WorldWideScience

Sample records for nstx spherical torus

  1. National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Masayuki Ono

    2000-01-01

    The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. Physics outcome of the NSTX research program is relevant to near-term applications such as the Volume Neutron Source (VNS) and burning plasmas, and future applications such as the pilot and power plants. The NSTX device began plasma operations in February 1999 and the plasma current was successfully ramped up to the design value of 1 million amperes (MA) on December 14, 1999. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments have also started. Stable CHI discharges of up to 133 kA and 130-msec duration have been produced using 20 kA of injected current. Using eight antennas connected to two transmitters, up to 2 MW of HHFW power was successfully coupled to the plasma. The Neutral-beam Injection (NBI) heating system and associated NBI-based diagnostics such as the Charge-exchange Recombination Spectrometer (CHERS) will be operational in October 2000

  2. Exploration of spherical torus physics in the NSTX device

    Science.gov (United States)

    Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team

    2000-03-01

    The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.

  3. National Spherical Torus Experiment (NSTX) Torus Design, Fabrication and Assembly

    International Nuclear Information System (INIS)

    Neumeyer, C.; Barnes, G.; Chrzanowski, J.H.; Heitzenroeder, P.

    1999-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio spherical torus (ST) located at Princeton Plasma Physics Laboratory (PPPL). Fabrication, assembly, and initial power tests were completed in February of 1999. The majority of the design and construction efforts were constructed on the Torus system components. The Torus system includes the centerstack assembly, external Poloidal and Toroidal coil systems, vacuum vessel, torus support structure and plasma facing components (PFC's). NSTX's low aspect ratio required that the centerstack be made with the smallest radius possible. This, and the need to bake NSTXs carbon-carbon composite plasma facing components at 350 degrees C, was major drivers in the design of NSTX. The Centerstack Assembly consists of the inner legs of the Toroidal Field (TF) windings, the Ohmic Heating (OH) solenoid and its associated tension cylinder, three inner Poloidal Field (PF) coils, thermal insulation, diagnostics and an Inconel casing which forms the inner wall of the vacuum vessel boundary. It took approximately nine months to complete the assembly of the Centerstack. The tight radial clearances and the extreme length of the major components added complexity to the assembly of the Centerstack components. The vacuum vessel was constructed of 304-stainless steel and required approximately seven months to complete and deliver to the Test Cell. Several of the issues associated with the construction of the vacuum vessel were control of dimensional stability following welding and controlling the permeability of the welds. A great deal of time and effort was devoted to defining the correct weld process and material selection to meet our design requirements. The PFCs will be baked out at 350 degrees C while the vessel is maintained at 150 degrees C. This required care in designing the supports so they can accommodate the high electromagnetic loads resulting from plasma disruptions and the resulting relative thermal expansions

  4. Status of National Spherical Torus Experiment (NSTX)*

    Science.gov (United States)

    Ono, Masayuki

    2001-10-01

    The main aim of National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the innovative spherical torus (ST) concept. The NSTX experimental facility has been operating reliably and its capabilities steadily improving. Due to relatively efficient ohmic current drive and benign halo current behavior, the plasma current was increased to 1.4 MA, which is well above the design value of 1 MA. The plasmas at 1 MA are now routinely heated by NBI to the average toroidal beta value of 20 percent range at 3 kG with electrons and ions in the 1-2 keV range. Even with the “L-mode” edge, the energy confinement time can well exceed the so-called L-mode (and even H-mode) scaling values. As a part of ST tool development, High Harmonic Fast Wave (HHFW) heating has demonstrated efficient electron heating with the central electron temperatures reaching 3.7 keV. HHFW induced H-modes have been also observed. For CHI (Coaxial Helicity Injection) non-inductive start-up, CHI discharges of up to 300 kA of toroidal current and 300 msec duration have been produced from zero current using = 25 kA of injected current. The poster presentation will also include the near term NSTX facility upgrade plan.

  5. Spherical Torus Center Stack Design

    International Nuclear Information System (INIS)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-01

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device

  6. National Spherical Torus Experiment (NSTX) Engineering Overview and Research Results 1999 - 2000

    International Nuclear Information System (INIS)

    Neumeyer, C.

    2000-01-01

    The NSTX is a new US facility for the study of plasma confinement, heating, and current drive in a low aspect ratio, spherical torus (ST) configuration. The ST configuration is an alternate magnetic confinement concept which is characterized by high beta (ratio plasma pressure to magnetic field pressure) and low toroidal field compared to conventional tokamaks, and could provide a pathway to the realization of a practical fusion power source. NSTX achieved first plasma in February 1999, and since that time has completed and commissioned all components and systems within the machine proper. Routine operation with inductively driven plasma current less than or equal to 1MA and flat top less than or equal to 0.3 seconds has been established, and the ohmic characterization phase of the research program is underway. Radio Frequency (RF) and Neutral Beam Injection (NBI) systems have been installed and are presently being commissioned. This paper describes the NSTX mission, gives an overview of the engineering design, and summarizes the research results obtained thus far

  7. Overview of Results from the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Gates, D.A.; Ahn, J.; Allain, R.; Andre, R.; Bastasz, R.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.

    2009-01-01

    The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l i ∼ 0.4 with strong shaping (κ ∼ 2.7, (delta) ∼ 0.8) with β N approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f NI ∼ 71%. Instabilities driven by super-Alfvenic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvenic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. The impact of n > 1 error fields on stability is a important result for ITER. RWM/RFA feedback combined with n=3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are: results of lithium coating

  8. Beta-limiting MHD instabilities in improved performance NSTX spherical torus plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.

    2003-01-01

    Global magnetohydrodynamic stability limits in the National Spherical Torus Experiment (NSTX) have increased significantly recently due to a combination of device and operational improvements. First, more routine H-mode operation with broadened pressure profiles allows access to higher normalized beta and lower internal inductance. Second, the correction of a poloidal field coil induced error-field has largely eliminated locked tearing modes during nor- mal operation and increased the maximum achievable beta. As a result of these improvements, peak beta values have reached (not simultaneously) β t = 35%, β N 6.5, N > = 4.5, β / l i =10, and β= 1.4. High β P operation with reduced tearing activity has allowed a doubling of discharge pulse-length to just over 1 second with sustained periods of β N ∼ 6. Details of the β limit scalings and β-limiting instabilities in various operating regimes are described. (author)

  9. Beta-limiting MHD Instabilities in Improved-performance NSTX Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    J.E. Menard; M.G. Bell; R.E. Bell; E.D. Fredrickson D.A. Gates: S.M. Kaye; B.P. LeBlanc; R. Maingi; D. Mueller; S.A. Sabbagh; D. Stutman; C.E. Bush; D.W. Johnson; R. Kaita; H.W. Kugel; R.J. Maqueda; F. Paoletti; S.F Paul; M. Ono; Y.-K.M. Peng; C.H. Skinner; E.J. Synakowski; the NSTX Research Team

    2003-01-01

    Global magnetohydrodynamic stability limits in the National Spherical Torus Experiment (NSTX) have increased significantly recently due to a combination of device and operational improvements. First, more routine H-mode operation with broadened pressure profiles allows access to higher normalized beta and lower internal inductance. Second, the correction of a poloidal field coil induced error-field has largely eliminated locked tearing modes during normal operation and increased the maximum achievable beta. As a result of these improvements, peak beta values have reached (not simultaneously) β t = 35%, β N = 6.4, N > = 4.5, β N /l i = 10, and β P = 1.4. High β P operation with reduced tearing activity has allowed a doubling of discharge pulse-length to just over 1 second with sustained periods of β N ∼ 6 above the ideal no-wall limit and near the with-wall limit. Details of the β limit scalings and β-limiting instabilities in various operating regimes are described

  10. Physics results from the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Kaye, S.; Bell, M.

    2000-01-01

    The mission of the National Spherical Torus Experiment (NSTX) is to extend the understanding of toroidal physics to low aspect ratio (R/a ∼ 1.25) in low collisionality regimes. NSTX is designed to operate with up to 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI), and Co-Axial Helicity Injection (CHI) for non-inductive startup. Initial experiments focused on establishing conditions that will allow NSTX to achieve its aims of simultaneous high-β t and high-bootstrap current fraction, and to develop methods for non-inductive operation, which will be necessary for Spherical Torus power plants. Ohmic discharges with plasma currents up to 1 MA, stored energies up to 55 kJ, β t ∼ 10%, and a range of shapes and configurations were produced. Density limits in deuterium and helium reached 80% and 120% of the Greenwald limit respectively. Significant electron heating was observed with up to 2.3 MW of HHFW. Up to 270 kA of toroidal current for up to 200 msec was produced noninductively using CHI. Initial NBI experiments were carried out with up to two beam sources (3.2 MW). Plasmas with stored energies of up to 140 kJ and β t =21% were produced

  11. Progress Towards High Performance, Steady-state Spherical Torus

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D.S.; Diem, S.J.; Doerner, R.; Efthimion, P.C.; Ferron, J.R.; Fonck, R.J.; Fredrickson, E.D.; Garstka, G.D.; Gates, D.A.; Gray, T.; Grisham, L.R.; Heidbrink, W.; Hill, K.W.; Hoffman, D.; Jarboe, T.R.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kessel, C.; Kim, J.H.; Kissick, M.W.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Lee, K.; Lee, S.G.; Lewicki, B.T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T.K.; Mazzucato, E.; Medley, S.S.; Menard, J.; Mueller, D.; Nelson, B.A.; Neumeyer, C.; Nishino, N.; Ostrander, C.N.; Pacella, D.; Paoletti, F.; Park, H.K.; Park, W.; Paul, S.F.; Peng, Y.-K. M.; Phillips, C.K.; Pinsker, R.; Probert, P.H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A.L.; Rosenberg, A.; Ryan, P.M.; Sabbagh, S.A.; Schaffer, M.; Schooff, R.J.; Seraydarian, R.; Skinner, C.H.; Sontag, A.C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D.W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K.L.; Unterberg, E.A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J.R.; Xu, X.; Zweben, S.J.; Akers, R.; Barry, R.E.; Beiersdorfer, P.; Bialek, J.M.; Blagojevic, B.; Bonoli, P.T.; Carter, M.D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R.J.; Hatcher, R.E.; Hawryluk, R.J.; Houlberg, W.; Harvey, R.; Jardin, S.C.; Hosea, J.C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L.L.; Levinton, F.M.; Luhmann, N.C.; Marsala, R.; Mastravito, D.; Menon, M.M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G.D.; Ram, A.K.; Rensink, M.; Rewoldt, G.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B.C.; Vero, R.; Wampler, W.R.; Wurden, G.A.

    2003-01-01

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted

  12. Recent results from the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Maingi, R; Bell, M G; Bell, R E; Bialek, J; Bourdelle, C; Bush, C E; Darrow, D S; Fredrickson, E D; Gates, D A; Gilmore, M; Gray, T; Jarboe, T R; Johnson, D W; Kaita, R; Kaye, S M; Kubota, S; Kugel, H W; LeBlanc, B P; Maqueda, R J; Mastrovito, D; Medley, S S; Menard, J E; Mueller, D; Nelson, B A; Ono, M; Paoletti, F; Park, H K; Paul, S F; Peebles, T; Peng, Y-K M; Phillips, C K; Raman, R; Rosenberg, A L; Roquemore, A L; Ryan, P M; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A; Stutman, D; Swain, D W; Synakowski, E J; Taylor, G; Wilgen, J; Wilson, J R; Wurden, G A; Zweben, S J

    2003-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect-ratio fusion research facility whose research goal is to make a determination of the attractiveness of the spherical torus concept in the areas of high-β stability, confinement, current drive, and divertor physics. Remarkable progress was made in extending the operational regime of the device in FY 2002. In brief, β t of 34% and β N of 6.5 were achieved. H-mode became the main operational regime, and energy confinement exceeded conventional aspect-ratio tokamak scalings. Heating was demonstrated with the radiofrequency antenna, and signatures of current drive were observed. Current initiation with coaxial helicity injection produced discharges of 400 kA, and first measurements of divertor heat flux profiles in H-mode were made

  13. Next Step Spherical Torus Design Studies

    International Nuclear Information System (INIS)

    Neumeyer, C.; Heitzenroeder, P.; Kessel, C.; Ono, M.; Peng, M.; Schmidt, J.; Woolley, R.; Zatz, I.

    2002-01-01

    Studies are underway to identify and characterize a design point for a Next Step Spherical Torus (NSST) experiment. This would be a ''Proof of Performance'' device which would follow and build upon the successes of the National Spherical Torus Experiment (NSTX) a ''Proof of Principle'' device which has operated at PPPL since 1999. With the Decontamination and Decommissioning (DandD) of the Tokamak Fusion Test Reactor (TFTR) nearly completed, the TFTR test cell and facility will soon be available for a device such as NSST. By utilizing the TFTR test cell, NSST can be constructed for a relatively low cost on a short time scale. In addition, while furthering spherical torus (ST) research, this device could achieve modest fusion power gain for short-pulse lengths, a significant step toward future large burning plasma devices now under discussion in the fusion community. The selected design point is Q=2 at HH=1.4, P subscript ''fusion''=60 MW, 5 second pulse, with R subscript ''0''=1.5 m, A=1.6, I subscript ''p''=10vMA, B subscript ''t''=2.6 T, CS flux=16 weber. Most of the research would be conducted in D-D, with a limited D-T campaign during the last years of the program

  14. Making of the NSTX Facility

    International Nuclear Information System (INIS)

    Neumeyer, C.; Ono, M.; Kaye, S.M.; Peng, Y.-K.M.

    1999-01-01

    The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations

  15. Progress towards Steady State at Low Aspect Ratio on the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Gates, D.A.; Menard, J.; Maingi, R.; Kaye, S.; Sabbagh, S.A.; Diem, S.; Wilson, J.R.; Bell, M.G.; Bell, R.E.; Ferron, J.; Fredrickson, E.D.; Kessel, C.E.; LeBlanc, B.P.; Levinton, F.; Manickam, J.; Mueller, D.; Raman, R.; Stevenson, T.; Stutman, D.; Taylor, G.; Tritz, K.; Yu, H.

    2007-01-01

    Modifications to the plasma control capabilities and poloidal field coils of the National Spherical Torus Experiment (NSTX) have enabled a significant enhancement in shaping capability which has led to the transient achievement of a record shape factor (S (triple b ond) q 95 (I p /aB t )) of ∼ 41 (MA m -1 T -1 ) simultaneous with a record plasma elongation of κ (triple b ond) b/a ∼ 3. This result was obtained using isoflux control and real-time equilibrium reconstruction. Achieving high shape factor together with tolerable divertor loading is an important result for future ST burning plasma experiments as exemplified by studies for future ST reactor concepts, as well as neutron producing devices, which rely on achieving high shape factors in order to achieve steady state operation while maintaining MHD stability. Statistical evidence is presented which demonstrates the expected correlation between increased shaping and improved plasma performance.

  16. Measurements of Prompt and MHD-Induced Fast Ion Loss from National Spherical Torus Experiment Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod' ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij

    2002-10-15

    A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.

  17. Control System Development Plan for the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Neumeyer, C.; Mueller, D.; Gates, D.A.; Ferron, J.R.

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has as one of its primary goals the demonstration of the attractiveness of the spherical torus concept as a fusion power plant. Central to this goal is the achievement of high plasma β ( = 2 micro 0 /B 2 a measure of the efficiency of a magnetic plasma confinement system). It has been demonstrated both theoretically and experimentally that the maximum achievable β is a strong function of both local and global plasma parameters. It is therefore important to optimize control of the plasma. To this end a phased development plan for digital plasma control on NSTX is presented. The relative level of sophistication of the control system software and hardware will be increased according to the demands of the experimental program in a three phase plan. During Day 0 (first plasma), a simple coil current control algorithm will initiate plasma operations. During the second phase (Day 1) of plasma operations the control system will continue to use the preprogrammed algorithm to initiate plasma breakdown but will then change over to a rudimentary plasma control scheme based on linear combinations of measured plasma fields and fluxes. The third phase of NSTX plasma control system development will utilize the rtEFIT code, first used on DIII-D, to determine, in real-time, the full plasma equilibrium by inverting the Grad-Shafranov equation. The details of the development plan, including a description of the proposed hardware will be presented

  18. Overview of results from the National Spherical Torus Experiment (NSTX)

    Czech Academy of Sciences Publication Activity Database

    Gates, D.A.; Ahn, J.; Allain, J.; Andre, R.; Bastasz, R.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Biewer, T.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Brennan, D.; Breslau, J.; Brower, D.; Bush, C.; Canik, J.; Caravelli, G.; Carter, M.; Caughman, J.; Chang, C.; Crocker, N.; Darrow, D.; Delgado-Aparicio, L.; Diem, S.; D’Ippolito, D.; Domier, C.; Dorland, W.; Efthimion, P.; Ejiri, A.; Ershov, N.; Evans, T.; Feibush, E.; Fenstermacher, M.; Ferron, J.; Finkenthal, M.; Foley, J.; Frazin, R.; Fredrickson, E.; Fu, G.; Funaba, H.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Grisham, L.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hillesheim, J.; Hillis, D.; Hirooka, Y.; Hosea, J.; Hu, B.; Humphreys, D.; Idehara, T.; Indireshkumar, K.; Ishida, A.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Ji, H.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kawahata, K.; Kawamori, E.; Kaye, S.; Kessel, C.; Kimura, H.; Kolemen, E.; Krasheninnikov, H.; Krstic, P.; Ku, S.; Kubota, S.; Kugel, H.; La Haye, R.; Lao, L.; LeBlanc, B.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Luhmann Jr, N.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mitarai, O.; Mueller, D.; Mueller, S.; Munsat, T.; Myra, J.; Nagayama, Y.; Nelson, B.; Nguyen, X.; Nishino, N.; Nishiura, M.; Nygren, R.; Ono, M.; Osborne, T.; Pacella, D.; Park, J.; Paul, S.; Peebles, W.; Penaflor, B.; Peng, M.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, Josef; Ram, A.; Raman, R.; Rasmussen, D.; Redd, A.; Reimerdes, H.; Rewoldt, G.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S.; Schaffer, M.; Schuster, E.; Scott, S.; Shaing, K.; Sharpe, P.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C.; Smirnov, A.; Smith, D.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Strait, T.; Stratton, B.; Stutman, D.; Takahashi, R.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Ticos, C.; Tritz, K.; Tsarouhas, D.; Turrnbull, A.; Tynan, G.; Ulrickson, M.; Umansky, M.; Urban, Jakub; Utergberg, E.; Walker, M.; Wampler, M.; Wang, J.; Wang, W.; Welander, A.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K.; Wright, J.; Xia, Z.; Xu, X.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zweben, S.; Choe, W.; Jung, H.; Kim, J.; Lee, W.; Park, H.

    2009-01-01

    Roč. 49, č. 10 (2009), s. 104016-104016 ISSN 0029-5515. [IAEA Fusion Energy Conference/22nd./. Geneva, 13.10.2008-18.10.2008] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : NSTX * Spherical tokamaks * Overdense plasma * Conversion * Emission * Tokamaks * Elektron Bernstein waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.270, year: 2009 http://www.iop.org/EJ/article/0029-5515/49/10/104016/nf9_10_104016

  19. Electron Bernstein Wave Research on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Taylor, G.; Bers, A.; Bigelow, T.S.; Carter, M.D.; Caughman, J.B.; Decker, J.; Diem, S.; Efthimion, P.C.; Ershov, N.M.; Fredd, E.; Harvey, R.W.; Hosea, J.; Jaeger, F.; Preinhaelter, J.; Ram, A.K.; Rasmussen, D.A.; Smirnov, A.P.; Wilgen, J.B.; Wilson, J.R.

    2005-01-01

    Off-axis electron Bernstein wave current drive (EBWCD) may be critical for sustaining noninductive high-beta National Spherical Torus Experiment (NSTX) plasmas. Numerical modeling results predict that the ∼100 kA of off-axis current needed to stabilize a solenoid-free high-beta NSTX plasma could be generated via Ohkawa current drive with 3 MW of 28 GHz EBW power. In addition, synergy between EBWCD and bootstrap current may result in a 10% enhancement in current-drive efficiency with 4 MW of EBW power. Recent dual-polarization EBW radiometry measurements on NSTX confirm that efficient coupling to EBWs can be readily accomplished by launching elliptically polarized electromagnetic waves oblique to the confining magnetic field, in agreement with numerical modeling. Plans are being developed for implementing a 1 MW, 28 GHz proof-of-principle EBWCD system on NSTX to test the EBW coupling, heating and current-drive physics at high radio-frequency power densities

  20. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Gates, D.; Hosea, J.; Le Blanc, B.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Rosenberg, A.; Bonoli, P.; Mau, T.K.; Pinsker, R.I.; Raman, R.; Ryan, P.; Swain, D.; Wilgen, J.

    2003-01-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  1. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T.K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Pinsker, R.I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-01-01

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  2. Recent Progress on Spherical Torus Research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki [PPPL; Kaita, Robert [PPPL

    2014-01-01

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  3. Status and Plans for the National Spherical Torus Experimental Research Facility

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Bialek, J.M.; Bigelow, T.; Bitter, M.

    2005-01-01

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions

  4. Status and plans for the national spherical torus experimental research facility

    International Nuclear Information System (INIS)

    Ono, Masayuki; Bell, M.G.; Bell, R.E.

    2005-01-01

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high β, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high β Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high β and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions. (author)

  5. Plasma Shape Control on the National Spherical Torus Experiment using Real-time Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Gates, D.A.; Ferron, J.R.; Bell, M.; Gibney, T.; Johnson, R.; Marsala, R.J.; Mastrovito, D.; Menard, J.E.; Mueller, D.; Penaflor, B.; Sabbagh, S.A.; Stevenson, T.

    2005-01-01

    Plasma shape control using real-time equilibrium reconstruction has been implemented on the National Spherical Torus Experiment (NSTX). The rtEFIT code originally developed for use on DIII-D was adapted for use on NSTX. The real-time equilibria provide calculations of the flux at points on the plasma boundary, which is used as input to a shape control algorithm known as isoflux control. The flux at the desired boundary location is compared to a reference flux value, and this flux error is used as the basic feedback quantity for the poloidal-field coils on NSTX. The hardware that comprises the control system is described, as well as the software infrastructure. Examples of precise boundary control are also presented

  6. Divertor heat flux mitigation in the National Spherical Torus Experimenta)

    Science.gov (United States)

    Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team

    2009-02-01

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  7. Confinement of Neutral Beam Ions in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Darrow, D.S.; Medley, S.S.; Roquemore, A.L.; Rosenberg, A.

    2001-01-01

    The loss of neutral-beam ions to the wall has been measured in the National Spherical Torus Experiment (NSTX) by means of thermocouples, an infrared (IR) camera, and a Faraday cup probe. The losses tend to exhibit the expected dependences on plasma current, tangency radius of the injector, and plasma outer gap. However, the thermocouples and the Faraday cups indicate substantially different levels of loss and this difference has yet to be understood

  8. Calculations of Neutral Beam Ion Confinement for the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Redi, M.H.; Darrow, D.S.; Egedal, J.; Kaye, S.M.; White, R.B.

    2002-01-01

    The spherical torus (ST) concept underlies several contemporary plasma physics experiments, in which relatively low magnetic fields, high plasma edge q, and low aspect ratio combine for potentially compact, high beta and high performance fusion reactors. An important issue for the ST is the calculation of energetic ion confinement, as large Larmor radius makes conventional guiding center codes of limited usefulness and efficient plasma heating by RF and neutral beam ion technology requires minimal fast ion losses. The National Spherical Torus Experiment (NSTX) is a medium-sized, low aspect ratio ST, with R=0.85 m, a=0.67 m, R/a=1.26, Ip*1.4 MA, Bt*0.6 T, 5 MW of neutral beam heating and 6 MW of RF heating. 80 keV neutral beam ions at tangency radii of 0.5, 0.6 and 0.7 m are routinely used to achieve plasma betas above 30%. Transport analyses for experiments on NSTX often exhibit a puzzling ion power balance. It will be necessary to have reliable beam ion calculations to distinguish among the source and loss channels, and to explore the possibilities for new physics phenomena, such as the recently proposed compressional Alfven eigenmode ion heating

  9. National Spherical Torus Experiment Real Time Plasma Control Data Acquisition Hardware

    International Nuclear Information System (INIS)

    R.J. Marsala; J. Schneider

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is currently providing researchers data on low aspect-ratio toroidal plasmas. NSTX's Plasma Control System adjusts the firing angles of thyristor rectifier power supplies, in real time, to control plasma position, shape and density. A Data Acquisition system comprised of off-the-shelf and custom hardware provides the magnetic diagnostics data required in calculating firing angles. This VERSAmodule Eurocard (VME) bus-based system utilizes Front Panel Data Port (FPDP) for high-speed data transfer. Data coming from physically different locations is referenced to several different ground potentials necessitating the need for a custom FPDP multiplexer. This paper discusses the data acquisition system configuration, the in-house designed 4-to-1 FPDP Input Multiplexing Module (FIMM), and future expansion plans

  10. National Spherical Torus Experiment (NSTX) Center Stack Upgrade

    International Nuclear Information System (INIS)

    Neumeyer, C.; Avasarala, S.; Chrzanowski, J.; Dudek, L.; Fan, H.; Hatcher, H.; Heitzenroeder, P.; Menard, J.; Ono, M.; Ramakrishnan, S.; Titus, P.; Woolley, R.; Zhan, H.

    2009-01-01

    The purpose of the NSTX Center Stack Upgrade project is to expand the NSTX operational space and thereby the physics basis for next-step ST facilities. The plasma aspect ratio (ratio of plasma major to minor radius) of the upgrade is increased to 1.5 from the original value of 1.26, which increases the cross sectional area of the center stack by a factor of ∼ 3 and makes possible higher levels of performance and pulse duration.

  11. Chosen Solutions to the Engineering Challenges of the National Spherical Torus Experiment (NSTX) Magnets

    International Nuclear Information System (INIS)

    Neumeyer, C.; Fan, H.M.; Chrzanowski, J.; Heitzenroeder, P.

    1999-01-01

    NSTX is one of the largest of a new class of magnetic plasma research devices known as spherical toroids (STs). The plasma in a ST is characterized by its almost spherical shape with a slender cylindrical region through its vertical axis. The so-called 'center stack' is located in this region. It contains magnetic windings for confining the plasma, induce the plasma current, and shape the plasma. This paper will describe the engineering challenges of designing the center stack magnets to meet their operational requirements within this constrained space

  12. Operational Regimes of the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Mueller, D.; Bell, M.G.; Bell, R.E.; Bitter, M.; Bigelow, T.; Bonoli, P.; Carter, M.; Ferron, J.; Fredrickson, E.; Gates, D.; Grisham, L.; Hosea, J.C.; Johnson, D.; Kaita, R.; Kaye, S.M.; Kugel, H.; LeBlanc, B.P.; Maingi, R.; Majeski, R.; Maqueda, R.; Menard, J.; Ono, M.; Paoletti, F.; Paul, S.; Phillips, C.K.; Pinsker, R.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.A; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.; Wilson, J.R.; Wurden, G.A.; Zweben, S.

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is a proof-of-principle experiment designed to study the physics of Spherical Tori (ST), i.e., low-aspect-ratio toroidal plasmas. Important issues for ST research are whether the high-eta stability and reduced transport theoretically predicted for this configuration can be realized experimentally. In NSTX, the commissioning of a digital real-time plasma control system, the provision of flexible heating systems, and the application of wall conditioning techniques were instrumental in achieving routine operation with good confinement. NSTX has produced plasmas with R/a ∼ 0.85 m/0.68 m, A ∼ 1.25, Ip * 1.1 MA, BT = 0.3-0.45 T, k * 2.2, d * 0.5, with auxiliary heating by up to 4 MW of High Harmonic Fast Waves, and 5 MW of 80 keV D0 Neutral Beam Injection (NBI). The energy confinement time in plasmas heated by NBI has exceeded 100 ms and a toroidal beta (bT = 2m0 /BT02, where BT0 is the central vacuum toroidal magnetic field) up to 22% has be en achieved. HHFW power of 2.3 MW has increased the electron temperature from an initial 0.4 keV to 0.9 keV both with and without producing a significant density rise in the plasma. The early application of both NBI and HHFW heating has slowed the penetration of the inductively produced plasma current, modifying the current profile and, thereby, the observed MHD stability

  13. Simulation of microtearing turbulence in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Guttenfelder, W.; Kaye, S. M.; Bell, R. E.; Hammett, G. W.; LeBlanc, B. P.; Mikkelsen, D. R.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States); Nevins, W. M.; Wang, E. [Lawrence Livermore National Laboratory, Livermore, California 04551 (United States); Zhang, J.; Crocker, N. A. [University of California Los Angeles, California 90095 (United States); Yuh, H. [Nova Photonics Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    Thermal energy confinement times in National Spherical Torus Experiment (NSTX) dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future spherical tokamak (ST) devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport ({approx}98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E Multiplication-Sign B flows as experimental values of E Multiplication-Sign B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.

  14. NSTX Overview

    International Nuclear Information System (INIS)

    M. Ono; M. Bell; R.E. Bell; M. Bitter; C. Bourdelle; D. Darrow; D. Gates; J. Hosea; S.M. Kaye; R. Kaita; H. Kugel; D. Johnson; B. LeBlanc; S. Medley

    2001-01-01

    The National Spherical Torus Experiment (NSTX) has had a very productive period of plasma operations since the last ST Workshop in Seattle, WA, in November 1999. A number of new research tools have become available and the plasma parameters have improved significantly. These advances are describe in this paper

  15. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D.; Kaye, S.M.; LeBlanc, B.P.; Roquemore, A.L.

    2004-01-01

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E ∼ 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and

  16. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  17. High beta, Long Pulse, Bootstrap Sustained Scenarios on the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Gates, D.A.

    2003-01-01

    Long-pulse, high-beta scenarios have been established on the National Spherical Torus Experiment (NSTX). Beta(sub)t(always equal to 2μ(sub)0· /B 2 (sub)t0) ∼ 35% has been achieved during transient discharges. The machine improvements that lead to these results, including error field reduction and high-temperature bakeout of plasma-facing components are described. The highest Beta(sub)t plasmas have high triangularity (delta = 0.8) and elongation (k = 2.0) at low-aspect ratio A always equal to R/a = 1.4. The strong shaping permits large values of normalized current, I(sub)N(always equal to I(sub)p /(aB(sub)t0)) approximately equal to 6 while maintaining moderate values of q(sub)95 = 4. Long-pulse discharges up to 1 sec in duration have been achieved with substantial bootstrap current. The total noninductive current drive can be as high as 60%, comprised of 50% bootstrap current and ∼10% neutral-beam current drive. The confinement enhancement factor H89P is in excess of 2.7. Beta(sub)N * H(sub)89P approximately or greater than 15 has been maintained for 8 * tau(sub)E ∼ 1.6 * tau(sub)CR, where tau(sub)CR is the relaxation time of the first radial moment of the toroidal current density. The ion temperature for these plasmas is significantly higher than that predicted by neoclassical theory

  18. Operational Regimes of the National Spherical Torus Experiment; TOPICAL

    International Nuclear Information System (INIS)

    D. Mueller; M.G. Bell; R.E. Bell; M. Bitter; T. Bigelow; P. Bonoli; M. Carter; J. Ferron; E. Fredrickson; D. Gates; L. Grisham; J.C. Hosea; D. Johnson; R. Kaita; S.M. Kaye; H. Kugel; B.P. LeBlanc; R. Maingi; R. Majeski; R. Maqueda; J. Menard; M. Ono; F. Paoletti; S. Paul; C.K. Phillips; R. Pinsker; R. Raman; S.A. Sabbagh; C.H. Skinner; V.A. Soukhanovskii; D. Stutman; D. Swain; Y. Takase; J. Wilgen; J.R. Wilson; G.A. Wurden; S. Zweben

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is a proof-of-principle experiment designed to study the physics of Spherical Tori (ST), i.e., low-aspect-ratio toroidal plasmas. Important issues for ST research are whether the high-eta stability and reduced transport theoretically predicted for this configuration can be realized experimentally. In NSTX, the commissioning of a digital real-time plasma control system, the provision of flexible heating systems, and the application of wall conditioning techniques were instrumental in achieving routine operation with good confinement. NSTX has produced plasmas with R/a(approx) 0.85 m/0.68 m, A(approx) 1.25, Ip* 1.1 MA, BT= 0.3-0.45 T, k* 2.2, d* 0.5, with auxiliary heating by up to 4 MW of High Harmonic Fast Waves, and 5 MW of 80 keV D0 Neutral Beam Injection (NBI). The energy confinement time in plasmas heated by NBI has exceeded 100 ms and a toroidal beta (bT= 2m0 and lt;p and gt;/BT02, where BT0 is the central vacuum toroidal magnetic field) up to 22% has be en achieved. HHFW power of 2.3 MW has increased the electron temperature from an initial 0.4 keV to 0.9 keV both with and without producing a significant density rise in the plasma. The early application of both NBI and HHFW heating has slowed the penetration of the inductively produced plasma current, modifying the current profile and, thereby, the observed MHD stability

  19. Nonlocal neoclassical transport in tokamak and spherical torus experiments

    International Nuclear Information System (INIS)

    Wang, W. X.; Rewoldt, G.; Tang, W. M.; Hinton, F. L.; Manickam, J.; Zakharov, L. E.; White, R. B.; Kaye, S.

    2006-01-01

    Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global δf particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and then additional bootstrap current, either positive or negative, depending on the gradient direction. Compared with the carbon radial force balance estimate for the neoclassical poloidal flow, our nonlocal simulation predicts a significantly deeper radial electric field well at the location of an internal transport barrier of an NSTX discharge

  20. NSTX-U Digital Coil Protection System Software Detailed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  1. Diagnostics of ST Plasmas in NSTX: Challenges and Opportunities

    International Nuclear Information System (INIS)

    Johnson, D.; Efthimion, P.; Foley, J.; Jones, B.; Mazzucato, E.; Park, H.; Taylor, G.; Levinton, F.; Luhmann, N.

    2001-01-01

    This paper will highlight some of the challenges and opportunities present in the diagnosis of spherical torus (ST) plasmas on the National Spherical Torus Experiment (NSTX) and discuss the corresponding diagnostic development that is presently underway. After a brief description of diagnostic systems currently installed, examples of ST-specific diagnostic challenges will be highlighted, as will another case, where the ST configuration offers opportunities for new measurements

  2. A megawatt-level 28 GHz heating system for the National Spherical Torus Experiment Upgrade

    Directory of Open Access Journals (Sweden)

    Taylor G.

    2015-01-01

    Full Text Available The National Spherical Torus Experiment Upgrade (NSTX-U will operate at axial toroidal fields of ≤ 1 T and plasma currents, Ip ≤ 2 MA. The development of non-inductive (NI plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0 before the plasma becomes overdense. The increased Te(0 will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  3. Scintillator Based Energetic Ion Loss Diagnostic for the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Darrow, D.S.

