: Exotic nuclei, particularly those near the drip lines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: What are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Purpose: Our aim is to refine existing mass models through the training of an artificial neural network that will mitigate the large model discrepancies far away from stability. Methods: The basic paradigm of our two-pronged approach is an existing mass model that captures as much as possible of the underlying physics followed by the implementation of a Bayesian neural network (BNN) refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of the neural network so that model predictions may be accompanied by theoretical uncertainties. Results: Despite the undeniable quality of the mass models adopted in this work, we observe a significant improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-Zuker mass formula, we find that the rms deviation relative to experiment is reduced from σrms=0.503 MeV to σrms=0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather "drip bands") and to study a few critical r -process nuclei. Conclusions: The BNN approach is highly successful in refining the predictions of existing mass models. In particular, the large discrepancy displayed by the original "bare" models in regions where experimental data are unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications.

  6. Nuclear physics meets the sources of the ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2016-07-01

    We study the implications of nuclear data and models for cosmic-ray astrophysics, which involves the photodisintegration of nuclei up to iron in astrophysical environments. We demonstrate that data on photo-absorption cross sections are sparse in that mass range by screening nuclear databases, such as EXFOR; these cross sections are needed to compute the photodisintegration rates. We also test the prediction power of models, such as TALYS, and find uncertainties of the order of a factor two. If however the radiation fields are strong enough such that the nuclear cascade in the astrophysical source can develop, we find that differences among different models average out -- unless there is a systematic offset in the interaction model. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions, supported by simulating the entire disintegration chain in a gamma-ray burst. We also point out that a first consistency check may be the measurement of the absorption cross section for different isobars.

  7. Nuclear physics meets the sources of the ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2016-07-15

    We study the implications of nuclear data and models for cosmic-ray astrophysics, which involves the photodisintegration of nuclei up to iron in astrophysical environments. We demonstrate that data on photo-absorption cross sections are sparse in that mass range by screening nuclear databases, such as EXFOR; these cross sections are needed to compute the photodisintegration rates. We also test the prediction power of models, such as TALYS, and find uncertainties of the order of a factor two. If however the radiation fields are strong enough such that the nuclear cascade in the astrophysical source can develop, we find that differences among different models average out -- unless there is a systematic offset in the interaction model. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions, supported by simulating the entire disintegration chain in a gamma-ray burst. We also point out that a first consistency check may be the measurement of the absorption cross section for different isobars.

  8. Study of aluminum emission spectra in astrophysical plasmas

    International Nuclear Information System (INIS)

    Jin Zhan; Zhang Jie

    2001-01-01

    High temperature, high density and strong magnetic fields in plasmas produced by ultra-high intensity and ultrashort laser pulses are similar to the main characteristics of astrophysical plasmas. This makes it possible to simulate come astrophysical processes at laboratories. The author presents the theoretic simulation of aluminum emission spectra in astrophysical plasmas. It can be concluded that using laser produced plasmas, the authors can obtain rich information on astrophysical spectroscopy, which is unobservable for astronomer

  9. Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse - CSNSM/Centre for nuclear and mass spectroscopy, Activity Report 1995-1997

    International Nuclear Information System (INIS)

    2003-01-01

    The Centre for nuclear and mass spectroscopy (CSNSM) is a CNRS (National Centre for Scientific Research) laboratory affiliated with Paris-Sud University. The CSNSM is involved in pluri-disciplinary activities covering various scientific domains: Nuclear Structure (SNO), Nuclear Astrophysics (AN), Solid State Astrophysics (AS), Solid State Physics (PS) and Chemical Physics of Irradiation. This document presents the activity of the Centre during the 1995-1997 years: 1 - Nuclear structure: structure of first well states, superdeformation, high-spin state populations of stable or neutron-rich nuclei, high-k isomers physics, theoretical works, technical developments; 2 - Nuclear astrophysics; 3 - Basic symmetries; 4 - Accelerator-based mass spectroscopy; 5 - Solid State Astrophysics; 6 - Physics and Chemistry of Irradiation; 7 - Solid State Physics; 8 - SEMIRAMIS (ion source and ion beam handling); 9 - Computer Department; 10 - Electronics Group; 11 - Mechanics Department; 12 - Permanent training; 13 - Health and safety; 14 - Seminars and communications; 15 - Dissertations; 16 - Publications; 17 - Staff

  10. Empirical estimation of astrophysical photodisintegration rates of 106Cd

    Science.gov (United States)

    Belyshev, S. S.; Kuznetsov, A. A.; Stopani, K. A.

    2017-09-01

    It has been noted in previous experiments that the ratio between the photoneutron and photoproton disintegration channels of 106Cd might be considerably different from predictions of statistical models. The thresholds of these reactions differ by several MeV and the total astrophysical rate of photodisintegration of 106Cd, which is mostly produced in photonuclear reactions during the p-process nucleosynthesis, might be noticeably different from the calculated value. In this work the bremsstrahlung beam of a 55.6 MeV microtron and the photon activation technique is used to measure yields of photonuclear reaction products on isotopically-enriched cadmium targets. The obtained results are compared with predictions of statistical models. The experimental yields are used to estimate photodisintegration reaction rates on 106Cd, which are then used in nuclear network calculations to examine the effects of uncertainties on the produced abundences of p-nuclei.

  11. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  12. High-Energy Spectroscopic Astrophysics Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Kahn, Steven M; von Ballmoos, Peter

    2005-01-01

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  13. Nuclear transfer reaction measurements at the ESR—for the investigation of the astrophysical 15O(α,γ)19Ne reaction

    International Nuclear Information System (INIS)

    Doherty, D T; Woods, P J; Davinson, T; Estrade, A; Lotay, G; Litvinov, Yu A; Brandau, C; Dillmann, I; Egelhof, P; Evdokimov, A; Gumberidze, A; Heil, M; Litvinov, S A; Kiselev, O; Najafi, M Ali; Bagchi, S; Kalantar-Nayestanaki, N; Bishop, S; Bo, M; Lederer, C

    2015-01-01

    Astrophysical x-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The 15 O(α,γ) 19 Ne reaction is one reaction that allows breakout from these CNO cycles and into the rp-process to fuel outbursts. The reaction is expected to be dominated by a single 3/2 + resonance at 4.033 MeV in 19 Ne, however, limited information is available on this key state. This work reports on a pioneering study of the 20 Ne(p,d) 19 Ne reaction, performed in inverse kinematics at the experimental storage ring (ESR) as a means of accessing the astrophysically important 4.033 MeV state in 19 Ne. The unique, background free, high luminosity conditions of the storage ring were utilized for this, the first transfer reaction performed at the ESR. The results of this pioneering test experiment are presented along with suggestions for future measurements at storage ring facilities. (paper)

  14. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  15. Observational astrophysics

    CERN Document Server

    Léna, Pierre; Lebrun, François; Mignard, François; Pelat, Didier

    2012-01-01

    This is the updated, widely revised, restructured and expanded third edition of Léna et al.'s successful work Observational Astrophysics. It presents a synthesis on tools and methods of observational astrophysics of the early 21st century. Written specifically for astrophysicists and graduate students, this textbook focuses on fundamental and sometimes practical limitations on the ultimate performance that an astronomical system may reach, rather than presenting particular systems in detail. In little more than a decade there has been extraordinary progress in imaging and detection technologies, in the fields of adaptive optics, optical interferometry, in the sub-millimetre waveband, observation of neutrinos, discovery of exoplanets, to name but a few examples. The work deals with ground-based and space-based astronomy and their respective fields. And it also presents the ambitious concepts behind space missions aimed for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spec...

  16. Observational astrophysics

    CERN Document Server

    Smith, Robert C

    1995-01-01

    Combining a critical account of observational methods (telescopes and instrumentation) with a lucid description of the Universe, including stars, galaxies and cosmology, Smith provides a comprehensive introduction to the whole of modern astrophysics beyond the solar system. The first half describes the techniques used by astronomers to observe the Universe: optical telescopes and instruments are discussed in detail, but observations at all wavelengths are covered, from radio to gamma-rays. After a short interlude describing the appearance of the sky at all wavelengths, the role of positional astronomy is highlighted. In the second half, a clear description is given of the contents of the Universe, including accounts of stellar evolution and cosmological models. Fully illustrated throughout, with exercises given in each chapter, this textbook provides a thorough introduction to astrophysics for all physics undergraduates, and a valuable background for physics graduates turning to research in astronomy.

  17. Particle physics-astrophysics working group

    International Nuclear Information System (INIS)

    Cronin, J.W.; Kolb, E.W.

    1989-01-01

    The working group met each afternoon and listened to mini-symposia on a broad range of subjects covering all aspects of particle physics---astrophysics both theoretical and experimental. This paper reports that as a result, a number of papers which follow were commissioned to reflect the present status and future prospects of the field

  18. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  19. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2007-01-01

    Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these nuclear reactions create the elements the stars, planets and - ultimately - we humans consist of. The present book treats these topics in detail. It also presents the nuclear reaction and structure theory, thermonuclear reaction rate formalism and stellar nucleosynthesis. The topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves bo

  20. Nuclear theory group progress report and renewal proposal. December 1, 1978--November 30, 1979

    International Nuclear Information System (INIS)

    Brown, G.E.; Jackson, A.D.; Kuo, T.T.S.

