WorldWideScience

Sample records for nuclear accident dosimetry

  1. Nuclear accident dosimetry

    International Nuclear Information System (INIS)

    1982-01-01

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  2. Nuclear accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The film presents statistical data on criticality accidents. It outlines past IAEA activities on criticality accident dosimetry and the technical documents that resulted from this work. The film furthermore illustrates an international comparison study on nuclear accident dosimetry conducted at the Atomic Energy Research Establishment, Harwell, United Kingdom

  3. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Science.gov (United States)

    2010-01-01

    ...) Methods and equipment for analysis of biological materials; (3) A system of fixed nuclear accident... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304...

  4. Personal nuclear accident dosimetry at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, D.C.; Mohagheghi, A.H.; Burrows, R.

    1996-09-01

    DOE installations possessing sufficient quantities of fissile material to potentially constitute a critical mass, such that the excessive exposure of personnel to radiation from a nuclear accident is possible, are required to provide nuclear accident dosimetry services. This document describes the personal nuclear accident dosimeter (PNAD) used by SNL and prescribes methodologies to initially screen, and to process PNAD results. In addition, this report describes PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study (NAD23), held during 12-16 June 1995, at Los Alamos National Laboratories. Biases for reported neutron doses ranged from -6% to +36% with an average bias of +12%

  5. Nuclear accident dosimetry. Revision of emergency data sheets

    International Nuclear Information System (INIS)

    Delafield, H.J.

    1976-09-01

    The Emergency Data Sheets on Nuclear Accident Dosimetry have been revealed following the publication of a three part manual on this subject (Delafield, Dennis and Gibson, AERE-R 7485/6/7, 1973). This memo provides an explanation of the action levels adopted for the initial segregation of irradiated persons following a criticality accident, by monitoring the activity of indium foils contained in personnel dosimeters and the induced body sodium activity. The data sheets are given as an Appendix. They provide basic information on; the segregation of irradiated persons, the estimation of radiation exposure, and the assessment of personnel γ-ray and neutron doses. (author)

  6. International nuclear accident dosimetry intercomparison: results of Czech participation

    International Nuclear Information System (INIS)

    Spurny, F.; Votockova, I.

    1996-01-01

    An international intercomparison scheme for criticality accident dosimetry systems took place at the SILENE reactor, Valduc, France in June 1993. The dosemeters were exposed both on phantoms and in free air to radiation from the reactor, both shielded by lead and bare. The results obtained during this event by Czech participants are presented and compared with the average values obtained by the complete group of participants and with the reference values. The systems used consisted mostly of Si-diodes and thermoluminescent detectors, some supporting measurements were performed with solid state nuclear track detectors and using the albedo principle. The agreement between the data sets is very good. 7 tabs., 13 refs

  7. The principles of radioiodine dosimetry following a nuclear accident

    International Nuclear Information System (INIS)

    Zvonova, I.A.

    1996-01-01

    Based upon the experience of radioiodine dosimetry after the Chernobyl accident main principals of radioiodine measurements and dosimetry in thyroid glands of population in case of a radiation accident are discussed in the report. For the correct dose estimation following the radioiodine measurement in the thyroid one should know the ''history'' of radionuclide intake into the body of a contaminated person. So a measurement of radioiodine thyroid content should be accompanied by asking questions of investigated persons about, their life style and feeding after a nuclear incident. These data coincidently with data of radionuclides dynamic in the air and food (especially in milk products) are used for the development of radioiodine intake model and then for thyroid dose estimation. The influence of stable iodine prophylaxis and other countermeasures on values are discussed in dependence on the time of its using. Some methods of thyroid dose reconstruction used after the Chernobyl accident in Russia for a situation of thyroid radioiodine measurements lacking in a contaminated settlement are presented in the report. (author). 16 refs, 5 figs, 3 tabs

  8. The principles of radioiodine dosimetry following a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Zvonova, I A [Institute of Radiation Hygiene, St. Petersburg (Russian Federation)

    1996-08-01

    Based upon the experience of radioiodine dosimetry after the Chernobyl accident main principals of radioiodine measurements and dosimetry in thyroid glands of population in case of a radiation accident are discussed in the report. For the correct dose estimation following the radioiodine measurement in the thyroid one should know the ``history`` of radionuclide intake into the body of a contaminated person. So a measurement of radioiodine thyroid content should be accompanied by asking questions of investigated persons about, their life style and feeding after a nuclear incident. These data coincidently with data of radionuclides dynamic in the air and food (especially in milk products) are used for the development of radioiodine intake model and then for thyroid dose estimation. The influence of stable iodine prophylaxis and other countermeasures on values are discussed in dependence on the time of its using. Some methods of thyroid dose reconstruction used after the Chernobyl accident in Russia for a situation of thyroid radioiodine measurements lacking in a contaminated settlement are presented in the report. (author). 16 refs, 5 figs, 3 tabs.

  9. Technical basis for nuclear accident dosimetry at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kerr, G.D.; Mei, G.T.

    1993-08-01

    The Oak Ridge National Laboratory (ORNL) Environmental, Safety, and Health Emergency Response Organization has the responsibility of providing analyses of personnel exposures to neutrons and gamma rays from a nuclear accident. This report presents the technical and philosophical basis for the dose assessment aspects of the nuclear accident dosimetry (NAD) system at ORNL. The issues addressed are regulatory guidelines, ORNL NAD system components and performance, and the interpretation of dosimetric information that would be gathered following a nuclear accident

  10. Nuclear accident dosimetry intercomparison studies at the Health Physics Research Reactor: a summary (1965-1978)

    International Nuclear Information System (INIS)

    Sims, C.S.; Dickson, H.W.

    1979-01-01

    Fifteen nuclear accident dosimetry intercomparison studies utilizing the fast pulsed Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a growing number of participants with a forum for discussing and learning more about accident dosimetry systems and with opportunity to test their systems under simulated nuclear accident conditions and to compare their results with those of others making measurements under identical conditions. Shielded and unshielded measurements of the neutron and the gamma doses to phantoms and at area monitoring stations have been made with a wide variety of dosimeter types. The large amount of data available from these measurements throughout the years is summarized, analyzed and discussed. The information in this summary provides an indication of the status of and trends in nuclear accident dosimetry. (author)

  11. Fifteenth nuclear accident dosimetry intercomparison study: August 14--22, 1978

    International Nuclear Information System (INIS)

    Sims, C.S.

    1979-05-01

    The fifteenth in the continuing series of Nuclear Accident Dosimetry Intercomparison Studies was held August 14--22, 1978 at the Oak Ridge National Laboratory. The Health Physics Research Reactor, operated in the pulse mode, served as the radiation source. Using different shielding configurations, nuclear accidents with three different neutron and gamma spectra were simulated. Participants from 19 organizations, the most in the history of the studies, exposed dosimeters set up as area monitors as well as dosimeters mounted on phantoms for personnel monitoring. Although many participants performed accurate measurements, the composite dose results, in the majority of cases, failed to meet established nuclear criticality accident dosimetry guidelines which suggest accuracies of +- 25% for neutron dose and +- 20% for gamma dose. This indicates that many participants need to improve their dosimetry systems, their analytical techniques, or both

  12. International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hudson, Becka [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-15

    The Nuclear Criticality Safety Program operated under the direction of Dr. Jerry McKamy completed the first NNSA Nuclear Accident Dosimetry exercise on May 27, 2016. Participants in the exercise were from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Savanah River Site (SRS), Pacific Northwest National Laboratory (PNNL), US Navy, the Atomic Weapons Establishment (United Kingdom) under the auspices of JOWOG 30, and the Institute for Radiological Protection and Nuclear Safety (France) by special invitation and NCSP memorandum of understanding. This exercise was the culmination of a series of Integral Experiment Requests (IER) that included the establishment of the Nuclear Criticality Experimental Research Center, (NCERC) the startup of the Godiva Reactor (IER-194), the establishment of a the Nuclear Accident Dosimetry Laboratory (NAD LAB) in Mercury, NV, and the determination of reference dosimetry values for the mixed neutron and photon radiation field of Godiva within NCERC.

  13. 1983 international intercomparison of nuclear accident dosimetry systems at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Swaja, R.E.; Greene, R.T.; Sims, C.S.

    1985-04-01

    An international intercomparison of nuclear accident dosimetry systems was conducted during September 12-16, 1983, at Oak Ridge National Laboratory (ORNL) using the Health Physics Research Reactor operated in the pulse mode to simulate criticality accidents. This study marked the twentieth in a series of annual accident dosimetry intercomparisons conducted at ORNL. Participants from ten organizations attended this intercomparison and measured neutron and gamma doses at area monitoring stations and on phantoms for three different shield conditions. Results of this study indicate that foil activation techniques are the most popular and accurate method of determining accident-level neutron doses at area monitoring stations. For personnel monitoring, foil activation, blood sodium activation, and thermoluminescent (TL) methods are all capable of providing accurate dose estimates in a variety of radiation fields. All participants in this study used TLD's to determine gamma doses with very good results on the average. Chemical dosemeters were also shown to be capable of yielding accurate estimates of total neutron plus gamma doses in a variety of radiation fields. While 83% of all neutron measurements satisfied regulatory standards relative to reference values, only 39% of all gamma results satisfied corresponding guidelines for gamma measurements. These results indicate that continued improvement in accident dosimetry evaluation and measurement techniques is needed

  14. Nineteenth nuclear accident dosimetry intercomparison study, August 9-13, 1982

    International Nuclear Information System (INIS)

    Greene, R.T.; Sims, C.C.; Swaja, R.E.

    1983-11-01

    The Nineteenth Nuclear Accident Dosimetry Intercomparison Study was held August 9 to 13, 1982, at the Oak Ridge National Laboratory using the Health Physics Research Reactor operated in the pulse mode to simulate nuclear criticality accidents. Participants from eight organizations measured neutron and gamma doses at air stations and on phantoms for three different shielding conditions. Measured results were compared to nuclear industry guidelines for criticality accident dosimeters which suggest accuracies of +-25% for neutron dose and +-20% for gamma dose. Seventy-two percent of the neutron dose measurements using foil activation, sodium activation, hair sulfur activation, and thermoluminescent methods met the guidelines while less than 40% of the gamma dose measurements were within +-20% of reference values. The softest neutron energy spectrum (also lowest neutron/gamma dose ratio) provided the most difficulty in measuring neutron and gamma doses. Results of this study indicate the need for continued intercomparison and testing of nuclear accident dosimetry systems and for training of evaluating personnel. 14 references, 7 figures, 16 tables

  15. Nuclear accident dosimetry, Report on the Third IAEA intercomparison experiment at Vinca, Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-15

    The objective of this report is to present the results of the third IAEA intercomparison experiment held at the Boris Kidric Institute, Vinca, in May 1973. These experiments were a part of multi laboratory intercomparison programme sponsored by the IAEA for evaluation of nuclear accident dosimetry systems that ought to provide adequate information in the event of criticality accidents. This report deals with the data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation.

  16. Twenty-first nuclear accident dosimetry intercomparison study, August 6-10, 1984

    International Nuclear Information System (INIS)

    Swaja, R.E.; Ragan, G.E.; Sims, C.S.

    1985-05-01

    The twenty-first in a series of nuclear accident dosimetry (NAD) intercomparison (NAD) studies was conducted at the Oak Ridge National Laboratory's Dosimetry Applications Research Facility during August 6-10, 1984. The Health Physics Research Reactor operated in the pulse mode was used to simulate three criticality accidents with different radiation fields. Participants from five organizations measured neutron doses between 0.53 and 4.36 Gy and gamma doses between 0.19 and 1.01 Gy at area monitoring stations and on phantoms. About 75% of all neutron dose estimates based on foil activation, hair activation, simulated blood sodium activation, and thermoluminescent methods were within +-25% of reference values. Approximately 86% of all gamma results measured using thermoluminescent (TLD-700 or CaSO 4 ) systems were within +-20% of reference doses which represents a significant improvement over previous studies. Improvements observed in the ability of intercomparison participants to estimate neutron and gamma doses under criticality accident conditions can be partly attributed to experience in previous NAD studies which have provided practical tests of dosimetry systems, enabled participants to improve evaluation methods, and standardized dose reporting conventions. 16 refs., 15 tabs

  17. Nuclear accident dosimetry measurements at third IAEA intercomparison Vinca, Yugoslavia, May 1973

    International Nuclear Information System (INIS)

    Palfalvi, J.; Makra, S.

    1974-09-01

    Nuclear accident dosimeters from several countries were compared in Vinca, Yugoslavia at an IAEA meeting. The Hungarian Central Research Institute for Physics team performed measurements for the dosimetry of a heavy water assembly which has an escape spectrum significantly differing from the escape spectra of the fast reactors used in previous intercomparisons or from the light water systems used in the Institute. Another problem investigated was the influence of minor spectral differences on the dose determined by activation measurement and spectrum fitting. The importance of sophisticated spectrum calculations was proved. The Vinca irradiations were used for the calibration of the albedo dosimeters of the institute, which are currently applied for personal dosimetry. (K.A.)

  18. Study on the establishment of retrospective dosimetry system for nuclear radiation accident(II)

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jae Shik; Chai, Ha Seok; Lee, Jong Ok [Chungnam National Univ., Taejon (Korea, Republic of)

    1999-03-15

    This study was driven forward centering around physical techniques in retrospective dosimetry system for encountering nuclear radiation accident. The results obtained through this study are summarized as follow : the minimal facilities based on physical techniques should be assured at KINS for appropriate operation and establishment of retrospective accident dosimetry system, the necessary apparatus and man power for retrospective dose assessment by physical techniques might be operated flexibly, however, CL and TL/OSL readers should be equipped with the highest priority, a series of comparative examination of several physical techniques for retrospective dose assessment revealed that most of the irradiated materials around accident sites are usable for the dose assessment, if a priori study on the dosimetrical characteristics of those materials is preceded in accordance with the species of the collectable samples, the results of the study on the CL-dose response and radiation energy dependence of sugar and sorbitol, showed the nonlinearity in CL-dose relationship at the range of low dose(less than 5 Gy), and it led us to perform a study on the correction of the nonlinearity, and in the later study, CL output showed heavy dependence on radiation energy in the energy below around 100 keV and accordingly, a study on the correction for the energy dependence was also carried out, ve were able to obtain good results as a first attempt to carry out such corrections.

  19. An international co-ordinated research programme on nuclear accident dosimetry

    International Nuclear Information System (INIS)

    Flakus, F.N.

    1977-01-01

    Where fissile materials are being processed in quantities exceeding the minimum critical amounts, a radiation risk to workers arises from the possibility of criticality excursions. Despite the fact that techniques for preventing the occurende of such accidental excursions have reached very high standards it is generally agreed that the availability of suitable nuclear accident dosimetry (NAD) systems is very important. Following the recommendations of an Advisory Group meeting on NAD, the IAEA had established in 1969 an international coordinated research programme on NAD systems and elaborating standarized systems. A large number of research groups from 14 Member States throughout the world participated in this co-ordinated work. Since 1970 four international multilaboratory intercomparison experiments on NAD have been organized and the response of a variety of dosimeters examined in different neutron spectra under simulated accident conditions at Valduc (France), Oak Ridge (USA), Vinca (Yugoslavia) and Harwell (UK). The results achieved in these intercomparison studies show that NAD systems have been substantially improved and that several systems are available now in a number of laboratories throughout the world that perform within the criteria laid down by the initiating advisory group in 1969. A compendium of neutron leakage spectra has also been elaborated for facilitating the determination of dose from readings of detectors exposed to various neutron fields in criticality accidents

  20. Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents.

    Science.gov (United States)

    Miller, Susan M; Ferrarotto, Catherine L; Vlahovich, Slavica; Wilkins, Ruth C; Boreham, Douglas R; Dolling, Jo-Anna

    2007-07-01

    To test the ability of the cytogenetic emergency network (CEN) of laboratories, currently under development across Canada, to provide rapid biological dosimetry using the dicentric assay for triage assessment, that could be implemented in the event of a large-scale radiation/nuclear emergency. A workshop was held in May 2004 in Toronto, Canada, to introduce the concept of CEN and recruit clinical cytogenetic laboratories at hospitals across the country. Slides were prepared for dicentric assay analysis following in vitro irradiation of blood to a range of gamma-ray doses. A minimum of 50 metaphases per slide were analyzed by 41 people at 22 different laboratories to estimate the exposure level. Dose estimates were calculated based on a dose response curve generated at Health Canada. There were a total of 104 dose estimates and 96 (92.3%) of them fell within the expected range using triage scoring criteria. Half of the laboratories analyzed 50 metaphases in dosimetry. When this network is fully operational, it will be the first of its kind in Canada able to respond to radiological/nuclear emergencies by providing triage quality biological dosimetry for a large number of samples. This network represents an alternate expansion of existing international emergency biological dosimetry cytogenetic networks.

  1. Nuclear accident dosimetry systems: U.K. measurements at the sixteenth intercomparison at O.R.N.L. August 1979

    International Nuclear Information System (INIS)

    Delafield, H.J.; Gibson, J.A.B.; Holt, P.D.; Harrison, K.G.

    1980-04-01

    The results are presented of the measurements made by the A.E.R.E., Harwell participants at the Intercomparison of Nuclear Accident Dosimetry Systems held at the Dosimetry Applications Research Facility (DOSAR) of the Oak Ridge National Laboratory, USA from 13 - 17 August 1979. The source of pulsed radiation used was the Health Physics Research Reactor which was operated bare for pulse 1, and shielded by concrete (20cm thickness) and steel (5cm thickness) for pulses 2 and 3 respectively. Measurements are reported which were made using personnel dosimeters (both in free-air and on phantoms) and a threshold detector system and compared with the provisional results given by the DOSAR group at the meeting. (U.K.)

  2. Nuclear accidents

    International Nuclear Information System (INIS)

    1987-01-01

    On 27 May 1986 the Norwegian government appointed an inter-ministerial committee of senior officials to prepare a report on experiences in connection with the Chernobyl accident. The present second part of the committee's report describes proposals for measures to prevent and deal with similar accidents in the future. The committee's evaluations and proposals are grouped into four main sections: Safety and risk at nuclear power plants; the Norwegian contingency organization for dealing with nuclear accidents; compensation issues; and international cooperation

  3. Radiation accidents and dosimetry

    International Nuclear Information System (INIS)

    Sagstuen, E.; Theisen, H.; Henriksten, T.

    1982-12-01

    On September 2nd 1982 one of the employees of the gamma-irradiation facility at Institute for Energy Technology, Kjeller, Norway entered the irradiation cell with a 65.7 kCi *sp60*Co- source in unshielded position. The victim received an unknown radiation dose and died after 13 days. Using electron spin resonance spectroscopy, the radiation dose in this accident was subsequently determined based on the production of longlived free radicals in nitroglycerol tablets borne by the operator during the accident. He used nitroglycerol for heart problems and free radical are easily formed and trapped in sugar which is the main component of the tablets. Calibration experiments were carried out and the dose given to the tablets during the accident was determined to 37.2 +- 0.5 Gy. The general use of free radicals for dose determinations is discussed. (Auth.)

  4. Final Design for an International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV: IER-148 CED-2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Heinrichs, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beller, Tim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burch, Jennifer [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cummings, Rick [National Security Technologies, LLC. (NSTec), Mercury, NV (United States) Nevada National Security Site; Duluc, Matthieu [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Gadd, Milan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McAvoy, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rathbone, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Randy [Savannah River Site (SRS), Aiken, SC (United States); Trompier, Francois [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Veinot, Ken [Y-12 National Security Complex, Oak Ridge, TN (United States); Ward, Dann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Will, Rashelle [National Security Technologies, LLC. (NSTec), Mercury, NV (United States) Nevada National Security Site; Wilson, Chris [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Zieziulewicz, Thomas [Knolls Atomic Power Lab. (KAPL), Niskayuna, NY (United States)

    2014-09-30

    This document is the Final Design (CED-2) Report for IER-148, “International Inter-comparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV.” The report describes the structure of the exercise consisting of three irradiations; identifies the participating laboratories and their points of contact; provides the details of all dosimetry elements and their placement in proximity to Godiva-IV on support stands or phantoms ; and lists the counting and spectroscopy equipment each laboratory will utilize in the Mercury NAD Lab. The exercise is tentatively scheduled for one week in August 2015.

  5. Recommendations about criticality accident dosimetry

    International Nuclear Information System (INIS)

    1975-07-01

    The aims of criticality accident dosimetry and the characteristics peculiar to a critical burst being defined, the requirements to be fulfilled by a dosimetric system applied to this type of measurements are presented. The devices chosen by the C.E.A. Radiation Survey Divisions, simple and cheap, are described along with the main processes to be carried out in order to evaluate doses after an accident. The apparatus necessary for detector counting and the directions for use are presented in detail, allowing standardization of measurements. A set of linear formula enables to obtain, from these measurements, all required informations about neutron fluences and spectra, along with the suitable components of the dose at the irradiated people locations [fr

  6. Considerations regarding the implementation of EPR dosimetry for the population in the vicinity of Semipalatinsk nuclear test site based on experience from other radiation accidents

    International Nuclear Information System (INIS)

    Skvortsov, Valeriy; Ivannikov, Alexander; Tikunov, Dimitri; Stepanenko, Valeriy; Borysheva, Natalie; Orlenko, Sergey; Nalapko, Mikhail; Hoshi, Masaharu

    2006-01-01

    General aspects of applying the method of retrospective dose estimation by electron paramagnetic resonance spectroscopy of human tooth enamel (EPR dosimetry) to the population residing in the vicinity of the Semipalatinsk nuclear test site are analyzed and summarized. The analysis is based on the results obtained during 20 years of investigations conducted in the Medical Radiological Research Center regarding the development and practical application of this method for wide-scale dosimetrical investigation of populations exposed to radiation after the Chernobyl accident and other radiation accidents. (author)

  7. Nuclear accident dosimetry measurements at the fourth IAEA intercomparison, Harwell, United Kingdom, April 1975

    International Nuclear Information System (INIS)

    Majborn, B.

    1975-11-01

    During the fourth IAEA intercomparison at Harwell, teams from several countries compared their systems for assessing doses in criticality accidents. The dosimeters were exposed to mixed pulses of neutron and gamma radiation produced by the VIPER reactor at AWRE, Aldermaston. Risoe participated in this intercomparison with the routine personnel dosimeters employed in 'criticality areas' at Risoe. These include the UKAEA criticality dosimeter for the measurement of neutron doses and the Risoe TLD badge for the measurement of gamma doses. The final results of the Risoe measurements are presented in this report in a form designed for ease of comparison with results of other pparticipants. (author)

  8. Nuclear medicine radiation dosimetry

    CERN Document Server

    McParland, Brian J

    2010-01-01

    Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and

  9. Biological dosimetry of irradiation accidents

    International Nuclear Information System (INIS)

    Durand, V.; Chambrette, V.; Le Roy, A.; Paillole, N.; Sorokine, I.; Voisin, P.

    1994-01-01

    The biological dosimetry in radiation protection allows to evaluate the received dose by a potentially irradiated person from biological markers such chromosomal abnormalities. The technologies of Hybridization In Situ by Fluorescence (F.I.S.H) allow the detection of steady chromosomal aberrations of translocation type

  10. Henri Jammet Memorial lecture: The role of dosimetry in radiation accident response

    International Nuclear Information System (INIS)

    Ricks, Robert C.; Joiner, Eugene; Toohey, Richard E.; Holloway, Elizabeth C.

    1997-01-01

    This document presents a lecture given on the role of dosimetry in radiation accident response, focusing accidents such as: Vinca, occurred on october 15, 1958, Goiania Cs-137, Hanford Am-241 and Juarez Co-60, Chernobyl nuclear power plant. Other accidents are reported as they are registered in the REAC/TS Registry

  11. Criticality accident dosimetry with ESR spectroscopy.

    Science.gov (United States)

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  12. Personal dosimetry at the radiation accidents

    International Nuclear Information System (INIS)

    Perevoznikov, O.N.; Klyuchnikov, A.A.; Kanchenko, V.A.

    2007-01-01

    The radiation accidents of different types and the methods of the dosimetry used at the consequences liquidation are considered. The long-term experience of the population personal instrumental dosimetric control carrying out at the ChNPP accident consequences liquidation is widely covered in details. The concepts are stated out and the results are presented on the functioning of the created system for personal dose monitoring of the population of Ukraine irradiation. The use of the person radiation counters at the internal irradiation population and personal dose assessment is considered in details

  13. Chemical dosimetry system for criticality accidents.

    Science.gov (United States)

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  14. The Why and How of Nuclear Accident Dosimetry; Dosimetrie en cas d'Accident Nucleaire: Raison d'Etre et Modalites; 041e 0411 041e 0421 041d 041e 0412 0414 ; Dosimetria en Casos de Accidente Nuclear: Justificacion y Modalidades

    Energy Technology Data Exchange (ETDEWEB)

    Vallario, E. J.; Wasson, H. R. [United States Atomic Energy Commission, Washington, DC (United States)

    1965-06-15

    The objective of an effective nuclear accident dosimetry programme is to ensure that a means is provided for estimating the gamma neutron dose from a nuclear accident. In this connection, the limitation of the film badge is discussed, in addition to certain accident experiences which demonstrate the need for an effective accident dosimetry programme at facilities having a potential for nuclear accidents. Certain basic parameters should be considered in the development of an effective nuclear accident dosimetry programme. These are (a) a method for screening personnel involved in nuclear accidents, (b) a fixed system (primary unit) capable of determining first collision dose within some established degree of accuracy at its point of location, (c) the need for ''secondary units'', and (d) the need for a device worn by personnel which would afford spectrum and flux information to assist in dose extrapolation from the fixed unit to the location of man. The neutron component of the system should permit flux and spectral information in order to arrive at appropriate quality factors in the dose estimation. Accuracies should be established based upon the current state of the art. The gamma -ray component of the system should permit measuring gamma radiation within the biological area of interest, i. e. from 10 to 10{sup 3}r. Consideration for the number, placement and ease of recovery of accident units are indeed an integral part of an effective system of accident dosimetry. These considerations should enable reasonable data collection across the entire fission spectrum. (author) [French] L'objet d'un programme efficace de dosimetrie en cas d'accident nucleaire est d'evaluer la dose de rayons gamma et de neutrons emise lors d'un acccident nucleaire. Le memoire examine les limitations des dosimetres a film et expose les circonstances accompagnant certains accidents, lesquelles demontrent la necessite de prevoir un programme efficace de dosimetrie dans les installations ou

  15. The program of international intercomparison of accident dosimetry

    International Nuclear Information System (INIS)

    2002-06-01

    The French institute of radioprotection and nuclear safety (IRSN) has carried out in June 2002 an international intercomparison program for the testing of the physical and biological accident dosimetry techniques. The intercomparison is jointly organized by the IRSN and the OECD-NEA with the sustain of the European commission and the collaboration of the CEA centre of Valduc (France). About 30 countries have participated to this program. Each country has supplied its own dosimeters and biological samples which have been irradiated using the Silene reactor of CEA-Valduc or a 60 Co source. These experiments allow to test the new dosimetric techniques that have been developed since the previous intercomparison program (1993) and to confirm or improve the performances of older techniques. Aside from the intercomparison exercise, this report makes a status of the known radiological accidents and of the effects of high doses of ionizing radiations on human health (symptoms, therapeutics). It explains the phenomenology of criticality accidents, the prevention means, and the history of such accidents up to the Tokai-Mura one in 1999. Finally, the dosimetry of criticality is presented with its physical and biological techniques. (J.S.)

  16. Nuclear accidents and epidemiology

    International Nuclear Information System (INIS)

    1987-01-01

    A consultation on epidemiology related to the Chernobyl accident was held in Copenhagen in May 1987 as a basis for concerted action. This was followed by a joint IAEA/WHO workshop in Vienna, which reviewed appropriate methodologies for possible long-term effects of radiation following nuclear accidents. The reports of these two meetings are included in this volume, and cover the subjects: 1) Epidemiology related to the Chernobyl nuclear accident. 2) Appropriate methodologies for studying possible long-term effects of radiation on individuals exposed in a nuclear accident. Figs and tabs

  17. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  18. Big nuclear accidents

    International Nuclear Information System (INIS)

    Marshall, W.; Billingon, D.E.; Cameron, R.F.; Curl, S.J.

    1983-09-01

    Much of the debate on the safety of nuclear power focuses on the large number of fatalities that could, in theory, be caused by extremely unlikely but just imaginable reactor accidents. This, along with the nuclear industry's inappropriate use of vocabulary during public debate, has given the general public a distorted impression of the risks of nuclear power. The paper reviews the way in which the probability and consequences of big nuclear accidents have been presented in the past and makes recommendations for the future, including the presentation of the long-term consequences of such accidents in terms of 'loss of life expectancy', 'increased chance of fatal cancer' and 'equivalent pattern of compulsory cigarette smoking'. The paper presents mathematical arguments, which show the derivation and validity of the proposed methods of presenting the consequences of imaginable big nuclear accidents. (author)

  19. The ultimate nuclear accident

    International Nuclear Information System (INIS)

    Abdus Salam, A.

    1988-01-01

    The estimated energy equivalent of Chernobyl explosion was the 1/150 th of the explosive energy equivalent of atomic bomb dropped on Hiroshima; while the devastation that could be caused by the world's stock pile of nuclear weapons, could be equivalent to 160 millions of Chernobyl-like incidents. As known, the number of nuclear weapons is over 50,000 and 2000 nuclear weapons are sufficient to destroy the world. The Three Mile Island and Chernobyl accidents have been blamed on human factors but also the human element, particularly in the form of psychological stresses on those operating the nuclear weapons, could accidentally bring the world to a nuclear catastrophe. This opinion is encouraged by the London's Sunday Times magazine which gave a graphic description of life inside a nuclear submarine. So, to speak of nuclear reactor accidents and not of nuclear weapons is false security. (author)

  20. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  1. Big nuclear accidents

    International Nuclear Information System (INIS)

    Marshall, W.

    1983-01-01

    Much of the debate on the safety of nuclear power focuses on the large number of fatalities that could, in theory, be caused by extremely unlikely but imaginable reactor accidents. This, along with the nuclear industry's inappropriate use of vocabulary during public debate, has given the general public a distorted impression of the safety of nuclear power. The way in which the probability and consequences of big nuclear accidents have been presented in the past is reviewed and recommendations for the future are made including the presentation of the long-term consequences of such accidents in terms of 'reduction in life expectancy', 'increased chance of fatal cancer' and the equivalent pattern of compulsory cigarette smoking. (author)

  2. Nuclear accidents and protection

    International Nuclear Information System (INIS)

    Biocanin, R.; Amidzic, B.

    2005-01-01

    The numerous threats are our cruel reality. There is a great arsenal of nuclear weapons. Nuclear terrorism and nuclear accidents are always possible, especially during the transport and handling different nuclear material. Terrorist organisation also goes for coming into the possession of the nuclear means. Specific and important problem is human radioactive contamination in using nuclear energy for peaceful and military purpose. So, realisation of the universal and united system of NBCD gives us a possibility by using the modern communication equipment and very effective mobile units to react in a real time and successfully perform monitoring, alarming, protection and decontamination. (author) [sr

  3. Accidents in nuclear ships

    Energy Technology Data Exchange (ETDEWEB)

    Oelgaard, P L [Risoe National Lab., Roskilde (Denmark); [Technical Univ. of Denmark, Lyngby (Denmark)

    1996-12-01

    This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10{sup -3} per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au).

  4. Accidents in nuclear ships

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1996-12-01

    This report starts with a discussion of the types of nuclear vessels accidents, in particular accidents which involve the nuclear propulsion systems. Next available information on 61 reported nuclear ship events in considered. Of these 6 deals with U.S. ships, 54 with USSR ships and 1 with a French ship. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/explosions, sea-water leaks into the submarines and sinking of vessels are considered. For each event a summary of available information is presented, and comments are added. In some cases the available information is not credible, and these events are neglected. This reduces the number of events to 5 U.S. events, 35 USSR/Russian events and 1 French event. A comparison is made between the reported Soviet accidents and information available on dumped and damaged Soviet naval reactors. It seems possible to obtain good correlation between the two types of events. An analysis is made of the accident and estimates are made of the accident probabilities which are found to be of the order of 10 -3 per ship reactor years. It if finally pointed out that the consequences of nuclear ship accidents are fairly local and does in no way not approach the magnitude of the Chernobyl accident. It is emphasized that some of the information on which this report is based, may not be correct. Consequently some of the results of the assessments made may not be correct. (au)

  5. DRDC Ottawa Participation in the SILENE Accident Dosimetry Intercomparison Exercise. June 10-21, 2002

    National Research Council Canada - National Science Library

    Prud'homme-Lalonde, L

    2002-01-01

    .... The SILENE International Accident Dosimetry Intercomparison Exercise at Valduc, France in June 2002 coincided with DRDC Ottawa work designed to refine its proposed criticality dosimetry system...

  6. Radiation dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.; Tagesson, M.; Ljungberg, M.; Strand, S.E.; Thomas, S.R.

    1999-01-01

    Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. A knowledge of the radiation dose received by different organs in the body is essential to an evaluation of the risks and benefits of any procedure. In this paper, current methods for internal dosimetry are reviewed, as they are applied in nuclear medicine. Particularly, the Medical Internal Radiation Dose (MIRD) system for dosimetry is explained, and many of its published resources discussed. Available models representing individuals of different age and gender, including those representing the pregnant woman are described; current trends in establishing models for individual patients are also evaluated. The proper design of kinetic studies for establishing radiation doses for radiopharmaceuticals is discussed. An overview of how to use information obtained in a dosimetry study, including that of the effective dose equivalent (ICRP 30) and effective dose (ICRP 60), is given. Current trends and issues in internal dosimetry, including the calculation of patient-specific doses and in the use of small scale and microdosimetry techniques, are also reviewed

  7. Note nuclear accidents combat

    International Nuclear Information System (INIS)

    1989-01-01

    In this document the starting points are described which underlie the new framework for the nuclear-accident combat in the Netherlands. All the elaboration of this is indicated in main lines. The juridical consequences of the proposed structure are enlightened and the sequel activities are indicated. (H.W.). 6 figs.; 8 tabs

  8. Nuclear ship accidents

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1993-05-01

    In this report available information on 28 nuclear ship accident and incidents is considered. Of these 5 deals with U.S. ships and 23 with USSR ships. The ships are in almost all cases nuclear submarines. Only events that involve the nuclear propulsion plants, radiation exposures, fires/explosions and sea water leaks into the submarines are considered. Comments are made on each of the events, and at the end of the report an attempt is made to point out the weaknesses of the submarine designs which have resulted in the accidents. It is emphasized that much of the available information is of a rather dubious nature. consequently some of the assessments made may not be correct. (au)

  9. Image in nuclear dosimetry using thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Guinsburg, G.; Matsuoka, M.; Watanabe, S.

    1987-01-01

    A low cost methodology to produce images of internal sick organs by radioisotopic intake, is presented. Dosimetries of thermoluminescent material and Teflon (ratio:50%) in bidimensional matrix shape are used with a Pb collimator. This collimator-bidimensional matrix system was tested ''in vivo'' and in thyroid phantoms using 99m Tc. A comparative evaluation between this method and the scintigraphy one is presented. (M.A.C.) [pt

  10. Third IAEA nuclear accident intercomparison experiment

    Energy Technology Data Exchange (ETDEWEB)

    Miric, I; Ubovic, Z

    1974-05-15

    The purpose of this report is to present the results of the International Atomic Energy Agency intercomparison experiments held at the 'Boris Kidric' Institute, Vinca, in May 1973. The experiments are parts of a multilaboratory intercomparison programme sponsored by the IAEA for the evaluation of nuclear accident dosimetry systems and eventually recommendation of dosimetry systems that will provide adequate informations in the event of a criticality accident. The previous two studies were held at the Valduc Centre near Dijon (France) in June 1970 and at the ORNL in Oak Ridge (USA), in May 1971. Parts of the intercomparison studies were coordination meetings. The topics and conclusions of the Third coordination meeting are given in the Chairman's Report of F.F. Haywood. This paper will deal, therefore, only with data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation. (author)

  11. Third IAEA nuclear accident intercomparison experiment

    International Nuclear Information System (INIS)

    Miric, I.; Ubovic, Z.

    1974-05-01

    The purpose of this report is to present the results of the International Atomic Energy Agency intercomparison experiments held at the 'Boris Kidric' Institute, Vinca, in May 1973. The experiments are parts of a multilaboratory intercomparison programme sponsored by the IAEA for the evaluation of nuclear accident dosimetry systems and eventually recommendation of dosimetry systems that will provide adequate informations in the event of a criticality accident. The previous two studies were held at the Valduc Centre near Dijon (France) in June 1970 and at the ORNL in Oak Ridge (USA), in May 1971. Parts of the intercomparison studies were coordination meetings. The topics and conclusions of the Third coordination meeting are given in the Chairman's Report of F.F. Haywood. This paper will deal, therefore, only with data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation. (author)

  12. Physical dosimetry and biological indicators of carcinogenic risk in a cohort of persons exposed to unhealthy ecological factors following the Chernobyl Nuclear Power Plant accident.

    Science.gov (United States)

    Orel, V E; Tereschenki, V M; Czyatkovskaya, N N; Mazepa, M G; Buzunov, V A

    1998-01-01

    The April 1986 Chernobyl Nuclear Power Plant accident caused ecological changes in the Ovruch State forests in the Zhytomir oblast in the Ukraine. The highest radioactivity existed in moss, followed by the pine-forest substrate and soil. During 1984-1985, the pine needles were primarily surface contaminated, whereas during 1986-1988, they were contaminated secondarily. Radioactivity in air was highest (1.07+/-0.185 Bq/l) during dry and sunny weather and when trees were felled; the lowest levels (0.196+/-0.044 Bq/l) occurred during periods of stable snow coverage. Between 1987 and 1989 (i.e., after the Chernobyl accident), the caesium levels in forestry employees exceeded by 13.9-fold the average levels found in the Ukrainian Polessje population. Ovruch forest guards and woodcutters had the highest effective equivalent doses of radiation, and they therefore exhibited the highest carcinogenic risk.

  13. Nuclear laws and radiologic accidents

    International Nuclear Information System (INIS)

    Frois, Fernanda

    1997-01-01

    Some aspects of the nuclear activities in Brazil, specially concerning the Goiania s accident are demonstrated using concepts from environmental and nuclear law. Nuclear and environmental competence, the impossibility of the states of making regional laws, as the lack of regulation about the nuclear waste, are discussed. The situation of Goiania when the accident happened, the present situation of the victims and the nuclear waste provisionally stored in Abadia de Goias is reported

  14. OSL and TL of Resistors of Mobile Phones for Retrospective Accident Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Pradhan, A. S.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) of ubiquitous materials continue to draw wider attention for individual dosimetry in nuclear and radiation accidents. Use of ubiquitous objects for radiation dosimetry is preferred because the affected persons in such unexpected events are usually not covered by personal dosimetry services and do not carry personal dosimeters. Often accident sites do not have area monitoring system in place. As the main concern of the dosimetry is health effects, a quick distinction of level of exposures of the affected persons for the required medical care becomes important in all accidents involving radiation. Both in large scale nuclear accidents such Fukushima, Chernobyl or Hiroshima and Nagasaki where large population around the accident site get exposed to radiation (evacuation is based on doses) and in smaller but panicky events, such as misuse of radiological exposure device (RED), radiological dispersive device (RDD: 'Dirty Bomb'), improvised nuclear device (IND) and deliberate dispersal of radioactive contaminants, a need for an ubiquitous personal dosimeter is well recognized. As biological dosimetry systems are yet to become viable for measurements of doses with required accuracy and speed, use of physical dosimeters is often explored. Among the various types of physical dosimetry systems, use of TL and OSL by processing common material such as bricks or tiles and measuring the doses cumulated for long periods of time has already become an accepted tool for large scale nuclear accidents such as Hiroshima and Nagasaki or Chernobyl involving higher doses. In the other potential cases of unexpected situations where the doses encountered could be much lower (even to escape the range of remotely installed area monitors), the need to measure even the low doses in shortest possible time becomes important. It is often realized that in such situations, the main problem could become the panic at the

  15. OSL and TL of Resistors of Mobile Phones for Retrospective Accident Dosimetry

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, J. L.; Pradhan, A. S.; Chang, I.; Kim, B. H.

    2012-01-01

    Optically stimulated luminescence (OSL) and thermoluminescence (TL) of ubiquitous materials continue to draw wider attention for individual dosimetry in nuclear and radiation accidents. Use of ubiquitous objects for radiation dosimetry is preferred because the affected persons in such unexpected events are usually not covered by personal dosimetry services and do not carry personal dosimeters. Often accident sites do not have area monitoring system in place. As the main concern of the dosimetry is health effects, a quick distinction of level of exposures of the affected persons for the required medical care becomes important in all accidents involving radiation. Both in large scale nuclear accidents such Fukushima, Chernobyl or Hiroshima and Nagasaki where large population around the accident site get exposed to radiation (evacuation is based on doses) and in smaller but panicky events, such as misuse of radiological exposure device (RED), radiological dispersive device (RDD: 'Dirty Bomb'), improvised nuclear device (IND) and deliberate dispersal of radioactive contaminants, a need for an ubiquitous personal dosimeter is well recognized. As biological dosimetry systems are yet to become viable for measurements of doses with required accuracy and speed, use of physical dosimeters is often explored. Among the various types of physical dosimetry systems, use of TL and OSL by processing common material such as bricks or tiles and measuring the doses cumulated for long periods of time has already become an accepted tool for large scale nuclear accidents such as Hiroshima and Nagasaki or Chernobyl involving higher doses. In the other potential cases of unexpected situations where the doses encountered could be much lower (even to escape the range of remotely installed area monitors), the need to measure even the low doses in shortest possible time becomes important. It is often realized that in such situations, the main problem could become the panic at the work place

  16. Preparedness against nuclear power accidents

    International Nuclear Information System (INIS)

    1985-01-01

    This booklet contains information about the organization against nuclear power accidents, which exist in the four Swedish counties with nuclear power plants. It is aimed at classes 7-9 of the Swedish schools. (L.E.)

  17. The program of international intercomparison of accident dosimetry; Le programme d'intercomparaison internationale de dosimetrie d'accident 10-12 juin 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The French institute of radioprotection and nuclear safety (IRSN) has carried out in June 2002 an international intercomparison program for the testing of the physical and biological accident dosimetry techniques. The intercomparison is jointly organized by the IRSN and the OECD-NEA with the sustain of the European commission and the collaboration of the CEA centre of Valduc (France). About 30 countries have participated to this program. Each country has supplied its own dosimeters and biological samples which have been irradiated using the Silene reactor of CEA-Valduc or a {sup 60}Co source. These experiments allow to test the new dosimetric techniques that have been developed since the previous intercomparison program (1993) and to confirm or improve the performances of older techniques. Aside from the intercomparison exercise, this report makes a status of the known radiological accidents and of the effects of high doses of ionizing radiations on human health (symptoms, therapeutics). It explains the phenomenology of criticality accidents, the prevention means, and the history of such accidents up to the Tokai-Mura one in 1999. Finally, the dosimetry of criticality is presented with its physical and biological techniques. (J.S.)

  18. Immediate medical consequences of nuclear accidents: lessons from Chernobyl

    International Nuclear Information System (INIS)

    Gale, R.P.

    1987-01-01

    The immediate medical response to the nuclear accident at the Chernobyl nuclear power station involved containment of the radioactivity and evacuation of the nearby population. The next step consisted of assessment of the radiation dose received by individuals, based on biological dosimetry, and treatment of those exposed. Medical care involved treatment of skin burns; measures to support bone marrow failure, gastrointestinal tract injury, and other organ damage (i.e., infection prophylaxis and transfusions) for those with lower radiation dose exposure; and bone marrow transplantation for those exposed to a high dose of radiation. At Chernobyl, two victims died immediately and 29 died of radiation or thermal injuries in the next three months. The remaining victims of the accident are currently well. A nuclear accident anywhere is a nuclear accident everywhere. Prevention and cooperation in response to these accidents are essential goals

  19. Neutron personal dosimetry in criticality accidents

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1996-01-01

    In the present work an innovating method is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the method here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μ Gy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author)

  20. Lawrence Livermore National Laboratory and Sandia National Laboratory Nuclear Accident Dosimetry Support of IER 252 and the Dose Characterization of the Flattop Reactor at the DAF

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jeffers, K. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Radev, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tai, L. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ward, D. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Leonard, E. I. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-10-06

    In support of IER 252 “Characterization of the Flattop Reactor at the NCERC”, LLNL performed ROSPEC measurements of the neutron spectrum and deployed 129 Personnel Nuclear Accident Dosimeters (PNAD) to establish the need for height corrections and verification of neutron spectrum evaluation of the fluences and dose. A very limited number of heights (typically only one or two heights) can be measured using neutron spectrometers, therefore it was important to determine if any height correction would be needed in future intercomparisons and studies. Specific measurement positions around the Flatttop reactor are provided in Figure 1. Table 1 provides run and position information for LLNL measurements. The LLNL ROSPEC (R2) was used for run numbers 1 – 7, and vi. PNADs were positioned on trees during run numbers 9, 11, and 13.

  1. PNNL Measurement Results for the 2016 Criticality Accident Dosimetry Exercise at the Nevada National Security Stite (IER-148)

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.; Morley, Shannon M.; Stephens, John A.

    2017-05-01

    The Pacific Northwest National Laboratory (PNNL) participated in a criticality accident dosimetry intercomparison exercise held at the Nevada National Security Site (NNSS) May 24-27, 2016. The exercise was administered by Lawrence Livermore National Laboratory (LLNL) and consisted of three exposures performed using the Godiva-IV critical assembly housed in the Device Assembly Facility (DAF) located on the NNSS site. The exercise allowed participants to test the ability of their nuclear accident dosimeters to meet the performance criteria in ANSI/HPS N13.3-2013, Dosimetry for Criticality Accidents and to obtain new measurement data for use in revising dose calculation methods and quick sort screening methods where appropriate. PNNL participated with new prototype Personal Nuclear Accident Dosimeter (PNAD) and Fixed Nuclear Accident Dosimeter (FNAD) designs as well as the existing historical PNAD design. The new prototype designs incorporate optically stimulated luminescence (OSL) dosimeters in place of thermoluminescence dosimeters (TLDs), among other design changes, while retaining the same set of activation foils historically used. The default dose calculation methodology established decades ago for use with activation foils in PNNL PNADs and FNADs was used to calculate neutron dose results for both the existing and prototype dosimeters tested in the exercise. The results indicate that the effective cross sections and/or dose conversion factors used historically need to be updated to accurately measure the operational quantities recommended for nuclear accident dosimetry in ANSI/HPS N13.3-2013 and to ensure PNAD and FNAD performance meets the ANSI/HPS N13.3-2013 performance criteria. The operational quantities recommended for nuclear accident dosimetry are personal absorbed dose, Dp(10), and ambient absorbed dose, D*(10).

  2. Nuclear law and radiological accidents

    International Nuclear Information System (INIS)

    Frois, F.

    1998-01-01

    Nuclear activities in Brazil, and particularly the radiological accident of Goiania, are examined in the light of the environmental and nuclear laws of Brazil and the issue of responsibility. The absence of legislation covering radioactive wastes as well as the restrictions on Brazilian States to issue regulations covering nuclear activities are reviewed. The radiological accident and its consequences, including the protection and compensation of the victims, the responsibility of the shareholders of the Instituto Goiano de Radioterapia, operator of the radioactive source, the provisional storage and the final disposal at Abadia de Goias of the radioactive waste generated by the accident are reviewed. Finally, nuclear responsibility, the inapplicability of the Law 6453/77 which deals with nuclear damages, and the state liability regime are analysed in accordance with the principles of the Brazilian Federal Constitution. (author)

  3. International aspects of nuclear accidents

    International Nuclear Information System (INIS)

    Uematsu, K.

    1989-09-01

    The accident at Chernobyl revealed that there were shortcomings and gaps in the existing international mechanisms and brought home to governments the need for stronger measures to provide better protection against the risks of severe accidents. The main thrust of international co-operation with regard to nuclear safety issues is aimed at achieving a uniformly high level of safety in nuclear power plants through continuous exchanges of research findings and feedback from reactor operating experience. The second type of problem posed in the event of an accident resulting in radioactive contamination of several countries relates to the obligation to notify details of the circumstances and nature of the accident speedily so that the countries affected can take appropriate protective measures and, if necessary, organize mutual assistance. Giving the public accurate information is also an important aspect of managing an emergency situation arising from a severe accident. Finally, the confusion resulting from the unwarranted variety of protective measures implemented after the Chernobyl accident has highlighted the need for international harmonization of the principles and scientific criteria applicable to the protection of the public in the event of an accident and for a more consistent approach to emergency plans. The international conventions on third party liability in the nuclear energy sector (Paris/Brussels Conventions and the Vienna Convention) provide for compensation for damage caused by nuclear accidents in accordance with the rules and jurisdiction that they lay down. These provisions impose obligations on the operator responsible for an accident, and the State where the nuclear facility is located, towards the victims of damage caused in another country

  4. Civil liability concerning nuclear accidents

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    France and the USA wish to cooperate in order to promote an international regime of civil liability in order to give a fair compensation to victims of nuclear accidents as it is recommended by IAEA. On the other hand the European Commission has launched a consultation to see the necessity or not to harmonize all the civil liability regimes valid throughout Europe. According to the Commission the potential victims of nuclear accidents would not receive equal treatment at the European scale in terms of insurance cover and compensation which might distort competition in the nuclear sector. (A.C.)

  5. Severe accidents in nuclear reactors

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Dumitrescu, Iulia; Tunaru, Mariana

    2004-01-01

    The likelihood of accidents leading to core meltdown in nuclear reactors is low. The consequences of such an event are but so severe that developing and implementing of adequate measures for preventing or diminishing the consequences of such events are of paramount importance. The analysis of major accidents requires sophisticated computation codes but necessary are also relevant experiments for checking the accuracy of the predictions and capability of these codes. In this paper an overview of the severe accidents worldwide with definitions, computation codes and relating experiments is presented. The experimental research activity of severe accidents was conducted in INR Pitesti since 2003, when the Institute jointed the SARNET Excellence Network. The INR activity within SARNET consists in studying scenarios of severe accidents by means of ASTEC and RELAP/SCDAP codes and conducting bench-scale experiments

  6. Cellular dosimetry in nuclear medicine imaging: training

    International Nuclear Information System (INIS)

    Gardin, I.; Faraggi, M.; Stievenart, J.L.; Le Guludec, D.; Bok, B.

    1998-01-01

    The radionuclides used in nuclear medicine imaging emit not only diagnostically useful photons, but also energy electron emissions, responsible for dose heterogeneity at the cellular level. The mean dose delivered to the cell nucleus by electron emissions of 99m Tc, 123 I, 111 In, 67 Ga, and 201 Tl, has been calculated, for the cell nucleus, a cytoplasmic and a cell membrane distribution of radioactivity. This model takes into account both the self-dose which results from the radionuclide located in the target cell, and the cross-dose, which comes from the surrounding cells. The results obtained by cellular dosimetry (D cel ) have been compared with those obtained with conventional dosimetry (D conv ), by assuming the same amount of radioactivity per cell. Cellular dosimetry shows, for a cytoplasmic and a cell membrane distributions of radioactivity, that the main contribution to the dose to the cell nucleus, comes from the surrounding cells. On the other hand, for a cell nucleus distribution of radioactivity, the self-dose is not negligible and may be the main contribution. The comparison between cellular and conventional dosimetry shows that D cel /D conv ratio ranges from 0.61 and O.89, in case of a cytoplasmic and a cell membrane distributions of radioactivity, depending on the radionuclide and cell dimensions. Thus, conventional dosimetry slightly overestimates the mean dose to the cell nucleus. On the other hand, D cel /D conv ranges from 1.1 to 75, in case of a cell nucleus distribution of radioactivity. Conventional dosimetry may strongly underestimates the absorbed dose to the nucleus, when radioactivity is located in the nucleus. The study indicates that in nuclear medicine imaging, cellular dosimetry may lead to a better understanding of biological effects of radiopharmaceuticals. (authors)

  7. Dosimetry systems in nuclear power stations

    International Nuclear Information System (INIS)

    Weidmann, U.

    1992-01-01

    In the following paper the necessity of the use of electronic dosimetry systems in nuclear power stations is presented, also encompassing the tasks which this type of systems has to fulfill. Based on examples the construction principles and the application possibilities of a PC supported system are described. 5 figs

  8. The cost of nuclear accidents

    International Nuclear Information System (INIS)

    2015-01-01

    Proposed by a technical section of the SFEN, and based on a meeting with representatives of different organisations (OECD-NEA, IRSN, EDF, and European Nuclear Energy Forum), this publication addresses the economic consequences of a severe accident (level 6 or 7) within an electricity producing nuclear power plant. Such an assessment essentially relies on three pillars: release of radio-elements outside the reactor, the scenario of induced consequences, and the method of economic quantification. After a recall and a comment of safety arrangements, and of the generally admitted probability of such an accident, this document notices that several actors are concerned by nuclear energy and are trying to assess accident costs. The issue of how to assess a cost (or costs) of a nuclear accident is discussed: there are in fact several types of costs and consequences. Thus, some costs can be rather precisely quantified when some others can be difficult to assess or with uncertainty. The relevance of some cost categories appears to be a matter of discussion and one must not forget that consequences can occur on a long term. The need for methodological advances is outlined and three categories of technical objectives are identified for the assessment (efficiency of safety measures to be put forward to mitigate the risk via a better accident management, compensation of victims and nuclear civil responsibility, and comparison of electricity production sectors and assessment of externalisation to guide public choices). It is outlined that the impact of accidents depend on several factors, that the most efficient mean to limit consequences of accidents is of course to limit radioactive emissions

  9. Measures against nuclear accidents

    International Nuclear Information System (INIS)

    1992-01-01

    A select committee appointed by the Norwegian Ministry of Social Affairs put forward proposals concerning measures for the improvement of radiation protection preparedness in Norway. On the basis on an assessment of the potential radiation accident threat, the report examines the process of response, and identifies the organizational and management factors that influence that process

  10. A neutron dosemeter for nuclear criticality accidents.

    Science.gov (United States)

    d'Errico, F; Curzio, G; Ciolini, R; Del Gratta, A; Nath, R

    2004-01-01

    A neutron dosemeter which offers instant read-out has been developed for nuclear criticality accidents. The system is based on gels containing emulsions of superheated dichlorodifluoromethane droplets, which vaporise into bubbles upon neutron irradiation. The expansion of these bubbles displaces an equivalent volume of gel into a graduated pipette, providing an immediate measure of the dose. Instant read-out is achieved using an array of transmissive optical sensors which consist of coupled LED emitters and phototransistor receivers. When the gel displaced in the pipette crosses the sensing region of the photomicrosensors, it generates a signal collected on a computer through a dedicated acquisition board. The performance of the device was tested during the 2002 International Accident Dosimetry Intercomparison in Valduc, France. The dosemeter was able to follow the initial dose gradient of a simulated accident, providing accurate values of neutron kerma; however, the emulsion was rapidly depleted of all its drops. A model of the depletion effects was developed and it indicates that an adequate dynamic range of the dose response can be achieved by using emulsions of smaller droplets.