    2007-01-01

    A scintillator based energetic ion loss detector has been built and installed on the National Spherical Torus Experiment (NSTX) to measure the loss of neutral beam ions. The detector is able to resolve the pitch angle and gyroradius of the lost energetic ions. It has a wide acceptance range in pitch angle and energy, and is able to resolve the full, one-half, and one-third energy components of the 80 keV D neutral beams up to the maximum toroidal magnetic field of NSTX. Multiple Faraday cups have been embedded behind the scintillator to allow easy absolute calibration of the diagnostic and to measure the energetic ion loss to several ranges of pitch angle with good time resolution. Several small, vacuum compatible lamps allow simple calibration of the scintillator position within the field of view of the diagnostic's video camera

  4. Scintillator Based Energetic Ion Loss Diagnostic for the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Darrow

    2007-07-02

    A scintillator based energetic ion loss detector has been built and installed on the National Spherical Torus Experiment (NSTX) to measure the loss of neutral beam ions. The detector is able to resolve the pitch angle and gyroradius of the lost energetic ions. It has a wide acceptance range in pitch angle and energy, and is able to resolve the full, one-half, and one-third energy components of the 80 keV D neutral beams up to the maximum toroidal magnetic field of NSTX. Multiple Faraday cups have been embedded behind the scintillator to allow easy absolute calibration of the diagnostic and to measure the energetic ion loss to several ranges of pitch angle with good time resolution. Several small, vacuum compatible lamps allow simple calibration of the scintillator position within the field of view of the diagnostic's video camera.

  5. Prompt Loss of Energetic Ions during Early Neutral Beam Injection in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Medley, S.S.; Darrow, D.S.; Liu, D.; Roquemore, A.L.

    2005-01-01

    Early neutral-beam injection is used in the National Spherical Torus Experiment (NSTX) to heat the electrons and slow current penetration which keeps q(0) elevated to avoid deleterious MHD activity and at the same time reduces Ohmic flux consumption, all of which aids long-pulse operation. However, the low plasma current (I p ∼ 0.5 MA) and electron density (n e ∼ 1 x 10 13 cm -3 ) attending early injection lead to elevated orbit and shine through losses. The inherent orbit losses are aggravated by large excursions in the outer gap width during current ramp-up. An investigation of this behavior using various energetic particle diagnostics on NSTX and TRANSP code analysis is presented

  6. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  7. Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Berkery, J. W.; Sabbagh, S. A.; Balbaky, A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Podestà, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-05-15

    Global mode stability is studied in high-β National Spherical Torus Experiment (NSTX) plasmas to avoid disruptions. Dedicated experiments in NSTX using low frequency active magnetohydrodynamic spectroscopy of applied rotating n = 1 magnetic fields revealed key dependencies of stability on plasma parameters. Observations from previous NSTX resistive wall mode (RWM) active control experiments and the wider NSTX disruption database indicated that the highest β{sub N} plasmas were not the least stable. Significantly, here, stability was measured to increase at β{sub N}∕l{sub i} higher than the point where disruptions were found. This favorable behavior is shown to correlate with kinetic stability rotational resonances, and an experimentally determined range of measured E × B frequency with improved stability is identified. Stable plasmas appear to benefit further from reduced collisionality, in agreement with expectation from kinetic RWM stabilization theory, but low collisionality plasmas are also susceptible to sudden instability when kinetic profiles change.

  8. Progress towards Steady State on NSTX

    International Nuclear Information System (INIS)

    Gates, D.A.; Kessel, C.; Menard, J.; Taylor, G.; Wilson, J.R.

    2005-01-01

    In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal β and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on the National Spherical Torus Experiment (NSTX) has been raised from κ ∼ 2.1 to κ ∼ 2.6--approximately a 25% increase. This increase in elongation has lead to a doubling increase in the toroidal β for long-pulse discharges. The increase in β is associated with an increase in plasma current at nearly fixed poloidal β, which enables higher β t with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of 1 MA has been sustained for 1 second. Data is presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption during and to delay the onset of MHD instabilities. A modeled integrated scenario, which has 100% non-inductive current drive with very high toroidal β, will also be presented. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity ((delta) ∼ 0.8) at elevated elongation (κ ∼ 2.5). The other main requirement for steady state on NSTX is the ability to drive a fraction of the total plasma current with radio-frequency waves. The results of High Harmonic Fast Wave heating and current drive studies as well as electron Bernstein Wave emission studies will be presented

  9. The H-mode Pedestal and Edge Localized Modes in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Fredrickson, E.D.; Menard, J.E.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.

    2004-01-01

    The research program of the National Spherical Torus Experiment (NSTX) routinely utilizes the H-mode confinement regime to test and extend beta and pulse length limits. As in conventional aspect ratio tokamaks, NSTX observes a variety of edge localized modes (ELMs) in H-mode. Hence a significant part of the research program is dedicated to ELMs studies

  10. Experimental demonstration of tokamak inductive flux saving by transient coaxial helicity injection on national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Raman, R.; Jarboe, T. R.; Nelson, B. A. [University of Washington, Seattle, Washington 98195 (United States); Mueller, D.; Bell, M. G.; Gerhardt, S.; LeBlanc, B.; Menard, J.; Ono, M.; Roquemore, L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2011-09-15

    Discharges initiated by transient coaxial helicity injection in National Spherical Torus Experiment have attained peak toroidal plasma currents up to 300 kA. When induction from the central solenoid is then applied, these discharges develop up to 300 kA additional current compared to discharges initiated by induction only. CHI initiated discharges in NSTX have achieved 1 MA of plasma current using only 258 mWb of solenoid flux whereas standard induction-only discharges require about 50% more solenoid flux to reach 1 MA. In addition, the CHI-initiated discharge has lower plasma density and a low normalized internal plasma inductance of 0.35, as needed for achieving advanced scenarios in NSTX.

  11. Conceptual design for the NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    Bashore, D.; Oliaro, G.; Roney, P.; Sichta, P.; Tindall, K.

    1997-01-01

    The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device

  12. The NSTX Trouble Reporting System

    International Nuclear Information System (INIS)

    Sengupta, S.; Oliaro, G.

    2002-01-01

    An online Trouble Reporting System (TRS) has been introduced at the National Spherical Torus Experiment (NSTX). The TRS is used by NSTX operators to report problems that affect NSTX operations. The purpose of the TRS is to enhance NSTX reliability and maintainability by identifying components, occurrences, and trends that contribute to machine downtime. All NSTX personnel have access to the TRS. The user interface is via a web browser, such as Netscape or Internet Explorer. This web-based feature permits any X-terminal, PC, or MAC access to the TRS. The TRS is based upon a trouble reporting system developed at the DIII-D Tokamak, at General Atomics Technologies. This paper will provide a detailed description of the TRS software architecture, user interface, MS SQL server interface and operational experiences. In addition, sample data from the TRS database will be summarized and presented

  13. Electron Bernstein Wave Emission Based Diagnostic on National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Diem, S.; Taylor, G.; Caughman, John B.; Efthimion, P.C.; Kugel, H.; LeBlanc, B.; Preinhaelter, J.; Sabbagh, S.A.; Urban, J.; Wilgen, John B.

    2008-01-01

    National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B(T) less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T(e) measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T(e) measurements in the ST. Practically, a robust T(e)(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T(e)(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T(e)< 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T(e) inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  14. Noninductive Current Generation in NSTX using Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Mueller, D.; Schaffer, M.J.; Maqueda, R.; Nelson, B.A.; Sabbagh, S.; Bell, M.; Ewig, R.; Fredrickson, E.; Gates, D.; Hosea, J.; Jardin, S.; Ji, H.; Kaita, R.; Kaye, S.M.; Kugel, H.; Lao, L.; Maingi, R.; Menard, J.; Ono, M.; Orvis, D.; Paul, S.; Peng, M.; Skinner, C.H.; Wilgen, J.B.; Zweben, S.

    2001-01-01

    Coaxial Helicity Injection (CHI) on the National Spherical Torus Experiment (NSTX) has produced 240 kA of toroidal current without the use of the central solenoid. Values of the current multiplication ratio (CHI produced toroidal current/injector current) up to 10 were obtained, in agreement with predictions. The discharges which lasted for up to 200 ms, limited only by the programmed waveform, are more than an order of magnitude longer in duration that any CHI discharges previously produced in a Spheromak or a Spherical Torus (ST)

  15. The NSTX Trouble Reporting System; TOPICAL

    International Nuclear Information System (INIS)

    S. Sengupta; G. Oliaro

    2002-01-01

    An online Trouble Reporting System (TRS) has been introduced at the National Spherical Torus Experiment (NSTX). The TRS is used by NSTX operators to report problems that affect NSTX operations. The purpose of the TRS is to enhance NSTX reliability and maintainability by identifying components, occurrences, and trends that contribute to machine downtime. All NSTX personnel have access to the TRS. The user interface is via a web browser, such as Netscape or Internet Explorer. This web-based feature permits any X-terminal, PC, or MAC access to the TRS. The TRS is based upon a trouble reporting system developed at the DIII-D Tokamak, at General Atomics Technologies. This paper will provide a detailed description of the TRS software architecture, user interface, MS SQL server interface and operational experiences. In addition, sample data from the TRS database will be summarized and presented

  16. Vessel Eddy Current Measurement for the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Gates, D.A.; Menard, J.; Marsala, R.

    2004-01-01

    A simple analog circuit that measures the NSTX axisymmetric eddy current distribution has been designed and constructed. It is based on simple circuit model of the NSTX vacuum vessel that was calibrated using a special axisymmetric eddy current code which was written so that accuracy was maintained in the vicinity of the current filaments. The measurement and the model have been benchmarked against data from numerous vacuum shots and they are in excellent agreement. This is an important measurement that helps give more accurate equilibrium reconstructions

  17. Control System for the NSTX Lithium Pellet Injector

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Gernhardt, R.; Gettelfinger, G.; Kugel, H.

    2003-01-01

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI

  18. The Use of MDSplus on NSTX at PPPL

    International Nuclear Information System (INIS)

    Davis, W.; Roney, P.; Carroll, T.; Gibney, T.; Mastrovito, D.

    2002-01-01

    The MDSplus data acquisition system has been used successfully since the 1999 startup of NSTX [National Spherical Torus Experiment] for control, data acquisition, and analysis for diagnostic subsystems. For each plasma ''shot'' on NSTX about 75 MBs of data is acquired and loaded into MDSplus hierarchical data structures in 2-3 minutes. Physicists adapted to the MDSplus software tools with no real difficulty. Some locally developed tools are described. The support from the developers at MIT [Massachusetts Institute of Technology] was timely and insightful. The use of MDSplus has resulted in a significant cost savings for NSTX

  19. Overview of the NSTX Control System

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Oliaro, G.; Roney, P.

    2001-01-01

    The National Spherical Torus Experiment (NSTX) is an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. Since achieving first plasma in 1999, the device has been used for fusion research through an international collaboration of more than twenty institutions. The NSTX is operated through a collection of control systems that encompass a wide range of technology, from hardwired relay controls to real-time control systems with giga-FLOPS of capability. This paper presents a broad introduction to the control systems used on NSTX, with an emphasis on the computing controls, data acquisition, and synchronization systems

  20. Ramp-up of CHI Initiated Plasmas on NSTX

    International Nuclear Information System (INIS)

    Mueller, D.; Bell, M.G.; Bell, R.E.; LeBlanc, B.; Roquemore, A.L.; Raman, R.; Jarboe, T.R.; Nelson, B.A.; Soukhanovskii, V.

    2009-01-01

    Experiments on the National Spherical Torus (NSTX) have now demonstrated flux savings using transient coaxial helicity injection (CHI). In these discharges, the discharges initiated by CHI are ramped up with an inductive transformer and exhibit higher plasma current than discharges without the benefit of CHI initiation.

  1. Electron Bernstein wave emission based diagnostic on National Spherical Torus Experiment (invited)

    International Nuclear Information System (INIS)

    Diem, S.; Taylor, G.; Caughman, John B.; Efthimion, P.C.; Kugel, H.; LeBlanc, B.; Preinhaelter, J.; Sabbagh, S.A.; Urban, J.

    2008-01-01

    National Spherical Torus Experiment (NSTX) is a spherical tokamak (ST) that operates with n(e) up to 10(20) m(-3) and B-T less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for T-e measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local T-e measurements in the ST. Practically, a robust T-e(R,t) EBE diagnostic requires EBW transmission efficiencies of >90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While T-e(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge n(e) scale length resulted in >20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency during H modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when T-e < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H modes have shown that evaporated lithium can increase T-e inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  2. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2013-04-15

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  3. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2013-04-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  4. Overview of impurity control and wall conditioning in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Maingi, R.; Wampler, W.; Barry, R.E.; Bell, M.; Blanchard, W.; Gates, D.; Johnson, D.; Kaita, R.; Kaye, S.; Maqueda, R.; Menard, J.; Menon, M.M.; Mueller, D.; Ono, M.; Paul, S.; Peng, Y-K.M.; Raman, R.; Roquemore, A.; Skinner, C. H.; Sabbagh, S.; Stratton, B.; Stutman, D.; Wilson, J. R.; Zweben, S.

    2000-01-01

    The National Spherical Torus Experiment (NSTX) started plasma operations i n February 1999. In the first extended period of experiments, NSTX achieved high current, inner wall limited, double null, and single null plasma discharges, initial Coaxial Helicity Injection, and High Harmonic Fast Wave results. As expected, discharge reproducibility and performance were strongly affected by wall conditions. In this paper, the authors describe the internal geometry, and initial plasma discharge, impurity control, wall conditioning, erosion, and deposition results

  5. Boronization on NSTX using Deuterated Trimethylboron

    International Nuclear Information System (INIS)

    Blanchard, W.R.; Gernhardt, R.C.; Kugel, H.W.; LaMarche, P.H.

    2002-01-01

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described

  6. Analysis Efforts Supporting NSTX Upgrades

    International Nuclear Information System (INIS)

    Zhang, H.; Titus, P.; Rogoff, P.; Zolfaghari, A.; Mangra, D.; Smith, M.

    2010-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

  7. The Use of MDSplus on NSTX at PPPL; TOPICAL

    International Nuclear Information System (INIS)

    W. Davis; P. Roney; T. Carroll; T. Gibney; D. Mastrovito

    2002-01-01

    The MDSplus data acquisition system has been used successfully since the 1999 startup of NSTX[National Spherical Torus Experiment] for control, data acquisition, and analysis for diagnostic subsystems. For each plasma ''shot'' on NSTX about 75 MBs of data is acquired and loaded into MDSplus hierarchical data structures in 2-3 minutes. Physicists adapted to the MDSplus software tools with no real difficulty. Some locally developed tools are described. The support from the developers at MIT[Massachusetts Institute of Technology] was timely and insightful. The use of MDSplus has resulted in a significant cost savings for NSTX

  8. Tokamak Simulation Code modeling of NSTX

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kaye, S.; Menard, J.; Kessel, C.; Glasser, A.H.

    2000-01-01

    The Tokamak Simulation Code [TSC] is widely used for the design of new axisymmetric toroidal experiments. In particular, TSC was used extensively in the design of the National Spherical Torus eXperiment [NSTX]. The authors have now benchmarked TSC with initial NSTX results and find excellent agreement for plasma and vessel currents and magnetic flux loops when the experimental coil currents are used in the simulations. TSC has also been coupled with a ballooning stability code and with DCON to provide stability predictions for NSTX operation. TSC has also been used to model initial CHI experiments where a large poloidal voltage is applied to the NSTX vacuum vessel, causing a force-free current to appear in the plasma. This is a phenomenon that is similar to the plasma halo current that sometimes develops during a plasma disruption

  9. Initial Results from Coaxial Helicity Injection Experiments in NSTX

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Mueller, D.; Schaffer, M.J.; Maqueda, R.; Nelson, B.A.; Sabbagh, S.; Bell, M.; Ewig, R.; Fredrickson, E.; Gates, D.; Hosea, J.; Ji, H.; Kaita, R.; Kaye, S.M.; Kugel, H.; Maingi, R.; Menard, J.; Ono, M.; Orvis, D.; Paolette, F.; Paul, S.; Peng, M.; Skinner, C.H.; Wilgen, W.; Zweben, S.

    2001-01-01

    Coaxial Helicity Injection (CHI) has been investigated on the National Spherical Torus Experiment (NSTX). Initial experiments produced 130 kA of toroidal current without the use of the central solenoid. The corresponding injector current was 20 kA. Discharges with pulse lengths up to 130 ms have been produced

  10. Solenoid-free Plasma Start-up in NSTX using Transient CHI

    International Nuclear Information System (INIS)

    R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell, B. LeBlanc, R. Maqueda, J. Menard, M. Ono, M. Nagata, L. Roquemore, and V. Soukhanovskii

    2008-01-01

    Experiments in NSTX have now unambiguously demonstrated the coupling of toroidal plasmas produced by the technique of CHI to inductive sustainment and ramp-up of the toroidal plasma current. This is an important step because an alternate method for plasma startup is essential for developing a fusion reactor based on the spherical torus concept. Elimination of the central solenoid would also allow greater flexibility in the choice of the aspect ratio in tokamak designs now being considered. The transient CHI method for spherical torus startup was originally developed on the HIT-II experiment at the University of Washington

  11. Recent Progress on the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Gates, D.A.; Bell, M.G.; Bell, R.E.; Bialek, J.; Bigelow, T.; Bitter, M.; Bonoli, P.; Darrow, D.; Efthimion, P.

    2002-01-01

    Recent upgrades to the NSTX facility have led to improved plasma performance. Using 5MW of neutral beam injection, plasmas with toroidal β T (= 2(micro) 0 /B T 2 where B T is the vacuum toroidal field at the plasma geometric center) > 30% have been achieved with normalized β N (= β T aB I /I p ) ∼ 6% · m · T/MA.. The highest β discharge exceeded the calculated no-wall β limit for several wall times. The stored energy has reached 390kJ at higher toroidal field (0.55T) corresponding to β T ∼ 20% and β N = 5.4. Long pulse (∼1s) high β p (∼1.5) discharges have also been obtained at higher β φ (0.5T) with up to 6MW NBI power. The highest energy confinement times, up to 120ms, were observed during H-mode operation which is now routine. Confinement times of ∼1.5 times ITER98pby2 for several τ E are observed during both H-Mode and non-H-Mode discharges. Calculations indicate that many NSTX discharges have very good ion confinement, approaching neoclassical levels. High Harmonic Fast Wave current drive has been demonstrated by comparing discharges with waves launched parallel and anti-parallel to the plasma current

  12. Physics design of a 28 GHz electron heating system for the National Spherical Torus experiment upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.; Bertelli, N.; Ellis, R. A.; Gerhardt, S. P.; Hosea, J. C.; Poli, F. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Harvey, R. W. [CompX, Del Mar, California 92014 (United States); Raman, R. [University of Washington, Seattle, Washington 98195 (United States); Smirnov, A. P. [M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-02-12

    A megawatt-level, 28 GHz electron heating system is being designed to support non-inductive (NI) plasma current (I{sub p}) start-up and local heating and current drive (CD) in H-mode discharges in the National Spherical Torus Experiment Upgrade (NSTX-U). The development of fully NI I{sub p} start-up and ramp-up is an important goal of the NSTXU research program. 28 GHz electron cyclotron (EC) heating is predicted to rapidly increase the central electron temperature (T{sub e}(0)) of low density NI plasmas generated by Coaxial Helicity Injection (CHI). The increased T{sub e}(0) will significantly reduce the I{sub p} decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. Also 28 GHz electron Bernstein wave (EBW) heating and CD can be used during the I{sub p} flat top in NSTX-U discharges when the plasma is overdense. Ray tracing and Fokker-Planck numerical simulation codes have been used to model EC and EBW heating and CD in NSTX-U. This paper presents a pre-conceptual design for the 28 GHz heating system and some of the results from the numerical simulations.

  13. Spherical torus, compact fusion at low field

    International Nuclear Information System (INIS)

    Peng, Y.K.M.

    1985-02-01

    A spherical torus is obtained by retaining only the indispensable components on the inboard side of a tokamak plasma, such as a cooled, normal conductor that carries current to produce a toroidal magnetic field. The resulting device features an exceptionally small aspect ratio (ranging from below 2 to about 1.3), a naturally elongated D-shaped plasma cross section, and ramp-up of the plasma current primarily by noninductive means. As a result of the favorable dependence of the tokamak plasma behavior to decreasing aspect ratio, a spherical torus is projected to have small size, high beta, and modest field. Assuming Mirnov confinement scaling, an ignition spherical torus at a field of 2 T features a major radius of 1.5 m, a minor radius of 1.0 m, a plasma current of 14 MA, comparable toroidal and poloidal field coil currents, an average beta of 24%, and a fusion power of 50 MW. At 2 T, a Q = 1 spherical torus will have a major radius of 0.8 m, a minor radius of 0.5 m, and a fusion power of a few megawatts

  14. Overview of impurity control and wall conditioning in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    KUGEL,H.W.; MAINGI,R.; BELL,M.; BLANCHARD,W.; GATES,D.; JOHNSON,D.; KAITA,R.; KAYE,S.; MARQUEDA,R.; MENARD,J.; MUELLER,D.; ONO,M.; PENG,Y-K.M.; RAMAN,R.; RAMSEY,A.; ROQUEMORE,A.; SKINNER,C.; SABBAGH,S.; STUTMAN,D.; WAMPLER,WILLIAM R.; WILSON,J.R.; ZWEBEN,S.

    2000-05-25

    The National Spherical Torus Experiment (NSTX) started plasma operations in February 1999, and promptly achieved high current, inner wall limited, double null, and single null plasma discharges, initial Coaxial Helicity Injection, and High Harmonic Fast Wave results. NSTX is designed to study the physics of Spherical Tori (ST) in a device that can produce non-inductively sustained high-{beta} discharges in the 1 MA regime and to explore approaches toward a small, economical high power density ST reactor core. As expected, discharge reproducibility and performance were strongly affected by wall conditions. In this paper, the authors describe the internal geometry, and initial plasma discharge, impurity control, wall conditioning, erosion, and deposition results.

  15. Impact of the Wall Conditioning Program on Plasma Performance in NSTX

    International Nuclear Information System (INIS)

    H.W. Kuge; V. Soukhanovskii; M. Bell; , W. Blanchard; D. Gates; B. LeBlanc; R. Maingi; D. Mueller; H.K. Na; S. Paul; C.H. Skinner; D. Stutman; and W.R. Wampler

    2002-01-01

    High performance operating regimes have been achieved on NSTX (National Spherical Torus Experiment) through impurity control and wall-conditioning techniques. These techniques include HeGDC-aided boronization using deuterated trimethylboron, inter-discharge HeGDC, 350 C PFC bake-out followed by D2 and HeGDC, and experiments to test fueling discharges with either a He-trimethylboron mixture or pure trimethylboron. The impact of this impurity and density control program on recent advances in NSTX plasma performance is discussed

  16. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Medley, S.S.; Andre, R.; Bell, R.E.; Darrow, D.S.; Domier, C.W.; Fredrickson, E.D.; Gorelenkov, N.N.; Kaye, S.M.; LeBlanc, B.P.; Lee, K.C.; Levinton, F.M.; Liu, D.; Luhmann, N.C. Jr.; Menard, J.E.; Park, H.; Stutman, D.; Roquemore, A.L.; Tritz, K.; Yuh, H

    2007-01-01

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ∼ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvenic (f ∼ 20-150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvenic modes only cause redistribution and the energetic ions remain confined.

  17. Neutral Particle Analyzer Vertically Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley, R. Andre, R.E. Bell, D.S. Darrow, C.W. Domier, E.D. Fredrickson, N.N. Gorelenkov, S.M. Kaye, B.P. LeBlanc, K.C. Lee, F.M. Levinton, D. Liu, N.C. Luhmann, Jr., J.E. Menard, H. Park, D. Stutman, A.L. Roquemore, K. Tritz, H. Yuh and the NSTX Team

    2007-11-15

    Observations of magneto-hydro-dynamic (MHD) induced redistribution or loss of energetic ions measured using the vertically scanning capability of the Neutral Particle Analyzer diagnostic on the National Spherical Torus Experiment (NSTX) are presented along with TRANSP and ORBIT code analysis of the results. Although redistribution or loss of energetic ions due to bursting fishbone-like and low-frequency (f ~ 10 kHz) kinktype MHD activity has been reported previously, the primary goal of this work is to study redistribution or loss due to continuous Alfvénic (f ~ 20 – 150 kHz) modes, a topic that heretofore has not been investigated in detail for NSTX plasmas. Initial indications are that the former drive energetic ion loss whereas the continuous Alfvénic modes only cause redistribution and the energetic ions remain confined.

  18. Progress toward commissioning and plasma operation in NSTX-U

    Science.gov (United States)

    Ono, M.; Chrzanowski, J.; Dudek, L.; Gerhardt, S.; Heitzenroeder, P.; Kaita, R.; Menard, J. E.; Perry, E.; Stevenson, T.; Strykowsky, R.; Titus, P.; von Halle, A.; Williams, M.; Atnafu, N. D.; Blanchard, W.; Cropper, M.; Diallo, A.; Gates, D. A.; Ellis, R.; Erickson, K.; Hosea, J.; Hatcher, R.; Jurczynski, S. Z.; Kaye, S.; Labik, G.; Lawson, J.; LeBlanc, B.; Maingi, R.; Neumeyer, C.; Raman, R.; Raftopoulos, S.; Ramakrishnan, R.; Roquemore, A. L.; Sabbagh, S. A.; Sichta, P.; Schneider, H.; Smith, M.; Stratton, B.; Soukhanovskii, V.; Taylor, G.; Tresemer, K.; Zolfaghari, A.; The NSTX-U Team

    2015-07-01

    The National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful spherical torus facility at PPPL, Princeton USA. The major mission of NSTX-U is to develop the physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has the promise of achieving the high neutron fluence needed for reactor component testing with relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. NSTX-U further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (DEMO). The upgrade will nearly double the toroidal magnetic field BT to 1 T at a major radius of R0 = 0.93 m, plasma current Ip to 2 MA and neutral beam injection (NBI) heating power to 14 MW. The anticipated plasma performance enhancement is a quadrupling of the plasma stored energy and near doubling of the plasma confinement time, which would result in a 5-10 fold increase in the fusion performance parameter nτ T. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the favourable trend in transport towards the low collisionality FNSF regime. The NSTX-U first plasma is planned for the Summer of 2015, at which time the transition to plasma operations will occur.

  19. Electron Bernstein Wave Research on CDX-U and NSTX

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Hosea, J.C.; Kaita, R.; LeBlanc, B.P.; Majeski, R.; Munsat, T.; Phillips, C.K.; Spaleta, J.; Wilson, J.R.; Rasmussen, D.; Bell, G.; Bigelow, T.S.; Carter, M.D.; Swain, D.W.; Wilgen, J.B.; Ram, A.K.; Bers, A.; Harvey, R.W.; Forest, C.B.

    2001-01-01

    Mode-converted electron Bernstein waves (EBWs) potentially allow the measurement of local electron temperature (Te) and the implementation of local heating and current drive in spherical torus (ST) devices, which are not directly accessible to low harmonic electron cyclotron waves. This paper reports on the measurement of X-mode radiation mode-converted from EBWs observed normal to the magnetic field on the midplane of the Current Drive Experiment-Upgrade (CDX-U) and the National Spherical Torus Experiment (NSTX) spherical torus plasmas. The radiation temperature of the EBW emission was compared to Te measured by Thomson scattering and Langmuir probes. EBW mode-conversion efficiencies of over 20% were measured on both CDX-U and NSTX. Sudden increases of mode-conversion efficiency, of over a factor of three, were observed at high-confinement-mode transitions on NSTX, when the measured edge density profile steepened. The EBW mode-conversion efficiency was found to depend on the density gradient at the mode-conversion layer in the plasma scrape-off, consistent with theoretical predictions. The EBW emission source was determined by a perturbation technique to be localized at the electron cyclotron resonance layer and was successfully used for radial transport studies. Recently, a new in-vessel antenna and Langmuir probe array were installed on CDX-U to better characterize and enhance the EBW mode-conversion process. The probe incorporates a local adjustable limiter to control and maximize the mode-conversion efficiency in front of the antenna by modifying the density profile in the plasma scrape-off where fundamental EBW mode conversion occurs. Initial results show that the mode-conversion efficiency can be increased to ∼100% when the local limiter is inserted near the mode-conversion layer. Plans for future EBW research, including EBW heating and current-drive studies, are discussed

  20. ECRH/EBWH system for NSTX-U

    Directory of Open Access Journals (Sweden)

    Hosea J.C.

    2012-09-01

    Full Text Available The National Spherical Torus Experiment Upgrade (NSTX-U will operate at an axial toroidal field of up to 1 T, about twice the field available on NSTX. A 28 GHz electron cylotron resonance heating (ECRH system is currently being planned for NSTX-U. A 1 MW 28 GHz gyrotron will be employed. Intially the system will use short, 10-50 ms, 1 MW pulses for ECRH-assisted discharge start-up. Later the pulse length will be extended to 1-5 s to study electron Bernstein wave heating (EBWH during the plasma current flat top. A mirror launcher will be used to couple microwave power to the plasma via O-mode to the slow X-mode to EBW (O-X-B double mode conversion. This paper presents a pre-conceptual design for the ECRH/EBWH system proposed for NSTX-U and includes ray tracing and Fokker-Planck modeling results for 28 GHz ECRH during plasma start-up and EBW heating and current drive during the plasma current flattop of a NSTX-U advanced H-mode plasma scenario.

  1. Images of Edge Turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.J.; Bush, C.E.; Maqueda, R.; Munsat, T.; Stotler, D.; Lowrance, J.; Mastracola, V.; Renda, G.

    2004-01-01

    The 2-D structure of edge plasma turbulence has been measured in the National Spherical Torus Experiment (NSTX) by viewing the emission of the Da spectral line of deuterium. Images have been made at framing rates of up to 250,000 frames/sec using an ultra-high speed CCD camera developed by Princeton Scientific Instruments. A sequence of images showing the transition between L-mode and H-mode states is shown

  2. Suppressing electron turbulence and triggering internal transport barriers with reversed magnetic shear in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bell, R.; Guttenfelder, W.; Hammett, G. W.; Kaye, S. M.; LeBlanc, B.; Mikkelsen, D. R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States); Smith, D. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. Y. [Nova Photonics Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    The National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] can achieve high electron plasma confinement regimes that are super-critically unstable to the electron temperature gradient driven (ETG) instability. These plasmas, dubbed electron internal transport barriers (e-ITBs), occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the first nonlinear ETG simulations of NSTX e-ITB plasmas reinforce this observation. Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show e-ITB formation can occur when the magnetic shear becomes strongly negative. While the ETG-driven thermal flux at the outer edge of the barrier is large enough to be experimentally relevant, the turbulence cannot propagate past the barrier into the plasma interior.

  3. Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade

    Science.gov (United States)

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; Mueller, D.; Myers, C. E.; Guttenfelder, W.; Menard, J. E.; Sabbagh, S. A.; Scotti, F.; Bedoya, F.; Bell, R. E.; Berkery, J. W.; Diallo, A.; Ferraro, N.; Kaye, S. M.; Jaworski, M. A.; LeBlanc, B. P.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Soukhanovskii, V.; NSTX-U Research, the; Operations; Engineering Team

    2018-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal fields (1 T) and plasma currents (1.0-2.0 MA) in a low aspect ratio geometry (A  =  1.6-1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes the progress in the development of L- and H-mode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supported the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (B T0  =  0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (t pulse  >  1.8 s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (I p). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2  >  1) and stability (β N/β N-nowall  >  1) compared to NSTX discharges for I p  ⩽  1 MA. High-performance H-mode scenarios require an L-H transition early in the I p ramp-up phase in order to obtain low internal inductance (l i) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ  >  2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.

  4. Analysis of NSTX TF Joint Voltage Measurements

    International Nuclear Information System (INIS)

    Woolley R

    2005-01-01

    This report presents findings of analyses of recorded current and voltage data associated with 72 electrical joints operating at high current and high mechanical stress. The analysis goal was to characterize the mechanical behavior of each joint and thus evaluate its mechanical supports. The joints are part of the toroidal field (TF) magnet system of the National Spherical Torus Experiment (NSTX) pulsed plasma device operating at the Princeton Plasma Physics Laboratory (PPPL). Since there is not sufficient space near the joints for much traditional mechanical instrumentation, small voltage probes were installed on each joint and their voltage monitoring waveforms have been recorded on sampling digitizers during each NSTX ''shot''

  5. Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Scott, E. R., E-mail: evrscott@ucdavis.edu [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Barchfeld, R. [Department of Applied Science, University of California, Davis, California 95616 (United States); Riemenschneider, P.; Domier, C. W.; Sohrabi, M.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Muscatello, C. M. [General Atomics, San Diego, California 92121 (United States); Kaita, R.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2016-11-15

    The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment—Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.

  6. Precision metrology of NSTX surfaces using coherent laser radar ranging

    International Nuclear Information System (INIS)

    Kugel, H.W.; Loesser, D.; Roquemore, A. L.; Menon, M. M.; Barry, R. E.

    2000-01-01

    A frequency modulated Coherent Laser Radar ranging diagnostic is being used on the National Spherical Torus Experiment (NSTX) for precision metrology. The distance (range) between the 1.5 microm laser source and the target is measured by the shift in frequency of the linearly modulated beam reflected off the target. The range can be measured to a precision of < 100microm at distances of up to 22 meters. A description is given of the geometry and procedure for measuring NSTX interior and exterior surfaces during open vessel conditions, and the results of measurements are elaborated

  7. New Capabilities and Results for the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    M.G. Bell, R.E. Bell, D.A. Gates, S.M. Kaye, H. Kugel, B.P. LeBlanc, F.M. Levinton, R. Maingi, J.E. Menard, R. Raman, S.A. Sabbagh, D. Stutman and the NSTX Research Team

    2008-02-29

    The National Spherical Torus Experiment (NSTX) produces plasmas with toroidal aspect ratio as low as 1.25, which can be heated by up to 6 MW High-Harmonic Fast Waves and up to 7 MW of deuterium Neutral Beam Injection. Using new poloidal fields coils, plasmas with cross-section elongation up to 2.7, triangularity 0.8, plasma currents Ip up to 1.5 MA and normalized currents Ip/a·BT up to 7.5 MA/m·T have been achieved. A significant extension of the plasma pulse length, to 1.5 s at a plasma current of 0.7 MA, has been achieved by exploiting the bootstrap and NBI-driven currents to reduce the dissipation of poloidal flux. Inductive plasma startup has been supplemented by Coaxial Helicity Injection (CHI) and the production of persistent current on closed flux surfaces by CHI has now been demonstrated in NSTX. The plasma response to magnetic field perturbations with toroidal mode numbers n = 1 or 3 and the effects on the plasma rotation have been investigated using three pairs of coils outside the vacuum vessel. Recent studies of both MHD stability and of transport benefitted from improved diagnostics, including measurements of the internal poloidal field using the motional Stark effect (MSE). In plasmas with a region of reversed magnetic shear in the core, now confirmed by the MSE data, improved electron confinement has been observed.