    1979-01-01

    The proposed work covers a broad range of topics in theoretical nuclear and intermediate-energy physics and in nuclear astrophysics. With free nucleon--nucleon interactions as a basis, effective forces in nuclei are constructed through a chain of field-theoretic, dispersions and many-body techniques. Dynamical theories of nuclear excitations are constructed. Infinite nuclear systems at a variety of densities are studied in order to determine reliable equations of state for nuclear and neutron matter. These equations of state are applied in astrophysical problems, such as the gravitational collapse of stars, as well as in standard nuclear contexts. Brief summaries of individual projects completed and planned are given. Completed research is reported in the appropriate places

  1. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  2. 14th International School of Cosmic Ray Astrophysics

    CERN Document Server

    Stanev, Todor; Wefel, John P; Neutrinos and explosive events in the universe

    2005-01-01

    This volume contains the Lectures and selected participant contributions to the 14th Course of the International School of Cosmic Rays Astrophysics, a NATO Advanced Study Institute. Well known astrophysicists and astronomers discuss different aspects of the generation of high energy signals in powerful astrophysical objects concentrating on the production of neutrinos and gamma rays from high energy particle interactions. Recent results from new experiments and observatories are presented. Topics cover a wide range including the Spitzer infrared observatory, TeV gamma ray observations, dark matter, and neutrino telescopes. The combination of basic knowledge about the production of high energy signals with information about the data analysis of ongoing observations places the book between the usual levels of a textbook and a conference proceedings. It will give the reader a good introduction to the current field of astroparticle physics, and some of the fascinating astrophysics being addressed.

  3. The NUCLEONICA Nuclear Science Portal

    International Nuclear Information System (INIS)

    Magill, Joseph; Dreher, Raymond

    2009-01-01

    NUCLEONICA (www.nucleonica.net) is a new nuclear science web portal which provides a customisable, integrated environment and collaboration platform using the latest internet 'Web 2.0' technology. NUCLEONICA is aimed at professionals, academics and students working in nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. A unique feature of the portal is the wide range of user friendly web-based nuclear science applications. The portal is also ideal for education and training purposes and as a knowledge management platform to preserve nuclear knowledge built up over many decades.

  4. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  5. Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer

    Science.gov (United States)

    Pikichyan, H. V.

    2017-07-01

    In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.

  6. Institute of Nuclear Chemistry of Mainz University. Annual report 1987

    International Nuclear Information System (INIS)

    Weber, M.

    1988-06-01

    Apart from the traditional topics of the institute's five working groups, i.e. rapid separation and exotic nuclei, nuclear structures, nuclear fission, heavy ion reactions, and ecology of radionuclides, the report includes papers investigating into the chemistry of the heaviest elements, papers on nuclear astrophysics, and brief contributions on applied radioactivity in anticipation of further and more detailed ones. Most of the studies are the result of national and international efforts in the sense of modern co-operative research. The report refers to the institute's collaboration with university teams and research institutes. (orig./RB) [de

  7. Resonant elastic scattering, inelastic scattering and astrophysical reactions; Diffusion elastique resonante, diffusion inelastique et reactions astrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira Santos, F. [Grand Accelerateur National d' Ions Lourds, UMR 6415, 14 - Caen (France)

    2007-07-01

    Nuclear reactions can occur at low kinetic energy. Low-energy reactions are characterized by a strong dependence on the structure of the compound nucleus. It turns out that it is possible to study the nuclear structure by measuring these reactions. In this course, three types of reactions are treated: Resonant Elastic Scattering (such as N{sup 14}(p,p)N{sup 14}), Inelastic Scattering (such as N{sup 14}(p,p')N{sup 14*}) and Astrophysical reactions (such as N{sup 14}(p,{gamma})O{sup 15}). (author)

  8. The usage of numerical code FLASH in plasma astrophysics

    OpenAIRE

    BROŽ, Jaroslav

    2013-01-01

    My diploma thesis is focused on the use of numerical computer codes for simulation in plasma astrophysics. They will learn the basic characteristics of the Sun, a closer focus on the solar corona and the solar corona heating problem. The following section is devoted to simulation software in plasma astrophysics, their installing and displaying the results using the visualization software. In the conclusion is demonstrated using this software on a model example and a simulation that performs s...

  9. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    Trainor, T.A.; Weitkamp, W.G.

    1985-04-01

    Progress is reported in these areas: nuclear physics relevant to astrophysics and cosmology; nuclear structure of 14 N; the Cabibbo angle in Fermi matrix elements of high j states; giant resonances; heavy ion reactions; 0 + - 0 - isoscalar parity mixing in 14 N; parity mixing in hydrogen and deuterium; medium energy physics; and accelerator mass spectrometry. Accelerators and ion sources, nuclear instrumentation, and computer systems at the university are discussed, including the booster linac project

  10. A plasma deflagration accelerator as a platform for laboratory astrophysics

    Science.gov (United States)

    Underwood, Thomas C.; Loebner, Keith T. K.; Cappelli, Mark A.

    2017-06-01

    The replication of astrophysical flows in the laboratory is critical for isolating particular phenomena and dynamics that appear in complex, highly-coupled natural systems. In particular, plasma jets are observed in astrophysical contexts at a variety of scales, typically at high magnetic Reynolds number and driven by internal currents. In this paper, we present detailed measurements of the plasma parameters within deflagration-produced plasma jets, the scaling of these parameters against both machine operating conditions and the corresponding astrophysical phenomena. Using optical and spectroscopic diagnostics, including Schlieren cinematography, we demonstrate the production of current-driven plasma jets of ∼100 km/s and magnetic Reynolds numbers of ∼100, and discuss the dynamics of their acceleration into vacuum. The results of this study will contribute to the reproduction of various types of astrophysical jets in the laboratory and indicate the ability to further probe active research areas such as jet collimation, stability, and interaction.

  11. When neutrinos attack - the impact of agressive neutrinos in astrophysics.

    Science.gov (United States)

    Kneller, James

    2004-11-01

    Of all the constituents within the standard model of particle physics our understanding of the neutrino has benefited the most from the interaction of astrophysics and `terraphysics'. Much has been learned about the properties of the neutrino from each: experiments here on Earth temper our appreciation of the role that neutrinos play in the cosmos while astrophysics can provide the densities and temperatures in which the neutrinos do more than simply flee. But their reluctance to interact means that it is not until we venture into the most extreme environments of astrophysics that we observe neutrinos pushing back' as hard as they are being pushed'. We review two sites where this occurs: the early Universe and the accretion disk, engines' of gamma ray bursts. Neutrinos play an important role in the evolution of the early Universe with a particular focus upon the electron neutrino in determining the primordial elemental composition via its participation in the most important reaction at that time. Within gamma ray burst accretion disks we again see the electron neutrinos at work in the nuclear reactions and through their function as the coolant' for the disk. Removal of the disk energy, and its deposition into the remnants of the massive star surrounding the disk, may lead to the formation of highly relativistic jets that will later be observed as the burst. We show what has been learned so far about the neutrino and its properties from the study of such environments and discuss where future research is heading.

  12. Nuclear astrophysics of supernovae

    International Nuclear Information System (INIS)

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ 0 , and then /rho/ > /rho/ 0 and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs

  13. Nuclear Reaction Data File for Astrophysics (NRDF/A) in Hokkaido University Nuclear Reaction Data Center

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Kimura, Masaaki; Furutachi, Naoya; Makinaga, Ayano; Togashi, Tomoaki; Otuka, Naohiko

    2010-01-01

    The activities of the Japan Nuclear Reaction Data Centre is explained. The main task of the centre is data compilation of Japanese nuclear reaction data in collaboration of the International Network of Nuclear Reaction Data Centres. As one of recent activities, preparation of a new database (NRDF/A) and evaluation of astronuclear reaction data are reported. Collaboration in the nuclear data activities among Asian countries is proposed.

  14. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  15. Photonuclear reactions in astrophysical p-process: Theoretical calculations and experiment simulation based on ELI-NP

    Science.gov (United States)

    Xu, Yi; Luo, Wen; Balabanski, Dimiter; Goriely, Stephane; Matei, Catalin; Tesileanu, Ovidiu

    2017-09-01

    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the astrophysical reaction rates of (γ,n), (γ,p), and (γ,α) reactions are computed within the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12 Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.

  16. Astrophysics at very high energies

    International Nuclear Information System (INIS)

    Aharonian, Felix; Bergstroem, Lars; Dermer, Charles

    2013-01-01

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  17. SkyNet: Modular nuclear reaction network library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  18. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1990-06-01

    We shall organize the description of our many activities under following broad headings: Strong Interaction Physics: the physics of hadrons; QCD and the nucleus; and QCD at finite temperature and high density. Relativistic Heavy Ion Physics. Nuclear Structure and Many-body Theory. Nuclear Astrophysics. While these are the main areas of activity of the Stony Brood group, they do not cover all activities

  19. Analogue Hawking radiation from astrophysical black-hole accretion

    International Nuclear Information System (INIS)

    Das, Tapas K

    2004-01-01

    We show that spherical accretion onto astrophysical black holes can be considered as a natural example of an analogue system. We provide, for the first time, an exact analytical scheme for calculating the analogue Hawking temperature and surface gravity for general relativistic accretion onto astrophysical black holes. Our calculation may bridge the gap between the theory of transonic astrophysical accretion and the theory of analogue Hawking radiation. We show that the domination of the analogue Hawking temperature over the actual Hawking temperature may be a real astrophysical phenomenon, though observational tests of this fact will at best be difficult and at worst might prove to be impossible. We also discuss the possibilities of the emergence of analogue white holes around astrophysical black holes. Our calculation is general enough to accommodate accreting black holes with any mass

  20. Recent progress on astrophysical opacity

    International Nuclear Information System (INIS)

    Rogers, F.J.; Iglesias, C.A.

    1992-08-01

    Improvements in the calculation of the opacity of astrophysical plasmas has helped to resolve several long-standing puzzles in the modeling of variable stars. The most significant opacity enhancements over the Los Alamos Astrophysical Library (LAOL) are due to improvements in the equation of state and atomic physics. Comparison with experiment has corroborated the predicted large opacity increases due to transitions in M-shell iron. We give a summary of recent developments

  1. Half-lives of ground and isomeric states in {sup 97}Cd and the astrophysical origin of {sup 96}Ru

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, G., E-mail: lorusso@ribf.riken.j [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Becerril, A.; Amthor, A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T.; Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Berryman, J.S. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Brown, B.A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Cyburt, R.H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Crawford, H.L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2011-05-09

    First experimental evidence for a high-spin isomer (25/2{sup +}) in {sup 97}Cd, a waiting point in the astrophysical rapid proton capture process, is presented. The data were obtained in {beta}-decay studies at NSCL using the new RF Fragment Separator system and detecting {beta}-delayed protons and {beta}-delayed {gamma} rays. Decays from ground and isomeric states were disentangled, and proton emission branches were determined for the first time. We find half-lives of 1.10(8) s and 3.8(2) s, and {beta}-delayed proton emission branches of 12(2)% and 25(4)% were deduced for the ground and isomeric states, respectively. With these results, the nuclear data needed to determine an rp-process contribution to the unknown origin of solar {sup 96}Ru are in place. When the new data are included in astrophysical rp-process calculations, one finds that an rp-process origin of {sup 96}Ru is unlikely.