  11. A neutron dosemeter for nuclear criticality accidents

    International Nuclear Information System (INIS)

    D'Errico, F.; Curzio, G.; Ciolini, R.; Del Gratta, A.; Nath, R.

    2004-01-01

    A neutron dosemeter which offers instant read-out has been developed for nuclear criticality accidents. The system is based on gels containing emulsions of superheated dichlorodifluoromethane droplets, which vaporise into bubbles upon neutron irradiation. The expansion of these bubbles displaces an equivalent volume of gel into a graduated pipette, providing an immediate measure of the dose. Instant read-out is achieved using an array of transmissive optical sensors which consist of coupled LED emitters and phototransistor receivers. When the gel displaced in the pipette crosses the sensing region of the photo microsensors, it generates a signal collected on a computer through a dedicated acquisition board. The performance of the device was tested during the 2002 International Accident Dosimetry Intercomparison in Valduc (France)). The dosemeter was able to follow the initial dose gradient of a simulated accident, providing accurate values of neutron kerma; however, the emulsion was rapidly depleted of all its drops. A model of the depletion effects was developed and it indicates that an adequate dynamic range of the dose response can be achieved by using emulsions of smaller droplets. (authors)

  12. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Dann C.

    2011-09-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  13. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France

    International Nuclear Information System (INIS)

    Ward, Dann C.

    2011-01-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  14. Regulatory aspects of nuclear accidents

    International Nuclear Information System (INIS)

    Caoui, A.

    1988-01-01

    The legislative systems used in different countries insist on requiring the license of the nuclear installations exploitation and on providing a nuclear safety report. For obtaining this license, the operators have to consider all situations of functioning (normal, incidental and accidental) to make workers and the public secure. The licensing procedures depend on the juridical and administrative systems of the country. Usually, protection of people against ionzing radiation is the responsibility of the ministry of health and the ministry of industry. In general, the regulations avoid to fix a definite technical standards by reason of technological development. An emergency plan is normally designed in the stage of the installation project planification. This plan contains the instructions and advices to give to populations in case of accident. The main lesson learnt from the nuclear accidents that happened is to enlarge the international cooperation in the nuclear safety field. 4 refs. (author)

  15. Assessment of off-site consequences of nuclear accidents (MARIA)

    International Nuclear Information System (INIS)

    Haywood, S.M.

    1985-01-01

    A brief report is given of a workshop held in Luxembourg in 1985 on methods for assessing the off-site radiological consequences of nuclear accidents (MARIA). The sessions included topics such as atmospheric dispersion; foodchain transfer; urban contamination; demographic and land use data; dosimetry, health effects, economic and countermeasures models; uncertainty analysis; and application of probabilistic risk assessment results as input to decision aids. (U.K.)

  16. EPR dosimetry teeth in past and future accidents: A prospective look at a retrospective method

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.; Kenner, G.; Hayes, R. [Univ. of Utah, Salt Lake City, UT (United States). Center for Applied Dosimetry; Chumak, V.; Shalom, S. [Scientific Center for Radiation Medicine, Kiev (Ukraine)

    1997-03-01

    Accurate assessments of doses received by individuals exposed to radiation from nuclear accidents and incidents such as those at Hiroshima and Nagasaki, the Nevada test site, Cheliabinsk and Mayak are required for epidemiological studies seeking to establish relationships between radiation dose and health effects. One method of retrospective dosimetry which allows for measurement of cumulative gamma ray doses received by exposed individuals is electron paramagnetic resonance spectroscopy (EPR) of tooth enamel. Tooth enamel stores and retains, indefinitely, information on absorbed radiation dose. And teeth are available in every population as a result of dental extraction for medical reasons including periodontal disease and impacted wisdom teeth. In the case of children, deciduous teeth, which are shed between the ages of 7 and 13, can be a very important dosimetric source if documented collection is implemented shortly following an accident.

  17. EPR dosimetry teeth in past and future accidents: A prospective look at a retrospective method

    International Nuclear Information System (INIS)

    Haskell, E.; Kenner, G.; Hayes, R.

    1997-01-01

    Accurate assessments of doses received by individuals exposed to radiation from nuclear accidents and incidents such as those at Hiroshima and Nagasaki, the Nevada test site, Cheliabinsk and Mayak are required for epidemiological studies seeking to establish relationships between radiation dose and health effects. One method of retrospective dosimetry which allows for measurement of cumulative gamma ray doses received by exposed individuals is electron paramagnetic resonance spectroscopy (EPR) of tooth enamel. Tooth enamel stores and retains, indefinitely, information on absorbed radiation dose. And teeth are available in every population as a result of dental extraction for medical reasons including periodontal disease and impacted wisdom teeth. In the case of children, deciduous teeth, which are shed between the ages of 7 and 13, can be a very important dosimetric source if documented collection is implemented shortly following an accident

  18. EPR dosimetry of teeth in past and future accidents. A prospective look at a retrospective method

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.; Kenner, G.; Hayes, R. [Center for Applied Dosimetry, Salt Lake City, UT (United States); Chumak, V.; Shalom, S.

    1996-12-31

    Accurate assessments of doses received by individuals exposed to radiation from nuclear accidents and incidents such as those at Hiroshima and Nagasaki, the Nevada test site, Chelyabinsk and Mayak are required for epidemiological studies seeking to establish relationships between radiation dose and health effects. One method of retrospective dosimetry which allows for measurement of cumulative gamma ray doses received by exposed individuals is electron paramagnetic resonance spectroscopy (EPR) of tooth enamel. Tooth enamel stores and retains, indefinitely, information on absorbed radiation dose; and teeth are available in every population as a result of dental extraction for medical reasons including periodontal disease and impacted wisdom teeth. In the case of children, deciduous teeth, which are shed between the ages of 7 and 13, can be a very important dosimetric source if documented collection is implemented shortly following an accident. (author)

  19. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  20. Learning from nuclear accident experience

    International Nuclear Information System (INIS)

    Vaurio, J.K.

    1984-01-01

    Statistical procedures are developed to estimate accident occurrence rates from historical event records, to predict future rates and trends, and to estimate the accuracy of the rate estimates and predictions. Maximum likelihood estimation is applied to several learning models, and results are compared to earlier graphical and analytical estimates. The models are based on (1) the cumulative number of operating years, (2) the cumulative number of plants built, and (3) accidents (explicitly), with the accident rate distinctly different before and after an accident. The statistical accuracies of the parameters estimated are obtained in analytical form using the Fisher information matrix. Using data on core damage accidents in electricity producing plants, it is estimated that the probability for a plant to have a serious flaw has decreased from 0.1 to 0.01 during the developmental phase of the nuclear industry. At the same time the equivalent frequency of accidents has decreased from 0.04 per reactor year to 0.0004 per reactor year, partly due to the increasing population of plants. 10 references, 7 figures, 2 tables

  1. Monitoring of nuclear accidents

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J.; Camps, J.

    2010-07-01

    No matter how extensive the safety measures might be in and around nuclear sites, an incident can never be entirely ruled out. SCK-CEN is a specialist in radiological evaluations, in order to determine the impact of ionising radiation or a discharge of radionuclides on man and the environment. In August 2008, a team of SCK-CEN researchers participated in the radiological monitoring of the environment after an incident at the National Institute of Radio Elements (IRE) in Fleurus. SCK-CEN also conducted thyroid gland measurements in the population. The incident provided useful lessons on dealing with nuclear emergency situations.

  2. Thyroid dosimetry after the Chernobyl accident and thyroid cancer in iodine deficient areas

    Energy Technology Data Exchange (ETDEWEB)

    Szybinski, Z [Jagiellonian Univ., Cracow (Poland). Dept. of Endocrinology

    1996-08-01

    Of the radionuclides generated from 235-U and 239-Pu in a core of the nuclear reactor, radioiodines particularly 131-I, is the most significant in view of its huge quantities, easy dispersion and cumulation in the human thyroid in case of a nuclear accident. After nuclear accident in Chernobyl 20-50 million Ci of 131-I was released. Depending on the dose absorbed to the thyroid, 131-I can cause a late appearance of a thyroid nodule or cancer and/or thyroid destruction leading to hypothyroidism. Thyroid irradiation may origin from two sources: external cumulative radiation mainly of gamma type and internal related to 131-I cumulation. So far most information on the risk factors of the thyroid cancer due to is related to from external radiation, but there is no scientific basis to believe that internal radiation cannot induce the thyroid cancer. Thyroid dosimetry after Chernobyl accident in near and far field is essential for calculation of the thyroid cancer risk coefficient due to radiation. 1 tab.

  3. Proceedings of the III international workshop 'Actual problems of dosimetry (15 years after the Chernobyl accident)'

    International Nuclear Information System (INIS)

    Milyutin, A.A.; Chudakov, V.A.; Berezhnoj, A.V.

    2001-10-01

    Materials grouped to three main issues: normative, metrological and technical support of dosimetric and radiometric control; biological dosimetry and markers of radiation effects; monitoring and reconstruction of radiation doses at radiation accidents

  4. Course on internal dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    2004-01-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine

  5. OSL properties of three commonly available salt brands in India for its use in accident dosimetry

    Science.gov (United States)

    Singh, A. K.; Menon, S. N.; Kadam, S. Y.; Koul, D. K.; Datta, D.

    2018-03-01

    Thermally stimulated luminescence (TL) and Optically Stimulated Luminescence (OSL) characterization of three commonly available salt brands in India were undertaken for their application in accident dosimetry. The investigations showed that the luminescence properties differed to some extent with that reported in literature. Dosimetric properties of these salt samples showed that these can be useful in accident dosimetry. Based on the sensitization and fading behaviour of the samples a Single Aliquot Regenerative (SAR) protocol has been proposed for dose estimation.

  6. Reactor accidents and nuclear catastrophes

    International Nuclear Information System (INIS)

    Kirchhoff, R.; Linde, H.J.

    1979-01-01

    Assuming some preliminary knowledge of the fundamentals of atomic physics, the book describes the effects of ionizing radiation on the human organism. In order to assess the potential hazards of reactor accidents and the extent of a nuclear catastrophe, the technology of power generation in nuclear power stations is presented together with its potential dangers as well as the physical and medical processes occurring during a nuclear weapons explosion. The special medical aspects are presented which range from first aid in the case of a catastrophe to the accute radiation syndrome, the treatment of burns to the therapy of late radiolesions. Finally, it is confirmed that the treatment of radiation injured persons does not give rise to basically new medical problems. (orig./HP) [de

  7. Radiation accident dosimetry: TL properties of mobile phone screen glass

    International Nuclear Information System (INIS)

    Bassinet, C.; Pirault, N.; Baumann, M.; Clairand, I.

    2014-01-01

    Mobile phones are carried by a large part of the population and previous studies have shown that they may be able to function as individual fortuitous dosimeters in case of radiological accident. This study deals with thermoluminescence (TL) properties of mobile phone screen glass. The presence of a significant background signal which partially overlaps with the radiation-induced signal is a serious issue for dose reconstruction. A mechanical method to reduce this signal using a diamond grinding bit is presented. An over-response at low energy (∼50 keV) is observed for two investigated glasses. The results of a dose recovery test using a single-aliquot regenerative-dose (SAR) procedure are discussed. - Highlights: • Mobile phone screen glass is a promising material for retrospective dosimetry. • The TL non-radiation induced background signal can be significantly reduced by a mechanical method. • A dose recovery test using an SAR procedure was successfully carried out for the investigated glass

  8. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  9. Character and consequence of nuclear criticality accident

    International Nuclear Information System (INIS)

    Liu Xinhua; Liu Hua; Wu Deqiang; Li Bing

    2001-01-01

    The author describes some concepts, the process and magnitude of energy release and the destruction of the nuclear criticality accident and also describes the radiation consequence of criticality accidents from three aspects: prompt radiation, contamination in working place and release of fission products to the environment. It shows that the effects of radioactivity release from criticality accidents in the nuclear fuel processing plants on the environment and the public is minor, the main danger is from the external exposure of prompt rays. The paper make as have a correct understanding of the nuclear criticality accident and it would be helpful to take appropriate emergency response to potential criticality accident

  10. Socioeconomic consequences of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Tawil, J.J.; Callaway, J.W.; Coles, B.L.; Cronin, F.J.; Currie, J.W.; Imhoff, K.L.; Lewis, P.M.; Nesse, R.J.; Strenge, D.L.

    1984-06-01

    This report identifies and characterizes the off-site socioeconomic consequences that would likely result from a severe radiological accident at a nuclear power plant. The types of impacts that are addressed include economic impacts, health impacts, social/psychological impacts and institutional impacts. These impacts are identified for each of several phases of a reactor accident - from the warning phase through the post-resettlement phase. The relative importance of the impact during each accident phase and the degree to which the impact can be predicted are indicated. The report also examines the methods that are currently used for assessing nuclear reactor accidents, including development of accident scenarios and the estimating of socioeconomic accident consequences with various models. Finally, a critical evaluation is made regarding the use of impact analyses in estimating the contribution of socioeconomic consequences to nuclear accident reactor accident risk. 116 references, 7 figures, 15 tables

  11. Thyroid blocking after nuclear accidents

    International Nuclear Information System (INIS)

    Rendl, J.; Reiners, C.

    1999-01-01

    Following the Chernobyl accident a marked increase in thyroid cancer incidence among the children in Belarus, the Ukraine and Russia has been detected, strongly suggesting a causal relationship to the large amounts of radioactive iodine isotopes in the resulting fallout. Taking into account the Chernobyl experience the German Committee on Radiation Protection decided to reduce the intervention levels on the basis of the 1989 WHO recommendations and adopted a new concept concerning thyroid blocking in response to nuclear power plant accidents. Experimental animal studies and theoretical considerations show that thyroid blocking with potassium iodide (KI) in a dose of about 1.4 mg per kg body weight is most effective in reducing irradiation to the thyroid from the intake of radioiodine nuclides, provided KI is given within 2 hours after exposure. According to the new concept, persons over 45 years of age should not take iodine tablets because the drug could cause a greater health risk due to prevalent functional thyroid autonomy in this age group than the radioactive iodine averted by KI. On the basis of accident analysis and the new philosophy suitable distribution strategies and logistics are proposed and discussed. (orig.) [de

  12. Nuclear Accident Dosimetry at Argonne National Laboratory; Dosimetrie dans les Cas d'Accidents Nucleaires au Laboratoire National d'Argonne; 0421 041b 0423 0416 0411 0410 0414 ; Dosimetria en Casos de Accidente Nuclear en el Laboratorio Nacional de Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, L. L.; Duffy, T. L.; Sedlet, J.; O' Neil, D. P. [Argonne National Laboratory, Argonne, IL (United States)

    1965-06-15

    storage stability are discussed. Plans have been formulated to determine phosphorus-32 in biological materials in order to obtain a fast- neutron dose, to analyse environmental materials for neutron activation products, and to determine the total number of fissions. Administrative control of dose determination will be facilitated with a manual which lists dosimeter locations and handling and counting procedures as well as formulae for dose calculations. (author) [French] La communication resume les mesures actuellement prevues au Laboratoire national d'Argonne pour evaluer les doses recues a la suite d'un accident de criticite. L'etude porte essentiellement sur deux types d'ensembles dosimetres en vente dans le commerce et donne les resultats d'operations de calibrage effectuees independamment au Laboratoire. Le reseau primaire de dosimetrie est constitue par des detecteurs a seuil mis au point au Laboratoire national d'Oak Ridge pour la mesure des spectres de neutrons. On a determine experimentalement, d'apres la decroissance d'activite de feuilles a fission, des courbes d'etalonnage pour les appareils de comptage a scintillation couramment utilises a Argonne. Ce materiel a egalement ete etalonne pour la mesure de l'activite du sodium-24 dans le sang. Des ensembles dosimetres du type mis au point au Laboratoire de Savannah River constituent le reseau secondaire. Les donnees fournies par les cellules de ces appareils qui detectent les neutrons par activation permettront de proceder a des corrections du spectre neutronique pour les energies intermediaires et pour les energies thermiques. L'activation epicadmique d'une feuille de cuivre, pour une fluence donnee des neutrons d'energie intermediaire, se revele relativement insensible aux variations du spectre neutronique dans la region consideree et on a pu determiner une moyenne significative pour la section efficace dans le cuivre. Le memoire donne les facteurs d'etalonnage des compteurs, calcules a Argonne pour les

  13. Internal Dosimetry for Nuclear Power Program

    International Nuclear Information System (INIS)

    Wo, Y.M.

    2011-01-01

    Internal dosimetry which refers to dosage estimation from internal part of an individual body is an important and compulsory component in order to ensure the safety of the personnel involved in operational of a Nuclear Power Program. Radionuclides particle may deposit in the human being through several pathways and release wave and/or particle radiation to irradiate that person and give dose to body until it been excreted or completely decayed from the body. Type of radionuclides of concerning, monitoring program, equipment's and technique used to measure the concentration level of such radionuclides and dose calculation will be discussed in this article along with the role and capability of Malaysian Nuclear Agency. (author)

  14. An introduction to serious nuclear accident chemistry

    Directory of Open Access Journals (Sweden)

    Mark Russell St. John Foreman

    2015-12-01

    Full Text Available A review of the chemistry occurring inside a nuclear power plant during a serious reactor accident is presented. This includes some aspects of the behavior of nuclear fuel, its cladding, cesium and iodine. This review concentrates on the chemistry of an accident in a water-cooled reactor loaded with uranium dioxide or mixed metal oxide fuel.

  15. Medical consequences of a nuclear plant accident

    International Nuclear Information System (INIS)

    Olsson, S.E.; Reizenstein, P.; Stenke, L.

    1987-01-01

    The report gives background information concerning radiation and the biological medical effects and damages caused by radiation. The report also discusses nuclear power plant accidents and efforts from the medical service in the case of a nuclear power plant accident. (L.F.)

  16. Locations of criticality alarms and nuclear accident dosimeters at Hanford

    International Nuclear Information System (INIS)

    1992-08-01

    Hanford facilities that contain fissionable materials capable of achieving critical mass are monitored with nuclear accident dosimeters (NADS) in compliance with the requirements of DOE Order 5480.11, Chapter XI, Section 4.c. (DOE 1988). The US Department of Energy (DOE) Richland Field Office (RL) has assigned the responsibility for maintaining and evaluating the Hanford NAD system to the Instrumentation and External Dosimetry (I ampersand ED) Section of Pacific Northwest Laboratory's (PNL's) Health Physics Department. This manual provides a description of the Hanford NAD, criteria and instructions for proper NAD placement, and the locations of these dosimeters onsite

  17. Iodine Prophylaxis and Nuclear Accidents

    International Nuclear Information System (INIS)

    Franic, Z.

    1998-01-01

    Iodine is a highly volatile element therefore being very mobile in the environment. It enters the metabolism of living organisms and is selectively taken up and concentrated in the thyroid gland. The plume (cloud-like formation) of radioactive material that might be released in the environment in the case of a serious nuclear accident, primarily consists of the radioactive isotopes of iodine. Among those, due to its decay properties, is the most important 131 I. The effective means of protecting the thyroid gland against exposure to radioactive iodine is an intake of stable iodine. Therefore, one of the central issues in the emergency planning is to determine whether and at which projected thyroid radiation dose stable iodine should be given to the population. The International Atomic Energy Agency (IAEA) set the generic optimized intervention value for iodine prophylaxis to 100 mGy of avertable committed dose to a thyroid.The prophylaxis is implemented by utilizing the pills of pills of potassium iodine (KI). The efficacy of KI in protecting the thyroid gland depends upon the time of intake relative to the start of exposure to radioactive iodine. The best results are obtained if KI is taken 1-2 hours before or immediately after the start of exposure. The recommended dosage, based upon the study performed by Il'in et.al. is 130 mg/day. KI should be taken at least three days after the acute exposure to radioiodine, to prevent accumulation in a thyroid gland of radioiodine excreted from the other compartments of the body. The largest epidemiological study on the effects of KI prophylaxis ever performed was the one in Poland after the Chernobyl accident. Stable iodine was given as single dose of KI solution to 10.5 million of children and 7 millions of adults. Among children no serious side effects were seen while only two adults (with previously recorded iodine sensitivity) had severe respiratory distresses. Polish experiences showed that rapid response to such

  18. Radiation dosimetry in nuclear medicine - recent developments

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Wood, N.R.

    1976-01-01

    This paper reviews developments in radiation dosimetry in Nuclear Medicine over the past few years. The practical scope of the Medical Internal Radiation Dose (MIRD) Committee's Schema for dose determination has been extended by the development of more realistic mathematical models of the human body, together with the improvement in basic physical data used in dose calculations. Apart from the use of the Adult Human Phantom as the basis for dose determination, models have been developed for the estimation of doses to children and to the developing foetus. The Schema has been extended to permit calculations of the dose to dynamic organs, particularly the bladder. The principle of Monte Carlo photon history simulation, which forms the basis of much of the MIRD Schema's published data, has been used at the Australian Atomic Energy Commission for the determination of complete photon dose distributions. These are more meaningful in many cases than the average doses determined by the absorbed fraction method. (author)

  19. Return on experience on nuclear accidents

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-09-01

    After a presentation of the International Nuclear and radiological Events Scale (INES scale), of its levels and criteria, this article proposes brief recalls of some nuclear accidents which occurred in nuclear reactors: Chalk River in Canada (1952), Windscale in England (1957), the universal Canadian reactor (NRU in 1958), the SL1 reactor of the Idaho National Laboratory in the USA (1961), the Swiss Lucens reactor (1969), Saint-Laurent des Eaux in France (1969 and 1980). More detailed descriptions are then given for the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima accident in 2011. The main causes of these accidents are identified: loss of control of chain reaction, cooling defect on a stopped reactor, cooling defect on an operated reactor. Some lessons are drawn from these facts, and some characteristics of the EPR are outlined with respect with problems encountered in these accidents

  20. Metabolism in tooth enamel and reliability of retrospective EPR dosimetry connected with Chernobyl accident

    International Nuclear Information System (INIS)

    Brik, A.; Radchuk, V.; Scherbina, O.; Matyash, M.; Gaver, O.

    1996-01-01

    It is shown that the results of retrospective EPR dosimetry by tooth enamel are essentially determined by the fact that tooth enamel is the mineral of biological origin. The structure of tooth enamel, properties of radiation defects and the role of metabolism in tooth enamel are discussed. It is shown that at deep metamorphic modifications tooth enamel don't save information about its radiation history. The reliability and accuracy of retrospective EPR dosimetry are discussed. Because after Chernobyl accident have passed 10 years the application of tooth enamel for reconstruction of doses which are connected with Chernobyl accident need care and additional investigations

  1. Review of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Connelly, J.W.; Storr, G.J.

    1989-01-01

    Two types of severe reactor accidents - loss of coolant or coolant flow and transient overpower (TOP) accidents - are described and compared. Accidents in research reactors are discussed. The 1961 SL1 accident in the US is used as an illustration as it incorporates the three features usually combined in a severe accident - a design flaw or flaws in the system, a circumvention of safety circuits or procedures, and gross operator error. The SL1 reactor, the reactivity accident and the following fuel-coolant interaction and steam explosion are reviewed. 3 figs

  2. Routine dosimetry in a nuclear medicine department

    International Nuclear Information System (INIS)

    Dreuille, O. de; Carbonieres, H. de; Briand-Champlong, J.; Foehrenbach, H.; Guevel, E.; Maserlin, P.; Gaillard, J.F.; Treguier, J.Y.

    2002-01-01

    The nuclear medicine department of the Val de Grace Hospital, in cooperation with the Radiological Protection Army Service, has performed an evaluation of the staff's radio-exposure based on routine dosimetry for six months. The most exposed people are the technicians (2.6 mSv/yr) and the nurse (1.7 mS/yr). The nuclear medicine physicians (0.6 mSv/yr) and the secretaries (0.07 mSv/yr) are far less exposed. The most irradiant occupations are the preparation and the injection of the radiopharmaceuticals (18 mSv/dy) and the realization of the Positron Emission Tomography examinations (19 mSv/dy). The increasing number of PET exams and the development of new tomographs, requiring higher activities, will still increase the exposition level of this working post. This study demonstrates that the exposition doses in nuclear medicine are low compared to the regular limits. Based on these results, only the technicians and the nurse are relevant to the A class. However, these dose levels cannot be neglected for particular positions such as the injection and the PET management. (author)

  3. Severe accidents: in nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    A ''severe'' nuclear accident refers to a reactor accident that could exceed reactor design specifications to such a degree as to prevent cooling of the reactor's core by normal means. This report summarizes the work of a NEA Senior Group of Experts who have studied the potential response of existing light-water reactors to severe accidents and have found that current designs of reactors are far more capable of coping with severe accidents than design specifications would suggest. The report emphasises the specific knowledge and means that can be used for diagnosing a severe accident and for managing its progression in order to prevent or mitigate its consequences

  4. Biological dosimetry following exposure to neutrons in a criticality accident

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, C. (Radiation and Nuclear Safety Authority, STUK (Finland)); Wojcik, A. (Stockholm Univ. (SU), Stockholm (Sweden)); Jaworska, A. (Norwegian Radiation Protection Authority (NRPA) (Norway))

    2011-01-15

    The aim of the BIONCA project was to implement cytogenetic techniques for biodosimetry purposes in the Nordic countries. The previous NKS-funded biodosimetry activities (BIODOS and BIOPEX) concentrated on experiments using gamma-irradiation and on developing the PCC ring assay for biodosimetry. Experiments conducted during the present BIONCA project has broadened the biodosimetry capacity of the Nordic countries to include dose estimation of exposure to neutrons for both PCC ring and dicentric chromosome techniques. In 2009, experiments were conducted for establishing both PCC ring and dicentric dose calibration curves. Neutron irradiation of human whole blood obtained from two volunteers was conducted in the Netherlands at the Petten reactor. Cell cultures and analysis of whole blood exposed to eight doses between 0 and 10 Gy were performed for both techniques. For the dicentric assay, excellent uniformity in dose calibration for data from both SU and STUK was observed. For PCC rings, the SU and STUK curves were not equally congruent, probably due to the less uniform scoring criteria. However, both curves displayed strong linearity throughout the dose range. In 2010, an exercise was conducted to simulate a criticality accident and to test the validity of the established dose calibration curves. For accident simulation, 16 blood samples were irradiated in Norway at the Kjeller reactor and analysed for dose estimation with both assays. The results showed that, despite a different com-position of the radiation beams in Petten and Kjeller, good dose estimates were obtained. The activity has provided good experience on collaboration required in radiation emergency situations where the biodosimetry capacity and resources of one laboratory may be inadequate. In this respect, the project has strengthened the informal network between the Nordic countries: STUK, the Finnish Radiation and Nuclear Safety Authority, NRPA, the Norwegian Radiation Protection Authority and SU

  5. Nuclear accidents and safety measures of domestic nuclear power plants

    International Nuclear Information System (INIS)

    Song Zurong; Che Shuwei; Pan Xiang

    2012-01-01

    Based on the design standards for the safety of nuclear and radiation in nuclear power plants, the three accidents in the history of nuclear power are analyzed. And the main factors for these accidents are found out, that is, human factors and unpredicted natural calamity. By combining the design and operation parameters of domestic nuclear plants, the same accidents are studied and some necessary preventive schemes are put forward. In the security operation technology of domestic nuclear power plants nowadays, accidents caused by human factors can by prevented completely. But the safety standards have to be reconsidered for the unpredicted neutral disasters. How to reduce the hazard of nuclear radiation and leakage to the level that can be accepted by the government and public when accidents occur under extreme conditions during construction and operation of nuclear power plants must be considered adequately. (authors)

  6. Legal aspects of nuclear and radiological accidents

    International Nuclear Information System (INIS)

    El-baroudy, M.M.

    2005-01-01

    Aiming at preventing nuclear and radiological accidents and maintaining safety and security, the State extends its jurisdiction over nuclear and radiological activities through the promulgation of regulatory legislations and providing criminal protection to these activities. The State, in its legislation, defines an authority responsible for the planning of preparedness for emergency situations. That Authority cooperates with other competent authorities in the State as well as with other relevant international organizations and other States in a coordinated way aiming at dealing effectively with and mitigating the consequences of nuclear and radiological accidents through promulgating relevant international conventions and plans for reinforcement of international cooperation in accidents situations. Moreover, the International Atomic Energy Authority (IAEA) can provide specialized consultations and offer assistance in case of accidents. The present study is divided into an introduction and two chapters. In the introduction, the nature of nuclear or radiological accidents is defined. The first chapter deals with the national legal system for preventing the occurrence of nuclear and radiological accidents and mitigating their consequences. The second chapter deals with the international cooperation for facing nuclear or radiological accidents and mitigating their consequences

  7. Dutch National Plan combat nuclear accidents

    International Nuclear Information System (INIS)

    1988-01-01

    This document presents the Dutch National Plan combat nuclear accidents (NPK). Ch. 2 discusses some important starting points which are determining for the framework and the performance of the NPK, in particular the accident typology which underlies the plan. Also the new accident-classification system for the Dutch nuclear power plants, the standardization for the measures to be taken and the staging around nuclear power plants are pursued. In ch. 3 the legal framework of the combat nuclear accidents is described. In particular the Nuclear-power law, the Accident law and the Municipality law are pursued. Also the role of province and municipality are described. Ch. 4 deals with the role of the owner/licensee of the object where the accident occurs, in the combat of accident. In ch. 5 the structure of the nuclear-accident combat at national level is outlined, subdivided in alarm phase, combat phase and the winding-up phase. In ch.'s 6-12 these phases are elaborated more in detail. In ch.'s 10-13 the measures to be taken in nuclear accidents, are described. These measures are distinguished with regard to: protection of the population and medical aspects, water economy, drinking-water supply, agriculture and food supply. Ch. 14 describes the responsibility of the burgomaster. Ch.'s 15 and 16 present an overview of the personnel, material, procedural and juridical modifications and supplements of existing structures which are necessary with regard to the new and modified parts of the structure. Ch. 17 indicates how by means of the appropriate education and exercise it can be achieved that all personnel, services and institutes concerned possess the knowledge and experience necessary for the activities from the NKP to be executed as has been described. Ch. 18 contains a survey of activities to be performed and a proposal how these can be realized. (H.W.). figs.; tabs

  8. Nuclear accident evacuee bullying and structural violence

    International Nuclear Information System (INIS)

    Tsujiuchi, Takuya

    2018-01-01

    Nuclear accident sufferers should be now referred to as nuclear accident victims. The authors discuss why nuclear accident victims receive not only psychological bullying where no peculiar causes exist, but also corporal and physical bullying and mental suffering, based on the results of questionnaire survey conducted by the authors from January to February 2017, the 'survey on bullying problems related to evacuation from the nuclear accident.' The reasons why the nuclear power evacuation bullying has become a problem at present can be largely classified to the following three categories: (1) opinion that 'bullying' that originally existed just after the nuclear accident became surfaced recently, (2) opinion that latent problems exist as background, and (3) opinion that socially underlying issues are involved in the generation of bullying. Thus, various factors existing under nuclear power evacuation bullying were structurally clarified. In the background of children's nuclear evacuation bullying, adult nuclear power evacuation bullying exists, and there are 'lack of understanding, prejudice, and discrimination against nuclear power and Fukushima' under that. The author thought that 'structural violence' to create the disparity, discrimination, inequality, and injustice of society exists as the basis of such lack of understanding, prejudice, and discrimination, and discussed the 'structural violence' as the basis of bullying. As the upper structure of structural violence associated with nuclear accidents, there are two big phenomena: (1) setting of evacuation/return area not based on reasonable radiation dose standards and (2) fabricated safety and carefreeness myth. The Ministry of Education, Culture, Sports, Science and Technology's report on nuclear bullying could give an impression that 'nuclear power evacuation bullying' is 'not so big problem'. (A.O.)

  9. Radiation dosimetry for medical management in nuclear/radiological disaster

    International Nuclear Information System (INIS)

    Narayan, Pradeep

    2012-01-01

    Medical Management of radiation exposed victims depends on the amount of radiation doses received in their body and individual organs. The severity of radiation sickness; and early/late biological effects of radiation can be judged on the basis of absorbed dose level of the exposed individual. Radiation Dosimetry is a scientific technique for estimating radiation doses in material and living being. It is an important task for managing radiation effects/injuries to the living being in case of radiological accidents/disasters. In such scenario occupational radiation workers as well as public in general may be exposed with ionizing radiations such as; gamma, alpha, beta and neutron. Radiation dosimetric equipment's are available for occupational radiation workers, however, public in general may not have any dosimetry system with them. Therefore, absorbed dose estimation to the public on individual basis is a challenge to the society. The ambient environment materials in close proximity to the exposed individual may be analyzed using scientific techniques to estimate their personal radiation doses. The blood sample from exposed individual can be examined in laboratory using citometry techniques for dose estimation, however these techniques are very time consuming and may not be suitable for quick radiation management. The other human biological material such as; tooth, hair, and bone etc., can be examined using Electron Spin Resonance (ESR) spectrometry techniques. This technique is very efficient and capable in measuring radiation doses of the order of 20-30 mGy in very less time typically 2-3 min. In reality, this technique is costly affair and available mostly in developed countries. Thermoluminescence (TL) technique is very versatile and cost effective for routine personal dose estimation, This technique has been found suitable for measuring TL in many accidentally exposed environmental materials. The radiation exposed natural environmental materials, such as

  10. Bayesian methods for chromosome dosimetry following a criticality accident

    International Nuclear Information System (INIS)

    Brame, R.S.; Groer, P.G.

    2003-01-01

    Radiation doses received during a criticality accident will be from a combination of fission spectrum neutrons and gamma rays. It is desirable to estimate the total dose, as well as the neutron and gamma doses. Present methods for dose estimation with chromosome aberrations after a criticality accident use point estimates of the neutron to gamma dose ratio obtained from personnel dosemeters and/or accident reconstruction calculations. In this paper a Bayesian approach to dose estimation with chromosome aberrations is developed that allows the uncertainty of the dose ratio to be considered. Posterior probability densities for the total and the neutron and gamma doses were derived. (author)

  11. Accidents at nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The accidents which accurred at Wuergassen, Browns Ferry and Three Mile Island are each briefly described and discussed. The last is naturally treated in much more detail than the first two. Damage to the fuel elements is briefly considered and the release of fission products, radiation doses to the population and their expected consequences are discussed. The accidents are evaluated and related to risk evaluations, especially in WASH-1400. (JIW)

  12. Study of EPR/ESR Dosimetry in Fingernails as a Method for Assessing Dose of Victims of Radiological Accidents/Incidents

    Science.gov (United States)

    2008-06-17

    Dosimetry for Population in the Vicinity of the Most Contaminating Radioactive Fallout Trace After the First Nuclear Test in the Semipalatinsk Test Site ...collection, preparation, and measurements at an accident site can be met with techniques illustrated in this study. v “STUDY OF ELECTRON...the value of Bo at the predicted resonance site . At this site , the direction of magnetic moment of unpaired electrons and their spin state change

  13. The nuclear accident risk: a territorial approach

    International Nuclear Information System (INIS)

    Ambroise, Pascal

    2011-01-01

    How many people live in the vicinity of French nuclear power stations? Recent events - notably in Japan, but also in France - highlight the urgent need to be able to predict the possible effects of a nuclear accident on surrounding territories. Here, Ambroise Pascal identifies two key criteria for such an estimation: residential density and land use. (author)

  14. Accidents with nuclear power plants, ch. 11

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A recalculation of the consequences of nuclear power plant accidents is presented taking into account different parameters or different quantities than those usually accepted. A case study of a nuclear power plant planned for the Eems-river estuary in the Netherlands is presented

  15. Nuclear accidents, consumers' perspectives and demands

    International Nuclear Information System (INIS)

    Alevritou-Goulielmou, H.

    2005-01-01

    The public's reaction to life threatening situations is determined by a variety of factors. In the case of nuclear accidents, the panic experienced by citizens may be reasonably justified. This paper briefly describes the parameters that cause panic reactions from a consumer's point of view and summarizes citizen's demands concerning nuclear crisis management

  16. Severe accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Valle Cepero, R.; Castillo Alvarez, J.; Ramon Fuente, J.

    1996-01-01

    For the assessment of the safety of nuclear power plants it is of great importance the analyses of severe accidents since they allow to estimate the possible failure models of the containment, and also permit knowing the magnitude and composition of the radioactive material that would be released to the environment in case of an accident upon population and the environment. This paper presents in general terms the basic principles for conducting the analysis of severe accidents, the fundamental sources in the generation of radionuclides and aerosols, the transportation and deposition processes, and also makes reference to de main codes used in the modulation of severe accidents. The final part of the paper contents information on how severe accidents are dialed with the regulatory point view in different countries

  17. National emergency plan for nuclear accidents

    International Nuclear Information System (INIS)

    1992-10-01

    The national emergency plan for nuclear accidents is a plan of action designed to provide a response to accidents involving the release or potential release of radioactive substances into the environment, which could give rise to radiation exposure to the public. The plan outlines the measures which are in place to assess and mitigate the effects of nuclear accidents which might pose a radiological hazard in ireland. It shows how accident management will operate, how technical information and monitoring data will be collected, how public information will be provided and what measures may be taken for the protection of the public in the short and long term. The plan can be integrated with the Department of Defence arrangements for wartime emergencies

  18. Lessons from the Fukushima nuclear power accident

    International Nuclear Information System (INIS)

    Hatamura, Yotaro

    2013-01-01

    Through the investigation of the Fukushima Nuclear Power Accident as the chairman of the related Government's Committee, many things had been considered. Essence of the accident could be not only what occurred in the Fukushima nuclear power station, but also dispersed radioactive materials forced many residents to move and not to be returned. Such events as indication errors of water level meter occurring in severe accident could no be thought and remote mechanical operation of valves under high radiation environment were not prepared. Contamination by radioactive clouds caused the evacuation of residents for a long period. Lessons learned from the accident were described such as; (1) the verification of the road to failure connecting selected accident sequence and road to success with another supposed choice, (2) considering what might occur and then what should be needed on the contrary, (3) nuclear power, if should be continued, should be used with the premise of its hazards, and (4) advise to nuclear engineer for adequate information dissemination and technical explanation to the public and keeping nuclear technologies alive. (T. Tanaka)

  19. Report: dosimetry of diagnostic exams in nuclear medicine

    International Nuclear Information System (INIS)

    Touzery, C.; Aubert, B.; Caselles, O.; Gardin, I.; Guilhem, M.Th.; Laffont, S.; Lisbona, A.

    2002-01-01

    A compilation about dosimetry of diagnosis explorations in nuclear medicine is presented in this issue. Dosimetry tables of the different radiopharmaceuticals used in nuclear medicine give indications on absorbed and efficient doses according the patients age from one year to adult age. The doses received by a fetus during a lung scintigraphy realized for the pregnant woman susceptible to suffer of pulmonary emboli is presented. A table of efficient doses for the infants until the age of six months for the principal scintigraphy explorations realized in nuclear medicine are given. A chapter of theoretical headlines is devoted to dosimetry and the calculations methods of absorbed and efficient doses in function of patients age. A short chapter concerns the recommendations to explore nursing mothers by scintigraphy. A last chapter treats the efficient doses received during explorations using ionizing radiations in radiology and their place in annual natural irradiation scale. (N.C.)

  20. Retrospective dosimetry of populations exposed to reactor accident: Chernobyl example, lesson for Fukushima

    International Nuclear Information System (INIS)

    Chumak, Vadim V.

    2013-01-01

    Follow-up of the Chernobyl accident had included a good deal of retrospective dosimetry and dose reconstruction. Comparison of Chernobyl and Fukushima shows that despite some differences in course and scale of the two accidents, main elements are present in both situations and Chernobyl experience could be quite educative for better understanding and more optimal handling of Fukushima Dai-ichi accident consequences. This paper contains review of dose reconstruction efforts done to date and extensively published in scientific journals and reports. Specifically the following cases are considered: (i) evaluation of individual doses to evacuees; (ii) validation of ecological dosimetric models and ruling out unconfirmed dose rate measurements; dosimetric support of (iii) case–control study of leukemia among Chernobyl clean-up workers (liquidators), and (iv) cohort study of cataracts among liquidators. Due to limited size of this paper the given application cases are rather outlined while more detailed descriptions could be found in relevant publications. Each considered Chernobyl case is commented with respect to possible application to Fukushima Dai-ichi situation. The presented methodological findings and approaches could be used for retrospective assessment of human exposures in Fukushima. -- Highlights: ► Retrospective dosimetry in Chernobyl was applied for evaluation of individual doses to evacuees. ► Retrospective dosimetry in Chernobyl was applied for validation of ecological dosimetric models, rejection dubious dose rate records. ► Retrospective dosimetry in Chernobyl was applied for risk assessment of leukemia among Chernobyl clean-up workers (liquidators). ► Retrospective dosimetry in Chernobyl was applied for study of cataracts among liquidators. ► Experience of dose reconstruction in Chernobyl could be used for retrospective assessment of exposures in Fukushima

  1. The nuclear accidents: Causes and consequences

    International Nuclear Information System (INIS)

    Rochd, M.

    1988-01-01

    The author discussed and compared the real causes of T.M.I. and Chernobyl accidents and cited their consequences. To better understand how these accidents occurred, a brief description of PWR type (reactor type of T.M.I.) and of RBMK type (reactor type of Chernobyl) has been presented. The author has also set out briefly the safety analysis objectives and the three barriers established to protect the public against the radiological consequences. To distinguish failures that cause severe accidents and to analyze them in details, it is necessary to classify the accidents. There are many ways to do it according to their initiator event, or to their frequency, or to their degree of gravity. The safety criteria adopted by nuclear industry have been explained. These criteria specify the limits of certain physical parameters that should not be exceeded in case of incidents or accidents. To compare the real causes of T.M.I. and Chernobyl accidents, the events that led to both have been presented. As observed the main common contributing factors in both cases are that the operators did not pay attention to warnings and signals that were available to them and that they were not trained to handle these accident sequences. The essential conclusions derived from these severe accidents are: -The improvement of operators competence contribute to reduce the accident risks; -The rapid and correct diagnosis of real conditions at each point of the accidents permits an appropriate behavior that would bring the plant to a stable state; -Competent technical teams have to intervene and to assist the operators in case of emergency; -Emergency plans and an international collaboration are necessary to limit the accident risks. 11 figs. (author)

  2. Using soils for accident dosimetry: a preliminary study using optically stimulated luminescence from quartz

    DEFF Research Database (Denmark)

    Fujita, Hiroki; Jain, Mayank; Murray, Andrew S.

    2011-01-01

    . The objective was to assess the potential of SAROSL dosimetry using soils for retrospective assessment of a radiation accident. Variation in dose with depth was also measured. The SAR data showed good reproducibility and dose recovery, and there was no evidence of fading of the quartz signal based on “delayed......” dose recovery experiments. The minimum detection limit (MDL) dose was about 0.1Gy. The dose dependence was measured using both the above SAR OSL protocol as well as a SAR thermoluminescence (TL, violet emission) protocol. The background doses were generally in the range of the MDL to several Gy......, and no clear trend in dose depth profile was observed. From these results, we conclude that SAR OSL dosimetry using natural quartz extracted from soil could be used to evaluate the dose of an accident....

  3. EPR response characterization of drugs excipients for applying in accident dosimetry

    International Nuclear Information System (INIS)

    Marczewski, Barbara S.; Rodrigues Junior, Orlando; Galante, Ocimar L.; Costa, Zelia M. da; Campos, Leticia L.

    2002-01-01

    Some drugs are widely used by the population and can be employed to dose retrospective. The carbohydrates (saccharides), commonly used as excipients in the pharmaceutical industry, produce a quantity of free radicals after gamma irradiation, making them useful for dosimetry in emergency or accident situations that imply in dose evaluation from the materials found nearly or in contact with victims. In general, EPR signal from pulverized pills of some drugs are very complex due to the variety of components in the formulation. Because of this fact, some pharmaceutical excipients identified in the pill composition were also analysed by EPR spectrometry. On the counter drugs were studied: Cebion glucose, AAS, Aspirina, Conmel, Lacto-Purga and sugar substitutive ZeroCal. The excipients were: lactose, amide, anhydrous glucose and magnesium stearate. In some samples the number of radicals produced increased with the dose, showing a linear response for a dose range of interest and an adequate sensibility for dosimetry in accident cases

  4. Nuclear fuel in a reactor accident.

    Science.gov (United States)

    Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra

    2012-03-09

    Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.

  5. Contribution to evaluating nuclear power plant accidents

    International Nuclear Information System (INIS)

    Razga, J.; Horacek, P.

    1990-01-01

    Large-scale accidents pose the highest risk in the use of nuclear power. They are the major factor that has to be taken into account when assessing the effect of nuclear power plants on human health and on the environment. In Czechoslovak conditions, the effectiveness of provisions made to reduce the hazard of large-scale nuclear power plant accidents must be considered from the following aspects: effect on human health, consequences of long-term disabling of the infrastructure, potential of human and material reserves in coping with the accident, consequences of power failure for the electricity system, effect on agricultural production and catering, risk of ground and surface water contamination in the Labe or Danube river basin, and international political aspects. (Z.M.). 3 tabs., 18 refs

  6. Alternative evacuation strategies for nuclear power accidents

    International Nuclear Information System (INIS)

    Hammond, Gregory D.; Bier, Vicki M.

    2015-01-01

    In the U.S., current protective-action strategies to safeguard the public following a nuclear power accident have remained largely unchanged since their implementation in the early 1980s. In the past thirty years, new technologies have been introduced, allowing faster computations, better modeling of predicted radiological consequences, and improved accident mapping using geographic information systems (GIS). Utilizing these new technologies, we evaluate the efficacy of alternative strategies, called adaptive protective action zones (APAZs), that use site-specific and event-specific data to dynamically determine evacuation boundaries with simple heuristics in order to better inform protective action decisions (rather than relying on pre-event regulatory bright lines). Several candidate APAZs were developed and then compared to the Nuclear Regulatory Commission’s keyhole evacuation strategy (and full evacuation of the emergency planning zone). Two of the APAZs were better on average than existing NRC strategies at reducing either the radiological exposure, the population evacuated, or both. These APAZs are especially effective for larger radioactive plumes and at high population sites; one of them is better at reducing radiation exposure, while the other is better at reducing the size of the population evacuated. - Highlights: • Developed framework to compare nuclear power accident evacuation strategies. • Evacuation strategies were compared on basis of radiological and evacuation risk. • Current strategies are adequate for smaller scale nuclear power accidents. • New strategies reduced radiation exposure and evacuation size for larger accidents

  7. Cytogenetics for dosimetry in cases of radiation accidents and assessing the safety of irradiated food material

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Kesavan, P.C.

    2005-01-01

    One of the many areas of research initiated by Swaminathan at the Botany Division of the Indian Agricultural Research Institute, New Delhi was radiation cytogenetics, which involves study of induced chromosomal aberrations. These studies had impact not only on elucidating basic mechanisms involved in the formation of chromosomal aberrations, but also several practical applications related to human health. In this review, we briefly summarize two applications, namely biological dosimetry following radiation accidents and safety of irradiated food material. (author)

  8. Noticeable aspects of selecting intervention measures for nuclear accidents

    International Nuclear Information System (INIS)

    Guo Yong; Shi Yuanming

    1993-01-01

    Referring to the experience of intervention measures taken for protecting the public after Chernobyl accident and to recent knowledge of source terms of reactor accidents, the noticeable aspects of selecting of intervention measures for nuclear accidents is discussed

  9. The victim of the nuclear accident

    International Nuclear Information System (INIS)

    Carvalho, A.B. de.

    1990-01-01

    This paper shows the effects of the nuclear accident in the victims, in their lives, changes in the behaviour, neurosis including all the psychological aspects. The author compare the victims with nuclear accident like AIDS patients, in terms of people's discrimination. There is another kind of victims. They are the people who gave helpness, for example physicians, firemen and everybody involved with the first aids that suffer together with the victims trying to safe them and to diminish their suffering, combating the danger, the discrimination and the no information. (L.M.J.)

  10. The Chernobyl nuclear accident and its consequences

    International Nuclear Information System (INIS)

    1986-01-01

    An AAEC Task Group was set up shortly after the accident at the Chernobyl Nuclear Power Plant to monitor and evaluate initial reports and to assess the implications for Australia. The Task Group issued a preliminary report on 9 May 1986. On 25-29 August 1986, the USSR released details of the accident and its consequences and further information has become available from the Nuclear Energy Agency of OECD and the World Health Organisation. The Task Group now presents a revised report summarising this information and commenting on the consequences from the Australian viewpoint

  11. On the use of new generation mobile phone (smart phone) for retrospective accident dosimetry

    International Nuclear Information System (INIS)

    Lee, J.I.; Chang, I.; Pradhan, A.S.; Kim, J.L.; Kim, B.H.; Chung, K.S.

    2015-01-01

    Optically stimulated luminescence (OSL) characteristics of resistors, inductors and integrated-circuit (IC) chips, extracted from new generation smart phones, were investigated for the purpose of retrospective accident dosimetry. Inductor samples were found to exhibit OSL sensitivity about 5 times and 40 times higher than that of the resistors and the IC chips, respectively. On post-irradiation storage, the resistors exhibited a much higher OSL fading (about 80 % in 36 h as compared to the value 3 min after irradiation) than IC chips (about 20 % after 36 h) and inductors (about 50 % in 36 h). Higher OSL sensitivity, linear dose response (from 8.7 mGy up to 8.9 Gy) and acceptable fading make inductors more attractive for accident dosimetry than widely studied resistors. - Highlights: • OSL properties of electronic components from a smart phone were investigated. • OSL Sensitivity of inductor was estimated to 5 times higher than that of resistor. • Inductor exhibits most attractive properties for retrospective accident dosimetry.