  8. Solenoid-free Plasma Startup in NSTX using Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Roger Raman; Jarboe, Thomas R.; Bell, Michael G.; Dennis Mueller; Nelson, Brian A.; Benoit LeBlanc; Charles Bush; Masayoshi Nagata; Ted Biewer

    2005-01-01

    The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. Coaxial Helicity Injection (CHI) is a promising candidate for solenoid-free plasma startup in a ST. Recent experiments on the HIT-II ST at the University of Washington, have demonstrated the capability of a new method, referred to as transient CHI, to produce a high quality, closed-flux equilibrium that has then been coupled to induction, with a reduced requirement for transformer flux [R. Raman, T.R. Jarboe, B.A. Nelson, et al., Phys. Rev. Lett. 90 (February 2003) 075005-1]. An initial test of this method on the National Spherical Torus Experiment (NSTX) has produced about 140 kA of toroidal current. Modifications are now underway to improve capability for transient CHI in NSTX

  9. Status of Far Infrared Tangential Interferometry/Polarimetry (FIReTIP) on NSTX

    International Nuclear Information System (INIS)

    Park, H.K.; Edwards, S.; Guttadora, L.; Deng, B.; Domier, C.W.; Lee, K.C.; Johnson, M.; Luhmann, N.C. Jr.

    2000-01-01

    The Influence of paramagnetism and diamagnetism will significantly alter the vacuum toroidal magnetic field in the spherical torus. Therefore, plasma parameters dependent upon BT such as the q-profile and the local b value need an independent measurement of BT(r,t). The multi-chord Tangential Far Infrared Interferometer/Polarimeter (FIReTIP) system [1] currently under development for the National Spherical Torus Experiment (NSTX) will provide temporally and radially resolved toroidal field profile [BT(r,t)] and 2-D electron density profile [ne(r,t)] data. A two-channel interferometer will be operational this year and the full system will be ready by 2002

  10. Flux consumption optimization and the achievement of 1 MA discharges on NSTX

    International Nuclear Information System (INIS)

    Menard, J.; LeBlanc, B.; Sabbagh, S.A.

    2001-01-01

    The spherical tokamak (ST), because of its slender central column, has very limited volt-second capability relative to a standard aspect ratio tokamak of similar plasma cross-section. Recent experiments on the National Spherical Torus Experiment (NSTX) have begun to quantify and optimize the ohmic current drive efficiency in a MA-class ST device. Sustainable ramp-rates in excess of 5MA/sec during the current rise phase have been achieved on NSTX, while faster ramps generate significant MHD activity. Discharges with I P exceeding 1MA have been achieved in NSTX with nominal parameters: aspect ratio A=1.3-1.4, elongation κ=2-2.2, triangularity δ=0.4, internal inductance l i =0.6, and Ejima coefficient C E =0.35. Flux consumption efficiency results, performance improvements associated with first boronization, and comparisons to neoclassical resistivity are described. (author)

  11. Current drive experiments on the HIT-II spherical torus

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Raman, R.; Nelson, B.A.; Holcomb, C.T.; McCollam, K.J.; Sieck, P.E.

    1999-01-01

    This paper describes the following new achievements from the Helicity Injected Torus (HIT) program: a) formation and sustainment of a toroidal magnetic equilibrium using coaxial helicity injection (CHI) in a conducting shell that has an L/R time much shorter than the pulse length; b) static formation of a spherical torus with plasma current over 180 kA using a transformer and feedback controlled equilibrium coils; and c) production of a current increase in a transformer produced spherical torus using CHI. (author)

  12. Current drive experiments on the HIT-II spherical torus

    International Nuclear Information System (INIS)

    Jarboe, T.; Raman, R.; Nelson, B.; Holcomb, C.T.; McCollam, K.J.; Sieck, P.E.

    2001-01-01

    This paper describes the following new achievements from the Helicity Injected Torus (HIT) program: a) formation and sustainment of a toroidal magnetic equilibrium using coaxial helicity injection (CHI) in a conducting shell that has an L/R time much shorter than the pulse length; b) static formation of a spherical torus with plasma current over 180 kA using a transformer and feedback controlled equilibrium coils; and c) production of a current increase in a transformer produced spherical torus using CHI. (author)

  13. Electron Bernstein Wave Research on NSTX and CDX-U

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Bell, G.L.; Bers, A.; Bigelow, T.S.; Carter, M.D.; Harvey, R.W.; Ram, A.K.; Rasmussen, D.A.; Smirnov, A.P.; Wilgen, J.B.; Wilson, J.R.

    2003-01-01

    Studies of thermally emitted electron Bernstein waves (EBWs) on CDX-U and NSTX, via mode conversion (MC) to electromagnetic radiation, support the use of EBWs to measure the Te profile and provide local electron heating and current drive (CD) in overdense spherical torus plasmas. An X-mode antenna with radially adjustable limiters successfully controlled EBW MC on CDX-U and enhanced MC efficiency to ∼ 100%. So far the X-mode MC efficiency on NSTX has been increased by a similar technique to 40-50% and future experiments are focused on achieving * 80% MC. MC efficiencies on both machines agree well with theoretical predictions. Ray tracing and Fokker-Planck modeling for NSTX equilibria are being conducted to support the design of a 3 MW, 15 GHz EBW heating and CD system for NSTX to assist non-inductive plasma startup, current ramp up, and to provide local electron heating and CD in high beta NSTX plasmas

  14. Development of a Universal Networked Timer at NSTX

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Lawson, J.E.; Oliaro, G.; Wertenbaker, J.

    2005-01-01

    A new Timing and Synchronization System component, the Universal Networked Timer (UNT), is under development at the National Spherical Torus Experiment (NSTX). The UNT is a second-generation multifunction timing device that emulates the timing functionality and electrical interfaces originally provided by various CAMAC modules. Using Field Programmable Gate Array (FPGA) technology, each of the UNT's eight channels can be dynamically programmed to emulate a specific CAMAC module type. The timer is compatible with the existing NSTX timing and synchronization system and will also support a (future) clock system with extended performance. To assist system designers and collaborators, software will be written to integrate the UNT with EPICS, MDSplus, and LabVIEW. This paper will describe the timing capabilities, hardware design, programming/software support, and the current status of the Universal Networked Timer at NSTX

  15. Compact magnetic confinement fusion: Spherical torus and compact torus

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2016-05-01

    Full Text Available The spherical torus (ST and compact torus (CT are two kinds of alternative magnetic confinement fusion concepts with compact geometry. The ST is actually a sub-category of tokamak with a low aspect ratio; while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch. The ST and CT have potential advantages for ultimate fusion reactor; while at present they can also provide unique fusion science and technology contributions for mainstream fusion research. However, some critical scientific and technology issues should be extensively investigated.

  16. Neutral Particle Analyzer Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Medley, S.S.; Roquemore, A.L.

    2004-01-01

    The Neutral Particle Analyzer (NPA) diagnostic on the National Spherical Torus Experiment (NSTX) utilizes a PPPL-designed E||B spectrometer that measures the energy spectra of minority hydrogen and bulk deuterium species simultaneously with 39 energy channels per mass specie and a time resolution of 1 ms. The calibrated energy range is E = 0.5-150 keV and the energy resolution varies from AE/E = 3-7% over the surface of the microchannel plate detector

  17. Neutral Particle Analyzer Diagnostic on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; A.L. Roquemore

    2004-03-16

    The Neutral Particle Analyzer (NPA) diagnostic on the National Spherical Torus Experiment (NSTX) utilizes a PPPL-designed E||B spectrometer that measures the energy spectra of minority hydrogen and bulk deuterium species simultaneously with 39 energy channels per mass specie and a time resolution of 1 ms. The calibrated energy range is E = 0.5-150 keV and the energy resolution varies from AE/E = 3-7% over the surface of the microchannel plate detector.

  18. Lithium Pellet Injector Development for NSTX

    International Nuclear Information System (INIS)

    Gettelfinger, G.; Dong, J.; Gernhardt, R.; Kugel, H.; Sichta, P.; Timberlake, J.

    2003-01-01

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described

  19. Design innovations of the next-step spherical torus experiment and spherical torus development path

    International Nuclear Information System (INIS)

    Ono, M.; Kessel, C.; Peng, M.

    2003-01-01

    The spherical torus (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as ITER as it focuses toward the compact Component Test Facility (CTF) and higher toroidal beta regimes to improve the design of DEMO and a Power Plant. To support the ST development path, one option of a Next Step Spherical Torus (NSST) device is examined. NSST is a 'performance extension' (PE) stage ST with a plasma current of 5 - 10 MA, R = 1.5, B T ≤ 2.7 T with flexible physics capability to 1) Provide a sufficient physics basis for the design of the CTF, 2) Explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, 3) Contribute to the general plasma/fusion science of high β toroidal plasmas. The NSST facility is designed to utilize the TFTR site to minimize the cost and time required for the construction. (author)

  20. The NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    G. Oliaro; J. Dong; K. Tindall; P. Sichta

    1999-01-01

    Earlier this year the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory achieved ''first plasma''. The Central Instrumentation and Control System was used to support plasma operations. Major elements of the system include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System. This paper will focus on the Process Control System. Topics include the architecture, hardware interface, operator interface, data management, and system performance

  1. Startup of the experimental physics industrial control system at NSTX

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.

    1999-01-01

    The Experimental Physics Industrial Control System (EPICS) is a set of software which is being used as the basis of the National Spherical Torus Experiment's (NSTX) Process Control System, a major element of the NSTX's Central Instrumentation and Control System. EPICS is a result of a co-development effort started by several US Department of Energy National Laboratories. EPICS is actively supported through an international collaboration made up of government and industrial users. EPICS' good points include portability, scalability, and extensibility. A drawback for small experiments is that a wide range of software skills are necessary to get the software tools running for the process engineers. The authors' experience in designing, developing, operating, and maintaining NSTX's EPICS (system) will be reviewed

  2. Kinetic Profiles in NSTX Plasmas

    International Nuclear Information System (INIS)

    Bell, R.E.; LeBlanc, B.P.; Bourdelle, C.; Ernst, D.R.; Fredrickson, E.D.; Gates, D.A.; Hosea, J.C.; Johnson, D.W.; Kaye, S.M.; Maingi, R.; Medley, S.; Menard, J.E.; Mueller, D.; Ono, M.; Paoletti, F.; Peng, M.; Sabbagh, S.A.; Stutman, D.; Swain, D.W.; Synakowski, E.J.; Wilson, J.R.

    2001-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio (R/a approximately 1.3) device with auxiliary heating from neutral-beam injection (NBI) and high-harmonic fast-wave heating (HHFW). Typical NSTX parameters are R(subscript ''0'') = 85 cm, a = 67 cm, I(subscript ''p'') = 0.7-1.4 MA, B(subscript ''phi'') = 0.25-0.45 T. Three co-directed deuterium neutral-beam sources have injected P(subscript ''NB'') less than or equal to 4.7 MW. HHFW plasmas typically have delivered P(subscript ''RF'') less than or equal to 3 MW. Important to the understanding of NSTX confinement are the new kinetic profile diagnostics: a multi-pulse Thomson scattering system (MPTS) and a charge-exchange recombination spectroscopy (CHERS) system. The MPTS diagnostic currently measures electron density and temperature profiles at 30 Hz at ten spatial locations. The CHERS system has recently become available to measure carbon ion temperature and toroidal flow at 17 radial positions spanning the outer half of the minor radius with 20 msec time resolution during NBI. Experiments conducted during the last year have produced a wide range of kinetic profiles in NSTX. Some interesting examples are presented below

  3. Internal Kink Mode Dynamics in High-β NSTX Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Stutman, D.; Tritz, K.; Zhu, W.

    2004-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode nonlinear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experimental data

  4. Internal kink mode dynamics in high-β NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, R.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Medley, S.S.; Park, W.; Sabbagh, S.A.; Sontag, A.; Zhu, W.; Stutman, D.; Tritz, K.

    2005-01-01

    Saturated internal kink modes have been observed in many of the highest toroidal beta discharges of the National Spherical Torus Experiment (NSTX). These modes often cause rotation flattening in the plasma core, can degrade energy confinement, and in some cases contribute to the complete loss of plasma angular momentum and stored energy. Characteristics of the modes are measured using soft X-ray, kinetic profile, and magnetic diagnostics. Toroidal flows approaching Alfvenic speeds, island pressure peaking, and enhanced viscous and diamagnetic effects associated with high-beta may contribute to mode non-linear stabilization. These saturation mechanisms are investigated for NSTX parameters and compared to experiment. (author)

  5. Structure and motion of edge turbulence in the National Spherical Torus Experiment and Alcator C-Moda)

    Science.gov (United States)

    Zweben, S. J.; Maqueda, R. J.; Terry, J. L.; Munsat, T.; Myra, J. R.; D'Ippolito, D.; Russell, D. A.; Krommes, J. A.; LeBlanc, B.; Stoltzfus-Dueck, T.; Stotler, D. P.; Williams, K. M.; Bush, C. E.; Maingi, R.; Grulke, O.; Sabbagh, S. A.; White, A. E.

    2006-05-01

    In this paper we compare the structure and motion of edge turbulence observed in L-mode vs. H-mode plasmas in the National Spherical Torus Experiment (NSTX) [M. Ono, M. G. Bell, R. E. Bell et al., Plasma Phys. Controlled Fusion 45, A335 (2003)]. The radial and poloidal correlation lengths are not significantly different between the L-mode and the H-mode in the cases examined. The poloidal velocity fluctuations are lower and the radial profiles of the poloidal turbulence velocity are somewhat flatter in the H-mode compared with the L-mode plasmas. These results are compared with similar measurements Alcator C-Mod [E. Marmar, B. Bai, R. L. Boivin et al., Nucl. Fusion 43, 1610 (2003)], and with theoretical models.

  6. Suppression of Alfven Modes on the National Spherical Torus Experiment Upgrade with Outboard Beam Injection [Suppression of Alfven Modes on the NSTX-U with Outboard Beam Injection

    International Nuclear Information System (INIS)

    Fredrickson, E. D.; Belova, E. V.; Battaglia, D. J.

    2017-01-01

    In this paper we present data from experiments on the National Spherical Torus Experiment Upgrade, where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counterpropagating global Alfven eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfven modes, and developing methods to control them, is important for fusion reactors like the International Tokamak Experimental Reactor, which are heated by a large population of nonthermal, super-Alfvenic ions consisting of fusion generated alpha's and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k(perpendicular to rho L). A quantitative analysis of this data with the HYM stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.

  7. Overview of the initial NSTX experimental results

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.; Bell, R.

    2001-01-01

    The main aim of the National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the spherical torus (ST) concept. The NSTX device began plasma operations in February 1999 and the plasma current I p was successfully brought up to the design value of 1 million amperes on December 14, 1999. The planned plasma shaping parameters, κ=1.6-2.2 and δ=0.2-0.4, were achieved in inner limited, single null and double null configurations. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments were also initiated. A CHI injected current of 27 kA produced up to 260 kA of toroidal current without using an ohmic solenoid. With an injection of 2.3 MW of HHFW power, using twelve antennas connected to six transmitters, electrons were heated from a central temperature of 400 eV to 900 eV at a central density of 3.5x10 13 cm -3 increasing the plasma energy to 59 kJ and the toroidal beta, β T to 10 %. Finally, the NBI system commenced operation in Sept. 2000. The initial results with two ion sources (P NBI =2.8MW) shows good heating, producing a total plasma stored energy of 90 kJ corresponding to β T ∼18% at a plasma current of 1.1 MA. (author)

  8. Overview of the initial NSTX experimental results

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.

    2001-01-01

    The main aim of the National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the spherical torus (ST) concept. The NSTX device began plasma operations in February 1999 and the plasma current I p was successfully brought up to the design value of 1 MA on 14 December 1999. The planned plasma shaping parameters, elongation κ=1:6-2.2 and triangularity δ=0:2-0.4, were achieved in inner wall limited, and single null and double null diverted configurations. The coaxial helicity injection (CHI) and high harmonic fast wave (HHFW) experiments were also initiated. CHI current of 27 kA produced up to 260 kA toroidal current without using an ohmic solenoid. With the injection of 2.3 MW of HHFW power, using 12 antennas connected to six transmitters, electrons were heated from a central temperature of 400 eV to 900 eV at a central density of 3.5x10 13 cm 3 , increasing the plasma energy to 59 kJ and the toroidal β, β T , to 10%. The NBI system commenced operation in September 2000. The initial results with two ion sources (P NBI =2:8 MW) show good heating, producing a total plasma stored energy of 90 kJ corresponding to β T ∼18% at a plasma current of 1.1 MA. (author)

  9. Overview of the Initial NSTX Experimental Results

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.; Bell, R. E.; Bigelow, T.; Bitter, M.

    2000-01-01

    The main aim of the National Spherical Torus Experiment (NSTX) is to establish the fusion physics principles of the spherical torus (ST) concept. The NSTX device began plasma operations in February 1999 and the plasma current Ip was successfully brought up to the design value of 1 million amperes on December 14, 1999. The planned plasma shaping parameters, k = 1.6 ± 2.2 and d = 0.2 ± 0.4, were achieved in inner limited, single null and double null configurations. The CHI (Coaxial Helicity Injection) and HHFW (High Harmonic Fast Wave) experiments were also initiated. A CHI injected current of 27 kA produced up to 260 kA of toroidal current without using an ohmic solenoid. With an injection of 2.3 MW of HHFW power, using twelve antennas connected to six transmitters, electrons were heated from a central temperature of 400 eV to 900 eV at a central density of 3.5 x 1013 cm-3 increasing the plasma energy to 59 kJ and the toroidal beta, bT to 10 %. Finally, the NBI system commenced operation in Sept. 2000. The initial results with two ion sources (PNBI = 2.8 MW) shows good heating, producing a total plasma stored energy of 90 kJ corresponding to bT = 18 % at a plasma current of 1.1 MA

  10. Diagnostic Development for ST Plasmas on NSTX

    International Nuclear Information System (INIS)

    Johnson, D.

    2003-01-01

    Spherical tokamaks (STs) have much lower aspect ratio (a/R) and lower toroidal magnetic field, relative to tokamaks and stellarators. This paper will highlight some of the challenges and opportunities these features pose in the diagnosis of ST plasmas on the National Spherical Torus Experiment (NSTX), and discuss some of the corresponding diagnostic development that is underway. The low aspect ratio necessitates a small center stack, with tight space constraints and large thermal excursions, complicating the design of magnetic sensors in this region. The toroidal magnetic field on NSTX is less than or equal to 0.6 T, making it impossible to use ECE as a good monitor of electron temperature. A promising new development for diagnosing electron temperature is electron Bernstein wave (EBW) radiometry, which is currently being pursued on NSTX. A new high-resolution charge exchange recombination spectroscopy system is being installed. Since non-inductive current initiation and sustainment ar e top-level NSTX research goals, measurements of the current profile J(R) are essential to many planned experiments. On NSTX several modifications are planned to adapt the MSE technique to lower field, and two novel MSE systems are being prototyped. Several high speed 2-D imaging techniques are being developed, for viewing both visible and x-ray emission. The toroidal field is comparable to the poloidal field at the outside plasma edge, producing a large field pitch (>50 o ) at the outer mid-plane. The large shear in pitch angle makes some fluctuation diagnostics like beam emission spectroscopy very difficult, while providing a means of achieving spatial localization for microwave scattering investigations of high-k turbulence, which are predicted to be virulent for NSTX plasmas. A brief description of several of these techniques will be given in the context of the current NSTX diagnostic set

  11. NSTX Electrical Power Systems

    International Nuclear Information System (INIS)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems

  12. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.; Hill, K.; Johnson, D.

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence

  13. Visible imaging of edge turbulence in NSTX

    International Nuclear Information System (INIS)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-01-01

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence

  14. Te(R,t) Measurements using Electron Bernstein Wave Thermal Emission on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; LeBlanc, B.P.; Carter, M.; Caughman, J.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.

    2006-01-01

    The National Spherical Torus Experiment (NSTX) routinely studies overdense plasmas with n e of (1-5) x 10 19 m -3 and total magnetic field of e measurement. A significant upgrade to the previous NSTX EBW emission diagnostic to measure thermal EBW emission via the oblique B-X-O mode conversion process has been completed. The new EBW diagnostic consists of two remotely steerable, quad-ridged horn antennas, each of which is coupled to a dual channel radiometer. Fundamental (8-18 GHz) and second and third harmonic (18-40 GHz) thermal EBW emission and polarization measurements can be obtained simultaneously.

  15. Impurity analysis of NSTX using a transmission grating-based imaging spectrometer

    International Nuclear Information System (INIS)

    Kumar, Deepak; Finkenthal, Michael; Stutman, Dan; Clayton, Daniel J; Tritz, Kevin; Bell, Ronald E; Diallo, Ahmed; LeBlanc, Ben P; Podesta, Mario

    2012-01-01

    A transmission grating-based imaging spectrometer has recently been installed and operated on the National Spherical Torus Experiment (NSTX) at PPPL. This paper describes the spectral and spatial characteristics of impurity emission under different operating conditions of the experiment—neutral beam heated, ohmic heated and RF heated plasma. A typical spectrum from each scenario is analyzed to provide quantitative estimates of impurity fractions in the plasma. (paper)

  16. Fast Neutral Pressure Measurements in NSTX

    International Nuclear Information System (INIS)

    R. Raman; H.W. Kugel; T. Provost; R. Gernhardt; T.R. Jarboe; M.G. Bell

    2002-01-01

    Several fast neutral pressure gauges have been installed on NSTX [National Spherical Torus Experiment] to measure the vessel and divertor pressure during inductive and coaxial helicity injected (CHI) plasma operations. Modified, PDX [Poloidal Divertor Experiment]-type Penning gauges have been installed on the upper and lower divertors. Neutral pressure measurements during plasma operations from these and from two shielded fast Micro ion gauges at different toroidal locations on the vessel mid-plane are described. A new unshielded ion gauge, referred to as the In-vessel Neutral Pressure (INP) gauge is under development

  17. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  18. Suppressing Electron Turbulence and Triggering Internal Transport Barriers with Reversed Magnetic Shear in the National Spherical Torus Experiment

    Science.gov (United States)

    Peterson, Jayson Luc

    2011-10-01

    Observations in the National Spherical Torus Experiment (NSTX) have found electron temperature gradients that greatly exceed the linear threshold for the onset for electron temperature gradient-driven (ETG) turbulence. These discharges, deemed electron internal transport barriers (e-ITBs), coincide with a reversal in the shear of the magnetic field and with a reduction in electron-scale density fluctuations, qualitatively consistent with earlier gyrokinetic predictions. To investigate this phenomenon further, we numerically model electron turbulence in NSTX reversed-shear plasmas using the gyrokinetic turbulence code GYRO. These first-of-a-kind nonlinear gyrokinetic simulations of NSTX e-ITBs confirm that reversing the magnetic shear can allow the plasma to reach electron temperature gradients well beyond the critical gradient for the linear onset of instability. This effect is very strong, with the nonlinear threshold for significant transport approaching three times the linear critical gradient in some cases, in contrast with moderate shear cases, which can drive significant ETG turbulence at much lower gradients. In addition to the experimental implications of this upshifted nonlinear critical gradient, we explore the behavior of ETG turbulence during reversed shear discharges. This work is supported by the SciDAC Center for the Study of Plasma Microturbulence, DOE Contract DE-AC02-09CH11466, and used the resources of NCCS at ORNL and NERSC at LBNL. M. Ono et al., Nucl. Fusion 40, 557 (2000).

  19. Hybrid simulation of toroidal Alfvén eigenmode on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D., E-mail: deyongl@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Fu, G. Y.; Podestà, M.; Breslau, J. A.; Fredrickson, E. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Crocker, N. A.; Kubota, S. [Department of Physics and Astronomy, University of California, Los Angles, California 90095 (United States)

    2015-04-15

    Energetic particle modes and Alfvén eigenmodes driven by super-Alfvénic fast ions are routinely observed in neutral beam heated plasmas on the National Spherical Torus eXperiment (NSTX). These modes can significantly impact fast ion transport and thus cause fast ion redistribution or loss. Self-consistent linear simulations of Toroidal Alfvén Eigenmodes (TAEs) in NSTX plasmas have been carried out with the kinetic/magnetohydrodynamic hybrid code M3D-K using experimental plasma parameters and profiles including plasma toroidal rotation. The simulations show that unstable TAEs with n=3,4, or 5 can be excited by the fast ions from neutral beam injection. The simulated mode frequency, mode radial structure, and phase shift are consistent with measurements from a multi-channel microwave reflectometer diagnostic. A sensitivity study on plasma toroidal rotation, safety factor q profile, and initial fast ion distribution is performed. The simulations show that rotation can have a significant destabilizing effect when the rotation is comparable or larger than the experimental level. The mode growth rate is sensitive to q profile and fast ion distribution. Although mode structure and peak position depend somewhat on q profile and plasma rotation, the variation of synthetic reflectometer response is within experimental uncertainty and it is not sensitive enough to see the difference clearly.

  20. Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Soukhanovskii, V. A.; Roquemore, A. L.; Bell, R. E.; Kaita, R.; Kugel, H. W.

    2010-01-01

    The use of lithium-coated plasma facing components for plasma density control is studied in the National Spherical Torus Experiment (NSTX). A recently installed liquid lithium divertor (LLD) module has a porous molybdenum surface, separated by a stainless steel liner from a heated copper substrate. Lithium is deposited on the LLD from two evaporators. Two new spectroscopic diagnostics are installed to study the plasma surface interactions on the LLD: (1) A 20-element absolute extreme ultraviolet (AXUV) diode array with a 6 nm bandpass filter centered at 121.6 nm (the Lyman-α transition) for spatially resolved divertor recycling rate measurements in the highly reflective LLD environment, and (2) an ultraviolet-visible-near infrared R=0.67 m imaging Czerny-Turner spectrometer for spatially resolved divertor D I, Li I-II, C I-IV, Mo I, D 2 , LiD, CD emission and ion temperature on and around the LLD module. The use of photometrically calibrated measurements together with atomic physics factors enables studies of recycling and impurity particle fluxes as functions of LLD temperature, ion flux, and divertor geometry.

  1. Implications of NSTX lithium results for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M.; Diem, S. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Menard, J.; Paul, S.F. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington at Seattle, Seattle, WA (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Taylor, G. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to {approx}100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  2. Implications of NSTX lithium results for magnetic fusion research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼100 g of lithium onto the lower divertor plates between lithium re-loadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, edge localized mode (ELM) control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  3. Feasibility study for the Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Attenberger, S.E.; Baylor, L.R.

    1985-10-01

    The design of the Spherical Torus Experiment (STX) is discussed. The physics of the plasma are given in a magnetohydrodynamic model. The structural aspects and instrumentation of the device are described. 19 refs., 103 figs

  4. Non-inductive Solenoid-less Plasma Current Start-up in NSTX Using Transient CHI

    International Nuclear Information System (INIS)

    Raman, R.; Mueller, D.; Jarboe, T.R.; Nelson, B.A.; Bell, M.G.; Ono, M.; Bigelow, T.; Kaita, R.; LeBlanc, B.; Lee, K.C.; Maqueda, R.; Menard, J.; Paul, S.; Roquemore, L.

    2007-01-01

    Coaxial Helicity Injection (CHI) has been successfully used in the National Spherical Torus Experiment (NSTX) for a demonstration of closed flux current generation without the use of the central solenoid. The favorable properties of the Spherical Torus (ST) arise from its very small aspect ratio. However, small aspect ratio devices have very restricted space for a substantial central solenoid. Thus methods for initiating the plasma current without relying on induction from a central solenoid are essential for the viability of the ST concept. CHI is a promising candidate for solenoid-free plasma startup in a ST. The method has now produced closed flux current up to 160 kA verifying the high current capability of this method in a large ST built with conventional tokamak components.

  5. Effects of Toroidal Rotation Sshear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S

    2010-08-19

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  6. Effects of Toroidal Rotation Shear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.

    2010-01-01

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  7. Comparison of Poloidal Velocity Meassurements to Neoclassical Theory on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, R.E.; Andre, R.; Kaye, S.M.; Kolesnikov, R.A.; LeBlance, B.P.; Rewolldt, G.; Wang, W.X.; Sabbagh, S.A.

    2010-01-01

    Knowledge of poloidal velocity is necessary for the determination of the radial electric field, Er, which along with its gradient is linked to turbulence suppression and transport barrier formation. Recent measurements of poloidal flow on conventional tokamaks have been reported to be an order of magnitude larger than expected from neoclassical theory. In contrast, recent poloidal velocity measurements on the NSTX spherical torus (S. M. Kaye et al., Phys. Plasmas 8, 1977 (2001)) are near or below neoclassical estimates. A novel charge exchange recombination spectroscopy diagnostic is used, which features active and passive sets of up/down symmetric views to produce line-integrated poloidal velocity measurements that do not need atomic physics corrections. Local profiles are obtained with an inversion. Poloidal velocity measurements are compared with neoclassical values computed with the codes NCLASS (W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)) and GTC-Neo (W. X. Wang, et al., Phys. Plasmas 13, 082501 (2006)), which has been updated to handle impurities.

  8. Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Weller, M. E., E-mail: weller4@llnl.gov; Beiersdorfer, P.; Soukhanovskii, V. A.; Magee, E. W.; Scotti, F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment–Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8–70 Å), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190–440 Å), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50–220 Å). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will be used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.

  9. Next-Step Spherical Torus Experiment and Spherical Torus Strategy in the Fusion Energy Development Path

    International Nuclear Information System (INIS)

    Ono, M.; Peng, M.; Kessel, C.; Neumeyer, C.; Schmidt, J.; Chrzanowski, J.; Darrow, D.; Grisham, L.; Heitzenroeder, P.; Jarboe, T.; Jun, C.; Kaye, S.; Menard, J.; Raman, R.; Stevenson, T.; Viola, M.; Wilson, J.; Woolley, R.; Zatz, I.

    2003-01-01

    A spherical torus (ST) fusion energy development path which is complementary to proposed tokamak burning plasma experiments such as ITER is described. The ST strategy focuses on a compact Component Test Facility (CTF) and higher performance advanced regimes leading to more attractive DEMO and Power Plant scale reactors. To provide the physics basis for the CTF an intermediate step needs to be taken which we refer to as the ''Next Step Spherical Torus'' (NSST) device and examine in some detail herein. NSST is a ''performance extension'' (PE) stage ST with the plasma current of 5-10 MA, R = 1.5 m, and Beta(sub)T less than or equal to 2.7 T with flexible physics capability. The mission of NSST is to: (1) provide a sufficient physics basis for the design of CTF, (2) explore advanced operating scenarios with high bootstrap current fraction/high performance regimes, which can then be utilized by CTF, DEMO, and Power Plants, and (3) contribute to the general plasma/fusion science of high beta toroidal plasmas. The NSST facility is designed to utilize the Tokamak Fusion Test Reactor (or similar) site to minimize the cost and time required for the design and construction

  10. Operation of the ultrasoft x-ray system on NSTX (abstract)

    International Nuclear Information System (INIS)

    Stutman, D.; Iovea, M.; Finkenthal, M.; Kaita, R.; Johnson, D.; Roquemore, L.; Roney, P.

    2001-01-01

    The ultrasoft x-ray imaging system on National Spherical Torus Experiment (NSTX) became operational and provided the first data in the filtered diode slow bow tie configuration. Using different band pass filters on each of three arrays allows an approximate spectroscopic estimate of the plasma impurity content, as well as of the electron temperature. Magnetohydrodynamics (MHD) activity from different plasma regions is also observed. The soft x-ray emission profiles are well behaved until an Internal Reconnection Event occurs. Examples of NSTX MHD phenomena seen in the ultrasoft x-ray emission under different operational regimes will be presented. From a technical point of view, we point out that the industrial PC based data acquisition system was not adversely affected by stray magnetic fields due to its close proximity to the NSTX device. Also, the surface barrier diodes withstood baking to 100 o C relatively well

  11. Intermittent Divertor Filaments in the National Spherical Torus Experiment and Their Relation to Midplane Blobs

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Stotler, D.P.

    2010-01-01

    While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in D α ; e.g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of 'magnetic shear disconnection' due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621).

  12. Collisional Damping of Electron Bernstein Waves and its Mitigation by Evaporated Lithium Conditioning in Spherical-Tokamak Plasmas

    International Nuclear Information System (INIS)

    Diem, S. J.; Caughman, J. B.; Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2009-01-01

    The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited <10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%.

  13. Development of NSTX Particle Control Techniques

    International Nuclear Information System (INIS)

    Kugel, H.W.; Maingi, R.; Bell, M.; Gates, D.; Hill, K.; LeBlanc, B.; Mueller, D.; Kaita, R.; Paul, S.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Stratton, B.; Raman, R.

    2004-01-01

    The National Spherical Torus Experiment (NSTX) High Harmonic Fast Wave (HHFW) current-drive discharges will require density control for acceptable efficiency. In NSTX, this involves primarily controlling impurity influxes and recycling. We have compared boronization on hot and cold surfaces, varying helium glow discharge conditioning (HeGDC) durations, helium discharge cleaning, brief daily boronization, and between discharge boronization to reduce and control spontaneous density rises. Access to Ohmic H-modes was enabled by boronization on hot surfaces, however, the duration of the effectiveness of hot and cold boronization was comparable. A 15 minute HeGDC between discharges was needed for reproducible L-H transitions. Helium discharge conditioning yielded slower density rises than 15 minutes of HeGDC. Brief daily boronization followed by a comparable duration of applied HeGDC restored and enhanced good conditions. Additional brief boronizations between discharges did not improve plasma performance (reduced recycling, reduced impurity luminosities, earlier L-H transitions, longer plasma current flattops, higher stored energies) if conditions were already good. Between discharge boronization required increases in the NSTX duty cycle due to the need for additional HeGDC to remove codeposited D

  14. Advances in boronization on NSTX-Upgrade

    Directory of Open Access Journals (Sweden)

    C. H Skinner

    2017-08-01

    Full Text Available Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5s to 5–8s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron deposition versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. This increase correlated with the rise of oxygen emission from the plasma.