  2. Status Report of Nuclear Data Activities at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Nesaraja, C. [Oak Ridge National Laboratory, US DOE, Oak Ridge, TN 37831 (United States)

    2013-08-15

    of neutron capture cross sections on 130,132Sn employing Fermi gas level density formulations. For more information on the work please refer to {sup S}tructures of exotic 131,133Sn isotopes and effect on r-process nucleosynthesis{sup ,} Shi-Sheng Zhang, M. S. Smith, G. Arbanas, R. L. Kozub, Phys. Rev. C 86 (2012) 032802(R). iii) Online Software Systems: Our nuclear astrophysics data activity also includes software work to improve and expand the functionality of the Computational Infrastructure for Nuclear Astrophysics (CINA). This suite enables users to make the connection between laboratory nuclear physics results - and USNDP data bases - and astrophysical simulations with just a few mouse clicks. Researchers from several institutions in several countries use this software system for their research. A related tool at nuclearmasses.org is also periodically updated with the latest mass measurements as compiled by McMaster Univ., as well as with the latest theoretical mass models. Future Activities: Future mass chains will be evaluated within the range A=241-249 the range assigned to ORNL, as well as others assigned by USNDP/NNDC.

  3. European Research Council supports an extensive study of the astrophysical p-process

    International Nuclear Information System (INIS)

    Gyuerky, Gy.

    2008-01-01

    Complete text of publication follows. The astrophysical p-process, the production mechanism of the heavy proton rich isotopes (the so-called p-nuclei) is still one of the least understood processes of nucleosynthesis. The modeling of the process requires a huge network of thousands of reactions where the rates of the involved reactions represent one of the biggest uncertainty in the resulting abundances of p-nuclei. In lack of experimental data the required reaction rates are taken from statistical model calculations which proved to be inaccurate in the mass and energy range relevant for the p-process. The systematic experimental study of the relevant reactions is therefore crucial to test the calculated reaction rates, to select the best input parameters for the calculations and, consequently, to contribute to a better understanding of the astrophysical p-process. The European Research Council (ERC) has acknowledged this need for experimental data when they decided to support a project devoted to this subject. In 2007 the first call of the ERC Frontier Research Scheme (Starting Grants) has been launched within the FP7 Specific Programme 'IDEAS'. From the very high number of applications, the peer reviewers of the ERC Scientific Council has recommended for funding the proposal entitled 'Nuclear reaction studies relevant to the astrophysical p-process nucleosynthesis'. An amount of 750,000 Euro has been allocated to the project for a 5 year duration. The starting date of the project was 1st July, 2008. With the ERC support, an extensive experimental study of the p-process is being carried out. The experiments will be carried out almost exclusively with the accelerators of the ATOMKI. The financial support allows to largely improve the available experimental technique. The purchase of two large volume HPGe detectors is in progress as a result of a public procurement. The upgrade of the nuclear electronics and data acquisition system used for p-process related

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India. Kavli Institute for Astronomy & Astrophysics, Peking University, Beijing 100871, China. National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia, Canada. Thirty Meter Project Office, ...

  5. Astrophysics science operations - Near-term plans and vision

    Science.gov (United States)

    Riegler, Guenter R.

    1991-01-01

    Astrophysics science operations planned by the Science Operations branch of NASA Astrophysics Division for the 1990s for the purpose of gathering spaceborne astronomical data are described. The paper describes the near-future plans of the Science Operations in the areas of the preparation of the proposal; the planning and execution of spaceborne observations; the collection, processing, and analysis data; and the dissemination of results. Also presented are concepts planned for introduction at the beginning of the 20th century, including the concepts of open communications, transparent instrument and observatory operations, a spiral requirements development method, and an automated research assistant.

  6. Astrophysics with small satellites in Scandinavia

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.......The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved....

  7. The quark-hadron transition in cosmology and astrophysics.

    Science.gov (United States)

    Olive, K A

    1991-03-08

    A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.

  8. THE LINK BETWEEN RARE-EARTH PEAK FORMATION AND THE ASTROPHYSICAL SITE OF THE R PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Mumpower, Matthew R. [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); McLaughlin, Gail C. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Surman, Rebecca [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Steiner, Andrew W., E-mail: matthew@mumpower.net [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2016-12-20

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process ( r process). The rare-earth peak that is seen in the solar r -process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. We introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β -decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical of hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. For each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.

  9. THE LINK BETWEEN RARE-EARTH PEAK FORMATION AND THE ASTROPHYSICAL SITE OF THE R PROCESS

    International Nuclear Information System (INIS)

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca; Steiner, Andrew W.

    2016-01-01

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process ( r process). The rare-earth peak that is seen in the solar r -process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. We introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β -decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical of hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. For each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.

  10. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  11. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  12. Distance correlation methods for discovering associations in large astrophysical databases

    International Nuclear Information System (INIS)

    Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P.

    2014-01-01

    High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension, can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.

  13. Measurements of the Coulomb dissociation cross section of 156 MeV 6Li projectiles at extremely low relative fragment energies of astrophysical interest

    International Nuclear Information System (INIS)

    Kiener, J.; Gils, H.J.; Rebel, H.; Zagromski, S.; Gsottschneider, G.; Heide, N.; Jelitto, H.; Wentz, J.; Baur, G.

    1991-04-01

    Coulomb dissociation of light nuclear projectiles in the electric field of heavy target nuclei has been experimentally investigated as an alternative access to radiative capture cross sections at low relative energies of the fragments, which are of astrophysical interest. As a pilot experiment the breakup of 156 MeV 6 Li-projectiles at 208 Pb with small emission angles of the a particle and deuteron fragments has been studied. Both fragments were coincidentally detected in the focal plane of a magnetic spectrograph at several reaction angles well below the grazing angle and with relative angles between the fragments of 0deg-2deg. The experimental cross sections have been analyzed on the basis of the Coulomb breakup theory. The results for the resonant breakup give evidence for the strong dominance of the Coulomb dissociation mechanism and the absence of nuclear distortions, while the cross section for the nonresonant breakup follow theoretical predictions of the astrophysical S-factor and extrapolations of corresponding radiative capture reaction cross section to very low c. m. energies of the a particle and deuterons. Various implications of the approach are discussed. (orig.) [de

  14. Charged particle induced thermonuclear reaction rates: a compilation for astrophysics

    International Nuclear Information System (INIS)

    Grama, C.

    1999-01-01

    We report on the results of the European network NACRE (Nuclear Astrophysics Compilation of REaction rates). The principal reason for setting up the NACRE network has been the necessity of building up a well-documented and detailed compilation of rates for charged-particle induced reactions on stable targets up to Si and on unstable nuclei of special significance in astrophysics. This work is meant to supersede the only existing compilation of reaction rates issued by Fowler and collaborators. The main goal of NACRE network was the transparency in the procedure of calculating the rates. More specifically this compilation aims at: 1. updating the experimental and theoretical data; 2. distinctly identifying the sources of the data used in rate calculation; 3. evaluating the uncertainties and errors; 4. providing numerically integrated reaction rates; 5. providing reverse reaction rates and analytical approximations of the adopted rates. The cross section data and/or resonance parameters for a total of 86 charged-particle induced reactions are given and the corresponding reaction rates are calculated and given in tabular form. Uncertainties are analyzed and realistic upper and lower bounds of the rates are determined. The compilation is concerned with the reaction rates that are large enough for the target lifetimes shorter than the age of the Universe, taken equal to 15 x 10 9 y. The reaction rates are provided for temperatures lower than T = 10 10 K. In parallel with the rate compilation a cross section data base has been created and located at the site http://pntpm.ulb.ac.be/nacre..htm. (authors)

  15. 2004 ASTRONOMY & ASTROPHYSICS

    Indian Academy of Sciences (India)

    user

    This publication of the Academy on Astronomy and Astrophysics is unique in ... bring out position papers on societal issues where science plays a major ..... funding agencies, the Astronomical Society of ..... orbit very close to the parent star.

  16. 78 FR 2293 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-01-10

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... meeting includes the following topics: --Astrophysics Division Update --NASA Astrophysics Roadmapping It...

  17. 78 FR 66384 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-11-05

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update --Presentation of Astrophysics Roadmap --Reports from Program Analysis Groups...

  18. 75 FR 51116 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-08-18

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... topics: --Astrophysics Division Update --2010 Astronomy and Astrophysics Decadal Survey --Update on...

  19. Japan Nuclear Reaction Data Centre (JCPRG), Progress Report

    International Nuclear Information System (INIS)

    Aikawa, M.

    2012-01-01

    In this report, we review the activities of Japan Nuclear Reaction Data Centre (JCPRG) since the last NRDC meeting in 2011. Our main objectives are as follows: a) Compilation of nuclear reaction data for two databases, NRDF and EXFOR b) Evaluation of astrophysical nuclear reaction data c) Development of software and systems d) Development of collaboration among Asian countries. (author)

  20. Recent Progresses in Ab-Initio Studies of Low-Energy Few-Nucleon Reactions of Astrophysical Interest

    Science.gov (United States)

    Marcucci, Laura E.

    2017-03-01

    We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis. Related to this, we will discuss also the most recent calculation of tritium β -decay. Two frameworks will be considered, the conventional and the chiral effective field theory approach.

  1. 75 FR 2893 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-01-19

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the... following topics: --Astrophysics Division Update --Updates on Select Astrophysics Missions --Discussion of...