  12. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-15

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, gamma) process in Na sup 2 sup 3 , giving rise to Na sup 2 sup 4 , which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na sup 2 sup 4 , is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na sup 2 sup 3 in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na sup 2 sup 4 /Na sup 2 sup 3 in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R sub B reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzmann transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given

  13. Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, G S; Ritchie, R H; Sanders, F W; Reinhardt, P W; Auxier, J A; Wagner, E B; Callihan, A D; Morgan, K Z [Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1962-03-01

    The methods of dosimetry used for investigation of the doses received by the individuals exposed in the Yugoslav accident were essentially those used in connection with the Oak Ridge Y-12 accident. An outline of the general scheme is as follows: When fast neutrons enter the human body, most of these are moderated to thermal energy and a small fraction of these are captured by a (n, {gamma}) process in Na{sup 23}, giving rise to Na{sup 24}, which by virtue of its emission of high-energy gamma rays with a half life of 14.8 h, is easily detected. It has been shown that the probability of capture, making Na{sup 24}, is not a strong function of the energy of the fast neutrons and that the probability of capture for neutrons is higher in the fast region than in the thermal region. Thus, the uniform distribution of Na{sup 23} in the human body provides an excellent means of normalizing the neutron exposure of an individual. in particular, for a given neutron energy spectrum the fast neutron dose is proportional to the ratio Na{sup 24}/Na{sup 23} in the body or in the blood system. This method of normalization is quite important in the dosimetry of radiation accidents since no assumptions need be made about the exact location of an individual at the time of the energy release. The importance of this fact can be made clear by reference to the Y-12 accident where it was shown by calculation of the neutron dose based on the known number of fissions and the stated location of the individual that one of the surviving individuals would have received a dose several times the lethal value. To accomplish the measurements described, the zero power R{sub B} reactor was operated in two ranges of power level, 'low' power and 'high 'power. Neutron leakage spectrum was obtained by multigroup approximation of the Boltzman transport equation. Prompt gamma rays from fission products, from capture in the moderator and fuel cladding as well as in tank walls are given. A summary of the 4{pi

  14. Accident analysis for nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    Deterministic safety analysis (frequently referred to as accident analysis) is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). Owing to the close interrelation between accident analysis and safety, an analysis that lacks consistency, is incomplete or is of poor quality is considered a safety issue for a given NPP. Developing IAEA guidance documents for accident analysis is thus an important step towards resolving this issue. Requirements and guidelines pertaining to the scope and content of accident analysis have, in the past, been partially described in various IAEA documents. Several guidelines relevant to WWER and RBMK type reactors have been developed within the IAEA Extrabudgetary Programme on the Safety of WWER and RBMK NPPs. To a certain extent, accident analysis is also covered in several documents of the revised NUSS series, for example, in the Safety Requirements on Safety of Nuclear Power Plants: Design (NS-R-1) and in the Safety Guide on Safety Assessment and Verification for Nuclear Power Plants (NS-G-1.2). Consistent with these documents, the IAEA has developed the present Safety Report on Accident Analysis for Nuclear Power Plants. Many experts have contributed to the development of this Safety Report. Besides several consultants meetings, comments were collected from more than fifty selected organizations. The report was also reviewed at the IAEA Technical Committee Meeting on Accident Analysis held in Vienna from 30 August to 3 September 1999. The present IAEA Safety Report is aimed at providing practical guidance for performing accident analyses. The guidance is based on present good practice worldwide. The report covers all the steps required to perform accident analyses, i.e. selection of initiating events and acceptance criteria, selection of computer codes and modelling assumptions, preparation of input data and presentation of the

  15. Dosimetry of accidents using thermoluminescence of dental restorative porcelains

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.; Rosa, L.A.R. da; Cunha, P.G. da

    1986-01-01

    The thermoluminescence (TL) properties of dental restorative porcelain were investigated with the aim of using this material as a TL dosemeter to estimate high doses in radiological accidents. The irradiations were carried out with a 60 Co gamma source and X rays with effective energies from 29 to 95 KeV. The samples have a limit of detection at about 50R and their reproducibility is better than 15%. Linearity was observed from 50 to 5000R. (Author) [pt

  16. Reconstructive dosimetry and radiation doses evaluation of members of the public due to radiological accident in industrial radiography

    International Nuclear Information System (INIS)

    Lima, Camila Moreira Araujo de

    2016-01-01

    Radiological accidents have occurred mainly in the practices recognized as high risk radiological and classified by the IAEA as Categories 1 and 2, and highlighted the radiotherapy, industrial irradiators and industrial radiography. In Brazil, since there were five major cases in industrial radiography, which involved 7 radiation workers and 19 members of the public, causing localized radiation lesions on the hands and fingers. One of these accidents will be the focus of this work. In this accident, a "1"9"2Ir radioactive source was exposed for more than 8 hours in the workplace inside a company, exposing radiation workers, individuals of the public and people from the surrounding facilities, including children of a school. The radioactive source was also handled by a security worker causing severe radiation injuries in the hand and fingers. In this paper, the most relevant and used techniques of reconstructive dosimetry internationally are presented. To estimate the radiation doses received by exposed individuals in various scenarios of radiological accident in focus, the following computer codes were used: Visual Monte Carlo Dose Calculation (VMC), Virtual Environment for Radiological and Nuclear Accidents Simulation (AVSAR) and RADPRO Calculator. Through these codes some radiation doses were estimated, such as, 33.90 Gy in security worker's finger, 4.47 mSv in children in the school and 55 to 160 mSv for workers in the company during the whole day work. It is intended that this work will contribute to the improvement of dose reconstruction methodology for radiological accidents, having then more realist radiation doses. (author)

  17. Review of Cytogenetic analysis of restoration workers for Fukushima Daiichi nuclear power station accident

    International Nuclear Information System (INIS)

    Suto, Yumiko

    2016-01-01

    Japan faced with the nuclear accident of the Fukushima Daiichi Nuclear Power Station (NPS) caused by the combined disaster of the Great East Japan Earthquake and the subsequent tsunamis on 11 March 2011. National Institute of Radiological Sciences received all nuclear workers who were engaged in emergency response tasks at the NPS and suspected of being overexposed to acute radiation. Biological dosimetry by dicentric chromosome assay was helpful for medical triage and management of the workers. When an unplanned radiation exposure occurs, biological dosimetry based on cytogenetic assays has been used to estimate the absorbed dose in the exposed individual to get useful information for the medical management of radiological casualties with suspected acute radiation syndrome (ARS). Nowadays, more cytogenetic assays to measure chromosomal aberrations, such as micronuclei in bi-nucleated cells, prematurely condensed chromosomes (PCCs) and inter-chromosomal exchanges detected by fluorescence in situ hybridization (FISH) techniques, are available. However, the dicentric chromosome assay (DCA) using peripheral blood lymphocytes is still considered to be the 'gold standard' of biological dosimetry for the radiation emergency medicine. Experimental protocols of DCA has been standardized and shared among laboratories all over the world. In fact, DCA was useful in previous radiation accidents, e.g. the Chernobyl accident in 1986, the Goiania accident in 1987, the JCO criticality accident in 1999 and the Tokyo electric power company (TEPCO) Fukushima Daiichi Nuclear Power Station (NPS) accident in 2011. The recent development of microscopic image analysis system with automatic metaphase finding and capturing functions was helpful for rapid detection of dicentric chromosomes to perform DCA for the Fukushima NPS restoration workers. (author)

  18. Agricultural implications of the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2016-01-01

    More than 4 years has passed since the accident at the Fukushima Nuclear Power Plant. Immediately after the accident, 40 to 50 academic staff of the Graduate School of Agricultural and Life Sciences at the University of Tokyo created an independent team to monitor the behavior of the radioactive materials in the field and their effects on agricultural farm lands, forests, rivers, animals, etc. When the radioactive nuclides from the nuclear power plant fell, they were instantly adsorbed at the site where they first touched; consequently, the fallout was found as scattered spots on the surface of anything that was exposed to the air at the time of the accident. The adsorption has become stronger over time, so the radioactive nuclides are now difficult to remove. The findings of our study regarding the wide range of effects on agricultural fields are summarized in this report

  19. DOZIM - evaluation dose code for nuclear accident

    International Nuclear Information System (INIS)

    Oprea, I.; Musat, D.; Ionita, I.

    2008-01-01

    During a nuclear accident an environmentally significant fission products release can happen. In that case it is not possible to determine precisely the air fission products concentration and, consequently, the estimated doses will be affected by certain errors. The stringent requirement to cope with a nuclear accident, even minor, imposes creation of a computation method for emergency dosimetric evaluations needed to compare the measurement data to certain reference levels, previously established. These comparisons will allow a qualified option regarding the necessary actions to diminish the accident effects. DOZIM code estimates the soil contamination and the irradiation doses produced either by radioactive plume or by soil contamination. Irradiations either on whole body or on certain organs, as well as internal contamination doses produced by isotope inhalation during radioactive plume crossing are taken into account. The calculus does not consider neither the internal contamination produced by contaminated food consumption, or that produced by radioactive deposits resuspension. The code is recommended for dose computation on the wind direction, at distances from 10 2 to 2 x 10 4 m. The DOZIM code was utilized for three different cases: - In air TRIGA-SSR fuel bundle destruction with different input data for fission products fractions released into the environment; - Chernobyl-like accident doses estimation; - Intervention areas determination for a hypothetical severe accident at Cernavoda Nuclear Power Plant. For the first case input data and results (for a 60 m emission height without iodine retention on active coal filters) are presented. To summarize, the DOZIM code conception allows the dose estimation for any nuclear accident. Fission products inventory, released fractions, emission conditions, atmospherical and geographical parameters are the input data. Dosimetric factors are included in the program. The program is in FORTRAN IV language and was run on

  20. The application of the assessment of nuclear accident status in emergency decision-making during nuclear accident

    International Nuclear Information System (INIS)

    Yang Ling

    2011-01-01

    Nuclear accident assessment is one of the bases for emergency decision-making in the situation of nuclear accident in NPP. Usually, the assessment includes accident status and consequence assessment. It is accident status assessment, and its application in emergency decision-making is introduced here. (author)

  1. Dosimetry; La dosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Le Couteulx, I.; Apretna, D.; Beaugerie, M.F. [Electricite de France (EDF), 75 - Paris (France)] [and others

    2003-07-01

    Eight articles treat the dosimetry. Two articles evaluate the radiation doses in specific cases, dosimetry of patients in radiodiagnosis, three articles are devoted to detectors (neutrons and x and gamma radiations) and a computer code to build up the dosimetry of an accident due to an external exposure. (N.C.)

  2. Truck accident involving unirradiated nuclear fuel

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1992-07-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 nuclear fuel assemblies in 12 containers on Interstate 1-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the.tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1300 degrees F and 1800 degrees F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk

  3. Truck accident involving unirradiated nuclear fuel

    International Nuclear Information System (INIS)

    Carlson, R.W.; Fischer, L.E.

    1993-01-01

    In the early morning of Dec. 16, 1991, a severe accident occurred when a passenger vehicle traveling in the wrong direction collided with a tractor trailer carrying 24 unirradiated nuclear fuel assemblies in 12 containers on Interstate I-91 in Springfield, Massachusetts. This paper documents the mechanical circumstances of the accident and assesses the physical environment to which the containers were exposed and the response of the containers and their contents. The accident involved four impacts where the truck was struck by the car, impacted on the center guardrail, impacted on the outer concrete barrier and came to rest against the center guardrail. The impacts were followed by a fire that began in the engine compartment, spread to the tractor and cab, and eventually spread to the trailer and payload. The fire lasted for about three hours and the packages were involved in the fire for about two hours. As a result of the fire, the tractor-trailer was completely destroyed and the packages were exposed to flames with temperatures between 1,300 F and 1,800 F. The fuel assemblies remained intact during the accident and there was no release of any radioactive material during the accident. This was a very severe accident; however, the injuries were minor and at no time was the public health and safety at risk

  4. ESR accident dosimetry using medicine tablets coated with sugar

    International Nuclear Information System (INIS)

    Kai, A.; Miki, T.; Ikeya, M.

    1990-01-01

    Properties of radiation-induced radicals in medicine tablets were investigated using electron spin resonance (ESR). A sharp ESR signal sensitive to gamma ray irradiation was observed in the sugar coating part of the tablets. The signal has anisotropic g values of g 1 = 2.0009, g 2 = 2.0007 and g 3 = 2.0002. The signal grows linearly with dose at least up to about 20 Gy. No fading was observed at room temperature even when exposed to sunlight. The dose to artificially irradiated tablets was estimated using the signal intensity and a previously determined calibration curve. The signal in sugar coated tablets can be utilised for dose measurements. In particular, the wide distribution of sugar coated tablets allows the use of the tablets as accident dosemeters. (author)

  5. Nuclear accidents and bone marrow graft

    International Nuclear Information System (INIS)

    Bernard, J.

    1988-01-01

    In case of serious contamination, the only efficacious treatment is the bone marrow grafts. The graft types and conditions have been explained. To restrict the nuclear accidents consequences, it is recommended to: - take osseous medulla of the personnel exposed to radiations and preserve it , that permits to carry out rapidly the auto-graft in case of accidents; - determine, beforehand, the HLA group of the personnel; - to register the voluntary donors names and addresses, and their HLA group, that permits to find easily a compatible donar in case of allo-graft. (author)

  6. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    Science.gov (United States)

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  7. Criticality accidents in solution (CRAC and SILENE programmes) and complementary studies of accidents; radiation dosimetry in human organism during the CRAC programme

    International Nuclear Information System (INIS)

    Barbry, M.; Dousset, M.

    C.R.A.C. (CRiticality occurring ACcidentally) programme is intended to study experimentally the development of a criticality accident as it could occur when handling solutions of fissile material as well as the radiological consequences of such an accident. The fissile matter solutions have been chosen (a) for practical considerations of use and (b) because the probability of an accident occurring seems greater with this type of environment, as the known accidents have shown. The programme is twofold: study of accident physics: form of the evolution (peak, plateau, oscillations, boil up of solutions) the most probable maximum power, minimal power, flux and radiation spectra emitted, freed energy, associated effects, radiolysis, constraints, etc., study of radiological consequences: area dosimetry, individual dosimetry, radiobiological studies, etc. Additional criticality Accident experiments have been and continue to be made on the SILENE reactor in the following principal domains: determination of the emission rate of gaseous fission products and aerosols, area dosimetry and health dosimetry in the presence of shields around the core to vary the neutron and gamma components of the radiation field. Improvement in the knowledge of certain particular aspects of the power excursion, radiolysis gas and pressure wave, experiments of the ''boiling'' type [fr

  8. Review of the correlation between results of cytogenetic dosimetry from blood lymphocytes and EPR dosimetry from tooth enamel for victims of radiation accidents

    International Nuclear Information System (INIS)

    Khvostunov, I.K.; Ivannikov, A.I.; Skvortsov, V.G.; Golub, E.V.; Nugis, V. Yu.

    2015-01-01

    The goal of this study was to compare dose estimates from electron paramagnetic resonance (EPR) dosimetry with teeth and cytogenetic dosimetry with blood lymphocytes for 30 victims of radiation accidents. The whole-body exposures estimated by tooth enamel EPR dosimetry were ranging from 0.01 to 9.3 Gy. Study group comprised victims exposed to acute and prolonged irradiation at high and low dose rate in different accidents. Blood samples were taken from each of them for cytogenetic analysis. Aberrations were scored and analysed according to International Atomic Energy Agency (IAEA) guidelines for conventional and FISH analysis. Tooth samples were collected in dental clinics after they had been extracted during ordinary practice. EPR dosimetry was performed according to the IAEA protocol. EPR dosimetry showed good correlation with dosimetry based on chromosomal analysis. All estimations of cytogenetic dose below detection limit coincide with EPR dose estimates within the ranges of uncertainty. The differences between cytogenetic and EPR assays may occur in a case of previous unaccounted exposure, non-homogeneous irradiation and due to contribution to absorbed dose from neutron irradiation. (authors)

  9. Management of foodstuffs after nuclear accidents

    International Nuclear Information System (INIS)

    1991-01-01

    A model for the management of foodstuffs after nuclear accidents is presented. The model is a synthesis of traditions and principles taken from both radioactive protection and management of food. It is based on cooperation between the Nordic countries and on practical experience gained from the Chernobyl accident. The aim of the model is to produce a basis for common plans for critical situations based on criteria for decision making. In the case of radioactive accidents it is important that the protection of the public and of the society is handled in a positive way. The model concerns production, marketing and consumption of food and beverage. The overall aim is that the radiation doses should be as low and harmless to health for individual members of the public. (CLS) 35 refs

  10. The role of chemistry in nuclear accidents

    International Nuclear Information System (INIS)

    Johnson, C.E.; Johnson, I.

    1986-01-01

    An accurate description of the chemical state of fission products is required for quick response in assessing the impact of nuclide release during a nuclear accident. The chemical state of the fission products is certain to change in response to their local environment. More specifically, fission products released from fuel will change their composition on contact with high-temperature steam, and these changes will determine their behavior with regard to either transport, deposition, aerosol formation, or reaction with structural components. The local oxygen potential is a key parameter in establishing the chemical state of the fission products and their release and transport mechanisms. Knowledge of the relationship of this parameter and thermal hydraulics is needed for prediction of fission product behavior in degraded core accidents. The behavior of key fission products in various stages of an accident, based on experimental results and appropriate calculations founded on fundamental thermodynamic information, will be discussed

  11. Reconstructive dosimetry of radiological accidents - a brazilian case study of industrial gammagraphy

    International Nuclear Information System (INIS)

    Silva, Francisco Cesar Augusto da; Hunt, John G.; Ramalho, Adriana; Pinto, Livia M.F. Amalfi

    2001-01-01

    In may 2000, an operator of industrial gammagraphy, during a work of maintenance of a cobalt source irradiator, suffered a radiological accident which caused serious consequences for its left hand. Specialists who work in the Group of Overexposure Analysis (GADE/IRD/CNEN), began the reconstructive dosimetry for estimate the radiation dose. The objective was to determine the real dose received by the operator and to make possible the medical evaluation and to prescribe the medical procedures for the involved victim's treatment. This work presents the reconstructive dosimetry done by theoretical, experimental and computation methods for determining the radiation doses of the operator. Related to the computation method a program was used for external dose calculation based on Monte Carlo's Method and a human body simulator composed by voxels. It is also showed values of the effective and equivalent doses that caused serious lesions in the operator's hand. (author)

  12. Reconstructive dosimetry of radiological accidents - study of a brazilian case of industrial gamma radiography

    International Nuclear Information System (INIS)

    Silva, Francisco Cesar Augusto da; Hunt, John G.; Ramalho, Adriana; Pinto, Livia M.F. Amalfi

    2002-01-01

    On May 2000, an industrial gamma radiography operator, during a maintenance work of a 60 Co irradiator, has suffered a radiological accident with severe consequences to the left hand. The experts of the High Doses Analysis Group (GADE/IRD/CNEN) initiated the reconstructive dosimetry for the radiation dose estimation, in order to determine the real dose received by the operator, and to help the medical evaluation for prescribing the medical procedures for treatment of the involved victim. This paper presents the reconstructive dosimetry performed through the determination of the radiation doses of the operator, based on theoretical, experimental and computational methods. For the computer methods, a program for the calculation of external doses were used, based on the Monte Carlo method, and a human body simulator composed by voxels. The values of effective and equivalent doses are also presented which has caused severe lesions on the operator hand

  13. Human Factors in Nuclear Reactor Accidents

    International Nuclear Information System (INIS)

    Mustafa, M.E.

    2016-01-01

    While many people would blame nature for the disaster of the “Fukushima Daiichi” accident, experts considered this accident to be also a human-induced disaster. This confirmed the importance of human errors which have been getting a growing interest in the nuclear field after the Three Mile Island accident. Personnel play an important role in design, operation, maintenance, planning, and management. The interface between machine and man is known as a human factor. In the present work, the human factors that have to be considered were discussed. The effect of the control room configuration and equipment design effect on the human behavior was also discussed. Precise reviewing of person’s qualifications and experience was focused. Insufficient training has been a major cause of human error in the nuclear field. The effective training issues were introduced. Avoiding complicated operational processes and non responsive management systems was stressed. Distinguishing between the procedures for normal and emergency operations was emphasised. It was stated that human error during maintenance and testing activities could cause a serious accident. This is because safety systems do not cover much more risk probabilities in the maintenance and testing activities like they do in the normal operation. In nuclear industry, the need for a classification and identification of human errors has been well recognised. As a result of this, human reliability must be assessed. These errors are analyzed by a probabilistic safety assessment which deals with errors in reading, listening and implementing procedures but not with cognitive errors. Much efforts must be accomplished to consider cognitive errors in the probabilistic safety assessment. The ways of collecting human factor data were surveyed. The methods for identifying safe designs, helping decision makers to predict how proposed or current policies will affect safety, and comprehensive understanding of the relationship

  14. Biological and medical consequences of nuclear accidents

    International Nuclear Information System (INIS)

    Latarjet, R.

    1988-01-01

    The study of the medical and biological consequences of the nuclear accidents is a vast program. The Chernobyl accident has caused some thirty deceases: Some of them were rapid and the others occurred after a certain time. The particularity of these deaths was that the irradiation has been associated to burns and traumatisms. The lesson learnt from the Chernobyl accident is to treat the burn and the traumatism before treating the irradiation. Contrary to what the research workers believe, the first wave of deaths has passed between 15 and 35 days and it has not been followed by any others. But the therapeutic lesson drawn from the accident confirm the research workers results; for example: the radioactive doses band that determines where the therapy could be efficacious or not. the medical cares dispensed to the irradiated people in the hospital of Moscow has confirmed that the biochemical equilibrium of proteinic elements of blood has to be maintained, and the transfusion of the purified elements are very important to restore a patient to health, and the sterilization of the medium (room, food, bedding,etc...) of the patient is indispensable. Therefore, it is necessary to establish an international cooperation for providing enough sterilized rooms and specialists in the irradiation treatment. The genetic consequences and cancers from the Chernobyl accident have been discussed. It is impossible to detect these consequences because of their negligible percentages. (author)

  15. Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010

    International Nuclear Information System (INIS)

    Hickman, D.P.; Wysong, A.R.; Heinrichs, D.P.; Wong, C.T.; Merritt, M.J.; Topper, J.D.; Gressmann, F.A.; Madden, D.J.

    2011-01-01

    The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE

  16. Internal radiation dosimetry using nuclear medicine imaging in radionuclide therapy

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Byun, Byun Hyun; Cheon, Gi Jeong; Lim, Sang Moo

    2007-01-01

    Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplished by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide chance of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. In this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered in real practice

  17. Organization of the internal dosimetry in the Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Manchena, P.; Soliet, E.

    1998-01-01

    From the beginning of the exploitation of the nuclear energy of Espanna, the nuclear facilities have had Services of Personal Dosimetry with the appropriate means to determine the dose. so much internal as external, of the personnel that mentioned facilities works. All the nuclear power stations use advanced systems of teams with object of detecting the radionuclides incorporation in the organism and calculation programs based on the recent recommendations of the International Commission of Radiological Protection (ICRP) for the determination of the derived doses

  18. Environmental consequences of releases from nuclear accidents

    International Nuclear Information System (INIS)

    Tveten, U.

    1990-01-01

    The primary purpose of this report is to present the results of a four-year Nordic cooperation program in the area of consequence assessment of nuclear accidents with large releases to the environment. This program was completed in 1989. Related information from other research programs has also been described, so that many chapters of the report reflect the current status in the respective areas, in addition to containing the results of the Nordic program. (author) 179 refs

  19. Criticality accident of nuclear fuel facility. Think back on JCO criticality accident

    International Nuclear Information System (INIS)

    Naito, Keiji

    2003-09-01

    This book is written in order to understand the fundamental knowledge of criticality safety or criticality accident of nuclear fuel facility by the citizens. It consists of four chapters such as critical conditions and criticality accident of nuclear facility, risk of criticality accident, prevention of criticality accident and a measure at an occurrence of criticality accident. A definition of criticality, control of critical conditions, an aspect of accident, a rate of incident, damage, three sufferers, safety control method of criticality, engineering and administrative control, safety design of criticality, investigation of failure of safety control of JCO criticality accident, safety culture are explained. JCO criticality accident was caused with intention of disregarding regulation. It is important that we recognize the correct risk of criticality accident of nuclear fuel facility and prevent disasters. On the basis of them, we should establish safety culture. (S.Y.)

  20. Internal dosimetry for occupationally exposed personnel in nuclear medicine

    International Nuclear Information System (INIS)

    Garcia, M.T.; Alfaro, L.M.M.; Angeles, C.A.

    2013-01-01

    Internal dosimetry plays an important role in nuclear medicine dosimetry control of personnel occupationally exposed, and that in recent years there has been a large increase in the use of radionuclides both in medical diagnosis as radiotherapy. But currently, in Mexico and in many parts of the world, this internal dosimetry control is not performed. The Instituto Nacional de lnvestigaciones Nucleares de Mexico (ININ) together with the Centro Oncologico de Toluca (ISEMMYM) have developed a simple and feasible methodology for monitoring of personnel working in these facilities. It was aimed to carry out the dosimetry of the personnel, due to the incorporation of I-131, using the spectrometric devices that the hospital has, a gamma camera. The first step in this methodology was to make a thyroid phantom to meet the specifications of the ninth ANSI. This phantom is compared under controlled conditions with RMC- II phantom used for system calibration of the ININ internal dosimetry (ACCUSCAN - Ll), and with another phantom developed in Brazil with ANSI specifications, in order to determine the variations in measurements due to the density of the material of each of the phantoms and adjust to the system ACCUSCAN, already certificate. Furthermore, necessary counts were performed with the gamma camera of the phantom developed at ININ, with a standard source of 133 Ba which simulates the energy of 131 I. With these data, were determined the counting efficiencies for a distance of 15 to 20 cm between the surface of the phantom and the the plate of the detectors. Another important aspect was to determine the lower limit of detection (LLD). In this paper we present the results obtained from the detectors calibration of the gamma camera of the hospital.

  1. Agricultural implications of the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.; Tanoi, Keitaro

    2013-01-01

    Since the Fukushima Daiichi nuclear power plant accident in March 2011, contamination of places and foods has been a matter of concern. Unfortunately, agricultural producers have few sources of information and have had to rely on the lessons from the Chernobyl accident in 1986 or on information obtained from the International Atomic Energy Agency. However, as of this writing, data on the specific consequences of the Fukushima accident on Japanese agriculture remain limited. More than 80% of the land that suffered from the accident was related to agriculture or was in forests and meadows. The in fluence of the accident on agriculture was the most difficult to study because the activity in nature had to be dealt with. For example, when contaminated rice is harvested, scientists working on rice plants and soils and the study of watercourses or mountains have to collaborate to analyze or determine the vehicle by which the radioactivity accumulated and through which it spread in nature. At the request of agriculturists in Fukushima, we at the Graduate School of Agricultural and Life Sciences at The University of Tokyo have been urgently collecting reliable data on the contamination of soil, plants, milk, and crops. Based on our data, we would like to comment on or propose an effective way of resuming agricultural activity. Because obtaining research results based on in situ experiments is time-consuming, we have been periodically holding research report meetings at our university every 3-4 months for lay people, showing them how the contamination situation has changed or what type of effect can be estimated. Although our research is still ongoing, we would like to summarize in this book our observations made during the one and a half years after the accident. (author)

  2. Computed tomographic practice and dosimetry: implications for nuclear medicine: editorial

    International Nuclear Information System (INIS)

    Mountford, P.J.; Harding, L.K.

    1992-01-01

    This editorial briefly discusses the results of an NRPB survey of x-ray computed tomography practice and dosimetry in the UK. A wide variation in practice and patient doses was revealed. The implications for nuclear medicine are considered. The NRPB is to issue formal guidance on protection of the patient undergoing a CT investigation with the aim of achieving a more systematic approach to the justification and optimization of such exposures. (UK)

  3. Textbook of dosimetry. 4. ed.

    International Nuclear Information System (INIS)

    Ivanov, V.I.

    1999-01-01

    This textbook of dosimetry is devoted to the students in physics and technical physics of high education institutions, confronted with different application of atomic energy as well as with protection of population and environment against ionizing radiations. Atomic energy is highly beneficial for man but unfortunately incorporates potential dangers which manifest in accidents, the source of which is either insufficient training of the personnel, a criminal negligence or insufficient reliability of the nuclear facilities. The majority of the incident and accident events have had as origin the personnel errors. This was the case with both the 'Three Miles Island' (1979) and Chernobyl (1986) NPP accidents. The dosimetry science acquires a vital significance in accident situations since the data obtained by its procedures are essential in choosing the correct immediate actions, behaviour tactics, orientation of liquidation of accident consequences as well as in ensuring the health of population. An important accent is placed in this manual on clarification of the nature of physical processes taken place in dosimetric detectors, in establishing the relation between radiation field characteristics and the detector response as well as in defining different dosimetric quantities. The terminology and the units of physical quantities is based on the international system of units. The book contains the following 15 chapters: 1. Ionizing radiation field; 2. Radiation doses; 3. Physical bases of gamma radiation dosimetry; 4. Ionization dosimetric detectors; 5. Semiconductor dosimetric detectors; 6. Scintillation detection in the gamma radiation dosimetry; 7. Luminescent methods in dosimetry; 8. The photographic and chemical methods of gamma radiation dosimetry; 9. Neutron dosimetry; 10. Dosimetry of high intensity radiation; 11. Dosimetry of high energy Bremsstrahlung; 12. Measurement of the linear energy transfer; 13. Microdosimetry; 14. Dosimetry of incorporated

  4. Research investigation report on Fukushima Daiichi nuclear accident

    International Nuclear Information System (INIS)

    2012-03-01

    This report was issued in February 2012 by Rebuild Japan Initiative Foundation's Independent Investigation Commission on the Fukushima Daiichi Nuclear Accident, which consisted of six members from the private sector in independent positions and with no direct interest in the business of promoting nuclear power. Commission aimed to determine the truth behind the accident by clarifying the various problems and reveal systematic problems behind these issues so as to create a new starting point by identifying clear lessons learned. Report composed of four chapters; (1) progression of Fukushima accident and resulting damage (accident management after Fukushima accident, and effects and countermeasure of radioactive materials discharged into the environment), (2) response against Fukushima accident (emergency response of cabinet office against nuclear disaster, risk communication and on-site response against nuclear disaster), (3) analysis of historical and structural factors (technical philosophy of nuclear safety, problems of nuclear safety regulation of Fukushima accident, safety regulatory governance and social background of 'Safety Myth'), (4) Global Context (implication in nuclear security, Japan in nuclear safety regime, U.S.-Japan relations for response against Fukushima accident, lessons learned from Fukushima accident - aiming at creation of resilience). Report could identify causes of Fukushima accident and factors related to resulting damages, show the realities behind failure to prevent the spread of damage, and analyze the overall structural and historical background behind the accidents. (T. Tanaka)

  5. A description of nuclear reactor accidents and their consequences

    International Nuclear Information System (INIS)

    Murray, A.

    1989-01-01

    Nuclear reactor accidents which have caused core damage, released a significant amount of radioactivity, or caused death or serious injury are described. The reactor accidents discussed in detail include Chernobyl, Three Mile Island, SL-1 and Windscale, although information on other less consequential accidents is also provided. The consequences of these accidents are examined in terms of the amounts of radioactivity released, the radiation doses received, and remedial actions and interventions taken following the accident. 10 refs., 1 fig., 2 tabs

  6. Internal dosimetry in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Carrera Magarino, F.; Salgado Garcia, C.; Ruiz Manzano, P.; Rivas Ballarin, M. A.; Jimenez Hefernan, A.; Sanchez Segovia, J.

    2011-01-01

    The Department of Radio Physics and Radiation Protection, University Hospital Lozano Blesa Zaragoza presented a calculus textbook to estimate patient doses in diagnostic nuclear medicine. In this paper present an updated referred Book of calculation.

  7. Personnel Dosimetry for Radiation Accidents. Proceedings of a Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation

    International Nuclear Information System (INIS)

    1965-01-01

    Accidents involving the exposure of persons to high levels of radiation have been few in number and meticulous precautions are taken in an effort to maintain this good record. When, however, such an accident does occur, a timely estimate of the dose received can be of considerable help to the physician in deciding whether a particular person requires medical treatment, and in selecting the most appropriate treatment. Individual dosimetry provides the physical basis for relating the observed effects to those in other accident cases, to other human data, and to data from animal experiments, thus providing an important aid to rational treatment and to the accumulation of a meaningful body of knowledge on the subject. It is most important therefore that, where there is a possibility of receiving high-level exposure, methods of personnel dosimetry should be available that would provide the dosimetric information most useful to the physician. Provision of good personnel dosimetry for accidental high-level exposure is in many cases an essential part of emergency planning because the information provided may influence emergency and rescue operations, and can lead to improved accident preparedness. Accordingly, the International Atomic Energy Agency and the World Health Organization jointly organized the Symposium on Personnel Dosimetry for Accidental High-Level Exposure to External and Internal Radiation for the discussion of such methods and for a critical review of the procedures adopted in some of the radiation accidents that have already occurred. The meeting was attended by 179 participants from 34 countries and from five other international organizations. The papers presented and the ensuing discussions are published in these Proceedings. It is hoped that the Proceedings will be of help to those concerned with the organization and development of wide-range personnel monitoring systems, and with the interpretation of the results provided

  8. Nuclear ship accidents, description and analysis

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1993-03-01

    In this report available information on 44 reported nuclear ship events is considered. Of these 6 deals with U.S. ships and 38 with USSR ships. The ships are in almost all cases nuclear submarines. Only events that involve the sinking of vessels, the nuclear propulsion plants, radiation exposures, fires/ explosions, sea-water leaks into the submarines and sinking of vessels are considered. Comments are made on each of the events, and at the end of the report an attempt is made to point out the weaknesses of the submarine designs which have resulted in the accidents. It is emphasized that some of the information of which this report is based, may be of dubious nature. Consequently some of the results of the assessments made may not be correct. (au)

  9. Consequences of severe nuclear accidents in Europe

    Science.gov (United States)

    Seibert, Petra; Arnold, Delia; Mraz, Gabriele; Arnold, Nikolaus; Gufler, Klaus; Kromp-Kolb, Helga; Kromp, Wolfgang; Sutter, Philipp

    2013-04-01

    A first part of the presentation is devoted to the consequences of the severe accident in the 1986 Chernobyl NPP. It lead to a substantial radioactive contaminated of large parts of Europe and thus raised the awareness for off-site nuclear accident consequences. Spatial patterns of the (transient) contamination of the air and (persistent) contamination of the ground were studied by both measurements and model simulations. For a variety of reasons, ground contamination measurements have variability at a range of spatial scales. Results will be reviewed and discussed. Model simulations, including inverse modelling, have shown that the standard source term as defined in the ATMES study (1990) needs to be updated. Sensitive measurements of airborne activities still reveal the presence of low levels of airborne radiocaesium over the northern hemisphere which stems from resuspension. Over time scales of months and years, the distribution of radionuclides in the Earth system is constantly changing, for example relocated within plants, between plants and soil, in the soil, and into water bodies. Motivated by the permanent risk of transboundary impacts from potential major nuclear accidents, the multidisciplinary project flexRISK (see http://flexRISK.boku.ac.at) has been carried out from 2009 to 2012 in Austria to quantify such risks and hazards. An overview of methods and results of flexRISK is given as a second part of the presentation. For each of the 228 NPPs, severe accidents were identified together with relevant inventories, release fractions, and release frequencies. Then, Europe-wide dispersion and dose calculations were performed for 2788 cases, using the Lagrangian particle model FLEXPART. Maps of single-case results as well as various aggregated risk parameters were produced. It was found that substantial consequences (intervention measures) are possible for distances up to 500-1000 km, and occur more frequently for a distance range up to 100-300 km, which is in

  10. Nuclear industry after the Fukushima accident

    International Nuclear Information System (INIS)

    Branche, Thomas; Billes-Garabedian, Laurent; Salha, Bernard; Behar, Christophe; Dupuis, Marie-Claude; Labalette, Thibaud; Lagarde, Dominique; Planchais, Bernard; West, Jean-Pierre; Stubler, Jerome; Lancia, Bruno; Machenaud, Herve; Einaudi, Andre; Anglaret, Philippe; Brachet, Yves; Bonnave, Philippe; Knoche, Philippe; Gasquet, Denis

    2013-01-01

    This special dossier about the situation of nuclear industry two years after the Fukushima accident comprises 15 contributions dealing with: the nuclear industry two years after the Fukushima accident (Bernard Salha); a low-carbon electricity at a reasonable cost (Christophe Behar); nuclear engineering has to gain even more efficiency (Thomas Branche); how to dispose off the most radioactive wastes (Marie-Claude Dupuis, Thibaud Labalette); ensuring the continuation for more than 40 years onward (Denis Gasquet); developing and investing in the future (Philippe Knoche); more than just signing contracts (Dominique Lagarde); immersed power plants, an innovative concept (Bernard Planchais); R and D as a source of innovation for safety and performances (Jean-Pierre West); dismantlement, a very long term market (Jerome Stubler, Bruno Lancia); a reference industrial model (Herve Machenaud); recruiting and training (Andre Einaudi); a diversity of modern reactors and a world market in rebirth (Philippe Anglaret); an industrial revolution is necessary (Yves Brachet); contracts adapted to sensible works (Philippe Bonnave)

  11. Chernobyl and the problem of international obligations regarding nuclear accidents

    International Nuclear Information System (INIS)

    Strohl, P.

    1988-01-01

    This paper analyses the way nuclear law was put to the test by the Chernobyl accident - in particular international nuclear law - so as to propose a train of thought which might contribute to adopting and revising the legal system presently in force or even new orientations. It deals only with that part of nuclear law which concerns accidents and their consequences (NEA) [fr

  12. Risks of potential accidents of nuclear power plants in Europe

    NARCIS (Netherlands)

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed

  13. Stable Chemical Dosimeters for Partial Reconstruction of Nuclear Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvornik, I.; Zec, U.; Baric, M.; Razem, D. [Ruder Boskovic Nuclear Institute, Zagreb, Yugoslavia (Croatia)

    1969-10-15

    The application of chemical dosimeters, tissue equivalent with respect to gamma rays and neutrons, is proposed for dosimetric topography of the space around nuclear devices in case of accidents. The dosimeters in the form of sealed glass ampoules have sufficient sensitivity and long-term stability and are evaluated or checked directly by conventional spectrophotometry. The sensitivity, expressed as yield per rad, is approximately equal for gamma rays and neutrons. The resolution in both cases is about one rad, and the range is up to several thousand rads. The precision of dosimetry is {+-} 1 rad or {+-} 2%, whichever is higher. In free space and unshielded the dosimeter measures the total rad-absorbed dose delivered by gamma rays and neutrons, i.e. the first collision gamma plus neutron dose. If used on- or in-phantom, especially if several dosimeters are disposed within and around the same phantom, it can give important data about the amount of the neutron component of the dose and about the effective mean energy of incident neutrons. The neutron component of the dose can be directly measured if the gamma dosimeter is used together with the chemical dosimeter. The experiments giving the change of optical density per rad and the radiation chemical yield with respect to the absorbed dose delivered by 14-MeV neutrons are described in detail. The possibility is also mentioned of applying the dosimeter as a very sensitive monitor for thermal neutrons, which is due to the chlorine content of 4.73% and activation to {sup 38}Cl. The opinion is expressed that this dosimeter deserves some attention as a part of future planning and development work on area and personnel accidental dosimetry systems. (author)

  14. Study of Iodine Prophylaxis Following Nuclear Accidents

    International Nuclear Information System (INIS)

    Sri Widayati; Tedjasari, R. S.; Elfida

    2007-01-01

    Study of iodine prophylaxis following nuclear accidents has been done. Giving stable iodine to a population exposed by I-131 is one of preventive action from internal radiation to the thyroid gland. Stable iodine could be given as Kl tablet in a range of dose of 30 mg/day to 130 mg/day. Improper giving of stable iodine could cause side effect to health, so then some factors should be considered i. e. dose estimation, age, dose of stable iodine to be given, duration of stable iodine prophylaxis and risk of health. (author)

  15. Nuclear power plant Severe Accident Research Plan

    International Nuclear Information System (INIS)

    Larkins, J.T.; Cunningham, M.A.

    1983-01-01

    The Severe Accident Research Plan (SARP) will provide technical information necessary to support regulatory decisions in the severe accident area for existing or planned nuclear power plants, and covers research for the time period of January 1982 through January 1986. SARP will develop generic bases to determine how safe the plants are and where and how their level of safety ought to be improved. The analysis to address these issues will be performed using improved probabilistic risk assessment methodology, as benchmarked to more exact data and analysis. There are thirteen program elements in the plan and the work is phased in two parts, with the first phase being completed in early 1984, at which time an assessment will be made whether or not any major changes will be recommended to the Commission for operating plants to handle severe accidents. Additionally at this time, all of the thirteen program elements in Chapter 5 will be reviewed and assessed in terms of how much additional work is necessary and where major impacts in probabilistic risk assessment might be achieved. Confirmatory research will be carried out in phase II to provide additional assurance on the appropriateness of phase I decisions. Most of this work will be concluded by early 1986

  16. Passive Dosimetry Of Nuclear Medicine Service Staff, Ibn Sina Hospital

    International Nuclear Information System (INIS)

    Sebihi, R.; Talsmat, K.; Cherkaoui, R.; Ben Rais, N.

    2010-01-01

    Full text: Since the implementation of Law No. 00571 of 21 Chaabane 1391 on protection against ionizing radiation and its decrees 2: 2-97-30 and 2-97-132 28 October 1997, surveillance of workers has the subject of major regulatory developments in Morocco, including individual registration delayed for dosimetry. As part of optimizing the protection of medical personnel, a dosimetric study was performed for the first time at the national level, the Nuclear Medicine Service of the Ibn Sina hospital in collaboration with the National Center for Energy Sciences and Nuclear Techniques (CNESTEN). Dosimetric monitoring was conducted for 2 weeks with the use of passive thermoluminescent dosimeters, (GR200A), covering all categories of staff. The administration of samarium (β emitter with energy substantially higher than the energies encountered in conventional nuclear medicine) has been studied, given his first service. Other cases of people concerned our study: a pregnant woman doctor, whose exposure of the unborn child must be reduced as much as possible, and a woman from a private company, working without dosimeter, handles maintenance of premises. To control the conditions imposed on all activities requiring exposure to ionizing radiation, we evaluated the dose at the extremities of operators with the use of ring dosimeters (GR200A) and the dose on the ambient environment of staff (dosimeters ALNOR). This experiment has shown exposure levels below legal limits, without been negligible for certain post. The evaluation results equivalent doses manipulators justify the wearing of dosimeter rings as a complementary dosimeter in Nuclear Medicine service and a way of controlling the normal working conditions. Finally Monitoring ambient dosimetry showed that the environment is low radiation doses. Lessons learned from this study, for the protection of personnel are as follows: from the simple awareness of staff and means of optimizing radiation can maintain a dosimetry annual

  17. Proposal optimization in nuclear accident emergency decision based on IAHP

    International Nuclear Information System (INIS)

    Xin Jing

    2007-01-01

    On the basis of establishing the multi-layer structure of nuclear accident emergency decision, several decision objectives are synthetically analyzed, and an optimization model of decision proposals for nuclear accident emergency based on interval analytic hierarchy process is proposed in the paper. The model makes comparisons among several emergency decision proposals quantified, and the optimum proposal is selected out, which solved the uncertain and fuzzy decision problem of judgments by experts' experiences in nuclear accidents emergency decision. Case study shows that the optimization result is much more reasonable, objective and reliable than subjective judgments, and it could be decision references for nuclear accident emergency. (authors)

  18. Evaluation of nuclear data for neutron dosimetry

    International Nuclear Information System (INIS)

    Tardelli, Tiago Cardoso

    2013-01-01

    Absorbed dose and Effective dose are usually calculated using radiation transport computer codes. The quality of the calculations of absorbed dose depends on nuclear data utilized, however, there are rare information about the differences in dose caused by the use of different libraries. The objective of this study is to compare dose values obtained using different nuclear data libraries due to external source of neutrons in the energy range from 10-11 to 20 MeV. The nuclear data libraries used are: JENDL 4.0, JEFF 3.3.1 and ENDF/B.VII. Dose calculations were carried out with the MCNPX code considering the anthropomorphic ICRP 110 model. The differences in the absorbed dose values using JEFF 3.3.1 and ENDF/B.VII libraries are small, around 1%, but the results obtained with JENDL 4.0 presented differences up to 85% compared to ENDF and JEFF results. Differences in effective dose values are around 1.5% between ENDF and JEFF and 11% between ENDF/B.VII and JENDL 4.0. (author)

  19. Improved dose estimates for nuclear criticality accidents

    International Nuclear Information System (INIS)

    Wilkinson, A.D.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.; Plaster, M.J.; Dodds, H.L.; Yamamoto, T.

    1995-01-01

    Slide rules are improved for estimating doses and dose rates resulting from nuclear criticality accidents. The original slide rules were created for highly enriched uranium solutions and metals using hand calculations along with the decades old Way-Wigner radioactive decay relationship and the inverse square law. This work uses state-of-the-art methods and better data to improve the original slide rules and also to extend the slide rule concept to three additional systems; i.e., highly enriched (93.2 wt%) uranium damp (H/ 235 U = 10) powder (U 3 O 8 ) and low-enriched (5 wt%) uranium mixtures (UO 2 F 2 ) with a H/ 235 U ratio of 200 and 500. Although the improved slide rules differ only slightly from the original slide rules, the improved slide rules and also the new slide rules can be used with greater confidence since they are based on more rigorous methods and better nuclear data

  20. Economic risks of nuclear power reactor accidents

    International Nuclear Information System (INIS)

    Burke, R.P.; Aldrich, D.C.

    1984-04-01

    Models to be used for analyses of economic risks from events which occur during US LWR plant operation are developed in this study. The models include capabilities to estimate both onsite and offsite costs of LWR events ranging from routine plant forced outages to severe core-melt accidents resulting in large releases of radioactive material to the environment. The models have been developed for potential use by both the nuclear power industry and regulatory agencies in cost/benefit analyses for decision-making purposes. The new onsite cost models estimate societal losses from power production cost increases, plant capital losses, plant decontamination costs, and plant repair costs which may be incurred after LWR operational events. Early decommissioning costs, plant worker health impact costs, electric utility business costs, nuclear power industry costs, and litigation costs are also addressed. The newly developed offsite economic consequence models estimate The costs of post-accident population protective measures and public health impacts. The costs of population evacuation and temporary relocation, agricultural product disposal, land and property decontamination, and land interdiction are included in the economic models for population protective measures. Costs of health impacts and medical care costs are also included in the models

  1. Severe accidents at nuclear power plants. Their risk assessment and accident management

    International Nuclear Information System (INIS)

    Abe, Kiyoharu.

    1995-05-01

    This document is to explain the severe accident issues. Severe Accidents are defined as accidents which are far beyond the design basis and result in severe damage of the core. Accidents at Three Mild Island in USA and at Chernobyl in former Soviet Union are examples of severe accidents. The causes and progressions of the accidents as well as the actions taken are described. Probabilistic Safety Assessment (PSA) is a method to estimate the risk of severe accidents at nuclear reactors. The methodology for PSA is briefly described and current status on its application to safety related issues is introduced. The acceptability of the risks which inherently accompany every technology is then discussed. Finally, provision of accident management in Japan is introduced, including the description of accident management measures proposed for BWRs and PWRs. (author)

  2. Accident at the Three Mile Island Nuclear Power Plant

    International Nuclear Information System (INIS)

    Bajusz, J.; Vamos, G.

    1979-01-01

    A short description of the TMI power plant is given. The course of events leading to the reactor accident and that of the first two weeks is described. The effect on the environment is estimated. The reasons and consequences of the accident are analysed. The probability of such an accident at the Paks Nuclear Power Plant is estimated. (R.J.)

  3. Dosimetry

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The purpose of ionizing radiation dosimetry is the measurement of the physical and biological consequences of exposure to radiation. As these consequences are proportional to the local absorption of energy, the dosimetry of ionizing radiation is based on the measurement of this quantity. Owing to the size of the effects of ionizing radiation on materials in all of these area, dosimetry plays an essential role in the prevention and the control of radiation exposure. Its use is of great importance in two areas in particular where the employment of ionizing radiation relates to human health: radiation protection, and medical applications. Dosimetry is different for various reasons: owing to the diversity of the physical characteristics produced by different kinds of radiation according to their nature (X- and γ-photons, electrons, neutrons,...), their energy (from several keV to several MeV), the orders of magnitude of the doses being estimated (a factor of about 10 5 between diagnostic and therapeutic applications); and the temporal and spatial variation of the biological parameters entering into the calculations. On the practical level, dosimetry poses two distinct yet closely related problems: the determination of the absorbed dose received by a subject exposed to radiation from a source external to his body (external dosimetry); and the determination of the absorbed dose received by a subject owing to the presence within his body of some radioactive substance (internal dosimetry)

  4. The PADE dosimetry system at the Brokdorf nuclear power station

    International Nuclear Information System (INIS)

    Poetter, Karl-Friedrich; Eckelmann, Joerg; Kuegow, Mario; Spahn, Werner; Franz, Manfred

    2002-01-01

    The PADE program system is used in nuclear power plants for personnel and workplace dosimetry and for managing access to the controlled area. On-line interfaces with existing dose determination systems allow collection, surveillance and evaluation functions to be achieved for person-related and workplace-related dose data. This is managed by means of open, non-proprietary communication of PADE with the computer system coupled via interfaces. In systems communication, PADE is limited to main interventions into outside systems, thus ensuring flexible adaptation to existing systems. As a client-server solution, PADE has been developed on the basis of an ORACLE-8 database; the version presented here runs on a Windows NT server. The system described has been used at the Brokdorf Nuclear Power Station since early 2000 and has so far reliably managed more than one million individual access movements of more than 6 000 persons. It is currently being integrated into a comprehensive plant operations management system. Among other things, PADE offers a considerable development potential for a tentatively planned future standardization of parts of the dosimetry systems in German nuclear power plants and for the joint management of in-plant and official dose data. (orig.) [de

  5. Consistency of external dosimetry in epidemiologic studies of nuclear workers

    International Nuclear Information System (INIS)

    Fix, J.J.; Gilbert, E.S.

    1992-01-01

    Efforts are underway to pool data from epidemiologic studies of nuclear workers to obtain more precise estimates of radiation risk than would be possible from any single study. The International Agency for Research on Cancer (IARC) is coordinating combined analyses of data from studies in the United States, Canada, and the United Kingdom. In the U.S., the Department of Energy (DOE) has established the Comprehensive Epidemiologic Data Resource (CEDR) to provide investigators an opportunity to analyze data from several DOE laboratories. IARC investigators, in collaboration with those conducting the individual studies, have developed a dosimetry protocol for the international combined analyses. (author)

  6. Spectroscopic studies of irradiated glasses: Application in nuclear dosimetry

    International Nuclear Information System (INIS)

    Farah, Khaled

    2010-01-01

    The present work aims to study the effects of ionizing radiation on silicate glasses in order to develop a new dosimetry system simple, precise, stable and inexpensive. Indeed, changes in mechanical properties, optical and paramagnetic glasses when subjected to ionizing radiation. The prediction of long-term behavior, physical aging under irradiation, the glass is paramount. many studies have brought many ways to avoid obscuring glass windows used in nuclear reactors or hot cells and optical devices. Recently, much work has concentrated on the application of the color induced by irradiation for developing a recyclable glass in the glass industry is of great interest economically and environmentally.

  7. Consistency of external dosimetry in epidemiologic studies of nuclear workers

    International Nuclear Information System (INIS)

    Fix, J.J.; Gilbert, E.S.

    1992-05-01

    Efforts are underway to pool data from epidemiologic studies of nuclear workers to obtain more precise estimates of radiation risk than would be possible from any single study. The International Agency for Research on Cancer (IARC) is coordinating combined analyses of data from studies in the United States, Canada, and the United Kingdom. In the US, the Department of Energy (DOE) has established the Comprehensive Epidemiologic Data Resource (CEDR) to provide investigators an opportunity to analyze data from several DOE laboratories. IARC investigators, in collaboration with those conducting the individual studies, have developed a dosimetry protocol for the international combined analyses

  8. Dosimetry

    International Nuclear Information System (INIS)

    Rezende, D.A.O. de

    1976-01-01

    The fundamental units of dosimetry are defined, such as exposure rate, absorbed dose and equivalent dose. A table is given of relative biological effectiveness values for the different types of radiation. The relation between the roentgen and rad units is calculated and the concepts of physical half-life, biological half-life and effective half-life are discussed. Referring to internal dosimetry, a mathematical treatment is given to β particle-and γ radiation dosimetry. The absorbed dose is calculated and a practical example is given of the calculation of the exposure and of the dose rate for a gama source [pt

  9. Thermoluminescence of chip inductors from mobile phones for retrospective and accident dosimetry

    International Nuclear Information System (INIS)

    Fiedler, I.; Woda, C.

    2011-01-01

    Electronic components in portable electronic devices such as mobile phones and portable media player have previously been shown to be useful tools for retrospective and accident dosimetry. In this study the properties of alumina rich inductors removed from mobile phones are investigated using thermoluminescence (TL). The typical glow curve of this component has two main peaks at 170 and 270 °C. With a suitable measurement protocol sensitivity changes of both peaks could be corrected so that the TL signal shows a linear increase in the investigated dose range from 100 mGy to 5 Gy. All inductors studied showed essentially no signal for zero dose. We investigated the fading of the TL signals and the detection limit of inductors extracted from different mobile phones.

  10. On the use of OSL of chip card modules with molding for retrospective and accident dosimetry

    International Nuclear Information System (INIS)

    Woda, Clemens; Fiedler, Irene; Spöttl, Thomas

    2012-01-01

    The potential of optically stimulated luminescence of wire-bond chip card modules with molded encapsulations for retrospective and accident dosimetry is investigated. Contact-based and contactless modules were studied, the latter finding potential use in electronic documents (e.g. electronic passports, electronic identity cards). Investigations were carried out on intact as well as chemically prepared modules, extracting the filler material. Contact-based modules are characterized according to zero dose signal, correlation between OSL and TL, dose response and long-term signal stability. For prepared modules, the minimum detectable dose immediately after irradiation is 3 mGy and between 20 and 200 mGy for contact-based and contactless modules, respectively. Dose recovery tests on contact-based modules indicate that the developed methodology yields results with sufficient accuracy for measurements promptly after irradiation, whereas a systematic underestimation is observed for longer delay times. The reasons for this behaviour are as yet not fully understood.

  11. Tracing nuclear elements released by Fukushima Nuclear Power Plant accident

    Science.gov (United States)

    Tsujimura, M.; Onda, Y.; Abe, Y.; Hada, M.; Pun, I.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring regions due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami occurred on 11th March 2011. The small experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima Prefecture, located approximately 35 km west from the Fukushima NPP. The tritium (3H) concentration and stable isotopic compositions of deuterium and oxygen-18 have been determined on the water samples of precipitation, soil water at the depths of 10 to 30 cm, groundwater at the depths of 5 m to 50 m, spring water and stream water taken at the watersheds in the recharge and discharge zones from the view point of the groundwater flow system. The tritium concentration of the rain water fell just a few days after the earthquake showed a value of approximately 17 Tritium Unit (T.U.), whereas the average concentration of the tritium in the precipitation was less than 5 T.U. before the Fukushima accident. The spring water in the recharge zone showed a relatively high tritium concentration of approximately 12 T.U., whereas that of the discharge zone showed less than 5 T.U. Thus, the artificial tritium was apparently injected in the groundwater flow system due to the Fukushima NPP accident, whereas that has not reached at the discharge zone yet. The monitoring of the nuclear elements is now on going from the view points of the hydrological cycles and the drinking water security.

  12. Improvement of dose determination using glass display of mobile phones for accident dosimetry

    International Nuclear Information System (INIS)

    Discher, M.; Woda, C.; Fiedler, I.

    2013-01-01

    Previous studies have demonstrated that mobile phones can be used as suitable emergency dosimeters in case of an accidental radiation overexposure. Glass samples extracted from displays of mobile phones are sensitive to ionizing radiation and can be measured using the thermoluminescence (TL) method. A non-radiation induced background signal (so-called zero dose signal) was observed which overlaps with the radiation induced signal and consequently limits the minimum detectable dose. Investigations of several glasses from different displays showed that it is possible to reduce the zero dose signal up to 90% by etching the glass surface with concentrated hydrofluoric acid. With this approach a reduction of the detection limit of a factor of four, corresponding to approximately 80 mGy, was achieved. Dosimetric properties of etched samples are presented and developed protocols validated by dose recovery tests under realistic conditions. With the improvements in sample preparation the proposed method of dose determination is a competitive alternative to OSL/TL measurements of electronic components and chip cards and provides a useful option for retrospective accident dosimetry. -- Highlights: ► Glass displays from mobile phones have good potential for emergency dosimetry. ► The background signal can be reduced by etching glass samples with hydrofluoric acid. ► The minimum detectable dose can be lowered to approximately 80 mGy

  13. Study Of Severe Accident Phenomena In Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sugiyanto; Antariksawan; Anhar, R.; Arifal

    2001-01-01

    Several phenomena that occurred in the light water reactor type of nuclear power plant during severe accident were studied. The study was carried out based on the results of severe accident researches in various countries. In general, severe accident phenomena can be classified into in-vessel phenomena, retention in the reactor coolant system, and ex-vessel phenomena. In-vessel retention has been recommended as a severe accident management strategy

  14. Compensation for damages in case of a nuclear accident

    International Nuclear Information System (INIS)

    Leger, M.