  15. An overview of recent physics results from NSTX

    Science.gov (United States)

    Kaye, S. M.; Abrams, T.; Ahn, J.-W.; Allain, J. P.; Andre, R.; Andruczyk, D.; Barchfeld, R.; Battaglia, D.; Bhattacharjee, A.; Bedoya, F.; Bell, R. E.; Belova, E.; Berkery, J.; Berry, L.; Bertelli, N.; Beiersdorfer, P.; Bialek, J.; Bilato, R.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyer, M. D.; Boyle, D.; Brennan, D.; Breslau, J.; Brooks, J.; Buttery, R.; Capece, A.; Canik, J.; Chang, C. S.; Crocker, N.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; D'Ippolito, D.; Domier, C.; Ebrahimi, F.; Ethier, S.; Evans, T.; Ferraro, N.; Ferron, J.; Finkenthal, M.; Fonck, R.; Fredrickson, E.; Fu, G. Y.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gorelenkova, M.; Goumiri, I.; Gray, T.; Green, D.; Guttenfelder, W.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Jaeger, E. F.; Jarboe, T.; Jardin, S.; Jaworski, M. A.; Kaita, R.; Kessel, C.; Kim, K.; Koel, B.; Kolemen, E.; Kramer, G.; Ku, S.; Kubota, S.; LaHaye, R. J.; Lao, L.; LeBlanc, B. P.; Levinton, F.; Liu, D.; Lore, J.; Lucia, M.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Mansfield, D.; Maqueda, R.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Mueller, D.; Munsat, T.; Muscatello, C.; Myra, J.; Nelson, B.; Nichols, J.; Ono, M.; Osborne, T.; Park, J.-K.; Peebles, W.; Perkins, R.; Phillips, C.; Podesta, M.; Poli, F.; Raman, R.; Ren, Y.; Roszell, J.; Rowley, C.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S. A.; Schuster, E.; Scotti, F.; Sechrest, Y.; Shaing, K.; Sizyuk, T.; Sizyuk, V.; Skinner, C.; Smith, D.; Snyder, P.; Solomon, W.; Sovenic, C.; Soukhanovskii, V.; Startsev, E.; Stotler, D.; Stratton, B.; Stutman, D.; Taylor, C.; Taylor, G.; Tritz, K.; Walker, M.; Wang, W.; Wang, Z.; White, R.; Wilson, J. R.; Wirth, B.; Wright, J.; Yuan, X.; Yuh, H.; Zakharov, L.; Zweben, S. J.

    2015-10-01

    The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploring the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Toroidal Alfvén eigenmode avalanches and higher frequency Alfvén eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat

  16. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    International Nuclear Information System (INIS)

    Baumgaertel J.A., Redi M.H., Budny R.V., Rewoldt G., Dorland W.

    2005-01-01

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER

  17. Synthetic Aperture Microwave Imaging (SAMI) of the plasma edge on NSTX-U

    Science.gov (United States)

    Vann, Roddy; Taylor, Gary; Brunner, Jakob; Ellis, Bob; Thomas, David

    2016-10-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a unique phased-array microwave camera with a +/-40° field of view in both directions. It can image cut-off surfaces corresponding to frequencies in the range 10-34.5GHz; these surfaces are typically in the plasma edge. SAMI operates in two modes: either imaging thermal emission from the plasma (often modified by its interaction with the plasma edge e.g. via BXO mode conversion) or ``active probing'' i.e. injecting a broad beam at the plasma surface and imaging the reflected/back-scattered signal. SAMI was successfully pioneered on the Mega-Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy. SAMI has now been installed and commissioned on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton Plasma Physics Laboratory. The firmware has been upgraded to include real-time digital filtering, which enables continuous acquisition of the Doppler back-scattered active probing data. In this poster we shall present SAMI's analysis of the plasma edge on NSTX-U including measurements of the edge pitch angle on NSTX-U using SAMI's unique 2-D Doppler-backscattering capability.

  18. Profiles of fast ions that are accelerated by high harmonic fast waves in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Liu, D; Heidbrink, W W; Podesta, M; Ruskov, E; Bell, R E; Fredrickson, E D; Medley, S S; Harvey, R W

    2010-01-01

    Combined neutral beam injection and high-harmonic fast-wave (HHFW) heating accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX). With 1.1 MW of HHFW power, the neutron emission rate is about three times larger than in the comparison discharge without HHFW heating. Acceleration of fast ions above the beam injection energy is evident on an E||B type neutral particle analyzer (NPA), a 4-chord solid state neutral particle analyzer (SSNPA) array and a 16-channel fast-ion D-alpha (FIDA) diagnostic. The accelerated fast ions observed by the NPA and SSNPA diagnostics mainly come from passive charge exchange reactions at the edge due to the NPA/SSNPA localization in phase space. The spatial profile of accelerated fast ions that is measured by the FIDA diagnostic is much broader than in conventional tokamaks because of the multiple resonance layers and large orbits in NSTX. The fast-ion distribution function calculated by the CQL3D Fokker-Planck code differs from the measured spatial profile, presumably because the current version of CQL3D uses a zero-banana-width model. In addition, compressional Alfven eigenmode activity is stronger during the HHFW heating and it may affect the fast-ion spatial profile.

  19. Confinement and Local Transport in the National Spherical Torus Experiment NSTX

    International Nuclear Information System (INIS)

    Kaye, S.M.; Levinton, F.M.; Stutman, D.; Tritz, K.; Yuh, H.; Bell, M.G.; Bell, R.E.; Domier, C.W.; Gates, D.; Horton, W.; Kim, J.; LeBlanc, B.P.; Luhmann, N.C. Jr.; Maingi, T.; Mazzucato, E.; Menard, J.E.; Mikkelsen, D.; Mueller, D; Park, H.; Rewoldt, G.; Sabbagh, S.A.; Smith, D.R.; Wang, W.

    2007-01-01

    NSTX operates at low aspect ratio (R/a∼1.3) and high beta (up to 40%), allowing tests of global confinement and local transport properties that have been established from higher aspect ratio devices. NSTX plasmas are heated by up to 7 MW of deuterium neutral beams with preferential electron heating as expected for ITER. Confinement scaling studies indicate a strong B T dependence, with a current dependence that is weaker than that observed at higher aspect ratio. Dimensionless scaling experiments indicate a strong increase of confinement with decreasing collisionality and a weak degradation with beta. The increase of confinement with B T is due to reduced transport in the electron channel, while the improvement with plasma current is due to reduced transport in the ion channel related to the decrease in the neoclassical transport level. Improved electron confinement has been observed in plasmas with strong reversed magnetic shear, showing the existence of an electron internal transport barrier (eITB). The development of the eITB may be associated with a reduction in the growth of microtearing modes in the plasma core. Perturbative studies show that while L-mode plasmas with reversed magnetic shear and an eITB exhibit slow changes of L Te across the profile after the pellet injection, H-mode plasmas with a monotonic q-profile and no eITB show no change in this parameter after pellet injection, indicating the existence of a critical gradient that may be related to the q-profile. Both linear and non-linear simulations indicate the potential importance of ETG modes at the lowest B T . Localized measurements of high-k fluctuations exhibit a sharp decrease in signal amplitude levels across the L-H transition, associated with a decrease in both ion and electron transport, and a decrease in calculated linear microinstability growth rates across a wide k-range, from the ITG/TEM regime up to the ETG regime

  20. Electron Bernstein wave simulations and comparison to preliminary NSTX emission data

    International Nuclear Information System (INIS)

    Preinhaelter, Josef; Urban, Jakub; Pavlo, Pavol; Taylor, Gary; Diem, Steffi; Vahala, Linda; Vahala, George

    2006-01-01

    Simulations indicate that during flattop current discharges the optimal angles for the aiming of the National Spherical Torus Experiment (NSTX) antennae are quite rugged and basically independent of time. The time development of electron Bernstein wave emission (EBWE) at particular frequencies as well as the frequency spectrum of EBWE as would be seen by the recently installed NSTX antennae are computed. The simulation of EBWE at low frequencies (e.g., 16 GHz) agrees well with the recent preliminary EBWE measurements on NSTX. At high frequencies, the sensitivity of EBWE to magnetic field variations is understood by considering the Doppler broadened electron cyclotron harmonics and the cutoffs and resonances in the plasma. Significant EBWE variations are seen if the magnetic field is increased by as little as 2% at the plasma edge. The simulations for the low frequency antenna are compared to preliminary experimental data published separately by Diem et al. [Rev. Sci. Instrum.77 (2006)

  1. NSTX Diagnostics for Fusion Plasma Science Studies

    International Nuclear Information System (INIS)

    Kaita, R.; Johnson, D.; Roquemore, L.; Bitter, M.; Levinton, F.; Paoletti, F.; Stutman, D.

    2001-01-01

    This paper will discuss how plasma science issues are addressed by the diagnostics for the National Spherical Torus Experiment (NSTX), the newest large-scale machine in the magnetic confinement fusion (MCF) program. The development of new schemes for plasma confinement involves the interplay of experimental results and theoretical interpretations. A fundamental requirement, for example, is a determination of the equilibria for these configurations. For MCF, this is well established in the solutions of the Grad-Shafranov equation. While it is simple to state its basis in the balance between the kinetic and magnetic pressures, what they are as functions of space and time are often not easy to obtain. Quantities like the plasma pressure and current density are not directly measurable. They are derived from data that are themselves complex products of more basic parameters. The same difficulties apply to the understanding of plasma instabilities. Not only are the needs for spatial and temporal resolution more stringent, but the wave parameters which characterize the instabilities are difficult to resolve. We will show how solutions to the problems of diagnostic design on NSTX, and the physics insight the data analysis provides, benefits both NSTX and the broader scientific community

  2. Non-linear Dynamics Of Toroidicity-induced Alfven Eigenmodes On The National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Podesta, M.; Bell, R.E.; Crocker, N.A.; Fredrickson, E.D.; Gorelenkov, N.N.; Heidbrink, W.W.; Kubota, S.; LeBlanc, B.P.; Yu, H.

    2011-01-01

    The National Spherical Torus Experiment (NSTX, (M. Ono et al., Nucl. Fusion 40, 557 (2000))) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast /v Alfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.

  3. Non-linear Dynamics Of Toroidicity-induced Alfven Eigenmodes On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P

    2011-04-26

    The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.

  4. Non-linear dynamics of toroidicity-induced Alfven eigenmodes on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Crocker, N.A.; Kubota, S.; Heidbrink, W.W.; Yuh, H.

    2011-01-01

    The National Spherical Torus Experiment (NSTX, (Ono et al 2000 Nucl. Fusion 40 557)) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfvenic, with velocities 1 fast /v Alfven < 5. This provides a strong drive for toroidicity-induced Alfven eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (∼<30%) fast ion losses over ∼1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.

  5. Deposition Measurements in NSTX

    Science.gov (United States)

    Skinner, C. H.; Kugel, H. W.; Hogan, J. T.; Wampler, W. R.

    2004-11-01

    Two quartz microbalances have been used to record deposition on the National Spherical Torus Experiment. The experimental configuration mimics a typical diagnostic window or mirror. An RS232 link was used to acquire the quartz crystal frequency and the deposited thickness was recorded continuously with 0.01 nm resolution. Nuclear Reaction Analysis of the deposit was consistent with the measurement of the total deposited mass from the change in crystal frequency. We will present measurements of the variation of deposition with plasma conditions. The transport of carbon impurities in NSTX has been modelled with the BBQ code. Preliminary calculations indicated a negligible fraction of carbon generated at the divertor plates in quiescent discharges directly reaches the outer wall, and that transient events are responsible for the deposition.

  6. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Le Blanc, B.P.; Maingi, R.

    2002-01-01

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  7. Solid State Neutral Particle Analyzer Array on NSTX

    International Nuclear Information System (INIS)

    Shinohara, K.; Darrow, D.S.; Roquemore, A.L.; Medley, S.S.; Cecil, F.E.

    2004-01-01

    A Solid State Neutral Particle Analyzer (SSNPA) array has been installed on the National Spherical Torus Experiment (NSTX). The array consists of four chords viewing through a common vacuum flange. The tangency radii of the viewing chords are 60, 90, 100, and 120 cm. They view across the three co-injection neutral beam lines (deuterium, 80 keV (typ.) with tangency radii 48.7, 59.2, and 69.4 cm) on NSTX and detect co-going energetic ions. A silicon photodiode used was calibrated by using a mono-energetic deuteron beam source. Deuterons with energy above 40 keV can be detected with the present setup. The degradation of the performance was also investigated. Lead shots and epoxy are used for neutron shielding to reduce handling any hazardous heavy metal. This method also enables us to make an arbitrary shape to be fit into the complex flight tube

  8. High Harmonic Fast Wave Heating Experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.; Bonoli, P.

    2000-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ and a toroidal beta, bT , =10% and bn = 2.7

  9. High harmonic fast wave heating experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.

    2001-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ , a toroidal beta, β T =10% and a normalized beta, β n =2.7. (author)

  10. Investigation of Ion Absorption of the High Harmonic Fast Wave in NSTX using HPRT

    International Nuclear Information System (INIS)

    Rosenberg, A.; Menard, J.E.; LeBlanc, B.P.

    2001-01-01

    Understanding high harmonic fast wave (HHFW) power absorption by ions in a spherical torus (ST) is of critical importance to assessing the wave's viability as a means of heating and especially driving current. In this work, the HPRT code is used to calculate absorption for helium and deuterium, with and without minority hydrogen in National Spherical Torus Experiment (NSTX) plasmas using experimental EFIT code equilibria and kinetic profiles. HPRT is a two-dimensional ray-tracing code which uses the full hot plasma dielectric to compute the perpendicular wave number along the hot electron and cold ion plasma ray path. Ion and electron absorption dependence on antenna phasing, ion temperature, beta (subscript t), and minority temperature and concentration is analyzed. These results form the basis for comparisons with other codes, such as CURRAY, METS, TORIC, and AORSA

  11. EBW-Bootstrap Current Synergy in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Harvey, R.W.; Taylor, G.

    2005-01-01

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code, to determine the degree of synergy between them. A target β = 40% NSTX plasma is examined. A simple bootstrap model in the CQL3D Fokker-Planck code is used in these studies: the transiting electron distributions are connected in velocity-space at the trapped-passing boundary to trapped-electron distributions which are displaced radially by a half-banana width outwards/inwards for the co-/counter-passing regions. This model agrees well with standard bootstrap current calculations, over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current

  12. Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator-CMOD H-modes

    International Nuclear Information System (INIS)

    Redi, M.H.; Dorland, W.; Bell, R.; Bonoli, P.; Bourdelle, C.; Candy, J.; Ernst, D.; Fiore, C.; Gates, D.; Hammett, G.; Hill, K.; Kaye, S.; LeBlanc, B.; Menard, J.; Mikkelsen, D.; Rewoldt, G.; Rice, J.; Waltz, R.; Wukitch, S.

    2003-01-01

    Recent H-mode experiments on NSTX [National Spherical Torus Experiment] and experiments on Alcator-CMOD, which also exhibit internal transport barriers (ITB), have been examined with gyrokinetic simulations with the GS2 and GYRO codes to identify the underlying key plasma parameters for control of plasma performance and, ultimately, the successful operation of future reactors such as ITER [International Thermonuclear Experimental Reactor]. On NSTX the H-mode is characterized by remarkably good ion confinement and electron temperature profiles highly resilient in time. On CMOD, an ITB with a very steep electron density profile develops following off-axis radio-frequency heating and establishment of H-mode. Both experiments exhibit ion thermal confinement at the neoclassical level. Electron confinement is also good in the CMOD core

  13. Spherical torus (ST) concept and its reactor implications

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Lazarus, E.A.; Miller, R.L.; Carreras, B.A.; Hogan, J.T.; Krakowski, R.A.; Seed, T.J.; Zubrin, R.M.; Schnurr, N.M.

    1986-01-01

    A brief description of the spherical torus design is given. The design concept includes resistive demountable toroidal field coils, poloidal divertor for impurity control, oscillating-field current maintenance, RF initiation and ramp-up of the plasma current, and flowing liquid-metal breeding blanket. 4 refs., 6 figs

  14. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    Science.gov (United States)

    Jaworski, M. A.; Khodak, A.; Kaita, R.

    2013-12-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m-2, no macroscopic ejection events were observed. The stability can be understood from a Rayleigh-Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments.

  15. Modeling detachment physics in the NSTX snowflake divertor

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E.T., E-mail: emeier@wm.edu [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bell, R.E.; Diallo, A.; Kaita, R.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Podestà, M. [Princeton Plasma Physics Laboratory, Princeton, NJ 08540 (United States); Rognlien, T.D.; Scotti, F. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2015-08-15

    The snowflake divertor is a proposed technique for coping with the tokamak power exhaust problem in next-step experiments and eventually reactors, where extreme power fluxes to material surfaces represent a leading technological and physics challenge. In lithium-conditioned National Spherical Torus Experiment (NSTX) discharges, application of the snowflake divertor typically induced partial outer divertor detachment and severalfold heat flux reduction. UEDGE is used to analyze and compare conventional and snowflake divertor configurations in NSTX. Matching experimental upstream profiles and divertor measurements in the snowflake requires target recycling of 0.97 vs. 0.91 in the conventional case, implying partial saturation of the lithium-based pumping mechanism. Density scans are performed to analyze the mechanisms that facilitate detachment in the snowflake, revealing that increased divertor volume provides most of the parallel heat flux reduction. Also, neutral gas power loss is magnified by the increased wetted area in the snowflake, and plays a key role in generating volumetric recombination.

  16. Infrared Camera Diagnostic for Heat Flux Measurements on NSTX

    International Nuclear Information System (INIS)

    D. Mastrovito; R. Maingi; H.W. Kugel; A.L. Roquemore

    2003-01-01

    An infrared imaging system has been installed on NSTX (National Spherical Torus Experiment) at the Princeton Plasma Physics Laboratory to measure the surface temperatures on the lower divertor and center stack. The imaging system is based on an Indigo Alpha 160 x 128 microbolometer camera with 12 bits/pixel operating in the 7-13 (micro)m range with a 30 Hz frame rate and a dynamic temperature range of 0-700 degrees C. From these data and knowledge of graphite thermal properties, the heat flux is derived with a classic one-dimensional conduction model. Preliminary results of heat flux scaling are reported

  17. Characteristics of the First H-mode Discharges in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Menard, J.E.; Mueller, D.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Maqueda, R.J.; Ono, M.; Paoletti, F.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.; Synakowski, E.J.

    2001-01-01

    We report observations of the first low-to-high (L-H) confinement mode transitions in the National Spherical Torus Experiment (NSTX). The H-mode energy confinement time increased over reference L-mode discharges transiently by 100-300%, as high as ∼150 ms. This confinement time is ∼1.8-2.3 times higher than predicted by a multi-machine ELM-free H-mode scaling. This achievement extends the H-mode window of fusion devices down to a record low aspect ratio (R/a) ∼ 1.3, challenging both confinement and L-H power thresholds scalings based on conventional aspect ratio tokamaks

  18. An Edge Rotation and Temperature Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Biewer, T.M.; Bell, R.E.; Feder, R.; Johnson, D.W.; Palladino, R.W.

    2003-01-01

    A new diagnostic for the National Spherical Torus Experiment (NSTX) is described whose function is to measure ion rotation and temperature at the plasma edge. The diagnostic is sensitive to C III, C IV, and He II intrinsic emission, covering a radial region of 15 cm at the extreme edge of the outboard midplane. Thirteen chords are distributed between toroidal and poloidal views, allowing the toroidal and poloidal rotation and temperature of the plasma edge to be simultaneously measured with 10 ms resolution. Combined with the local pressure gradient and the EFIT code reconstructed magnetic field profile, the edge flow gives a measure of the local radial electric field

  19. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sechrest, Y.; Munsat, T. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Smith, D. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Stotler, D. P.; Zweben, S. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2015-05-15

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff.

  20. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Sechrest, Y.; Munsat, T.; Smith, D.; Stotler, D. P.; Zweben, S. J.

    2015-01-01

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff

  1. Be Foil ''Filter Knee Imaging'' NSTX Plasma with Fast Soft X-ray Camera

    International Nuclear Information System (INIS)

    B.C. Stratton; S. von Goeler; D. Stutman; K. Tritz; L.E. Zakharov

    2005-01-01

    A fast soft x-ray (SXR) pinhole camera has been implemented on the National Spherical Torus Experiment (NSTX). This paper presents observations and describes the Be foil Filter Knee Imaging (FKI) technique for reconstructions of a m/n=1/1 mode on NSTX. The SXR camera has a wide-angle (28 o ) field of view of the plasma. The camera images nearly the entire diameter of the plasma and a comparable region in the vertical direction. SXR photons pass through a beryllium foil and are imaged by a pinhole onto a P47 scintillator deposited on a fiber optic faceplate. An electrostatic image intensifier demagnifies the visible image by 6:1 to match it to the size of the charge-coupled device (CCD) chip. A pair of lenses couples the image to the CCD chip

  2. Fast ion loss diagnostic plans for NSTX

    International Nuclear Information System (INIS)

    Darrow, D. S.; Bell, R.; Johnson, R.; Kugel, H.; Wilson, J. R.; Cecil, F. E.; Maingi, R.; Krasilnikov, A.; Alekseyev, A.

    2000-01-01

    The prompt loss of neutral beam ions from the National Spherical Torus Experiment (NSTX) is expected to be between 12% and 42% of the total 5 MW of beam power. There may, in addition, be losses of fast ions arising from high harmonic fast wave (HHFW) heating. Most of the lost ions will strike the HHFW antenna or the neutral beam dump. To measure these losses in the 2000 experimental campaign, thermocouples in the antenna, several infrared camera views, and a Faraday cup lost ion probe will be employed. The probe will measure loss of fast ions with E > 1 keV at three radial locations, giving the scrape-off length of the fast ions

  3. Recent Physics Results from NSTX

    International Nuclear Information System (INIS)

    Menard, J E; Bell, M G; Bell, R E; Bialek, J M; Boedo, J A; Bush, C E; Crocker, N A; Diem, S; Ferron, J R; Fredrickson, E D; Gates, D A; Hill, K W; Hosea, J C; Kaye, S M; Kessel, C E; Kubota, S; Kugel, H W; LeBlanc, B P; Lee, K C; Levinton, F M; Maingi, R; Mansfield, D K; Majeski, R P; Maqueda, R J; Mazzucato, E; Medley, S S; Mueller, D; Park, H K; Paul, S F; Peebles, W A; Raman, R; Sabbagh, S A; Skinner, C H; Smith, D R; Sontag, A C; Soukhanovskii, V A; Stratton, B C; Stutman, D; Taylor, G; Tritz, K; Wilson, J R; Yuh, H; Zhu, W; Zweben, S J

    2006-01-01

    The National Spherical Torus Experiment (NSTX) has made considerable progress in advancing the scientific understanding of high performance long-pulse plasmas needed for ITER and future low-aspect-ratio Spherical Torus (ST) devices. Plasma durations up to 1.6s (5 current redistribution times) have been achieved at plasma currents of 0.7 MA with non-inductive current fractions above 65% while achieving β T and β N values of 16% and 5.7 (%mT/MA), respectively. Newly available Motional Stark Effect data has allowed systematic study and validation of current drive sources and improved the understanding of ''hybrid''-like scenarios. In MHD research, six mid-plane ex-vessel radial field coils have been utilized to infer and correct intrinsic error fields, provide rotation control, and actively stabilize the n=1 resistive wall mode at ITER-relevant low plasma rotation values. In transport and turbulence, the low aspect ratio and wide range of achievable β in NSTX provide unique data for confinement scaling studies. A new high-k scattering diagnostic is investigating turbulent density fluctuations with wavenumbers extending from ion to electron gyro-scales. In the area of energetic particle research, cyclic neutron rate drops have been associated with the destabilization of multiple large Toroidal Alfven Eigenmodes (TAEs) similar to the ''sea-of-TAE'' modes predicted for ITER. Three wave coupling processes between energetic particle modes and TAEs have also been observed for the first time. In boundary physics, advanced shape control has been utilized to study the role of magnetic balance in H-mode access and ELM stability. Peak divertor heat flux has been reduced by a factor of 5 using an H-mode compatible radiative divertor, and Lithium conditioning has demonstrated particle pumping and improved thermal confinement. Finally, non-solenoidal plasma start-up research is particularly important for the ST, and Coaxial Helicity Injection has now produced 160kA plasma

  4. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.

    Science.gov (United States)

    Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  5. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)

    Science.gov (United States)

    Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  6. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Faust, I.; Parker, R. R. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Tritz, K. [The Johns Hopkins University, Baltimore, Maryland 21209 (United States); Stratton, B. C. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2014-11-15

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  7. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    International Nuclear Information System (INIS)

    Faust, I.; Parker, R. R.; Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Tritz, K.; Stratton, B. C.

    2014-01-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed

  8. Liquid-metal plasma-facing component research on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Jaworski, M A; Khodak, A; Kaita, R

    2013-01-01

    Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. Liquid metals face critical issues in three key areas: free-surface stability, material migration and demonstration of integrated scenarios. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The liquid lithium divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m −2 , no macroscopic ejection events were observed. The stability can be understood from a Rayleigh–Taylor instability analysis. Capillary restraint and thermal-hydraulic considerations lead to a proposed liquid-metal PFCs scheme of actively-supplied, capillary-restrained systems. Even with state-of-the-art cooling techniques, design studies indicate that the surface temperature with divertor-relevant heat fluxes will still reach temperatures above 700 °C. At this point, one would expect significant vapor production from a liquid leading to a continuously vapor-shielded regime. Such high-temperature liquid lithium PFCs may be possible on the basis of momentum-balance arguments. (paper)

  9. Observation of Beam Driven Modes during Neutral Beam Heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Gorelenkov, E.D.; Cheng, C.Z.; Bell, R.; Darrow, D.; Johnson, D.; Kaye, S.; LeBlanc, B.; Menard, J.; Kubota, S.; Peebles, W.

    2001-01-01

    With the first injection of neutral beams on the National Spherical Torus Experiment (NSTX), a broad and complicated spectrum of coherent modes was seen between approximately 0.4 MHz and 2.5 MHz [where f(subscript ''ci'')] for deuterium is approximately 2.2 MHz. The modes have been observed with high bandwidth magnetic pick-up coils and with a reflectometer. The parametric scaling of the mode frequency with density and magnetic field is consistent with Alfvenic modes (linear in B, inversely with the square root of density). These modes have been identified as magnetosonic waves or compressional Alfven eigenmodes (CAE) excited by a cyclotron resonance with the neutral-beam ions. Modes have also been observed in the frequency range 50-150 kHz with toroidal mode numbers n = 1-5. These lower frequency modes are thought to be related to the TAE [Toroidal Alfven Eigenmode] seen commonly in tokamaks and driven by energetic fast ion populations resulting from ICRF [ion cyclotron range of frequency] and NBI [neutral-beam injection] heating. There is no clear indication of enhanced fast ion losses associated with the modes

  10. Effect of Boronization on Ohmic Plasmas in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-01-01

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas

  11. A Neutral Beam Injector Upgrade for NSTX

    International Nuclear Information System (INIS)

    Stevenson, T.; McCormack, B.; Loesser, G.D.; Kalish, M.; Ramakrishnan, S.; Grisham, L.; Edwards, J.; Cropper, M.; Rossi, G.; Halle, A. von; Williams, M.

    2002-01-01

    The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current

  12. Rogowski Loop design for NSTX

    International Nuclear Information System (INIS)

    McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.

    2000-01-01

    The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies

  13. Analysis of vertical stability limits and vertical displacement event behavior on NSTX-U

    Science.gov (United States)

    Boyer, Mark; Battaglia, Devon; Gerhardt, Stefan; Menard, Jonathan; Mueller, Dennis; Myers, Clayton; Sabbagh, Steven; Smith, David

    2017-10-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) completed its first run campaign in 2016, including commissioning a larger center-stack and three new tangentially aimed neutral beam sources. NSTX-U operates at increased aspect ratio due to the larger center-stack, making vertical stabilization more challenging. Since ST performance is improved at high elongation, improvements to the vertical control system were made, including use of multiple up-down-symmetric flux loop pairs for real-time estimation, and filtering to remove noise. Similar operating limits to those on NSTX (in terms of elongation and internal inductance) were achieved, now at higher aspect ratio. To better understand the observed limits and project to future operating points, a database of vertical displacement events and vertical oscillations observed during the plasma current ramp-up on NSTX/NSTX-U has been generated. Shots were clustered based on the characteristics of the VDEs/oscillations, and the plasma parameter regimes associated with the classes of behavior were studied. Results provide guidance for scenario development during ramp-up to avoid large oscillations at the time of diverting, and provide the means to assess stability of target scenarios for the next campaign. Results will also guide plans for improvements to the vertical control system. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  14. Soft x-ray measurements of resistive wall mode behavior in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L; Bell, R E; Gerhardt, S P; LeBlanc, B; Menard, J; Paul, S; Roquemore, L [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Stutman, D; Tritz, K; Finkenthal, M [Johns Hopkins University, Baltimore, MD 21218 (United States); Sabbagh, S A; Berkery, J W; Levesque, J P [Columbia University, New York, NY 10027 (United States); Lee, K C, E-mail: ldelgado@pppl.gov [University of California at Davis, Davis, CA 95616 (United States)

    2011-03-15

    A multi-energy soft x-ray (ME-SXR) array is used for the characterization of resistive wall modes (RWMs) in the National Spherical Torus Experiment (NSTX). Modulations in the time history of the ME-SXR emissivity profiles indicate the existence of edge density and core temperature fluctuations in good agreement with the slow evolution of the n = 1 magnetic perturbation measured by the poloidal and radial RWM coils. The characteristic 20-25 Hz frequency in the SXR diagnostics is approximately that of the n = 1 stable RWM, which is also near the measured peak of the resonant field amplification (RFA) and inversely proportional to the wall time. Together with the magnetics, the ME-SXR measurements suggest that in NSTX the RWM is not restricted exclusively to the reactor wall and edge, and that acting with the stabilizing coils on its global structure may result in density and temperature fluctuations that can be taken into account when designing the feedback process.

  15. Large Area Divertor Temperature Measurements Using A High-speed Camera With Near-infrared FiIters in NSTX

    International Nuclear Information System (INIS)

    Lyons, B.C.; Scotti, F.; Zweben, S.J.; Gray, T.K.; Hosea, J.; Kaita, R.; Kugel, H.W.; Maqueda, R.J.; McLean, A.G.; Roquemore, A.L.; Soukhanovskii, V.A.; Taylor, G.

    2011-01-01

    Fast cameras already installed on the National Spherical Torus Experiment (NSTX) have be equipped with near-infrared (NIR) filters in order to measure the surface temperature in the lower divertor region. Such a system provides a unique combination of high speed (> 50 kHz) and wide fi eld-of-view (> 50% of the divertor). Benchtop calibrations demonstrated the system's ability to measure thermal emission down to 330 oC. There is also, however, signi cant plasma light background in NSTX. Without improvements in background reduction, the current system is incapable of measuring signals below the background equivalent temperature (600 - 700 oC). Thermal signatures have been detected in cases of extreme divertor heating. It is observed that the divertor can reach temperatures around 800 oC when high harmonic fast wave (HHFW) heating is used. These temperature profiles were fi t using a simple heat diffusion code, providing a measurement of the heat flux to the divertor. Comparisons to other infrared thermography systems on NSTX are made.

  16. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    Science.gov (United States)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.

    2018-03-01

    The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.

  17. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Osborne, T.H. [General Atomics, 3550 General Atomics Ct., San Diego, CA 92121 (United States); Bell, M.G.; Bell, R.E.; Boyle, D.P. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Applied Physics and Applied Math Dept., Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, 7000 East Ave, PO Box 808, Livermore, CA 94551 (United States)

    2015-08-15

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D{sub α} emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ{sub E} and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  18. The National Spherical Tokamak Experiment at the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    1995-12-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1108, evaluating the environmental effects of the proposed construction and operation of the National Spherical Tokamak Experiment (NSTX) within the existing C-Stellarator (CS) Building at the Princeton Plasma Physics Laboratory, Princeton, New Jersey. The purpose of the NSTX is to investigate the physics of spherically shaped plasmas as an alternative path to conventional tokamaks for development of fusion energy. Fusion energy has the potential to help compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Construction of the NSTX in the CS Building would require the dismantling and removal of the existing unused Princeton Large Torus (PLT) device, part of which would be reused to construct the NSTX. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 U.S.C. 4,321 et seq. The preparation of an Environmental Impact Statement is not required. Thus, the DOE is issuing a FONSI pursuant to the Council on Environmental Quality regulations implementing NEPA (40 CFR Parts 1500--1508) and the DOE NEPA implementing regulations (10 CFR Part 1021)

  19. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  20. Snowflake divertor configuration studies in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V. A.; McLean, A. G.; Rognlien, T. D.; Ryutov, D. D.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; Menard, J. E.; Paul, S. F.; Podesta, M.; Roquemore, A. L.; Scotti, F.; Battaglia, D.; Bell, M. G.; Gates, D. A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); and others

    2012-08-15

    Experimental results from NSTX indicate that the snowflake divertor (D. Ryutov, Phys. Plasmas 14, 064502 (2007)) may be a viable solution for outstanding tokamak plasma-material interface issues. Steady-state handling of divertor heat flux and divertor plate erosion remains to be critical issues for ITER and future concept devices based on conventional and spherical tokamak geometry with high power density divertors. Experiments conducted in 4-6 MW NBI-heated H-mode plasmas in NSTX demonstrated that the snowflake divertor is compatible with high-confinement core plasma operation, while being very effective in steady-state divertor heat flux mitigation and impurity reduction. A steady-state snowflake divertor was obtained in recent NSTX experiments for up to 600 ms using three divertor magnetic coils. The high magnetic flux expansion region of the scrape-off layer (SOL) spanning up to 50% of the SOL width {lambda}{sub q} was partially detached in the snowflake divertor. In the detached zone, the heat flux profile flattened and decreased to 0.5-1 MW/m{sup 2} (from 4-7 MW/m{sup 2} in the standard divertor) indicative of radiative heating. An up to 50% increase in divertor, P{sub rad} in the snowflake divertor was accompanied by broadening of the intrinsic C III and C IV radiation zones, and a nearly order of magnitude increase in divertor high-n Balmer line emission indicative of volumetric recombination onset. Magnetic reconstructions showed that the x-point connection length, divertor plasma-wetted area and divertor volume, all critical parameters for geometric reduction of deposited heat flux, and increased volumetric divertor losses were significantly increased in the snowflake divertor, as expected from theory.

  1. Numerical study of spherical Torus MHD equilibrium configuration

    International Nuclear Information System (INIS)

    Cheng Faying; Dong Jiaqi; Wang Aike

    2003-01-01

    Tokamak equilibrium code SWEQU has been modified so that it can be used for the MHD equilibrium study of low aspect ratio device. Evolution of plasma configuration in start-up phase and double-null divertor configuration in steady-state phase has been simulated using the modified code. Results show that the new code can be used not only to obtain the equilibrium configuration of spherical Torus in steady-state phase, but also to simulate the evolution of plasma in the start-up phase

  2. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    Energy Technology Data Exchange (ETDEWEB)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    2001-01-18

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.

  3. Ultrasoft x-ray imaging system for the National Spherical Torus Experiment

    Science.gov (United States)

    Stutman, D.; Finkenthal, M.; Soukhanovskii, V.; May, M. J.; Moos, H. W.; Kaita, R.