  2. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Anjan A. Sen. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 33 Review. Cosmology and Astrophysics using the Post-Reionization HI · Tapomoy Guha Sarkar Anjan A. Sen · More Details Abstract Fulltext PDF.

  3. Astrophysics a very short introduction

    CERN Document Server

    Binney, James

    2016-01-01

    Astrophysics is the physics of the stars, and more widely the physics of the Universe. It enables us to understand the structure and evolution of planetary systems, stars, galaxies, interstellar gas, and the cosmos as a whole. In this Very Short Introduction, the leading astrophysicist James Binney shows how the field of astrophysics has expanded rapidly in the past century, with vast quantities of data gathered by telescopes exploiting all parts of the electromagnetic spectrum, combined with the rapid advance of computing power, which has allowed increasingly effective mathematical modelling. He illustrates how the application of fundamental principles of physics - the consideration of energy and mass, and momentum - and the two pillars of relativity and quantum mechanics, has provided insights into phenomena ranging from rapidly spinning millisecond pulsars to the collision of giant spiral galaxies. This is a clear, rigorous introduction to astrophysics for those keen to cut their teeth on a conceptual trea...

  4. Allen's astrophysical quantities

    CERN Document Server

    2000-01-01

    This new, fourth, edition of Allen's classic Astrophysical Quantities belongs on every astronomer's bookshelf. It has been thoroughly revised and brought up to date by a team of more than ninety internationally renowned astronomers and astrophysicists. While it follows the basic format of the original, this indispensable reference has grown to more than twice the size of the earlier editions to accommodate the great strides made in astronomy and astrophysics. It includes detailed tables of the most recent data on: - General constants and units - Atoms, molecules, and spectra - Observational astronomy at all wavelengths from radio to gamma-rays, and neutrinos - Planetary astronomy: Earth, planets and satellites, and solar system small bodies - The Sun, normal stars, and stars with special characteristics - Stellar populations - Cataclysmic and symbiotic variables, supernovae - Theoretical stellar evolution - Circumstellar and interstellar material - Star clusters, galaxies, quasars, and active galactic nuclei ...

  5. BRAVO (Brazilian Astrophysical Virtual Observatory): data mining development

    Science.gov (United States)

    De Carvalho, R. R.; Capelato, H. V.; Velho, H. C.

    2007-08-01

    The primary goal of the BRAVO project is to generate investment in information technology, with particular emphasis on datamining and statistical analysis. From a scientific standpoint, the participants assembled to date are engaged in several scientific projects in various fields of cosmology, astrophysics, and data analysis, with significant contributions from international partners. These scientists conduct research on clusters of galaxies, small groups of galaxies, elliptical galaxies, population synthesis, N-body simulations, and a variety of studies in stellar astrophysics. One of the main aspects of this project is the incorporation of these disparate areas of astrophysical research within the context of the coherent development of database technology.Observational cosmology is one of the branches of science experiencing the largest growth in the past few decades. large photometric and spectroscopic surveys have been carried out in both hemispheres. As a result, an extraordinary amount of data in all portions of the electromagnetic spectrum exists, but without standard techniques for storage and distribution. This project will utilize several specific astronomical databases, created to store data generated by several instruments (including SOAR, Gemini, BDA, etc), uniting them within a common framework and with standard interfaces. We are inviting members of the entire Brazilian astronomical community to partake in this effort. This will certainly impact both education and outreach efforts, as well as the future development of astrophysical research. Finally, this project will provide a constant investment in human resources. First, it will do so by stimulating ongoing short technical visits to Johns Hopkins University and Caltech. These will allow us to bring software technology and expertise in datamining back to Brazil. Second, we will organize the Summer School on Software Technology in Astrophysics, which will be designed to ensure that the Brazilian

  6. Results of nuclear fusion development

    International Nuclear Information System (INIS)

    Yamamoto, Kenzo

    1975-01-01

    Compared with the nuclear fission research which followed that in advanced countries, Japan has treaded on its own track in nuclear fusion development; in the former, she had been far behind other leading countries. Characteristic of the efforts in Japan is the collaboration with educational institutions. Works are now carried out mainly in Tokamak plasma confinement, though other means being studied simultaneously. The nation's fusion research program is the realization of a fusion reactor at the turn of the present century, based on the world-level results attained with Tokamak. Past developments in the nuclear fusion research, the current status, and aspects for the future are discribed. (Mori, K.)

  7. Astrophysics in a nutshell from the telescope to the sputnik

    International Nuclear Information System (INIS)

    Alfven, H.; Faelthammar, C.G.

    1988-03-01

    Progress in astrophysics - as well as in many other sciences - is not only due to new ideas but also to the introduction of new methods of observation. The 'Copernican revolution' was more due to the introduction of the telescope than to the heliocentric model which had been invented 2000 years earlier. Further, the decisive importance of electromagnetic effects in astrophysics originated from Langmuir's invention of the plasma probe and from Birkeland's terrella experiment and his observations of plasma in space (aurora). A similar revolution has now been introduced by space research which has made possible in situ measurements in cosmic plasmas and has opened the X-ray and γ-ray regions to observation. The result is a drastic revision of essential parts of astrophysics (including cosmology) leading to the 'Plasma Universe' model. (authors)

  8. Nuclear Physics Laboratory 1981 annual report

    International Nuclear Information System (INIS)

    1981-06-01

    Research progress is reported in the following areas: astrophysics and cosmology, nuclear tests of fundamental symmetries, parity mixing in the hydrogen atom, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, final design and construction of the magnetic momentum filter, instrumentation and experimental techniques, and computers and computing. Publications are listed

  9. Solar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, G

    1978-04-01

    The current state of neutrino solar astrophysics is outlined, showing the contradictions between the experimental results of solar neutrino detection and the standard solar models constructed on the basis of the star structure and development theory, which give values for high-energy neutrino fluxes considerably exceeding the upper experimental limit. A number of hypotheses interpreting the experimental results are summarized. The hypotheses are critically assessed and experiments are recommended for refining or verifying experimental data. Also dealt with are nuclear reactions in the Sun, as is the attempt to interpret the anomalous by high /sup 3/He fluxes from the Sun and the relatively small amounts of solar neutrinos and gamma quanta. The importance is emphasized of the simultaneous and complex measurement of the fluxes of neutrons, gamma radiation, and isotopes of hydrogen, helium, and boron from the Sun as indicators of nuclear reactions in the Sun.

  10. Atomic effects of beta decay in astrophysics and in elementary particle physics

    International Nuclear Information System (INIS)

    Zonghua, Chen.

    1988-01-01

    The thesis consists mainly of two parts. The first part is a study of the bound-state β decay of 187 Re and its application in Astrophysics. There existed an uncertainty in the ratio ρ b of bound-state to continuum β decay of 187 Re in both theory and experiment. A more definite theoretical result of ρ b ∼ 1% is obtained by using single-configuration and multi-configuration Hartree-Fock-Dirac approximations. The results obtained are close to those obtained by Williams, Fowler, and Koonin by a modified Thomas-Fermi model. The bound-state β decay of 187 Re at high temperatures is also studied. The second part of the thesis is a generalization of the Thomas-Fermi results of various energy contribution to the ground-state energy of a neutral atom. An analytical expression for the ratio of the electron-electron to electron-nuclear interaction is obtained by the corrected Thomas-Fermi result, the ratio obtained gives a better agreement with the Hartree-Fock numerical results

  11. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  12. Global kinetic theory of astrophysical jets

    International Nuclear Information System (INIS)

    Chang, T.

    1989-01-01

    We suggest that an astrophysical plasma stream flowing outward from a central object aling an open magnetic field line with decreasing field strength generally will have anisotropic velocity distributions. I particular, the electron distribution function of this type of plasma streams will contain a 'thermally populated' region and a stretche out high energy tail (or 'jet-like') region collimated in the utward direction of the magnetic field line. Our argument is based on a global, collisional, kinetic theory. Because the 'kinetic jets' are always pointed aling the outward direction of the field lines, thy are automatically collimated and will assume whatever the peculiar geometries dictated by the magnetic field. This result should be useful in the understanding of the basic structures of such diverse astrophysical objects as the extragalactic radio jets, stellar winds, the solar wind, planetary polar winds, and galactic jets. (author). 8 refs.; 2 figs

  13. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  14. Investigations in γ-Ray Astrophysics and Astroparticle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Krennrich, Frank [Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy

    2016-06-28

    This report describes the status of data analysis efforts, results and publications of research grant DE-SC0009917. The research is focused on TeV gamma-ray studies of astrophysical sources and related particle physics questions.

  15. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1962-01-01

    Advances in Astronomy and Astrophysics, Volume 1 brings together numerous research works on different aspects of astronomy and astrophysics. This book is divided into five chapters and begins with an observational summary of the shock-wave theory of novae. The subsequent chapter provides the properties and problems of T tauri stars and related objects. These topics are followed by discussions on the structure and origin of meteorites and cosmic dust, as well as the models for evaluation of mass distribution in oblate stellar systems. The final chapter describes the methods of polarization mea

  16. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1963-01-01

    Advances in Astronomy and Astrophysics, Volume 2 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of six chapters and begins with a summary of observational record on twilight extensions of the Venus cusps. The next chapter deals with the common and related properties of binary stars, with emphasis on the evaluation of their cataclysmic variables. Cataclysmic variables refer to an object in one of three classes: dwarf nova, nova, or supernova. These topics are followed by discussions on the eclipse phenomena and the eclipses i

  17. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1966-01-01

    Advances in Astronomy and Astrophysics, Volume 4 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with a description of objective prism and its application in space observations. The next chapter deals with the possibilities of deriving reliable models of the figure, density distribution, and gravity field of the Moon based on data obtained through Earth-bound telescopes. These topics are followed by a discussion on the ideal partially relativistic, partially degenerate gas in an exact manner. A ch

  18. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1968-01-01

    Advances in Astronomy and Astrophysics, Volume 6 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with the description of improved methods for analyzing and classifying families of periodic orbits in a conservative dynamical system with two degrees of freedom. The next chapter describes the variation of fractional luminosity of distorted components of close binary systems in the course of their revolution, or the accompanying changes in radial velocity. This topic is followed by discussions on vari

  19. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  20. Searches for astrophysical neutrinos with IceCube

    International Nuclear Information System (INIS)

    Williams, D.