    2011-01-01

    This article presents the system of compensation for damages in case of a nuclear accident. This system of civil liability for nuclear damage, as a specific regime, departs on several points from the common rules of civil liability, in order to provide an adequate and equitable compensation for the damages suffered by the victims of nuclear accidents. The French system of civil liability for nuclear damage results from two International Conventions integrated in French law (Paris convention 1960 and Brussels convention 1963) and the French law of 1968, October 30 on civil liability in the area of nuclear energy. These texts define the conditions under which a nuclear operator could be held liable in case of a nuclear accident. The protocols to amend the Paris and Brussels Conventions of 2004, not yet come into force, are also presented. They ensure that increased resources are available to compensate a greater number of victims of a nuclear accident. (author)

  15. 25 years since Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Chiosila, Ion; Gheorghe, Raluca; Simion, Elena

    2011-01-01

    Environmental and food radioactivity surveillance in Romania, begun since the early 60's, with 47 laboratories from National Environment Radioactivity Surveillance Network (NERSN) in the framework of Ministry of Environmental and the network of 21 Radiation Hygiene Laboratories (RHL) from centers and institutes of the Ministry of Public Health. The surveillance was conducted by global beta and alpha measurements, necessary to make some quick decisions as well as gamma spectrometry to detect high and low resolution profile accident. Thus the two networks together and some departmental labs recorded from the first moments (since April 30, 1986) the presence of the contaminated radioactive cloud originated from Ukraine, after the nuclear accident on 26 April 1986 at Chernobyl NPP, on the Romanian territory. NERSN followed up the radioactive contamination of air (gamma dose rate, atmospheric aerosols and total deposition), surface water, uncultivated soil, and spontaneous vegetation while the RHL monitored the drinking water and food. Early notification of this event allowed local and central authorities to take protective measures like: administration of stable iodine, advertisements in media on avoiding consumption of heavily contaminated food, prohibition of certain events that took place outdoors, interdiction of drinking milk and eating milk products for one month long. Most radionuclides, fission and activation products (22 radionuclides), released during the accident, have been determined in the environmental factors. A special attention was paid to radionuclides like Sr-90, I-131, Cs-134 and Cs-137, especially in aerosol samples, where the maximum values were recorded on Toaca Peak (Ceahlau Mountain) on May, the first, 1986: 103 Bq/m 3 , I-131, 63 Bq/m 3 , Cs-137. The highest value of I-131 in drinking water, 21 Bq/l, was achieved on May, the third, 1986 in Bucharest and in cow milk exceeded the value of 3000 Bq/l. For sheep milk some sporadic values exceeding

  16. Fukushima nuclear power plant accident was preventable

    Science.gov (United States)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  17. Severe accidents and nuclear containment integrity (SANCY). SANCY summary report

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I. [VTT Processes, Espoo (Finland)

    2004-07-01

    SANCY project investigates physical phenomena related to severe nuclear accidents with importance to Finnish nuclear power plants. Currently the major topics are the ex-vessel coolability issues, long-term severe accident management and containment leak tightness and adoption and development of new calculation tools considering also the needs of the future Olkiluoto 3 plant. SANCY employs both experimental and analytical methods. (orig.)

  18. Optimization of radiation protection in nuclear medicine: from reference dosimetry to personalized dosimetry

    International Nuclear Information System (INIS)

    Hadid, Lama

    2011-01-01

    In nuclear medicine, radiopharmaceuticals are distributed in the body through biokinetic processes. Thus, each organ can become a source of radiation delivering a fraction of emitted energy in tissues. Therefore, dose calculations must be assessed accurately and realistically to ensure the patient radiation protection. Absorbed doses were until now based on mathematical standard models and electron transport approximations. The International Commission on Radiological Protection (ICRP) has recently adopted voxel phantoms as a more realistic representation of the reference adult. The main goal of this thesis was to study the influence of the use of the new reference models and Monte Carlo methods on the major dosimetric quantities. In addition, the contribution of patients? specific geometry to the absorbed dose was compared to a standard geometry, enabling the evaluation of uncertainties arising from the reference values. Particular attention was paid to the bone marrow which is characterized by a high radiosensitivity and a complex microscopic structure. An accurate alpha dosimetry was assessed for bone marrow using microscopic images of several trabecular bone sites. The results showed variations in the absorbed fractions as a function of the particles? energy, the skeletal site and the amount of fat within marrow cavities, three parameters which are not taken into account in the values published by the ICRP. Finally, the heterogeneous activity distribution of the radiopharmaceuticals was considered within the framework of the treatment of a hepato-cellular carcinoma with selective internal radiotherapy using Yttrium-90 through the analysis of dose-volume histograms. The developments made in this thesis show the importance and the feasibility of performing a personalized dosimetry for nuclear medicine patients. (author)

  19. Workshop on internal dosimetry in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gómez Parada, I.; Gossio, S.; Puerta Yepes, N.; Saavedra, A.D.; Segato, A.D.

    2011-01-01

    Dose assessment in case of internal exposure involves the estimation of committed effective dose based on the interpretation of bioassay measurement, and the assumptions of hypotheses on the characteristics of the radioactive material and the time pattern and the pathway of intake. In the case of workers exposed in nuclear fuel facilities, the normal uranium excretion from the diet is an additional difficulty in the process of assessing internal exposure. The aim of this paper is to present the main topics discussion and the conclusions of the workshop, held in the frame of the missions of the Autoridad Regulatoria Nuclear. All the personnel involved in the control of internal exposure in nuclear fuel cycle was invited to participate in the workshop to discuss about individual monitoring criteria and the available tools for assessing committed effective dose in the workers of their facilities. The lectures were presented jointly by the Nuclear Fuel Cycle Facilities Control and the Dosimetric and Radiobiological Assessment departments. It was hold at the Ezeiza Atomic Center from 23th to 24th November 2010 based on the Advanced Course on Internal Dosimetry organized on 2009 and focusing specific uranium compound internal dosimetry. A representative of each facility was invited to present the monitoring program implemented for controlling the internal exposure. It was an opportunity to discuss criteria and to share experiences on this field in the frame of the ICRP, HPA and ISO publications. The different monitoring program criteria could be analyzed and so contributing to the improvement of radiological protection. Finally, it was agreed to hold periodical meetings to assure the update on uranium measurement techniques and the handling of monitoring data for committed effective dose assessment. (authors) [es

  20. Thermoluminescence dosimetry of gamma rays from the fallout of the Semipalatinsk nuclear tests

    International Nuclear Information System (INIS)

    Takada, J.; Hoshi, M.; Endo, S.; Yamamoto, M.; Nagatomo, T.; Gusev, B.I.; Rozenson, R.I.; Apsalikov, K.N.; Tchaijunusova, N.J.

    1996-01-01

    Field missions were sent to several settlements near the Semipalatinsk nuclear test site out in order to investigate dosimetry for the residents in 1995. The results of measurements of environmental radiation doses and thermoluminescence dosimetry in some villages near the Semipalatinsk nuclear test site are presented. The radiation levels in several villages are the natural background level in 1995, 6 years after the final nuclear explosion. On the other hand, thermoluminescence dosimetry revealed significant radiation exposure to residents in this area due to nuclear tests. (author)

  1. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  2. Nuclear decay data files of the Dosimetry Research Group

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

    1993-12-01

    This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission on Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ''MIRD: Radionuclide Data and Decay Schemes.'' The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory

  3. Severe accident management program at Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Borondo, L.; Serrano, C.; Fiol, M.J.; Sanchez, A.

    2000-01-01

    Cofrentes Nuclear Power Plant (GE BWR/6) has implemented its specific Severe Accident Management Program within this year 2000. New organization and guides have been developed to successfully undertake the management of a severe accident. In particular, the Technical Support Center will count on a new ''Severe Accident Management Team'' (SAMT) which will be in charge of the Severe Accident Guides (SAG) when Control Room Crew reaches the Emergency Operation Procedures (EOP) step that requires containment flooding. Specific tools and training have also been developed to help the SAMT to mitigate the accident. (author)

  4. Severe accident sequences simulated at the Grand Gulf Nuclear Station

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1999-01-01

    Different severe accident sequences employing the MELCOR code, version 1.8.4 QK, have been simulated at the Grand Gulf Nuclear Station (Grand Gulf). The postulated severe accidents simulated are two low-pressure, short-term, station blackouts; two unmitigated small-break (SB) loss-of-coolant accidents (LOCAs) (SBLOCAs); and one unmitigated large LOCA (LLOCA). The purpose of this study was to calculate best-estimate timings of events and source terms for a wide range of severe accidents and to compare the plant response to these accidents

  5. Statistical evaluation of design-error related nuclear reactor accidents

    International Nuclear Information System (INIS)

    Ott, K.O.; Marchaterre, J.F.

    1981-01-01

    In this paper, general methodology for the statistical evaluation of design-error related accidents is proposed that can be applied to a variety of systems that evolves during the development of large-scale technologies. The evaluation aims at an estimate of the combined ''residual'' frequency of yet unknown types of accidents ''lurking'' in a certain technological system. A special categorization in incidents and accidents is introduced to define the events that should be jointly analyzed. The resulting formalism is applied to the development of U.S. nuclear power reactor technology, considering serious accidents (category 2 events) that involved, in the accident progression, a particular design inadequacy. 9 refs

  6. Improvements in the nuclear accident response system in Brazil

    International Nuclear Information System (INIS)

    Estrada, J.J.S.; Azevedo, E.M.; Knofel, T.M.J.; Recio, J.C.A.; Alves, R.N.

    1998-01-01

    The National Commission on Nuclear Energy has been making outstanding effort to improve its nuclear and radiological accident response systems since the tragic accident in Goiania. Most of this effort is related to nuclear area although the radiological accident has been also considered. This paper describes the improvements in the CNEN response system structure, discusses several topics involving those related to emergency planning and preparedness, and points out some deficiencies that need to be corrected also. The situation during the Goiania accident was more disadvantageous than nowadays, so it is believed that none of the actual deficiencies are sufficient to guess that the population and the environment will not be protected in case of a nuclear or radiological accident

  7. Aerosol measurements and nuclear accidents: a reconsideration

    International Nuclear Information System (INIS)

    Raes, F.

    1988-01-01

    Within its radioactivity environmental monitoring programme, the Commission of the European Communities and in particular its Joint Research Centre wants to encourage the qualitative improvement of radioactivity monitoring. On 3 and 4 December 1987 an experts' meeting has been organized by the Ispra Joint Research Centre in collaboration with the Gesellschaft fuer Aerosolforschung, in order to discuss measuring techniques for radioactive aerosols in the environment in case of a nuclear accident. During the workshop, current practices in routine monitoring programmes in the near and far field of nuclear power plants were confronted with the latest developments in the metrology of aerosols and radioactivity. The need and feasibility of implementing advanced aerosol and radioactivity techniques in routine monitoring networks have been discussed. This publication gives the full text of 12 presentations and a report of the roundtable discussion being held afterwards. It does not intend to give a complete picture of all activities going on in the field of radioactive aerosol metrology; it rather collects a number of common statements of people who approach the problem from quite different directions

  8. French policy for managing the post-accident phase of a nuclear accident.

    Science.gov (United States)

    Gallay, F; Godet, J L; Niel, J C

    2015-06-01

    In 2005, at the request of the French Government, the Nuclear Safety Authority (ASN) established a Steering Committee for the Management of the Post-Accident Phase of a Nuclear Accident or a Radiological Emergency, with the objective of establishing a policy framework. Under the supervision of ASN, this Committee, involving several tens of experts from different backgrounds (e.g. relevant ministerial offices, expert agencies, local information commissions around nuclear installations, non-governmental organisations, elected officials, licensees, and international experts), developed a number of recommendations over a 7-year period. First published in November 2012, these recommendations cover the immediate post-emergency situation, and the transition and longer-term periods of the post-accident phase in the case of medium-scale nuclear accidents causing short-term radioactive release (less than 24 h) that might occur at French nuclear facilities. They also apply to actions to be undertaken in the event of accidents during the transportation of radioactive materials. These recommendations are an important first step in preparation for the management of a post-accident situation in France in the case of a nuclear accident. © The Chartered Institution of Building Services Engineers 2014.

  9. Outline of Fukushima nuclear accident and future action. Lessons learned from accident and countermeasure plan

    International Nuclear Information System (INIS)

    Fukuda, Toshihiko

    2012-01-01

    Fukushima nuclear accident was caused by loss of all AC power sources (SBO) and loss of ultimate heat sink (LUHS) at Fukushima Daiichi Nuclear Power Plants (NPPs) hit by the Great East Japan Earthquake. This article reviewed outline of Fukushima nuclear accident progression when on year had passed since and referred to lessons learned from accident and countermeasure plan to prevent severe accident in SBO and LUHS events by earthquake and tsunami as future action. This countermeasure would be taken to (1) prevent serious flooding in case a tsunami overwhelms the breakwater, with improving water tightness of rooms for emergency diesel generator, batteries and power centers, (2) enhance emergency power supply and cooling function with mobile electricity generator, high pressure fire pump car and alternate water supply source, (3) mitigate environmental effects caused by core damage with installing containment filtered venting, and (4) enforce emergency preparedness in case of severe accident. Definite countermeasure plan for Kashiwazaki-Kariwa NPPs was enumerated. (T. Tanaka)

  10. Nuclear accidents. Three mile Island (United States)

    International Nuclear Information System (INIS)

    Duco, J.

    2004-01-01

    This paper describes the accident of Three Miles Island power plant which occurred the 28 march 1979 in the United States. The accident scenario, the consequences and the reactor core and vessel, after the accident, are analyzed. (A.L.B.)

  11. Mister Voxel: 3D internal dosimetry software for nuclear medicine

    International Nuclear Information System (INIS)

    McKay, E.

    1998-01-01

    Full text: Calculation of individual internal dosimetry in nuclear medicine is a complex, multi-stage process. Most often, calculations are biased on the MIRD methodology, which assumes uniform distribution of cumulated activity inside a set of mathematically described internal organs. The MIRD 'reference man' geometry is highly simplified and the dosimetry estimates generated by this method were originally only intended to predict the average dose expected in an exposed population. We have developed a software package for the Macintosh computer ('Mister Voxel') that uses a fast Fourier transform to calculate the 3D distribution of absorbed dose by convolving a 3D dose kernel with a 3D distribution of cumulated activity. This makes it possible to generate dose volume histograms and isodose contours for organs or tumours treated with radiopharmaceuticals, a task not possible using the MIRD technique. In addition to providing 3D convolution, Mister Voxel performs basic image processing functions (image math, filters, cut and paste) and provides a collection of painting tools and simple morphological operators to facilitate the delineation of regions of interest (ROIs) along anatomical boundaries. The package also includes an image registration module with tools for automated or manual registration of 3D data sets. The structure of the package allows ROIs drawn on CT or MRI data to be easily transferred to registered SPECT data. Dose kernels are implemented by plug-in code modules, allowing the user to extend the system's capabilities if required. File import and export capabilities are also extensible

  12. CEC workshop on methods for assessing the offsite radiological consequences of nuclear accidents

    International Nuclear Information System (INIS)

    Luykx, F.; Sinnaeve, J.

    1986-01-01

    On Apr 15-19, 1985, in Luxembourg, the Commission of the European Communities (CEC), in collaboration with the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, and the National Radiological Protection Board (NRPB), United Kingdom, presented a workshop on methods for assessing the offsite radiological consequences of nuclear accidents. The program consisted of eight sessions. The main conclusions, which were presented in the Round Table Session by the individual Session Chairmen, are summarized. Session topics are as follows: Session I: international developments in the field of accident consequence assessment (ACA); Session II: atmospheric dispersion; Session III: food chain models; Session IV: urban contamination; Session V: demographic and land use data; Session VI: dosimetry, health effects, economic and counter measure models; Session VII: uncertainty analysis; and Session VIII: application of probabilistic consequence models as decision aids

  13. The role of nuclear reactor containment in severe accidents

    International Nuclear Information System (INIS)

    1989-04-01

    The containment is a structural envelope which completely surrounds the nuclear reactor system and is designed to confine the radioactive releases in case of an accident. This report summarises the work of an NEA Senior Group of Experts who have studied the potential role of containment in accidents exceeding design specifications (so-called severe accidents). Some possibilities for enhancing the ability of plants to reduce the risk of significant off-site consequences by appropriate management of the acident have been examined

  14. Impact of accidents on organizational aspects of nuclear utilities

    OpenAIRE

    Spurgin, A. J.; Stupples, D.

    2012-01-01

    This paper applies the Beer Viable Systems Model (VSM) approach to the study of nuclear accidents. It relates how organizational structures and rules are affected by accidents in the attempt to improve safety and reduce risk. The paper illustrates this process with reference to a number of accidents. The dynamic cybernetic aspect of the VSM approach to organizations yields a better understanding of the need for good decision-making to minimize risk and how organizations really operate.

  15. The consequences of the Chernobyl nuclear accident in Greece

    International Nuclear Information System (INIS)

    1986-07-01

    In this report the radioactive fallout on Greece from the Chernobyl nuclear accident is described. The flow pattern to Greece of the radioactive materials released, the measurements performed on environmental samples and samples of the food chain, as well as some estimations of the population doses and of the expected consequences of the accident are presented. The analysis has shown that the radiological impact of the accident in Greece can be considered minor. (J.K.)

  16. Report on the accident at the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    1987-01-01

    This report presents the compilation of information obtained by various organizations regarding the accident (and the consequences of the accident) that occurred at Unit 4 of the nuclear power station at Chernobyl in the USSR on April 26, 1986. The various authors are identified in a footnote to each chapter. An overview of the report is provided. Very briefly the other chapters cover: the design of the Chernobyl nuclear station Unit 4; safety analyses for Unit 4; the accident scenario; the role of the operator; an assessment of the radioactive release, dispersion, and transport; the activities associated with emergency actions; and information on the health and environmental consequences from the accident. These subjects cover the major aspects of the accident that have the potential to present new information and lessons for the nuclear industry in general

  17. Management of Radioactive Waste after a Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Strand, Per; Laurent, Gerard; Rindo, Hiroshi; Georges, Christine; Ito, Eiichiro; Yamada, Norikazu; Iablokov, Iuri; Kilochytska, Tatiana; Jefferies, Nick; Byrne, Jim; Siemann, Michael; Koganeya, Toshiyuki; Aoki, Hiroomi

    2016-01-01

    The NEA Expert Group on Fukushima Waste Management and Decommissioning R and D (EGFWMD) was established in 2014 to offer advice to the authorities in Japan on the management of large quantities of on-site waste with complex properties and to share experiences with the international community and NEA member countries on ongoing work at the Fukushima Daiichi site. The group was formed with specialists from around the world who had gained experience in waste management, radiological contamination or decommissioning and waste management R and D after the Three Mile Island and Chernobyl accidents. This report provides technical opinions and ideas from these experts on post-accident waste management and R and D at the Fukushima Daiichi site, as well as information on decommissioning challenges. Chapter 1 provides general descriptions and a short introduction to nuclear accidents or radiological contaminations; for instance the Chernobyl NPP accident, the Three Mile Island Unit 2 accident and the Windscale fire accident. Chapter 2 provides experiences on regulator-implementer interaction in both normal and abnormal situations, including after a nuclear accident. Chapter 3 provides experiences on stakeholder involvement after accidents. These two chapters focus on human aspects after an accident and provide recommendations on how to improve communication between stakeholders so as to resolve issues arising after unexpected nuclear accidents. Chapters 4, 5 and 6 provide information on technical issues related to waste management after accidents. Chapter 4 focuses on the physical and chemical nature of the waste, Chapter 5 on radiological characterisation, and Chapter 6 on waste classification and categorisation. The persons involved in waste management after an accident should address these issues as soon as possible after the accident. Chapters 7 and 8 also focus on technical issues but with a long-term perspective of the waste direction in the future. Chapter 7 relates

  18. Our reflections and lessons from the Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Sawada, Takashi; Yagawa, Genki

    2017-01-01

    In order to investigate the cause of the accident that began on March 11, 2011 at the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station, the Science Council of Japan set an investigation committee, the 'Sub-Committee on Fukushima Nuclear Accident (SCFNA)' under the Comprehensive Synthetic Engineering Committee. The committee has published a record entitled 'Reflections and Lessons from the Fukushima Nuclear Accident, (1st report)'. There are still many items about the accident for which the details are not clear. It is important to discuss the reasons why the severe accident could not be prevented and the possibilities that there might have been other proper operations and accident management to prevent or lessen the severity of the accident than those adopted at the time. SCFNA decided to continue its investigation by setting up our working group called the 'Working Group on Fukushima Nuclear Accident'. Our working group have published 'Reflection and Lessons from the Fukushima Nuclear Accident (2nd Report)'. We investigated the issues of specific units. Unit 1 were validity of the operation of the isolation condenser, whether or not a loss of coolant accident occurred due to a failure of the cooling piping system by the seismic ground motion, and the cause of the loss of the emergency AC power supply, Unit 2 was the reason why a large amount of radioactive materials was emitted to the environment although the reactor building did not explode, Unit 3 was the reasons why the operator stopped running the high pressure coolant injection system, and Units 1 to 3 was validity of the venting operation. These items were considered to be the key issues in these units that would have prevented progression to the severe accident. (author)

  19. Iodine tablets and a nuclear accident

    International Nuclear Information System (INIS)

    Paile, W.

    1992-01-01

    Radioactive iodine is one of the major substances released during severe nuclear accidents. Radioactive iodine is easily gasified, and if present in fallout it can enter the lungs, and thereby the circulatory system, with the inhalation of air. Once in a body, radioactive iodine accumulates in the thyroid and may result in tumours in the thyroid and, in extreme cases, impaired thyroid function. Accumulation of radioactive iodine can be prevented by taking non-radioactive, 'cold' iodine as tablets. Iodine tablets dilute the radioactive iodine that has entered the body. A dose of iodine also paralyses the thyroid temporarily by saturating its iodine-carrying capacity. To be useful iodine tablets should be taken immediately when a radioactive emission has occurred. If the tablets are taken too early or too late, they give little protection. Iodine tablets should not be taken just to be on the safe side, since their use may involve harmful side effects. Dosing instructions should also be followed with care. (orig.)

  20. Severe accident analysis and management in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Golshan, Mina

    2013-01-01

    Within the UK regulatory regime, assessment of risks arising from licensee's activities are expected to cover both normal operations and fault conditions. In order to establish the safety case for fault conditions, fault analysis is expected to cover three forms of analysis: design basis analysis (DBA), probabilistic safety assessment (PSA) and severe accident analysis (SAA). DBA should provide a robust demonstration of the fault tolerance of the engineering design and the effectiveness of the safety measures on a conservative basis. PSA looks at a wider range of fault sequences (on a best estimate basis) including those excluded from the DBA. SAA considers significant but unlikely accidents and provides information on their progression and consequences, within the facility, on the site and off site. The assessment of severe accidents is not limited to nuclear power plants and is expected to be carried out for all plant states where the identified dose targets could be exceeded. This paper sets out the UK nuclear regulatory expectation on what constitutes a severe accident, irrespective of the type of facility, and describes characteristics of severe accidents focusing on nuclear fuel cycle facilities. Key rules in assessment of severe accidents as well as the relationship to other fault analysis techniques are discussed. The role of SAA in informing accident management strategies and offsite emergency plans is covered. The paper also presents generic examples of scenarios that could lead to severe accidents in a range of nuclear fuel cycle facilities. (authors)

  1. Radioactive fallout from the Chernobyl nuclear reactor accident

    International Nuclear Information System (INIS)

    Beiriger, J.M.; Failor, R.A.; Marsh, K.V.; Shaw, G.E.

    1987-08-01

    This report describes the detection of fallout in the United States from the Chernobyl nuclear reactor accident. As part of its environmental surveillance program, Lawrence Livermore National Laboratory maintained detectors for gamma-emitting radionuclides. Following the reactor accident, additional air filters were set out. Several uncommon isotopes were detected at the time the plume passed into the US

  2. Photon energy dependence and angular response of glass display used in mobile phones for accident dosimetry

    International Nuclear Information System (INIS)

    Discher, Michael; Greiter, Matthias; Woda, Clemens

    2014-01-01

    Previous studies have shown that glass displays extracted from mobile phones are suitable as emergency dosimeters in case of an accidental radiation overexposure using the thermoluminescence (TL) method. So far these studies have focused only on recovering the absorbed dose to the material. However, dose in air or dose to the victim carrying the device might be significantly different. Therefore the aim of this work was to investigate photon energy dependence and angular response of glass display used in modern mobile phones. An over-response of about a factor of five is observed for low photon energies compared to the response to Cs-137 (662 keV) which is in reasonable agreement with calculated values mass energy-absorption coefficients of glass and air. Little variation in the energy dependence can be seen for glass displays coming from three different mobile phone models. The angular response for display glass is flat with regard to air kerma within the incident angle of ±60°, independent of the irradiation setup used (with a water phantom or with air kerma reference conditions). For incident angles of 90° the shielding effect of the mobile phones becomes important. With the dosimetric characterization of the photon energy and angular dependencies the absorbed dose in a glass display can be transferred to a reference air kerma dose and provides a useful option for retrospective accident dosimetry. - Highlights: • Determination of the photon energy dependence and angular response for display glass used as an accident dosimeter. • Over-response of about a factor of five for low photon energies. • Flat angular response within incident angles between ±60°

  3. A micro-gap, air-filled ionisation chamber as a detector for criticality accident dosimetry

    International Nuclear Information System (INIS)

    Murawski, I.; Zielczynski, M.; Gryzinski, M.A.; Golnik, N.

    2014-01-01

    A micro-gap air-filled ionisation chamber was designed for criticality dosimetry. The special feature of the chamber is its very small gap between electrodes of only 0.3 mm. This prevents ion recombination at high dose rates and minimises the influence of gas on secondary particles spectrum. The electrodes are made of polypropylene because of higher content of hydrogen in this material, when compared with soft tissue. The difference between neutron and gamma sensitivity in such chamber becomes practically negligible. The chamber's envelope contains two specially connected capacitors, one for polarising the electrodes and the other for collecting the ionisation charge. Air-filled ionisation chamber with very small gap is a simple dosemeter, which fulfills the most desired properties of criticality accident dosemeters. Short ion collection time is achieved by combination of small gap and relatively high polarising voltage. For the same reason, parasitic recombination of ions in the chamber is negligibly small even at high dose rates. The difference between neutron and gamma sensitivity is small for tissue-equivalent chamber and is expected to become practically negligible when the chamber electrodes are made of polypropylene. Additional capacitor provides a broad measuring range from ∼0.1 Gy up to ∼25 Gy; however, leakage of electrical charge from polarising capacitor has to be observed and taken into account. Periodical re-charging of the device is necessary. Obviously, final test of the device in conditions simulating criticality accident is needed and will be performed as soon as available. (authors)

  4. Accidents in nuclear facilities: classification, incidence and impact

    International Nuclear Information System (INIS)

    Galicia A, J.; Paredes G, L. C.

    2012-10-01

    A general analysis of the 146 accidents reported officially in nuclear facilities from 1945 to 2012 is presented, among them some took place in: power or research nuclear reactors, critical and subcritical nuclear assemblies, handling of nuclear materials inside laboratories belonging to institutes or universities, in radiochemistry industrial plants and nuclear fuel factories. In form graph the incidence of these accidents is illustrated classified for; category, decades, geographical localization, country classification before the OECD, failure type, and the immediate or later victims. On the other hand, the main learned lessons of the nuclear accidents of Three Mile Island, Chernobyl and Fukushima are stood out, among those that highlight; the human factors, the necessity of designs more innovative and major technology for the operation, control and surveillance of the nuclear facilities, to increase the criterions of nuclear, radiological and physics safety applied to these facilities, the necessity to carry out probabilistic analysis of safety more detailed for cases of not very probable accidents and their impact, to revalue the selection criterions of the sites for nuclear locations, the methodology of post-accident sites recovery and major instrumentation for parameters evaluation and the radiological monitoring among others. (Author)

  5. Emergency preparedness and response: compensating victims of a nuclear accident

    International Nuclear Information System (INIS)

    Schwartz, Julia

    2004-01-01

    The 1986 tragedy at the Chernobyl Nuclear Power Plant in Ukraine motivated the entire international nuclear community to ensure that countries would, in the future, be well prepared to manage the physical, psychological and financial consequences of a serious nuclear accident. Since that event, numerous nuclear emergency preparedness and post-emergency management programmes have been established at national and international levels to ensure that appropriate mechanisms will respond to the threat, and the aftermath, of a nuclear accident. The INEX 2000 Workshop on the Indemnification of Nuclear Damage, jointly organised by the OECD/Nuclear Energy Agency and the French Government, was the first ever international programme to address the manner in which victims of a nuclear accident with trans-boundary consequences would be compensated for damage suffered before, during and after the accident. The Workshop results revealed striking differences in the compensation principles and practices implemented in the 30 participating countries, in the co-ordination measures between different public authorities within an affected state, and in the co-operative procedures between the accident state and its neighbours. All participants agreed on the need for improvement in these areas, particularly for maintaining public confidence in governments' ability to properly manage nuclear emergencies

  6. Severe accident management guidance for third Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Su Changsong

    2010-01-01

    The paper describes the background, document structure and the summaries of Severe Accident Management Guidance (SAMG) for Third Qinshan Nuclear Power Plant (TQNPP), and also introduces briefly some design features and their impacts on SAMG. (authors)

  7. Thyroid dosimetry in the western trace of the Chernobyl accident plume

    International Nuclear Information System (INIS)

    Nedveckaite, T.; Filistovic, V.; Mastauskas, A.; Thiessen, K.

    2004-01-01

    According to World Health Organization guidelines (WHO/SDE/PHE/99.6), the reference level for consideration in stable iodine prophylaxis is based on the inhalation exposure pathway. In the western trace of the Chernobyl accident, the measurement of airborne 131 I fractions (aerosol-associated, gaseous reactive and gaseous organic) indicates that airborne gaseous reactive and, especially, organic 131 I fractions were the major contributors to thyroid exposure due to inhalation. The contribution of inhaled short-lived radio-iodines was negligible. To attain more precise thyroid exposure evaluation, 131 I dose factors were determined as a function of age and prevalence of stable iodine deficiency. The results demonstrate that children with a stable iodine deficiency experienced at least two times higher thyroid doses than did children with a dietary iodine sufficiency. The results of these investigations demonstrate that in thyroid dosimetry it is important to know the stable iodine status as well as to have a standardised method for airborne radioiodine measurements, especially for consideration of stable iodine prophylaxis based on the inhalation exposure pathway. (authors)

  8. Investigations of touchscreen glasses from mobile phones for retrospective and accident dosimetry

    International Nuclear Information System (INIS)

    Discher, Michael; Bortolin, Emanuela; Woda, Clemens

    2016-01-01

    Touchscreen glasses of mobile phones are sensitive to ionizing radiation and have the potential of usage as an emergency dosimeter for retrospective dosimetry for the purpose of triage after a radiological accident or attack. In this study the TL glow curves and dosimetric properties of touchscreen glasses were studied in detail, such as intrinsic background dose, dose response, reproducibility, optical stability and long-term stability of the TL signal. Preliminary results are additionally presented to minimize the intrinsic background dose by mechanically removing the surface layer of the glass samples. Additionally chemical element analyses of the touchscreen glass samples were carried out to investigate the difference between glass samples which show a TL signal and samples which show neither an intrinsic zero dose signal nor a radiation induced TL signal. An irradiation trial using glass samples stored in the dark demonstrated a successful dose recovery. However, when applying a realistic, external light exposure scenario, dose underestimation was observed, even though samples were pre-bleached prior to measurement. More investigations have to be carried out in the future to solve the challenge of the low optical stability of the TL signal, if touchscreen glasses are to be used as a reliable emergency dosimeter. - Highlights: • Touchscreen glasses are sensitive to ionizing radiation and show suitable dosimetric properties. • Mechanically treated samples demonstrated a significant reduction of the intrinsic zero dose signal. • An irradiation trial showed limitations of the used protocol for strongly bleached samples.

  9. Thermoluminescence of glass display from mobile phones for retrospective and accident dosimetry

    International Nuclear Information System (INIS)

    Discher, M.; Woda, C.

    2013-01-01

    This paper deals with the thermoluminescence (TL) study of glass displays from mobile phones with the aim to use them as emergency dosimeters after an accident involving ionizing radiation. Dosimetric properties are analysed in order to examine and to critically evaluate the usability. Tests are carried out regarding the characterization of the radiation induced TL signal and the zero dose signal (intrinsic background) on a variety of display samples. Investigations on the thermal and optical stability of TL signals are carried out. The detection limit is mainly determined by the variability of the zero dose signal and lies in the range of 300–400 mGy. A linear relationship between the measured TL signal and the applied dose is observed for doses between 10 mGy and 20 Gy. A measurement protocol for the detection of absorbed radiation dose is developed, considering the experimental dosimetric properties. A reconstruction of the absorbed dose is possible using glass samples from mobile phones, if the signal loss due to storage and optical bleaching of the TL signal is adequately corrected for. This was confirmed by realistic tests. - Highlights: • Glass displays of mobile phones have potential for retrospective dosimetry. • Signal fading can be corrected with an universally fading curve. • Irradiation trials on intact mobile phones demonstrated a reasonable agreement between given and measured dose

  10. Managing Nuclear Reactor Accidents: Issues Raised by Three Mile Island

    OpenAIRE

    Hamilton, G.W.

    1980-01-01

    This paper provides a descriptive account of significant events in the accident at the Three Mile Island nuclear power plant in March, 1979. It is based upon documents collected as background materials for the IIASA workshop: Procedural and Organizational Measures for Accident Management: Nuclear Reactors. In addition to the references listed, information was supplied by John Lathrop, who conducted interviews with government and industry officials involved in the crisis. There have been ...

  11. Nuclear. Convention on early notification of a nuclear accident. Treaty series 1990 no.21

    International Nuclear Information System (INIS)

    1991-01-01

    The States present at this convention are aware that comprehensive measures have been are being taken to ensure a high level of safety in nuclear activities, aimed at preventing nuclear accidents and minimizing the consequences of any such accident should it occur. The States are convinced of the need to provide relevant information about nuclear accidents as early as possible in order that transboundary radiological consequences can be minimized. In the event of an accident the State involved will notify, through the International Energy Agency the other States which may be physically affected, as to the nature of the accident, the time of occurrence and its exact location

  12. Nuclear. Convention on early notification of a nuclear accident. Treaty series 1990 no.21

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The States present at this convention are aware that comprehensive measures have been are being taken to ensure a high level of safety in nuclear activities, aimed at preventing nuclear accidents and minimizing the consequences of any such accident should it occur. The States are convinced of the need to provide relevant information about nuclear accidents as early as possible in order that transboundary radiological consequences can be minimized. In the event of an accident the State involved will notify, through the International Energy Agency the other States which may be physically affected, as to the nature of the accident, the time of occurrence and its exact location.

  13. Experience and lessons learned from emergency disposal of Fukushima nuclear power station accident

    International Nuclear Information System (INIS)

    Xu Xiegu; Zhen Bei; Yang Xiaoming; Chen Xiaohua

    2012-01-01

    After Fukushima nuclear accident, we visited the related medical aid agencies for nuclear accidents and conducted investigations in disaster-affected areas in Japan. This article summarizes the problems with emergency disposal of Fukushima nuclear accident while disclosing problems should be solved during the emergency force construction for nuclear accidents. (authors)

  14. Dosimetry of beta sources utilized in nuclear medicine and biomedicine

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Rivera, E.; Cricco, G.; Martin, G.; Cocca, C.; Caro, R.A.

    1998-01-01

    Full text: The use of high energy pure beta sources (i.e., 32 P= 1.71 MeV/des) is common in medicine (intratumoral therapy or treatment of non-malignant illness as restenosis) and in biochemistry (molecular biology). The external dosimetry of these sources offers some important points that must be considered: 1) beta particles emitted by the source are not monoenergetic; 2) the range (R 0 ) vary with the source energy and the Z of the absorber; 3) below an energy of 1 MeV, the specific ionization in the absorbent medium (air, water, lucite) increases as the beta energy (E β ) decreases; 4) the range of beta particles, R β , is independent from Z of the material, provided Z is low and the material has no hydrogen; in this case, the expression: R β δ 1 = R β δ 2 is valid; 5) the calculation of the external beta dosimetry must consider that since the used sources are not punctual there is self-absorption which should be taken into account. However, in the range of the fractions of activities for the above mentioned practices a theoretical model for punctual sources can be used; in this case, it is valid to use the expression: Dose Rate: = A (S/δ)E β e -S/δ δx /4 π d 2 , where: (S/δ) is the absorbent Mass Stopping Power and represents the loss of energy by unit mass thickness; it depends from E β and it is independent from Z; (δx) is the mass thickness of the absorber. By this way, e -S/δ δx is the attenuation of the beta particles flow. From the application of this formula it can be deduced that, for sources of 1 mCi of 32 P activities, as those employed in biochemistry, a small thickness of lucite is enough shield. When the source has higher activities, as those used in radiotherapy, the operator should take into account the regulations for a strict dosimetric control. These formulae allow a simplified calculation of the 32 P dosimetry of sources used in nuclear medicine and biomedical practices. (author) [es

  15. Nuclear safety in light water reactors severe accident phenomenology

    CERN Document Server

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  16. Relative evaluation on decommissioning accident scenarios of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jei-Kwon; Hyun, Dong-Jun; Kim, Geun-Ho; Kim, Tae-Hyoung; Jo, Kyung-Hwa; Seo, Jae-Seok; Jeong, Seong-Young; Lee, Jung-Jun

    2012-01-01

    Highlights: ► This paper suggests relative importance on accident scenarios during decommissioning of nuclear facilities. ► The importance of scenarios can be performed by using AHP and Sugeno fuzzy method. ► The AHP and Sugeno fuzzy method guarantee reliability of the importance evaluation. -- Abstract: This paper suggests the evaluation method of relative importance on accident scenarios during decommissioning of nuclear facilities. The evaluation method consists of AHP method and Sugeno fuzzy integral method. This method will guarantee the reliability of relative importance evaluation for decommissioning accident scenarios.

  17. Fukushima nuclear accident and the social responsibility of science

    International Nuclear Information System (INIS)

    Yoshioka, Hitoshi

    2011-01-01

    Five months had passed since Fukushima Daiichi Nuclear Power Plant (NPP) accident occurred but still there was no knowing when the accident ended. Released radioactivity seemed to be greater than one million terra Bq and if there occurred an explosive rupture of containment vessel due to the failure of containment vent or occurrence of steam explosion, the amount of released radioactivity might amount to be at least equivalent to or surpass that of Chernobyl NPP accident. There existed still a risk that overheating and meltdown of nuclear fuels might reoccur with loss of cooling due to a possible giant aftershock. This article described total views on significant disaster that the accident brought about on many neighboring residents or wide range of people. After a general discussion about what was social responsibility of scientists, social responsibility of scientists for Fukushima Daiichi NPP accident was discussed. Responsibility of omission was also argued. (T. Tanaka)

  18. Developing and assessing accident management plans for nuclear power plants

    International Nuclear Information System (INIS)

    Hanson, D.J.; Johnson, S.P.; Blackman, H.S.; Stewart, M.A.

    1992-07-01

    This document is the second of a two-volume NUREG/CR that discusses development of accident management plans for nuclear power plants. The first volume (a) describes a four-phase approach for developing criteria that could be used for assessing the adequacy of accident management plans, (b) identifies the general attributes of accident management plans (Phase 1), (c) presents a prototype process for developing and implementing severe accident management plans (Phase 2), and (d) presents criteria that can be used to assess the adequacy of accident management plans. This volume (a) describes results from an evaluation of the capabilities of the prototype process to produce an accident management plan (Phase 3) and (b), based on these results and preliminary criteria included in NUREG/CR-5543, presents modifications to the criteria where appropriate

  19. Participation of IRD/CNEN-Br in International Intercomparison of Criticality Accident Dosimetry Systems at Silene reactor, France

    International Nuclear Information System (INIS)

    Mauricio, Claudia Lucia P.; Fonseca, Evaldo S. da

    1996-01-01

    IRD has participated in an International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE reactor, France on June 1993. The dosemeters were irradiated on phantoms and free in air, in bare and lead shield reactor pulses, simulating different irradiation fields that can be found in criticality accidents. Comparing with the reference measurements, the calculated mean neutron kerma found by IRD was only 2% greater for lead shield and 14% greater for bare reactor. For gamma absorbed dose, the differences were, respectively + 22% and -9% for the dosemeters free in air and -19% and -9% for dosemeters on phantoms. IRD results are closer to the real values than the mean values measured by the participants. IRD results show a good performance if its simple criticality accident system. (author)

  20. The ENEA criticality accident dosimetry system: a contribution to the 2002 international intercomparison at the SILENE reactor.

    Science.gov (United States)

    Gualdrini, G; Bedogni, R; Fantuzzi, E; Mariotti, F

    2004-01-01

    The present paper summarises the activity carried out at the ENEA Radiation Protection Institute for updating the methodologies employed for the evaluation of the neutron and photon dose to the exposed workers in case of a criticality accident, in the framework of the 'International Intercomparison of Criticality Accident Dosimetry Systems' (Silène reactor, IRSN-CEA-Valduc June 2002). The evaluation of the neutron spectra and the neutron dosimetric quantities relies on activation detectors and on unfolding algorithms. Thermoluminescent detectors are employed for the gamma dose measurement. The work is aimed at accurately characterising the measurement system and, at the same time, testing the algorithms. Useful spectral information were included, based on Monte Carlo simulations, to take into account the potential accident scenarios of practical interest. All along this exercise intercomparison a particular attention was devoted to the 'traceability' of all the experimental and computational parameters and therefore, aimed at an easy treatment by the user.

  1. Biological dosimetry after criticality accidents. Intercomparison exercise in the Silene Reactor - France

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety Institute (IRSN) organized an international biological dosimetry intercomparison, at the SILENE experimental reactor (Valduc, France), simulating different criticality scenarios: bare source 4 Gy, lead shield source 1 and 2 Gy and gamma pure 60 Co source 2 Gy. Fifteen laboratories were involved in this exercise, including the Argentine Biological Dosimetry Laboratory. The purposes of the intercomparison were: 1) To compare the unstable chromosome aberration (UCA) frequency observed by the different laboratories; and 2) To compare the dose estimation for gamma rays and neutrons. The objects of the present work were: I) To compare the mean frequency of UCA observed by the Argentine laboratory with the mean frequency observed by the participant laboratories as a whole. II) To compare the dose estimates performed by the Argentine lab with those estimated by the other laboratories involved in the second stage of the intercomparison. Overall, the mean frequencies of UCA and the correspondent 95% confidence limits obtained by the Argentine lab were consistent with the results obtained by the laboratories as a whole. For the gamma pure scenario, smaller variations were observed among laboratories in terms of dose (CV=18,2%) than in terms of frequency (CV=30,1%). For the mixed field scenarios, only four laboratories, including the Argentine lab, estimated gamma and neutron components of the total dose and just two (Argentine lab and lab 12) were in agreement with the given physical doses. The 1 Gy experiment presented lesser variations both in terms of frequency and dose than the other two scenarios. For the 4 and 2 Gy experiments, variations in neutron dose were more significant than variations in gamma dose, related to the magnitude of the dose. The results suggest that intercomparison exercises jointly with the accreditation of biological dosimetry by cytogenetic service laboratories, in compliance with ISO

  2. SU-F-J-100: Standardized Biodistribution Template for Nuclear Medicine Dosimetry Collection and Reporting

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, A [University of Colorado, Anschutz Medical Campus, Aurora, Colorado (United States); Poli, G [International Atomic Energy Agency, Vienna, Vienna (Austria); Beykan, S; Lassman, M [University of Wuerzburg, Wuerzberg, Wuerzberg (Germany)

    2016-06-15

    Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for method development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be used as a

  3. Nuclear installations abroad the accident risks and their potential consequences

    International Nuclear Information System (INIS)

    Turvey, F.J.

    1996-01-01

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of 'tolerable' risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid

  4. Nuclear installations abroad the accident risks and their potential consequences

    Energy Technology Data Exchange (ETDEWEB)

    Turvey, F J [Radiological Protection Inst. of Ireland (Ireland)

    1996-10-01

    This paper endeavors to assess the threat to Ireland from severe accidents at civil nuclear installations. Among the various types of nuclear installations worldwide, reactors and reprocessing plants are considered to be the most threatening and so the paper focuses on these. The threat is assumed to be a function of the risk of severe accidents at the above types of installations and the probability of unfavourable weather conditions carrying the radioactive releases to Ireland. Although nuclear installations designed in eastern Europe and Asia are less safe than others, the greatest threat to Ireland arises from nearby installations in the UK. The difficulty of measuring the probabilities and consequences of severe nuclear accidents at nuclear installations in general is explained. In the case of the UK installations, this difficulty is overcome to some degree by using values of `tolerable` risk adopted by the national nuclear regulator to define the radiotoxic releases from nuclear accidents. These are used as input to atmospheric dispersion models in which unfavourable weather conditions for Ireland are assumed and radiation doses are calculated to members of the Irish public. No countermeasures, such as sheltering, are assumed. In the worst cast scenario no deaths would be expected in Ireland in the immediate aftermath of the accident however, an increase in cancers over a period of 25 years or so would be expected assuming present-day models for the effect of low level radiation are valid.

  5. The accident at the Harrisburg nuclear reactor - Interim conclusions

    International Nuclear Information System (INIS)

    Yiftah, S.

    1979-07-01

    This work describes the first minutes, first day and first week following the Three Mile Island accident. It shows the failures that occurred and the lessons which should be derived. It is pointed out that the doses of radiation that escaped from the TMI plant were at no time large enough to have had any effect on the 2 million people living on a radius of 80 km from the plant. Although no casualties occurred the Harrisburg accident will create an impulse for a new study and understanding of the nuclear plant safety and might serve as a live safety laboratory. After the TMI accident nuclear plants are already safer, one of the conclusions being that a new planning of the operation room is required, with the operators acquiring a better understanding of what is going on during a nuclear reactor accident. (B.G.)

  6. Health effects models for off-site radiological consequence analysis on nuclear reactor accidents (II)

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takahashi, Tomoyuki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Yonehara, Hidenori [National Inst. of Radiological Sciences, Chiba (Japan)] [eds.

    2000-12-01

    This report is a revision of JAERI-M 91-005, 'Health Effects Models for Off-Site Radiological Consequence Analysis of Nuclear Reactor Accidents'. This revision provides a review of two revisions of NUREG/CR-4214 reports by the U.S. Nuclear Regulatory Commission which is the basis of the JAERI health effects models and other several recent reports that may impact the health effects models by international organizations. The major changes to the first version of the JAERI health effects models and the recommended parameters in this report are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies on the Japanese A-bomb survivors. This report also provides suggestions about future revisions of computational aspects on health effects models. (author)

  7. Health effects models for off-site radiological consequence analysis on nuclear reactor accidents (II)

    International Nuclear Information System (INIS)

    Homma, Toshimitsu

    2000-12-01

    This report is a revision of JAERI-M 91-005, 'Health Effects Models for Off-Site Radiological Consequence Analysis of Nuclear Reactor Accidents'. This revision provides a review of two revisions of NUREG/CR-4214 reports by the U.S. Nuclear Regulatory Commission which is the basis of the JAERI health effects models and other several recent reports that may impact the health effects models by international organizations. The major changes to the first version of the JAERI health effects models and the recommended parameters in this report are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies on the Japanese A-bomb survivors. This report also provides suggestions about future revisions of computational aspects on health effects models. (author)

  8. Agricultural implications for Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2013-01-01

    The overview of our research projects for Fukushima is presented including how they were derived. Then, where the fallout was found, right after the accident, is briefly summarized for soil, plants, trees, etc. The time of the accident was late winter, there were hardly any plants growing except for the wheat in the farming field. Most of the fallout was found at the surface of soil, tree barks, etc., which were exposed to the air at the time of the accident. The fallout found was firmly adsorbed to anything and did not move for months from the site when they first touched. Therefore, the newly emerged tissue after the accident showed very low radioactivity. The fallout contamination was not uniform, therefore, when radiograph of contaminated soil or leaves were taken, fallout was shown as spots. Generally, plants could not absorb radiocesium adsorbed to soil. Some of the results we obtained will be presented. (author)

  9. Accident analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Silva, D.E. da

    1981-01-01

    The way the philosophy of Safety in Depth can be verified through the analysis of simulated accidents is shown. This can be achieved by verifying that the integrity of the protection barriers against the release of radioactivity to the environment is preserved even during accident conditions. The simulation of LOCA is focalized as an example, including a study about the associated environmental radiological consequences. (Author) [pt

  10. Course on internal dosimetry in nuclear medicine; Curso de dosimetria interna en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This documentation was distributed to the participants in the Course of Internal Dosimetry in Nuclear Medicine organised by the Nuclear Regulatory Authority (ARN) of Argentina and held in Buenos Aires, Argentina, August 9-13, 2004. The course was intended for people from IAEA Member States in the Latin American and Caribbean region, and for professionals and workers in medicine, related with the radiation protection. Spanish and English were the languages of the course. The following subjects were covered: radioprotection of the patient in nuclear medicine; injuries by ionizing radiations; MIRD methodology; radiation dose assessment in nuclear medicine; small scale and microdosimetry; bone and marrow dose modelling; medical internal dose calculations; SPECT and image reconstruction; principles of the gamma camera; scattering and attenuation correction in SPECT; tomography in nuclear medicine.

  11. Effects of the Chernobyl accident on public perceptions of nuclear plant accident risks

    International Nuclear Information System (INIS)

    Lindell, M.K.; Perry, R.W.

    1990-01-01

    Assessments of public perceptions of the characteristics of a nuclear power plant accident and affective responses to its likelihood were conducted 5 months before and 1 month after the Chernobyl accident. Analyses of data from 69 residents of southwestern Washington showed significant test-retest correlations for only 10 of 18 variables--accident likelihood, three measures of impact characteristics, three measures of affective reactions, and hazard knowledge by governmental sources. Of these variables, only two had significant changes in mean ratings; frequency of thought and frequency of discussion about a nearby nuclear power plant both increased. While there were significant changes only for two personal consequences (expectations of cancer and genetic effects), both of these decreased. The results of this study indicate that more attention should be given to assessing the stability of risk perceptions over time. Moreover, the data demonstrate that experience with a major accident can actually decrease rather than increase perceptions of threat

  12. Radioactive release during nuclear accidents in Chernobyl and Fukushima

    Science.gov (United States)

    Nur Ain Sulaiman, Siti; Mohamed, Faizal; Rahim, Ahmad Nabil Ab

    2018-01-01

    Nuclear accidents that occurred in Chernobyl and Fukushima have initiated many research interests to understand the cause and mechanism of radioactive release within reactor compound and to the environment. Common types of radionuclide release are the fission products from the irradiated fuel rod itself. In case of nuclear accident, the focus of monitoring will be mostly on the release of noble gases, I-131 and Cs-137. As these are the only accidents have been rated within International Nuclear Events Scale (INES) Level 7, the radioactive release to the environment was one of the critical insights to be monitored. It was estimated that the release of radioactive material to the atmosphere due to Fukushima accident was approximately 10% of the Chernobyl accident. By referring to the previous reports using computational code systems to model the release rate, the release activity of I-131 and Cs-137 in Chernobyl was significantly higher compare to Fukushima. The simulation code also showed that Chernobyl had higher release rate of both radionuclides on the day of accident. Other factors affecting the radioactive release for Fukushima and Chernobyl accidents such as the current reactor technology and safety measures are also compared for discussion.

  13. Emergency planning and preparedness for a nuclear accident

    International Nuclear Information System (INIS)

    Rahe, E.P.

    1985-01-01

    Based on current regulations, FEMA approves each site-specific plan of state and local governments for each power reactor site after 1) formal review offsite preparedness, 2) holding a public meeting at which the preparedness status has been reviewed, and 3) a satisfactory joint exercise has been conducted with both utility and local participation. Annually, each state, within any position of the 10-mile emergency planning zone, must conduct a joint exercise with the utility to demonstrate its preparedness for a nuclear accident. While it is unlikely that these extreme measures will be needed as a result of an accident at a nuclear power station, the fact that these plans have been well thought out and implemented have already proven their benefit to society. The preparedness for a nuclear accident can be of great advantage in other types of emergencies. For example, on December 11, 1982, a non-nuclear chemical storage tank exploded at a Union Carbide plant in Louisiana shortly after midnight. More than 20,000 people were evacuated from their homes. They were evacuated under the emergency response plan formulated for use in the event of a nuclear accident at the nearby Waterford Nuclear plants. Clearly, this illustrates how a plan conceived for one purpose is appropriate to handle other types of accidents that occur in a modern industrial society

  14. Indemnification of damage in the event of a nuclear accident

    International Nuclear Information System (INIS)

    2003-01-01

    The Workshop on the Indemnification of Damage in the Event of a Nuclear Accident, organised by the OECD Nuclear Energy Agency in close co-operation with the French authorities, was held in Paris from 26 to 28 November 2001. This event was an integral part of the International Nuclear Emergency Exercise INEX 2000. It attracted wide participation from national nuclear authorities, regulators, operators of nuclear installations, nuclear insurers and international organisations. The objective was to test the capacity of the existing nuclear liability and compensation mechanisms in the 29 countries represented at the workshop to manage the consequences of a nuclear emergency. This workshop was based upon the scenario used for the INEX 2000 Exercise, i.e. an accident simulated at the Gravelines nuclear power plant in the north of France in May 2001. These proceedings contain a comparative analysis of legislative and regulatory provisions governing emergency response and nuclear third party liability, based upon country replies to a questionnaire. This publication also includes the full responses provided to that questionnaire, as well as the texts of presentations made by special guests from Germany and Japan describing the manner in which the public authorities in their respective countries responded to two nuclear accidents of a very different nature and scale. (authors)

  15. Cytogenetic chromosomal aberration dosimetry method after radiation accidents and prognostic significance of stereotypically appearing chromosomal aberrations after radiation exposure

    International Nuclear Information System (INIS)

    Bloennigen, K.A.

    1973-01-01

    The paper reports on a radiation accident involving an Iridium-192 rod of an activity of 7.8 Ci and a size of 2 x 2 x 2 mm 3 . The radiation source had remained in direct contact with the left hip and elbow of the examined person for a period of 45 minutes. On the points that had been directly exposed, physical values of 5,000 rad and 10,000 rad were measured while the whole-body dose was 100-200 rad and the gonad dose 300-400 rad. These values were confirmed by observations of the clinical course and haematological and andrological examinations. Chromosome analysis of lymphocytes produced values between 100 and 125 and thus a significant agreement with the values determined by physical methods. The findings suggest that the relatively simple and fast method of cytogenetic dosimetry provides a useful complementary method to physical dosimetry. (orig./AK) [de

  16. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Manger, Ryan P [ORNL

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  17. Children's reactions to the threat of nuclear plant accidents

    International Nuclear Information System (INIS)

    Schwebel, M.; Schwebel, B.