    1999-01-01

    A spectrally resolved ultrasoft x-ray imaging system, consisting of arrays of high resolution (the National Spherical Torus Experiment. Initially, three poloidal arrays of diodes filtered for C 1s-np emission will be implemented for fast tomographic imaging of the colder start-up plasmas. Later on, mirrors tuned to the C Lyα emission will be added in order to enable the arrays to "see" the periphery through the hot core and to study magnetohydrodynamic activity and impurity transport in this region. We also discuss possible core diagnostics, based on tomographic imaging of the Lyα emission from the plume of recombined, low Z impurity ions left by neutral beams or fueling pellets. The arrays can also be used for radiated power measurements and to map the distribution of high Z impurities injected for transport studies. The performance of the proposed system is illustrated with results from test channels on the CDX-U spherical torus at Princeton Plasma Physics Laboratory.

  4. Plasma Start-up in HIT-II and NSTX using Transient Coaxial Helicity Injection

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Nelson, B.A.; Mueller, D.; Bell, M.G.; Ono, M.

    2008-01-01

    The method of transient coaxial helicity injection (CHI) has previously been used in the HITII experiment at the University of Washington to produce 100 kA of closed flux current. The generation of the plasma current by CHI involves the process of magnetic reconnection, which has been experimentally controlled in the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory to allow this potentially unstable phenomenon to reorganize the magnetic field lines to form closed, nested magnetic surfaces carrying a plasma current up to 160 kA. This is a world record for non-inductive closed-flux current generation, and demonstrates the high current capability of this method

  5. Numerical Study of Instabilities Driven by Energetic Neutral Beam Ions in NSTX

    International Nuclear Information System (INIS)

    Belova, E.V.; Gorelenkov, N.N.; Cheng, C.Z.; Fredrickson, E.D.

    2003-01-01

    Recent experimental observations from NSTX [National Spherical Torus Experiment] suggest that many modes in a subcyclotron frequency range are excited during neutral-beam injection (NBI). These modes have been identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs), which are driven unstable through the Doppler-shifted cyclotron resonance with the beam ions. The injection velocities of the NBI ions in NSTX are large compared to Alfven velocity, V(sub)0 > 3V(sub)A, and a strong anisotropy in the fast-ion pitch-angle distribution provides the energy source for the instabilities. Recent interest in the excitation of Alfven Eigenmodes in the frequency range omega less than or approximately equal to omega(sub)ci, where omega(sub)ci is the ion cyclotron frequency, is related to the possibility that these modes can provide a mechanism for direct energy transfer from super-Alfvenic beam ions to thermal ions. Numerical simulations are required in order to find a self-consistent mode structure, and to include the effects of finite-Larmor radius (FLR), the nonlinear effects, and the thermal plasma kinetic effects

  6. Plasma control system upgrade and increased plasma stability in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Mastrovito, D., E-mail: dmastrovito@pppl.go [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, NJ 08543 (United States); Gates, D.; Gerhard, S.; Lawson, J.; Ludescher-Furth, C.; Marsala, R. [Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, NJ 08543 (United States)

    2010-07-15

    Plasma control on the National Spherical Torus Experiment (NSTX) was previously accomplished using eight 333 MHz G4 processors built by Sky computers. Several planned improvements and additional control algorithms required significant upgrades to our real-time control computers and real-time data acquisition infrastructure. Several in-house modules have been designed and implemented including: the digital time stamp module (DITS) and for digital/analog front panel data port (FPDP) output, the FPDP output module digital/analog (FOMD/A). Standard Linux based Intel computers perform the real-time control tasks and InfiniBand as been employed for communication between a user-accessible 'host' server and the real-time computer. In addition to several independent real-time processes the General Atomics developed PCS (Bell (2006) ) system infrastructure continues to be used on NSTX. While maintaining previous functionality, improvements in the control system software include: an RWM feedback algorithm, beta feedback NBI control, more comprehensive error logging and trapping, more user-friendly interface, more complete archiving and restoring functionality, and better status reporting and diagnostic tools. Once completed, we succeeded in increasing overall plasma stability and decreasing control system latency by several times.

  7. Space Propulsion via Spherical Torus Fusion Reactor

    International Nuclear Information System (INIS)

    Williams, Craig H.; Juhasz, Albert J.; Borowski, Stanley K.; Dudzinski, Leonard A.

    2003-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 204 days, with an initial mass in low Earth orbit of 1630 mt. Engineering conceptual design, analysis, and assessment were performed on all major systems including nuclear fusion reactor, magnetic nozzle, power conversion, fast wave plasma heating, fuel pellet injector, startup/re-start fission reactor and battery, and other systems. Detailed fusion reactor design included analysis of plasma characteristics, power balance and utilization, first wall, toroidal field coils, heat transfer, and neutron/X-ray radiation

  8. The contribution of radio-frequency rectification to field-aligned losses of high-harmonic fast wave power to the divertor in the National Spherical Torus eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J., E-mail: rperkins@pppl.gov; Hosea, J. C.; Jaworski, M. A.; Diallo, A.; Bell, R. E.; Bertelli, N.; Gerhardt, S.; Kramer, G. J.; LeBlanc, B. P.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Taylor, G.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Ahn, J.-W.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); McLean, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sabbagh, S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2015-04-15

    The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. Here, we demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heat flux transmission coefficient in the presence of the RF field. Although precise comparison between the computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. This work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.

  9. Recent progress of NSTX lithium program and opportunities for magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Ahn, J.-W. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Allain, J.P.; Battaglia, D. [Purdue University, West Lafayette, IN 47907 (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Ding, S. [Academy of Science Institute of Plasma Physics, Hefei (China); Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Guttenfelder, W.; Hosea, J.; Jaworski, M.A.; Kallman, J.; Kaye, S.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Mansfield, D.K. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); and others

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer In this paper, we review the recent progress on the NSTX lithium research. Black-Right-Pointing-Pointer We summarize positive features of lithium effects on plasma. Black-Right-Pointing-Pointer We also point out unresolved issues and unanswered questions on the lithium research. Black-Right-Pointing-Pointer We describe a possible closed liquid lithium divertor tray concept. Black-Right-Pointing-Pointer We note opportunities and challenges of lithium applications for magnetic fusion. - Abstract: Lithium wall coating techniques have been experimentally explored on National Spherical Torus Experiment (NSTX) for the last six years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a dual lithium evaporation system which can evaporate up to {approx}160 g of lithium onto the lower divertor plates between re-loadings. The unique feature of the NSTX lithium research program is that it can investigate the effects of lithium coated plasma-facing components in H-mode divertor plasmas. This lithium evaporation system has produced many intriguing and potentially important results. In 2010, the NSTX lithium program has focused on the effects of liquid lithium divertor (LLD) surfaces including the divertor heat load, deuterium pumping, impurity control, electron thermal confinement, H-mode pedestal physics, and enhanced plasma performance. To fill the LLD with lithium, 1300 g of lithium was evaporated into the NSTX vacuum vessel during the 2010 operations. The routine use of lithium in 2010 has significantly improved the plasma shot availability resulting in a record number of plasma shots in any given year. In this paper, as a follow-on paper from the 1st lithium symposium [1], we review the recent progress toward developing fundamental understanding of the NSTX lithium experimental observations as well as the opportunities and associated R and D required

  10. Biasing, acquisition, and interpretation of a dense Langmuir probe array in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M. A.; Kallman, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Marsala, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Ruzic, D. N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 60181 (United States)

    2010-10-15

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiment (NSTX). This array is instrumented with a system of electronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe, and operation as passive floating potential and scrape-off-layer SOL current monitors). The use of flush-mounted probes requires careful interpretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals are used in complementary fashion to determine the temperature and density at the probe location. A comparison to midplane measurements is made.

  11. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  12. Real-time Equilibrium Reconstruction and Isoflux Control of Plasma Shape and Position in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Mueller, D.; Gates, D.A.; Menard, J.E.; Ferron, J.R.; Sabbagh, S.A.

    2004-01-01

    The implementation of the rtEFIT-isoflux algorithm in the digital control system for NSTX has led to improved ability to control the plasma shape. In particular, it has been essential for good gap control for radio-frequency experiments, for control of drsep in H-mode studies, and for X-point height control and κ control in a variety of experiments

  13. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  14. Studies of spherical tori, stellarators and anisotropic pressure with M3D

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.; Hudson, S.; Tang, X.-Z.; Strauss, H.R.; Stutman, D.

    2001-01-01

    The M3D (Multi-level 3D) project simulates plasmas using multiple levels of physics, geometry, and grid models in one code package. The M3D code has been extended to fundamentally nonaxisymmetric and small aspect ratio, R/a>or∼1, configurations. Applications include the nonlinear stability of the NSTX spherical torus and the spherical pinch, and the relaxation of stellarator equilibria. The fluid-level physics model has been extended to evolve the anisotropic pressures p jparallel and p jperpendicular for the ion and electron species. Results show that when the density evolves, other terms in addition to the neoclassical collisional parallel viscous force, such as B· ∇p e in the Ohm's law, can be strongly destabilizing for nonlinear magnetic islands. (author)

  15. Biasing, Acquisition and Interpretation of a Dense Langmuir Probe Array in NSTX

    International Nuclear Information System (INIS)

    Jaworski, M.A.; Kallman, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Marsala, R.; Ruzic, D.

    2010-01-01

    A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiments (NSTX). This array is instrumented with a system of elec- tronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe and operation as passive floating potential and scrape-off-layer (SOL) current monitors). The use of flush-mounted probes requires careful inter- pretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals are used in comple- mentary fashion to determine the temperature and density at the probe location. A comparison to mid-plane measurements is made.

  16. Characterization and parametric dependencies of low wavenumber pedestal turbulence in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Bell, R. E.; Diallo, A.; Guttenfelder, W.; Kaye, S. M.; LeBlanc, B. P.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-05-15

    The spherical torus edge region is among the most challenging regimes for plasma turbulence simulations. Here, we measure the spatial and temporal properties of ion-scale turbulence in the steep gradient region of H-mode pedestals during edge localized mode-free, MHD quiescent periods in the National Spherical Torus Experiment. Poloidal correlation lengths are about 10 ρ{sub i}, and decorrelation times are about 5 a/c{sub s}. Next, we introduce a model aggregation technique to identify parametric dependencies among turbulence quantities and transport-relevant plasma parameters. The parametric dependencies show the most agreement with transport driven by trapped-electron mode, kinetic ballooning mode, and microtearing mode turbulence, and the least agreement with ion temperature gradient turbulence. In addition, the parametric dependencies are consistent with turbulence regulation by flow shear and the empirical relationship between wider pedestals and larger turbulent structures.

  17. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  18. H-Mode Turbulence, Power Threshold, ELM, and Pedestal Studies in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Menard, J.E.; Meyer, H.; Mueller, D.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.; Zweben, S.J.; Bell, M.G.; Bell, R.E.; Biewer, T.; Boedo, J.A.; Johnson, D.W.; Kaita, R.; Kugel, H.W.; Maqueda, R.J.; Munsat, T.; Raman, R.; Soukhanovskii, V.A.; Stevenson, T.; Stutman, D.

    2004-01-01

    High-confinement mode (H-mode) operation plays a crucial role in NSTX [National Spherical Torus Experiment] research, allowing higher beta limits due to reduced plasma pressure peaking, and long-pulse operation due to high bootstrap current fraction. Here, new results are presented in the areas of edge localized modes (ELMs), H-mode pedestal physics, L-H turbulence, and power threshold studies. ELMs of several other types (as observed in conventional aspect ratio tokamaks) are often observed: (1) large, Type I ELMs, (2) ''medium'' Type II/III ELMs, and (3) giant ELMs which can reduce stored energy by up to 30% in certain conditions. In addition, many high-performance discharges in NSTX have tiny ELMs (newly termed Type V), which have some differences as compared with ELM types in the published literature. The H-mode pedestal typically contains between 25-33% of the total stored energy, and the NSTX pedestal energy agrees reasonably well with a recent international multi-machine scaling. We find that the L-H transition occurs on a ∼100 (micro)sec timescale as viewed by a gas puff imaging diagnostic, and that intermittent quiescent periods precede the final transition. A power threshold identity experiment between NSTX and MAST shows comparable loss power at the L-H transition in balanced double-null discharges. Both machines require more power for the L-H transition as the balance is shifted toward lower single null. High field side gas fueling enables more reliable H-mode access, but does not always lead to a lower power threshold e.g., with a reduction of the duration of early heating. Finally the edge plasma parameters just before the L-H transition were compared with theories of the transition. It was found that while some theories can separate well-developed L- and H-mode data, they have little predictive value

  19. Overview of physics results from the conclusive operation of the National Spherical Torus Experiment

    Czech Academy of Sciences Publication Activity Database

    Sabbagh, S.A.; Ahn, J-W.; Allain, J.; Andre, R.; Balbaky, A.; Bastasz, R.; Battaglia, D.; Bell, M.; Bell, R.; Beiersdorfer, P.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyle, D.; Brennan, D.; Breslau, J.; Buttery, R.; Canik, J.; Caravelli, G.; Chang, C.; Crocker, N.; Darrow, D.; Davis, B.; Delgado-Aparicio, L.; Diallo, A.; Ding, S.; D’Ippolito, D.; Domier, C.; Dorland, W.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Foley, J.; Fonck, R.; Frazin, R.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gray, T.; Guo, Y.; Guttenfelder, W.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hirooka, Y.; Hooper, E.B.; Hosea, J.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kaye, S.; Kessel, C.; Kim, J.; Kolemen, E.; Kramer, G.; Krasheninnikov, S.; Kubota, S.; Kugel, H.; La Haye, R.J.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Lore, J.; Luhmann Jr, N.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mueller, D.; Munsat, T.; Myra, J.; Nelson, B.; Nishino, N.; Nygren, R.; Ono, M.; Osborne, T.; Park, J.; Park, Y.S.; Paul, S.; Peebles, W.; Penaflor, B.; Perkins, R.J.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, Josef; Raman, R.; Ren, Y.; Rewoldt, G.; Rognlien, T.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Schaffer, M.; Schuster, E.; Scotti, F.; Shaing, K.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C.H.; Smirnov, A.; Smith, A.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Stutman, D.; Takahashi, H.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Tritz, K.; Tsarouhas, D.; Umansky, M.; Urban, Jakub; Untergberg, E.; Walker, M.; Wampler, W.; Wang, W.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K.L.; Wright, J.; Xia, Z.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zimmer, G.; Zweben, S.J.

    2013-01-01

    Roč. 53, č. 10 (2013), s. 104007-104007 ISSN 0029-5515. [IAEA Fusion Energy Conference/24./. San Diego, 08.10.2012-13.10.2012] R&D Projects: GA MŠk 7G09042 Institutional research plan: CEZ:AV0Z20430508 Keywords : NSTX * Spherical tokamaks * Overdense plasma * Conversion * Emission * Tokamaks * Electron Bernstein waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.243, year: 2013 http://iopscience.iop.org/0029-5515/53/10/104007/pdf/0029-5515_53_10_104007.pdf

  20. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    Science.gov (United States)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  1. Engineering feasibility of tight aspect ratio Tokamak (spherical torus) reactors

    International Nuclear Information System (INIS)

    Peng, Y-K.M.; Hicks, J.B.

    1990-01-01

    Engineering solutions are identified and analyzed for key high-power-density components of tight aspect ratio tokamak reactors (spherical torus reactors). The potentially extreme divertor heat loads can be reduced to about 3 MW/m 2 in expanded divertors using coils inside the demountable toroidal field coils. Given the long and narrow divertor channels, gaseous divertor targets become possible, which eliminate sputtering and increase the divertor life. The unshielded centre conductor post (CCP) of the toroidal field coil can be made of a single dispersion strengthened copper conductor cooled by high-velocity pressurized water to maintain acceptable copper temperature and strength. Damage and activation of the CCP at a neutron fluence of 10 MW-a/m 2 are also tolerable. Annual replacement of the centre post, the divertor assemblies and the blanket can be accomplished with vertical access for all torus components, which are modularized to reduce size and weight. The technical requirements of these solutions are shown to be comparable with, if not less demanding than, those estimated for conventional tokamak reactors. (author)

  2. Profile Modifications Resulting from Early High-harmonic Fast Wave heating in NSTX

    International Nuclear Information System (INIS)

    Mendard, J.E.; LeBlanc, Wilson J.R.; Sabbagh, S.A.; Stutman, D.; Swain, D.W.

    2001-01-01

    Experiments have been performed in the National Spherical Torus Experiment (NSTX) to inject high harmonic fast wave (HHFW) power early during the plasma current ramp-up in an attempt to reduce the current penetration rate to raise the central safety factor during the flattop phase of the discharge. To date, up to 2 MW of HHFW power has been coupled to deuterium plasmas as early as t = 50 ms using the slowest interstrap phasing of k|| approximately equals 14 m(superscript)-1 (nf = 24). Antenna-plasma gap scans have been performed and find that for small gaps (5-8 cm), electron heating is observed with relatively small density rises and modest reductions in current penetration rate. For somewhat larger gaps (10-12 cm), weak electron heating is observed but with a spontaneous density rise at the plasma edge similar to that observed in NSTX H-modes. In the larger gap configuration, EFIT code reconstructions (without MSE [motional Stark effect]) find that resistive flux consumption is reduced as much as 30%, the internal inductance is maintained below 0.6 at 1 MA into the flattop, q(0) is increased significantly, and the MHD stability character of the discharges is strongly modified

  3. Effect of Gas Fueling Location on H-mode Access in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.; Bell, R.; Biewer, T.; Bush, C.; Chang, C.S.; Gates, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; Maqueda, R.; Menard, J.; Mueller, D.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2003-01-01

    The dependence of H-mode access on the poloidal location of the gas injection source has been investigated in the National Spherical Torus Experiment (NSTX). We find that gas fueling from the center stack midplane area produces the most reproducible H-mode access with generally the lowest L-H threshold power in lower single-null configuration. The edge toroidal rotation velocity is largest (in direction of the plasma current) just before the L-H transition with center stack midplane fueling, and then reverses direction after the L-H transition. Simulation of these results with a 2-D guiding-center Monte Carlo neoclassical transport code is qualitatively consistent with the trends in the measured velocities. Double-null discharges exhibit H-mode access with gas fueling from either the center stack midplane or center stack top locations, indicating a reduced sensitivity of H-mode access on fueling location in that shape

  4. Multilayer mirror and foil filter AXUV diode arrays on CDX-U spherical torus

    International Nuclear Information System (INIS)

    Soukhanovskii, V. A.; Stutman, D.; Iovea, M.; Finkenthal, M.; Moos, H. W.; Munsat, T.; Jones, B.; Hoffman, D.; Kaita, R.; Majeski, R.

    2001-01-01

    Recent upgrades to CDX-U spherical torus diagnostics include two 10-channel AXUV diode arrays. The multilayer mirror (MLM) array measures the λ150 O VI brightness profile in the poloidal plane using the Mo/B 4 C synthetic multilayer structures as dispersive elements. The foil filter array has a tangential view and is equipped with interchangeable clear aperture, beryllium and titanium filters. This allows measurements of radiated power, O VI or C V radial distributions, respectively. The O VI and C V emissivity and the radiated power profiles are highly peaked. A Neoclassical impurity accumulation mechanism is considered as an explanation. For radiated power measurements in the T e ≤100 eV plasmas, photon energy dependent corrections must be used in order to account for nonlinear AXUV sensitivity in the range E phot ≤20 eV. The arrays are also used for characterization of resistive MHD phenomena, such as the low m modes, saw-tooth oscillations and internal reconnection events. Based on the successful operation of the diagnostics, a new ultra soft x-ray multilayer mirror diode AXUV diode array monitoring the 34 Aa emissivity distribution of C VI will be built and installed on the National Spherical Torus Experiment

  5. Sustainment of spherical tokamak by means of repetitive injection of compact torus plasma

    International Nuclear Information System (INIS)

    Shimamura, Shin; Matsura, Ken; Takahashi, Tsutomu; Nogi, Yasuyuki

    2000-01-01

    Sustainment of spherical tokamak (S.T.) has been studied. A compact torus (C.T.) plasma was injected into confinement region by magnetized coaxial gun. For start-up and sustainment of large main spherical tokamak, single pulsed injection of small C.T. is not sufficient in many cases. C.T.plasma injection of high repetition rate is required. For this purpose magnetized coaxial gun was driven with high repetition rate current. The first injected C.T. plasma could start-up S.T. without other help. The repetitive C.T. injection grew and sustained the S.T. plasma. A CCD camera with fast gated image intensifier took a cross sectional view of S.T. during the repetitive C.T. injection. (author)

  6. Wave Driven Fast Ion Loss in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Cheng, C.Z.; Darrow, D.; Fu, G.; Gorelenkov, N.N.; Kramer, G.; Medley, S.S.; Menard, J.; Roquemore, L.; Stutman, D.; White, R.B.

    2003-01-01

    The study of fast ion instabilities in conventional aspect ratio tokamaks is motivated in large part by their potential to negatively impact the ignition threshold in fusion reactors by causing fast ion losses. Spherical tokamak's (ST), with intrinsically low magnetic fields, are particularly susceptible to fast ion driven instabilities. The 3.5 MeV alpha's from the D-T [deuterium-tritium] fusion reaction in proposed ST reactors will have velocities much higher than the Alfven speed. The Larmor radius of the fusion alphas, normalized to the plasma size, will also be larger than for conventional aspect ratio tokamak reactors. The resulting longer wavelengths of the *AE instabilities will be more effective in driving fast ion loss. The change in magnetic topology also influences the mode structure, as in the case of the Compressional Alfven Eigenmodes (CAE) seen on NSTX

  7. The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Bell, M.G.; Bell, R.E.

    2003-01-01

    A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with β T ≡ /(B T0 2 /2μ 0 ) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparison of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m -2 has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been

  8. Mass changes in NSTX Surface Layers with Li Conditioning as Measured by Quartz Microbalances

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.W.; Roquemore, A.L.; Krstic, P.S.; Beste, A.

    2008-01-01

    Dynamic retention, lithium deposition, and the stability of thick deposited layers were measured by three quartz crystal microbalances (QMB) deployed in plasma shadowed areas at the upper and lower divertor and outboard midplane in the National Spherical Torus Experiment (NSTX). Deposition of 185 (micro)/g/cm 2 over 3 months in 2007 was measured by a QMB at the lower divertor while a QMB on the upper divertor, that was shadowed from the evaporator, received an order of magnitude less deposition. During helium glow discharge conditioning both neutral gas collisions and the ionization and subsequent drift of Li + interrupted the lithium deposition on the lower divertor. We present calculations of the relevant mean free paths. Occasionally strong variations in the QMB frequency were observed of thick lithium films suggesting relaxation of mechanical stress and/or flaking or peeling of the deposited layers.

  9. Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap

    International Nuclear Information System (INIS)

    Jones, B.; Taylor, G.; Efthimion, P.C.; Munsat, T.

    2004-01-01

    Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic

  10. Integration of Microsoft Windows Applications with MDSplus Data Acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Dana M. Mastrovito

    2002-03-01

    Data acquisition on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers (PC's) and specially developed ''turn-key'' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and COM (Component Object Model) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as CCD camer as and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from IDL for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  11. The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Majeski, R.; Kugel, H.; Kaita, R.; Avasarala, S.; Bell, M.G.; Bell, R.E.; Berzak, L.; Beiersdorfer, P.; Gerhardt, S.P.; Gransted, E.; Gray, T.; Jacobson, C.; Kallman, J.; Kaye, S.; Kozub, T.; LeBlanc, B.P.; Lepson, J.; Lundberg, D.P.; Maingi, R.; Mansfield, D.; Paul, S.F.; Pereverzev, G.V.; Schneider, H.; Soukhanovskii, V.; Strickler, T.; Stotler, D.; Timberlake, J.; Zakharov, L.E.

    2010-01-01

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed.

  12. NSTX-U Advances in Real-Time C++11 on Linux

    Science.gov (United States)

    Erickson, Keith G.

    2015-08-01

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11 standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.

  13. NSTX-U Advances in Real-Time C++11 on Linux

    International Nuclear Information System (INIS)

    Erickson, Keith G.

    2015-01-01

    Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation's real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds

  14. Initial Studies of Core and Edge Transport of NSTX Plasmas

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Bourdelle, C.; Darrow, D.; Dorland, W.; Ejiri, A.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.J.; Menard, J.E.; Mueller, D.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Ono, M.; Paoletti, F.; Peebles, W.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.

    2001-01-01

    Rapidly developing diagnostic, operational, and analysis capability is enabling the first detailed local physics studies to begin in high-beta plasmas of the National Spherical Torus Experiment (NSTX). These studies are motivated in part by energy confinement times in neutral-beam-heated discharges that are favorable with respect to predictions from the ITER-89P scaling expression. Analysis of heat fluxes based on profile measurements with neutral-beam injection (NBI) suggest that the ion thermal transport may be exceptionally low, and that electron thermal transport is the dominant loss channel. This analysis motivates studies of possible sources of ion heating not presently accounted for by classical collisional processes. Gyrokinetic microstability studies indicate that long wavelength turbulence with k(subscript ''theta'') rho(subscript ''i'') ∼ 0.1-1 may be suppressed in these plasmas, while modes with k(subscript ''theta'') rho(subscript ''i'') ∼ 50 may be robust. High-harmonic fast-wave (HHFW) heating efficiently heats electrons on NSTX, and studies have begun using it to assess transport in the electron channel. Regarding edge transport, H-mode [high-confinement mode] transitions occur with either NBI or HHFW heating. The power required for low-confinement mode (L-mode) to H-mode transitions far exceeds that expected from empirical edge-localized-mode-free H-mode scaling laws derived from moderate aspect ratio devices. Finally, initial fluctuation measurements made with two techniques are permitting the first characterizations of edge turbulence

  15. Physics design requirements for the National Spherical Torus Experiment liquid lithium divertor

    International Nuclear Information System (INIS)

    Kugel, H.; Bell, M.; Berzak, L.; Brooks, A.; Ellis, R.; Gerhardt, S.P.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.K.; Menard, J.; Stotler, D.; Zakharov, L.E.; Maingi, Rajesh; Nygren, R.E.; Soukhanovskii, V.; Wakeland, P.

    2009-01-01

    Recent National Spherical Tokamak Experiment (NSTX) high-power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components (PFCs) to the performance of divertor plasmas in both L- and H-mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15 25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW 1), to enable ne scan capability (2) in the H-mode, to test the ability to operate at significantly lower density (e.g., ne/nGW = 0.25), for future reactor designs based on the Spherical Tokamak, and eventually to investigate high heat-flux power handling (10 MW/m2) with long pulse discharges (>1.5 s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  16. Physics Basis for a Spherical Torus Power Plant

    International Nuclear Information System (INIS)

    Kessel, C.E.; Menard, J.; Jardin, S.C.; Mau, T.K.

    1999-01-01

    The spherical torus, or low-aspect-ratio tokamak, is considered as the basis for a fusion power plant. A special class of wall-stabilized high-beta high-bootstrap fraction low-aspect-ratio tokamak equilibrium are analyzed with respect to MHD stability, bootstrap current and external current drive, poloidal field system requirements, power and particle exhaust and plasma operating regime. Overall systems optimization leads to a choice of aspect ratio A = 1:6, plasma elongation kappa = 3:4, and triangularity delta = 0:64. The design value for the plasma toroidal beta is 50%, corresponding to beta N = 7:4, which is 10% below the ideal stability limit. The bootstrap fraction of 99% greatly alleviates the current drive requirements, which are met by tangential neutral beam injection. The design is such that 45% of the thermal power is radiated in the plasma by Bremsstrahlung and trace Krypton, with Neon in the scrapeoff layer radiating the remainder

  17. Integration of Microsoft Windows Applications with MDSplus Data Acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Dana M. Mastrovito

    2002-01-01

    Data acquisition on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers (PC's) and specially developed ''turn-key'' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and COM (Component Object Model) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as CCD camer as and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from IDL for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  18. RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials

    Science.gov (United States)

    Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).

  19. Overview of physics results from the conclusive operation of the National Spherical Torus Experiment

    Science.gov (United States)

    Sabbagh, S. A.; Ahn, J.-W.; Allain, J.; Andre, R.; Balbaky, A.; Bastasz, R.; Battaglia, D.; Bell, M.; Bell, R.; Beiersdorfer, P.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyle, D.; Brennan, D.; Breslau, J.; Buttery, R.; Canik, J.; Caravelli, G.; Chang, C.; Crocker, N.; Darrow, D.; Davis, B.; Delgado-Aparicio, L.; Diallo, A.; Ding, S.; D'Ippolito, D.; Domier, C.; Dorland, W.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Foley, J.; Fonck, R.; Frazin, R.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gray, T.; Guo, Y.; Guttenfelder, W.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Indireshkumar, K.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kaye, S.; Kessel, C.; Kim, J.; Kolemen, E.; Kramer, G.; Krasheninnikov, S.; Kubota, S.; Kugel, H.; La Haye, R. J.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Lore, J.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McLean, A.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mueller, D.; Munsat, T.; Myra, J.; Nelson, B.; Nishino, N.; Nygren, R.; Ono, M.; Osborne, T.; Park, H.; Park, J.; Park, Y. S.; Paul, S.; Peebles, W.; Penaflor, B.; Perkins, R. J.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Raman, R.; Ren, Y.; Rewoldt, G.; Rognlien, T.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Schaffer, M.; Schuster, E.; Scotti, F.; Shaing, K.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C. H.; Smirnov, A.; Smith, D.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Stutman, D.; Takahashi, H.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Tritz, K.; Tsarouhas, D.; Umansky, M.; Urban, J.; Untergberg, E.; Walker, M.; Wampler, W.; Wang, W.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K. L.; Wright, J.; Xia, Z.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zimmer, G.; Zweben, S. J.

    2013-10-01

    Research on the National Spherical Torus Experiment, NSTX, targets physics understanding needed for extrapolation to a steady-state ST Fusion Nuclear Science Facility, pilot plant, or DEMO. The unique ST operational space is leveraged to test physics theories for next-step tokamak operation, including ITER. Present research also examines implications for the coming device upgrade, NSTX-U. An energy confinement time, τE, scaling unified for varied wall conditions exhibits a strong improvement of BTτE with decreased electron collisionality, accentuated by lithium (Li) wall conditioning. This result is consistent with nonlinear microtearing simulations that match the experimental electron diffusivity quantitatively and predict reduced electron heat transport at lower collisionality. Beam-emission spectroscopy measurements in the steep gradient region of the pedestal indicate the poloidal correlation length of turbulence of about ten ion gyroradii increases at higher electron density gradient and lower Ti gradient, consistent with turbulence caused by trapped electron instabilities. Density fluctuations in the pedestal top region indicate ion-scale microturbulence compatible with ion temperature gradient and/or kinetic ballooning mode instabilities. Plasma characteristics change nearly continuously with increasing Li evaporation and edge localized modes (ELMs) stabilize due to edge density gradient alteration. Global mode stability studies show stabilizing resonant kinetic effects are enhanced at lower collisionality, but in stark contrast have almost no dependence on collisionality when the plasma is off-resonance. Combined resistive wall mode radial and poloidal field sensor feedback was used to control n = 1 perturbations and improve stability. The disruption probability due to unstable resistive wall modes (RWMs) was surprisingly reduced at very high βN/li > 10 consistent with low frequency magnetohydrodynamic spectroscopy measurements of mode stability. Greater

  20. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    Science.gov (United States)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator

  1. Advanced ST Plasma Scenario Simulations for NSTX

    International Nuclear Information System (INIS)

    Kessel, C.E.; Synakowski, E.J.; Gates, D.A.; Harvey, R.W.; Kaye, S.M.; Mau, T.K.; Menard, J.; Phillips, C.K.; Taylor, G.; Wilson, R.

    2004-01-01

    Integrated scenario simulations are done for NSTX [National Spherical Torus Experiment] that address four primary milestones for developing advanced ST configurations: high β and high β N inductive discharges to study all aspects of ST physics in the high-beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current-drive techniques; non-inductively sustained discharges at high β for flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal start-up and plasma current ramp-up. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral-beam (NB) deposition profile, and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD [current drive] deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal-MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at β N 's of 7.7-9, I P = 1.0 MA, and B T = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H 98(y,2) 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations

  2. Observation of instability-induced current redistribution in a spherical-torus plasma.

    Science.gov (United States)

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  3. Unified Ideal Stability Limits for Advanced Tokamak and Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Sabbagh, S.A.; Fredrickson, E.D.; Jardin, S.C.; Maingi, R.; Manickam, J.; Mueller, D.; Ono, M.; Paoletti, F.; Peng, Y.-K.M.; Soukhanovskii, V.; Stutman, D.; Synakowski, E.J.

    2003-01-01

    Ideal magnetohydrodynamic stability limits of shaped tokamak plasmas with high bootstrap fraction are systematically determined as a function of plasma aspect ratio. For plasmas with and without wall stabilization of external kink modes, the computed limits are well described by distinct and nearly invariant values of a normalized beta parameter utilizing the total magnetic field energy density inside the plasma. Stability limit data from the low aspect ratio National Spherical Torus Experiment is compared to these theoretical limits and indicates that ideal nonrotating plasma no-wall beta limits have been exceeded in regimes with sufficiently high cylindrical safety factor. These results could impact the choice of aspect ratio in future fusion power plants

  4. Conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production fusion reactor based on spherical torus, which is intermediate application of fusion energy, was presented in this paper. Differing from the traditional tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST were used to minimize tritium leakage and maximize tritium breeding ratio with arrangement of tritium production blankets within vacuum vessel as possible in order to produce 1 kg excess tritium except need of self-sufficient plasma core with 40% or more corresponding plant availability. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR was presented, providing the backgrounds and reference for next detailed conceptual design

  5. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Science.gov (United States)

    McLean, A. G.; Gan, K. F.; Ahn, J.-W.; Gray, T. K.; Maingi, R.; Abrams, T.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Nygren, R. E.; Skinner, C. H.; Soukhanovskii, V. A.

    2013-07-01

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of Tsurface near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q⊥,peak = 5 MW/m2 inter-ELM and up to 10 MW/m2 during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  6. DOE FES FY2017 Joint Research Target Fourth Quarter Milestone Report for theNational Spherical Torus Experiment Upgrade.

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-13

    A successful high-performance plasma operation with a radiative divertor has been demonstrated on many tokamak devices, however, significant uncertainty remains in accurately modeling detachment thresholds, and in how detachment depends on divertor geometry. Whereas it was originally planned to perform dedicated divertor experiments on the National Spherical Tokamak Upgrade to address critical detachment and divertor geometry questions for this milestone, the experiments were deferred due to technical difficulties. Instead, existing NSTX divertor data was summarized and re-analyzed where applicable, and additional simulations were performed.