    2014-01-01

    Powerful astrophysical objects such as active galactic nuclei (AGN), core collapse supernovae and gamma ray bursts (GRBs) are potential sources of the highest energy cosmic rays. Many models of cosmic ray proton acceleration predict a corresponding flux of neutrinos in the TeV-PeV energy range. The detection of astrophysical neutrinos requires the largest neutrino detector ever built: IceCube, a cubic-kilometer array located near the geographic South Pole. IceCube has been collecting data throughout its construction, which was complete in December 2010. Data from the partial IceCube detector have already set interesting limits on astrophysical neutrino fluxes, including stringent limits on neutrino production in GRBs. (authors)

  1. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  2. Visualization needs and techniques for astrophysical simulations

    International Nuclear Information System (INIS)

    Kapferer, W; Riser, T

    2008-01-01

    Numerical simulations have evolved continuously towards being an important field in astrophysics, equivalent to theory and observation. Due to the enormous developments in computer sciences, both hardware- and software-architecture, state-of-the-art simulations produce huge amounts of raw data with increasing complexity. In this paper some aspects of problems in the field of visualization in numerical astrophysics in combination with possible solutions are given. Commonly used visualization packages along with a newly developed approach to real-time visualization, incorporating shader programming to uncover the computational power of modern graphics cards, are presented. With these techniques at hand, real-time visualizations help scientists to understand the coherences in the results of their numerical simulations. Furthermore a fundamental problem in data analysis, i.e. coverage of metadata on how a visualization was created, is highlighted.

  3. Institute for Nuclear Theory annual report No. 1, March 1, 1990 --February 28, 1991

    International Nuclear Information System (INIS)

    Henley, E.M.; Haxton, W.

    1991-01-01

    This report discusses research on the following topics: quarks in nuclei; nuclear astrophysics; hard QCD probes of dense nuclear and hadronic matter; and electromagnetic interactions and few nucleon systems

  4. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  5. Astrophysical contributions of the International Ultraviolet Explorer

    International Nuclear Information System (INIS)

    Kondo, Y.; Boggess, A.; Maran, S.P.

    1989-01-01

    Findings that have been made by the IUE in a variety of astrophysical areas are reviewed. Results on stellar chromospheres and transition regions, evolutionary processes in interacting binaries, winds from early-type stars, the ISM, SN 1987A, active galactic nuclei, and solar system objects are addressed. 158 refs

  6. Astrophysics today

    International Nuclear Information System (INIS)

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more

  7. Nuclear physics of stars

    CERN Document Server

    Iliadis, Christian

    2015-01-01

    Most elements are synthesized, or ""cooked"", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book

  8. Black Hole Astrophysics The Engine Paradigm

    CERN Document Server

    Meier, David L

    2012-01-01

    As a result of significant research over the past 20 years, black holes are now linked to some of the most spectacular and exciting phenomena in the Universe, ranging in size from those that have the same mass as stars to the super-massive objects that lie at the heart of most galaxies, including our own Milky Way. This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work. Black Hole Astrophysics • reviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe; • highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research; • demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts; • explains to the reader the nature of the violent and spe...

  9. Astrophysics of Red Supergiants

    Science.gov (United States)

    Levesque, Emily M.

    2017-12-01

    'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.

  10. Third international workshop on compound nuclear reactions and related topics. Book of abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The conference was divided into the following sections: Fission; Surrogate reactions; Heavy ion reactions; Neutron-induced reactions; Gamma-ray strength functions; Nuclear astrophysics; Superheavy nuclei; Nuclear level density; Various nuclear reactions; Optical model simulations; and Pre-equilibrium. The publication contains 82 abstracts. (P.A.)

  11. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  12. Laboratory Astrophysics Division of The AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  13. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  14. [Experimental and theoretical nuclear physics]: 1988 Annual report

    International Nuclear Information System (INIS)

    1988-05-01

    This paper describes the highlights of the past year of the Nuclear Physics Laboratory at the University of Washington. Particular topics discussed are: astrophysics, giant resonance, heavy ion induced reactions, fundamental symmetries, nuclear reactions, medium energy reactions, accelerator mass spectrometry, Van de Graaf and ion sources, the booster linac project, instrumentation and computer systems

  15. Nuclear Physics Laboratory annual report

    International Nuclear Information System (INIS)

    1983-04-01

    Progress is described in the following areas: astrophysics and cosmology, nuclear structure and light ion reactions, giant resonances in radiative capture, heavy ion reations, nuclear tests of fundamental symmetries, parity violation in hydrogen, medium energy physics, accelerator mass spectrometry (C-14 and Be-10 radiochronology programs), accelerators and ion sources, magnetic spectrograph/momentum filter, instrumentation and experimental techniques, computers and computing, and the superconducting booster for the University of Washington tandem accelerator. Publications are listed

  16. New perspectives from nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-11-15

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications.

  17. New perspectives from nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Connections between nuclear physics and neighbouring disciplines of elementary particle physics, astrophysics and cosmology were emphasized at the International Symposium on Weak and Electromagnetic Interactions in Nuclei held in Heidelberg this summer in conjunction with the 600th anniversary of the University of Heidelberg. The meeting reflected the new trend in nuclear physics towards fundamental physics questions. Important subjects included the roles of the neutrino and of proton decay and their deep implications

  18. The Trojan Horse Method in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C., E-mail: spitaleri@lns.infn.it [Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia (Italy); Mukhamedzhanov, A. M. [Texas A and M University, Cyclotron Institute (United States); Blokhintsev, L. D. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Cognata, M. La [Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia (Italy); Pizzone, R. G.; Tumino, A. [INFN, Laboratori Nazionali del Sud (Italy)

    2011-12-15

    The study of energy production and nucleosynthesis in stars requires an increasingly precise knowledge of the nuclear reaction rates at the energies of interest. To overcome the experimental difficulties arising from the small cross sections at those energies and from the presence of the electron screening, the Trojan Horse Method has been introduced. The method provides a valid alternative path to measure unscreened low-energy cross sections of reactions between charged particles, and to retrieve information on the electron screening potential when ultra-low energy direct measurements are available.

  19. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  20. Plasma Astrophysics, Part I Fundamentals and Practice

    CERN Document Server

    Somov, Boris V

    2006-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  1. Astrophysical observations: lensing and eclipsing Einstein's theories.

    Science.gov (United States)

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  2. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  3. NASA Ames’ COSmIC Laboratory Astrophysics Facility: Recent Results and Progress

    Science.gov (United States)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2018-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1, 2]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of molecules, ions and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow generating; processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [3, 4].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular in the domain of the diffuse interstellar bands (DIBs) [5, 6] and the monitoring, in the laboratory, of the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [7] and planetary atmospheres [8, 9, 10]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs) will also be addressed as well as the implications for astronomy.References: [1] Salama F., Proceed. IAU S251, Kwok & Sandford eds. CUP, 4, 357 (2008).[2] Salama F., et al., Proceed. IAU S332, Y. Aikawa, M. Cunningham, T. Millar, eds., CUP (2018)[3] Biennier L., et al., J. Chem. Phys., 118, 7863 (2003)[4] Ricketts C. et al. IJMS, 300, 26 (2011)[5] Salama F., et al., ApJ., 728, 154 (2011)[6] EDIBLES

  4. 12th Italian-Korean Symposium on Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Won Lee, Hyung; Remo Riffini; Vereshchagin

    2013-01-01

    This series of biannual symposia, since 1987, has been boosting exchange of information and collaborations between Italian and Korean astrophysicists on new and hot issues in the field of Relativistic Astrophysics. These symposia cover relativistic field theories, astrophysics and cosmology, topics such as gamma-ray bursts and compact stars, high energy cosmic rays, dark energy and dark matter, general relativity, black holes, and new physics related to cosmology. The organizers are confident that this symposium could deepen the understanding of not only astrophysics and cosmology but also Eastern and Western cultures.

  5. Carbon dioxide and climate: an astrophysical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, R S

    1979-01-01

    In this survey the earth is viewed from the astrophysical perspective, i.e. using global mean values of environmental parameters. The role of carbon dioxide is described in the processes of energy transfer from the earth's surface to space, which determine global climate as measured by the mean surface temperature. Analogies and differences between the problems of the terrestrial atmosphere and those of the solar and stellar atmospheres are examined, both in the computation of model atmospheres and in remote sensing of atmospheric temperature and composition. Subsequently, the temporal astrophysical perspective, with a review of the evolution of CO/sub 2/ abundance and climate on astrophysical or geological time scales, on earth as an Venus (the runaway greenhouse) and on Mars is introduced. Variation of CO/sub 2/ may have been critical to the maintenance of an environment in which life could originate and evolve, and may itself have been affected by life. On human time scales, the recent and continuing increase in atmospheric CO/sub 2/ raises new problems, which are briefly surveyed. It is argued, that the differential greenhouse effect of increased CO/sub 2/ in the earth's atmosphere is essentially identifical to the blanketing effect of spectral lines on the temperature structure of stellar atmospheres. The methods used by astrophysicists in such studies are reviewed and compared with those used to evaluate the differential greenhouse effect of CO/sub 2/ in radiative-convective models of the earth's atmosphere. The latter methods remain relatively crude, but recent results by different authors are in reasonably good agreement; however, the astrophysical perspective, i.e. the use of one-dimensional global mean models, remains a gross simplification of the real complexity of the earth's climate system, which is also true in stellar atmospheres.

  6. Highlights of modern astrophysics: Concepts and controversies

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, V.