    1981-01-01

    In the wake of Three Mile Island nuclear plant accident, questionnaire and interview responses of children in elementary and secondary schools revealed their perceptions of the dangers entailed in the continued use of nuclear reactors. Results are compared with a parallel study conducted close to 20 years ago, and implications for mental health are examined

  18. Soviet medical response to the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Linnemann, R.E.

    1987-01-01

    The nuclear accident at Chernobyl was the worst in the history of nuclear power. It tested the organized medical response to mass radiation casualties. This article reviews the Soviet response as reported at the 1986 postaccident review meeting in Vienna and as determined from interviews. The Soviets used three levels of care: rescue and first aid at the plant site; emergency treatment at regional hospitals; and definitive evaluation and treatment in Moscow. Diagnosis, triage, patient disposition, attendant exposure, and preventive actions are detailed. The United States would be well advised to organize its resources definitively to cope with future nonmilitary nuclear accidents

  19. Severe accident management: radiation dose control, Fukushima Daiichi and TMI-2 nuclear plant accidents

    International Nuclear Information System (INIS)

    Shaw, Roger

    2014-01-01

    This presentation presents valuable dose information related to the Fukushima Daiichi and Three Mile Island Unit 2 (TMI-2) Nuclear Plant accidents. Dose information is provided for what is well known for TMI-2, and what is available for Fukushima Daiichi. Particular emphasis is placed on the difference between the type of reactors involved, overarching plant damage issues, and radiation worker dose outcomes. For TMI-2, more in depth dose data is available for the accident and the subsequent recovery efforts. The comparisons demonstrate the need to understand the wide variation in potential dose management measures and outcomes for severe reactor accidents. (author)

  20. Development of Northeast Asia Nuclear Power Plant Accident Simulator.

    Science.gov (United States)

    Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff

    2017-06-15

    A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Nuclear Power Reactor Core Melt Accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus- FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day

  2. The assessment of environmental consequences of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Beattie, J.R.

    1981-01-01

    Thorough measures are taken throughout all stages of design, construction and operation of nuclear power reactors, and therefore no accident producing any significant environmental impact is likely to occur. Nevertheless as a precaution, such accidents have been the subject of intensive scientific predictive studies. After a historical review of theoretical papers on reactor accidents and their imagined environmental impacts and of those accidents that have indeed occurred, this paper gives an outline of fission products or other radioactive substances that may or may not be released by an accident, and of their possible effects after dispersion in the atmosphere. This general introduction is followed by sections describing what are sometimes called 'design basis accidents' for four of the main reactor types (magnox, AGR, PWR and CDFR), the precautions against these accidents and the probable degree of environmental impact likely. The paper concludes with a reference to those very low probability accidents which might have more serious environmental impacts, and proceeds from there to show that both the individual and community risks from such accidents are numerically moderate compared to other risks apparently accepted by society. A brief reflection on the relevance of numerical values and perceived risk concludes the paper. (author)

  3. Core fusion accidents in nuclear power reactors. Knowledge review

    International Nuclear Information System (INIS)

    Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Cenerino, Gerard; Jacquemain, Didier; Raimond, Emmanuel; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno

    2013-01-01

    This reference document proposes a large and detailed review of severe core fusion accidents occurring in nuclear power reactors. It aims at presenting the scientific aspects of these accidents, a review of knowledge and research perspectives on this issue. After having recalled design and operation principles and safety principles for reactors operating in France, and the main studied and envisaged accident scenarios for the management of severe accidents in French PWRs, the authors describe the physical phenomena occurring during a core fusion accident, in the reactor vessel and in the containment building, their sequence and means to mitigate their effects: development of the accident within the reactor vessel, phenomena able to result in an early failure of the containment building, phenomena able to result in a delayed failure with the corium-concrete interaction, corium retention and cooling in and out of the vessel, release of fission products. They address the behaviour of containment buildings during such an accident (sizing situations, mechanical behaviour, bypasses). They review and discuss lessons learned from accidents (Three Mile Island and Chernobyl) and simulation tests (Phebus-PF). A last chapter gives an overview of software and approaches for the numerical simulation of a core fusion accident

  4. Enlightenment on international cooperation for nuclear safety in China in light of Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Fu Jie; Feng Yi; Luan Haiyan; Meng Yue; Zhang Ou

    2013-01-01

    This thesis elaborates on the impact of Fukushima nuclear accident on global nuclear power development and subsequent international activities carried out by major countries. It analyses significance of international cooperation in ensuring nuclear safety and promoting nuclear power development and makes some suggestions to further strengthen the international cooperation on nuclear safety in China. (authors)

  5. Accident analysis device for nuclear power plants

    International Nuclear Information System (INIS)

    Ito, Masayuki.

    1982-01-01

    Purpose: To enable rapid recognition of and countermeasure required for accidents upon scram, by identifying the first contact point of causes for resulting the scram and displaying the contact point of causes. Constitution: When a scram signal is inputted by way of process input device, the time of the input is determined by a timer and the contact point of causes generated just before is taken as the point whose changes occurred prior to but most closely to the generation of the signal while referring to the data memory section for the time of change of the contact point of the cause, and sent to the accident analyzing display. The accident analyzing display extracts, based on the contact point of cause, a list for the forecast accidents corresponding thereto from the data memory section and also extracts the list for the corresponding confirmation items of the accident detection and displays them together with the system from which the scram signal has been generated, the time of generation, the name of the contact point of causes operated at first, and the value of the state quantity contained in the data memory section for the store of contact point of cause at the change. (Kawakami, Y.)

  6. The role of post accident chemistry data in nuclear safety

    International Nuclear Information System (INIS)

    Bradshaw, R.W.; Caruthers, G.F.

    1982-01-01

    The NRC instituted the NUREG-0737 requirements as implementation of the Post-TMI Action Plan in October, 1980. Among these requirements was the capability to obtain chemistry samples of the reactor coolant and containment building atmosphere under post accident conditions. The quantitative criteria were, in general, beyond the capabilities of existing plant systems. As a consequence the nuclear industry expended substantial efforts to design and install the post-accident sampling systems necessary to comply with these criteria. With such efforts essentially complete, the task remains to establish the role that data provided by these systems would play in mitigating the consequences of a nuclear plant accident. This role definition must include a characterization of the timing and priority for the post accident chemistry data. This paper defines that role using the Safety Level and Safety Function concepts as a matrix

  7. Scientific aspects of the Tohoku earthquake and Fukushima nuclear accident

    Science.gov (United States)

    Koketsu, Kazuki

    2016-04-01

    We investigated the 2011 Tohoku earthquake, the accident of the Fukushima Daiichi nuclear power plant, and assessments conducted beforehand for earthquake and tsunami potential in the Pacific offshore region of the Tohoku District. The results of our investigation show that all the assessments failed to foresee the earthquake and its related tsunami, which was the main cause of the accident. Therefore, the disaster caused by the earthquake, and the accident were scientifically unforeseeable at the time. However, for a zone neighboring the reactors, a 2008 assessment showed tsunamis higher than the plant height. As a lesson learned from the accident, companies operating nuclear power plants should be prepared using even such assessment results for neighboring zones.

  8. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  9. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  10. The Fukushima nuclear accident: insights on the safety aspects

    International Nuclear Information System (INIS)

    Thome, Zieli D.; Vellozo, Sergio O.; Silva, Fernando C.

    2013-01-01

    The Fukushima nuclear accident has generated doubts and questions which need to be properly understood and addressed. This scientific attitude became necessary to allow the use of the nuclear technology for electricity generation around the world. The nuclear stakeholders are working to obtain these technical answers for the Fukushima questions. We believe that, such challenges will be, certainly, implemented in the next reactor generation, following the technological evolution. The purpose of this work is to perform a critical analysis of the Fukushima nuclear accident, focusing at the common cause failures produced by tsunami, as well as an analysis of the main redundant systems. This work also assesses the mitigative procedures and the subsequent consequences of such actions, which gave results below expectations to avoid the progression of the accident, discussing the concept of sharing of structures, systems and components at multi-unit nuclear power plants, and its eventual inappropriate use in safety-related devices which can compromise the nuclear safety, as well as its consequent impact on the Fukushima accident scenario. The lessons from Fukushima must be better learned, aiming the development of new procedures and new safety systems. Thus, the nuclear technology could reach a higher evolution level in its safety requirements. This knowledge will establish a conceptual milestone in the safety system design, becoming necessary the review of the current acceptance criteria of safety-related systems. (author)

  11. The Fukushima nuclear accident: insights on the safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Thome, Zieli D.; Vellozo, Sergio O., E-mail: zielithome@gmail.com, E-mail: vellozo@cbpf.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Gomes, Rogerio S., E-mail: rogeriog@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Silva, Fernando C., E-mail: fernando@con.ufrj.br [Coordenacao do Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The Fukushima nuclear accident has generated doubts and questions which need to be properly understood and addressed. This scientific attitude became necessary to allow the use of the nuclear technology for electricity generation around the world. The nuclear stakeholders are working to obtain these technical answers for the Fukushima questions. We believe that, such challenges will be, certainly, implemented in the next reactor generation, following the technological evolution. The purpose of this work is to perform a critical analysis of the Fukushima nuclear accident, focusing at the common cause failures produced by tsunami, as well as an analysis of the main redundant systems. This work also assesses the mitigative procedures and the subsequent consequences of such actions, which gave results below expectations to avoid the progression of the accident, discussing the concept of sharing of structures, systems and components at multi-unit nuclear power plants, and its eventual inappropriate use in safety-related devices which can compromise the nuclear safety, as well as its consequent impact on the Fukushima accident scenario. The lessons from Fukushima must be better learned, aiming the development of new procedures and new safety systems. Thus, the nuclear technology could reach a higher evolution level in its safety requirements. This knowledge will establish a conceptual milestone in the safety system design, becoming necessary the review of the current acceptance criteria of safety-related systems. (author)

  12. A review on liability in case of nuclear accident

    International Nuclear Information System (INIS)

    Gallage-Alwis, Sylvie; Faron, Pauline

    2013-01-01

    After having evoked assessments of the cost of a nuclear accident in France and of that of damages caused by the Fukushima accident, the authors propose an overview of the issue of liability of companies involved in the operation of a nuclear power plant. They outline that this regime is mainly governed by two international conventions: the Paris Convention on third party liability in the field of nuclear energy, and the Brussels Convention. The first one bears on the liability of nuclear installation operators, while the second one aims at ensuring an additional compensation of casualties on public funds. They also evoke the Vienna Convention which aims at defining a world regime for nuclear liability. They outline the limited scope of application of the Paris Convention, and the limitation of compensations. They discuss the liability of companies others than those operating nuclear installations

  13. On the Perspective of Nuclear Energy Following the Fukushima Accident

    International Nuclear Information System (INIS)

    Cavlina, N.; Knapp, V.; Pevec, D.

    2011-01-01

    Future of nuclear energy after accidents on the nuclear power station Daichi at Fukushima has been questioned and discussed. At present 433 nuclear power plants are contributing with about 14% to the world production of electricity. Looking at regional distribution of nuclear power plants, the largest number of nuclear power plants (143) is operating in European Union (EU) producing around one third of its electric energy. EU leads the world in the use of nuclear energy, with very good geopolitical and strategic reasons. Without its own oil and gas resources and with high dependence on external supplier EU has a problem in conducting independent foreign policy. As industrially and technologically developed region of the world EU intends to play a leading role in efforts to reduce C0 2 emission and limit the global temperature increase to below 2 degrees of C. Also, nuclear energy is important for international competitiveness of European industry. After the Fukushima accident, and in the light of that event, many expert groups have revaluated the safety of operating nuclear power plants. Whilst they do not find faults with basic conceptions, some safety related improvements will be recommended. As regards to nuclear energy in EU, irrespectively of short or medium term political decisions, long term geopolitical and strategic reasons that stimulated strong nuclear development in the past, continue to exist. Thus, we may expect continuation of nuclear development in EU without essential delays. As it appears, pending post-Fukushima nuclear safety analysis and applying safety improvements where needed, Fukushima accident will not stop nuclear development in industrially and technologically developed regions of the world. In view of frequently expressed claims that nuclear fuel resources are insufficient for the long term large scale production of nuclear energy we also give a short comment on the sustainability of nuclear energy. (author)

  14. Pulse monitor for upper extremities dosimetry in nuclear medicine

    International Nuclear Information System (INIS)

    Cledison de Jesus, Cunha; Divanizia do Nascimento, Souza

    2006-01-01

    In the manipulation of radioactive materials in Nuclear Medicine service the body parts of workers that are more displayed to the ionizing radiation are hands, underarm and arm. Therefore is necessary to developing personal dosimeters to monitoring of easy reproduction and low cost with purpose to determine the doses level radiation received by the worker in these extremities. However thermoluminescent dosimeters do not provide an instantaneous exposure reading, they are suitable for personal dosimetry because of their following advantages: wide useful dose range, small physical size and no need for high voltage or cables, i.e. stand alone character. The aim of this work is to investigation of a new pulse monitor, that has been developing with thermoluminescent detectors of CaSO 4 :Dy (TLD) using a small plate of acrylic, perforated cardboard to deposit the TLD. This set was involved in plastic to protect from humidity and other harmful ambient factors; moreover, a bracelet was inserted, adaptable for any worker. During the preparation of the personal dosimeters to monitor exposure it was necessary to verify their effectiveness to use by workers in a nuclear medicine service. The monitors have been submitted to procedures of performance evaluations by several tests: badges homogeneity, reproducibility, linearity, low detection limit, auto-irradiation, dosimeters stability, verification of the residual T.L. signal, visible light effect on dosimeters, energetic and angular dependence and TLD answer by influence of a simulator during radiation. Was possible to verify the efficiency of such upper extremities dosimeters and were obtained satisfactory results within of the limits demanded in the described tests above to this type of personal dosimeters. (authors)

  15. Nuclear Accidents Intervention Levels for Protection of the Public

    International Nuclear Information System (INIS)

    1989-01-01

    The impact of the 1986 Chernobyl accident called attention to the need to improve international harmonization of the principles and criteria for the protection of the public in the event of a nuclear accident. This report provides observations and guidance related to the harmonization of radiological protection criteria, and is intended to be of use to national authorities and international organizations examining the issue of emergency response planning and intervention levels

  16. The accident of the Three Mile Island nuclear power plant

    International Nuclear Information System (INIS)

    Llory, M.

    1999-01-01

    This book questions which statement can be made twenty years after the accident of the Three Mile Island reactor (USA) on the performances of complex reactor safety systems and on their evolutions and improvements. It questions also todays limits of reactors security and how such a reactor accident can be possible today. It presents also an analysis of the organizations which propose new perspectives in nuclear safety. (J.S.)

  17. Japanese Nuclear Accident and U.S. Response

    International Nuclear Information System (INIS)

    Douet, Randy

    2011-01-01

    U.S. Government response to the Fukushima accident: • Multi-agency task force (Nuclear Regulatory Commission, Department of Energy, Department of Defense) supporting Japan recovery efforts; • President Obama directed the NRC to perform a comprehensive review of U.S. reactors; • NRC established agency task force to develop lessons learned from Fukushima Daiichi accident to provide short-term and long-term analysis of the events

  18. Methodology used in IRSN nuclear accident cost estimates in France

    International Nuclear Information System (INIS)

    2015-01-01

    This report describes the methodology used by IRSN to estimate the cost of potential nuclear accidents in France. It concerns possible accidents involving pressurized water reactors leading to radioactive releases in the environment. These accidents have been grouped in two accident families called: severe accidents and major accidents. Two model scenarios have been selected to represent each of these families. The report discusses the general methodology of nuclear accident cost estimation. The crucial point is that all cost should be considered: if not, the cost is underestimated which can lead to negative consequences for the value attributed to safety and for crisis preparation. As a result, the overall cost comprises many components: the most well-known is offsite radiological costs, but there are many others. The proposed estimates have thus required using a diversity of methods which are described in this report. Figures are presented at the end of this report. Among other things, they show that purely radiological costs only represent a non-dominant part of foreseeable economic consequences. (authors)

  19. Establishment of the Dosicard operational dosimetry system in a nuclear studies center

    International Nuclear Information System (INIS)

    Banchetry, C.

    2001-01-01

    Since the decree of March 1999, each employer of the French nuclear industry must set an operational dosimetry in its company. The method is based on electronic dosimeters equipped with alarms and worn by all the employees. The dosimeters are linked to a computer network. The operational dosimetry is recommended, to optimize the protection of workers and limit the doses received, to respect the principle of equity between the workers, to preserve a ''margin of dose'' in case of any unexpected event. The CEA executives have decided to use the EURISYS MESURES DOSICARD as an operational and complementary dosimetry tool. (author)

  20. Emergency response and nuclear risk governance. Nuclear safety at nuclear power plant accidents

    International Nuclear Information System (INIS)

    Kuhlen, Johannes

    2014-01-01

    The present study entitled ''Emergency Response and Nuclear Risk Governance: nuclear safety at nuclear power plant accidents'' deals with issues of the protection of the population and the environment against hazardous radiation (the hazards of nuclear energy) and the harmful effects of radioactivity during nuclear power plant accidents. The aim of this study is to contribute to both the identification and remediation of shortcomings and deficits in the management of severe nuclear accidents like those that occurred at Chernobyl in 1986 and at Fukushima in 2011 as well as to the improvement and harmonization of plans and measures taken on an international level in nuclear emergency management. This thesis is divided into a theoretical part and an empirical part. The theoretical part focuses on embedding the subject in a specifically global governance concept, which includes, as far as Nuclear Risk Governance is concerned, the global governance of nuclear risks. Due to their characteristic features the following governance concepts can be assigned to these risks: Nuclear Safety Governance is related to safety, Nuclear Security Governance to security and NonProliferation Governance to safeguards. The subject of investigation of the present study is as a special case of the Nuclear Safety Governance, the Nuclear Emergency governance, which refers to off-site emergency response. The global impact of nuclear accidents and the concepts of security, safety culture and residual risk are contemplated in this context. The findings (accident sequences, their consequences and implications) from the analyses of two reactor accidents prior to Fukushima (Three Mile Iceland in 1979, Chernobyl in 1986) are examined from a historical analytical perspective and the state of the Nuclear Emergency governance and international cooperation aimed at improving nuclear safety after Chernobyl is portrayed by discussing, among other topics, examples of &apos

  1. Effects of the Fukushima Daiichi nuclear accident on goshawk reproduction

    Science.gov (United States)

    Murase, Kaori; Murase, Joe; Horie, Reiko; Endo, Koichi

    2015-01-01

    Although the influence of nuclear accidents on the reproduction of top predators has not been investigated, it is important that we identify the effects of such accidents because humans are also top predators. We conducted field observation for 22 years and analysed the reproductive performance of the goshawk (Accipiter gentilis fujiyamae), a top avian predator in the North Kanto area of Japan, before and after the accidents at the Fukushima Daiichi nuclear power plant that occurred in 2011. The reproductive performance declined markedly compared with the pre-accident years and progressively decreased for the three post-accident study years. Moreover, it was suggested that these declines were primarily caused by an increase in the air dose rate of radio-active contaminants measured under the nests caused by the nuclear accidents, rather than by other factors. We consider the trends in the changes of the reproductive success rates and suggest that internal exposure may play an important role in the reproductive performance of the goshawk, as well as external exposure. PMID:25802117

  2. The medical implications of nuclear power plant accidents

    International Nuclear Information System (INIS)

    Tyror, J.G.; Pearson, G.W.

    1989-11-01

    This paper examines the UK position regarding the potential for an accident at a nuclear power plant, the safeguards in place to prevent such an accident occurring and the emergency procedures designed to cope with the consequences should one occur. It focuses on the role of the medical services and examines previous accidents to suggest the nature and likely scale of response that may need to be provided. It is apparent that designs of UK nuclear power stations are robust and that the likelihood of a significant accident occurring is extremely remote. Emergency arrangements are, however, in place to deal with the eventuality should it arise and these incorporate sufficient flexibility to accommodate a wide range of accidents. Analysis of previous nuclear accidents at Windscale, Three Mile Island and Chernobyl provide a limited but valuable insight into the diversity and potential scale of response that may be required. It is concluded that above all, the response must be flexible to enable medical services to deal with the wide range of effects that may arise. (author)

  3. Nuclear accident: dosimetric and medical aspects

    International Nuclear Information System (INIS)

    Oliveira, A.R. de.

    The conservation aspect of the treatment of patients who received whole-body exposure is presented. Such treatment to be started during the first hours after the accident (prodomal phase), as well as the nonconventional measures to be adopted when the critical phase of acute irradiation syndrome is reached. (E.G.) [pt

  4. Interactive and automated systems for nuclear track measurements with applications to fast neutron dosimetry

    International Nuclear Information System (INIS)

    Roberts, J.H.; Gold, R.; McNeece, J.P.; Preston, C.C.; Ruddy, F.H.

    1983-12-01

    Interactive and automatic track measuring systems have been developed primarily for fast neutron dosimetry in and around reactors. The interactive system is used for proton recoil measurements in nuclear research emulsions and the automatic systems for counting fission fragment tracks in Muscovite mica. The status of these systems, along with illustrative applications, are presented, particularly with regard to their relationship to neutron personnel dosimetry. 16 references, 12 figures

  5. The biotic sample bank of Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Li Yu; Min Rui; Cai Jianming

    2006-01-01

    Objective: To built a simple and easy biologic sample bank from irradiated people in nuclear accident, for the long time research of biological effect of low dose ionization radiation on people. Methods: The blood sample is fixed on a piece of filter paper rand sealed up in plastic bottle for keeping, blood sample scribble on glass lice, fixed and dyed as routine clinic examination, and still, reserve a slice of hair of the examined people. Results: Having built a biologic sample bank which from 1162 human body. The samples are come from 958 liquidators of Chernobyl nuclear accident, 46 people in other nuclear accident and 158 people as control groups. It is also having much information details. Conclusions: If the biologic sample bank is combined with the modern bimolecular technique, maybe have much meaningful for the theory and practice of radiobiology. (authors)

  6. Importance of risk communication during and after a nuclear accident.

    Science.gov (United States)

    Perko, Tanja

    2011-07-01

    Past nuclear accidents highlight communication as one of the most important challenges in emergency management. In the early phase, communication increases awareness and understanding of protective actions and improves the population response. In the medium and long term, risk communication can facilitate the remediation process and the return to normal life. Mass media play a central role in risk communication. The recent nuclear accident in Japan, as expected, induced massive media coverage. Media were employed to communicate with the public during the contamination phase, and they will play the same important role in the clean-up and recovery phases. However, media also have to fulfill the economic aspects of publishing or broadcasting, with the "bad news is good news" slogan that is a well-known phenomenon in journalism. This article addresses the main communication challenges and suggests possible risk communication approaches to adopt in the case of a nuclear accident. Copyright © 2011 SETAC.

  7. The compensation of losses in case of a nuclear accident

    International Nuclear Information System (INIS)

    Leger, M.

    2010-01-01

    After having recalled that the elaboration of a special regime of liability for nuclear damages due to a nuclear accident aimed at conciliating two distinct objectives (to protect population and workers, and to provide a judicial security to the nuclear industry), this document comments the present regime of nuclear civil liability, its legal framework and its evolution. It comments its scope of application (geographical field of application, concerned activities, covered damages), and the principles of nuclear civil liability regime (a specific regime has been introduced by the Paris Convention for the operators). The content of Paris and Brussels Conventions review protocols which have been signed in 2004 is described

  8. Consequences and countermeasures in a nuclear power accident: Chernobyl experience.

    Science.gov (United States)

    Kirichenko, Vladimir A; Kirichenko, Alexander V; Werts, Day E

    2012-09-01

    Despite the tragic accidents in Fukushima and Chernobyl, the nuclear power industry will continue to contribute to the production of electric energy worldwide until there are efficient and sustainable alternative sources of energy. The Chernobyl nuclear accident, which occurred 26 years ago in the former Soviet Union, released an immense amount of radioactivity over vast territories of Belarus, Ukraine, and the Russian Federation, extending into northern Europe, and became the most severe accident in the history of the nuclear industry. This disaster was a result of numerous factors including inadequate nuclear power plant design, human errors, and violation of safety measures. The lessons learned from nuclear accidents will continue to strengthen the safety design of new reactor installations, but with more than 400 active nuclear power stations worldwide and 104 reactors in the Unites States, it is essential to reassess fundamental issues related to the Chernobyl experience as it continues to evolve. This article summarizes early and late events of the incident, the impact on thyroid health, and attempts to reduce agricultural radioactive contamination.

  9. EPRI nuclear fuel-cycle accident risk assessment

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The present results of the nuclear fuel-cycle accident risk assessment conducted by the Electric Power Research Institute show that the total risk contribution of the nuclear fuel cycle is only approx. 1% of the accident risk of the power plant; hence, with little error, the accident risk of nuclear electric power is essentially that of the power plant itself. The power-plant risk, assuming a very large usage of nuclear power by the year 2005 is only approx. 0.5% of the radiological risk of natural background. The smallness of the fuel-cycle risk relative to the power-plant risk may be attributed to the lack of internal energy to drive an accident and the small amount of dispersible material. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihood of errors and the estimated size of errors. The primary probabilistic estimation tool is fault-tree analysis, with the release source terms calculated using physicochemical processes. Doses and health effects are calculated with CRAC (Consequences of Reactor Accident Code). No evacuation or mitigation is considered; source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/t) and short cooling period (90 to 150 d); high-efficiency particulate air filter efficiencies are derived from experiments

  10. ACCIDENTS AND UNSCHEDULED EVENTS ASSOCIATED WITH NON-NUCLEAR ENERGY RESOURCES AND TECHNOLOGY

    Science.gov (United States)

    Accidents and unscheduled events associated with non-nuclear energy resources and technology are identified for each step in the energy cycle. Both natural and anthropogenic causes of accidents or unscheduled events are considered. Data concerning these accidents are summarized. ...

  11. Impacts of the Fukushima Daiichi Accident on Nuclear Development Policies

    International Nuclear Information System (INIS)

    Vance, Robert; Henderson, David; ); Moore, Laurie

    2017-01-01

    The Fukushima Daiichi nuclear power plant accident has had an impact on the development of nuclear power around the world. While the accident was followed by thorough technical assessments of the safety of all operating nuclear power plants, and a general increase in safety requirements has been observed worldwide, national policy responses have been more varied. These responses have ranged from countries phasing out or accelerating decisions to phase out nuclear energy to countries reducing their reliance on nuclear power or on the contrary continuing to pursue or expand their nuclear power programs. This study examines changes to policies, and plans and attempts to distinguish the impact of the Fukushima Daiichi accident from other factors that have affected policy-making in relation to nuclear energy, in particular electricity market economics, financing challenges and competition from other sources (gas, coal and renewables). It also examines changes over time to long-term, quantitative country projections, which reveal interesting trends on the possible role of nuclear energy in future energy systems. (authors)

  12. Stakeholder involvement facilitates decision making for UK nuclear accident recovery.

    Science.gov (United States)

    Alexander, C; Burt, R; Nisbet, A F

    2005-01-01

    The importance of major stakeholders participating in the formulation of strategies for maintaining food safety and agricultural production following a nuclear accident has been successfully demonstrated by the UK 'Agriculture and Food Countermeasures Working Group' (AFCWG). The organisation, membership and terms of reference of the group are described. Details are given of the achievements of the AFCWG and its sub-groups, which include agreeing management options that would be included in a recovery handbook for decision-makers in the UK and tackling the disposal of large volumes of contaminated milk, potentially resulting from a nuclear accident.

  13. Policy on stable iodine prophylaxis following nuclear reactor accidents (1989)

    International Nuclear Information System (INIS)

    1989-09-01

    This policy considers the alleviation of possible hazards that may arise from any radioiodines inhaled from a plume of fission products emanating from a nuclear reactor accident. Such a nuclear reactor may be land or ship-based. In any accident that releases radioiodines to the environment, one countermeasure that may need to be considered to reduce the effect of inhalation of radioiodines by persons downwind of the point of release is to provide those persons with tablets containing stable iodine. Both potassium iodide (KI) and potassium iodate (KIO 3 ) are recommended as effective prophylactics tablets for this purpose in Australia. Action levels, doses and contraindicatories are briefly outlined

  14. Dosimetry of the Embalse nuclear power plant neutron/gamma mixed fields

    International Nuclear Information System (INIS)

    Salas, C.A.

    1990-01-01

    The aim of this work is to describe the method used at the Embalse nuclear power plant for carrying out personal dosimetry of the agents affected to the tasks on the Embalse nuclear power plant neutron-gamma mixed fields. (Author) [es

  15. Retrospective dosimetry (or self dosimetry): Application to French Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lloret, R.

    1993-01-01

    In this text we give the dosimetry principle on irradiated materials such baffle screw, pressure vessel and control element cans. This measure, made by gammametry, is based on the steel activation and comparison with calculated measures by Actige code. 4 figs., 6 refs

  16. ESR Dosimetry

    International Nuclear Information System (INIS)

    Baffa, Oswaldo; Rossi, Bruno; Graeff, Carlos; Kinoshita, Angela; Chen Abrego, Felipe; Santos, Adevailton Bernardo dos

    2004-01-01

    ESR dosimetry is widely used for several applications such as dose assessment in accidents, medical applications and sterilization of food and other materials. In this work the dosimetric properties of natural and synthetic Hydroxyapatite, Alanine, and 2-Methylalanine are presented. Recent results on the use of a K-Band (24 GHz) ESR spectrometer in dosimetry are also presented

  17. Health effects models for off-site radiological consequence analysis of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Togawa, Orihiko; Homma, Toshimitsu; Matsuzuru, Hideo; Kobayashi, Sadayoshi

    1991-02-01

    A first version of models has been developed for predicting the number of occurrences of health effects induced by radiation exposure in nuclear reactor accidents. The models are based on the health effects models developed originally by Harvard University (NUREG/CR-4214). These models are revised on the basis of the new information on risk estimates by the reassessment of the radiation dosimetry in Hiroshima and Nagasaki. The models deal with the following effects: (1) early effects models for bone marrow, lungs, gastrointestinal tract, central nervous system, thyroid, skin and reproductive organs, using the Weibull function, (2) late somatic effects models including leukemia and cancers of breast, lungs, thyroid, gastrointestinal tract and so forth, on the basis of the information derived from epidemiological studies on the atomic bomb survivors of Hiroshima and Nagasaki, (3) models for late and developmental effects due to exposure in utero. (author)

  18. Nuclear power reactor core melt accidents. Current State of Knowledge

    International Nuclear Information System (INIS)

    Jacquemain, Didier; Cenerino, Gerard; Corenwinder, Francois; Raimond, Emmanuel IRSN; Bentaib, Ahmed; Bonneville, Herve; Clement, Bernard; Cranga, Michel; Fichot, Florian; Koundy, Vincent; Meignen, Renaud; Corenwinder, Francois; Leteinturier, Denis; Monroig, Frederique; Nahas, Georges; Pichereau, Frederique; Van-Dorsselaere, Jean-Pierre; Couturier, Jean; Debaudringhien, Cecile; Duprat, Anna; Dupuy, Patricia; Evrard, Jean-Michel; Nicaise, Gregory; Berthoud, Georges; Studer, Etienne; Boulaud, Denis; Chaumont, Bernard; Clement, Bernard; Gonzalez, Richard; Queniart, Daniel; Peltier, Jean; Goue, Georges; Lefevre, Odile; Marano, Sandrine; Gobin, Jean-Dominique; Schwarz, Michel; Repussard, Jacques; Haste, Tim; Ducros, Gerard; Journeau, Christophe; Magallon, Daniel; Seiler, Jean-Marie; Tourniaire, Bruno; Durin, Michel; Andreo, Francois; Atkhen, Kresna; Daguse, Thierry; Dubreuil-Chambardel, Alain; Kappler, Francois; Labadie, Gerard; Schumm, Andreas; Gauntt, Randall O.; Birchley, Jonathan

    2015-11-01

    For over thirty years, IPSN and subsequently IRSN has played a major international role in the field of nuclear power reactor core melt accidents through the undertaking of important experimental programmes (the most significant being the Phebus-FP programme), the development of validated simulation tools (the ASTEC code that is today the leading European tool for modelling severe accidents), and the coordination of the SARNET (Severe Accident Research Network) international network of excellence. These accidents are described as 'severe accidents' because they can lead to radioactive releases outside the plant concerned, with serious consequences for the general public and for the environment. This book compiles the sum of the knowledge acquired on this subject and summarises the lessons that have been learnt from severe accidents around the world for the prevention and reduction of the consequences of such accidents, without addressing those from the Fukushima accident, where knowledge of events is still evolving. The knowledge accumulated by the Institute on these subjects enabled it to play an active role in informing public authorities, the media and the public when this accident occurred, and continues to do so to this day. Following the introduction, which describes the structure of this book and highlights the objectives of R and D on core melt accidents, this book briefly presents the design and operating principles (Chapter 2) and safety principles (Chapter 3) of the reactors currently in operation in France, as well as the main accident scenarios envisaged and studied (Chapter 4). The objective of these chapters is not to provide exhaustive information on these subjects (the reader should refer to the general reference documents listed in the corresponding chapters), but instead to provide the information needed in order to understand, firstly, the general approach adopted in France for preventing and mitigating the consequences of core melt

  19. Global risk of radioactive fallout after major nuclear reactor accidents

    International Nuclear Information System (INIS)

    Lelieveld, J.; Kunkel, D.; Lawrence, M.G.

    2012-01-01

    Major reactor accidents of nuclear power plants are rare, yet the consequences are catastrophic. But what is meant by ''rare''? And what can be learned from the Chernobyl and Fukushima incidents? Here we assess the cumulative, global risk of exposure to radioactivity due to atmospheric dispersion of gases and particles following severe nuclear accidents (the most severe ones on the International Nuclear Event Scale, INES 7), using particulate "1"3"7Cs and gaseous "1"3"1I as proxies for the fallout. Our results indicate that previously the occurrence of INES 7 major accidents and the risks of radioactive contamination have been underestimated. Using a global model of the atmosphere we compute that on average, in the event of a major reactor accident of any nuclear power plant worldwide, more than 90% of emitted "1"3"7Cs would be transported beyond 50 km and about 50% beyond 1000 km distance before being deposited. This corroborates that such accidents have large-scale and trans-boundary impacts. Although the emission strengths and atmospheric removal processes of "1"3"7Cs and "1"3"1I are quite different, the radioactive contamination patterns over land and the human exposure due to deposition are computed to be similar. High human exposure risks occur around reactors in densely populated regions, notably in West Europe and South Asia, where a major reactor accident can subject around 30 million people to radioactive contamination. The recent decision by Germany to phase out its nuclear reactors will reduce the national risk, though a large risk will still remain from the reactors in neighbouring countries.

  20. Severe accidents and terrorist threats at nuclear reactors

    International Nuclear Information System (INIS)

    Pollack, G.L.

    1987-01-01

    Some of the key areas of uncertainty are the nature of the physical and chemical interactions of released fission products and of the interactions between a molten core and concrete, the completeness and validity of the computer codes used to predict accidents, and the behavior of the containment. Because of these and other uncertainties, it is not yet possible to reliably predict the consequences of reactor accidents. It is known that for many accident scenarios, especially less severe ones or where the containment is not seriously compromised, the amount of radioactive material expected to escape the reactor is less, even much less, than was previously calculated. For such accidents, the predictions are easier and more reliable. With severe accidents, however, there is considerable uncertainty as to the predicted results. For accidents of the type that terrorists might cause - for example, where the sequence of failure would be unexpected or where redundant safety features are caused to fail together - the uncertainties are still larger. The conclusion, then, is that there are potential dangers to the public from terrorist actions at a nuclear reactor; however, because of the variety of potential terrorist threats and the incompleteness of the knowledge about the behavior of reactor components and fission products during accidents, the consequences cannot yet be assessed quantitatively

  1. Report on the accident at the Chernobyl Nuclear Power Station

    International Nuclear Information System (INIS)

    1987-12-01

    This report presents the compilation of information obtained by various organizations regarding the accident (and the consequences of the accident) that occurred at Unit 4 of the nuclear power station at Chernobyl in the USSR on April 26, 1986. Each organization has independently accepted responsibility for one or more chapters. The specific responsibility of each organization is indicated. The various authors are identified in a footnote to each chapter. Very briefly the other chapters cover: the design of the Chernobyl nuclear station Unit 4; safety analyses for Unit 4; the accident scenario; the role of the operator; an assessment of the radioactive release, dispersion, and transport; the activities associated with emergency actions; and information on the health and environmental consequences from the accident. These subjects cover the major aspects of the accident that have the potential to present new information and lessons for the nuclear industry in general. The task of evaluating the information obtained in these various areas and the assessment of the potential implications has been left to each organization to pursue according to the relevance of the subject to their organization. Those findings will be issued separately by the cognizant organizations. The basic purpose of this report is to provide the information upon which such assessments can be made

  2. Lessons learnt from an international intercomparison of national network systems used to provide early warning of a nuclear accident

    DEFF Research Database (Denmark)

    Saez-Vergara, J.C.; Thompson, I.M.G.; Funck, E.

    2003-01-01

    and at the Underground Laboratory for Dosimetry and Spectrometry (UDO) of the Physikalisch-Technische Bundesanstalt (PTB) in Germany. The network systems are used continuously to monitor radiation levels throughout a country in order to give early warning of nuclear accidents having transboundary implications...... in order to be consistent with the preliminary report. In addition, in some cases the results are also given in terms of the quantity measured by each national network system. The experience gained from this intercomparison is used to help organise a follow-up intercomparison to be held at the PTB...

  3. Accident sequences simulated at the Juragua nuclear power plant

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1998-01-01

    Different hypothetical accident sequences have been simulated at Unit 1 of the Juragua nuclear power plant in Cuba, a plant with two VVER-440 V213 units under construction. The computer code MELCOR was employed for these simulations. The sequences simulated are: (1) a design-basis accident (DBA) large loss of coolant accident (LOCA) with the emergency core coolant system (ECCS) on, (2) a station blackout (SBO), (3) a small LOCA (SLOCA) concurrent with SBO, (4) a large LOCA (LLOCA) concurrent with SBO, and (5) a LLOCA concurrent with SBO and with the containment breached at time zero. Timings of important events and source term releases have been calculated for the different sequences analyzed. Under certain weather conditions, the fission products released from the severe accident sequences may travel to southern Florida

  4. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)

    2014-08-15

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.

  5. Preliminary report about nuclear accident of Chernobylsk reactor

    International Nuclear Information System (INIS)

    Oliveira, A.R. de.

    1986-07-01

    The preliminary report of nuclear accident at Chernobyl, in URSS is presented. The Chernobyl site is located geographically and the RBMK type reactors - initials of russian words which mean high power pressure tube reactors are described. The conditions of reactor operation in beginning of accident, the events which lead to reactor destruction, the means to finish the fire, the measurements adopted by Russian in the accident location, the estimative of radioactive wastes, the meteorological conditions during the accident, the victims and medical assistence, the sanitary aspects and consequences for population, the evaluation of radiation doses received at small and medium distance and the estimative of reffered doses by population attained are presented. The official communication of Russian Minister Council and the declaration of IAEA general manager during a collective interview in Moscou are annexed. (M.C.K.) [pt

  6. Should evacuation conditions after a nuclear accident be revised?

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    The author proposes to draw lessons from the Fukushima accident, notably in the field of post-accident management. He discusses the definition of an as widely understandable as possible method of description of risks related to irradiations after a nuclear accident. As these irradiations are mainly low dose ones which have a carcinogenic effect, he proposes to assess the average life expectancy loss due to an irradiation. Then, this risk can be easily compared with other risks like air pollution, smoking and passive smoking, and so on. Then, once this risk assessment method is well defined, it is possible to associate the inhabitants of contaminated areas to the post-accident management. They could then decide to go back to their homes or not with full knowledge of the facts

  7. Concerning the structure of occupational accidents involving construction workers in the erection of nuclear power plants

    International Nuclear Information System (INIS)

    Nowak, B.; Roebenack, K.D.

    1991-01-01

    An investigation of 561 occupational accidents involving construction workers which took place during the construction of nuclear power plants failed to show any significant deviation in comparison with general construction as regards process classification, classification of accidents according to occupation and situation, and accidents severity. Occupational accidents which are typial for nuclear power plant construction are a rare exception. (orig.) [de

  8. Catastrophes and nuclear accidents in the former USSR

    International Nuclear Information System (INIS)

    Robeau, D.

    2001-01-01

    In the former USSR, the nuclear safety, the environment protection and the preservation of workers and population health were not the first priority for the Soviet Union authorities. The fabrication of nuclear weapons, the construction of nuclear submarines and the production of an abundant energy source were the only goals at that time. This book describes and explains the circumstances of the nuclear catastrophes and accidents that have occurred during this era. It tries to estimate their impacts on populations and environment and their possible consequences in a near or far future. (J.S.)

  9. Economic damage caused by a nuclear reactor accident

    International Nuclear Information System (INIS)

    Goemans, T.; Schwarz, J.J.

    1988-01-01

    This study is directed towards the estimation of the economic damage which arises from a severe possible accident with a newly built 1000 MWE nuclear power plant in the Netherlands. A number of cases have been considered which are specified by the weather conditions during and the severity of the accident and the location of the nuclear power plant. For each accident case the economic damage has been estimated for the following impact categories: loss of the power plant, public health, evacuation and relocation of population, export of agricultural products, working and living in contaminated regions, decontamination, costs of transportation and incoming foreign tourism. The consequences for drinking water could not be quantified adequately. The total economic damage could reach 30 billion guilders. Besides the power plant itself, loss of export and decreasing incoming foreign tourism determine an important part of the total damage. 12 figs.; 52 tabs

  10. Nuclear aerosol behavior during reactor accidents

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1990-01-01

    Some early reactor accidents are recalled together with their associated environmental consequences. One such consequence is the generation of radioactive aerosol. We described the various physical processes that such an aerosol cloud undergoes within the secondary containment building. These physical processes are then brought together quantitatively in a balance equation for the aerosol size spectrum as a function of position and time. Methods for solving this equation are discussed and illustrated by the method of moments based upon log-normal and modified gamma distributions. Current problems are outlined and directions for future work into aerosol behavior are suggested. (author)

  11. Operational behaviour of WWER nuclear power units after Chernobyl accident

    International Nuclear Information System (INIS)

    Milivojevic, S.; Spasojevic, D.

    2000-01-01

    The indicators of effectiveness of WWER operation, in 1987-1998 were analyzed. For three groups of nuclear units (WWER, NPP Kozloduy, NPP Paks), the trends of Indicators flow were established. The comparative analysis of forced outage rate, and load factor of WWERs and nuclear units all in the world was carried out; it gives the general picture of accident influence on the states and the relations of these indicators in considered period (author)

  12. Considerations on radiation protection and accidents in nuclear medicine

    International Nuclear Information System (INIS)

    Lima, Carla Flavia de; Avelar, Artur Canella; Campos, Tarcisio P.R.

    2001-01-01

    The present study presents the radiation protection in the services of nuclear medicine in relation to the design of the services, manipulation of sources, cares with the patient, accomplishment of procedures and definition of accidents and incidents; besides approaching the CNEN requirements

  13. Chernobyl accident consequences in Germany: Nuclear safety and radiation protection

    International Nuclear Information System (INIS)

    Edelhauser, H.; Wendling, R.D.; Weiss, W.; Klonk, H.; Weil, L.

    1997-01-01

    A working Programme of the Federal Government was initiated on 26 May 1986 to cover all aspects of nuclear safety and public health, including research and public affairs in the light of the European and international activities resulting from the accident

  14. Preparedness and planning for nuclear accidents at national level

    International Nuclear Information System (INIS)

    Shiukshta, A.

    1998-01-01

    National plan for the protection of population in the case in nuclear accident at Ignalina NPP is presented. The plan was elaborated and approved in 1995, tested in a number of training and practical operations and positively evaluated by experts. The plan provides for measures of protection, their scope, schedule, executive officers and organizations and procedure of implementation

  15. Organisation and tasks concerning population protection in nuclear accident

    International Nuclear Information System (INIS)

    Nikolov, N.

    1995-01-01

    The structure and the scope of activities of Civil Defense Administration of Bulgaria are briefly outlined. Protection of general public in the case of nuclear accident will be provided according to a special off-site emergency plan. The plan is based on results of research and development approved by the permanent commission for public protection. 3 refs

  16. Radiocontamination of agricultural workers due to nuclear accidents

    International Nuclear Information System (INIS)

    Petrovic, B.; Smelcerovic, M.; Djuric, G.; Popovic, D.

    1989-01-01

    In the radiocontamination of the environment due to nuclear accidents, agricultural workers should be considered as a critical group of population. The presented paper discusses this problem from the aspects of folder production. The values of the effective dose equivalent are estimated for different phases of the production process and certain procedures aimed to reduce the radiation risk are proposed (author)

  17. Report from the Special Committee on Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Ozawa, Mamoru

    2012-01-01

    The Special Committee on Fukushima Nuclear Accident was established in April 2011 under the Heat Transfer Society of Japan (HTSJ) and discussed (1) how had evolved heat transfer research in progress of nuclear technology, (2) role of expert group in the area of heat transfer academy and technology and (3) energy prospect in Japan after the Fukushima nuclear accident. This report was described by the chairman of the special committee summarizing one year discussions as (1) background of heat transfer research progress, (2) progression of Fukushima Daiichi Nuclear Power Plant accident, (3) energy problem in Japan after the Fukushima accident and (4) social role of the HTSJ. This HTSJ was a unique, nonprofit association in Japan of the people engaged in heat transfers research or in various engineering aspects related to heat transfer, which meant interdisciplinary or common platform of heat transfer as elementary technologies. Such actual complex problems could be discussed in the HTSJ from an overlooking viewpoint in order for the HTSJ to play a social role. (T. Tanaka)

  18. Organisation and tasks concerning population protection in nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N [Civil Defence Administration, Sofia (Bulgaria)

    1996-12-31

    The structure and the scope of activities of Civil Defense Administration of Bulgaria are briefly outlined. Protection of general public in the case of nuclear accident will be provided according to a special off-site emergency plan. The plan is based on results of research and development approved by the permanent commission for public protection. 3 refs.

  19. Necessity of international cooperation for the prevention from nuclear accidents

    International Nuclear Information System (INIS)

    Hidayatullah, M.

    1988-01-01

    The lessons learnt from nuclear accidents (Chernobyl and T.M.I.) and atomic bombs effects (Hiroshima, Nakasaki) have served to establish international conventions that insist on regional and international cooperation and on protection of workers and the public against the radiological effects. (author)

  20. Radiocontamination of agricultural workers due to nuclear accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, B [Faculty of Veterinary Medicine, Beograd, (Serbia and Montenegro); Smelcerovic, M; Djuric, G; Popovic, D [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    In the radiocontamination of the environment due to nuclear accidents, agricultural workers should be considered as a critical group of population. The presented paper discusses this problem from the aspects of folder production. The values of the effective dose equivalent are estimated for different phases of the production process and certain procedures aimed to reduce the radiation risk are proposed (author)

  1. Environmental consequences of releases from nuclear accidents

    International Nuclear Information System (INIS)

    Tveten, U.

    1990-03-01

    The report presents the results of a four-year Nordic cooperation project (AKTU-200). The results have impact upon many facets of accident consequence assessment, ranging from new computational tools to recommendations concerning food preparation methods to be utilized in a fallout situation. Some of the subprojects have approached areas where little or no research has been performed previously, like the project on winter conditions, the project on the physico/chemical form of radionuclides in the Chernobyl fallout, and the project on resuspension. The conclusion from the first of these projects is that the impact of an accident or fallout situation occuring during winter may be considerable smaller than in a similar situation during summer conditions. The most important conclusion from the second of these projects is that bioavailability of radiocesium in soil is significantly lower than that of radiocesium in plant material taken up via the roots. In the third project is was found that the resuspension factor is several orders of magnitude lower than the values traditionally cited, and that resuspension is a local phenomenon in a majority of weather conditions. The development of large-scale testing of mitigating actions to prevent uptake of radiocesium in animals in a fallout situation is also one of the projects where new ground has been sucessfully broken. 189 refs., 89 figs., 55 tabs

  2. Nuclear accidents and policy. Notes on public perception

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Felix; Steenbeck, Malte; Wilhelm, Markus [Hamburg Univ. (Germany). Lehrstuhl fuer Wirtschaftspolitik

    2013-07-01

    Major nuclear accidents as recently in Fukushima set nuclear power plant security at the top of the public agenda. Using data of the German Socio-Economic Panel we analyze the effects of the Fukushima accident and a subsequent government decision on nuclear power phase-out on several measures of subjective perception in Germany. In the light of current political debates about the strategic orientation of this energy turnaround, such an analysis is of particular interest since non-pecuniary gains in measures of subjective perception might provide further aspects to be taken into consideration when evaluating the economic costs of the policy. We find that the Fukushima accident increases the probability to report greater worries about the environment. Furthermore, we find evidence for a decrease in the probability to be very worried about the security of nuclear power plants as well as for an increase in reported levels of subjective well-being following the government's resolution on nuclear phase-out. Finally we find that the probabilities of reporting very high concerns are related to the distance between the respondents' place of residence and the nearest nuclear power station.

  3. Health effects of the nuclear accident at Three Mile Island

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1980-05-01

    Between March 28 and April 15, 1979 the collective dose resulting from the radioactivity released to the population living within a 50-mile radius of the Three Mile Island nuclear plant was about 2000 person-rems, less than 1% of the annual natural background level. The average dose to a person living within 5 miles of the nuclear plant was less than 10% of annual background radiation. The maximum estimated radiation dose received by any one individual in the general population (excluding the nuclear plant workers) during the accident was 70 mrem. The doses received by the general population as a result of the accident were so small that there will be no detectable additional cases of cancer, developmental abnormalities, or genetic ill-health. Three Three Mile Island nuclear workers received radiation doses of about 3 to 4 rem, exceeding maximum permissible quarterly dose of 3 rem. The major health effect of the accident at Three Mile Island was that of a pronounced demoralizing effect on the general population in the Three Mile Island area, including teenagers and mothers of preschool children and the nuclear plant workers. However, this effect proved transient in all groups studied except the nuclear workers

  4. Nuclear accidents and policy. Notes on public perception

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Felix; Steenbeck, Malte; Wilhelm, Markus [Hamburg Univ. (Germany). Lehrstuhl fuer Wirtschaftspolitik

    2013-07-01

    Major nuclear accidents as recently in Fukushima set nuclear power plant security at the top of the public agenda. Using data of the German Socio-Economic Panel we analyze the effects of the Fukushima accident and a subsequent government decision on nuclear power phase-out on several measures of subjective perception in Germany. In the light of current political debates about the strategic orientation of this energy turnaround, such an analysis is of particular interest since non-pecuniary gains in measures of subjective perception might provide further aspects to be taken into consideration when evaluating the economic costs of the policy. We find that the Fukushima accident increases the probability to report greater worries about the environment. Furthermore, we find evidence for a decrease in the probability to be very worried about the security of nuclear power plants as well as for an increase in reported levels of subjective well-being following the government's resolution on nuclear phase-out. Finally we find that the probabilities of reporting very high concerns are related to the distance between the respondents' place of residence and the nearest nuclear power station.

  5. Medical assistance in case of nuclear accident

    International Nuclear Information System (INIS)

    Dodig, D.; Tezak, S.; Kasal, B.; Huic, D.; Medvedec, M.; Loncaric, S.; Grosev, D.; Rozman, B.; Popovic, S.

    1996-01-01

    Medical service is a prerequisite for work license of nuclear installation. Every nuclear installation incorporate in their safety procedure also medical emergency plan. Usually the medical emergency plan consists of several degrees of action: 1. First aid, 2. First medical treatment, 3. Treatment in regional hospital, 4. Treatment in special institution (centre for radiation medicine). This paper discusses organization and activities of Centre for Radiation Medicine and Protection - Clinical Hospital Centre Zagreb

  6. Value of lymphocyte cryo-preservation after a radiological or nuclear accident

    International Nuclear Information System (INIS)

    Laroche, P.; Lataillade, J.J.; Chambrette, V.; Voisin, Ph.

    1997-01-01

    The conventional cytogenetic method in biological dosimetry is most useful for the estimation of the received radiation dose. It shows resulting unstable chromosomal aberrations (dicentrics, centric rings and fragments) in peripheral blood lymphocytes. This method has been used over the past 30 years and is used in forensic medicine. Nevertheless, it is long and fastidious. Accordingly, the number of simultaneous analyses of blood samples is limited and depends on the capacity of specialized laboratories. This capacity may be insufficient in the case of large scale radiological or nuclear accidents. Cryo-preservation is the usual method to store cells before analysis or use, for instance for biological dosimetry purposes. Some investigations have shown that thawing following freezing may induce cell injury but few studies have been made on the effect of cryo-preservation on cells containing radiation-induced unstable chromosomal aberrations. In this work, lymphocytes were irradiated with 1 to 4 Gy gamma rays and stored in liquid nitrogen. The dicentric and centric ring yields were analysed after storage periods of 1 week, 1 month, 3 months, and 1 year. No difference in aberration frequency from control, unfrozen samples was observed over this period. Lymphocytes stored at -196 deg C for up to least 1 year may therefore be used for chromosome aberration scoring when overexposure to ionizing radiation is suspected. (author)

  7. Nuclear laws and radiologic accidents; Direito nuclear e os acidentes radiologicos

    Energy Technology Data Exchange (ETDEWEB)

    Frois, Fernanda [Pontificia Univ. Catolica de Sao Paulo, SP (Brazil)

    1997-12-31

    Some aspects of the nuclear activities in Brazil, specially concerning the Goiania s accident are demonstrated using concepts from environmental and nuclear law. Nuclear and environmental competence, the impossibility of the states of making regional laws, as the lack of regulation about the nuclear waste, are discussed. The situation of Goiania when the accident happened, the present situation of the victims and the nuclear waste provisionally stored in Abadia de Goias is reported 7 refs.; e-mail: froes at sti.com.br

  8. Indemnification of Damage in the Event of a Nuclear Accident

    International Nuclear Information System (INIS)

    2006-01-01

    The Second International Workshop on the Indemnification of Nuclear Damage was held in Bratislava, Slovak Republic, from 18 to 20 May 2005. The workshop was co-organised by the OECD Nuclear Energy Agency and the Nuclear Regulatory Authority of the Slovak Republic. It attracted wide participation from national nuclear authorities, regulators, operators of nuclear installations, nuclear insurers and international organisations. The purpose of the workshop was to assess the third party liability and compensation mechanisms that would be implemented by participating countries in the event of a nuclear accident taking place within or near their borders. To accommodate this objective, two fictitious accident scenarios were developed: one involving a fire in a nuclear installation located in the Slovak Republic and resulting in the release of significant amounts of radioactive materials off-site, and the other a fire on board a ship transporting enriched uranium hexafluoride along the Danube River. The first scenario was designed to involve the greatest possible number of countries, with the second being restricted to countries with a geographical proximity to the Danube. These proceedings contain the papers presented at the workshop, as well as reports on the discussion sessions held. (author)

  9. Nuclear energy. Danger only in case of accidents?

    Energy Technology Data Exchange (ETDEWEB)

    Scherb, Hagen; Voigt, Kristina; Kusmierz, Ralf [Helmholtz Zentrum Muenchen, Neuherberg (Germany). Inst. of Computational Biology

    2014-07-01

    The environmental impacts of nuclear energy are highly underestimated. Nuclear weapons, atomic bomb tests, and nuclear accidents are considered a danger for the environment and a human cancer risk. However, childhood leukemia is consistently elevated near nuclear power plants and the Chernobyl accident entailed elevated human birth sex ratios across Europe. We studied the annual sex ratio near nuclear facilities in Germany, France, and Switzerland at the municipality level. We will demonstrate that low doses of ionizing radiation cause effects in human beings. This is shown by strongly consistent spatial-temporal shifts in the human sex ratio trends in the vicinity of nuclear facilities. In the chosen countries complete official data on over 70 million gender specific annual births at the municipality level are available. By Lambert-93 coordinates (France) and GK3 coordinates (Germany, Switzerland) we determined the minimum distances of municipalities from major nuclear facilities. Spatial-temporal trend analyses of the annual sex ratio depending on municipalities' minimum distances from nuclear facilities were carried out. Applying ordinary linear logistic regression (jump or broken-stick functions) and non-linear logistic regression (Rayleigh functions) we demonstrate that the sex ratio at birth shows the influence of mutagenic ionizing radiation on human health. As important environmental chemical contaminants are also mutagenic, the usefulness of the sex ratio at birth as a genetic health indicator can be inferred by analogy.