  7. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  8. Characteristics of Energy Transport of Li-conditioned and non-Li-conditioned Plasmas in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Ding, S.; Kaye, S.M.; Bell, R.E.; Kaita, R.; Kugel, H.; LeBlanc, B.P.; Paul, S.; Wan, B.

    2009-01-01

    The transport properties of NSTX plasmas obtained during the 2008 experimental campaign have been studied and are reported here. Transport trends and dependences have been isolated, and it is found that both electron and ion energy transport coefficients have strong dependences on local values of n(del)T, which in turn is strongly dependent on local current density profile. Without identifying this dependence, it is difficult to identify others, such as the dependence of transport coefficients on B p (or q), I p and P heat . In addition, a comparison between discharges with and without Lithium wall conditioning has been made. While the trends in the two sets of data are similar, the thermal transport loss, especially in the electron channel, is found to strongly depend on the amount of Lithium deposited, decreasing by up to 50% of its no-Lithium value.

  9. FLIT: Flowing LIquid metal Torus

    Science.gov (United States)

    Kolemen, Egemen; Majeski, Richard; Maingi, Rajesh; Hvasta, Michael

    2017-10-01

    The design and construction of FLIT, Flowing LIquid Torus, at PPPL is presented. FLIT focuses on a liquid metal divertor system suitable for implementation and testing in present-day fusion systems, such as NSTX-U. It is designed as a proof-of-concept fast-flowing liquid metal divertor that can handle heat flux of 10 MW/m2 without an additional cooling system. The 72 cm wide by 107 cm tall torus system consisting of 12 rectangular coils that give 1 Tesla magnetic field in the center and it can operate for greater than 10 seconds at this field. Initially, 30 gallons Galinstan (Ga-In-Sn) will be recirculated using 6 jxB pumps and flow velocities of up to 10 m/s will be achieved on the fully annular divertor plate. FLIT is designed as a flexible machine that will allow experimental testing of various liquid metal injection techniques, study of flow instabilities, and their control in order to prove the feasibility of liquid metal divertor concept for fusion reactors. FLIT: Flowing LIquid metal Torus. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  10. Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, California 90095 (United States); Garofalo, A M [Columbia University, New York, New York 10027 (United States); Greenfield, C M [General Atomics, San Diego, California 92186-5608 (United States); Kaye, S M [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Menard, J E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Murakami, M [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sabbagh, S A [Columbia University, New York, New York 10027 (United States); Austin, M E [University of Texas-Austin, Austin, Texas 78712 (United States); Bell, R E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Burrell, K H [General Atomics, San Diego, California 92186-5608 (United States); Ferron, J R [General Atomics, San Diego, California 92186-5608 (United States); Gates, D A [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Groebner, R J; Hyatt, A W; Luce, T C; Petty, C C; Wade, M R; Waltz, R E [General Atomics, San Diego, California 92186-5608 (United States); Jayakumar, R J [Lawrence Livermore National Lab., Livermore, California 94550 (United States); Kinsey, J E [Lehigh Univ., Bethlehem, Pennsylvania 18015 (United States); LeBlanc, B P [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); McKee, G R [Univ. of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Okabayashi, M [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Peng, Y-K M [Oak Ridge National Lab., Oak Ridge, Tennessee 37831 (United States); Politzer, P A [General Atomics, San Diego, California 92186-5608 (United States); Rhodes, T L [Dept. of Electrical Engineering and PSTI, Univ. of California, Los Angeles, California 90095 (United States)

    2006-12-15

    Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f{sub BS} {>=} 60%, q{sub 95} {approx} 4-5 and G {identical_to}{beta}{sub N}H{sub scaling}/q{sub 95}{sup 2} {>=}0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E ? B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at {beta}{sub N} {>=} 4 with q{sub min} {>=} 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e.g. {beta}{sub N} = 4, H{sub 89} = 2.5, with f{sub BS} > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q {>=} 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective.

  11. Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX

    International Nuclear Information System (INIS)

    Biewer, T.M.; Bell, R.E.; Diem, S.J.; Phillips, C.K.; Wilson, J.R.; Ryan, P.M.

    2004-01-01

    A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He + and C 2+ ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma

  12. Fast Soft X-ray Images of MHD Phenomena in NSTX

    International Nuclear Information System (INIS)

    Bush, C.E.; Stratton, B.C.; Robinson, J.; Zakharov, L.E.; Fredrickson, E.D.; Stutman, D.; Tritz, K.

    2008-01-01

    A variety of magnetohydrodynamic (MHD) phenomena have been observed on the National Spherical Torus Experiment (NSTX). Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and PIN diode arrays for soft x-ray emission from the plasma core. Data reported here are from an unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a CCD chip, of light resulting from conversion of soft x-rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot), and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and ELMs. New data including modes with frequency > 90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and PIN diode array results.

  13. Transient Transport Experiments in the CDX-U Spherical Torus

    International Nuclear Information System (INIS)

    T. Munsat; P.C. Efthimion; B. Jones; R. Kaita; R. Majeski; D. Stutman; G. Taylor

    2001-01-01

    Electron transport has been measured in the Current Drive Experiment-Upgrade (CDX-U) using two separate perturbative techniques. Gas modulation at the plasma edge was used to introduce cold-pulses which propagate towards the plasma center, providing time-of-flight information leading to a determination of chi(subscript e) as a function of radius. Sawteeth at the q=1 radius (r/a ∼ 0.15) induced heat-pulses which propagated outward towards the plasma edge, providing a complementary time-of-flight based chi(subscript e) profile measurement. This work represents the first localized measurement of chi(subscript e) in a spherical torus. It is found that chi(subscript e) = 1-2 meters squared per second in the plasma core (r/a < 1/3), increasing by an order of magnitude or more outside of this region. Furthermore, the chi(subscript e) profile exhibits a sharp transition near r/a = 1/3. Spectral and profile analyses of the soft X-rays, scanning interferometer, and edge probe data show no evidence of a significant magnetic island causing the high chi(subscript e) region

  14. NSTX-U Control System Upgrades

    International Nuclear Information System (INIS)

    Erickson, K.G.; Gates, D.A.; Gerhardt, S.P.; Lawson, J.E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G.J.

    2014-01-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forward port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control

  15. NSTX-U Control System Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, K.G., E-mail: kerickso@pppl.gov; Gates, D.A.; Gerhardt, S.P.; Lawson, J.E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G.J.

    2014-06-15

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forward port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.

  16. Measurement and modeling of surface temperature dynamics of the NSTX liquid lithium divertor

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A.G., E-mail: mclean@fusion.gat.com [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Ahn, J.-W.; Gray, T.K.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Abrams, T.; Jaworski, M.A.; Kaita, R.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2013-07-15

    Dual-band infrared (IR) measurements of the National Spherical Torus eXperiment (NSTX) Liquid Lithium Divertor (LLD) are reported that demonstrate liquid Li is more effective at removing plasma heat flux than Li-conditioned graphite. Extended dwell of the outer strike point (OSP) on the LLD caused an incrementally larger area to be heated above the Li melting point through the discharge leading to enhanced D retention and plasma confinement. Measurement of T{sub surface} near the OSP demonstrates a significant reduction of the LLD surface temperature compared to that of Li-coated graphite at the same major radius. Modeling of these data with a 2-D simulation of the LLD structure in the DFLUX code suggests that the structure of the LLD was successful at handling up to q{sub ⊥,peak} = 5 MW/m{sup 2} inter-ELM and up to 10 MW/m{sup 2} during ELMs from its plasma-facing surface as intended, and provide an innovative method for inferring the Li layer thickness.

  17. Elimination of inter-discharge helium glow discharge cleaning with lithium evaporation in NSTX

    Directory of Open Access Journals (Sweden)

    R. Maingi

    2017-08-01

    Full Text Available Operation in the National Spherical Torus Experiment (NSTX typically used either periodic boronization and inter-shot helium glow discharge cleaning (HeGDC, or inter-shot lithium evaporation without boronization, and initially with inter-shot HeGDC. To assess the viability of operation without HeGDC, dedicated experiments were conducted in which Li evaporation was used while systematically shrinking the HeGDC between shots from the standard 10min to zero (10→6.5→4→0. Good shot reproducibility without HeGDC was achieved with lithium evaporations of 100mg or higher; evaporations of 200–300mg typically resulted in very low ELM frequency or ELM-free operation, reduced wall fueling, and improved energy confinement. The use of HeGDC before lithium evaporation modestly reduced Dα in the outer scrape-off layer, but not at the strike point. Pedestal electron and ion temperature also improved modestly, suggesting that HeGDC prior to lithium evaporation is a useful tool for experiments that seek to maximize plasma performance.

  18. Effect of ion cyclotron acceleration on frequency chirping beam-driven instabilities in NSTX

    International Nuclear Information System (INIS)

    Ruskov, E.; Heidbrink, W.W.; Fredrickson, E.D.; Darrow, D.; Medley, S.; Gorelenkov, N.

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment (NSTX) is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including TAE modes, 50-100∼kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼3 MW) harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the effective collision frequency. Steady-frequency TAE modes excited early in the discharge are affected by the HHFW heating but there is no evidence that the chirping of 20-100 kHz modes is suppressed. (author)

  19. Effect of Ion Cyclotron Acceleration on Frequency Chirping Beam-Driven Instabilities in NSTX

    International Nuclear Information System (INIS)

    Ruskov, E.; Heidbrink, W.W.; Fredrickson, E.D.; Darrow, D.; Medley, S.; Gorelenkov, N.

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment (NSTX) is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including TAE modes, 50-100∼kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼3 MW) harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the effective collision frequency. Steady-frequency TAE modes excited early in the discharge are affected by the HHFW heating but there is no evidence that the chirping of 20-100 kHz modes is suppressed. (author)

  20. Snowflake Divertor Configuration in NSTX

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Ahn, Joonwook; Bell, R.E.; Gates, D.A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H.W.; LeBlanc, B.; Maingi, Rajesh; Maqueda, R.J.; McLean, Adam G.; Menard, J.E.; Mueller, D.; Paul, S.F.; Raman, R.; Roquemore, L.; Ryutov, D.D.; Scott, H.A.

    2011-01-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel 'snowflake' divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  1. 'Snowflake' divertor configuration in NSTX

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Ahn, J.-W.; Bell, R.E.; Gates, D.A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H.W.; LeBlanc, B.P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J.E.; Mueller, D.M.; Paul, S.F.; Raman, R.; Roquemore, A.L.; Ryutov, D.D.; Scott, H.A.

    2011-01-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel 'snowflake' divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  2. "Snowflake" divertor configuration in NSTX

    Science.gov (United States)

    Soukhanovskii, V. A.; Ahn, J.-W.; Bell, R. E.; Gates, D. A.; Gerhardt, S.; Kaita, R.; Kolemen, E.; Kugel, H. W.; Leblanc, B. P.; Maingi, R.; Maqueda, R.; McLean, A.; Menard, J. E.; Mueller, D. M.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Ryutov, D. D.; Scott, H. A.

    2011-08-01

    Steady-state handling of divertor heat flux is a critical issue for present and future conventional and spherical tokamaks with compact high power density divertors. A novel "snowflake" divertor (SFD) configuration that takes advantage of magnetic properties of a second-order poloidal null has been predicted to have a larger plasma-wetted area and a larger divertor volume, in comparison with a standard first-order poloidal X-point divertor configuration. The SFD was obtained in 0.8 MA, 4-6 MW NBI-heated H-mode discharges in NSTX using two divertor magnetic coils. The SFD led to a partial detachment of the outer strike point even in low-collisionality scrape-off layer plasma obtained with lithium coatings in NSTX. Significant divertor peak heat flux reduction and impurity screening have been achieved simultaneously with good core confinement and MHD properties.

  3. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  4. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, Ronald E.; Feder, Russell

    2010-01-01

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  5. Physics and engineering assessments of spherical torus component test facility

    International Nuclear Information System (INIS)

    Peng, Y.-K.M.; Neumeyer, C.A.; Kessel, C.; Rutherford, P.; Mikkelsen, D.; Bell, R.; Menard, J.; Gates, D.; Schmidt, J.; Synakowski, E.; Grisham, L.; Fogarty, P.J.; Strickler, D.J.; Burgess, T.W.; Tsai, J.; Nelson, B.E.; Sabbagh, S.; Mitarai, O.; Cheng, E.T.; El-Guebaly, L.

    2005-01-01

    A broadly based study of the fusion engineering and plasma science conditions of a Component Test Facility (CTF), using the Spherical Torus or Spherical Tokamak (ST) configuration, have been carried out. The chamber systems testing conditions in a CTF are characterized by high fusion neutron fluxes Γ n > 4.4x10 13 n/s/cm 2 , over size scales > 10 5 cm 2 and depth scales > 50 cm, delivering > 3 accumulated displacement per atom (dpa) per year. The desired chamber conditions can be provided by a CTF with R 0 1.2 m, A = 1.5, elongation ∼ 3.2, I p ∼ 9 MA, B T ∼ 2.5 T, producing a driven fusion burn using 36 MW of combined neutral beam and RF power. Relatively robust ST plasma conditions are adequate, which have been shown achievable [4] without active feedback manipulation of the MHD modes. The ST CTF will test the single-turn, copper alloy center leg for the toroidal field coil without an induction solenoid and neutron shielding, and require physics data on solenoid-free plasma current initiation, ramp-up, and sustainment to multiple MA level. A new systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of lowercost CTF devices to suit a variety of fusion engineering science test missions. (author)

  6. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    Science.gov (United States)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  7. Divertor Heat Flux Reduction and Detachment in the National Spherical Torus eXperiment.

    Science.gov (United States)

    Soukhanovskii, Vsevolod

    2007-11-01

    Steady-state handling of the heat flux is a critical divertor issue for both the International Thermonuclear Experimental Reactor and spherical torus (ST) devices. Because of an inherently compact divertor, it was thought that ST-based devices might not be able to fully utilize radiative and dissipative divertor techniques based on induced power and momentum loss. However, initial experiments conducted in the National Spherical Torus Experiment in an open geometry horizontal carbon plate divertor using 0.8 MA 2-6 MW NBI-heated lower single null H-mode plasmas at the lower end of elongations κ=1.8-2.4 and triangularities δ=0.45-0.75 demonstrated that high divertor peak heat fluxes, up to 6-10 MW/ m^2, could be reduced by 50-75% using a high-recycling radiative divertor regime with D2 injection. Furthermore, similar reduction was obtained with a partially detached divertor (PDD) at high D2 injection rates, however, it was accompanied by an X-point MARFE that quickly led to confinement degradation. Another approach takes advantage of the ST relation between strong shaping and high performance, and utilizes the poloidal magnetic flux expansion in the divertor region. Up to 60 % reduction in divertor peak heat flux was achieved at similar levels of scrape-off layer power by varying plasma shaping and thereby increasing the outer strike point (OSP) poloidal flux expansion from 4-6 to 18-22. In recent experiments conducted in highly-shaped 1.0-1.2 MA 6 MW NBI heated H-mode plasmas with divertor D2 injection at rates up to 10^22 s-1, a PDD regime with OSP peak heat flux 0.5-1.5 MW/m^2 was obtained without noticeable confinement degradation. Calculations based on a two point scrape-off layer model with parameterized power and momentum losses show that the short parallel connection length at the OSP sets the upper limit on the radiative exhaust channel, and both the impurity radiation and large momentum sink achievable only at high divertor neutral pressures are required

  8. Beta-Suppression of Alfven Cascade Modes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; N.A. Crocker; N.N. Gorelenkov; W.W. Heidbrink; S. Kubota; F.M. Levinton; H. Yuh; J.E. Menard; Bell, R.E.

    2007-01-01

    The coupling of Alfven Cascade (AC) modes or reversed-shear Alfven eigenmodes (rsAE) to Geodesic Acoustic Modes (GAM) implies that the range of the AC frequency sweep is reduced as the electron β is increased. This model provides an explanation for the otherwise surprising absence of AC modes in reverse shear NSTX plasmas, given the rich spectrum of beam-driven instabilities typically seen in NSTX. In experiments done at very low β to investigate this prediction, AC modes were seen, and as the β e was increased from shot to shot, the range of the AC frequency sweep was reduced, in agreement with this theoretical prediction.

  9. A study on conceptual design of tritium production fusion reactor based on spherical torus

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2003-01-01

    Conceptual design of an advanced tritium production reactor based on spherical torus (ST), which is an intermediate application of fusion energy, is presented. Different from traditional Tokamak tritium production reactor design, advanced plasma physics performance and compact structural characteristics of ST are used to minimize tritium leakage and to maximize tritium breeding ratio with arrangement of tritium production blankets as possible as it can do within vacuum vessel in order to produce certain amount of excess tritium except self-sufficient plasma core, corresponding plant availability 40% or more. Based on 2D neutronics calculation, preliminary conceptual design of ST-TPR is presented. Based on systematical analysis, design risk, uncertainty and backup are introduced generally for the backgrounds of next detailed conceptual design. (authors)

  10. Numerical study of two-fluid flowing equilibria of helicity-driven spherical torus plasmas

    International Nuclear Information System (INIS)

    Kanki, T.; Nagata, M.; Uyama, T.

    2004-01-01

    Two-fluid flowing equilibrium configurations of a helicity-driven spherical torus (HD-ST) are numerically determined by using the combination of the finite difference and the boundary element methods. It is found from the numerical results that electron fluids near the central conductor are tied to an external toroidal field and ion fluids are not. The magnetic configurations change from the high-q HD-ST (q>1) with paramagnetic toroidal field and low-β (volume average β value, ∼ 2%) through the helicity-driven spheromak and RFP (reverse field pinch) to the ultra low-q HD-ST (0 ∼ 18%) as the external toroidal field at the inner edge regions decreases and reverses the sign. The two-fluid effects are more significant in this equilibrium transition when the ion diamagnetic drift is dominant in the flowing two-fluid. (authors)

  11. Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experimental Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, YooSung; Shi, Yue-Jiang, E-mail: yjshi@snu.ac.kr; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Chung, Kyoung-Jae [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Oh, Soo-Ghee [Division of Energy Systems Research, Ajou University, Suwon 442-749 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advanced Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2016-11-15

    Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of H{sub α} and H{sub β} radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

  12. Transmutation of minor actinides in a spherical torus tokamak fusion reactor, FDTR

    International Nuclear Information System (INIS)

    Feng, K.M.; Zhang, G.S.; Deng, M.G.

    2003-01-01

    In this paper, a concept for the transmutation of minor actinide (MA) nuclear wastes based on a spherical torus (ST) tokamak reactor, FDTR, is put forward. A set of plasma parameters suitable for the transmutation blanket was chosen. The 2-D neutron transport code TWODANT, the 3-D Monte Carlo code MCNP/4B, the 1-D neutron transport and burn-up calculation code BISON3.0 and their associated data libraries were used to calculate the transmutation rate, the energy multiplication factor and the tritium breeding ratio of the transmutation blanket. The calculation results for the system parameters and the actinide series isotopes for different operation times are presented. The engineering feasibility of the center-post (CP) of FDTR has been investigated and the results are also given. A preliminary neutronics calculation based on an ST transmutation blanket shows that the proposed system has a high transmutation capability for MA wastes. (author)

  13. Observation of a High Performance Operating Regime with Small Edge-Localized Modes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Maingi, R.; Tritz, K.; Fredrickson, E.D.; Menard, J.E.; Sabbagh, S.A.; Stutman, D.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Gates, D.A.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Mueller, D.; Raman, R.; Roquemore, A.L.; Soukhanovskii, V.A.

    2004-01-01

    We report observation of a high performance scenario in the National Spherical Torus Experiment with very small edge-localized modes (ELMs). These ELMs have no measurable impact on stored energy and are consistent with high bootstrap current operation with line average density approaching Greenwald scaling. The ELM perturbation is observed to typically originate near the lower divertor region, as opposed to the outer midplane for ELMs described in the literature. If extrapolable, this scenario would provide an attractive operating regime for next step fusion experiments

  14. Internal transport barriers in the National Spherical Torus Experimenta)

    Science.gov (United States)

    Yuh, H. Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.; Candy, J.; Waltz, R. E.; Domier, C. W.; Luhmann, N. C.; Lee, W.; Park, H. K.

    2009-05-01

    In the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum E ×B shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients.

  15. EBW simulation for MAST and NSTX experiments

    International Nuclear Information System (INIS)

    Preinhaelter, J.; Urban, J.; Pavlo, P.; Taylor, G.; Shevchenko, V.; Valovic, M.; Vahala, L.; Vahala, G.

    2005-01-01

    The interpretation of EBW emission from spherical tokamaks is nontrivial. We report on a 3D simulation model of this process that incorporates Gaussian beams for the antenna, a full wave solution of EBW-X and EBW-X-O conversions using adaptive finite elements, and EBW ray tracing to determine the radiative temperature. This model is then used to interpret the experimental results from MAST and NSTX. EBW for ELM free H-modes in MAST suggests that the magnetic equilibrium determined by the EFIT code does not adequately represent the B-field within the transport barrier. Using the EBW signal for the reconstruction of the radial profile of the magnetic field, we determine a new equilibrium and see that the EBW simulation now yields better agreement with experimental results. EBW simulations yield excellent results for the time development of the plasma temperature as measured by the EBW radiometer on NSTX

  16. Design and Construction of the NSTX Bakeout, Cooling and Vacuum Systems

    International Nuclear Information System (INIS)

    Dudek, L.E.; Kalish, M.; Gernhardt, R.; Parsells, R.F.; Blanchard, W.

    1999-01-01

    This paper will describe the design, construction and initial operation of the NSTX bakeout, water cooling and vacuum systems. The bakeout system is designed for two modes of operation. The first mode allows heating of the first wall components to 350 degrees C while the external vessel is cooled to 150 degrees C. The second mode cools the first wall to 150 degrees C and the external vessel to 50 degrees C. The system uses a low viscosity heat transfer oil which is capable of high temperature low pressure operation. The NSTX Torus Vacuum Pumping System (TVPS) is designed to achieve a base pressure of approximately 1x10 (superscript -8) Torr and to evacuate the plasma fuel gas loads in less than 5 minutes between discharges. The vacuum pumping system is capable of a pumping speed of approximately 3400 l/s for deuterium. The hardware consists of two turbo molecular pumps (TMPs) and a mechanical pump set consisting of a mechanical and a Roots blower pump. A PLC is used as the control system to provide remote monitoring, control and software interlock capability. The NSTX cooling water provides chilled, de ionized water for heat removal in the TF, OH and PF, power supplies, bus bar systems, and various diagnostics. The system provides flow monitoring via a PLC to prevent damage due to loss of flow

  17. NSTX Disruption Simulations of Detailed Divertor and Passive Plate Models by Vector Potential Transfer from OPERA Global Analysis Results

    International Nuclear Information System (INIS)

    Titus, P.H.; Avasaralla, S.; Brooks, A.; Hatcher, R.

    2010-01-01

    The National Spherical Torus Experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the center-stack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of components in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic (EM) and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses.

  18. NSTX Disruption Simulations of Detailed Divertor and Passive Plate Models by Vector Potential Transfer from OPERA Global Analysis Results

    Energy Technology Data Exchange (ETDEWEB)

    P. H. Titus, S. Avasaralla, A.Brooks, R. Hatcher

    2010-09-22

    The National Spherical Torus Experiment (NSTX) project is planning upgrades to the toroidal field, plasma current and pulse length. This involves the replacement of the center-stack, including the inner legs of the TF, OH, and inner PF coils. A second neutral beam will also be added. The increased performance of the upgrade requires qualification of the remaining components including the vessel, passive plates, and divertor for higher disruption loads. The hardware needing qualification is more complex than is typically accessible by large scale electromagnetic (EM) simulations of the plasma disruptions. The usual method is to include simplified representations of components in the large EM models and attempt to extract forces to apply to more detailed models. This paper describes a more efficient approach of combining comprehensive modeling of the plasma and tokamak conducting structures, using the 2D OPERA code, with much more detailed treatment of individual components using ANSYS electromagnetic (EM) and mechanical analysis. This capture local eddy currents and resulting loads in complex details, and allows efficient non-linear, and dynamic structural analyses.

  19. LASL Compact Torus Program

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Bartsch, R.R.

    1981-01-01

    The Compact Torus (CT) concept includes any axisymmetric toroidal plasma configuration, which does not require the linking of any material through the hole in the torus. Thus, the magnet coils, vacuum vessel, etc., have a simple cylindrical or spherical geometry instead of the toroidal geometry required for Tokamaks and RFP's. This simplified geometry results in substantial engineering advantages in CT reactor embodiments while retaining the good confinement properties afforded by an axisymmetric toroidal plasma-field geometry. CT's can be classified into three major types by using the ion gyro radius rho/sub i/ and the magnitude of the maximum toroidal field B/sub tm/

  20. Overview of physics results from NSTX

    Czech Academy of Sciences Publication Activity Database

    Raman, R.; Ahn, J-W.; Allain, J.P.; Andre, R.; Bastasz, R.; Battaglia, D.; Beiersdorfer, P.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Brennan, D.; Breslau, J.; Buttery, R.; Canik, J.; Caravelli, G.; Chang, C.; Crocker, N.A.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; Ding, S.; D’Ippolito, D.; Domier, C.; Dorland, W.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Foley, J.; Fonck, R.; Frazin, R.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gray, T.; Guo, Y.; Guttenfelder, W.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hirooka, Y.; Hooper, E.B.; Hosea, J.; Hu, B.; Humphreys, D.; Indireshkumar, K.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kaye, S.; Kessel, C.; Kim, J.; Kolemen, E.; Krasheninnikov, S.; Kubota, S.; Kugel, H.; La Haye, R.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Luhmann Jr, N.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McLean, A.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mueller, D.; Munsat, T.; Myra, J.; Nelson, B.; Nishino, N.; Nygren, R.; Ono, M.; Osborne, T.; Park, H.; Park, J.; Paul, S.; Peebles, W.; Penaflor, B.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, Josef; Ren, Y.; Reimerdes, H.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S.A.; Schaffer, M.; Schuster, E.; Scotti, F.; Shaing, K.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C.H.; Smirnov, A.; Smith, D.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Stutman, D.; Takahashi, H.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, C.N.; Taylor, G.; Taylor, C.; Tritz, K.; Tsarouhas, D.; Umansky, M.; Urban, Jakub; Walker, M.; Wampler, W.; Wang, W.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K.L.; Wright, J.; Xia, Z.; Youchison, D.; Yu, H.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zimmer, G.; Zweben, S.J.

    2011-01-01

    Roč. 51, č. 9 (2011), 094011-094011 ISSN 0029-5515. [Fusion Energy Conference (FEC 2010)/23rd./. Daejon, 11.10.2010-16.10.2010] R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G09042 Institutional research plan: CEZ:AV0Z20430508 Keywords : NSTX * Spherical tokamaks * Overdense plasma * Conversion * Emission * Tokamaks * Elektron Bernstein waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.090, year: 2011 http://iopscience.iop.org/0029-5515/51/9/094011/pdf/0029-5515_51_9_094011.pdf

  1. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-03-20

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter.

  2. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Doerner, R.; Antar, G.; Timberlake, J.; Spaleta, J.; Hoffman, D.; Jones, B.; Munsat, T.; Kugel, H.; Taylor, G.; Stutman, D.; Soukhanovskii, V.; Maingi, R.; Molesa, S.; Efthimion, P.; Menard, J.; Finkenthal, M.; Luckhardt, S.

    2001-01-01

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter

  3. High frequency fast wave results from the CDX-U spherical torus

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Menard, J.

    2001-01-01

    The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)

  4. High frequency fast wave results from the CDX-U spherical torus

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Menard, J.

    1999-01-01

    The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 10 12 cm -3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)

  5. Electron Bernstein Wave Research on NSTX and PEGASUS

    International Nuclear Information System (INIS)

    Diem, S. J.; LeBlanc, B. P.; Taylor, G.; Caughman, J. B.; Bigelow, T.; Wilgen, J. B.; Garstka, G. D.; Harvey, R. W.; Preinhaelter, J.; Urban, J.; Sabbagh, S. A.

    2007-01-01

    Spherical tokamaks (STs) routinely operate in the overdense regime (ω pe >>ω ce ), prohibiting the use of standard ECCD and ECRH. However, the electrostatic electron Bernstein wave (EBW) can propagate in the overdense regime and is strongly absorbed and emitted at the electron cyclotron resonances. As such, EBWs offer the potential for local electron temperature measurements and local electron heating and current drive. A critical challenge for these applications is to establish efficient coupling between the EBWs and electromagnetic waves outside the cutoff layer. Two STs in the U.S., the National Spherical Tokamak Experiment (NSTX, at Princeton Plasma Physics Laboratory) and PEGASUS Toroidal Experiment (University of Wisconsin-Madison) are focused on studying EBWs for heating and current drive. On NSTX, two remotely steered, quad-ridged antennas have been installed to measure 8-40 GHz (fundamental, second and third harmonics) thermal EBW emission (EBE) via the oblique B-X-O mode conversion process. This diagnostic has been successfully used to map the EBW mode conversion efficiency as a function of poloidal and toroidal angles on NSTX. Experimentally measured mode conversion efficiencies of 70±20% have been measured for 15.5 GHz (fundamental) emission in L-mode discharges, in agreement with a numerical EBE simulation. However, much lower mode conversion efficiencies of 25±10% have been measured for 25 GHz (second harmonic) emission in L-mode plasmas. Numerical modeling of EBW propagation and damping on the very-low aspect ratio PEGASUS Toroidal Experiment has been performed using the GENRAY ray-tracing code and CQL3D Fokker-Planck code in support of planned EBW heating and current drive (EBWCD) experiments. Calculations were performed for 2.45 GHz waves launched with a 10 cm poloidal extent for a variety of plasma equilibrium configurations. Poloidal launch scans show that driven current is maximum when the poloidal launch angle is between 10 and 25 degrees

  6. Control and data acquisition system for versatile experiment spherical torus at SNU

    Energy Technology Data Exchange (ETDEWEB)

    An, YoungHwa [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Na, DongHyeon; Hwang, Y.S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2013-10-15

    A control and data acquisition system for VEST (Versatile Experiment Spherical Torus) at Seoul National University (SNU) has been developed to enable remote operation from a central control room. The control and data acquisition system consists of three subsystems; a main control and data acquisition system that triggers each device at the preprogrammed timing and collects various diagnostic signals during discharges, a monitoring system that watches and logs the device status continuously, and a data storage and distribution system that stores collected data and provides data access layer via Ethernet. The system is designed to be cost-effective, extensible and easy to develop by using well-established standard technologies and solutions. Combining broad accessibility with modern information technology, alarm signal can be sent immediately to the registered cell phones when the abnormal status of devices is found, and the web data distribution system enables data access from almost everywhere using smart phones or tablet computers. Since December 2011, VEST is operational and the control and data acquisition system has been successfully used for remote operation of VEST.

  7. Control and data acquisition system for versatile experiment spherical torus at SNU

    International Nuclear Information System (INIS)

    An, YoungHwa; Chung, Kyoung-Jae; Na, DongHyeon; Hwang, Y.S.

    2013-01-01

    A control and data acquisition system for VEST (Versatile Experiment Spherical Torus) at Seoul National University (SNU) has been developed to enable remote operation from a central control room. The control and data acquisition system consists of three subsystems; a main control and data acquisition system that triggers each device at the preprogrammed timing and collects various diagnostic signals during discharges, a monitoring system that watches and logs the device status continuously, and a data storage and distribution system that stores collected data and provides data access layer via Ethernet. The system is designed to be cost-effective, extensible and easy to develop by using well-established standard technologies and solutions. Combining broad accessibility with modern information technology, alarm signal can be sent immediately to the registered cell phones when the abnormal status of devices is found, and the web data distribution system enables data access from almost everywhere using smart phones or tablet computers. Since December 2011, VEST is operational and the control and data acquisition system has been successfully used for remote operation of VEST

  8. Effects of enhanced elongation and paramagnetism on the parameter space of the ignition spherical torus

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y-K.M.; Borowski, S.K.; Selcow, E.C.; Miller, J.B.

    1985-01-01

    The Ignition Spherical Torus (IST) is a small aspect ratio device retaining only indispensable components along the major axis of a tokamak plasma, such as a cooled, normal conductor producing a toroidal magnetic field. The IST is expected to be a cost-effective approach to ignition by taking advantage of low field, large natural plasma elongation, high plasma current, high beta, and tokamak confinement. These result in compact, high-performance devices with relatively simple magnetic systems as compared with ignition tokamaks of larger aspect ratio. The plasma enhancement of the toroidal field on axis, or plasma paramagnetism, is significant in the IST. The use of this plasma-enhanced field in conventional tokamak beta and density limits leads to increased plasma pressure and performance and therefore smaller device size for a given ignition margin

  9. Interactions of Deuterium Plasma with Lithiated and Boronized Surfaces in NSTX-U

    Science.gov (United States)

    Krstic, Predrag

    2015-09-01

    The main research goal of the presented research has been to understand the changes in surface composition and chemistry at the nanoscopic temporal and spatial scales for long pulse Plasma Facing Components (PFCs) and link these to the overall machine performance of the National Spherical Torus Experiment Upgrade (NSTX-U). A study is presented of the lithium surface science, with atomic spatial and temporal resolutions. The dynamic surface responds and evolves in a mixed material environments (D, Li, C, B, O, Mo, W) with impingement of plasma particles in the energy range below 100 eV. The results, obtained by quantum-classical molecular dynamics, include microstructure changes, erosion, surface chemistry, deuterium implantation and permeation. Main objectives of the research are i) a comparison of Li and B deposition on carbon, ii) the role of oxygen and other impurities e.g. boron, carbon in the lithium performance, and iii) how this performance will change when lithium is applied to a high-Z refractory metal substrate (Mo, W). In addition to predicting and understanding the phenomenology of the processes, we will show plasma induced erosion of PFCs, including chemical and physical sputtering yields at various temperatures (300-700 K) as well as deuterium uptake/recycling. This work is supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Science, Award Number DE-SC0013752.

  10. Heating and current drive on NSTX

    Science.gov (United States)

    Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.

    1997-04-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.

  11. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    Science.gov (United States)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  12. ECH on NSTX

    International Nuclear Information System (INIS)

    Bigelow, T.S.; Batchelor, D.B.; Carter, M.D.; Peng, M.; Wilson, J.R.