    1986-01-01

    In this book, physicists and astronomers review issues in astrophysics. The book stresses accomplishments of observational and theoretical work, and demonstrates how to reveal information about stars and galaxies by applying the basic principles of physics. It pinpoints conflicting views and findings on important topics and indicates possibilities for future research in the field of modern astrophysics

  7. Evaluation of the implementation of the R-matrix formalism with reference to the astrophysically important {sup 18}F(p,α){sup 15}O reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mountford, D.J., E-mail: d.j.mountford86@gmail.com [SUPA, School of Physics and Astronomy, University of Edinburgh, EH9 3JZ (United Kingdom); Boer, R.J. de [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Descouvemont, P. [Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Murphy, A. St. J. [SUPA, School of Physics and Astronomy, University of Edinburgh, EH9 3JZ (United Kingdom); Uberseder, E.; Wiescher, M. [Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-12-11

    Background. The R-Matrix formalism is a crucial tool in the study of nuclear astrophysics reactions, and many codes have been written to implement the relevant mathematics. One such code makes use of Visual Basic macros. A further open-source code, AZURE, written in the FORTRAN programming language is available from the JINA collaboration and a C++ version, AZURE2, has recently become available. Purpose The detailed mathematics and extensive programming required to implement broadly applicable R-Matrix codes make comparisons between different codes highly desirable in order to check for errors. This paper presents a comparison of the three codes based around data and recent results of the astrophysically important {sup 18}F(p,α){sup 15}O reaction. Methods Using the same analysis techniques as in the work of Mountford et al. parameters are extracted from the two JINA codes, and the resulting cross-sections are compared. This includes both refitting data with each code and making low-energy extrapolations. Results All extracted parameters are shown to be broadly consistent between the three codes and the resulting calculations are in good agreement barring a known low-energy problem in the original AZURE code. Conclusion The three codes are shown to be broadly consistent with each other and equally valid in the study of astrophysical reactions, although one must be careful when considering low lying, narrow resonances which can be problematic when integrating.

  8. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  9. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  10. Asian collaboration on nuclear reaction data compilation

    International Nuclear Information System (INIS)

    Aikawa, Masayuki; Furutachi, Naoya; Kato, Kiyoshi; Makinaga, Ayano; Devi, Vidya; Ichinkhorloo, Dagvadorj; Odsuren, Myagmarjav; Tsubakihara, Kohsuke; Katayama, Toshiyuki; Otuka, Naohiko

    2013-01-01

    Nuclear reaction data are essential for research and development in nuclear engineering, radiation therapy, nuclear physics and astrophysics. Experimental data must be compiled in a database and be accessible to nuclear data users. One of the nuclear reaction databases is the EXFOR database maintained by the International Network of Nuclear Reaction Data Centres (NRDC) under the auspices of the International Atomic Energy Agency. Recently, collaboration among the Asian NRDC members is being further developed under the support of the Asia-Africa Science Platform Program of the Japan Society for the Promotion of Science. We report the activity for three years to develop the Asian collaboration on nuclear reaction data compilation. (author)

  11. Astrophysical hints of axion-like particles

    Science.gov (United States)

    Roncadelli, M.; Galanti, G.; Tavecchio, F.; Bonnoli, G.

    2015-01-01

    After reviewing three astrophysical hints of the existence of axion-like particles (ALPs), we describe in more detail a new similar hint involving flat spectrum radio quasars (FSRQs). Detection of FSRQs above about 20GeV pose a challenge to very-high-energy (VHE) astrophysics, because at those energies the ultraviolet emission from their broad line region should prevent photons produced by the central engine to leave the source. Although a few astrophysical explanations have been put forward, they are totally ad hoc. We show that a natural explanation instead arises within the conventional models of FSRQs provided that photon-ALP oscillations occur inside the source. Our analysis takes the FSRQ PKR 1222+206 as an example, and it looks tantalizing that basically the same choice of the free model parameters adopted in this case is consistent with those that provide the other three hints of the existence of ALPs.

  12. The Astrophysical Multimessenger Observatory Network (AMON)

    Science.gov (United States)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  13. Stellar astrophysics

    International Nuclear Information System (INIS)

    1987-01-01

    A number of studies in the field of steller astrophysics were undertaken by the South African Astronomical Observatory in 1986. These studies included; evolutionary effects on the surface abundances of an early-type supergiant; hydrogen deficient stars; t tauri stars; rotational modulation and flares on RS CVn and BY Dra stars; carbon and heavy element stars, and slow variability and circumstellar shells of red variable stars. 4 figs

  14. NUCLEONICA: a nuclear science portal

    International Nuclear Information System (INIS)

    Magill, J.; Galy, J.; Dreher, R.; Hamilton, D.; Tufan, M.; Normand, C.; Schwenk-Ferrero, A.; Wiese, H.W.

    2008-01-01

    NUCLEONICA is a new nuclear science web portal from the European Commission's Joint Research Centre. The portal provides a customizable, integrated environment and collaboration platform for the nuclear sciences using the latest 'Web 2.0' dynamic technology. NUCLEONICA is aimed at professionals, academics and students working with radionuclides in fields as diverse as the life sciences (e.g., biology, medicine, agriculture), the earth sciences (geology, meteorology, environmental science) and the more traditional disciplines such as nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. It is also used as a knowledge management tool to preserve nuclear knowledge built up over many decades by creating modern web-based versions of so-called legacy computer codes. (authors)

  15. Solar, Stellar and Galactic Connections between Particle Physics and Astrophysics

    CERN Document Server

    Carraminana, Alberto

    2007-01-01

    This book collects extended and specialized reviews on topics linking astrophysics and particle physics at a level intermediate between a graduate student and a young researcher. The book includes also three reviews on observational techniques used in forefront astrophysics and short articles on research performed in Latin America. The reviews, updated and written by specialized researchers, describe the state of the art in the related research topics. This book is a valuable complement not only for research but also for lecturers in specialized course of high energy astrophysics, cosmic ray astrophysics and particle physics.

  16. Alpha-induced reaction cross section measurements on 151Eu for the astrophysical γ-process

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Elekes, Z.; Farkas, J.; Fueloep, Zs.; Halasz, Z.; Kiss, G.G.; Somorjai, E.; Szuecs, T.; Gueraya, R.T.; Oezkana, N.

    2010-01-01

    Compete text of publication follows. The astrophysical γ-process is the main production mechanism of the p-isotopes, the heavy, proton-rich nuclei not produced by neutron capture reactions in the astrophysical sand r-processes. The γ-process is a poorly known process of nucleosynthesis, the models are not able to reproduce well the p-isotope abundances observed in nature. Experimental data on nuclear reactions involved in γ-process reaction networks are clearly needed to provide input for a more reliable γ-process network calculation. As a continuation of our systematic study of reactions relevant for the γ-process, the cross sections of the 151 Eu(α, γ) 155 Tb and 151 Eu(α,n) 154 Tb reactions have been measured. These reactions have been chosen because α-induced cross section data in the region of heavy p-isotopes are almost completely missing although the calculations show a strong influence of these cross section on the resulting abundances. Since the reaction products of both reactions are radioactive, the cross sections have been measured using the activation technique. The targets have been prepared by evaporating Eu 2 O 3 enriched to 99.2% in 151 Eu onto thin Al foils. The target thicknesses have been measured by weighing and Rutherford Backscattering Spectroscopy. The targets have been irradiated by typically 1-2 μA intensity α-beams from the cyclotron of ATOMKI. The investigated energy range between 12 and 17 MeV was covered with 0.5 MeV steps. This energy range is somewhat higher than the astrophysically relevant one, but the cross section at astrophysical energies is so low that the measurements are not possible there. The γ- activity of the reaction products has been measured by a shielded HPGe detector. The absolute efficiency of the detector was measured with several calibration sources. Since 154 Tb has two long lived isomeric states, partial cross sections of the 151 Eu(α,n) 154 Tb reaction leading to the ground and isomeric states

  17. The High-Energy Astrophysics Learning Center, Version 1. [CD-ROM].

    Science.gov (United States)

    Whitlock, Laura A.; Allen, Jesse S.; Lochner, James C.

    The High-Energy Astrophysics (HEA) Learning Center gives students, teachers, and the general public a window into the world of high-energy astrophysics. The universe is revealed through x-rays and gamma rays where matter exists under extreme conditions. Information is available on astrophysics at a variety of reading levels, and is illustrated…

  18. Statistics and Informatics in Space Astrophysics

    Science.gov (United States)

    Feigelson, E.

    2017-12-01

    The interest in statistical and computational methodology has seen rapid growth in space-based astrophysics, parallel to the growth seen in Earth remote sensing. There is widespread agreement that scientific interpretation of the cosmic microwave background, discovery of exoplanets, and classifying multiwavelength surveys is too complex to be accomplished with traditional techniques. NASA operates several well-functioning Science Archive Research Centers providing 0.5 PBy datasets to the research community. These databases are integrated with full-text journal articles in the NASA Astrophysics Data System (200K pageviews/day). Data products use interoperable formats and protocols established by the International Virtual Observatory Alliance. NASA supercomputers also support complex astrophysical models of systems such as accretion disks and planet formation. Academic researcher interest in methodology has significantly grown in areas such as Bayesian inference and machine learning, and statistical research is underway to treat problems such as irregularly spaced time series and astrophysical model uncertainties. Several scholarly societies have created interest groups in astrostatistics and astroinformatics. Improvements are needed on several fronts. Community education in advanced methodology is not sufficiently rapid to meet the research needs. Statistical procedures within NASA science analysis software are sometimes not optimal, and pipeline development may not use modern software engineering techniques. NASA offers few grant opportunities supporting research in astroinformatics and astrostatistics.