  10. Nuclear energy. Danger only in case of accidents?

    International Nuclear Information System (INIS)

    Scherb, Hagen; Voigt, Kristina; Kusmierz, Ralf

    2014-01-01

    The environmental impacts of nuclear energy are highly underestimated. Nuclear weapons, atomic bomb tests, and nuclear accidents are considered a danger for the environment and a human cancer risk. However, childhood leukemia is consistently elevated near nuclear power plants and the Chernobyl accident entailed elevated human birth sex ratios across Europe. We studied the annual sex ratio near nuclear facilities in Germany, France, and Switzerland at the municipality level. We will demonstrate that low doses of ionizing radiation cause effects in human beings. This is shown by strongly consistent spatial-temporal shifts in the human sex ratio trends in the vicinity of nuclear facilities. In the chosen countries complete official data on over 70 million gender specific annual births at the municipality level are available. By Lambert-93 coordinates (France) and GK3 coordinates (Germany, Switzerland) we determined the minimum distances of municipalities from major nuclear facilities. Spatial-temporal trend analyses of the annual sex ratio depending on municipalities' minimum distances from nuclear facilities were carried out. Applying ordinary linear logistic regression (jump or broken-stick functions) and non-linear logistic regression (Rayleigh functions) we demonstrate that the sex ratio at birth shows the influence of mutagenic ionizing radiation on human health. As important environmental chemical contaminants are also mutagenic, the usefulness of the sex ratio at birth as a genetic health indicator can be inferred by analogy.

  11. Personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs

  12. Absorbed dose by thyroid in case of nuclear accidents

    International Nuclear Information System (INIS)

    Campos, Laelia; Attie, Marcia Regina Pereira; Amaral, Ademir

    2011-01-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ( 131 I, 132 I, 133 I, 134 I and 135 I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  13. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B. [Utah Univ., Salt Lake City, UT (United States). Center for Applied Dosimetry; Chumak, V.; Shalom, S. [All-Union Scientific Centre of Radiation Medicine, Kiev (Ukraine)

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation.

  14. EPR dosimetry of teeth in past and future accidents: a prospective look at a retrospective method

    International Nuclear Information System (INIS)

    Haskell, E.H.; Kenner, G.H.; Hayes, R.B.

    1996-01-01

    Electron paramagnetic resonance spectroscopy (EPR) of tooth enamel is a relatively new technique for retrospective dosimetry that in the past two years has seen increasing effort towards its development and evaluation. Efforts have centered on determining the accuracy which may be achieved with current measurement techniques as well as the minimum doses detectable. The study was focused on evaluating some factors which influence the accuracy of EPR dosimetry of enamel. Reported are studies on sample intercomparisions, instrumental considerations, and effects of dental x-rays, environmental sunlight and ultraviolet radiation

  15. Radiological consequence of Chernobyl nuclear power accident in Japan

    International Nuclear Information System (INIS)

    Uchiyama, Masafumi; Nakamura, Yuji; Kankura, Takako; Iwasaki, Tamiko; Fujimoto, Kenzo; Kobayashi, Sadayoshi.

    1988-03-01

    Two years have elapsed since the accident in Chernobyl nuclear power station shocked those concerned with nuclear power generation. The effect that this accident exerted on human environment has still continued directly and indirectly, and the reports on the effect have been made in various countries and by international organizations. In Japan, about the exposure dose of Japanese people due to this accident, the Nuclear Safety Commission and Japan Atomic Energy Research Institute issued the reports. In this report, the available data concerning the envrionmental radioactivity level in Japan due to the Chernobyl accident are collected, and the evaluation of exposure dose which seems most appropriate from the present day scientific viewpoint was attempted by the detailed analysis in the National Institute of Radiological Sciences. The enormous number of the data observed in various parts of Japan were different in sampling, locality, time and measuring method, so difficulty arose frequently. The maximum concentration of I-131 in floating dust was 2.5 Bq/m 3 observed in Fukui, and the same kinds of radioactive nuclides as those in Europe were detected. (Kako, I.)

  16. A study into the consequences of a nuclear accident

    International Nuclear Information System (INIS)

    Arnott, D.G.

    1987-07-01

    The nuclear industry in Britain would like to believe, and would like the general public to believe, that major accidents such as that at Chernobyl in 1986, could no happen in Britain, because the design and operating procedure have been made as safe as possible. However, because the designers and operators are human, they can make mistakes. Some of these are mentioned; errors of design, errors of maintenance or inspection and errors of judgement. In spite of protestations to the contrary, a major accident could occur at Sizewell-B reactor. Given that this a real possibility, plans should be drawn up to prepare for the situation. The study considers the possible consequences of a nuclear accident under the headings, human error, how nuclear fission works, radioactivity, the truth about Chernobyl, what patterns of reactor accident are possible, what can be done (this includes meteorological information, the issuing of potassium iodate tables, radiation monitoring and evacuation). Practical issues which should concern the local authorities, especially Wrekin Council, are discussed and a recommendation made for an environmental protection officer to be appointed to keep the matter under continuing review. (U.K.)

  17. Severe accident considerations in Canadian nuclear power reactors

    International Nuclear Information System (INIS)

    Omar, A.M.; Measures, M.P.; Scott, C.K.; Lewis, M.J.

    1990-08-01

    This paper describes a current study on severe accidents being sponsored by the Atomic Energy Control Board (AECB) and provides background on other related Canadian work. Scoping calculations are performed in Phase I of the AECB study to establish the relative consequences of several permutations resulting from six postulated initiating events, nine containment states, and a selection of meteorological conditions and health effects mitigating criteria. In Phase II of the study, selected accidents sequences would be analyzed in detail using models suitable for the design features of the Canadian nuclear power reactors

  18. Chemistry of fission product iodine under nuclear reactor accident conditions

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs

  19. Nuclear Fuel Behaviour during Reactivity Initiated Accidents. Workshop Proceedings

    International Nuclear Information System (INIS)

    2010-01-01

    A reactivity initiated accident (RIA) is a nuclear reactor accident that involves an unwanted increase in fission rate and reactor power. The power increase may damage the reactor core. The main objective of the workshop was to review the current status of the experimental and analytical studies of the fuel behavior during the RIA transients in PWR and BWR reactors and the acceptance criteria for RIA in use and under consideration. The workshop was organized in an opening session and 5 technical sessions: 1) Recent experimental results and experimental techniques used; 2) Modelling and Data Interpretation; 3) Code Assessment; 4) RIA Core Analysis and 5) Revision and application of safety criteria

  20. Mitigation of severe accidents in Swedish nuclear power plants

    International Nuclear Information System (INIS)

    Soederman, E.

    1987-01-01

    Sweden is the first country to build filtered venting systems, the first one became operable at Barsebaeck nuclear power plant in 1985. In new concepts, now being installed in Sweden, an enhanced containment spray system is the basic element and the filtered venting is only the secondary mitigating system. The filter is a new design, a submerged multi venturi scrubber. The Swedish strategy has been built on three basics: improved knowledge through research; containment integrity through mitigating systems; and accident management to prevent severe accidents. 2 figs

  1. The Impact of Severe Nuclear Accidents on National Decision for Nuclear Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Young A; Hornibrook, Carol; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Many researchers have tried to identify the impact of severe nuclear accidents on a country's or international nuclear energy policy [2-3]. However, there is little research on the influence of nuclear accidents and historical events on a country's decision to permanently shutdown an NPP versus international nuclear decommissioning trends. To demonstrate the correlation between a nuclear severe accident and the impact on world nuclear decommissioning, this research reviewed case studies of individual historical events, such as the St. Lucens, TMI, Chernobyl, Fukushima accidents and the series of events leading up to the collapse of the Soviet Union. For validation of the results of these case studies, a statistical analysis was conducted using the R code. This will be useful in explaining how international and national decommissioning strategies are affected by shutdown reasons, i.e. world historical events. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently In conclusion, nuclear severe accidents and historical events have an impact on the number of international NPPs that shutdown permanently and cancelled NPP construction. This directly impacts international nuclear decommissioning policy and nuclear energy policy trends. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently.

  2. The Impact of Severe Nuclear Accidents on National Decision for Nuclear Decommissioning

    International Nuclear Information System (INIS)

    Suh, Young A; Hornibrook, Carol; Yim, Man Sung

    2016-01-01

    Many researchers have tried to identify the impact of severe nuclear accidents on a country's or international nuclear energy policy [2-3]. However, there is little research on the influence of nuclear accidents and historical events on a country's decision to permanently shutdown an NPP versus international nuclear decommissioning trends. To demonstrate the correlation between a nuclear severe accident and the impact on world nuclear decommissioning, this research reviewed case studies of individual historical events, such as the St. Lucens, TMI, Chernobyl, Fukushima accidents and the series of events leading up to the collapse of the Soviet Union. For validation of the results of these case studies, a statistical analysis was conducted using the R code. This will be useful in explaining how international and national decommissioning strategies are affected by shutdown reasons, i.e. world historical events. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently In conclusion, nuclear severe accidents and historical events have an impact on the number of international NPPs that shutdown permanently and cancelled NPP construction. This directly impacts international nuclear decommissioning policy and nuclear energy policy trends. The number of permanently shutdown NPPs was selected as an indicator because any relationship between the number of permanently

  3. Public attitudes toward nuclear power and the TMI accident

    International Nuclear Information System (INIS)

    Kanga, B.K.

    1983-01-01

    This paper which examines the Three Mile Island accident in the context of public reactions to the plant in the surrounding area emphasises that public attitudes to nuclear power should be discussed according to two time frames - short and long range. Public perception of safety, reliability and economy may be different in the future and the role of the nuclear industry is to operate plants safely and ensure that the public gains a clearer understanding of the essential part played by nuclear reactors in generating electricity. (NEA) [fr

  4. Japanese authorities inform IAEA about accident at nuclear plant

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: The IAEA today received information from Japanese nuclear regulatory authorities about an accident in the steam generator turbine circuit of the Mihama Nuclear Power Plant (unit 3). According to the Japanese nuclear authorities this is a non-radioactive part of the plant. The regulatory body has reported that four contract employees died and 7 were injured, and stated that there was no release of radioactivity. The IAEA continues to be in contact with Japanese authorities and expects to receive updates on a continuous basis. No request for IAEA assistance has been received at this time. (IAEA)

  5. Nuclear power: accident probabilities, risks, and benefits. A bibliography

    International Nuclear Information System (INIS)

    1976-02-01

    This report is a selected listing of 396 documents pertaining to nuclear accident probability and nuclear risk. Because of the attention focused on these concepts by the recent (August 1974) publication of the draft of WASH-1400, ''Reactor Safety Study,'' it is intended that this bibliography make conveniently available the existence of relevant literature on these concepts. Such an awareness will enhance an understanding of probability and risk as applied to nuclear power plants and is essential to their further development and/or application. This bibliography includes first a listing of the selected documents with abstracts and keywords, followed by three indexes: (1) keyword, (2) author, and (3) permuted title

  6. Management of individual and collective dosimetry at Fessenheim nuclear plant. Evaluation after refueling shutdown

    International Nuclear Information System (INIS)

    Lamarre, D.; Waller, A.

    1980-01-01

    The principle of dosimetry management chosen by Fessenheim nuclear power station was originally consisted of two phases: - an automatic acquisition of individual doses realized by stylodosimeter readers; - a deferred data processing by computer. The whole system has not been used during the shutdown for the first refuelling of unit number one in view of encountered difficulties with perfecting of automatic readers prototype, this last phase has been replaced by a manual acquisition of doses. The dosimetry data processing has two main objects: - supervision of individual dosimetry for people who work in the nuclear power station; - knowledge of doses assigned for each working and equipment. Moreover, a first dosimetric result of the shutdown for refuelling of unit number one, enables to notice the workings which doses are the most important and written in percentage of total doses: regulatory controls: about 19%; - steam generators working: 16%; - working decontamination and making health physics screen (lock chamber) 10% [fr

  7. Nuclear Accidents: Consequences for Human, Society and Energy Sector

    Directory of Open Access Journals (Sweden)

    L. A. Bolshov

    2016-01-01

    Full Text Available The article examines radiation and hygienic regulations with regard to the elimination of consequences of the Chernobyl NPP accident in the context of relationships with other aspects, primarily socio-economic and political factors. This experience is reasonable to take into account when defining criteria in other regulatory fields, for example, in radioactive waste classification and remediation of areas. The article presents an analysis of joint features and peculiarities of nuclear accidents in the industry and energy sectors. It is noted that the scale of global consequences of the Chernobyl NPP accident is defined by the large-scale release of radioactivity into the environment, as well as an affiliation of the nuclear installation with the energy sector. Large-scale radiation accidents affect the most diverse spheres of human activities, what, in its turn, evokes the reverse reaction from the society and its institutions, including involvement of political means of settlement. If the latter is seeing for criteria that are scientifically justified and feasible, then the preconditions for minimizing socio-economic impacts are created. In other cases, political decisions, such as nuclear units’ shutdown and phasing out of nuclear energy, appear to be an economic price which society, as a whole and a single industry sector, pay to compensate the negative public response. The article describes fundamental changes in approaches to ensure nuclear and radiation safety that occurred after the Chernobyl NPP accident. Multiple and negative consequences of the Chernobyl accident for human and society are balanced to some extent by a higher level of operational safety, emergency preparedness, and life-cycle safety. The article indicates that harmonization and ensuring consistency of regulations that involve different aspects of nuclear and radiation safety are important to implement practical solutions to the nuclear legacy problems. The

  8. Nuclear power plant safety - the risk of accidents

    International Nuclear Information System (INIS)

    Higson, D.; Crancher, D.W.

    1975-08-01

    Although it is physically impossible for any nuclear plant to explode like an atom bomb, an accidental release of radioactive material into the environment is conceivable. Three factors reduce the probability of such releases, in dangerous quantities, to an extremely low level. Firstly, there are many safety features built into the plant including a leaktight containment building to prevent the escape of such material. Secondly, the quality of engineering and standards used are far more demanding than in conventional power engineering. Thirdly, strict government licensing and regulatory control is enforced at all phases from design through construction to operation. No member of the general public is known to have been injured or died as a result of any accident to a commercial nuclear power plant. Ten workers have died as a result of over-exposure to radiation from experimental reactors and laboratory work connected with the development of nuclear plant since 1945. Because of this excellent safety record the risk of serious accidents can only be estimated. On the basis of such estimates, the chance of an accident in a nuclear power reactor which could cause a detectable increase in the incidence of radiation-induced illnesses would be less than one chance in a million per year. In a typical highly industrialised society, such as the USA, the estimated risk of an individual being killed by such accidents, from one hundred operating reactors, is no greater than one chance in sixteen million per year. There are undoubtedly risks from reactor accidents but estimates of these risks show that they are considerably less than from other activities which are accepted by society. (author)

  9. Six Decades of Nuclear Accidents, Nuclear Compensation, and Issues of Radioactive Waste Management

    International Nuclear Information System (INIS)

    Boonsuwan, P.; Songjakkeaw, A.

    2011-11-01

    Thailand has made a serious aim to employ nuclear power by adopting five 1,000 MWt in the 2010 national Power Development Plan (PDP 2010) with the first NPP coming online in 2020. However, after the Fukushima nuclear disaster in March 2011, the National Energy Policy Committee had made the resolution to postpone the plan by 3 years. The post-Fukushima atmosphere does not bode well for the public sentiment towards the proposed programme, especially with regards to safety of an NPP. Nonetheless, during the six decades that NPPs have been in operation in 32 countries worldwide, there are only 19 serious accidents involving fatalities and/or damage to properties in excess of 100 million USD. Out of the three significant accidents - Fukushima nuclear accident (2011), Chernobyl nuclear accident (1986), and Three Miles Island nuclear accident (1979) - only the accident at Three Miles Island occurs during normal operation. Such can be implied that the operation of NPPs does maintain a high level of safety. The current technology on nuclear safety has been advancing greatly to the point that the new NPP design claims to render the possibility of a severe accident resulting in core melting insignificant. Along with the technical improvements, laws and regulations have also be progressing in parallel to adequately compensate and limit the liability of operators in case of a nuclear accident. The international agreements such as the Vienna Convention on Civil Liability for Nuclear Damage and the Convention of the Third Party Liability in the Field of Nuclear Energy had also been established and also the national laws of countries such as the United States and Japan have been implemented to address such issues to the point that victims of a nuclear accidents are adequately and justly compensated. In addition to the issues of nuclear accident, the dilemma in nuclear waste management, especially with regards to the High Level Waste which is highly radioactive while having very

  10. Application of the MOLE in post-nuclear accident characterization

    International Nuclear Information System (INIS)

    Johnson, S.J.; Alvarez, J.L.

    1981-01-01

    Following a nuclear accident there is a need to determine the chemical composition of materials in liquid, solid and gaseous form, the crystalline structure of solids, the size and chemical composition of particles, and the chemical characterization of contaminants on surfaces. This analytical information is required to reconstruct the accident scenario, to select decontamination methods, and to determine future safety requirements. The MOLE (Molecular Optical Laser Examiner) is a Raman microprobe system which has proven to be a valuable analytical tool in providing this type of chemical information. It can determine the chemical species of polyatomic molecules and ions having characteristic Raman spectra. As little as 1 picogram of a component or a 1 μm particle can be analyzed. The imaging system can also provide mapping of selected components on a surface. A system description, sample handling techniques, and applications are presented. Specific applications to the Three Mile Island-Unit 2 accident are also addressed

  11. To improve nuclear plant safety by learning from accident's experience

    International Nuclear Information System (INIS)

    Matsumoto, Hidezo; Kida, Masanori; Kato, Hiroyuki; Hara, Shin-ichi

    1994-01-01

    The ultimate goal of this study is to produce an expert system that enables the experience (records and information) gained from accidents to be put to use towards improving nuclear plant safety. A number of examples have been investigated, both domestic and overseas, in which experience gained from accidents was utilized by utilities in managing and operating their nuclear power stations to improve safety. The result of investigation has been used to create a general 'basic flow' to make the best use of experience. The ultimate goal is achieved by carrying out this 'basic flow' with artificial intelligence (AI). To do this, it is necessary (1) to apply language analysis to process the source information (primary data base; domestic and overseas accident's reports) into the secondary data base, and (2) to establish an expert system for selecting (screening) significant events from the secondary data base. In the processing described in item (1), a multi-lingual thesaurus for nuclear-related terms become necessary because the source information (primary data bases) itself is multi-lingual. In the work described in item (2), the utilization of probabilistic safety assessment (PSA), for example, is a candidate method for judging the significance of events. Achieving the goal thus requires developing various new techniques. As the first step of the above long-term study project, this report proposes the 'basic flow' and presents the concept of how the nuclear-related AI can be used to carry out this 'basic flow'. (author)

  12. Graphical representation of nuclear incidents/accidents by associating network in nuclear technical communication

    International Nuclear Information System (INIS)

    Hibino, Aiko; Niwa, Yuji

    2008-01-01

    Nuclear Information Archives (NUCIA) is a service for information disclosure toward the public on nuclear power plants in Japan. This paper focuses on an experience of how information stored in the NUCIA database is processed for information sharing by a 'sociotechnical interface,' the interface to the general public. Information on nuclear accidents was analyzed by market basket analysis and mapped to some graphical representation in the website for comprehension. The resultant data obtained by questionnaire survey suggests that this graphical conversion is effective for letting the public understand nuclear accidents. In this sense, this attempt gives significant hints of 'how technical communication to the public' should be. (author)

  13. Calibration of the indium foil used for criticality accident dosimetry in the UCC-ND employee identification badge

    International Nuclear Information System (INIS)

    Ryan, M.T.; Butler, H.M.; Gupton, E.D.; Sims, C.S.

    1982-05-01

    The UCC-ND Employee Identification Badge contains an indium foil disc that is intended for use as a dosimetry screening device in the event of a criticality accident. While it is recognized that indium is not a precise mixed neutron-gamma dosimeter, its activation by neutrons provides adequate means for separating potentially exposed persons into three groups. These groups are: (1) personnel exposed below annual dose limits, (2) personnel exposed above annual dose limits but below 25 rem, and (3) personnel exposed above 25 rem. This screening procedure is designed to facilitate dosimeter processing in order to meet regulatory reporting requirements. A quick method of interpreting induced activity measurements is presented and discussed

  14. Site Specific Analyses of a Spent Nuclear Fuel Transportation Accident

    International Nuclear Information System (INIS)

    Biwer, B. M.; Chen, S. Y.

    2003-01-01

    The number of spent nuclear fuel (SNF) shipments is expected to increase significantly during the time period that the United States' inventory of SNF is sent to a final disposal site. Prior work estimated that the highest accident risks of a SNF shipping campaign to the proposed geologic repository at Yucca Mountain were in the corridor states, such as Illinois. The largest potential human health impacts would be expected to occur in areas with high population densities such as urban settings. Thus, our current study examined the human health impacts from the most plausible severe SNF transportation accidents in the Chicago metropolitan area. The RISKIND 2.0 program was used to model site-specific data for an area where the largest impacts might occur. The results have shown that the radiological human health consequences of a severe SNF rail transportation accident on average might be similar to one year of exposure to natural background radiation for those persons living a nd working in the most affected areas downwind of the actual accident location. For maximally exposed individuals, an exposure similar to about two years of exposure to natural background radiation was estimated. In addition to the accident probabilities being very low (approximately 1 chance in 10,000 or less during the entire shipping campaign), the actual human health impacts are expected to be lower if any of the accidents considered did occur, because the results are dependent on the specific location and weather conditions, such as wind speed and direction, that were selected to maximize the results. Also, comparison of the results of longer duration accident scenarios against U.S. Environmental Protection Agency guidelines was made to demonstrate the usefulness of this site-specific analysis for emergency planning purposes

  15. Off-site protective action selection for nuclear reactor accidents

    International Nuclear Information System (INIS)

    Weerakkody, S.D.

    1986-01-01

    A computer program based upon a model using a rational theoretical basis was developed to select appropriate off-site protective actions during nuclear reactor accidents. The special features of this program include (a) introduction of a precursor concept that uses the history of the accident progression to determine the spectrum of potential accident scenarios and estimates of the likelihoods of each accident scenario; (b) use of statistical decision theory and the concept of entropy of a spectrum to select the appropriate protective actions using either the minimax principle or the Bayes action method; and (c) introduction of methods to quantify evacuation travel risks. In order to illustrate the usefulness of the computer program, it was applied at three stages of the Three Mile Island accident scenario. Quantified non-radiological risks of evaluation have been used to establish dose thresholds below which evacuations are not justified. Using the Poisson analysis for evacuation risks and the absolute L-L BEIR model for radiation risk suggests 330 mrems as a reasonable value for this threshold. The usefulness of the program in developing a technical basis to select the size of the plume exposure pathway emergency planning zone (EPZ) is discussed. Quantified evacuation risks, cost, and the current rationale upon which the EPZ is based, justify an EPZ between 5-10 miles for WASH-1400 source-terms

  16. Influence on UK Nuclear Regulation from the Fukushima Daiichi Accident

    International Nuclear Information System (INIS)

    Savage, R.

    2016-01-01

    This paper provides an overview of the UKs response to the Fukushima Daiichi Accident and highlights the influence that this has had on UK nuclear regulation since March 2011. ONR’s Incident Suite was staffed from the first day of the accident and remained active on a 24 hours basis for over two weeks. The purpose was to provide advice to the UK government specifically prompt assurance of why this accident couldn’t take place in the UK and practical advice in relation to the 17,000 UK nationals in Japan at that time. In the early phase of the accident ONR took part in international cooperation with the US, Canadian and French regulators in order to determine the actual technical status of the Fukushima Daiichi power plant units. The UK Secretary of State requested that the ONR Chief Inspector identify any lessons to be learnt by the UK nuclear industry and in doing so cooperate and coordinate with international colleagues. The Interim report was produced (May 2011) this focused on civil NPP’s, provided background to radiation, technology and regulations. This report compared the Japan situation with the UK and identified 11 conclusions and 26 recommendations.

  17. Hazards to nuclear plants from surface traffic accidents

    International Nuclear Information System (INIS)

    Hornyik, K.

    1975-01-01

    Analytic models have been developed for evaluating hazards to nuclear plants from hazardous-materials accidents in the vicinity of the plant. In particular, these models permit the evaluation of hazards from such accidents occurring on surface traffic routes near the plant. The analysis uses statistical information on accident rates, traffic frequency, and cargo-size distribution along with parameters describing properties of the hazardous cargo, plant design, and atmospheric conditions, to arrive at a conservative estimate of the annual probability of a catastrophic event. Two of the major effects associated with hazardous-materials accidents, explosion and release of toxic vapors, are treated by a common formalism which can be readily applied to any given case by means of a graphic procedure. As an example, for a typical case it is found that railroad shipments of chlorine in 55-ton tank cars constitute a greater hazard to a nearby nuclear plant than equally frequent rail shipments of explosives in amounts of 10 tons. 11 references. (U.S.)

  18. Estimated consequences from severe spent nuclear fuel transportation accidents

    International Nuclear Information System (INIS)

    Arnish, J.J.; Monette, F.; LePoire, D.; Biwer, B.M.

    1996-01-01

    The RISKIND software package is used to estimate radiological consequences of severe accident scenarios involving the transportation of spent nuclear fuel. Radiological risks are estimated for both a collective population and a maximally exposed individual based on representative truck and rail cask designs described in the U.S. Nuclear Regulatory Commission (NRC) modal study. The estimate of collective population risk considers all possible environmental pathways, including acute and long-term exposures, and is presented in terms of the 50-y committed effective dose equivalent. Radiological risks to a maximally exposed individual from acute exposure are estimated and presented in terms of the first year and 50-y committed effective dose equivalent. Consequences are estimated for accidents occurring in rural and urban population areas. The modeled pathways include inhalation during initial passing of the radioactive cloud, external exposure from a reduction of the cask shielding, long-term external exposure. from ground deposition, and ingestion from contaminated food (rural only). The major pathways and contributing radionuclides are identified, and the effects of possible mitigative actions are discussed. The cask accident responses and the radionuclide release fractions are modeled as described in the NRC modal study. Estimates of severe accident probabilities are presented for both truck and rail modes of transport. The assumptions made in this study tend to be conservative; however, a set of multiplicative factors are identified that can be applied to estimate more realistic conditions

  19. Nuclear fuel cycle facility accident analysis handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  20. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs

  1. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    International Nuclear Information System (INIS)

    Smart, Richard

    2011-01-01

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  2. Legal responsibility in case of a nuclear accident

    International Nuclear Information System (INIS)

    Nabhane, M. F.

    1988-01-01

    Numerous laws have been elaborated in order to determine the legal responsibility in case of a nuclear accident. These laws were made necessary because of intervention of the factor 'error' in the nuclear accident. The legal definition of 'error' assumes that it results from non-respect or negligence of established norms on the part of the persons who manipulate the instruments of radioactive production. Nuclear research should not be undertaken in a country without the formal engagement of the central authorities to take the necessary dispositions to ensure the security and safety of the populations and their possessions. The world community should not admit a scientific activity in the nuclear field in the absence of guarantees for the safety and the security of man. The state that permits the production of nuclear energy is legally responsible for any failure that might result in radioactive spills. Considering the possibility of error and the dangers attached to the manipulation of radioactive material, the legislators have elaborated a series of laws, which take into consideration two principles: a)The inalienable right of man to life as conceived in the monotheistic religions and proclaimed by positive law; and b)The responsibility of the state for the safety and security of its citizens. Of course, error is human; but if man may make an error of judgement in ordinary normal life, he does not have the right to make the least miscalculation when this might lead to a nuclear disaster. (author)

  3. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Sholom, S.; McKeever, S.W.S.

    2016-01-01

    This paper reviews recent research on the application of the physical dosimetry techniques of electron paramagnetic resonance (EPR) and luminescence (optically stimulated luminescence, OSL, and thermoluminescence, TL) to determine radiation dose following catastrophic, large-scale radiological events. Such data are used in dose reconstruction to obtain estimates of dose due to the exposure to external sources of radiation, primarily gamma radiation, by individual members of the public and by populations. The EPR and luminescence techniques have been applied to a wide range of radiological studies, including nuclear bomb detonation (e.g., Hiroshima and Nagasaki), nuclear power plant accidents (e.g., Chernobyl), radioactive pollution (e.g., Mayak plutonium facility), and in the future could include terrorist events involving the dispersal of radioactive materials. In this review we examine the application of these techniques in ‘emergency’ and ‘retrospective’ modes of operation that are conducted on two distinct timescales. For emergency dosimetry immediate action to evaluate dose to individuals following radiation exposure is required to assess deterministic biological effects and to enable rapid medical triage. Retrospective dosimetry, on the other hand, contributes to the reconstruction of doses to populations and individuals following external exposure, and contributes to the long-term study of stochastic processes and the consequential epidemiological effects. Although internal exposure, via ingestion of radionuclides for example, can be a potentially significant contributor to dose, this review is confined to those dose components arising from exposure to external radiation, which in most studies is gamma radiation. The nascent emergency dosimetry measurement techniques aim to perform direct dose evaluations for individuals who, as members of the public, are most unlikely to be carrying a dosimeter issued for radiation monitoring purposes in the event

  4. Fukushima Nuclear Accident Recorded in Tibetan Plateau Snow Pits

    Science.gov (United States)

    Wang, Ninglian; Wu, Xiaobo; Kehrwald, Natalie; Li, Zhen; Li, Quanlian; Jiang, Xi; Pu, Jianchen

    2015-01-01

    The β radioactivity of snow-pit samples collected in the spring of 2011 on four Tibetan Plateau glaciers demonstrate a remarkable peak in each snow pit profile, with peaks about ten to tens of times higher than background levels. The timing of these peaks suggests that the high radioactivity resulted from the Fukushima nuclear accident that occurred on March 11, 2011 in eastern Japan. Fallout monitoring studies demonstrate that this radioactive material was transported by the westerlies across the middle latitudes of the Northern Hemisphere. The depth of the peak β radioactivity in each snow pit compared with observational precipitation records, suggests that the radioactive fallout reached the Tibetan Plateau and was deposited on glacier surfaces in late March 2011, or approximately 20 days after the nuclear accident. The radioactive fallout existed in the atmosphere over the Tibetan Plateau for about one month. PMID:25658094

  5. Design and realization of a dosimetry and radiology system for nuclear power plants

    International Nuclear Information System (INIS)

    Capelle, M.

    Computer-assisted acquisition of radiation exposure data and related tasks was established at an early stage at Biblis nuclear power plant of RWE. Due to the positive experience with this system a similar, more sophisticated system has been developed for the nuclear power plants at Grundremmingen, Muelheim-Kaerlich and Kalkar. This system, DORA (Dosimetry and radiological monitoring) is described in the article. (RW) [de

  6. Assessment of accident risks from german nuclear plants

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1979-01-01

    The German risk study are presented. The main objectives can be summed up as follows: (a) An assessment of the societal risk due to accidents in nuclear power plants with reference to German conditions; (b) To get experience in the field of risk analysis and to provide a basis for estimation of uncertainties; (c) To provide guidance for future activities in the German Reactor Safety Research Program. Finally several conclusions reached by this study are discussed. (author)

  7. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    Science.gov (United States)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  8. The use of the dicentric assay for biological dosimetry for radiation accidents in Bulgaria.

    Science.gov (United States)

    Hadjidekova, Valeria; Hristova, Rositsa; Ainsbury, Elizabeth A; Atanasova, Petya; Popova, Ljubomira; Staynova, Albena

    2010-02-01

    This paper details the construction of a 137Cs gamma calibration curve that has been established for dicentric assay and the testing and validation of the curve through biological dosimetry in three situations of suspected workplace overexposure that arose accidentally or through negligence or lack of appropriate safety measures. The three situations were: (1) suspected 137Cs contamination in a factory air supply; (2) suspected exposure to an industrial 192Ir source; and (3) accidental exposure of construction workers to radiation from a 60Co radiotherapy source in a hospital medical physics department. From a total of 24 potentially-exposed subjects, only one worker was found to have a statistically significant dose (0.16 Gy, 95% confidence intervals 0.02-0.43 Gy). In all other cases, the main function of the biological dosimetry was to reassure the subjects that any dose received was low.

  9. Implications of the Fukushima accident of nuclear safety in Finland

    International Nuclear Information System (INIS)

    Valtonen, Keijo

    2012-01-01

    A severe accident took place in Japan at Fukushima Dai-ichi nuclear power plant in March 2011. The immediate cause of the accident was a tsunami caused by the earthquake and the fact that the consequences of large tsunamis were not adequately considered in the design of the plant. Although tsunamis are not considered a real threat in Europe, the European Council requested on 25 March 2011 the European Nuclear Safety Regulators' Group (ENSREG) and the European Commission to undertake a comprehensive and transparent risk and safety assessment (''stress test'') of European nuclear power plants [ENSREG 2011A]. This report is prepared to evaluate the safety provisions of Finnish Nuclear Power Plants as specified in the European ''stress tests''. The technical description is based on the Licensees' reports on the issues within these specifications [Fortum 2011; TVO 2011]. Furthermore, evaluation on the current situation carried out by Radiation and Nuclear Safety Authority (STUK) is provided, and the possibilities to further enhance safety in the Finnish NPPs are presented. According to the ENSREG specifications, earthquakes, flooding and extreme weather conditions were studied in the stress tests. In addition, consequences of losses of some safety functions and finally management of severe accidents were studied, irrespective of their probabilities. The European stress tests cover in Finland all the operating nuclear power plants (Loviisa 1 and 2, Olkiluoto 1 and 2) and the unit under construction (Olkiluoto 3). The intermediate storages of spent fuel in Loviisa and in Olkiluoto are included in the stress tests. The new NPP units to be constructed which do not yet have a construction license, (Fennovoima 1, Olkiluoto 4) are not considered in the European stress tests. (orig.)

  10. Discussion on several issues of the accidents management of nuclear power plants in operation

    International Nuclear Information System (INIS)

    Cao Xuewu; Wang Zhe; Zhang Yingzhen

    2009-01-01

    This article discusses several issues of the accident management of nuclear power plants in operation, for example: the necessity, implementation principle of accident management and accident management program etc. For conducting accident management for beyond design basis accidents, this article thinks that the accident management program should be developed and implemented to ensure that the plant and its personnel with responsibilities for accident management are adequately prepared to take effective on-site actions to prevent or mitigate the consequences of severe accident. (authors)

  11. Activities developed by the biological dosimetry laboratory of the Autoridad Regulatoria Nuclear - ARN of Argentina

    International Nuclear Information System (INIS)

    Radl, A.; Sapienza, C.E.; Taja, M.R.; Bubniak, R.; Deminge, M.; Di Giorgio, M.

    2013-01-01

    Biological dosimetry (DB) allows to estimate doses absorbed in individuals exposed to ionizing radiation through the quantification of stable and unstable chromosome aberrations (SCA and UCA). The frequency of these aberrations is referred to a calibration dose response curve (in vitro) to determine the doses of the individual to the whole body. The DB is a necessary support for programs of national radiation protection and response systems in nuclear or radiological emergencies in the event of accidental or incidental, single overexposure or large scale. In this context the Laboratory of Dosimetry Biological (LDB) of the Authority Regulatory Nuclear (ARN) Argentina develops and applies different dosimeters cytogenetic from four decades ago. These dosimeters provide a fact more within the whole of the information necessary for an accidental, complementing the physical and clinical dosimetry exposure assessment. The most widely used in the DB biodosimetric method is the quantification of SCA (dicentrics and rings Central) from a sample of venous blood. The LDB is accredited for the trial, under rules IRAM 301: 2005 (ISO / IEC 17025: 2005) and ISO 19238:2004. Test applies to the immediate dosimetry evaluation of acute exposures, all or a large part of the body in the range 0,1-5 Gy. In this context the LDB is part of the Latin American network of DB (LBDNet), BioDoseNet-who and response system in radiological emergencies and nuclear IAEA-RANET, being enabled to summon the LBDNet if necessary

  12. The Fukushima major accident. Seismic, nuclear and medical considerations

    International Nuclear Information System (INIS)

    Carpentier, Alain; Friedel, Jacques; Brezin, Edouard; Baulieu, Etienne-Emile; Courtillot, Vincent; Dercourt, Jean; Jaupart, Claude; Le Pichon, Xavier; Poirier, Jean-Paul; Salencon, Jean; Tapponnier, Paul; Dautray, Robert; Taquet, Philippe; Blanchet, Rene; Le Mouel, Jean-Louis; Chapron, Jean-Yves; Fanon, Joelle; BARD, Pierre-Yves; Bernard, Pascal; Montagner, Jean-Paul; Armijo, Rolando; Shapiro, Nikolai; Tait, Steve; Cara, Michel; Madariaga, Raul; Pecker, Alain; Schindele, Francois; Douglas, John

    2011-01-01

    The first part of this voluminous report addresses mega-earthquakes and mega-tsunamis: scientific data, case of France (West Indies and metropolitan France), and socioeconomic aspects (governance, regulation, para-seismic protection). The second part deals with the nuclear accident at Fukushima: event sequence, situation of the nuclear industry in France after Fukushima, fuel cycle and future opportunities. The third part addresses health and environmental consequences. Each part is completed by a large number of documents in which some specific aspects are more precisely reported, commented and discussed

  13. Researches and Applications of ESR Dosimetry for Radiation Accident Dose Assessment

    International Nuclear Information System (INIS)

    Wu, K.; Guo, L.; Cong, J.B.; Sun, C.P.; Hu, J.M.; Zhou, Z.S.; Wang, S.; Zhang, Y.; Zhang, X.; Shi, Y.M.

    1998-01-01

    The aim of this work was to establish methods suitable for practical dose assessment of people involved in ionising radiation accidents. Some biological materials of the human body and materials possibly carried or worn by people were taken as detection samples. By using electron spin resonance (ESR) techniques, the basic dosimetric properties of selected materials were investigated in the range above the threshold dose of human acute haemopoietic radiation syndrome. The dosimetric properties involved included dose response properties of ESR signals, signal stabilities, distribution of background signals, the lowest detectable dose value, radiation conditions, environmental effects on the detecting process, etc. Several practical dose analytical indexes and detecting methods were set up. Some of them (bone, watch glass and tooth enamel) had also been successfully used in the dose assessment of people involved in three radiation accidents, including the Chernobyl reactor accident. This work further proves the important role of ESR techniques in radiation accident dose estimation. (author)

  14. ANSI/ANS-8.23-1997: nuclear criticality accident emergency planning and response

    International Nuclear Information System (INIS)

    Baker, J.S.

    2004-01-01

    American National Standard ANSUANS-8.23 was developed to expand upon the basic emergency response guidance given in American National Standard, 'Administrative Practices for Nuclear Criticality Safety' ANSI/ANS-8.19-1996 (Ref. 1). This standard provides guidance for minimizing risks to personnel during emergency response to a nuclear criticality accident outside reactors. This standard is intended to apply to those facilities for which a criticality accident alarm system, as specified in American National Standard, 'Criticality Accident Alarm System', ANSI/ANS-8.3-1997 (Ref. 2) is in use. The Working Group was established in 1990, with Norman L. Pruvost as chairman. The Working Group had up to twenty-three members representing a broad range of the nuclear industry, and has included members from Canada, Japan and the United Kingdom. The initial edition of ANSI/ANS-8.23 was approved by the American National Standards Institute on December 30, 1997. It provides guidance for the following topics: (1) Management and technical staff responsibilities; (2) Evaluation of a potential criticality accident; (3) Emergency plan provisions; (4) Evacuation; (5) Re-entry, rescue and stabilization; and (6) Classroom training, exercises and evacuation drills. This guidance is not for generic emergency planning issues, but is specific to nuclear criticality accidents. For example, it assumes that an Emergency Plan is already established at facilities that implement the standard. During the development of the initial edition of ANSI/ANS-8.23, each Working Group member evaluated potential use of the standard at a facility with which the member was familiar. This revealed areas where a facility could have difficulty complying with the standard. These reviews helped identify and eliminate many potential problems and ambiguities with the guidance. The Working Group has received very limited feedback from the user community since the first edition of the standard was published. Suggestions

  15. The human elements in phenomena giving rise to nuclear accidents

    International Nuclear Information System (INIS)

    Carnino, A.; Raggenbass, A.

    1977-01-01

    In its search for a high degree of safety, the nuclear industry should take into account the human parameters, which play an important role. This role is reflected in the individual records kept on incidents and analysis of these records, as has been carried out in conventional industry, represents a first attempt to allow for this factor. The first inquiries covering the background of incidents led to a series of studies and action in respect of individual staff members: on the part of operators, education of personnel in relation to their duties (for example, simulation of reactor control) and attempts to find objective selection criteria for certain specific posts; on the part of those responsible for safety, ergonomic studies and studies on human reliability. For effective prevention of accidents it is necessary to move backwards along the causality chains and therefore to study a nuclear facility as a man-machine system in order to discover the greatest number of potential accident factors. The nuclear facility is introduced into an environment which imposes its rules, constraints and checks and a full study of the human element in safety implies that they should be taken into account. The programme of the Nuclear Safety Department of the Institute of Protection and Nuclear Safety includes not only systematic updating of incident records but also special ergonomic studies (maintenance in a radioactive environment), studies of human reliability and overall studies known as safety management studies. (author)

  16. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, George A. [U.S. Department of Health and Human Services, Office of Preparedness and Emergency Operations, 200 Independence Avenue, SW, Room 403B-1, Washington, DC 20201 (United States); Swartz, Harold M. [Dept. of Radiology and Physiology Dept., Dartmouth Medical School, HB 7785, Vail 702, Rubin 601, Hanover, NH 03755 (United States); Amundson, Sally A. [Center for Radiological Research, Columbia University Medical Center, 630 W. 168th Street, VC11-215, New York, NY 10032 (United States); Blakely, William F. [Armed Forces Radiobiology Research Inst., 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: blakely@afrri.usuhs.mil; Buddemeier, Brooke [Science and Technology, U.S. Department of Homeland Security, Washington, DC 20528 (United States); Gallez, Bernard [Biomedical Magnetic Resonance Unit and Lab. of Medicinal Chemistry and Radiopharmacy, Univ. Catholique de Louvain, Brussels (Belgium); Dainiak, Nicholas [Dept. of Medicine, Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610 (United States); Goans, Ronald E. [MJW Corporation, 1422 Eagle Bend Drive, Clinton, TN 37716-4029 (United States); Hayes, Robert B. [Remote Sensing Lab., MS RSL-47, P.O. Box 98421, Las Vegas, NV 89193 (United States); Lowry, Patrick C. [Radiation Emergency Assistance Center/Training Site (REAC/TS), Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 (United States); Noska, Michael A. [Food and Drug Administration, FDA/CDRH, 1350 Piccard Drive, HFZ-240, Rockville, MD 20850 (United States); Okunieff, Paul [Dept. of Radiation Oncology (Box 647), Univ. of Rochester, 601 Elmwood Avenue, Rochester, NY 14642 (United States); Salner, Andrew L. [Helen and Harry Gray Cancer Center, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102 (United States); Schauer, David A. [National Council on Radiation Protection and Measurements, 7910 Woodmont Avenue, Suite 400, Bethesda, MD 20814-3095 (United States)] (and others)

    2007-07-15

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  17. BiodosEPR-2006 Meeting: Acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents

    International Nuclear Information System (INIS)

    Alexander, George A.; Swartz, Harold M.; Amundson, Sally A.; Blakely, William F.; Buddemeier, Brooke; Gallez, Bernard; Dainiak, Nicholas; Goans, Ronald E.; Hayes, Robert B.; Lowry, Patrick C.; Noska, Michael A.; Okunieff, Paul; Salner, Andrew L.; Schauer, David A.

    2007-01-01

    In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473-496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037-1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry-recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494-504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505-512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293-299; . Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672-682], national [. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; . Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland

  18. Nuclear energy policy issues after the 3.11 Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tatsujiro [Japan Atomic Energy Commission (Japan)

    2014-07-01

    The Fukushima nuclear accident has become one of the worst accidents in nuclear history and it is not completely over yet. It will take at least 30 years or more to decontaminate and decommission the crippled nuclear reactors on site. Still, more than 140,000 people are away from home and restoring and assuring the life and welfare of those evacuated people is the top priority of Japanese government's nuclear energy policy. The government will release its new energy policy soon which will state that nuclear power is considered as an important base load electricity source, while committing to reduce its dependence as much as possible. For nuclear energy policy, there are certain important issues to be overcome regardless of future of nuclear power in Japan. They are: (1) spent fuel management and radioactive waste disposal, (2) restoring public trust (3) securing human resources and (4) plutonium stockpile management.

  19. Methodology of radionuclides dis incorporation in people related to nuclear and radiological accidents

    International Nuclear Information System (INIS)

    Jimenez F, E. A.

    2014-01-01

    In this paper a classification of the radiological and nuclear accidents is presented, describing which the activities are, where they have occurred, their incidence and the learned lessons in these successes. The radiological accidents in which radioactive materials intervene can occur anywhere, and they are related to no controlled dangerous sources (abandoned, lost, stolen, or found sources), improper use of dangerous industrial and medical sources, exposition and contamination of people in general by an unknown origin, serious over expositions, menaces and willful misconduct, emergencies during transportation of radioactive material. A person can receive a dose of radiation from an external source, because of radioactive material placed on skin or on equipment, or because of ingestion or inhalation of radiological particles. The ingestion or the inhalation of radioactive material can cause an internal dose to the whole body or to a specific organ during a period of time. That is why a description of the processes of incorporation, the stages of incorporation and a description of the biokinetic models are also realized to understand the ingestion, transference and the excretion of the radioactive elements. In order to offer help to a victim of internal contamination, the dosimetric and medical diagnosis is very important. The most important techniques of dosimetric diagnosis are the dosimetry in vivo (cytogenetics and the counting in vivo of the whole body) and the bioassays. These techniques allow obtain data such as the radionuclide, the target organ, the absorbed dose, etc. At the same time, the doctor in charge must be attentive to the patients symptoms and their manifestation time, since they are an indicator, first, the patient suffered an irradiation, and second, of the range esteem of the received radiation dose. These are the parameters that are useful as criterion to decide if a person has to receive some treatment and select the methodologies that

  20. The accident at TEPCO's Fukushima Dai-ichi Nuclear Power Station - occurrence of the accident, current situation and Future

    International Nuclear Information System (INIS)

    Hirose, K.

    2013-01-01

    In this presentation author analyse course of accident on Fukushima Dai-chi NPPs as well as consequences of this disaster. The following parts are presented: (1) Occurrence of the accident; (2) Evacuation of the residential people; (3) Deterioration and protraction of the accident; (4) Impact on society; (5) Situation of decontamination; (6) Long-term steps towards decommissioning; (7) Situation of other nuclear power stations; (8) Conclusions and lessons learned.

  1. Computer codes in nuclear safety, radiation transport and dosimetry

    International Nuclear Information System (INIS)

    Bordy, J.M.; Kodeli, I.; Menard, St.; Bouchet, J.L.; Renard, F.; Martin, E.; Blazy, L.; Voros, S.; Bochud, F.; Laedermann, J.P.; Beaugelin, K.; Makovicka, L.; Quiot, A.; Vermeersch, F.; Roche, H.; Perrin, M.C.; Laye, F.; Bardies, M.; Struelens, L.; Vanhavere, F.; Gschwind, R.; Fernandez, F.; Quesne, B.; Fritsch, P.; Lamart, St.; Crovisier, Ph.; Leservot, A.; Antoni, R.; Huet, Ch.; Thiam, Ch.; Donadille, L.; Monfort, M.; Diop, Ch.; Ricard, M.

    2006-01-01

    The purpose of this conference was to describe the present state of computer codes dedicated to radiation transport or radiation source assessment or dosimetry. The presentations have been parted into 2 sessions: 1) methodology and 2) uses in industrial or medical or research domains. It appears that 2 different calculation strategies are prevailing, both are based on preliminary Monte-Carlo calculations with data storage. First, quick simulations made from a database of particle histories built though a previous Monte-Carlo simulation and secondly, a neuronal approach involving a learning platform generated through a previous Monte-Carlo simulation. This document gathers the slides of the presentations

  2. The nuclear reactor accident at Windscale - October, 1957: Environmental aspects

    International Nuclear Information System (INIS)

    Loutit, J.F.; Marley, W.G.; Russell, R.S.

    1960-01-01

    The nature and cause of the nuclear reactor accident at Windscale in October, 1957, have been described in the summary report of the Committee of Inquiry set up by the Atomic Energy Authority. This report was published in a Command Paper Atomic Energy Office, 1957). The events leading up to the accident occurred on the 8th October, during a routine release of the energy which had become stored in the graphite moderator as a result of the normal operation of the reactor. The Committee concluded that the accident had been caused by local overheating of the uranium fuel elements, the canning of which then failed exposing the uranium and allowing it to oxidize. The temperatures in the affected channels continued to rise, leading to the combustion of the graphite. The amount of radioactivity released during the accident is not known precisely, but approximate estimates were made from the measurements of the radioactive iodine deposited on the ground in this country, and from measurements on air filters obtained both in the United Kingdom and on the continent of Europe

  3. The nuclear reactor accident at Windscale - October, 1957: Environmental aspects

    Energy Technology Data Exchange (ETDEWEB)

    Loutit, J F; Marley, W G; Russell, R S

    1960-12-01

    The nature and cause of the nuclear reactor accident at Windscale in October, 1957, have been described in the summary report of the Committee of Inquiry set up by the Atomic Energy Authority. This report was published in a Command Paper Atomic Energy Office, 1957). The events leading up to the accident occurred on the 8th October, during a routine release of the energy which had become stored in the graphite moderator as a result of the normal operation of the reactor. The Committee concluded that the accident had been caused by local overheating of the uranium fuel elements, the canning of which then failed exposing the uranium and allowing it to oxidize. The temperatures in the affected channels continued to rise, leading to the combustion of the graphite. The amount of radioactivity released during the accident is not known precisely, but approximate estimates were made from the measurements of the radioactive iodine deposited on the ground in this country, and from measurements on air filters obtained both in the United Kingdom and on the continent of Europe.

  4. Operators' arrangement for handling nuclear accidents at power plants

    International Nuclear Information System (INIS)

    Bertron, L.; Meclot, B.

    1986-01-01

    Given the preventive measures adopted by Electricite de France (EDF), the probability of a nuclear accident occurring in a power plant is extremely low but cannot, even so, be considered to be zero. The operator must therefore be prepared for this possibility. Apart from dealing with the consequences of the accident, the organization he sets up must fulfil the double objective of preventing any worsening of the accident and ensuring that the social, political and economic effects remain in proportion to the seriousness of the accident. The paper describes the organization set up by EDF in co-operation with the public authorities, indicating the concepts on which it is based and the logistical resources brought into play, in particular for telecommunications. Reports on the TMI incident showed that public telecommunications services can well be saturated in the event of an emergency. EDF, relying on the combined advantages of all transmission systems which the French Postal and Telecommunications Office can place at its disposal, as well as private networks with a concession from the Government, has taken the necessary precautions to deal with this problem. The organization is also designed to respond to the requirements of the media and the population at large for correct information. These systems are naturally all tested during training exercises which ensure that the organization as a whole can cope, in terms both of manpower and equipment, with a very improbable event. (author)

  5. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR); Dosimetrie d'accident en champ mixte (neutrons, photons) utilisant la spectrometrie par resonance paramagnetique electronique (RPE)

    Energy Technology Data Exchange (ETDEWEB)

    Herve, M.L

    2006-03-15

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  6. National response plan - Major nuclear or radiological accidents

    International Nuclear Information System (INIS)

    2014-02-01

    France has been implementing stringent radiation protection and nuclear safety and security measures for many years. However, this does not mean that the country is exempt from having to be prepared to deal with an emergency. Changes in France, Europe and other parts of the globe have made it necessary for France to reconsider how it responds to nuclear and radiological emergencies. As the potential impact of a nuclear or radiological accident can affect a wide range of activities, the plan described herein is based on a cross-sector and inter-ministerial approach to emergency response. The Chernobyl and Fukushima-Daiichi disasters are proof that the consequences of a major nuclear or radiological accident can affect all levels of society. These challenges are substantial and relate to: public health: An uncontrolled nuclear accident can have immediate consequences (death, injury, irradiation) as well as long-term consequences that can lead to increased risk of developing radiation-induced diseases (such as certain types of cancer); environmental quality: Radiation contamination can last for several decades and, in some cases, can result in an area being closed off permanently to the public; economic and social continuity: Nuclear accidents bring human activity to a halt in contaminated areas, disrupting the economic and social order of the entire country. It may therefore be necessary to adapt economic and social systems and carry out clean-up operations if people and businesses have been displaced; quality of international relations: Related to fulfillment of obligations to alert and inform European and international partners. This international dimension also covers the protection of French nationals present in countries stricken by a nuclear accident. This national plan provides reference information on how to prepare for a nuclear or radiological emergency and make the appropriate decisions in the event of an emergency. It covers the emergency phase (including

  7. Lessons of the accident at Three Mile Island nuclear power plant

    International Nuclear Information System (INIS)

    Veksler, L.M.