    1997-01-01

    Electron Cyclotron Heating has been proposed for plasma initiation, startup assistance and non-inductive startup on NSTX. One physics goal of NSTX will be to establish entirely non-inductive plasma operation by utilizing ECH to provide a sufficient start-up plasma to support further current drive from other heating systems. Scaling of previous ECH-only startup experiments on CDX-U and DIII-D indicate that 400 kW of ECH should be capable of driving 42 kA of pressure driven current on NSTX and possibly higher levels after optimizing the process. Due to the low NSTX magnetic field, over-dense plasmas exist during most of the discharge so conventional ECH operation is limited to the low density startup phase. To extend the useful operating range for ECH, a scheme involving mode conversion to the electron Bernstein Wave (EBW) from either O r X mode launch is being investigated for bulk heating and current drive applications at higher density. Microwave equipment, including 18 GHz klystrons and 28 GHz gyrotrons are available at ORNL and appear ideal for use on NSTX. Preliminary pre-ionization and start-up system configurations are presented here along with discussions on various operation modes

  13. Midplane neutral density profiles in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P., E-mail: dstotler@pppl.gov; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podestà, M.; Roquemore, A. L.; Ross, P. W. [Princeton Plasma Physics Laboratory, Princeton University, P. O. Box 451, Princeton, New Jersey 08543-0451 (United States); Scotti, F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-08-15

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 10{sup 17 }m{sup −3} and atomic densities ranging from 1 to 7 × 10{sup 16 }m{sup −3}; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. The uncertainties in the neutral densities associated with other model inputs and assumptions are ≤50%.

  14. The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Kugel, H.; Bell, M.; Ahn, J.W.; Bush, C.E.; Maingi, R.

    2008-01-01

    National Spherical Torus Experiment (which M. Ono, Nucl. Fusion 40, 557 (2000)) high-power divertor plasma experiments have shown, for the first time, that benefits from lithium coatings applied to plasma facing components found previously in limited plasmas can occur also in high-power diverted configurations. Lithium coatings were applied with pellets injected into helium discharges, and also with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium oven depositions from a few milligrams to 1 g have been applied between discharges. Benefits from the lithium coatings were sometimes, but not always, seen. These benefits sometimes included decreases in plasma density, inductive flux consumption, and edge-localized mode occurrence, and increases in electron temperature, ion temperature, energy confinement, and periods of edge and magnetohydrodynamic quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  15. Power and Particle Balance Calculations with Impurities in NSTX

    Science.gov (United States)

    Holland, C. G.; Maingi, R.; Owen, L. W.; Kaye, S. M.

    1998-11-01

    We reported the development C. Holland, et. al., Bull. Am. Phys. Soc. 42 (1997) 1927. and application R. Maingi et al., Proc. 3rd International Workshop on Spherical Tori, Sept. 3-5, 1997, St. Petersburg, Russia. of a Graphical User Interface to assess the important terms for edge and divertor plasma calculations for NSTX with the b2.5 edge plasma transport code B. Braams, Contrib. Plasma Phys. 36 (1996) 276.. The goals of those calculations were to estimate the worst case peak heat flux for plasma-facing component design, and the radiation requirements to reduce the peak heat flux. In this study we present the first simulations with intrinsic carbon impurity radiation. We find in general that the intrinsic carbon radiation should be sufficient to provide a wide operation window for the NSTX device. Details of the relative importance of heat flux transport mechanisms as determined with the GUI will be presented.

  16. Heating and current drive on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C.K.; Rogers, J.H.; Schilling, G.

    1997-01-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (∼45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation. copyright 1997 American Institute of Physics

  17. ECH on NSTX

    International Nuclear Information System (INIS)

    Bigelow, T.S.; Batchelor, D.B.; Carter, M.D.; Peng, M.; Wilson, J.R.

    1997-01-01

    Electron Cyclotron Heating has been proposed for plasma initiation, startup assistance and non-inductive startup on NSTX. One physics goal of NSTX will be to establish entirely non-inductive plasma operation by utilizing ECH to provide a sufficient start-up plasma to support further current drive from other heating systems. Scaling of previous ECH-only startup experiments on CDX-U and DIII-D indicate that 400 kW of ECH should be capable of driving 42 kA of pressure driven current on NSTX and possibly higher levels after optimizing the process. Due to the low NSTX magnetic field, over-dense plasmas exist during most of the discharge so conventional ECH operation is limited to the low density startup phase. To extend the useful operating range for ECH, a scheme involving mode conversion to the electron Bernstein Wave (EBW) from either O or X mode launch is being investigated for bulk heating and current drive applications at higher density. Microwave equipment, including 18 GHz klystrons and 28 GHz gyrotrons are available at ORNL and appear ideal for use on NSTX. Preliminary pre-ionization and start-up system configurations are presented here along with discussions on various operation modes. copyright 1997 American Institute of Physics

  18. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, J. A., E-mail: carlsson@pppl.gov [Crow Radio and Plasma Science, Princeton, New Jersey 08540 (United States); Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)

    2016-06-15

    Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.

  19. Operation of the NSTX Thomson Scattering System

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, R.E.; Johnson, D.W.; Hoffman, D.E.; Long, D.C.; Palladino, R.W.

    2002-01-01

    The NSTX multi-point Thomson scattering system has been in operation for nearly two years and provides routine Te(R,t) and ne(R,t) measurements. The laser beams from two 30-Hz Nd:YAG lasers are imaged by a spherical mirror onto 36 fiber-optics bundles. In the present configuration, the output ends of 20 of these bundles are instrumented with filter polychromators and avalanche photodiode detectors. In this paper, we discuss the laser implementation and the installed collection optics. We follow with examples of raw and analyzed data. We close with some comments about calibration

  20. Final Scientific/Technical Report, USDOE Award DE-FG-02ER54684, Recipient: CompX, Project Title: Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    International Nuclear Information System (INIS)

    Harvey, R.W.

    2009-01-01

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole

  1. Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Menard, J.E.

    2008-01-01

    A detailed analysis of the plasma current quench in the National Spherical Torus Experiment (M.Ono, et al Nuclear Fusion 40, 557 (2000)) is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change

  2. Power exhaust scenarios and control for projected high-power NSTX-U operation

    Science.gov (United States)

    Menard, Jonathan; Gerhardt, S. P.; Myers, C. E.; Reinke, M. L.; Brooks, A.; Mardenfeld, M.; NSTX Upgrade Team

    2017-10-01

    An important goal of the NSTX Upgrade (NSTX-U) research program is to characterize energy confinement in the low-aspect-ratio spherical tokamak configuration over a significantly expanded range of plasma current, toroidal field, and heating power, while increasing flattop durations up to 5 seconds. However, the narrowing of the scrape-off layer at higher current combined with an improved understanding of expected halo-current loads has motivated a significant re-design of NSTX-U plasma facing components in the high-heat-flux regions of the divertor. In order to reduce the expected divertor heat flux to acceptable levels, a combination of mitigation techniques will be used: increased divertor poloidal flux expansion, increased divertor radiation, and controlled strike-point sweeping. The machine requirements for these various mitigation techniques are studied here using a newly implemented reduced heat-flux model. Systematic equilibrium scans are used to quantify the required divertor coil currents and to verify vertical stability for a range of plasma shapes. Free-boundary control schemes to constrain the strike-point location and field-line angle-of-incidence will also be discussed. Work supported by DOE contract DE-AC02- 09CH11466.

  3. Modeling of Low Frequency MHD Induced Beam Ion Transport In NSTX

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Medley, S.S.

    2004-01-01

    Beam ion transport in the presence of low frequency MHD activity in National Spherical Tokamak Experiment (NSTX) plasma is modeled numerically and analyzed theoretically in order to understand basic underlying physical mechanisms responsible for the observed fast ion redistribution and losses. Numerical modeling of the beam ions flux into the NPA in NSTX shows that after the onset of low frequency MHD activity high energy part of beam ion distribution, E b > 40keV, is redistributed radially due to stochastic diffusion. Such diffusion is caused by high order harmonics of the transit frequency resonance overlap in the phase space. Large drift orbit radial width induces such high order resonances. Characteristic confinement time is deduced from the measured NPA energy spectrum and is typically ∼ 4msec. Considered MHD activity may induce losses on the order of 10% at the internal magnetic field perturbation (delta)B/B = Ο (10 -3 ), which is comparable to the prompt orbit losses

  4. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    OpenAIRE

    Liu, Wei; Hsu, Scott C.

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocit...

  5. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Maingi, R.; Maiorano, M.; Smith, S.

    2002-01-01

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance

  6. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  7. Snowflake divertor configuration studies for NSTX-Upgrade

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.

    2011-01-01

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  8. The confinement of dilute populations of beam ions in the national spherical torus experiment

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Miah, M.; Darrow, D.; Le Blanc, B.; Medley, S.; Roquemore, A.L.; Cecil, F.E.

    2003-01-01

    Short ∼3 ms pulses of 80 keV deuterium neutrals are injected at three different tangency radii into the national spherical torus experiment. The confinement is studied as a function of tangency radius, plasma current (between 0.4 and 1.0 MA), and toroidal field (between 2.5 and 5.0 kG). The jump in neutron emission during the pulse is used to infer prompt losses of beam ions. In the absence of MHD, the neutron data show the expected dependences on beam angle and plasma current; the average jump in the neutron signal is 88±39% of the expected jump. The decay of the neutron and neutral particle signals following the blip are compared to the expected classical deceleration to detect losses on a 10 ms timescale. The temporal evolution of these signals are consistent with Coulomb scattering rates, implying an effective beam-ion confinement time > or ∼ 100 ms. The confinement is insensitive to the toroidal field despite large values of ρ∇B/B < or ∼(0.25), so any effects of non-conservation of the adiabatic invariant μ are smaller than the experimental error. (author)

  9. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    Science.gov (United States)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  10. Initial assessments of ignition spherical torus

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Borowski, S.K.; Bussell, G.T.

    1985-12-01

    Initial assessments of ignition spherical tori suggest that they can be highly cost effective and exceptionally small in unit size. Assuming advanced methods of current drive to ramp up the plasma current (e.g., via lower hybrid wave at modest plasma densities and temperatures), the inductive solenoid can largely be eliminated. Given the uncertainties in plasma energy confinement times and the effects of strong paramagnetism on plasma pressure, and allowing for the possible use of high-strength copper alloys (e.g., C-17510, Cu-Ni-Be alloy), ignition spherical tori with a 50-s burn are estimated to have major radii ranging from 1.0 to 1.6 m, aspect ratios from 1.4 to 1.7, vacuum toroidal fields from 2 to 3 T, plasma currents from 10 to 19 MA, and fusion power from 50 to 300 MW. Because of its modest field strength and simple poloidal field coil configuration, only conventional engineering approaches are needed in the design. A free-standing toroidal field coil/vacuum vessel structure is assessed to be feasible and relatively independent of the shield structure and the poloidal field coils. This exceptionally simple configuration depends significantly, however, on practical fabrication approaches of the center conductor post, about which there is presently little experience. 19 refs

  11. Torus theory

    International Nuclear Information System (INIS)

    Namsrai, Kh.

    2001-11-01

    Geometrical structure and physical characteristics of a torus are investigated in detail. Newtonian and electromagnetic potentials of the torus are defined at short and long distances. It is shown that torus potential at small distances has attractive oscillator behaviour. Motion of a particle in the torus potential is studied. The inertia tensor of the torus and its dynamics are obtained. Rotating torus whose tip is held fixed by two massless rigid threads and moves in a gravitational field is considered. (author)

  12. Electromagnetic Transport From Microtearing Mode Turbulence

    International Nuclear Information System (INIS)

    Guttenfelder, W.; Candy, J.; Kaye, S.M.; Nevins, W.M.; Wang, E.; Bell, R.E.; Hammett, G.W.; LeBlanc, B.P.; Mikkelsen, D.R.; Yuh, H.

    2011-01-01

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  13. Properties of Alfvén eigenmodes in the Toroidal Alfvén Eigenmode range on the National Spherical Torus Experiment-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, M.; Gorelenkov, N. N.; White, R. B.; Fredrickson, E. D.; Gerhardt, S. P.; Kramer, G. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-08-15

    A second Neutral Beam (NB) injection line is being installed on the NSTX Upgrade device, resulting in six NB sources with different tangency radii that will be available for heating and current drive. This work explores the properties of instabilities in the frequency range of the Toroidal Alfvén Eigenmode (TAE) for NSTX-U scenarios with various NB injection geometries, from more perpendicular to more tangential, and with increased toroidal magnetic field with respect to previous NSTX scenarios. Predictions are based on analysis through the ideal MHD code NOVA-K. For the scenarios considered in this work, modifications of the Alfvén continuum result in a frequency up-shift and a broadening of the radial mode structure. The latter effect may have consequences for fast ion transport and loss. Preliminary stability considerations indicate that TAEs are potentially unstable with ion Landau damping representing the dominant damping mechanism.

  14. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Heidbrink, W W; Ruskov, E; Fredrickson, E D; Gorelenkov, N; Medley, S S; Berk, H L; Harvey, R W

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50-100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼<3 MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed

  15. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W W [University of California, Irvine, California (United States); Ruskov, E [University of California, Irvine, California (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Gorelenkov, N [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Medley, S S [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Berk, H L [University of Texas, Austin, Texas (United States); Harvey, R W [CompX, Del Mar, California (United States)

    2006-09-15

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at {approx}2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50-100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power ({approx}<3 MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed.

  16. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    W W,Heidbrink; E,Ruskov; E D,Fredrickson; N,Gorelenkov; S S,Medley; H L,Berk; R W,Harvey

    2006-09-01

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at ~2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50–100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10–20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (≤3MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed.

  17. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  18. ORIGINAL ARTICLE Torus Palatinus and Torus Mandibularis in a ...

    African Journals Online (AJOL)

    Ogunbodede

    ; 28:105-111. 4. Seah, Y. H. Torus Palatinus and. Torus Mandibularis: a Review of the Literature. Aust. Dent. J. 1995;. 40:318-321. 5. Bernal, B. A.; Moreira, D. E.;. Rodriguez, P., I [Prevalence of. Torus Palatinus and Torus. Mandibularis in the ...

  19. Recent reflectometry results from the UCLA plasma diagnostics group

    International Nuclear Information System (INIS)

    Gilmore, M.; Doyle, E.J.; Kubota, S.; Nguyen, X.V.; Peebles, W.A.; Rhodes, T.L.; Zeng, L.

    2001-01-01

    The UCLA Plasma Diagnostics Group has an active ongoing reflectometry program. The program is threefold, including 1) profile and 2) fluctuation measurements on fusion devices (DIII-D, NSTX, and others), and 3) basic reflectometry studies in linear and laboratory plasmas that seek to develop new measurement capabilities and increase the physics understanding of reflectometry. Recent results on the DIII-D tokamak include progress toward the implementation of FM reflectometry as a standard density profile diagnostic, and correlation length measurements in QDB discharges that indicate a very different scaling than normally observed in L-mode plasmas. The first reflectometry measurements in a spherical torus (ST) have also been obtained on NSTX. Profiles in NSTX show good agreement with those of Thomson scattering. Finally, in a linear device, a local magnetic field strength measurement based on O-X correlation reflectometry has been demonstrated to proof of principle level, and correlation lengths measured by reflectometry are in good agreement with probes. (author)

  20. Fusion Concept Exploration Experiments at PPPL

    International Nuclear Information System (INIS)

    Stewart Zweben; Samuel Cohen; Hantao Ji; Robert Kaita; Richard Majeski; Masaaki Yamada

    1999-01-01

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively

  1. Divertor scenario development for NSTX Upgrade

    Science.gov (United States)

    Soukhanovskii, V. A.; McLean, A. G.; Meier, E. T.; Rognlien, T. D.; Ryutov, D. D.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; Kaita, R.; Kolemen, E.; Leblanc, B. P.; Menard, J. E.; Podesta, M.; Scotti, F.

    2012-10-01

    In the NSTX-U tokamak, initial plans for divertor plasma-facing components (PFCs) include lithium and boron coated graphite, with a staged transition to molybdenum. Steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m^2 in 2 MA, 12 MW NBI-heated discharges of up to 5 s duration, thus challenging PFC thermal limits. Based on the recent NSTX divertor experiments and modeling with edge transport code UEDGE, a favorable basis for divertor power handling in NSTX-U is developed. The snowflake divertor geometry and feedback-controlled divertor impurity seeding applied to the lower and upper divertors are presently envisioned. In the NSTX snowflake experiments with lithium-coated graphite PFCs, the peak divertor heat fluxes from Type I ELMs and between ELMs were significantly reduced due to geometry effects, increased volumetric losses and null-point convective redistribution between strike points. H-mode core confinement was maintained at H98(y,2)<=1 albeit the radiative detachment. Additional CD4 seeding demonstrated potential for a further increase of divertor radiation.

  2. Evolution of the Turbulence Radial Wavenumber Spectrum near the L-H Transition in NSTX Ohmic Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, S.; Peebles, W.A., E-mail: skubota@ucla.edu [UCLA, Los Angeles (United States); Bush, C. E.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge (United States); Zweben, S. J.; Bell, R.; Crocker, N.; Diallo, A.; Kaye, S.; LeBlanc, B. P.; Park, J. K.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton University, Princeton (United States); Maqueda, R. J. [Nova Photonics, Princeton (United States); Raman, R. [University of Washington, Seattle (United States)

    2012-09-15

    Full text: The measurement of radially extended meso-scale structures such as zonal flows and streamers, as well as the underlying microinstabilities driving them, is critical for understanding turbulence-driven transport in plasma devices. In particular, the shape and evolution of the radial wavenumber spectrum indicate details of the nonlinear spectral energy transfer, the spreading of turbulence, as well as the formation of transport barriers. In the National Spherical Torus Experiment (NSTX), the FMCW backscattering diagnostic is used to probe the turbulence radial wavenumber spectrum (k{sub r} = 0 - 22 cm-1 ) across the outboard minor radius near the L- to H-mode transition in Ohmic discharges. During the L-mode phase, a broad spectral component (k{sub r} {approx} 2 - 10 cm{sup -1} ) extends over a significant portion of the edge-core from R = 120 to 155 cm ({rho} = 0.4 - 0.95). At the L-H transition, turbulence is quenched across the measurable k{sub r} range at the ETB location, where the radial correlation length drops from {approx} 1.5 - 0.5 cm. The k{sub r} spectrum away from the ETB location is modified on a time scale of tens of microseconds, indicating that nonlocal turbulence dynamics are playing a strong role. Close to the L-H transition, oscillations in the density gradient and edge turbulence quenching become highly correlated. These oscillations are also present in Ohmic discharges without an L-H transition, but are far less frequent. Similar behavior is also seen near the L-H transition in NB-heated discharges. (author)

  3. Investigations of Low and Moderate Harmonic Fast Wave Physics on CDX-U

    International Nuclear Information System (INIS)

    Spaleta, J.; Majeski, R.; Phillips, C.K.; Dumont, R.J.; Kaita, R.; Soukhanovskii, V.; Zakharov, L.

    2003-01-01

    Third harmonic hydrogen cyclotron fast wave heating studies are planned in the near term on CDX-U to investigate the potential for bulk ion heating. In preparation for these studies, the available radio-frequency power in CDX-U has been increased to 0.5 MW. The operating frequency of the CDX-U radio-frequency transmitter was lowered to operate in the range of 8-10 MHz, providing access to the ion harmonic range 2* ∼ 4* in hydrogen. A similar regime is accessible for the 30 MHz radio-frequency system on the National Spherical Torus Experiment (NSTX), at 0.6 Tesla in hydrogen. Preliminary computational studies over the plasma regimes of interest for NSTX and CDX-U indicate the possibility of strong localized absorption on bulk ion species

  4. Reconciliation of Measured and TRANSP-calculated Neutron Emission Rates in the National Spherical Torus Experiment: Circa 2002-2005

    International Nuclear Information System (INIS)

    Medley, S.S.; Darrow, D.S.; Roquemore, A.L.

    2005-01-01

    A change in the response of the neutron detectors on the National Spherical Torus Experiment occurred between the 2002-2003 and 2004 experimental run periods. An analysis of this behavior by investigating the neutron diagnostic operating conditions and comparing measured and TRANSP-calculated neutron rates is presented. Also a revised procedure for cross calibration of the neutron scintillator detectors with the fission chamber detectors was implemented that delivers good agreement amongst the measured neutron rates for all neutron detectors and all run periods. For L-mode discharges, the measured and TRANSP-calculated neutron rates now match closely for all run years. For H-mode discharges over the entire 2002-2004 period, the 2FG scintillator and fission chamber measurements match each other but imply a neutron deficit of 11.5% relative to the TRANSP-calculated neutron. The results of this report impose a modification on all of the previously used calibration factors for the entire neutron detector suite over the 2002-2004 period. A tabular summary of the new calibration factors is provided including certified calibration factors for the 2005 run

  5. Development of wall conditioning and impurity monitoring systems in Versatile Experiment Spherical Torus (VEST)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.Y., E-mail: brbbebbero@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of); Yang, J.; Kim, Y.G.; Yang, S.M.; Kim, Y.S.; Lee, K.H. [Seoul National University, Seoul (Korea, Republic of); An, Y.H. [National Fusion Research Institute, Daejon (Korea, Republic of); Chung, K.J.; Na, Y.S. [Seoul National University, Seoul (Korea, Republic of); Hwang, Y.S., E-mail: yhwang@snu.ac.kr [Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    Highlights: • The baking for partial wall heating and H{sub 2}/He GDC systems are developed in VEST. • The RGA and OES systems for monitoring impurities are constructed in VEST. • The partial baking and He GDC show limited effects on plasma characteristics. • H{sub 2} GDC above 4 h enables the longer plasma current duration up to ∼15 ms. • After H{sub 2} GDC, the discharge should be conducted within 3 h from treatment. - Abstract: Wall conditioning and impurity monitoring systems are developed in Versatile Experiment Spherical Torus (VEST). As a wall conditioning system, a baking system covering the vacuum vessel wall partially and a glow discharge cleaning (GDC) system using two electrodes with dc and 50 kHz power supplies are installed. The GDC system operates with hydrogen and helium gases for both chemical and physical desorption. The impurity monitoring system with residual gas analyzer (RGA), operating at <10{sup −5} Torr with a differential pumping system, is installed along with the optical emission spectroscopy (OES) system to monitor the hydrogen and impurity radiation lines. Effects of these wall conditioning techniques are investigated with the impurity monitoring system for ohmic discharges of VEST. The partial baking and He GDC show limited effects on plasma characteristics but sufficient H{sub 2} GDC above 4 h enables the longer plasma current duration up to ∼15 ms within 3 h from the end of treatment.

  6. Development of wall conditioning and impurity monitoring systems in Versatile Experiment Spherical Torus (VEST)

    International Nuclear Information System (INIS)

    Lee, H.Y.; Yang, J.; Kim, Y.G.; Yang, S.M.; Kim, Y.S.; Lee, K.H.; An, Y.H.; Chung, K.J.; Na, Y.S.; Hwang, Y.S.

    2016-01-01

    Highlights: • The baking for partial wall heating and H_2/He GDC systems are developed in VEST. • The RGA and OES systems for monitoring impurities are constructed in VEST. • The partial baking and He GDC show limited effects on plasma characteristics. • H_2 GDC above 4 h enables the longer plasma current duration up to ∼15 ms. • After H_2 GDC, the discharge should be conducted within 3 h from treatment. - Abstract: Wall conditioning and impurity monitoring systems are developed in Versatile Experiment Spherical Torus (VEST). As a wall conditioning system, a baking system covering the vacuum vessel wall partially and a glow discharge cleaning (GDC) system using two electrodes with dc and 50 kHz power supplies are installed. The GDC system operates with hydrogen and helium gases for both chemical and physical desorption. The impurity monitoring system with residual gas analyzer (RGA), operating at <10"−"5 Torr with a differential pumping system, is installed along with the optical emission spectroscopy (OES) system to monitor the hydrogen and impurity radiation lines. Effects of these wall conditioning techniques are investigated with the impurity monitoring system for ohmic discharges of VEST. The partial baking and He GDC show limited effects on plasma characteristics but sufficient H_2 GDC above 4 h enables the longer plasma current duration up to ∼15 ms within 3 h from the end of treatment.

  7. Design considerations for the TF center conductor post for the Ignition Spherical Torus (IST)

    International Nuclear Information System (INIS)

    Dalton, G.R.; Haines, J.R.

    1986-01-01

    A trade-off study has been carried out to compare the differential costs of using high-strength alloy copper versus oxygen-free, high-conductivity (OFHC) copper for the center legs of the toroidal field (TF) coils of an Ignition Spherical Torus (IST). The electrical heating, temperatures, stresses, cooling requirements, material costs, pump costs, and power to drive the TF coils and pumps are all assessed for both materials for a range of compact tokamak reactors. The alloy copper material is found to result in a more compact reactor and to allow use of current densities of up to 170 MA/m 2 versus 40 MA/m 2 for the OFHC copper. The OFHC conductor system with high current density is $24 million less expensive than more conventional copper systems with 30 MA/m 2 . The alloy copper system costs $32 million less than conventional systems. Therefore, the alloy system offers a net savings of $8 million compared to the 50% cold-worked OFHC copper system. Although the savings are a significant fraction of the center conductor post cost, they are relatively insignificant in terms of the total device cost. It is concluded that the use of alloy copper contributes very little to the economic or technical viability of the compact IST. It is recommended that a similar systematic approach be applied to evaluating coil material and current density trade-offs for other compact copper-TF-coil tokamak designs. 9 refs., 13 figs., 13 tabs

  8. DbAccess: Interactive Statistics and Graphics for Plasma Physics Databases

    International Nuclear Information System (INIS)

    Davis, W.; Mastrovito, D.

    2003-01-01

    DbAccess is an X-windows application, written in IDL(reg s ign), meeting many specialized statistical and graphical needs of NSTX [National Spherical Torus Experiment] plasma physicists, such as regression statistics and the analysis of variance. Flexible ''views'' and ''joins,'' which include options for complex SQL expressions, facilitate mixing data from different database tables. General Atomics Plot Objects add extensive graphical and interactive capabilities. An example is included for plasma confinement-time scaling analysis using a multiple linear regression least-squares power fit

  9. Design and development of the helicity injection system in Versatile Experiment Spherical Torus

    International Nuclear Information System (INIS)

    Park, JongYoon; An, Younghwa; Jung, Bongki; Lee, Jeongwon; Lee, HyunYoung; Chung, Kyoung-Jae; Na, Yong-Su; Hwang, Y.S.

    2015-01-01

    Graphical abstract: - Highlights: • A high current electron gun with single pulse power for both arc and extraction is developed. • The optimal gun operation is confirmed by impedance matching between the PFN and plasma. • The gun injected currents of 0.95 kA with the voltage of ∼410 V for 5 ms with a 1.2 kV PFN. • The helicity injection system using the gun has been developed and tested successfully in VEST. • Toroidal currents of up to 3.8 kA confirm possible relaxation into tokamak-like plasma. - Abstract: A helicity injection system for the Versatile Experiment Spherical Torus (VEST) has been successfully developed and commissioned. A high current electron gun utilizing hollow cathode and washer stacks has been designed and constructed with a single pulse power system that can provide voltages for both arc discharge and extraction sequentially. Tests for electron gun operation with the single pulse power system have been conducted under various toroidal and poloidal field strengths. The estimated plasma impedance, depending on the injection magnetic field structure, can be utilized for the optimal gun operation by impedance matching between the pulse power system and plasma. With the charging voltage of 1.2 kV, injection current of 0.95 kA has been obtained with the injection voltage of 410 V for about 5 ms. Initial helicity injection experiments have been conducted under various toroidal and poloidal field strengths and a toroidal plasma current of up to 3.8 kA is observed with the current multiplication larger than the geometric stacking ratio, confirming the possibility of relaxation into tokamak-like plasma with closed flux formation.

  10. Design and development of the helicity injection system in Versatile Experiment Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Park, JongYoon; An, Younghwa; Jung, Bongki; Lee, Jeongwon; Lee, HyunYoung; Chung, Kyoung-Jae; Na, Yong-Su; Hwang, Y.S., E-mail: yhwang@snu.ac.kr

    2015-10-15

    Graphical abstract: - Highlights: • A high current electron gun with single pulse power for both arc and extraction is developed. • The optimal gun operation is confirmed by impedance matching between the PFN and plasma. • The gun injected currents of 0.95 kA with the voltage of ∼410 V for 5 ms with a 1.2 kV PFN. • The helicity injection system using the gun has been developed and tested successfully in VEST. • Toroidal currents of up to 3.8 kA confirm possible relaxation into tokamak-like plasma. - Abstract: A helicity injection system for the Versatile Experiment Spherical Torus (VEST) has been successfully developed and commissioned. A high current electron gun utilizing hollow cathode and washer stacks has been designed and constructed with a single pulse power system that can provide voltages for both arc discharge and extraction sequentially. Tests for electron gun operation with the single pulse power system have been conducted under various toroidal and poloidal field strengths. The estimated plasma impedance, depending on the injection magnetic field structure, can be utilized for the optimal gun operation by impedance matching between the pulse power system and plasma. With the charging voltage of 1.2 kV, injection current of 0.95 kA has been obtained with the injection voltage of 410 V for about 5 ms. Initial helicity injection experiments have been conducted under various toroidal and poloidal field strengths and a toroidal plasma current of up to 3.8 kA is observed with the current multiplication larger than the geometric stacking ratio, confirming the possibility of relaxation into tokamak-like plasma with closed flux formation.

  11. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  12. Ignition curves for deuterium/helium-3 fuel in spherical tokamak ...

    Indian Academy of Sciences (India)

    have been obtained in ne, T plane and, to determine the thermal instability of ... economic, environmental and safety characteristics is more attractive than an advanced ... spherical torus experiments, a magnetohydrodynamics stable high beta ...

  13. The use of MDSplus on NSTX at PPPL

    International Nuclear Information System (INIS)

    Davis, W.; Roney, P.; Carroll, T.; Gibney, T.; Mastrovito, D.

    2002-01-01

    The MDSplus data acquisition system has been used successfully since the 1999 startup of NSTX for control, data acquisition and analysis for diagnostic subsystems. For each plasma 'shot' on NSTX about 75 MBs of data is acquired and loaded into MDSplus hierarchical data structures in 2-3 min. Physicists adapted to the MDSplus software tools with no real difficulty. Some locally developed tools are described. The support from the developers at MIT was timely and insightful. The use of MDSplus has resulted in significant cost savings for NSTX

  14. Fast Neutral Pressure Gauges in NSTX

    International Nuclear Information System (INIS)

    Raman, R.; Kugel, H.W.; Gernhardt, R.; Provost, T.; Jarboe, T.R.; Soukhanovskii, V.

    2004-01-01

    Successful operation in NSTX of two prototype fast-response micro ionization gauges during plasma operations has motivated us to install five gauges at different toroidal and poloidal locations to measure the edge neutral pressure and its dependence on the type of discharge (L-mode, H-mode, CHI) and the fueling method and location. The edge neutral pressure is also used as an input to the transport analysis codes TRANSP and DEGAS-2. The modified PDX-type Penning gauges are well suited for pressure measurements in the NSTX divertor where the toroidal field is relatively high. Behind the NSTX outer divertor plates where the field is lower, an unshielded fast ion gauge of a new design has been installed. This gauge was developed after laboratory testing of several different designs in a vacuum chamber with applied magnetic fields

  15. Application of Stark Tuned Laser for Interferometry and Polarimetry in Plasmas

    International Nuclear Information System (INIS)

    H.K. Park; K.C. Lee; B. Deng; C.W. Domier; M. Johnson; B. Nathan; N.C. Luhmann, Jr.

    2001-01-01

    A Stark-tuned optically pumped far-infrared CH(subscript ''3'')OH laser at 119 mm has been successfully applied in the Far Infrared Tangential Interferometer/Polarimeter (FIReTIP) system for the National Spherical Torus Experiment (NSTX). The system will provide temporally and radially resolved 2-D electron density profile [n(subscript ''e'')(r,t)] and toroidal field profile [B(subscript ''T'')(r,t)] data. In the 2001 campaign, a single channel interferometer system has been operated and tested for the Faraday rotation measurement. A plan for improvement and upgrading of the FIReTIP is discussed

  16. Fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Y.; Wang, W. X.; LeBlanc, B. P.; Guttenfelder, W.; Kaye, S. M.; Ethier, S.; Mazzucato, E.; Bell, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2015-11-15

    In this letter, we report the first observation of the fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)]. The observation was made in a set of RF-heated L-mode plasmas with toroidal magnetic field of 0.55 T and plasma current of 300 kA. It is observed that electron-scale turbulence spectral power (measured with a high-k collective microwave scattering system) decreases significantly following fast cessation of RF heating that occurs in less than 200 μs. The large drop in the turbulence spectral power has a short time delay of about 1–2 ms relative to the RF cessation and happens on a time scale of 0.5–1 ms, much smaller than the energy confinement time of about 10 ms. Power balance analysis shows a factor of about 2 decrease in electron thermal diffusivity after the sudden drop of turbulence spectral power. Measured small changes in equilibrium profiles across the RF cessation are unlikely able to explain this sudden reduction in the measured turbulence and decrease in electron thermal transport, supported by local linear stability analysis and both local and global nonlinear gyrokinetic simulations. The observations imply that nonlocal flux-driven mechanism may be important for the observed turbulence and electron thermal transport.

  17. Studies of improved electron confinement in low density L-mode National Spherical Torus Experiment discharges

    International Nuclear Information System (INIS)

    Stutman, D.; Finkenthal, M.; Tritz, K.; Redi, M. H.; Kaye, S. M.; Bell, M. G.; Bell, R. E.; LeBlanc, B. P.; Hill, K. W.; Medley, S. S.; Menard, J. E.; Rewoldt, G.; Wang, W. X.; Synakowski, E. J.; Levinton, F.; Kubota, S.; Bourdelle, C.; Dorland, W.; The NSTX Team

    2006-01-01

    Electron transport is rapid in most National Spherical Torus Experiment, M. Ono et al., Nucl. Fusion 40, 557 (2000) beam heated plasmas. A regime of improved electron confinement is nevertheless observed in low density L-mode (''low-confinement'') discharges heated by early beam injection. Experiments were performed in this regime to study the role of the current profile on thermal transport. Variations in the magnetic shear profile were produced by changing the current ramp rate and onset of neutral beam heating. An increased electron temperature gradient and local minimum in the electron thermal diffusivity were observed at early times in plasmas with the fastest current ramp and earliest beam injection. In addition, an increased ion temperature gradient associated with a region of reduced ion transport is observed at slightly larger radii. Ultrasoft x-ray measurements of double-tearing magnetohydrodynamic activity, together with current diffusion calculations, point to the existence of negative magnetic shear in the core of these plasmas. Discharges with slower current ramp and delayed beam onset, which are estimated to have more monotonic q-profiles, do not exhibit regions of reduced transport. The results are discussed in the light of the initial linear microstability assessment of these plasmas, which suggests that the growth rate of all instabilities, including microtearing modes, can be reduced by negative or low magnetic shear in the temperature gradient region. Several puzzles arising from the present experiments are also highlighted

  18. Compact and multi-view solid state neutral particle analyzer arrays on National Spherical Torus Experiment-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D., E-mail: deyongl@uci.edu; Heidbrink, W. W.; Hao, G. Z.; Zhu, Y. B. [Departments of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tritz, K. [Departments of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Fredrickson, E. D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-11-15

    A compact and multi-view solid state neutral particle analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade. The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from the charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially, and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPA and r-SSNPA are mainly sensitive to passing and trapped particles, respectively. In addition, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thicknesses to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10, and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics instabilities.