  19. Balance in the NASA Astrophysics Program

    Science.gov (United States)

    Elvis, Martin

    2017-08-01

    The Decadal studies are usually instructed to come up with a “balanced program” for the coming decade of astrophysics initiatives, both on the ground and in space. The meaning of “balance” is left up to the Decadal panels. One meaning is that there should be a diversity of mission costs in the portfolio. Another that there should be a diversity of science questions addressed. A third is that there should be a diversity of signals (across electromagnetic wavebands, and of non-em carriers). It is timely for the astronomy community to debate the meaning of balance in the NASA astrophysics program as the “Statement of Task” (SoT) that defines the goals and process of the 2020 Astrophysics Decadal review are now being formulated.Here I propose some ways in which the Astro2020 SoT could be made more specific in order to make balance more evident and so avoid the tendency for a single science question, and a single mission to answer that question, to dominate the program. As an example of an alternative ambitious approach, I present a proof-of-principle program of 6, mostly “probe-class” missions, that would fit the nominal funding profile for the 2025-2035 NASA Astrophysics Program, while being more diverse in ambitious science goals and in wavelength coverage.

  20. Asymptotic normalization coefficients in nuclear astrophysics an structure

    Czech Academy of Sciences Publication Activity Database

    Gagliardi, C. A.; Azhari, A.; Burjan, Václav; Carstoiu, F.; Kroha, Václav; Mukhamedzhanov, A. M.; Sattarov, A.; Tang, X.; Trache, L.; Tribble, R. E.

    2002-01-01

    Roč. 15, 1/2 (2002), s. 69-73 ISSN 1434-6001 R&D Projects: GA MŠk ME 385; GA ČR GA202/01/0709 Keywords : cross-section measurements * optical-model * S-factor * breakup * B-8 * halo * coulomb * Be-7 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.657, year: 2002

  1. Spectroscopics database for warm Xenon and Iron in Astrophysics and Laboratory Astrophysics conditions

    Science.gov (United States)

    Busquet, Michel; Klapisch, Marcel; Bar-Shalom, Avi; Oreg, Josse

    2010-11-01

    The main contribution to spectral properties of astrophysics mixtures come often from Iron. On the other hand, in the so-called domain of ``Laboratory Astrophysics,'' where astrophysics phenomena are scaled down to the laboratory, Xenon (and Argon) are commonly used gases. At so called ``warm'' temperatures (T=5-50eV), L-shell Iron and M-shell Xenon present a very large number of spectral lines, originating from billions of levels. More often than not, Local Thermodynamical Equilibrium is assumed, leading to noticeable simplification of the computation. Nevertheless, complex and powerful atomic structure codes are required. We take benefit of powerful statistics and numerics, included in our atomic structure codes, STA[1] and HULLAC[2], to generate the required spectra. Recent improvements in both fields (statistics, numerics and convergence control) allow obtaining large databases (ro x T grid of > 200x200 points, and > 10000 frequencies) for temperature down to a few eV. We plan to port these improvements in the NLTE code SCROLL[3]. [1] A.Bar-Shalom, et al, Phys. Rev. A 40, 3183 (1989) [2] M.Busquet,et al, J.Phys. IV France 133, 973-975 (2006); A.Bar-Shalom, M.Klapisch, J.Oreg, J.Oreg, JQSRT 71, 169, (2001) [3] A.Bar-Shalom, et al, Phys. Rev. E 56, R70 (1997)

  2. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  3. Massive magnetic monopoles in cosmology and astrophysics

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1984-01-01

    The astrophysical and cosmological consequences of magnetic monopoles are discussed. The production of monopoles during phase transition in the early universe is addressed, and proposals which have been made to alleviate the monopole problem are summarized. Astrophysical limits on galactic magnetic monopoles are discussed along with experimental efforts to detect monopoles. Finally, monopole-induced proton decay is addressed. 48 references

  4. Mass-23 nuclei in astrophysics

    International Nuclear Information System (INIS)

    Fraser, P R; Amos, K; Van der Kniff, D; Canton, L; Karataglidis, S; Svenne, J P

    2015-01-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22 Na puzzle of ONe white dwarf novae, where the abundance of 22 Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22 Ne, a necessary step in studying the mass-23 nuclei mentioned above. (paper)

  5. Nuclear Structure Research at TRIUMF

    Science.gov (United States)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.

    2007-04-01

    The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.

  6. Advanced LIGO: sources and astrophysics

    International Nuclear Information System (INIS)

    Creighton, Teviet

    2003-01-01

    Second-generation detectors in LIGO will take us from the discovery phase of gravitational-wave observations to the phase of true gravitational-wave astrophysics, with hundreds or thousands of potential sources. This paper surveys the most likely and interesting potential sources for Advanced LIGO, and the astrophysical processes that each one will probe. I conclude that binary inspiral signals are expected, while continuous signals from pulsars are plausible but not guaranteed. Other sources, such as core-collapse bursts, cosmic strings and primordial stochastic backgrounds, are speculative sources for Advanced LIGO, but also potentially the most interesting, since they push the limits of our theoretical knowledge

  7. Astrophysical Russian Dolls

    OpenAIRE

    Loeb, Abraham; Imara, Nia

    2017-01-01

    Are there examples of "astrophysical Russian dolls," and what could we learn from their similarities? In this article, we list a few such examples, including disks, filaments, and clusters. We suggest that forging connections across disciplinary borders enhances our perception of beauty, while simultaneously leading to a more comprehensive understanding of the Universe.

  8. The astrophysical r-process and its dependence on properties of nuclei far from stability: Beta strength functions and neutron capture rates

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Metzinger, J.; Oda, T.; Thielemann, F.K.; Hillebrandt, W.

    1981-01-01

    The question of the astrophysical site of the rapid neutron capture (r-) process which is believed to be responsible for the production of the heavy elements in the universe has been a problem in astrophysics for more than two decades. The solution of this problem is not only dependent on the development of realistic astrophysical supernova models, i.e. correct treatment of the hydrodynamics of gravitational collapse and supernova explosion and the equation of state of hot and dense matter, but is shown in this paper to be very sensitive also to 'standard' nuclear physics properties of nuclei far from stability such as beta decay properties and neutron capture rates. For both of the latter, strongly oversimplifying assumptions, not applying the development in nuclear physics during the last decade, have been made in almost all r-process calculations performed up to now. A critical discussion of the state of the art of such calculations seems therefore to be indicated. In this paper procedures are described which allow one to obtain: 1) β-decay properties (decay rates, β-delayed neutron emissions and fission rates); 2) neutron capture rates for neutron-rich nuclei considerably improved over what has been used up to now. The beta strength functions are calculated for approx. equal to6000 nuclei between beta stability line and neutron drip line. By hydrodynamical supernova explosion calculations using realistic stellar models it is shown that as a consequence of the improved β-rates explosive He burning is a convincing alternative site to the 'classical' r-process whose existence still is questionable. The new β-rates will be important also for the investigation of further astrophysical sites producing heavy elements such as the r(n)-processes in explosive C or Ne burning. (orig.)

  9. 15th National Conference on Nuclear Structure in China

    CERN Document Server

    Wang, Ning; Zhou, Shan-Gui; Nuclear Structure in China 2014; NSC2014

    2016-01-01

    This volume is a collection of the contributions to the 15th National Conference on Nuclear Structure in China (NSC2014), held on October 25-28, 2014 in Guilin, China and hosted by Guangxi Normal University. It provides an important updated resource in the nuclear physics literature for researchers and graduate students studying nuclear structure and related topics. Recent progress made in the study of nuclear spectroscopy of high-spin states, nuclear mass and half-life, nuclear astrophysics, super-heavy nuclei, unstable nuclei, density functional theory, neutron star and symmetry energy, nuclear matter, and nuclear shell model are covered.

  10. Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off 40Ar

    Science.gov (United States)

    Kostensalo, Joel; Suhonen, Jouni; Zuber, K.

    2018-03-01

    Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.

  11. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-03-22

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...: The agenda for the meeting includes the following topics: --Astrophysics Division Update. --Kepler...

  12. 76 FR 5405 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-01-31

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... contacting Marian Norris. The agenda for the meeting includes the following topics: --Astrophysics Division...

  13. 77 FR 4370 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2012-01-27

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... topics: --Astrophysics Division Update --Update on Balloons Return to Flight Changes --James Webb Space...

  14. 77 FR 38090 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2012-06-26

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update --James Webb Space Telescope Update --Wide-Field Infrared Survey Telescope Report...

  15. Exposures resulting from nuclear power production. Annex F

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex assesses the releases of radioactive materials from the nuclear fuel cycle and their resulting dose commitments to the public. The nuclear fuel cycle includes the mining and milling of uranium ores, conversion to nuclear fuel materials, fabrication of fuel elements, production of power in the nuclear reactor, reprocessing of irradiated fuel and recycling of fissile and fertile nuclides recovered, and disposal of radioactive wastes. This Annex also reviews reactor accidents which have led to unplanned releases of activity into the environment, together with estimates of the resulting collective doses.

  16. 76 FR 7882 - Astronomy and Astrophysics Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-02-11

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee; Notice of Meeting In... Foundation announces the following meeting: Name: Astronomy and Astrophysics Advisory Committee ( 13883... of astronomy and astrophysics that are of mutual interest and concern to the agencies. Agenda: To...

  17. 78 FR 2450 - Astronomy and Astrophysics Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-11

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee; Notice of Meeting In... Foundation announces the following meeting: Name: Astronomy and Astrophysics Advisory Committee ( 13883...) on issues within the field of astronomy and astrophysics that are of mutual interest and concern to...

  18. 77 FR 8288 - Astronomy and Astrophysics Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-02-14

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee; Notice of Meeting In... Foundation announces the following meeting: Name: Astronomy and Astrophysics Advisory Committee ( 13883... of astronomy and astrophysics that are of mutual interest and concern to the agencies. Agenda: To...

  19. 78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-04-04

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics... password [email protected] The agenda for the meeting includes the following topics: --Astrophysics Division...

  20. Institute for Nuclear Theory annual report No. 2, 1 March 1991--29 February 1992

    International Nuclear Information System (INIS)

    Haxton, W.; Henley, E.M.