    1983-01-01

    Measures taken in the USA for improving safety of NPPs after the accident at ''Three Mile Island'' nuclear power plant are considered. Activities, related to elimination of accident consequences are analyzed. Perspectives of resuming the NPP operation are discussed

  8. Radiological environment within an NPP after a severe nuclear accident

    Science.gov (United States)

    Andgren, Karin; Fritioff, Karin; Buhr, Anna Maria Blixt; Huutoniemi, Tommi

    2017-09-01

    The radiological environment following a severe nuclear accident can be visualised on building layouts. The direct radiation in an area (or room) can be visualized on the layout by a colouring scheme depending on the dose rate level (for example orange for high gamma dose rate level and purple for an intermediate gamma dose rate level). Following the Fukushima accident, a need for update of these layouts has been identified at the Swedish nuclear power plant of Forsmark. Shielding calculations for areas where access is desired for severe accident management have been performed. Many different sources of radiation together with different types of shielding material contribute to the dose that would be received by a person entering the area. External radiation from radioactivity within e.g. pipes and components is considered and also external radiation from radioactivity in the air (originating from diffuse leakage of the containment atmosphere). Results are presented as dose rates for relevant dose points together with a method for estimating the dose rate levels for each of the rooms of the reactor building.

  9. Iodine removal in containment filtered venting system during nuclear accident

    International Nuclear Information System (INIS)

    Bera, Subrata; Deo, Anuj Kumar; Nagrale, D.B.; Paul, U.K.; Prasad, M.; Gaikwad, A.J.

    2015-01-01

    Post Fukushima nuclear accident, containment filtered venting system is being introduced in Indian nuclear power plant to strengthen the defense in depth safety barrier by depressurizing the containment building along with minimization of radioactivity release to environment during a severe accident. Radioactive iodine is one of the major contributors to radiation dose during early release phase of a severe accident. Physical and Chemical form of iodine and iodine bearing compounds includes particulates, elemental and organic. In the most efficient design of CFVS, wet scrubbing mechanism has been employed through use of venture scrubber. The Iodine removal process in wet scrubber involves two processes: chemical reaction in highly alkaline aqueous solution and impingement of particulates with water droplets produced in the venturi nozzle. In this paper, venturi has been modeled using the Calvert model. The variation of efficiency has been estimated for the different particle sizes. The impact of the shape parameter of log-normal distribution on the amount of scrubbed iodine has also been assessed. Release phase wise the scrubbed amount of iodine in the venturi based CFVS system has been estimated for a typical BWR. (author)

  10. Millstone Unit 1 plant vulnerabilities during postulated severe nuclear accidents

    International Nuclear Information System (INIS)

    Khalil, Y.F.

    1993-01-01

    Generic Letter 88-20, Supplement No. 1 (Ref. 1), issued by the Nuclear Regulatory Commission (NRC) requested all licensees holding operating licenses and construction permits for nuclear power reactor facilities to perform Individual Plant Examinations (IPE) of their plant(s) for severe accident vulnerabilities and to submit the results to the Commission. This paper summarizes the major Front-End (Level-1 PRA) and Back-End (Level-2 PRA) insights gained from the Millstone Unit 1 (MP-1) IPE study. No major plant vulnerabilities have been identified from a Front-End perspective. The Back-End analysis, however, has identified two potential containment vulnerabilities during postulated events that progress beyond the Design Basis Accidents (DBAs), namely, (1) MP-1 is dominated by early source term releases that would occur within a six-hour time frame from time of accident initiation, or reactor trip, and (2) MP-1 containment is somewhat vulnerable to leak-type failure through the drywell head. As a result of the second finding, a recommendation currently under evaluation, has been made to increase the drywell head bolt's preload from 54 Kips to resist the containment design pressure value (62 psig)

  11. Severe Accident Simulation of the Laguna Verde Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available The loss-of-coolant accident (LOCA simulation in the boiling water reactor (BWR of Laguna Verde Nuclear Power Plant (LVNPP at 105% of rated power is analyzed in this work. The LVNPP model was developed using RELAP/SCDAPSIM code. The lack of cooling water after the LOCA gets to the LVNPP to melting of the core that exceeds the design basis of the nuclear power plant (NPP sufficiently to cause failure of structures, materials, and systems that are needed to ensure proper cooling of the reactor core by normal means. Faced with a severe accident, the first response is to maintain the reactor core cooling by any means available, but in order to carry out such an attempt is necessary to understand fully the progression of core damage, since such action has effects that may be decisive in accident progression. The simulation considers a LOCA in the recirculation loop of the reactor with and without cooling water injection. During the progression of core damage, we analyze the cooling water injection at different times and the results show that there are significant differences in the level of core damage and hydrogen production, among other variables analyzed such as maximum surface temperature, fission products released, and debris bed height.

  12. Radiological environment within an NPP after a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Andgren Karin

    2017-01-01

    Full Text Available The radiological environment following a severe nuclear accident can be visualised on building layouts. The direct radiation in an area (or room can be visualized on the layout by a colouring scheme depending on the dose rate level (for example orange for high gamma dose rate level and purple for an intermediate gamma dose rate level. Following the Fukushima accident, a need for update of these layouts has been identified at the Swedish nuclear power plant of Forsmark. Shielding calculations for areas where access is desired for severe accident management have been performed. Many different sources of radiation together with different types of shielding material contribute to the dose that would be received by a person entering the area. External radiation from radioactivity within e.g. pipes and components is considered and also external radiation from radioactivity in the air (originating from diffuse leakage of the containment atmosphere. Results are presented as dose rates for relevant dose points together with a method for estimating the dose rate levels for each of the rooms of the reactor building.

  13. Report of the Fukushima nuclear accident by the National Academy of Science. Lessons learned from the Fukushima nuclear accident for improving safety of U.S. nuclear plants

    International Nuclear Information System (INIS)

    Nariai, Hideki

    2014-01-01

    U.S. National Academy of Science investigated the accident at the Fukushima Daiichi nuclear plant initiated by the Great East Japan Earthquake for two years and published a draft report in July 24, 2014. Investigation results were summarized in nine new findings and made ten recommendations in a wide horizon; (1) hardware countermeasures against severe accidents and training of operators, (2) upgrade of risk assessment capability for beyond design basis accident, (3) incorporation of new information about hazards in safety regulations, (4) needed improvement of off-site emergency preparedness, and (5) improvements of nuclear safety culture. New information about hazards related with tsunami assessment, new risk assessment for beyond design basis accident, advice of foreigner resident evacuations, regulatory capture, and safety culture and regulator's specialty were discussed as Japanese issues. (T. Tanaka)

  14. Accident assessment under emergency situation in Daya Bay nuclear power station

    International Nuclear Information System (INIS)

    Yang Ling; Chen Degan; Lin Shumou; Fu Guohui

    2004-01-01

    The accident assessment under emergency situation includes the accident status evaluation and its consequence estimation. This paper introduces evaluation methods for accident status and its assistant computer system (SESAME-GNP) utilized during the emergency situation in Guangdong Daya Bay Nuclear Power Station (GNPS) in detail. At the same time, an improved accident consequence estimation system in GNPS (RACAS-GNP) is briefly described. With the improvement of the accident assessment systems, the capability of emergency response in GNPS is strengthened

  15. Analysis of the 1957-1958 Soviet nuclear accident

    International Nuclear Information System (INIS)

    Trabalka, J.R.; Eyman, L.D.; Auerbach, S.I.

    1980-01-01

    The presence of an extensive environmental contamination zone in Chelibinsk Province of the Soviet Union, associated with an accident in the winter of 1957 to 1958 involving the atmospheric release of fission wastes, appears to have been confirmed, primarily by an analysis of the Soviet radioecology literature. The contamination zone is estimated to contain 10(5) to 10(6) curies of strontium-90. A plausible explanation for the incident is the use of now-obsolete techniques for waste storage and cesium-137 isotope separation. Radioactive contamination appears to have resulted in resettlement of the human population from a significant area (100 to 1000 square kilometers). It therefore seems imperative to obtain a complete explanation of the cause (or causes) and consequences of the accident; Soviet experience gained in the application of corrective measures would be invaluable to the world nuclear community

  16. Transport of large particles released in a nuclear accident

    International Nuclear Information System (INIS)

    Poellaenen, R.; Toivonen, H.; Lahtinen, J.; Ilander, T.

    1995-10-01

    Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d a > 20 μm) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.)

  17. JAEA's activities relating the Fukushima Nuclear Plant accident

    International Nuclear Information System (INIS)

    Tagawa, Akihiro

    2012-01-01

    JAEA started the activities relating to the Fukushima nuclear plant accident immediately after the Great East Japan Earthquake. The Office of Fukushima Partnership Operations for Environmental Remediation was opened and the JAEA staff was stationed as the base of cooperation with other organizations. It is conducting environmental radiation monitoring, environmental radioactivity analyses, resident public consulting, and demonstration of decontamination technology. Experts of JAEA are providing technical advice and supports to the Nuclear Safety Commission of Japan and the Ministry of Education, Culture and Sports. Furthermore, the water radiolysis leading to hydrogen gas evolution by Cs 137 adsorbed zeolite and the technique for radioactive waste process and its disposal of fuel debris are being studied. JAEA's Nuclear Emergency Assistance and Training Center (NEAT) is acting as a center of these supporting activities of JAEA. (S. Ohno)

  18. Transport of large particles released in a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R; Toivonen, H; Lahtinen, J; Ilander, T

    1995-10-01

    Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d{sub a} > 20 {mu}m) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.).

  19. Identification and evaluation of accident sequences in nuclear power reactors

    International Nuclear Information System (INIS)

    Amendola, A.; Capobianchi, S.; Mancini, G.; Olivi, L.; Volta, G.; Reina, G.

    1981-01-01

    Probabilistic analysis techniques are being more and more used for the evaluation of accident progression in nuclear power plants, especially after the issue of the Reactor Safety Study (Report WASH-1400). This study and subsequent discussions have indicated the necessity of better investigating some major items, namely: adequate data base for the probabilistic evaluations; completeness of the analysis with respect both to accident initiation and behaviour; adequate treatment of uncertainties on the physical and operational parameters governing the accident behaviour. Furthermore, recent occurrences have stressed the importance of the operational aspects of reactor safety, such as plant-specific identification of possible occurrences, their prompt recognition, on-line prediction of subsequent developments and actions to be taken. The paper reviews the contributions in progress at JRC-Ispra to all these aspects, and specifically reports on the following: (1) The set-up of a European Reliability Data System for the acquisition and organisation of operational data of LWRs in the European Community. (2) The development of more complete and realistic models of systems. This work includes multistate static models of components and systems with a view to automatic fault-tree construction and dynamic models for accident sequence identification. The dynamic modelling approach ESCS (Event Sequence and Consequences Spectrum), shown in detail with an example, represents a step forward with respect to event-tree technique and opens new possibilities in dealing with human factors and on-line diagnosis problems. (3) The development of RSM (Response Surface Methodology) for the analysis of uncertainty propagations in consequence and in probability of accident chains. (author)

  20. Decision conferencing on countermeasures after a large nuclear accident

    International Nuclear Information System (INIS)

    French, S.; Walmod-Larsen, O.; Sinkko, K.

    1993-01-01

    The conference addressed the following objectives. 1. To achieve a common understanding between decision makers and local government officials on the one hand and the radiation protection community on the other of the issues that arise in decisions in the aftermath of a major nuclear accident. 2. To identify issues which need to be considered in preparing guidance on intervention levels. 3. To explore the use of decision conferencing as a format for major decision making. To achieve these objectives the participants were invited to consider a scenario of a hypothetical radiation accident. The scenario assumed that appropriate early protective actions (sheltering, issuing of iodine tablets, etc.) had been taken and that the conference was meet ng some eight days into the accident to consider medium and longer term protective actions, particularly the need for relocation of certain areas. By the end of the conference, considerable consensus on the general form of the strategy had emerged. Moreover, there was a better understanding of the evaluation criteria against which such a strategy needed to be developed. Many felt that it was important to retain flexibility in the strategy of protective actions, even if this increased the uncertainty for the affected population, who would not know exactly what would be done for several months. This emphasised even more the need for good communication and understandable presentations of the adopted strategy. All felt that more research and advice is needed on the psychological effects of such accidents and the effects of protective actions. It was felt that the exercise had illustrated the problems inherent in radiation emergencies. However, a different situation with larger populations could have led to different results. It was agreed that the exercise had been useful in meeting the need to think about the issues before an accident happens. (au) (12 tabs., 5 ills., 8 refs.)

  1. Community response against the nuclear accident. Confusion in Sweden after the Chernobyl nuclear accident and its features

    International Nuclear Information System (INIS)

    Sato, Yoshihiro

    2014-01-01

    The Chernobyl nuclear accident, which occurred in April 1986, became popular in Sweden after two days, and Sweden was hit by a big mess immediately after that. This paper introduces various actions taken in Sweden at that time. The authors analyzed the situation based on the following materials to tell the situation at that time: (1) materials summarized by researchers upon request of the administrative organs of the country, (2) two diaries that were written by Sven Aner, who was a former reporter of a major daily newspaper published after the accident and an activist of antinuclear groups, and Sven Lofvegerg, who handled the accident as a technical officer at Radiation Protection Agency, and (3) newspaper articles at that time. The situations that was revealed after the accident were summarized from the following viewpoints: (1) governmental remarks toward safety standards and effects on residents, and the anxiety of residents, (2) grazing ban on livestock as an important industry and its lifting, (3) correspondence of antinuclear activists, (4) anxiety against the effects of radiation on humans, and counseling on the safety addressed to the Headquarters for Disaster Control, (5) roles of regional radio stations, (6) defects of bureaucracy, (7) criticism against the actions of the Headquarters for Disaster Control, and (8) influence of extreme experts. (A.O.)

  2. Dosimetry of an accident in mixed field (neutrons, photons) using the spectrometry by electronic paramagnetic resonance(EPR)

    International Nuclear Information System (INIS)

    Herve, M.L.

    2006-03-01

    In a radiological accident, the assessment of the dose received by the victim is relevant information for the therapeutic strategy. Two complementary dosimetric techniques based on physical means are used in routine practice in the laboratory: EPR spectroscopy performed on materials removed from the victim or gathered from the vicinity of the victim and Monte Carlo calculations. EPR dosimetry, has been used successfully several times in cases of photon or electron overexposures. Accidental exposure may also occur with a neutron component. The aim of this work is to investigate the potentiality of EPR dosimetry for mixed photon and neutron field exposure with different organic materials (ascorbic acid, sorbitol, glucose, galactose, fructose, mannose, lactose and sucrose). The influence of irradiation parameters (dose, dose rate, photon energy) and of environmental parameters (temperature of heating, light exposure) on the EPR signal amplitude was studied. To assess the neutron sensitivity, the materials were exposed to a mixed radiation field of experimental reactors with different neutron to photon ratios. The relative neutron sensitivity was found to range from 10% to 43% according to the materials. Prior knowledge of the ratio between the dose in samples measured by EPR spectrometry and organ or whole body dose obtained by calculations previously performed for these different configurations, makes it possible to give a first estimation of the dose received by the victim in a short delay. The second aim of this work is to provide data relevant for a quick assessment of the dose distribution in case of accidental overexposure based on EPR measurements performed on one or several points of the body. The study consists in determining by calculation the relation between the dose to the organs and whole body and the dose to specific points of the body, like teeth, bones or samples located in the pockets of victim clothes, for different external exposures corresponding

  3. EPR response characterization of drugs excipients for applying in accident dosimetry; Caracterizacao da resposta RPE dos excipientes dos medicamentos para aplicacao em dosimetria de acidente

    Energy Technology Data Exchange (ETDEWEB)

    Marczewski, Barbara S.; Rodrigues Junior, Orlando; Galante, Ocimar L.; Costa, Zelia M. da; Campos, Leticia L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2002-07-01

    Some drugs are widely used by the population and can be employed to dose retrospective. The carbohydrates (saccharides), commonly used as excipients in the pharmaceutical industry, produce a quantity of free radicals after gamma irradiation, making them useful for dosimetry in emergency or accident situations that imply in dose evaluation from the materials found nearly or in contact with victims. In general, EPR signal from pulverized pills of some drugs are very complex due to the variety of components in the formulation. Because of this fact, some pharmaceutical excipients identified in the pill composition were also analysed by EPR spectrometry. On the counter drugs were studied: Cebion glucose, AAS, Aspirina, Conmel, Lacto-Purga and sugar substitutive ZeroCal. The excipients were: lactose, amide, anhydrous glucose and magnesium stearate. In some samples the number of radicals produced increased with the dose, showing a linear response for a dose range of interest and an adequate sensibility for dosimetry in accident cases.

  4. The international nuclear liability and compensation regime put to the test of a nuclear accident

    International Nuclear Information System (INIS)

    Reyners, P.; Tetley, M.

    2003-01-01

    Full text: It appears that nuclear emergency plans place generally more emphasis on the nuclear safety and radiation protection aspects of the management of an accident, both inside the installation concerned and off-site, than on the particular requirements of local residents who would find themselves suddenly in such an emergency situation and of possible victims of nuclear damage. In a similar vein, studies focusing on the international nuclear third party liability regime usually take a global perspective and leave little room for the treatment of individual cases. The albeit welcome dearth of practical experience in Western countries in providing compensation for accidents of nuclear origin has, however, meant that public and local authorities are not always fully conscious of the importance of this question which should be dealt with in as practical a manner as possible. In order to cover all the legal and practical questions that could arise during the management of the consequences of a nuclear accident with regard to third party liability, insurance and compensation, the OECD/NEA held in co-operation with French authorities a workshop in November 2001. It was decided to organize this workshop according to three main stages: the alert phase, the accident phase and the post-accident phase; and to examine during these three stages the various roles played by local and national authorities, the nuclear operator and his insurer, as well as the nature and form of their respective actions. These questions were addressed both from the angle of applicable domestic legislation and of the relevant international conventions. From the analysis of different national experiences and of the information exchanged during the workshop, a striking diversity may be noted of solutions adopted or envisaged to address various aspects of civil liability, insurance and indemnification of damage in a nuclear emergency situation. This lack of uniformity should not necessarily be

  5. Accident consequence assessment code development

    International Nuclear Information System (INIS)

    Homma, T.; Togawa, O.

    1991-01-01

    This paper describes the new computer code system, OSCAAR developed for off-site consequence assessment of a potential nuclear accident. OSCAAR consists of several modules which have modeling capabilities in atmospheric transport, foodchain transport, dosimetry, emergency response and radiological health effects. The major modules of the consequence assessment code are described, highlighting the validation and verification of the models. (author)

  6. The application of calorimetrical methods in nuclear technology and dosimetry

    International Nuclear Information System (INIS)

    Kott, J.; Krett, V.; Novotny, J.; Kovar, Z.; Jirousek, V.

    1985-01-01

    The report reviews theoretical as well as experimental research activities devoted to the possibilities of measuring reactor neutron and photon fields using thermic detectors based on calorimetric principle. There have been worked out theoretical principles of a reactor measuring probe intended in the first place to measuring neutron fluxes under operational temperatures inside power and research reactors, and a new philosophy of measurement has been elaborated. In addition, the report presents the experimental results as obtained on research reactors WWR-S, WWR-SM, RA, and Czechoslovak power reactor A-1 and GDR power reactor WWR-2. These results are given in connection with a newly proposed technique of reactor neutron field detection. The second part of the report presents results of works concerning beam dosimetry with the use of calorimeters

  7. The Fukushima Daiichi Nuclear Power Plant Accident: OECD/NEA Nuclear Safety Response and Lessons Learnt

    International Nuclear Information System (INIS)

    2013-01-01

    Following the March 2011 accident at the Fukushima Daiichi nuclear power plant, all NEA member countries took early action to ensure and confirm the continued safety of their nuclear power plants and the protection of the public. After these preliminary safety reviews, all countries with nuclear facilities carried out comprehensive safety reviews, often referred to as 'stress tests', which reassessed safety margins of nuclear facilities with a primary focus on challenges related to conditions experienced at the Fukushima Daiichi nuclear power plant, for example extreme external events and the loss of safety functions, or capabilities to cope with severe accidents. As appropriate, improvements are being made to safety and emergency response systems to ensure that nuclear power plants are capable of withstanding events that lead to loss of electrical power and/or cooling capability. In the weeks following the accident, the NEA immediately began establishing expert groups in the nuclear safety and radiological protection areas, as well as contributing to information exchange with the Japanese authorities and other international organisations. It promptly provided a forum for high-level decision makers and regulators within the G8-G20 frameworks. The NEA actions taken at the international level in response to the accident have been carried out primarily by the three NEA standing technical committees concerned with nuclear and radiation safety issues - the Committee on Nuclear Regulatory Activities (CNRA), the Committee on the Safety of Nuclear Installations (CSNI) and the Committee on Radiation Protection and Public Health (CRPPH) - under the leadership of the CNRA. More than two years following the accident, the NEA continues to assist the Japanese authorities in dealing with their nuclear safety and recovery efforts as well as to facilitate international co-operation on nuclear safety and radiological protection matters. It is strongly supporting the establishment of

  8. The Fukushima Nuclear Accident: What has been learned from it?

    Science.gov (United States)

    Ohska, Tokio

    2014-05-01

    The ill-fated Fukushima nuclear reactors are still in a state in which Japanese are struggling to find the end of the tunnel. They are now facing with the highly contaminated radioactive water. It is polluting the world unless confined in a small space for an incredibly long time. There have been many cases such as the crude oil leak from a deep-sea oil well polluting ocean or many volcanic eruptions that had globally polluted air. Why the Fukushima nuclear accident should be treated in a different way when these radioactive materials were originally from ground and they will eventually find their way back into a soil? The reality is not as simple and a remarkable difference needs to be put into consideration: nuclear wastes are highly condensed because humans worked to make them that way so that they can be used as nuclear fuel or atomic bomb. Trouble is that one finds in nuclear waste many radioactive substances with very long half-life times that would stay hazardous for many future generations. Most ashes from big volcanic eruption find their way to the ground within several years or so. Once they landed the surface of the ground, they are no different from the soil and will become basically harmless dusts. On the contrary, for some part of nuclear waste it will take over 10,000 years to become almost harmless. In general any human being does not feel a real threat on anything that would happen far beyond his/her life span. People usually are optimistic by saying that someone in a future would come up with a perfect solution to take care of the problems associated with nuclear waste. This argument reflects a very irresponsible attitude of people working on the project involving nuclear fuel. The problems in Fukushima nuclear accidents are mainly resulting from such an irresponsible attitude. Is it ever possible to see a happy end with any nuclear power station based on such a human mentality?

  9. Are the French authorities beginning to prepare for nuclear accident?

    International Nuclear Information System (INIS)

    Autret, J.C.

    2008-01-01

    This article, published in issue 80 of 'l'ACROnique du nucleaire', aims to retrace the early steps in the consideration of the possibility of a nuclear accident in France, with the inclusion of 'non-institutional' participants and applying the lessons learned in Belarus in the contaminated territories around the Chernobyl nuclear power plant. After a review of the origin of the involvement of the Association pour le Controle de la Radioactivite dans l'Ouest (ACRO) in addressing post-accident issues alongside the populations living in an environment polluted by radioactivity, it discusses, from the critical viewpoint of an NGO, the context and the working method adopted for this examination. This is followed by some key elements of the programme and unresolved questions about the available body of knowledge which motivates research and about the method adopted for the work. The conclusion, moderately optimistic, highlights some advances and limits arising during this exercise in a French nuclear scene which remains characterised by a centralized mode of management. (author)

  10. United Kingdom procedures in case of nuclear accidents

    International Nuclear Information System (INIS)

    Chalfont, L.

    1988-01-01

    From the United Kingdom experience, general principles for establishing emergency plans are drawn. Every country with nuclear plant should have such emergency arrangements capable of dealing with the largest scale that can be envisaged as a practical possibility. While the effects of accidents cannot be anticipated in detail these plans should form a good flexible basis for providing the resources, communications and procedures that are likely to be needed. They encompass the administrative infrastructure of the area surrounding the nuclear installation and involve co-ordination with the police, fire services and ambulance services, the local and county authorities, the authorities responsible for food, agriculture, fisheries and water, and the health authorities including hospitals and medical services. Special training and procedures have to be established for the personnel that are involved and exercises graduating from the exercising of special procedures to large scale simulated accidents need to be carried out periodically. Good communication systems have to be established between the nuclear installations, the operational support centres or equivalent, the field and headquarters units of the relevant organizations, and the central government departments so that whatever additional resources and support are needed can be marshalled quickly and efficiently. (author)

  11. Japan's compensation system for nuclear damage - As related to the TEPCO Fukushima Daiichi nuclear accidents

    International Nuclear Information System (INIS)

    Nomura, Toyohiro; Matsuura, Shigekazu; Takahashi, Yasufumi; Takenaka, Chihiro; Hokugo, Taro; Kamada, Toshihiko; Kamai, Hiroyuki

    2012-01-01

    Following the TEPCO Fukushima Daiichi nuclear power plant accident, extraordinary efforts were undertaken in Japan to implement a compensation scheme for the proper and efficient indemnification of the affected victims. This publication provides English translations of key Japanese legislative and administrative texts and other implementing guidance, as well as several commentaries by Japanese experts in the field of third party nuclear liability. The OECD Nuclear Energy Agency (NEA) has prepared this publication in co-operation with the government of Japan to share Japan's recent experience in implementing its nuclear liability and compensation regime. The material presented in the publication should provide valuable insights for those wishing to better understand the regime applied to compensate the victims of the accident and for those working on potential improvements in national regimes and the international framework for third party nuclear liability

  12. Safety study on nuclear heat utilization system - accident delineation and assessment on nuclear steelmaking pilot plant

    International Nuclear Information System (INIS)

    Yoshida, T.; Mizuno, M.; Tsuruoka, K.

    1982-01-01

    This paper presents accident delineation and assessment on a nuclear steelmaking pilot plant as an example of nuclear heat utilization systems. The reactor thermal energy from VHTR is transported to externally located chemical process plant employing helium-heated steam reformer by an intermediate heat transport loop. This paper on the nuclear steelmaking pilot plant will describe (1) system transients under accident conditions, (2) impact of explosion and fire on the nuclear reactor and the public and (3) radiation exposure on the public. The results presented in this paper will contribute considerably to understanding safety features of nuclear heat utilization system that employs the intermediate heat transport loop and the helium-heated steam reformer

  13. Radiation doses from contaminated food after a nuclear accident

    International Nuclear Information System (INIS)

    Nielsen, S.P.; Oehlenschlaeger, M.

    1991-03-01

    This report presents estimates of radiation doses from contaminated food after a hypothetical accident at a nuclear power plant. The calculations are made from assumptions intended to represent Swedish conditions. The accident scenario is based on a hypothetical core melt in a nuclear power reactor followed by a release to the atmosphere of iodine and caesium corresponding to 0.6% of the Forsmark unit 3 core inventory. The results are expressed in terms of average effective doses from contaminated food to individuals in the critical group living near the power plant, 2 km from the point of release, and living from locally produced foodstuffs. The calculations are made for a winter release and a summer release, and for dry and rainy conditions. Dynamic radioecological models are used, which have been developed from Danish experience with readioactive fallout from nuclear weapons testing and with fallout from the Chernobyl accident. The accidental release is estimated to cause doses in the summer season from 131 I of circa 200 mSv to children and circa 30 mSv to adults based on a deposition during dry conditions of 11 MBq 131 I m -2 . The dosed from 134 Cs and 137 Cs are estimated at circa 20 mSv to children and adults in case of winter release and circa 160 mSv in case of summer release based on a deposition during dry conditions of 0.5 MBQ 134 Cs and 0.4 MBq 137 Cs m -2 . The main reason for the large difference between the winter and the summer releases is the high sensitivity of cerals to direct contamination on month prior to harvest. In case of precipitation the doses are estimated at twice those for dry conditons. (author) 8 tabs., 16 ills., 13 refs

  14. Lessons learned from our accident at Fukushima nuclear power stations

    International Nuclear Information System (INIS)

    Kawano, A.

    2012-01-01

    This paper is given in order to share the detailed information on the Fukushima Accident which occurred on March 11, 2011, and the lessons learned from it which worldwide nuclear experts might currently have more interest in. The paper first reflects how the facilities were damaged by a very strong earthquake and a series of beyond design-basis tsunamis. The earthquake caused loss of all off-site electric power at Fukushima Daiichi Nuclear Power Station (1F), and the following series of tsunami made all emergency diesel generators except one for Unit 6 and most of DC batteries inoperable and severely damaged most of the facilities located on the ocean side. Thus all the units at 1F resulted in the loss of cooling function and ultimate heat sink for a long time period. TEPCO focused on restoration of the instruments and lights in the Main Control Room (MCR), preparation of alternative water injection and venting of Primary Containment Vessel (PCV) in the recovery process. However, the workers faced a lot of difficulties such as total darkness, repeated aftershocks, high radiation dose, a lot of debris on the ground, loss of communication means, etc. Massive damages by the tsunami and lack of necessary equipments and resources hampered a quick recovery. It eventually resulted in the severe core damage of Unit 1, 2, and 3 and also the hydrogen explosions in the reactor buildings of Unit 1, 3, and 4. This paper finally extracts the lessons learned from the accident and proposes the countermeasures, such as flood protection for essential facilities, preparation of practical and effective tools, securing communication means and so on. These would help the people involved in the nuclear industries all over the world properly understand the accident and develop their own countermeasures appropriately. (authors)

  15. Iodine nutrition and risk of thyroid irradiation from nuclear accidents

    International Nuclear Information System (INIS)

    Delange, F.

    1990-01-01

    The objectives of this paper are to discuss the following aspects of physiopathology of iodine nutrition related to thyroid irradiation by nuclear accidents: (1) The cycle of iodine in nature, the dietary sources of iodine and the recommended dietary allowances for iodine. (2) The anomalies of thyroid metabolism induced by iodine deficiency. The caricatural situation as seen in endemic goitre will be used as mode. (3) The specific paediatric aspects of adaptation to iodine deficiency. (4) The present status of iodine nutrition in Europe. (author)

  16. Health hazards from radiocaesium following the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    1987-01-01

    The WHO Regional Office for Europe has organized a series of meetings to assess the health impact of the Chernobyl nuclear accident. Considering the long-term importance of radiocaesium a decision was made to examine carefully the following aspects of this radionuclide in Europe: rate of deposition; environmental pathways through soil, flora and fauna to humans; absorption, distribution, metabolism, and excretion in humans; estimated doses resulting from these exposures; and some consideration of the possible adverse health effects. This is a report from a working group studying the health implications of radiocaesium. Refs, figs and tabs

  17. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    Nichols, A.L.

    1990-09-01

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  18. Radioactive fallout from the Chernobyl nuclear reactor accident

    International Nuclear Information System (INIS)

    Beiriger, J.M.; Failor, R.A.; Marsh, K.V.; Shaw, G.E.

    1987-01-01

    Following the accident at the nuclear reactor at Chernobyl, in the Soviet Union on April 26, 1986, we performed a variety of measurements to determine the level of the radioactive fallout on the western United States. We used gamma-spectroscopy to analyze air filters from the areas around Lawrence Livermore National Laboratory (LLNL), California, and Barrow and Fairbanks, Alaska. Milk from California and imported vegetables were also analyzed. The levels of the various fission products detected were far below the maximum permissible concentration levels

  19. Economic damage caused by a nuclear reactor accident

    International Nuclear Information System (INIS)

    Baan, P.J.A.

    1988-01-01

    The impacts of a nuclear reactor accident have been estimated for: the public water supply; the use of surface water for sprinkling in agriculture, for industry water supply, recreation, etc.; and fisheries. Contamination of water sources may affect the public water supply severely. In such a situation demand of water cannot always be met. Agriculture faces production losses, if demand for uncontaminated surface water cannot be met. The impacts on recreation can also be significant. The losses to other water users are less substantial. Fisheries may lose (export) markets, as people become reluctant to buy fish and fish products. 33 refs.; 3 figs.; 35 tabs

  20. Empirical Risk Analysis of Severe Reactor Accidents in Nuclear Power Plants after Fukushima

    OpenAIRE

    Kaiser, Jan Christian

    2012-01-01

    Many countries are reexamining the risks connected with nuclear power generation after the Fukushima accidents. To provide updated information for the corresponding discussion a simple empirical approach is applied for risk quantification of severe reactor accidents with International Nuclear and Radiological Event Scale (INES) level ≥5. The analysis is based on worldwide data of commercial nuclear facilities. An empirical hazard of 21 (95% confidence intervals (CI) 4; 62) severe accidents am...

  1. Health effects models for nuclear power plant accident consequence analysis

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.

    1993-05-01

    The Nuclear Regulatory Commission (NRC) has sponsored several studies to identify and quantify, through the use of models, the potential health effects of accidental releases of radionuclides from nuclear power plants. The Reactor Safety Study provided the basis for most of the earlier estimates related to these health effects. Subsequent efforts by NRC-supported groups resulted in improved health effects models that were published in the report entitled open-quotes Health Effects Models for Nuclear Power Plant Consequence Analysisclose quotes, NUREG/CR-4214, 1985 and revised further in the 1989 report NUREG/CR-4214, Rev. 1, Part 2. The health effects models presented in the 1989 NUREG/CR-4214 report were developed for exposure to low-linear energy transfer (LET) (beta and gamma) radiation based on the best scientific information available at that time. Since the 1989 report was published, two addenda to that report have been prepared to (1) incorporate other scientific information related to low-LET health effects models and (2) extend the models to consider the possible health consequences of the addition of alpha-emitting radionuclides to the exposure source term. The first addendum report, entitled open-quotes Health Effects Models for Nuclear Power Plant Accident Consequence Analysis, Modifications of Models Resulting from Recent Reports on Health Effects of Ionizing Radiation, Low LET Radiation, Part 2: Scientific Bases for Health Effects Models,close quotes was published in 1991 as NUREG/CR-4214, Rev. 1, Part 2, Addendum 1. This second addendum addresses the possibility that some fraction of the accident source term from an operating nuclear power plant comprises alpha-emitting radionuclides. Consideration of chronic high-LET exposure from alpha radiation as well as acute and chronic exposure to low-LET beta and gamma radiations is a reasonable extension of the health effects model

  2. Thermoluminescence dosimetry in very hot atmosphere with a view to the dosimetry in nuclear reactors

    International Nuclear Information System (INIS)

    Bikwaku, Nsampala Tomakunsimba

    1985-01-01

    In order to develop radiation resistant materials for use in the region of nuclear reactor cores, it is necessary to know the dose absorbed by the surrounding structures. A passive thermoluminescence technique was chosen, an activated alumina material with very deep traps which are stable at high temperature (450 deg. C), being used. The characteristic properties of this detector have been studied and an attempt made to interpret the results obtained. (author) [fr

  3. Biological dose assessment by cytogenetic dosimetry in the Goianian radiation accident

    International Nuclear Information System (INIS)

    Ramalho, A.T.; Nascimento, A.C.H.; Bellido, P.

    1989-01-01

    During the recent Goianian radiation accident, 112 exposed or potentially exposed individuals were analyzed for the frequencies of chromosomal aberrations (dicentrics and rings) in their lymphocytes, for estimation of the absorbed radiation dose. Of these, 29 subjects had dose estimates exceeding 0.5 Gy, 21 exceeded 1.0 Gy and eight exceeded 4.0 Gy. None of the estimates exceeded 7.0 Gy. (author)

  4. Consideration of Command and Control Performance during Accident Management Process at the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nisrene M. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Sok Chul [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The accident at the Fukushima Daiichi nuclear power plants shifted the nuclear safety paradigm from risk management to on-site management capability during a severe accident. The kernel of on-site management capability during an accident at a nuclear power plant is situation awareness and agility of command and control. However, little consideration has been given to accident management. After the events of September 11, 2001 and the catastrophic Fukushima nuclear disaster, agility of command and control has emerged as a significant element for effective and efficient accident management, with many studies emphasizing accident management strategies, particularly man-machine interface, which is considered a key role in ensuring nuclear power plant safety during severe accident conditions. This paper proposes a conceptual model for evaluating command and control performance during the accident management process at a nuclear power plant. Communication and information processing while responding to an accident is one of the key issues needed to mitigate the accident. This model will give guidelines for accurate and fast communication response during accident conditions.

  5. Optimization of emergency response to major nuclear accidents

    International Nuclear Information System (INIS)

    Papazoglou, I.A.; Christou, M.D.

    1991-01-01

    A methodology for the optimization of the short-term emergency response in the event of a nuclear accident has been developed. The method aims at an optimum combination of protective actions in the presence of a multitude of conflicting objectives and under uncertainty. Conflicting objectives arise when the minimization of the potential adverse effects of an accident and the simultaneous minimization of the associated socioeconomic impacts is attempted. Additional conflicting objectives appear whenever an emergency plan tends to decrease a particular health effect (e.g. acute deaths) while at the same time it increases another (e.g. latent deaths). The uncertainty is due to the multitude of the possible accident scenarios and their respective probability of occurrence, the stochastic variability in the weather conditions and in the variability and/or lack of knowledge in the parameters of the risk assessment models. A multiobjective optimization approach is adopted in a dynamic programming scheme. An emergency protective plan consists of defining a protective action (e.g. evacuation, sheltering) at each spatial cell around the plant. Three criteria (evaluators) are used as the objective functions of the problem, namely, acute fatalities, latent effects and socioeconomic cost. The optimization procedure defines the efficient frontier, i.e. all emergency plans that are not dominated by another in all three criteria. No value trade-offs are necessary up to this point

  6. Multicomponent risk inherent to nuclear or radiation accidents

    International Nuclear Information System (INIS)

    Poyarkov, V.A.

    1997-01-01

    A nuclear or radiation emergency response planning is based on expected avertable doses for a short (4 hours, 2 days, 1 week) and a long (50 or 70 years) periods of time. On calculating the doses one should take into account not only the sources of ionizing radiation with their foreseen characteristics, e.g. a half-life, but also the possibility of their probabilistic transformations. It can be illustrated by the chronicle of Chernobyl accident, where for nine days it was impossible to envisage with reliability the quantities of released radionuclides due to many uncontrolled factors related to the scope and character of the zone wreckage. Any other developments of the accident, such as destruction of the under reactor support plate, sinking of the melted zone into a highly radioactive water down at the reactor cavity or changing of the wind could have resulted in a substantial contamination of 3 mln. Kiev and other densely populated area of Ukraine. Another factor to be taken into account in the emergency response is a way of an actual risk perception by the population. The article suggests an approach to take into account the time-dependent secondary sources of exposure and the disparity in accepting the hazard of real risk of an accident by the trained workers and population. (author)

  7. Lessons drawn from serious accidents in nuclear power stations

    International Nuclear Information System (INIS)

    Kosciusko-Morizet, F.; Tanguy, P.

    1981-01-01

    Taking a number of serious accidents considered to be particularly representative (Windscale, Enrico Fermi, Lucens, Browns Ferry, Three Mile Island and Saint-Laurent-des-Eaux), the paper analyses the conclusions reached in subsequent enquiries and the lessons drawn from them by the responsible authorities. While design problems sometimes come to light, it is much more generally operational safety - problems related to instructions, the training of operators, the man/machine relationship - which appears to be inadequate. The organization of relations between the different partners - builders, operators and safety bodies - likewise gives rise to some observations. Certain measures should be pursued on a broader scale in order to improve our ability to prevent serious accidents: (i) incidents important from the standpoint of safety must be identified; (ii) these incidents must be brought to the knowledge of all partners concerned, in all interested countries; (iii) the lessons drawn from them must be exchanged and compared; and (iv) the lessons must be made generally available in a directly usable form (i.e. as design modifications, changes in instructions and so on). Particular attention must be given to the problems of countries which are embarking on nuclear programmes and which, with a small number of installations, need direct and permanent access to all the lessons drawn from the operation of a large power station park, and must be able to call upon the assistance of teams from outside in the event of an accident. (author)

  8. Explanation of procedure on site medical emergency response for nuclear accident

    International Nuclear Information System (INIS)

    Liu Yulong; Jiang Zhong

    2012-01-01

    National occupational health standard-Procedure on Site Medical Emergency Response for Nuclear Accident has been approved and issued by the Ministry of Health. This standard is formulated according to the Emergency Response Law of the People's Republic of China, Law of the People 's Republic of China on Prevention and Control of Occupational Diseases, Regulations on Emergency Measures for Nuclear Accidents at Nuclear Power Plants, and Health Emergency Plans for Nuclear and Radiological Accidents of Ministry of Health, supporting the use of On-site Medical Emergency Planning and Preparedness for Nuclear Accidents and Off-site Medical Emergency Planning and Preparedness for Nuclear Accidents. Nuclear accident on-site medical response procedure is a part of the on-site emergency plan. The standard specifies the basic content and requirements of the nuclear accident on-site medical emergency response procedures of nuclear facilities operating units to guide and regulate the work of nuclear accident on-site medical emergency response of nuclear facilities operating units. The criteria-related contents were interpreted in this article. (authors)

  9. Implementation of accident management programmes in nuclear power plants

    International Nuclear Information System (INIS)

    2004-01-01

    According to the generally established defence in depth concept in nuclear safety, consideration in plant operation is also given to highly improbable severe plant conditions that were not explicitly addressed in the original design of currently operating nuclear power plants (NPPs). Defence in depth is achieved primarily by means of four successive barriers which prevent the release of radioactive material (fuel matrix, cladding, primary coolant boundary and containment), and these barriers are primarily protected by three levels of design measures: prevention of abnormal operation and failures (level 1), control of abnormal operation and detection of failures (level 2) and control of accidents within the design basis (level 3). If these first three levels fail to ensure the structural integrity of the core, e.g. due to beyond the design basis multiple failures, or due to extremely unlikely initiating events, additional efforts are made at level 4 to further reduce the risks. The objective at the fourth level is to ensure that both the likelihood of an accident entailing significant core damage (severe accident) and the magnitude of radioactive releases following a severe accident are kept as low as reasonably achievable. Finally, level 5 includes off-site emergency response measures, with the objective of mitigating the radiological consequences of significant releases of radioactive material. The implementation of the emergency response is usually dependent upon the type and magnitude of the accident. Good co-ordination between the operator and the responding organizations is needed to ensure the appropriate response. Accident management is one of the key components of effective defence in depth. In accordance with defence in depth, each design level should be protected individually, independently of other levels. This report focuses on the fourth level of defence in depth, including the transitions from the third level and into the fifth level. It describes

  10. Individual feature identification method for nuclear accident emergency decision-making

    International Nuclear Information System (INIS)

    Chen Yingfeng; Wang Jianlong; Lin Xiaoling; Yang Yongxin; Lu Xincheng

    2014-01-01

    According to the individual feature identification method and combining with the characteristics of nuclear accident emergency decision-making, the evaluation index system of the nuclear accident emergency decision-making was determined on the basis of investigation and analysis. The effectiveness of the nuclear accident emergency decision-making was evaluated based on the individual standards by solving the individual features of the individual standard identification decisions. The case study shows that the optimization result is reasonable, objective and reliable, and it can provide an effective analysis method and decision-making support for optimization of nuclear accident emergency protective measures. (authors)

  11. Reconstructive dosimetry and radiation doses evaluation of members of the public due to radiological accident in industrial radiography; Dosimetria reconstrutiva e avaliacao de dose de individuos do publico devido a acidente radiologico em radiografia industrial

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Camila Moreira Araujo de

    2016-07-01

    Radiological accidents have occurred mainly in the practices recognized as high risk radiological and classified by the IAEA as Categories 1 and 2, and highlighted the radiotherapy, industrial irradiators and industrial radiography. In Brazil, since there were five major cases in industrial radiography, which involved 7 radiation workers and 19 members of the public, causing localized radiation lesions on the hands and fingers. One of these accidents will be the focus of this work. In this accident, a {sup 192}Ir radioactive source was exposed for more than 8 hours in the workplace inside a company, exposing radiation workers, individuals of the public and people from the surrounding facilities, including children of a school. The radioactive source was also handled by a security worker causing severe radiation injuries in the hand and fingers. In this paper, the most relevant and used techniques of reconstructive dosimetry internationally are presented. To estimate the radiation doses received by exposed individuals in various scenarios of radiological accident in focus, the following computer codes were used: Visual Monte Carlo Dose Calculation (VMC), Virtual Environment for Radiological and Nuclear Accidents Simulation (AVSAR) and RADPRO Calculator. Through these codes some radiation doses were estimated, such as, 33.90 Gy in security worker's finger, 4.47 mSv in children in the school and 55 to 160 mSv for workers in the company during the whole day work. It is intended that this work will contribute to the improvement of dose reconstruction methodology for radiological accidents, having then more realist radiation doses. (author)

  12. Overview of domestic and foreign comments on Fukushima nuclear accident in the past half year

    International Nuclear Information System (INIS)

    Liu Yuanyuan; Chen Haiying; Zhang Chunming

    2011-01-01

    On March 11, 2011, Fukushima Dai-ichi nuclear power plant happened severity level nuclear accident, and caused great disasters. To be able to get more experience feedbacks for the safe development of nuclear technology from this accident, this paper investigated the domestic and foreign comments on Fukushima nuclear accident in the past half year, summarized and analyzed the attentions of experts a- bout this accident and improvement methods for the existing nuclear power technology. The results show that most domestic experts focus on improving nuclear power technology and management of emergency response and supervision, while foreign experts pay more attentions to how to deal with the environmental impact of accident on the biological side. All of these attentions and improvement methods will provide more useful information for developing safe nuclear power technology. (authors)

  13. Should evacuation standards be reviewed after a nuclear accident?

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2011-10-01

    The author comments the current practices of post-accident management of nuclear disasters. He outlines the peculiarities of nuclear evacuations with respect to other disasters. After referring to the use of life expectancy or of the reduction of life expectancy, for example for smokers, he suggests that irradiation could be expressed this way and then provide some intuitive information. He discusses the notion of linear no-threshold relationship which has been introduced by the ICRP after analysis of cancers noticed on survivors of Hiroshima and Nagasaki. He addresses the case of Fukushima, the issue of low doses applied to large populations. He discusses the limitations of the linear no-threshold relationship. He discusses possible improvements of evacuation procedures

  14. Agricultural countermeasures in the Nordic countries after a nuclear accident

    International Nuclear Information System (INIS)

    Brink, M.; Lauritzen, B.

    2001-12-01

    This report by the NKSBOK-1.4 project group describes agricultural countermeasures after a nuclear accident, aiming at the reduction of radiation doses to man from the ingestion of foodstuffs. The intention has been to collect information based on common understanding that can be used as a Nordic handbook and in further developments of the national preparedness systems. The report covers two areas: the gathering and dissemination of information before and during a nuclear emergency, and the development of a countermeasures strategy. A number of factors are discussed, which will affect the choice of countermeasure(s), and as a case study, a technical cost-benefit assessment of a specific countermeasure is described. (au)

  15. Fukushima Nuclear Accident, the Third International Severe Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Rashad, S.M.

    2013-01-01

    Japan is the world's third largest power user. Japan's last remaining nuclear reactor shutdown on Saturday 4 Th of May 2012 leaving the country entirely nuclear free. All of 50 of the nation's operable reactors (not counting for the four crippled reactors at Fukushima) are now offline. Before last year's Fukushima nuclear disaster, the country obtained 30% of its energy from nuclear plants, and had planned to produce up to 50% of its power from nuclear sources by 2030. Japan declared states of emergency for five nuclear reactors at two power plants after the units lost cooling ability in the aftermath of Friday 11 March 2011 powerful earthquake. Thousands of (14000) residents were immediately evacuated as workers struggled to get the reactors under control to prevent meltdowns. On March 11 Th, 2011, Japan experienced a sever earthquake resulting in the shutdown of multiple reactors. At Fukushima Daiichi site, the earthquake caused the loss of normal Ac power. In addition it appeals that the ensuing tsunami caused the loss of emergency Ac power at the site. Subsequent events caused damage to fuel and radiological releases offsite. The spent fuel problem is a wild card in the potentially catastrophic failure of Fukushima power plant. Since the Friday's 9.0 earthquake, the plant has been wracked by repeated explosions in three different reactors. Nuclear experts emphasized there are significant differences between the unfolding nuclear crisis at Fukushima and the events leading up to the Chernobyl disaster in 1986. The Chernobyl reactor exploded during a power surge while it was in operation and released a major cloud of radiation because the reactor had no containment structure around to. At Fukushima, each reactor has shutdown and is inside a 20 cm-thick steel pressure vessel that is designed to contain a meltdown. The pressure vessels themselves are surrounded by steel-lined, reinforced concrete shells. Chernobyl disaster was classified 7 on the International

  16. Quantifying the social costs of nuclear energy: Perceived risk of accident at nuclear power plants

    International Nuclear Information System (INIS)

    Huhtala, Anni; Remes, Piia

    2017-01-01

    The preferences expressed in voting on nuclear reactor licenses and the risk perceptions of citizens provide insights into social costs of nuclear power and decision making in energy policy. We show analytically that these costs consist of disutility caused by unnecessary anxiety - due to misperceived risks relating to existing reactors - and where licenses for new nuclear reactors are not granted, delayed or totally lost energy production. Empirical evidence is derived from Finnish surveys eliciting explicitly the importance of risk perceptions on preferences regarding nuclear power and its environmental and economic impacts. We show that the estimated marginal impact of a high perceived risk of nuclear accident is statistically significant and that such a perception considerably decreases the probability of a person supporting nuclear power. This result holds across a number of robustness checks including an instrumental variable estimation and a model validation by observed voting behavior of the members of Parliament. The public's risk perceptions translate into a significant social cost, and are likely to affect the revenues, costs and financing conditions in the nuclear power sector in the future. - Highlights: • Survey on preferences regarding nuclear power and its environmental and economic impacts utilized. • A high perceived risk of nuclear accident decreases support for nuclear power. • The public's risk perceptions translate into a significant social cost.

  17. Fast Neutron Dosimetry Using CR-39 Nuclear Track Detector

    International Nuclear Information System (INIS)

    ZAKI, M.; ABDEL-NABY, A.; MORSY, A.

    2010-01-01

    Measurement of the neutron dose in and around the neutron sources is important for the purpose of personnel and environmental neutron dosimetry. In the present study, a method for the measurement of neutron dose using the UV-Vis spectra of CR-39 plastic track detector was investigated. A set of CR-39 plastic detectors was exposed to 252 Cf neutron source, which had the yield of 0.68x10 8 /s, and neutron dose equivalent rate 1m apart from the source is equal to 3.8 mrem/h. The samples were etched for 10 h in 6.25 N NaOH at 70 o C. The absorbance of the etched samples was measured using UV-visible spectrophotometer as a function of neutron dose. It was observed that there was a linear relationship between the optical absorption of these detectors and neutron dose. This means that the exposure dose of neutron can be determined by knowing the optical absorption of the sample. These results were compared with previous study. It was found that there was a matching and good agreement with their investigations.

  18. Developments in biological dosimetry for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Gale, K L; Boreham, D R; Maves, S; Morrison, D P [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The purpose of this program is to develop methods for providing estimates of radiation exposure based on changes in the cells/tissues of exposed individuals. This work arises from the need for independent measures of exposure of workers when standard dose measurements are unavailable or questionable. The radiation-induced changes that we propose to measure have been correlated with carcinogenesis. It follows that the methods used should also provide indications of the likely biological consequences of radiation exposure for an individual. The consequences of radiation exposure lie in the resolution of the radiation effects at the cellular level. Accordingly, it is at the cellular level that our attention is directed. More precisely, since the consequences of most concern, cancer induction and the induction of inherited diseases, are the result of changes to the genetic material of cells (the DNA), it is the measurement of effects on DNA that are being investigated as possible dose meters. Individuals are unique in terms of their DNA and differ in their cellular capacities to repair the damage from an ionizing radiation dose. Because of these features, not only do biological dosimetry tools offer us a means of measuring a dose at the individual level but may also provide us with a measure of the ultimate risk associated with a given exposure. (author). 7 refs., 2 tabs., 4 figs.

  19. Developments in biological dosimetry for the nuclear industry

    International Nuclear Information System (INIS)

    Gale, K.L.; Boreham, D.R.; Maves, S.; Morrison, D.P.

    1995-01-01

    The purpose of this program is to develop methods for providing estimates of radiation exposure based on changes in the cells/tissues of exposed individuals. This work arises from the need for independent measures of exposure of workers when standard dose measurements are unavailable or questionable. The radiation-induced changes that we propose to measure have been correlated with carcinogenesis. It follows that the methods used should also provide indications of the likely biological consequences of radiation exposure for an individual. The consequences of radiation exposure lie in the resolution of the radiation effects at the cellular level. Accordingly, it is at the cellular level that our attention is directed. More precisely, since the consequences of most concern, cancer induction and the induction of inherited diseases, are the result of changes to the genetic material of cells (the DNA), it is the measurement of effects on DNA that are being investigated as possible dose meters. Individuals are unique in terms of their DNA and differ in their cellular capacities to repair the damage from an ionizing radiation dose. Because of these features, not only do biological dosimetry tools offer us a means of measuring a dose at the individual level but may also provide us with a measure of the ultimate risk associated with a given exposure. (author). 7 refs., 2 tabs., 4 figs

  20. On the use of OSL of wire-bond chip card modules for retrospective and accident dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Clemens [Helmholtz Zentrum Muenchen - German Research Centre for Environmental Health, Institute of Radiation Protection, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)], E-mail: clemens.woda@helmholtz-muenchen.de; Spoettl, Thomas [Infineon Technologies AG, Wernerwerkstrasse 1, D-93049 Regensburg (Germany)

    2009-05-15

    The potential of optically stimulated luminescence of wire-bond chip card modules, used in health insurance, ID, cash and credit cards for retrospective and accident dosimetry is investigated. Chip card modules obtained directly from the producer, using a widely spread UV-cured epoxy product for encapsulation, are used as basis for the study. The radiation sensitivity is due to silica grains added to the epoxy for controlling the thixotropic properties. Luminescence properties are complex due to the presumed thermo-optical release of electrons from the epoxy and transfer into the silica. Best results and highest sensitivity are obtained by using no or only low preheat treatments. A high degree of fading of the OSL signal during storage at room temperature is observed, which is tentatively explained by the superposition of thermal decay of shallow OSL traps and athermal (anomalous) decay of deeper OSL traps. The dose response of the OSL signal shows exponentially saturating behaviour, with saturation doses of 77 Gy or 9.6 Gy, depending on pretreatment. Dose recovery tests show that given doses can be recovered within a deviation of {+-}14%, if measured signals are corrected for fading. The minimum detectable dose is estimated at {approx}3 mGy, {approx}10 mGy and {approx}20 mGy for readouts immediately, 1 day and 10 days after exposure, respectively.