    1992-01-01

    This report discusses research on the following topics in Nuclear physics: electromagnetic interactions and few-nucleon systems; N*'s and nucleon structure; mesons and fields in nuclei; and nuclear astrophysics of type II supernovae. (LSP)

  1. Astrophysical relevance of γ transition energies

    International Nuclear Information System (INIS)

    Rauscher, Thomas

    2008-01-01

    The relevant γ energy range is explicitly identified where additional γ strength must be located to have an impact on astrophysically relevant reactions. It is shown that folding the energy dependences of the transmission coefficients and the level density leads to maximal contributions for γ energies of 2≤E γ ≤4 unless quantum selection rules allow isolated states to contribute. Under this condition, electric dipole transitions dominate. These findings allow us to more accurately judge the relevance of modifications of the γ strength for astrophysics

  2. Effect of pairing in nuclear level density at low temperatures

    International Nuclear Information System (INIS)

    Rhine Kumar, A.K.; Modi, Swati; Arumugam, P.

    2013-01-01

    The nuclear level density (NLD) has been an interesting topic for researchers, due its importance in many aspects of nuclear physics, nuclear astrophysics, nuclear medicine, and other applied areas. The calculation of NLD helps us to understand the energy distribution of the excited levels of nuclei, entropy, specific heat, reaction cross sections etc. In this work the effect of temperature and pairing on level-density of the nucleus 116 Sn has been studied

  3. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  4. Astronomy and astrophysics in the new millennium: Panel reports

    National Research Council Canada - National Science Library

    Astronomy and Astrophysics Survey Committee, Board on Physics and Astronomy, Space Studies Board, National Research Council

    2001-01-01

    In preparing the report, Astronomy and Astrophysics in the New Millenium , the AASC made use of a series of panel reports that address various aspects of ground- and space-based astronomy and astrophysic...

  5. Phase transition and frustration in nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Hasnaoui, K.

    2008-10-01

    The thermodynamics of nuclear matter which constitutes the crust of proto-neutron stars and neutron stars is studied in this thesis. Obtaining information on the star matter thermodynamics will enhance the understanding of physical phenomena involved in the cooling of proto-neutron stars, and in the formation of type II supernovae. One of the main goals is to extract the star-matter phase diagram in order to determine if instabilities and/or critical points are present. The work is divided into two parts: in the first one classical approaches are developed, while the second one presents a quantum approach. The classical approaches are based on the Ising model and on the renormalisation group. They give us qualitative information on the phenomenology of phase transitions for star matter, and allow a discussion on the properties of the phase diagram under the generic phenomenon of Coulomb frustration. The quantum approach is based on a fermionic molecular dynamics model that we have developed from the density functional formalism, and numerically implemented using Skyrme forces optimized on neutron rich nuclei and neutron matter. This thesis work shows some first applications to the study the thermodynamics of finite nuclear systems, as well as nuclear structure calculations for light nuclei. A new formalism based on the molecular dynamics model is sketched which will ultimately allow treating the numerical quantum problem for the infinite star matter. (author)

  6. 76 FR 14106 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-03-15

    ... Committee; Astrophysics Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics...: --Astrophysics Division Update. It is imperative that the meeting be held on these dates to accommodate the...

  7. Productivity results of nuclear information systems

    International Nuclear Information System (INIS)

    Groves, J.E.

    1988-01-01

    The information necessary to manage a nuclear generation station and multiple stations is greater today than ever before. The management of the processes necessary to develop information from data requires professional management and a programmatic approach. The cost is not insignificant. But the cost of not facing this challenge squarely is greater. The San Onofre Nuclear Generation Plant has developed the Nuclear Information Services function to assist management and professionals at all levels with their information needs. Often, this is merely giving them the tools they need to do it themselves. Herein contains a selection of specific examples that urges officer and senior level management to review the concept of the Nuclear Information Services function in more depth to determine the appropriateness of such an approach within their organizations. The establishment of on line computerized systems for the majority of the work flow processes and administrative process has resulted in an estimate 190 less people needed. The Health Physics Automated Access Control System (AACS) implementation resulted in a savings of $800,000 a year. The implementation of a Site Procedures Information Network (SPIN) has saved $160,000 per year

  8. 3rd Session of the Sant Cugat Forum on Astrophysics

    CERN Document Server

    Gravitational wave astrophysics

    2015-01-01

    This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics — Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field.

  9. Nuclear Physics Laboratory 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1979-07-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure, radiative capture, medium energy physics, heavy ion reactions, research by users and visitors, accelerator and ion source development, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  10. Nuclear Physics Laboratory 1980 annual report

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed

  11. Nuclear Physics Laboratory 1980 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adelberger, E.G. (ed.)

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  12. Institute for Nuclear Theory annual report No. 2, 1 March 1991--29 February 1992

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.; Henley, E. M. [Washington Univ., Seattle, WA (United States). Dept. of Physics

    1992-01-01

    This report discusses research on the following topics in Nuclear physics: electromagnetic interactions and few-nucleon systems; N*'s and nucleon structure; mesons and fields in nuclei; and nuclear astrophysics of type II supernovae. (LSP).

  13. Observing with a space-borne gamma-ray telescope: selected results from INTEGRAL

    International Nuclear Information System (INIS)

    Schanne, Stephane

    2006-01-01

    The International Gamma-Ray Astrophysics Laboratory, i.e. the INTEGRAL satellite of ESA, in orbit since about 3 years, performs gamma-ray observations of the sky in the 15 keV to 8 MeV energy range. Thanks to its imager IBIS, and in particular the ISGRI detection plane based on 16384 CdTe pixels, it achieves an excellent angular resolution (12 arcmin) for point source studies with good continuum spectrum sensitivity. Thanks to its spectrometer SPI, based on 19 germanium detectors maintained at 85 K by a cryogenic system, located inside an active BGO veto shield, it achieves excellent spectral resolution of about 2 keV for 1 MeV photons, which permits astrophysical gamma-ray line studies with good narrow-line sensitivity. In this paper we review some goals of gamma-ray astronomy from space and present the INTEGRAL satellite, in particular its instruments ISGRI and SPI. Ground and in-flight calibration results from SPI are presented, before presenting some selected astrophysical results from INTEGRAL. In particular results on point source searches are presented, followed by results on nuclear astrophysics, exemplified by the study of the 1809 keV gamma-ray line from radioactive 26 Al nuclei produced by the ongoing stellar nucleosynthesis in the Galaxy. Finally a review on the study of the positron-electron annihilation in the Galactic center region, producing 511 keV gamma-rays, is presented

  14. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Since 1977, papers in Astrophysics and Astronomy appeared as a special section in Pramana. ... The journal publishes original research papers on all aspects of astrophysics and ... Articles are also visible in Web of Science immediately.

  16. 78Kr(α,γ) reaction of astrophysical interest in inverse kinematics and the electronic screening effect on the beta decay

    International Nuclear Information System (INIS)

    Ujic, P.

    2011-12-01

    The thesis is constituted of two different topics related to astrophysics. The titles of these topics are: 'Alpha capture reaction in inverse kinematics, measurement of 78 Kr(α,γ) 82 Sr reaction' and 'Measurement of the radioactive decay of 19 O and 19 Ne implanted in niobium'. The goal of the first part of the thesis was to establish an experimental technique for measuring radiative alpha capture reaction at low energies in inverse kinematics. The measurement of these reactions is very important in astrophysics since it will help to improve the reliability of alpha particle optical model potentials which are used for prediction of cross sections of nuclear reaction used in different astrophysical models of supernovae explosions. In this part we insisted on a technical feasibility of this type of experiment. In the second part of the thesis, we examined the influence of the environment on the beta decay probability, in particular the influence of the electronic screening of Coulomb barrier of nuclei induced by Cooper pairs in superconductors. The indication of an extremely weak effect was noticed. (author)

  17. Study of nuclear level densities for exotic nuclei

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Sepiani, M.

    2012-01-01

    Nuclear level density is one of the properties of nuclei with widespread applications in astrophysics and nuclear medicine. Since there has been little experimental and theoretical research on the study of nuclei which are far from stability line, studying nuclear level density for these nuclei is of crucial importance. Also, as nuclear level density is an important input for nuclear research codes, hence studying the methods for calculation of this parameter is essential. Besides introducing various methods and models for calculating nuclear level density for practical applications, we used exact spectra distribution (SPDM) for determining nuclear level density of two neutron and proton enriched exotic nuclei with the same mass number.

  18. Proceedings of the 1998 symposium on nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Fukahori, Tokio [eds.] [Japanese Nuclear Data Committee, Tokai, Ibaraki (Japan)

    1999-03-01

    The 1998 Symposium on Nuclear Data was held at Tokai Research Establishment, Japan Atomic Energy Research Institute (JAERI), on 19th and 20th of November 1998. Japanese Nuclear Data Committee and Nuclear Data Center, JAERI organized this symposium. In the oral sessions, presented papers were on accelerator facilities, astrophysics and nuclear data, international session, radiation damage study and nuclear data, and integral test of nuclear data. In the poster session, presented papers were concerning experiments, evaluations, benchmark tests and on-line database on nuclear data. Those presented papers are compiled in this proceedings. The 50 of the presented papers are indexed individually. (J.P.N.)

  19. Lasers in atomic, molecular and nuclear physics

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1986-01-01

    This book presents papers on laser applications in atomic, molecular and nuclear physics. Specifically discussed are: laser isotope separation; laser spectroscopy of chlorophyll; laser spectroscopy of molecules and cell membranes; laser detection of atom-molecule collisions and lasers in astrophysics

  20. Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena

    International Nuclear Information System (INIS)

    Ryutov, D. D.; Drake, R. P.; Remington, B. A.

    2000-01-01

    We demonstrate that two systems described by the equations of the ideal magnetohydrodynamics (MHD) evolve similarly, if the initial conditions are geometrically similar and certain scaling relations hold. The thermodynamic properties of the gas must be such that the internal energy density is proportional to the pressure. The presence of the shocks is allowed. We discuss the applicability conditions of the ideal MHD and demonstrate that they are satisfied with a large margin both in a number of astrophysical objects, and in properly designed simulation experiments with high-power lasers. This allows one to perform laboratory experiments whose results can be used for quantitative interpretation of various effects of astrophysical MHD. (c) 2000 The American Astronomical Society