  1. An extended role for thermoluminescent phosphors in personnel, environmental and accident dosimetry using sensitisation, re-estimation and fast fading

    International Nuclear Information System (INIS)

    Charles, M.W.

    1983-01-01

    This paper summarises some techniques for extending the usefulness of conventional phosphors in personnel, environmental and accident dosimetry. An optimised procedure for utilising radiation sensitisation and UV re-estimation in thermoluminescent LiF is presented. In particular it is shown that optimum performance is achieved by using a UV wavelength of 250 +- 10 nm for both the UV/thermal anneal following sensitisation, and for the UV re-estimation procedure. In the case of Harshaw Lif Chips (3x3x0.9 mm 3 ) the sensitivity is increased by a factor of 4-5 to achieve a minimum detectable dose of approx.=10 μGy (2sigma) and a minimum re-estimable dose of 50-100 mGy (2sigma), dependent on batch. Sensitized LiF also exhibits improved tissue equivalence, extended linearity and improved precision at low doses. The information from fast-fading glow peaks, which is normally rejected, is shown to have a useful application to the evaluation of short-term increases in environmental dose rates such as may occur following accidental releases of radioactivity. (orig.)

  2. On the use of OSL of wire-bond chip card modules for retrospective and accident dosimetry

    International Nuclear Information System (INIS)

    Woda, Clemens; Spoettl, Thomas

    2009-01-01

    The potential of optically stimulated luminescence of wire-bond chip card modules, used in health insurance, ID, cash and credit cards for retrospective and accident dosimetry is investigated. Chip card modules obtained directly from the producer, using a widely spread UV-cured epoxy product for encapsulation, are used as basis for the study. The radiation sensitivity is due to silica grains added to the epoxy for controlling the thixotropic properties. Luminescence properties are complex due to the presumed thermo-optical release of electrons from the epoxy and transfer into the silica. Best results and highest sensitivity are obtained by using no or only low preheat treatments. A high degree of fading of the OSL signal during storage at room temperature is observed, which is tentatively explained by the superposition of thermal decay of shallow OSL traps and athermal (anomalous) decay of deeper OSL traps. The dose response of the OSL signal shows exponentially saturating behaviour, with saturation doses of 77 Gy or 9.6 Gy, depending on pretreatment. Dose recovery tests show that given doses can be recovered within a deviation of ±14%, if measured signals are corrected for fading. The minimum detectable dose is estimated at ∼3 mGy, ∼10 mGy and ∼20 mGy for readouts immediately, 1 day and 10 days after exposure, respectively.

  3. Derived intervention levels in early stage of nuclear accident development

    Energy Technology Data Exchange (ETDEWEB)

    Vladar, M; Fojtik, M [Inst. of Preventive and Clinical Medicine, Bratislava (Slovakia); Stubna, M [Research Inst. of Nuclear Power Plants, Bohunuce (Slovakia)

    1996-12-31

    In this paper the measures for protection of health and property of public in the case of nuclear accident are discussed. They are based on optimal application of so called intervention levels. The actual flow of decision depends on: (1) prognosis of mathematical modelling of possible course of nuclear accident, and (2) results of monitoring of radiation situation.The aim of this contribution was to analyze their mutual cooperation and to suggest such procedure of monitoring or radiation situation which could be used for suggestion of protective measures. In this contribution the zones of protection planning in the accident place surrounding for the urgent measures were specified : (1) regulation of free movement of persons; (2) sheltering; (3) iodine prophylaxis; (4) temporary evacuation; (5) long term or permanent emigration. At the specification of zones of planned protection it is also coming out that regulation of movement of persons, sheltering and iodine prophylaxis were ordered in advance based on the evaluation of the crashed establishment state. In such situation the decision on protective measures in the time interval 6 to 12 hours after the beginning of accidental release is forwarding to: withdrawing the accepted orders on measures and transition from sheltering to temporary evacuation. The criterion for temporary evacuation is: (1) probability of exceeding the effective dose 100 mSv for children up to 10 years of age and pregnant women and 500 mSv for other population within 48 hours after beginning of accidental release; (2) probability of averting the effective dose 50 mSv up to 7 days, 100 mSv up to 15 days and 150 mSv up to 30 days for all population groups. In next part the intervention level, interpretation of values of kerma dose rate in air and determination of the size of planned protection zones are discussed. (J.K.) 3 tabs.

  4. Consequences of the nuclear power plant accident at Chernobyl

    International Nuclear Information System (INIS)

    Ginzburg, H.M.; Reis, E.

    1991-01-01

    The Chernobyl Nuclear Power Plant accident, in the Ukrainian Soviet Socialist Republic (SSR), on April 26, 1986, was the first major nuclear power plant accident that resulted in a large-scale fire and subsequent explosions, immediate and delayed deaths of plant operators and emergency service workers, and the radioactive contamination of a significant land area. The release of radioactive material, over a 10-day period, resulted in millions of Soviets, and other Europeans, being exposed to measurable levels of radioactive fallout. Because of the effects of wind and rain, the radioactive nuclide fallout distribution patterns are not well defined, though they appear to be focused in three contiguous Soviet Republics: the Ukrainian SSR, the Byelorussian SSR, and the Russian Soviet Federated Socialist Republic. Further, because of the many radioactive nuclides (krypton, xenon, cesium, iodine, strontium, plutonium) released by the prolonged fires at Chernobyl, the long-term medical, psychological, social, and economic effects will require careful and prolonged study. Specifically, studies on the medical (leukemia, cancers, thyroid disease) and psychological (reactive depressions, post-traumatic stress disorders, family disorganization) consequences of continued low dose radiation exposure in the affected villages and towns need to be conducted so that a coherent, comprehensive, community-oriented plan may evolve that will not cause those already affected any additional harm and confusion

  5. The development of a nuclear accident risk information system

    International Nuclear Information System (INIS)

    Jeong, J. T.; Jeong, W. D.

    2001-01-01

    The computerized system NARIS (Nuclear Accident Risk Information System) was developed in order to support the estimation of health effects and the establishment the effective risk reduction strategies. Using the system, we can analyze the distribution of health effects easily by displaying the results on the digital map of the site. Also, the thematic mapping allows the diverse analyses of the distribution of the health effects. The NARIS can be used in the emergency operation facilities in order to analyze the distribution of the health effects resulting from the severe accidents of a nuclear power plant. Also, the rapid analysis of the health effect is possible by storing the health effect results in the form of a database. Therefore, the staffs of the emergency operation facilities can establish the rapid and effective emergency response strategies. The module for the optimization of the costs and benefits and the decision making support will be added. The technical support for the establishment of the optimum and effective emergency response strategies will be possible using this system

  6. Thyroid doses for evacuees from the Fukushima nuclear accident

    Science.gov (United States)

    Tokonami, Shinji; Hosoda, Masahiro; Akiba, Suminori; Sorimachi, Atsuyuki; Kashiwakura, Ikuo; Balonov, Mikhail

    2012-07-01

    A primary health concern among residents and evacuees in affected areas immediately after a nuclear accident is the internal exposure of the thyroid to radioiodine, particularly I-131, and subsequent thyroid cancer risk. In Japan, the natural disasters of the earthquake and tsunami in March 2011 destroyed an important function of the Fukushima Daiichi Nuclear Power Plant (F1-NPP) and a large amount of radioactive material was released to the environment. Here we report for the first time extensive measurements of the exposure to I-131 revealing I-131 activity in the thyroid of 46 out of the 62 residents and evacuees measured. The median thyroid equivalent dose was estimated to be 4.2 mSv and 3.5 mSv for children and adults, respectively, much smaller than the mean thyroid dose in the Chernobyl accident (490 mSv in evacuees). Maximum thyroid doses for children and adults were 23 mSv and 33 mSv, respectively.

  7. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4.

  8. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    International Nuclear Information System (INIS)

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4

  9. Radionuclide release rate inversion of nuclear accidents in nuclear facility based on Kalman filter

    International Nuclear Information System (INIS)

    Tang Xiuhuan; Bao Lihong; Li Hua; Wan Junsheng

    2014-01-01

    The rapidly and continually back-calculating source term is important for nuclear emergency response. The Gaussian multi-puff atmospheric dispersion model was used to produce regional environment monitoring data virtually, and then a Kalman filter was designed to inverse radionuclide release rate of nuclear accidents in nuclear facility and the release rate tracking in real time was achieved. The results show that the Kalman filter combined with Gaussian multi-puff atmospheric dispersion model can successfully track the virtually stable, linear or nonlinear release rate after being iterated about 10 times. The standard error of inversion results increases with the true value. Meanwhile extended Kalman filter cannot inverse the height parameter of accident release as interceptive error is too large to converge. Kalman filter constructed from environment monitoring data and Gaussian multi-puff atmospheric dispersion model can be applied to source inversion in nuclear accident which is characterized by static height and position, short and continual release in nuclear facility. Hence it turns out to be an alternative source inversion method in nuclear emergency response. (authors)

  10. An analysis of Japan radiation protection measurements after the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Reis, Arlene A. dos; Souza-Santos, Denison; Melo, Dunstana R. de; Hunt, John G.; Juliao, Ligia M.Q C.; Conti, Luiz F.C.; Pires do Rio, Monica A.; Reis, Rocio G.

    2011-01-01

    On March 11th 2011, Japan was struck by a devastating earthquake followed by a tsunami wave that took the lives of thousands and started a major nuclear accident in the Fukushima Dai-ichi power plant complex. Right from the beginning, the information published by the Japanese government and by the International Atomic Energy Agency (IAEA) was followed by a team of experts at the Institute for Radiation Protection and Dosimetry (IRD) of Brazil. Radiation monitoring data, such as radionuclide activity concentration in water and food, ambient dose rate and fallout concentration in specific cities have been compiled and analyzed, with emphasis on dose limits established by Brazilian regulatory authority. A computer code for dose assessment, developed at the IRD and based upon the IAEA documents TECDOC-1162 and TECDOC-955, was used to assess the doses due to intakes of radionuclides and external exposure for individuals of different age groups. The IAEA model predictions for the ambient dose rates, when the fallout is known, are compared with the measured values in different cities. The Japanese recommendations for evacuation, sheltering and restriction of food and water consumption are evaluated with regards to the Brazilian limits defined in the CNEN NN 3.01 standard. (author)

  11. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  12. Current trends on internal dosimetry for patient protection in nuclear medicine

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gisone, P.A.; Kunst, J.J.

    2001-01-01

    The associated risk-benefit analyses in nuclear medicine implicitly performed by the clinician have been straightforward. Relatively low administered activity activities yield important diagnostic information, the benefit of which far outweigh any potential risk associated with the attendant normal tissue radiation doses. Such small risk to benefit ratios have been very forgiving of possible inaccuracies in dose estimates. With the ongoing development of new radiopharmaceutical and the increasing therapeutic application of internal radionuclides, radiation dosimetry in nuclear medicine continues to evolve from population- and organ-average to patient-specific dose estimation. Patient-specific dosimetry refers to the estimation of radiation dose to tissues of a specific-patients based on their individual body and measured biokinetics rather than an average anthropomorphic model and hypothetic kinetic. The importance of dosimetry specific-patient considers to avoid the risk of an unsuitable treatment and/or with probability of damage to the patient. This is illustrated by the dosimetric approaches to radioiodine treatment of hyperthyroidism. The most common prescription algorithm to fix the activity administered to a hyperthyroid patient does not consider individual parameters that are highly variable (thyroid uptake, biological half-life, thyroid mass). Its arbitrary approach doesn't permit individually optimized therapy and it may be inappropriate and even hazardous. (author)

  13. Policy elements for post-accident management in the event of nuclear accident. Document drawn up by the Steering Committee for the Management of the Post-Accident Phase of a Nuclear Accident (CODIRPA). Final version - 5 October 2012

    International Nuclear Information System (INIS)

    2012-01-01

    Pursuant to the Inter-ministerial Directive on the Action of the Public Authorities, dated 7 April 2005, in the face of an event triggering a radiological emergency, the National directorate on nuclear safety and radiation protection (DGSNR), which became the Nuclear safety authority (ASN) in 2006, was tasked with working the relevant Ministerial offices in order to set out the framework and outline, prepare and implement the provisions needed to address post-accident situations arising from a nuclear accident. In June 2005, the ASN set up a Steering committee for the management of the post-accident phase in the event of nuclear accident or a radiological emergency situation (CODIRPA), put in charge of drafting the related policy elements. To carry out its work, CODIRPA set up a number of thematic working groups from 2005 on, involving in total several hundred experts from different backgrounds (local information commissions, associations, elected officials, health agencies, expertise agencies, authorities, etc.). The working groups reports have been published by the ASN. Experiments on the policy elements under construction were carried out at the local level in 2010 across three nuclear sites and several of the neighbouring municipalities, as well as during national crisis drills conducted since 2008. These works gave rise to two international conferences organised by ASN in 2007 and 2011. The policy elements prepared by CODIRPA were drafted in regard to nuclear accidents of medium scale causing short-term radioactive release (less than 24 hours) that might occur at French nuclear facilities equipped with a special intervention plan (PPI). They also apply to actions to be carried out in the event of accidents during the transport of radioactive materials. Following definitions of each stage of a nuclear accident, this document lists the principles selected by CODIRPA to support management efforts subsequent to a nuclear accident. Then, it presents the main

  14. Generalities on nuclear accidents and their short-dated and middle-dated management

    International Nuclear Information System (INIS)

    2003-03-01

    All the nuclear activities present a radiation risk. The radiation exposure of the employees or the public, may occur during normal activity or during an accident. The IRSN realized a document on this radiation risk and the actions of protection. The sanitary and medical aspects of a radiation accident are detailed. The actions of the population protection during an accident and the post accident management are also discussed. (A.L.B.)

  15. Evaluation of nuclear accidents consequences. Risk assessment methodologies, current status and applications

    International Nuclear Information System (INIS)

    Rodriguez, J.M.

    1996-01-01

    General description of the structure and process of the probabilistic methods of assessment the external consequences in the event of nuclear accidents is presented. attention is paid in the interface with Probabilistic Safety Analysis level 3 results (source term evaluation) Also are described key issues in accident consequence evaluation as: effects evaluated (early and late health effects and economic effects due to countermeasures), presentation of accident consequences results, computer codes. Briefly are presented some relevant areas for the applications of Accident Consequence Evaluation

  16. Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-07-01

    Consideration of severe accidents in nuclear power plants is an essential component of the defence in depth approach in nuclear safety. Severe accidents have very low probabilities of occurring, but may have significant consequences resulting from the degradation of nuclear fuel. The generation of hydrogen and the risk of hydrogen combustion, as well as other phenomena leading to overpressurization of the reactor containment in case of severe accidents, represent complex safety issues in relation to accident management. The combustion of hydrogen, produced primarily as a result of heated zirconium metal reacting with steam, can create short term overpressure or detonation forces that may exceed the strength of the containment structure. An understanding of these phenomena is crucial for planning and implementing effective accident management measures. Analysis of all the issues relating to hydrogen risk is an important step for any measure that is aimed at the prevention or mitigation of hydrogen combustion in reactor containments. The main objective of this publication is to contribute to the implementation of IAEA Safety Standards, in particular, two IAEA Safety Requirements: Safety of Nuclear Power Plants: Design and Safety of Nuclear Power Plants: Operation. These Requirements publications discuss computational analysis of severe accidents and accident management programmes in nuclear power plants. Specifically with regard to the risk posed by hydrogen in nuclear power reactors, computational analysis of severe accidents considers hydrogen sources, hydrogen distribution, hydrogen combustion and control and mitigation measures for hydrogen, while accident management programmes are aimed at mitigating hydrogen hazards in reactor containments.

  17. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  18. Subsidies to cytogenetic dosimetry technique generated from analysis of results of Goiania radiological accident

    International Nuclear Information System (INIS)

    Ramalho, Adriana Teixeira

    1993-06-01

    Following the Goiania radiation accident, which occurred in September of 1987, peripheral lymphocytes from 129 exposed or potentially exposed individuals were analyzed for the frequency of unstable chromosomal aberrations (dicentrics and centric rings) to estimate absorbed radiation dose. During the emergency period, the doses were assessed to help immediate medical treatment. After this initial estimation, doses were reassessed using in vitro calibration curves produced after the accident, more suitable for the conditions prevailing in Goiania. Dose estimates for 24 subjects exceeded 0,5 Gy. Among those, 15 individuals exceeded 1,0 Gy and 5 exceeded 3,0 Gy. None of the estimates exceeded 6,0 Gy. Four of the subjects died. During the emergency period, a cytogenetic follow-up of 14 of the exposed patients was started, aiming to observe the mean lifetime of lymphocytes containing dicentric and ring aberrations. The results suggest that for the highly exposed individuals the disappearance rate of unstable aberrations follows a two- term exponential function. Up to 470 days after the exposure, there is a rapid fall in the aberration frequency. After 470 days, the disappearance rate is very slow, almost constant. The estimated average half-time of elimination of dicentrics and rings among the highly exposed group (> 1 Gy) was 140 days for the initial period after the exposure (up to 470 days). This value is significantly shorter than the usually accepted value of 3 years reported in the literature. Mean disappearance functions of unstable chromosome aberrations were inferred, to be applied in accident situations in which there is a blood sampling delay. Statistical analysis of possible correlations between the individual half-times and biological parameters, such as sex, age, leukopenia level shown during the critical period, absorbed dose (initial frequency of chromosomal aberrations) and the administration of the bone marrow stimulating factor (rHuGM-CSF) was

  19. Supporting system in emergency response plan for nuclear material transport accidents

    International Nuclear Information System (INIS)

    Nakagome, Y.; Aoki, S.

    1993-01-01

    As aiming to provide the detailed information concerning nuclear material transport accidents and to supply it to the concerned organizations by an online computer, the Emergency Response Supporting System has been constructed in the Nuclear Safety Technology Center, Japan. The system consists of four subsystems and four data bases. By inputting initial information such as name of package and date of accident, one can obtain the appropriate initial response procedures and related information for the accident immediately. The system must be useful for protecting the public safety from nuclear material transport accidents. But, it is not expected that the system shall be used in future. (J.P.N.)

  20. Electronic Paramagnetic Resonance of irradiated nails: challenges for a dosimetry in radiation accidents

    International Nuclear Information System (INIS)

    Giannoni, Ricardo A.; Rodrigues Junior, Orlando

    2014-01-01

    The purpose of this work is to characterize samples of human nails exposed to high doses of radiation, applying the technique of Electron Paramagnetic Resonance (EPR). The objective is to establish a dose response study that allow determine the absorbed dose by exposed individuals in situations of radiological accidents, in a retrospective form. Samples of human nails were collected and afterward irradiated with gamma radiation, and received dose of 20 Gy. The EPR measurement performed on the samples, before irradiation, permitted the signal identification of the components associated with effects caused by the mechanical stress during the fingernail cutting, the so-called mechanically induced signal (MIS). After the irradiation, different species of free radicals were identified, the so-called radiation induced signal (RIS). (author)

  1. The radioiodine problem following the Chernobyl accident: ecology, dosimetry and medical effects

    International Nuclear Information System (INIS)

    Zvonova, I.A.

    1991-01-01

    Following the Chernobyl accident radioisotopes of iodine constituted the main dose-forming factor among the people who stayed on in the radioactively contaminated areas, and in a number of places the effective doses to the thyroid gland were up to two orders of magnitude higher than the whole-body dose stemming from uniform internal and external irradiation. We consider the mechanisms involved in the radioiodine contribution to the doses in the human organism, depending on intake path, life style and social and ecological factors. We illustrate, by means of examples, thyroid gland dose distribution for various age groups in the population, and discuss the medical effects and predict the long-term risks for the population of exposure to radioisotopes of iodine. (author)

  2. Convention on early notification of a nuclear accident. Convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1987-05-01

    The document refers to the Convention on early notification of a nuclear accident (INFCIRC-335) and to the Convention on assistance in the case of a nuclear accident or radiological emergency (INFCIRC-336). Part I of the document contains the texts of reservations/declarations made by some of the countries upon or following signature. Part II contains the texts of reservations/declarations made upon or following deposit of instrument, expressing consent to be bound

  3. Convention on early notification of a nuclear accident and convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1991-09-01

    The document refers to the Convention on Early Notification of a Nuclear Accident (IAEA-INFCIRC-335) and to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (IAEA-INFCIRC-336). Part I contains the status lists as of August 31, 1991. Part II contains reservations/declarations made upon expressing consent to be bound and objections there to. Part III contains reservations/declarations made upon signature

  4. Convention on Early Notification of a Nuclear Accident and Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency

    International Nuclear Information System (INIS)

    1997-01-01

    Part I: Status lists as of 31 December 1996. A. Convention on Early Notification of a Nuclear Accident (Notification Convention). B. Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (Assistance Convention). PART II: Texts of reservations/declarations made upon or following expressing consent to be bound and objections thereto Part III: Texts of reservations/declarations made upon signature

  5. Convention on early notification of a nuclear accident and convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1992-09-01

    The document refers to the Convention on Early Notification of a Nuclear Accident (CENNA) (IAEA-INFCIRC-335) and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (CANARE) (IAEA-INFCIRC-336). Part I contains the status lists as of 10 September 1992, part II contains the texts of reservations/declarations made upon expressing consent to be bound and objections there to, and part III contains the texts of reservations/declarations made upon signature

  6. Convention on early notification of a nuclear accident and convention on assistance in the case of a nuclear accident or radiological emergency

    International Nuclear Information System (INIS)

    1997-01-01

    The document refers to the Convention on Early Notification of a Nuclear Accident (CENNA) (IAEA-INFCIRC-335) and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (CANARE) (IAEA-INFCIRC-336). Part I contains the status list as of 31 December 1996, Part II contains the texts of reservations/declarations made upon or following expressing consent to be bound and objections thereto, and Part III contains the texts of reservations/declarations made upon signature

  7. Convention on early notification of a nuclear accident and convention on assistance in the case of a nuclear accident or radiological emergency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-28

    The document refers to the Convention on Early Notification of a Nuclear Accident (CENNA) (IAEA-INFCIRC-335) and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (CANARE) (IAEA-INFCIRC-336). Part I contains the status list as of 31 December 1996, Part II contains the texts of reservations/declarations made upon or following expressing consent to be bound and objections thereto, and Part III contains the texts of reservations/declarations made upon signature.

  8. Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

  9. Main lessons based on the Chernobyl nuclear power plant accident liquidation experience

    International Nuclear Information System (INIS)

    Vasil'chenko, V.N.; Nosovskij, A.V.

    2006-01-01

    The authors review the main lessons of the Chernobyl nuclear power plant accident and the liquidation of its consequences in the area of the nuclear reactors safety operation, any major accident management, liquidation accident consequences criteria, emergency procedures, preventative measures and treatment irradiated victims, the monitoring methods etc. The special emphasis is put on the questions of the emergency response and the antiaccidental measures planning in frame of international cooperation program

  10. National radiological emergency response to the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2011-01-01

    The Fukushima nuclear power plant accident occurred on March 11, 2011, when two natural disasters of unprecedented strengths, an earthquake with magnitude 9 followed one hour later by a powerful tsunami struck northeastern Japan and felled the external power supply and the emergency diesel generators of the Fukushima Daiichi nuclear power station, resulting in a loss of coolant accident. There were core meltdowns in three nuclear reactors with the release of radioactivity estimated to be 1/10 of what was released to the environment during the Chernobyl nuclear power plant accident in April 1986. The Fukushima nuclear accident tested the capability of the Philippine Nuclear Research Institute (PNRI) and the National Disaster Risk Reduction and Management Council (NDRRMC) in responding to such radiological emergency as a nuclear power plant accident. The PNRI and NDRRMC activated the RADPLAN for possible radiological emergency. The emergency response was calibrated to the status of the nuclear reactors on site and the environmental monitoring undertaken around the site and off-site, including the marine environment. This orchestrated effort enabled the PNRI and the national agencies concerned to reassure the public that the nuclear accident does not have a significant impact on the Philippines, both on the health and safety of the people and on the safety of the environment. National actions taken during the accident will be presented. The role played by the International Atomic Energy Agency as the central UN agency for nuclear matters will be discussed. (author)

  11. Medical activities at nuclear disaster. Experience in the accident of Fukushima nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, Arifumi

    2013-01-01

    The Great East Japan Earthquake brought multiple disaster resulting nuclear accident at Fukushima. Existing medical system for emergency radiation exposure did not work well. Present medical system for the nuclear disaster is maintained temporary with supports by teams from regions other than Fukushima Pref. The radiation protection action must be both for the public and the medical persons. Medical activities for nuclear disaster are still in progress now. Medical system for radiation exposure should be maintained in future for works of decommissioning of reactors. Problems, however, may exist in economy and education of medical personnel. (K.Y.)

  12. Radiation protection issues on preparedness and response for a severe nuclear accident: experiences of the Fukushima accident.

    Science.gov (United States)

    Homma, T; Takahara, S; Kimura, M; Kinase, S

    2015-06-01

    Radiation protection issues on preparedness and response for a severe nuclear accident are discussed in this paper based on the experiences following the accident at Fukushima Daiichi nuclear power plant. The criteria for use in nuclear emergencies in the Japanese emergency preparedness guide were based on the recommendations of International Commission of Radiological Protection (ICRP) Publications 60 and 63. Although the decision-making process for implementing protective actions relied heavily on computer-based predictive models prior to the accident, urgent protective actions, such as evacuation and sheltering, were implemented effectively based on the plant conditions. As there were no recommendations and criteria for long-term protective actions in the emergency preparedness guide, the recommendations of ICRP Publications 103, 109, and 111 were taken into consideration in determining the temporary relocation of inhabitants of heavily contaminated areas. These recommendations were very useful in deciding the emergency protective actions to take in the early stages of the Fukushima accident. However, some suggestions have been made for improving emergency preparedness and response in the early stages of a severe nuclear accident. © The Chartered Institution of Building Services Engineers 2014.

  13. Health effects models for nuclear power plant accident consequence analysis

    International Nuclear Information System (INIS)

    Evans, J.S.; Abrahmson, S.; Bender, M.A.; Boecker, B.B.; Scott, B.R.; Gilbert, E.S.

    1993-10-01

    This report is a revision of NUREG/CR-4214, Rev. 1, Part 1 (1990), Health Effects Models for Nuclear Power Plant Accident Consequence Analysis. This revision has been made to incorporate changes to the Health Effects Models recommended in two addenda to the NUREG/CR-4214, Rev. 1, Part 11, 1989 report. The first of these addenda provided recommended changes to the health effects models for low-LET radiations based on recent reports from UNSCEAR, ICRP and NAS/NRC (BEIR V). The second addendum presented changes needed to incorporate alpha-emitting radionuclides into the accident exposure source term. As in the earlier version of this report, models are provided for early and continuing effects, cancers and thyroid nodules, and genetic effects. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes are considered. Linear and linear-quadratic models are recommended for estimating the risks of seven types of cancer in adults - leukemia, bone, lung, breast, gastrointestinal, thyroid, and ''other''. For most cancers, both incidence and mortality are addressed. Five classes of genetic diseases -- dominant, x-linked, aneuploidy, unbalanced translocations, and multifactorial diseases are also considered. Data are provided that should enable analysts to consider the timing and severity of each type of health risk

  14. Uncertainty and sensitivity analysis in nuclear accident consequence assessment

    International Nuclear Information System (INIS)

    Karlberg, Olof.

    1989-01-01

    This report contains the results of a four year project in research contracts with the Nordic Cooperation in Nuclear Safety and the National Institute for Radiation Protection. An uncertainty/sensitivity analysis methodology consisting of Latin Hypercube sampling and regression analysis was applied to an accident consequence model. A number of input parameters were selected and the uncertainties related to these parameter were estimated within a Nordic group of experts. Individual doses, collective dose, health effects and their related uncertainties were then calculated for three release scenarios and for a representative sample of meteorological situations. From two of the scenarios the acute phase after an accident were simulated and from one the long time consequences. The most significant parameters were identified. The outer limits of the calculated uncertainty distributions are large and will grow to several order of magnitudes for the low probability consequences. The uncertainty in the expectation values are typical a factor 2-5 (1 Sigma). The variation in the model responses due to the variation of the weather parameters is fairly equal to the parameter uncertainty induced variation. The most important parameters showed out to be different for each pathway of exposure, which could be expected. However, the overall most important parameters are the wet deposition coefficient and the shielding factors. A general discussion of the usefulness of uncertainty analysis in consequence analysis is also given. (au)

  15. Bone marrow transplantation after the Chernobyl nuclear accident

    International Nuclear Information System (INIS)

    Baranov, A.; Gale, R.P.; Guskova, A.

    1989-01-01

    On April 26, 1986, an accident at the Chernobyl nuclear power station in the Soviet Union exposed about 200 people to large doses of total-body radiation. Thirteen persons exposed to estimated total-body doses of 5.6 to 13.4 Gy received bone marrow transplants. Two transplant recipients, who received estimated doses of radiation of 5.6 and 8.7 Gy, are alive more than three years after the accident. The others died of various causes, including burns (the cause of death in five), interstitial pneumonitis (three), graft-versus-host disease (two), and acute renal failure and adult respiratory distress syndrome (one). There was hematopoietic (granulocytic) recovery in nine transplant recipients who could be evaluated, six of whom had transient partial engraftment before the recovery of their own marrow. Graft-versus-host disease was diagnosed clinically in four persons and suspected in two others. Although the recovery of endogenous hematopoiesis may occur after exposure to radiation doses of 5.6 to 13.4 Gy, we do not know whether it is more likely after the transient engraftment of transplanted stem cells. Because large doses of radiation affect multiple systems, bone marrow recovery does not necessarily ensure survival. Furthermore, the risk of graft-versus-host disease must be considered when the benefits of this treatment are being weighed

  16. Initial basis for agronomic countermeasure selection following a nuclear accident

    International Nuclear Information System (INIS)

    Bonetto, Juan P.; Kunst, Juan J.; Bruno, Hector; Jordan, Osvaldo; Hernandez, Daniel

    2008-01-01

    During the recovery stage, following a nuclear accident, application of agricultural countermeasures will be relevant to the minimization of the radiation induced detriment due to ingestion of locally produced contaminated foodstuff, as long as the magnitude of the averted dose is sufficient to justify their implementation. Nuclear emergency planning in Argentina currently holds food ban as the accepted countermeasure, at least until other measures are taken. Though it may ensure no residual collective dose, food ban may also imply very high costs, compared to other alternatives, specially due to the need of disposing off perishable food such as milk. Therefore, an exhaustive evaluation of all the alternatives, considering both quantitative and qualitative factors is still needed to identify optimal countermeasure strategies, bearing in mind also that decisions made during the early phase of an emergency will affect the fate of the measures to be taken later. As a first step in this direction, a basic quantitative decision-aiding technique, the cost-benefit analysis, is carried out for comparison of countermeasures related to Cesium contaminated cow-milk which are considered feasible for implementation in Argentina. Countermeasures total costs are estimated from various local sources, while their effectiveness are adopted from international bibliography. At this stage, a simple theoretical example considering milk contamination in the surroundings of the Embalse Nuclear Power Plant is used for a generic analysis, since actual collective doses and costs can only be calculated for a specific modelled scenario. (author)

  17. Initial Basis for Agronomic Countermeasure Selection Following a Nuclear Accident

    International Nuclear Information System (INIS)

    Bonetto, J.P.; Kunst, J.J.; Bruno, H.A.; Jordan, O.D.; Hernandez, D.G.

    2011-01-01

    During the recovery stage, following a nuclear accident, application of agricultural countermeasures will be relevant to the minimization of the radiation induced detriment due to ingestion of locally produced contaminated foodstuff, as long as the magnitude of the averted dose is sufficient to justify their implementation. Nuclear emergency planning in Argentina currently holds food ban as the accepted countermeasure, at least until other measures are taken. Though it may ensure no residual collective dose, food ban may also imply very high costs, compared to other alternatives, specially due to the need of disposing off perishable food such as milk. Therefore, an exhaustive evaluation of all the alternatives, considering both quantitative and qualitative factors is still needed to identify optimal countermeasure strategies, bearing in mind also that decisions made during the early phase of an emergency will affect the fate of the measures to be taken later. As a first step in this direction, a basic quantitative decis sion-aiding technique, the cost-benefit analysis, is carried out for comparison of countermeasures related to Cesium contaminated cow-milk which are considered feasible for implementation in Argentina. Countermeasures total costs are estimated from various local sources, while their effectiveness are adopted from international bibliography. At this stage, a simple theoretical example considering milk contamination in the surroundings of the Embalse Nuclear Power Plant is used for a generic analysis, since actual collective doses and costs can only be calculated for a specific modelled scenario. (authors)

  18. Procedures for field measurements in the case of nuclear accident

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.

    2000-01-01

    Very simplified, reduced and shorted procedures for main objectives of emergency field monitoring in case of nuclear accident are given only. They could be implemented in Croatia using resources nowadays available. Procedures for gamma/beta dose rates in plume and ground deposition survey and unknown situation evaluation, procedures for alpha and gamma/beta surface contamination measurement, field personnel/equipment contamination and decontamination measurement as well as for in-situ gamma spectrometry measurements are presented. Purpose, short discussion, general precautions and limitations as well as basic equipment and supplies needed are given for all of procedures discussed also. Only measuring steps are given with more details in form of short and clear instructions. (author)

  19. Reinforcement of Defence-in-Depth: Modification Practice After the Fukushima Nuclear Accident

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Tang, H.; Mao, Q., E-mail: wangyuhong@cgnpc.com.cn [China Nuclear Power Design Co., Ltd Xia Meilin, Futian District, Shenzhen, Guangdong Province (China)

    2014-10-15

    The Fukushima Daiichi nuclear accident revealed the importance and demand for further reinforcement of defence in- depth. CGN (China General Nuclear Power Group) has made a complete safety assessment on CPR1000 nuclear power plants under construction in China. Dozens of modifications have been implemented based on the assessment findings and lessons learned from Fukushima nuclear accident, taking into account of PSA (Probabilistic Safety Analysis) and comparison analysis of the latest regulations and standards. These modifications help to enhance nuclear safety significantly for nuclear power plants under construction in China, and provide helpful modification guidance for nuclear power plants in operation of the same type. (author)

  20. The Chernobyl Nuclear Power Plant accident: ecotoxicological update

    Science.gov (United States)

    Eisler, R.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    The accident at the Chernobyl, Ukraine, nuclear reactor on 26 April 1986 released large amounts of radiocesium and other radionuclides into the environment, contaminating much of the northern hemisphere, especially Europe. In the vicinity of Chernobyl, at least 30 people died, more than 115,000 others were evacuated, and consumption of milk and other foods was banned because of radiocontamination. At least 14,000 human cancer deaths are expected in Russia, Belarus, and the Ukraine as a direct result of Chernobyl. The most sensitive local ecosystems, as judged by survival, were the soil fauna, pine forest communities, and certain populations of rodents. Elsewhere, fallout from Chernobyl significantly contaminated freshwater and terrestrial ecosystems and flesh and milk of domestic livestock; in many cases, radionuclide concentrations in biological samples exceeded current radiation protection guidelines. Reindeer (Rangifer tarandus) in Scandinavia were among the most seriously afflicted by Chernobyl fallout, probably because their main food during winter (lichens) is an efficient absorber of airborne particles containing radiocesium. Some reindeer calves contaminated with 137Cs from Chernobyl showed 137Cs-dependent decreases in survival and increases in frequency of chromosomal aberrations. Although radiation levels in the biosphere are declining with time, latent effects of initial exposure--including an increased frequency of thyroid and other cancers--are now measurable. The full effect of the Chernobyl nuclear reactor accident on natural resources will probably not be known for at least several decades because of gaps in data on long-term genetic and reproductive effects and on radiocesium cycling and toxicokinetics.

  1. Biological dosimetry of local radiation accidents of skin: possible cytological and biochemical methods

    International Nuclear Information System (INIS)

    Potten, C.S.

    1986-01-01

    Skin erythema or skin reaction is a highly dose-dependent change in skin appearance. A few gray can usually be detected in humans but higher doses are usually required for experimental rodents. The disadvantages are that the end-point is subjective and the response strongly influenced by numerous physical and biological factors. Changes in the levels of pigmentation can be detected in the epidermis and possibly the hair follicles but generally these only become apparent after chronic exposures. The skin appendages, particularly the hair follicles, could represent sensitive systems for detecting radiation exposures, but the cyclic behaviour of the hair follicles is difficult to control or determine in an accident. Acute cell death can be measured in the follicle germ and changes in the thickness and appearance of the hair are easily detected: in severe cases there is loss of hair (epilation). The number of dead cells per follicle section increased at a rate of 2.9/Gy and doses of about 0.2Gy can be easily detected. The width of the hair is reduced by about 7-8%/Gy and this change, which results in a dysplastic hair is believed to be the consequences of cell death in the follicles. (author)

  2. Optically stimulated luminescence of electronic components for forensic, retrospective, and accident dosimetry

    International Nuclear Information System (INIS)

    Inrig, E.L.; Godfrey-Smith, D.I.; Khanna, S.

    2008-01-01

    This study investigated the optically stimulated luminescence (OSL) response of electronic components found within portable electronic devices such as cell phones and pagers, portable computers, music and video players, global positioning system receivers, cameras, and digital watches. The analysis of components extracted from these ubiquitous devices was proposed for applications ranging from rapid accident dose reconstruction to the tracking and attribution of gamma-emitting radiological materials. Surface-mount resistors with alumina porcelain substrates consistently produced OSL following irradiation, with minimum detectable doses on the order of 10 mGy for a typical sample. Since the resistor ceramics were found to exhibit anomalous fading, dose reconstruction procedures were developed to correct for this using laboratory measurements of fading rates carried out over approximately 3 months. Two trials were conducted in which cellular phones were affixed to an anthropomorphic phantom and irradiated using gamma-ray sources; ultimately, analysis of the devices used in these trials succeeded in reconstructing doses in the range of 0.1-0.6Gy

  3. Biological dosimetry, diagnosis, and treatment of bone-marrow syndrome in victims of the Chernobyl accident

    International Nuclear Information System (INIS)

    Nugis, V.Yu.; Konchalovskii, M.V.

    1993-01-01

    During our medical investigation and treatment of victims of the Chernobyl accident, we obtained extensive clinical and laboratory data. The injuries to these victims were caused primarily by high external gamma and beta radiation doses. In some cases, these doses were accompanied by skin contamination by beta- and gamma-emitting radionuclides and by an intake of radionuclides, although the latter exposure mode was, for the most part, insignificant. Cytogenetic analysis of lymphocyte cultures of peripheral blood and bone marrow provided early estimations of radiation doses based on frequency of dicentrics. These dose estimates were well correlated with dose estimates derived from analysis of neutrophil numbers in peripheral blood. Early isolation of patients with acute radiation sickness (ARS), selective decontamination of the intestine, and application of a wide range of antibiotics and antifungal and antiviral medications helped avoid the development of fatal infections in many patients. Autological cryopreserved thrombocyte mass treatment was successfully used for victims in the second and third degree of ARS. Transplantation of allogenic bone marrow (13 cases) was ineffective and frequently caused fatal secondary sickness. As a whole, complications from widespread skin contamination by beta-emitting radionuclides, interstitial radiation pneumonia complicated by infection, and gastrointestinal syndrome were the leading factors in thanatogenesis. 21 refs., 10 figs., 5 tabs

  4. Reactor safety study. An assessment of accident risks in U.S. commercial nuclear power plants. Executive summary: main report

    International Nuclear Information System (INIS)

    1975-10-01

    Information is presented concerning the objectives and organization of the reactor safety study; the basic concepts of risk; the nature of nuclear power plant accidents; risk assessment methodology; reactor accident risk; and comparison of nuclear risks to other societal risks

  5. Reconstructive dosimetry of radiological accidents - study of a brazilian case of industrial gamma radiography; Dosimetria reconstrutiva de acidentes radiologicos - estudo de um caso brasileiro de gamagrafia industrial

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Cesar Augusto da; Hunt, John G.; Ramalho, Adriana [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Pinto, Livia M.F. Amalfi [ARCtest - Servicos Tecnicos de Inspecao e Manutencao Industrial Ltda., Paulinia, SP (Brazil)]. E-mail: protecao@arctest.com.br

    2002-07-01

    On May 2000, an industrial gamma radiography operator, during a maintenance work of a {sup 60}Co irradiator, has suffered a radiological accident with severe consequences to the left hand. The experts of the High Doses Analysis Group (GADE/IRD/CNEN) initiated the reconstructive dosimetry for the radiation dose estimation, in order to determine the real dose received by the operator, and to help the medical evaluation for prescribing the medical procedures for treatment of the involved victim. This paper presents the reconstructive dosimetry performed through the determination of the radiation doses of the operator, based on theoretical, experimental and computational methods. For the computer methods, a program for the calculation of external doses were used, based on the Monte Carlo method, and a human body simulator composed by voxels. The values of effective and equivalent doses are also presented which has caused severe lesions on the operator hand.

  6. Cooperation in the Event of Nuclear Accidents; Cooperation en Matiere d'Accidents Nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bresson, G. [CEA, Centre d' etudes nucleaires, de Fontenay-aux-Roses (France)

    1969-10-15

    This paper is concerned only with the action to be taken in respect of an individual directly affected by an accident and not with the more general measures relating to the population as a whole. Keeping the same sequence of ideas, the paper deals with nuclear establishments and cites criteria for classifying them; hence only the relationship between the establishment and the hospital, and between the radiation protection experts and medical personnel, is discussed. The complex organization of emergency measures, reception of the victim of the accident, and the treatment possibly required should be based on standard practice and published material, both national and international, allowance being made for the characteristics of each sector. A ''flexible'' plan of co-ordination is given as an illustration. Action must be taken in such cases at the site of the accident, inside and outside the establishment, and above all at the hospital. All categories of persons are involved in the process, i.e. fellow-workers, management, specialized services, and medical personnel, each with their own part to play. The manpower and equipment brought into service therefore vary, and depend upon the internal and external relations maintained by the establishment. The measures envisaged should provide for the transport, reception and treatment of those involved in the accident. An existing organization of this kind is described as an illustration. Finally, no action can be of value without full knowledge of the facts and thorough training of the personnel. Some clearly defined ideas on the.subject are considered under this heading. (author) [French] Le memoire ne traite que de la conduite a tenir envers un accidente et non du probleme, plus general, des mesures relatives a une population. Dans le meme ordre d'idees, l'etude porte sur les etablissements nucleaires et leurs criteres de classement; il ne s'agit donc que des liaisons entre retablissement et l'hopital et entre les

  7. Containment pressure monitoring method after severe accident in nuclear power plant

    International Nuclear Information System (INIS)

    Luo Chuanjie; Zhang Shishui

    2011-01-01

    The containment atmosphere monitoring system in nuclear power plant was designed on the basis of design accident. But containment pressure will increase greatly in a severe accident, and pressure instrument in the containment can't satisfy the monitoring requirement. A new method to monitor the pressure change in the containment after a severe accident was considered, through which accident soften methods can be adopted. Under present technical condition, adding a pressure monitoring channel out of containment for post-severe accident is a considerable method. Daya Bay Nuclear Power Plant implemented this modification, by which the containment release time can be delayed during severe accident, and nuclear safety can be increased. After analysis, this method is safe and feasible. (authors)

  8. Using modular neural networks to monitor accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    Guo, Z.

    1992-01-01

    Nuclear power plants are very complex systems. The diagnoses of transients or accident conditions is very difficult because a large amount of information, which is often noisy, or intermittent, or even incomplete, need to be processed in real time. To demonstrate their potential application to nuclear power plants, neural networks axe used to monitor the accident scenarios simulated by the training simulator of TVA's Watts Bar Nuclear Power Plant. A self-organization network is used to compress original data to reduce the total number of training patterns. Different accident scenarios are closely related to different key parameters which distinguish one accident scenario from another. Therefore, the accident scenarios can be monitored by a set of small size neural networks, called modular networks, each one of which monitors only one assigned accident scenario, to obtain fast training and recall. Sensitivity analysis is applied to select proper input variables for modular networks

  9. Aftermath of the Fukushima Daiichi nuclear accident in March 2011 - Situation review in March 2016

    International Nuclear Information System (INIS)

    2016-03-01

    The first part of this detailed report addresses the consequences of the accident regarding nuclear safety. It proposes a situation review of site damaged installations, of radioactive water management, and of underground water management. It presents and comments lessons learned from this accident for French nuclear installations, gives an overview of researches performed by the IRSN in the field of nuclear safety. The second part addresses health consequences of the accident. It discusses an assessment of epidemiologic studies performed on inhabitants of the Fukushima Prefecture, and comments the situation of workers involved in operations performed in the Fukushima Daiichi nuclear power plant. The third part addresses environmental consequences. It discusses values of radionuclide concentrations in Japanese air five years after the accident, measurements of caesium activities, assessments of contamination of Japanese food products, decontamination actions and waste management, the status of marine contamination in 2015, the evolution of evacuation areas between 2011 and 2016, the first returns and wills to return of evacuated populations, the update of knowledge related to the dispersion and depositions of atmospheric releases of the accident, and the modelling of atmospheric transport and fallouts of releases emitted during the accident. The last part proposes a comparison between the Chernobyl accident and the Fukushima accident in terms of distribution of radioactive depositions within river basins, of knowledge drawn from ecologic studies on fauna and flora performed on the long term in contaminated areas, and of management of forest environments after a nuclear accident

  10. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology

    International Nuclear Information System (INIS)

    Akselrod, M.S.; Fomenko, V.V.; Bartz, J.A.; Haslett, T.L.

    2014-01-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. The first table-top automatic FNTD neutron dosimetry system was successfully tested for LLD, linearity and ability to measure neutrons in mixed neutron-photon fields satisfying US and ISO standards. This new neutron dosimetry system provides advantages over other technologies including environmental stability of the detector material, wide range of detectable neutron energies and doses, detector re-readability and re-usability and all-optical readout. A new adaptive image processing algorithm reliably removes false-positive tracks associated with surface and bulk crystal imperfections. (authors)

  11. Sarnet lecture notes on nuclear reactor severe accident phenomenology

    International Nuclear Information System (INIS)

    Trambauer, K.; Adroguer, B.; Fichot, F.; Muller, C.; Meyer, L.; Breitung, W.; Magallon, D.; Journeau, C.; Alsmeyer, H.; Housiadas, C.; Clement, B.; Ang, M.L.; Chaumont, B.; Ivanov, I.; Marguet, S.; Van Dorsselaere, J.P.; Fleurot, J.; Giordano, P.; Cranga, M.

    2008-01-01

    The 'Severe Accident Phenomenology Short Course' is part of the Excellence Spreading activities of the European Severe Accident Research NETwork of Excellence SARNET (project of the EURATOM 6. Framework programme). It was held at Cadarache, 9-13 January 2006. The course was divided in 14 lectures covering all aspects of severe accident phenomena that occur during a scenario. It also included lectures on PSA-2, Safety Assessment and design measures in new LWR plants for severe accident mitigation (SAM). This book presents the lecture notes of the Severe Accident Phenomenology Short Course and condenses the essential knowledge on severe accident phenomenology in 2008. (authors)

  12. Nuclear Security Summit and Workshop 2015: Preventing, Understanding and Recovering from Nuclear Accidents lessons learned from Chernobyl and Fukushima

    Science.gov (United States)

    2016-09-01

    Workshop 2015 "Preventing, Understanding and Recovering from Nuclear Accidents"--lessons learned from Chernobyl and Fukushima Distribution Statement...by the factor to get the U.S. customary unit. “Preventing, Understanding and Recovering from Nuclear Accidents” – lessons learned from Chernobyl ...and Fukushima NUCLEAR SECURITY SUMMIT & WORKSHOP 2015 2 Background The 1986 Chernobyl and the 2011 Fukushima accidents provoked world-wide concern

  13. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images.

    Science.gov (United States)

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity.

  14. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images*

    Science.gov (United States)

    Leal Neto, Viriato; Vieira, José Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective This article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and Methods A software called DoRadIo (Dosimetria das Radiações Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C# programming language. Results With the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion The user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. PMID:25741101

  15. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    International Nuclear Information System (INIS)

    Leal Neto, Viriato; Vieira, Jose Wilson; Lima, Fernando Roberto de Andrade

    2014-01-01

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  16. Application for internal dosimetry using biokinetic distribution of photons based on nuclear medicine images

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, Viriato, E-mail: viriatoleal@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Vieira, Jose Wilson [Universidade Federal de Pernambuco (UPE), Recife, PE (Brazil); Lima, Fernando Roberto de Andrade [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2014-09-15

    Objective: this article presents a way to obtain estimates of dose in patients submitted to radiotherapy with basis on the analysis of regions of interest on nuclear medicine images. Materials and methods: a software called DoRadIo (Dosimetria das Radiacoes Ionizantes [Ionizing Radiation Dosimetry]) was developed to receive information about source organs and target organs, generating graphical and numerical results. The nuclear medicine images utilized in the present study were obtained from catalogs provided by medical physicists. The simulations were performed with computational exposure models consisting of voxel phantoms coupled with the Monte Carlo EGSnrc code. The software was developed with the Microsoft Visual Studio 2010 Service Pack and the project template Windows Presentation Foundation for C ⧣ programming language. Results: with the mentioned tools, the authors obtained the file for optimization of Monte Carlo simulations using the EGSnrc; organization and compaction of dosimetry results with all radioactive sources; selection of regions of interest; evaluation of grayscale intensity in regions of interest; the file of weighted sources; and, finally, all the charts and numerical results. Conclusion: the user interface may be adapted for use in clinical nuclear medicine as a computer-aided tool to estimate the administered activity. (author)

  17. Fast neutron dosimetry by means of different solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    1977-01-01

    The comparative study of three different types of fast neutron dosimeters based on solid state nuclear track detectors is presented; the dosimeters studied were: - microscopic soda glass in contact with 232 Th; - polycarbonate Makrofol E; and - cellulose nitrate Kodak LR 115. All detectors were evaluated by visual counting in a microscope. The authors have studied such properties as the background, angular as well as energetical dependences of detectors. The results obtained show that all studied detectors are suitable for fast neutron dosimetry; their application depends however on the concrete experimental conditions (neutron spectrum, fluence etc.). Both advantages and disadvantages of each of them are presented. (Auth.)

  18. Measuring Risk Aversion for Nuclear Power Plant Accident: Results of Contingent Valuation Survey in Korea

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2015-01-01

    Within the evaluation of the external cost of nuclear energy, the estimation of the external cost of nuclear power plant (NPP) severe accident is one of the major topics to be addressed. For the evaluation of the external cost of NPP severe accident, the effect of public risk averse behavior against the group accidents, such as NPP accident, dam failure, must be addressed. Although the equivalent fatalities from a single group accident are not common and its risk is very small compared to other accidents, people perceive the group accident more seriously. In other words, people are more concerned about low probability/high consequence events than about high probability/low consequence events having the same mean damage. One of the representative method to integrate the risk aversion in the external costs of severe nuclear reactor accidents was developed by Eeckoudt et al., and he used the risk aversion coefficient, mainly based on the analysis of financial risks in the stock markets to evaluate the external cost of nuclear severe accident. However, the use of financial risk aversion coefficient to nuclear severe accidents is not appropriate, because financial risk and nuclear severe accident risk are entirely different. In this paper, the individual-level survey was conducted to measure the risk aversion coefficient and estimate the multiplication factor to integrate the risk aversion in the external costs of NPP severe accident. This study propose an integrated framework on estimation of the external cost associated with severe accidents of NPP considering public risk aversion behavior. The theoretical framework to estimate the risk aversion coefficient/multiplication factor and to assess economic damages from a hypothetical NPP accident was constructed. Based on the theoretical framework, the risk aversion coefficient can be analyzed by conducting public survey with a carefully designed lottery questions. Compared to the previous studies on estimation of the

  19. Measuring Risk Aversion for Nuclear Power Plant Accident: Results of Contingent Valuation Survey in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Within the evaluation of the external cost of nuclear energy, the estimation of the external cost of nuclear power plant (NPP) severe accident is one of the major topics to be addressed. For the evaluation of the external cost of NPP severe accident, the effect of public risk averse behavior against the group accidents, such as NPP accident, dam failure, must be addressed. Although the equivalent fatalities from a single group accident are not common and its risk is very small compared to other accidents, people perceive the group accident more seriously. In other words, people are more concerned about low probability/high consequence events than about high probability/low consequence events having the same mean damage. One of the representative method to integrate the risk aversion in the external costs of severe nuclear reactor accidents was developed by Eeckoudt et al., and he used the risk aversion coefficient, mainly based on the analysis of financial risks in the stock markets to evaluate the external cost of nuclear severe accident. However, the use of financial risk aversion coefficient to nuclear severe accidents is not appropriate, because financial risk and nuclear severe accident risk are entirely different. In this paper, the individual-level survey was conducted to measure the risk aversion coefficient and estimate the multiplication factor to integrate the risk aversion in the external costs of NPP severe accident. This study propose an integrated framework on estimation of the external cost associated with severe accidents of NPP considering public risk aversion behavior. The theoretical framework to estimate the risk aversion coefficient/multiplication factor and to assess economic damages from a hypothetical NPP accident was constructed. Based on the theoretical framework, the risk aversion coefficient can be analyzed by conducting public survey with a carefully designed lottery questions. Compared to the previous studies on estimation of the

  20. Medical care of radiation accidents

    International Nuclear Information System (INIS)

    Nakao, Isamu

    1986-02-01

    This monograph, divided into six chapters, focuses on basic knowledge and medical strategies for radiation accidents. Chapters I to V deal with practice in emergency care for radiation exposure, covering 1) medical strategies for radiation accidents, 2) personnel dosimetry and monitoring, 3) nuclear facilities and their surrounding areas with the potential for creating radiation accidents, and emergency medical care for exposed persons, 4) emergency care procedures for radiation exposure and radioactive contamination, and 5) radiation hazards and their treatment. The last chapter provides some references. (Namekawa, K.)