  19. On the divergence of triangular and eccentric spherical sums of double Fourier series

    Energy Technology Data Exchange (ETDEWEB)

    Karagulyan, G A [Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan (Armenia)

    2016-01-31

    We construct a continuous function on the torus with almost everywhere divergent triangular sums of double Fourier series. We also prove an analogous theorem for eccentric spherical sums. Bibliography: 14 titles.

  20. On the divergence of triangular and eccentric spherical sums of double Fourier series

    International Nuclear Information System (INIS)

    Karagulyan, G A

    2016-01-01

    We construct a continuous function on the torus with almost everywhere divergent triangular sums of double Fourier series. We also prove an analogous theorem for eccentric spherical sums. Bibliography: 14 titles

  1. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development

    International Nuclear Information System (INIS)

    Cheng, E.T.; Cerbone, R.J.; Sviatoslavsky, I.N.; Galambos, L.D.; Peng, Y.-K.M.

    2000-01-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device can be complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation three, can produce a neutron wall loading from 0.5 to 5 MW m -2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW year m -2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept

  2. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren,R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov L. E.

    2008-09-26

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  3. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    International Nuclear Information System (INIS)

    Kugel, W.; Bell, M.; Berzak, L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren, R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov, L. E.

    2008-01-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW∼1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with long pulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization

  4. Implications of NSTX Lithium Results for Magnetic Fusion Research

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Kaita, R.; Kugel, H.W.; LeBlanc, B.P.; Canik, J.M.; Diem, S.; Gerhardt, S.P.; Hosea, J.; Kaye, S.; Mansfield, D.; Maingi, R.; Menard, J.; Paul, S.F.; Raman, R.; Sabbagh, S.A.; Skinner, C.H.; Soukhanovskii, V.; Taylor, G.

    2010-01-01

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ∼ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  5. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    Science.gov (United States)

    Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2016-02-01

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  6. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Gorelenkova, M. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Heidbrink, W. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Stagner, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy

    2016-01-12

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  7. CHI Research on NSTX-U

    Science.gov (United States)

    Lay, W.-S.; Raman, R.; Jarboe, T. R.; Nelson, B. A.; Mueller, D.; Ebrahimi, F.; Ono, M.; Jardin, S. C.; Taylor, G.

    2017-10-01

    At present about 20% of the total plasma current required for sustained operation has been generated by transient CHI. The present understanding suggests that it may be possible to generate all of the needed current in a ST / tokamak using transient CHI. In such a scenario, one could transition directly from a CHI produced plasma to a non-inductively sustained plasma, without the difficult intermediate step that involves non-inductive current ramp-up. STs based on this new configuration would take advantage of evolving developments in high-temperature superconductor technology to develop a simpler design ST that relies primarily on CHI for plasma current generation. Motivated by the very good results from NSTX and HIT-II, we are examining the potential application of transient CHI for reactor configurations through these studies. (1) Study of the maximum levels of start-up currents that could be generated on NSTX-U, (2) application of a single biased electrode configuration on QUEST to protect the insulator from neutron damage in a CHI reactor installation, and (3) QUEST-like, but a double biased electrode configuration for PEGASUS and NSTX-U. Results from these on-going studies will be described. This work is supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-FG02-99ER54519 AM08, and DE-SC0006757.

  8. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A. G., E-mail: mclean@fusion.gat.com; Soukhanovskii, V. A.; Allen, S. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Carlstrom, T. N. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); LeBlanc, B. P.; Ono, M.; Stratton, B. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.

  9. Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Maingi, R.; Sabbagh, S.A.; Soukhanovskii, V.; Stutman, D.

    2003-01-01

    Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 (2000) 557] have achieved normalized beta values twice the conventional tokamak limit at low internal inductance and with significant bootstrap current. These experimental results have motivated a computational re-examination of the plasma aspect ratio dependence of ideal no-wall magnetohydrodynamic stability limits. These calculations find that the profile-optimized no-wall stability limit in high bootstrap fraction regimes is well described by a nearly aspect ratio invariant normalized beta parameter utilizing the total magnetic field energy density inside the plasma. However, the scaling of normalized beta with internal inductance is found to be strongly aspect ratio dependent at sufficiently low aspect ratio. These calculations and detailed stability analyses of experimental equilibria indicate that the nonrotating plasma no-wall stability limit has been exceeded by as much as 30% in NSTX in a high bootstrap fraction regime

  10. Initial operation of NSTX with plasma control

    International Nuclear Information System (INIS)

    Gates, D.; Bell, M.; Ferron, J.; Kaye, S.; Menard, J.; Mueller, D.; Neumeyer, C.; Sabbagh, S.

    2000-01-01

    First plasma, with a maximum current of 300kA, was achieved on NSTX in February 1999. These results were obtained using preprogrammed coil currents. The first controlled plasmas on NSTX were made starting in August 1999 with the full 1MA plasma current achieved in December 1999. The controlled quantities were plasma position (R, Z) and current (Ip). Variations in the plasma shape are achieved by adding preprogrammed currents to those determined by the control parameters. The control system is fully digital, with plasma position and current control, data acquisition, and power supply control all occurring in the same four-processor real time computer. The system uses the PCS (Plasma Control Software) system designed at General Atomics. Modular control algorithms, specific to NSTX, were written and incorporated into the PCS. The application algorithms do the actual control calculations, with the PCS handling data passing. The control system, including planned upgrades, will be described, along with results of the initial controlled plasma operations. Analysis of the performance of the control system will also be presented

  11. Electron Bernstein wave-bootstrap current synergy in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Harvey, R.W.; Taylor, G.

    2005-01-01

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code to determine the degree of synergy between them. A target β=40% NSTX [M. Ono, S. Kaye, M. Peng et al., Proceedings of the 17th IAEA Fusion Energy Conference, edited by M. Spak (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135] plasma is examined. A simple bootstrap model in the collisional-quasilinear CQL3D Fokker-Planck code (National Technical Information Service document No. DE93002962) is used in these studies: the transiting electron distributions are connected in velocity space at the trapped-passing boundary to trapped-electron distributions that are displaced radially by a half-banana-width outwards/inwards for the co-passing/counter-passing regions. This model agrees well with standard bootstrap current calculations over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current

  12. 2016 Annual Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Virginia [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)

    2017-09-26

    This report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of Princeton Plasma Physics Laboratory’s (PPPL) operations. The results of the 2016 environmental surveillance and monitoring program for PPPL’s are presented and discussed. The report also summarizes environmental initiatives, assessments, and community involvement programs that were undertaken in 2016. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality – a clean, alternative energy source. 2016 marked the eighteenth year of National Spherical Torus Experiment and the first year of NSTX-U (Upgrade) operations. The NSTX-U Project is a collaboration among national laboratories, universities, and national and international research institutions and is a major element in the US Fusion Energy Sciences Program. Its design tests the physics principles of spherical torus (ST) plasmas, playing an important role in the development of smaller, more economical fusion reactors. NSTX-U began operations after its first upgrade that installed the new center stack magnets and second neutral beam, which would allow for hotter plasmas and greater field strength to maintain the fusion reaction longer. Due to operational issues with a poloidal coil, NSTX-U operated briefly in 2016. In 2016, PPPL’s radiological environmental monitoring program measured tritium in the air at the NSTX-U Stack and at on -site sampling stations. Using highly sensitive monitors, PPPL is capable of detecting small changes in the ambient levels of tritium. The operation of an in- stack monitor located on D-site is used to demonstrate compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations. Also included in PPPL’s radiological environmental monitoring program

  13. Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S. M., E-mail: skaye@pppl.gov; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2014-08-15

    A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as β{sub e}, ν{sub e}{sup ∗}, the MHD α parameter, and the gradient scale lengths of T{sub e}, T{sub i}, and n{sub e} were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when β{sub e} and ν{sub e}{sup ∗} were relatively low, ballooning parity modes were dominant. As time progressed and both β{sub e} and ν{sub e}{sup ∗} increased, microtearing became the dominant low-k{sub θ} mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-k{sub θ}, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting T{sub e} for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

  14. Torus Breakdown in Noninvertible Maps

    DEFF Research Database (Denmark)

    Maistrenko, V.; Maistrenko, Yu.; Mosekilde, Erik

    2003-01-01

    We propose a criterion for the destruction of a two-dimensional torus through the formation of an infinite set of cusp points on the closed invariant curves defining the resonance torus. This mechanism is specific to noninvertible maps. The cusp points arise when the tangent to the torus at the p......We propose a criterion for the destruction of a two-dimensional torus through the formation of an infinite set of cusp points on the closed invariant curves defining the resonance torus. This mechanism is specific to noninvertible maps. The cusp points arise when the tangent to the torus...... at the point of intersection with the critical curve L-0 coincides with the eigendirection corresponding to vanishing eigenvalue for the noninvertible map. Further parameter changes lead typically to the generation of loops (self-intersections of the invariant manifolds) followed by the transformation...

  15. 'Beam-emission spectroscopy' diagnostics also measure edge fast-ion light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Bortolon, A; McKee, G R; Smith, D R

    2011-01-01

    Beam-emission spectroscopy (BES) diagnostics normally detect fluctuations in the light emitted by an injected neutral beam. Under some circumstances, however, light from fast ions that charge exchange in the high neutral-density region at the edge of the plasma make appreciable contributions to the BES signals. This 'passive' fast-ion D α (FIDA) light appears in BES signals from both the DIII-D tokamak and the National Spherical Torus Experiment (NSTX). One type of passive FIDA light is associated with classical orbits that traverse the edge. Another type is caused by instabilities that expel fast ions from the core; this light can complicate measurement of the instability eigenfunction.

  16. Ion Heating by Fast Particle Induced Alfven Turbulence

    International Nuclear Information System (INIS)

    Gates, D.; Gorelenkov, N.; White, R.B.

    2001-01-01

    A novel mechanism that directly transfers energy from Super-Alfvenic energetic ions to thermal ions in high-beta plasmas is described. The mechanism involves the excitation of compressional Alfvin eigenmodes (CAEs) in the frequency range with omega less than or approximately equal to omega(subscript ci). The broadband turbulence resulting from the large number of excited modes causes stochastic diffusion in velocity space, which transfers wave energy to thermal ions. This effect may be important on the National Spherical Torus Experiment (NSTX), and may scale up to reactor scenarios. This has important implications for low aspect ratio reactor concepts, since it potentially allows for the modification of the ignition criterion

  17. The role of the spherical tokamak in clarifying tokamak physics

    International Nuclear Information System (INIS)

    Morris, A.W.; Akers, R.J.; Connor, J.W.; Counsell, G.F.; Gryaznevich, M.P.; Hender, T.C.; Maddison, G.P.; Martin, T.J.; McClements, K.G.; Roach, C.M.; Robinson, D.C.; Sykes, A.; Valovic, M.; Wilson, H.R.; Fonck, R.J.; Gusev, V.; Kaye, S.M.; Majeski, R.; Peng, Y.-K.M.; Medvedev, S.; Sharapov, S.; Walsh, M.J.

    1999-01-01

    The spherical tokamak (ST) provides a unique environment in which to perform complementary and exacting tests of the tokamak physics required for a burning plasma experiment of any aspect ratio, while also having the potential for long-term fusion applications in its own right. New experiments are coming on-line in the UK (MAST), USA (NSTX, Pegasus), Russia (Globus-M), Brazil (ETE) and elsewhere, and the status of these devices will be reported, along with newly-analysed data from START. Those physics issues where the ST provides an opportunity to remove degeneracy in the databases or clarify one's understanding will be emphasized. (author)

  18. The Bumpy Torus Experiment

    International Nuclear Information System (INIS)

    Cobble, James Allen

    2016-01-01

    This document summarizes the Bumpy Torus Experiment as a viable fusion reactor concept. Conclusions reached include the following: In 30 years, order-of-magnitude technological advances have occurred in multiple areas of plasma heating and confinement. The ORNL bumpy torus of the 1970s was technology limited. Now that ITER is technology limited, an alternate concept is needed. A device built on such a concept should be current free, CW, modular, have a gentle shutdown, and demonstrable stability. The bumpy torus meets or has the potential to meet all of these criteria. Earlier, stability was not possible due to power limits; it has not been fully tested. It is time to revisit the bumpy-torus concept with a modest new machine.

  19. The Bumpy Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-09

    This document summarizes the Bumpy Torus Experiment as a viable fusion reactor concept. Conclusions reached include the following: In 30 years, order-of-magnitude technological advances have occurred in multiple areas of plasma heating and confinement. The ORNL bumpy torus of the 1970s was technology limited. Now that ITER is technology limited, an alternate concept is needed. A device built on such a concept should be current free, CW, modular, have a gentle shutdown, and demonstrable stability. The bumpy torus meets or has the potential to meet all of these criteria. Earlier, stability was not possible due to power limits; it has not been fully tested. It is time to revisit the bumpy-torus concept with a modest new machine.

  20. Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng; Liu, J. Y. [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Fu, G. Y.; Breslau, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2013-10-15

    Extensive linear and nonlinear simulations have been carried out to investigate the energetic particle-driven fishbone instability in spherical tokamak plasmas with weakly reversed q profile and the q{sub min} slightly above unity. The global kinetic-MHD hybrid code M3D-K is used. Numerical results show that a fishbone instability is excited by energetic beam ions preferentially at higher q{sub min} values, consistent with the observed appearance of the fishbone before the “long-lived mode” in MAST and NSTX experiments. In contrast, at lower q{sub min} values, the fishbone tends to be stable. In this case, the beam ion effects are strongly stabilizing for the non-resonant kink mode. Nonlinear simulations show that the fishbone saturates with strong downward frequency chirping as well as radial flattening of the beam ion distribution. An (m, n) = (2, 1) magnetic island is found to be driven nonlinearly by the fishbone instability, which could provide a trigger for the (2, 1) neoclassical tearing mode sometimes observed after the fishbone instability in NSTX.

  1. Diagnostic Development on NSTX

    International Nuclear Information System (INIS)

    A.L. Roquemore; D. Johnson; R. Kaita; et al

    1999-01-01

    Diagnostics are described which are currently installed or under active development for the newly commissioned NSTX device. The low aspect ratio (R/a less than or equal to 1.3) and low toroidal field (0.1-0.3T) used in this device dictate adaptations in many standard diagnostic techniques. Technical summaries of each diagnostic are given, and adaptations, where significant, are highlighted

  2. Status of the Experimental Physics and Industrial Control System at NSTX

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.

    2002-01-01

    The NSTX achieved first plasma in 1999. The Experimental Physics and Industrial Control System (EPICS) is used to provide data-integration services for monitoring and control of all NSTX engineering subsystems. EPICS is a set of software initially developed at U.S. DOE laboratories. It is currently used and maintained through a global collaboration of hundreds of scientists and engineers. This paper will relate some of our experiences using and supporting the EPICS software. Topics include reliability and maintainability, lessons learned, recently added engineering subsystems, new EPICS software tools, and a review of our first EPICS software upgrade. Steps to modernize the technical infrastructure of EPICS to ensure effective support for NSTX will also be described

  3. Equilibrium location for spherical DNA and toroidal cyclodextrin

    Science.gov (United States)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-05-01

    Cyclodextrin comprises a ring structure composed of glucose molecules with an ability to form complexes of certain substances within its central cavity. The compound can be utilised for various applications including food, textiles, cosmetics, pharmaceutics, and gene delivery. In gene transfer, the possibility of forming complexes depends upon the interaction energy between cyclodextrin and DNA molecules which here are modelled as a torus and a sphere, respectively. Our proposed model is derived using the continuum approximation together with the Lennard-Jones potential, and the total interaction energy is obtained by integrating over both the spherical and toroidal surfaces. The results suggest that the DNA prefers to be symmetrically situated about 1.2 Å above the centre of the cyclodextrin to minimise its energy. Furthermore, an optimal configuration can be determined for any given size of torus and sphere.

  4. Solenoid-free plasma startup in NSTX using transient CHI

    International Nuclear Information System (INIS)

    Raman, R.; Jarboe, T.R.; Nelson, B.A.; Mueller, D.; Bell, M.G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Menard, J.; Ono, M.; Paul, S.; Roquemore, L.; Maingi, R.; Maqueda, R.; Nagata, M.; Sabbagh, S.

    2009-01-01

    Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.

  5. Simulation Of Microtearing Turbulence In NSTX

    International Nuclear Information System (INIS)

    Guttenfelder, W.; Candy, J.; Kaye, S.M.; Nevins, W.M.; Wanag, E.; Zhang, J.; Bell, R.E.; Crocker, N.A.; Hammett, G.W.; LeBlanc, B.P.; Mikkelsen, D.R.; Ren, Y.; Yuh, H.

    2012-01-01

    Thermal energy confinement times in NSTX dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future ST devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport (∼98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E-B flows as experimental values of E-B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.

  6. Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Luitjohan, K.E. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Heim, B. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Kollar, L. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Skinner, C.H.; Kugel, H.W.; Kaita, R.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-12-15

    Lithium wall conditioning in NSTX has resulted in reduced divertor recycling, improved energy confinement, and reduced frequency of edge-localized modes (ELMs), up to the point of complete ELM suppression. NSTX tiles were removed from the vessel following the 2008 campaign and subsequently analyzed using X-ray photoelectron spectroscopy as well as nuclear reaction ion beam analysis. In this paper we relate surface chemistry to deuterium retention/recycling, develop methods for cleaning of passivated NSTX tiles, and explore a method to effectively extract bound deuterium from lithiated graphite. Li–O–D and Li–C–D complexes characteristic of deuterium retention that form during NSTX operations are revealed by sputter cleaning and heating. Heating to ∼850 °C desorbed all deuterium complexes observed in the O 1s and C 1s photoelectron energy ranges. Tile locations within approximately ±2.5 cm of the lower vertical/horizontal divertor corner appear to have unused Li-O bonds that are not saturated with deuterium, whereas locations immediately outboard of this region indicate high deuterium recycling. X-ray photo electron spectra of a specific NSTX tile with wide ranging lithium coverage indicate that a minimum lithium dose, 100–500 nm equivalent thickness, is required for effective deuterium retention. This threshold is suspected to be highly sensitive to surface morphology. The present analysis may explain why plasma discharges in NSTX continue to benefit from lithium coating thickness beyond the divertor deuterium ion implantation depth, which is nominally <10 nm.

  7. Torus type thermonuclear device

    International Nuclear Information System (INIS)

    Imura, Yasuya.

    1979-01-01

    Purpose: To attain supporting effect against electromagnetic force and moderate the inner stress applied to toroidal coils due to thermal expansion by intervening a stress relaxation member between the outer circumferential side of a torus and a support device in toroidal coils. Constitution: Toroidal coils for confining a plasma within a torus vacuum container is supported on a support secured to upper and lower bases. A thermoplastic stress relaxation material of a low young's modulus is put between the outer circumferential side of the torus container and the torus outer circumferential side of the support in the toroidal coil. Thermoplastic resin is best suited to the stress relaxation substance, although tetrafluoro resin may be used as the stress relaxation substance while packing non-woven tetron fabric or non-woven glass fabric impregnated with varnish in a gap between the stress relaxation substance and the support or the toroidal coils. (Seki, T.)

  8. Soft X-ray Tangential Imaging of the NSTX Core Plasma by Means of a MPGD Pin-hole Camera

    International Nuclear Information System (INIS)

    Pacella, D.; Leigheb, M.; Bellazzini, R.; Brez, A.; Finkenthal, M.; Stutman, D.; Kaita, R.; Sabbagh, S.A.

    2003-01-01

    A fast X-ray system based on a Micro Pattern Gas Detector has been used, for the first time, to investigate emission from the plasma core of the National Spherical Tokamak eXperiment (NSTX) at the Princeton Plasma Physics Laboratory. The results presented in this work demonstrate the capability of such a device to measure with a time resolution of the order of 1 ms the curvature and the elongation of the X-ray iso-emissivity contours, under various plasma conditions. Also, comparisons with the magnetic surface structure calculated by the EFIT code show good agreement between reconstructed flux surface and the soft X-ray emissions (SXR) for poloidal beta values up to 0.6. For greater values of beta, X-ray iso-emissivity contours become circular, while magnetic flux surface reconstructions yield elongation 1.5 < k < 2.2. The X-ray images have been acquired with a (statistical) signal to noise ratio (SNR) per pixel of about 30. Thanks to the direct and efficient X-ray conversion and its operation in a photon counting mode, this new diagnostic tool allows the routine investigation of the plasma core with a sampling rate of 1 kHz and extremely high SNR under all experimental conditions in NSTX

  9. Edge Recycling and Heat Fluxes in L- and H-mode NSTX Plasmas

    International Nuclear Information System (INIS)

    Soukhanovskii, V.A.; Maingi, R.; Raman, R.; Kugel, H.; LeBlanc, B.; Roquemore, A.L.; Lasnier, C.J.

    2003-01-01

    Introduction Edge characterization experiments have been conducted in NSTX to provide an initial survey of the edge particle and heat fluxes and their scaling with input power and electron density. The experiments also provided a database of conditions for the analyses of the NSTX global particle sources, core fueling, and divertor operating regimes

  10. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    International Nuclear Information System (INIS)

    Finley, Virginia

    2001-01-01

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  11. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  12. Turbulence Scattering of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    M. Ono; J. Hosea; B. LeBlanc; J. Menard; C.K. Phillips; R. Wilson; P. Ryan; D. Swain; J. Wilgen; S. Kubota; and T.K. Mau

    2001-01-01

    Effect of scattering of high-harmonic fast-magnetosonic waves (HHFW) by low-frequency plasma turbulence is investigated. Due to the similarity of the wavelength of HHFW to that of the expected low-frequency turbulence in the plasma edge region, the scattering of HHFW can become significant under some conditions. The scattering probability increases with the launched wave parallel-phase-velocity as the location of the wave cut-off layer shifts toward the lower density edge. The scattering probability can be reduced significantly with higher edge plasma temperature, steeper edge density gradient, and magnetic field. The theoretical model could explain some of the HHFW heating observations on the National Spherical Torus Experiment (NSTX)

  13. Integrating EPICS and MDSplus

    International Nuclear Information System (INIS)

    Mastrovito, D.; Davis, W.; Dong, J.; Roney, P.; Sichta, P.

    2006-01-01

    The National Spherical Torus Experiment (NSTX) has been in operation at the Princeton Plasma Physics Laboratory (PPPL) since 1999. Since then, NSTX has made use of the Experimental Physics and Industrial Control System (EPICS) and MDSplus software packages, among others for control and data acquisition. To date, the two products have been integrated using special 'bridging' programs that include client-components for the EPICS and MDSplus servers. Recent improvements in the EPICS software have made it easier to develop a direct interface with MDSplus. This paper will describe the new EPICS extensions developed at PPPL that provide: (1) a direct data interface between EPICS process variables and MDSplus nodes; and (2) an interface between EPICS events and MDSplus events. These extensions have been developed for use with EPICS on Solaris and are currently being modified for use on real-time operating systems. Separately, an XML-RPC client was written to access EPICS 'trended' data, sampled usually once per minute during a 24 h period. The client extracts and writes a day's worth of trended data to a 'daily' MDSplus tree

  14. Torus-doubling process via strange nonchaotic attractors

    International Nuclear Information System (INIS)

    Mitsui, Takahito; Uenohara, Seiji; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki

    2012-01-01

    Torus-doubling bifurcations typically occur only a finite number of times. It has been assumed that torus-doubling bifurcations in quasiperiodically forced systems are interrupted by the appearance of strange nonchaotic attractors (SNAs). In the present Letter, we study a quasiperiodically forced noninvertible map and report the occurrence of a torus-doubling process via SNAs. The mechanism of this process is numerically clarified. Furthermore, this process is experimentally demonstrated in a switched-capacitor integrated circuit. -- Highlights: ► We report the occurrence of a torus-doubling process via strange nonchaotic attractors (SNAs). ► The process consists of the gradual fractalization of a torus and the Heagy–Hammel transition. ► The torus-doubling process via SNAs is also experimentally demonstrated in an electronic circuit.

  15. NSTX Protection And Interlock Systems For Coil And Powers Supply Systems

    International Nuclear Information System (INIS)

    Zhao, X.; Ramakrishnan, S.; Lawson, J.; Neumeyer, C.; Marsala, R.; Schneider, H.

    2009-01-01

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is either prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.

  16. Integration of Microsoft Windows applications with MDSplus data acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Mastrovito, Dana M.

    2002-01-01

    Data acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers and specially developed 'turn-key' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and Component Object Model (COM) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as charged couple device cameras and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from interactive data language for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  17. Impact of the wall conditioning program on plasma performance in NSTX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Soukhanovskii, V.; Bell, M.; Blanchard, W.; Gates, D.; LeBlanc, B.; Maingi, R.; Mueller, D.; Na, H.K.; Paul, S.; Skinner, C.H.; Stutman, D.; Wampler, W.R.

    2003-01-01

    High performance operating regimes have been achieved on NSTX through impurity control and wall conditioning techniques. These techniques include HeGDC-aided boronization using deuterated trimethylboron, inter-discharge HeGDC, 350 deg. C PFC bake-out followed by D 2 and HeGDC, and experiments to test fueling discharges with either a He-trimethylboron mixture or pure trimethylboron. The impact of this impurity and density control program on recent advances in NSTX plasma performance is discussed

  18. Torus knots and mirror symmetry

    CERN Document Server

    Brini, Andrea; Marino, Marcos

    2012-01-01

    We propose a spectral curve describing torus knots and links in the B-model. In particular, the application of the topological recursion to this curve generates all their colored HOMFLY invariants. The curve is obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of the resolved conifold, and should be regarded as the mirror of the topological D-brane associated to torus knots in the large N Gopakumar-Vafa duality. Moreover, we derive the curve as the large N limit of the matrix model computing torus knot invariants.

  19. Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes

    Energy Technology Data Exchange (ETDEWEB)

    Boedo, J. A., E-mail: jboedo@ucsd.edu; Rudakov, D. L. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States); Myra, J. R.; D' Ippolito, D. A. [Lodestar Research Corp, 2400 Central Ave., Boulder, Colorado 80301 (United States); Zweben, S.; Maingi, R.; Maqueda, R. J.; Bell, R.; Kugel, H.; Leblanc, B.; Roquemore, L. A. [Princeton University, PO Box 451, Princeton, New Jersey 08543 (United States); Soukhanovskii, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ahn, J. W.; Canik, J. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37830 (United States); Crocker, N. [University of California Los Angeles, PO Box 957099, Los Angeles, California 90095 (United States)

    2014-04-15

    Transport and turbulence profiles were directly evaluated using probes for the first time in the edge and scrape-off layer (SOL) of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] in low (L) and high (H) confinement, low power (P{sub in}∼ 1.3 MW), beam-heated, lower single-null discharges. Radial turbulent particle fluxes peak near the last closed flux surface (LCFS) at ≈4×10{sup 21} s{sup −1} in L-mode and are suppressed to ≈0.2×10{sup 21} s{sup −1} in H mode (80%–90% lower) mostly due to a reduction in density fluctuation amplitude and of the phase between density and radial velocity fluctuations. The radial particle fluxes are consistent with particle inventory based on SOLPS fluid modeling. A strong intermittent component is identified. Hot, dense plasma filaments 4–10 cm in diameter, appear first ∼2 cm inside the LCFS at a rate of ∼1×10{sup 21} s{sup −1} and leave that region with radial speeds of ∼3–5 km/s, decaying as they travel through the SOL, while voids travel inward toward the core. Profiles of normalized fluctuations feature levels of 10% inside LCFS to ∼150% at the LCFS and SOL. Once properly normalized, the intermittency in NSTX falls in similar electrostatic instability regimes as seen in other devices. The L-H transition causes a drop in the intermittent filaments velocity, amplitude and number in the SOL, resulting in reduced outward transport away from the edge and a less dense SOL.

  20. Impact of ELM filaments on divertor heat flux dynamics in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, J.-W., E-mail: jahn@pppl.gov [Oak Ridge National Laboratory, Oak Ridge (United States); Maingi, R. [Princeton Plasma Physics Laboratory, Princeton (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore (United States)

    2015-08-15

    The ELM induced change in wetted area (A{sub wet}) and peak heat flux (q{sub peak}) of divertor heat flux is investigated as a function of the number of striations, which represent ELM filaments, observed in the heat flux profile in NSTX. More striations are found to lead to larger A{sub wet} and lower q{sub peak}. The typical number of striations observed in NSTX is 0–9, while 10–15 striations are normally observed in other machines such as JET, and the ELM contracts heat flux profile when the number of striations is less than 3–4 but broadens it with more of them. The smaller number of striations in NSTX is attributed to the fact that NSTX ELMs are against kink/peeling boundary with lower toroidal mode number (n = 1–5), while typical peeling–ballooning ELMs have higher mode number of n = 10–20. For ELMs with smaller number of striations, relative A{sub wet} change is rather constant and q{sub peak} change rapidly increases with increasing ELM size, while A{sub wet} change slightly increases leading to a weaker increase of q{sub peak} change for ELMs with larger number of striations, both of which are unfavourable trend for the material integrity of divertor tiles.

  1. Tangential 2-D Edge Imaging for GPI and Edge/Impurity Modeling

    International Nuclear Information System (INIS)

    Maqueda, Ricardo; Levinton, Fred M.

    2011-01-01

    Nova Photonics, Inc. has a collaborative effort at the National Spherical Torus Experiment (NSTX). This collaboration, based on fast imaging of visible phenomena, has provided key insights on edge turbulence, intermittency, and edge phenomena such as edge localized modes (ELMs) and multi-faceted axisymmetric radiation from the edge (MARFE). Studies have been performed in all these areas. The edge turbulence/intermittency studies make use of the Gas Puff Imaging diagnostic developed by the Principal Investigator (Ricardo Maqueda) together with colleagues from PPPL. This effort is part of the International Tokamak Physics Activity (ITPA) edge, scrape-off layer and divertor group joint activity (DSOL-15: Inter-machine comparison of blob characteristics). The edge turbulence/blob study has been extended from the current location near the midplane of the device to the lower divertor region of NSTX. The goal of this effort was to study turbulence born blobs in the vicinity of the X-point region and their circuit closure on divertor sheaths or high density regions in the divertor. In the area of ELMs and MARFEs we have studied and characterized the mode structure and evolution of the ELM types observed in NSTX, as well as the study of the observed interaction between MARFEs and ELMs. This interaction could have substantial implications for future devices where radiative divertor regions are required to maintain detachment from the divertor plasma facing components.

  2. Operational Characteristics of Liquid Lithium Divertor in NSTX

    Science.gov (United States)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  3. Mechanical Design of the NSTX High-k Scattering Diagnostic

    International Nuclear Information System (INIS)

    Feder, R.; Mazzucato, E.; Munsat, T.; Park, H.; Smith, D.R.; Ellis, R.; Labik, G.; Priniski, C.

    2005-01-01

    The NSTX High-k Scattering Diagnostic measures small-scale density fluctuations by the heterodyne detection of waves scattered from a millimeter wave probe beam at 280 GHz and λ = 1.07 mm. To enable this measurement, major alterations were made to the NSTX vacuum vessel and Neutral Beam armor. Close collaboration between the PPPL physics and engineering staff resulted in a flexible system with steerable launch and detection optics that can position the scattering volume either near the magnetic axis (ρ ∼ .1) or near the edge (ρ ∼ .8). 150 feet of carefully aligned corrugated waveguide was installed for injection of the probe beam and collection of the scattered signal in to the detection electronics

  4. Mechanical Design of the NSTX High-k Scattering Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Feder, R.; Mazzucato, E.; Munsat, T.; Park, H,; Smith, D. R.; Ellis, R.; Labik, G.; Priniski, C.

    2005-09-26

    The NSTX High-k Scattering Diagnostic measures small-scale density fluctuations by the heterodyne detection of waves scattered from a millimeter wave probe beam at 280 GHz and {lambda}=1.07 mm. To enable this measurement, major alterations were made to the NSTX vacuum vessel and Neutral Beam armor. Close collaboration between the PPPL physics and engineering staff resulted in a flexible system with steerable launch and detection optics that can position the scattering volume either near the magnetic axis ({rho} {approx} .1) or near the edge ({rho} {approx} .8). 150 feet of carefully aligned corrugated waveguide was installed for injection of the probe beam and collection of the scattered signal in to the detection electronics.

  5. Design of Faraday cup ion detectors built by thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Szalkowski, G.A., E-mail: gszalkowski3@gatech.edu [Department of Nuclear Engineering, Georgia Institute of Technology, 770 State St., Atlanta, GA 30332 (United States); Darrow, D.S., E-mail: ddarrow@pppl.gov [Princeton Plasma Physics Laboratory, P. O. Box 451, Princeton, NJ 08543 (United States); Cecil, F.E., E-mail: fcecil@mines.edu [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States)

    2017-03-11

    Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on the Joint European Torus (JET) and the National Spherical Torus Experiment-Upgrade (NSTX-U). The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.

  6. Drift resonance and stability of the Io plasma torus

    Science.gov (United States)

    Zhan, Jie; Hill, T. W.

    2000-03-01

    The observed local time asymmetry of the Io plasma torus is generally attributed to the presence of a persistent dawn-to-dusk electric field in the Jovian magnetosphere. The local time asymmetry is modulated at the System 3 rotation period of Jupiter's magnetic field, suggesting that the dawn-to-dusk electric field may be similarly modulated. We argue that such a System 3 modulation would have a profound disruptive effect on the observed torus structure if the torus were to corotate at exactly the System 3 rate: the torus would be a resonantly forced harmonic oscillator, and would disintegrate in a few rotation periods, contrary to observations. This destabilizing effect is independent of, and in addition to, the more familiar effect of the centrifugal interchange instability, which is also capable of disrupting the torus in a few rotation periods in the absence of other effects. We conclude that the observed (few percent) corotation lag of the torus is essential to preserving the observed long-lived torus structure by detuning the resonant frequency (the torus drift frequency) relative to the forcing frequency (System 3). A possible outcome of this confinement mechanism is a residual radial oscillation of the torus at the beat period (~10 days) between System 3 and the torus drift period.

  7. Torus sector handling system

    International Nuclear Information System (INIS)

    Grisham, D.L.

    1981-01-01

    A remote handling system is proposed for moving a torus sector of the accelerator from under the cryostat to a point where it can be handled by a crane and for the reverse process for a new sector. Equipment recommendations are presented, as well as possible alignment schemes. Some general comments about future remote-handling methods and the present capabilities of existing systems will also be included. The specific task to be addressed is the removal and replacement of a 425 to 450 ton torus sector. This requires a horizontal movement of approx. 10 m from a normal operating position to a point where its further transport can be accomplished by more conventional means (crane or floor transporter). The same horizontal movement is required for reinstallation, but a positional tolerance of 2 cm is required to allow reasonable fit-up for the vacuum seal from the radial frames to the torus sector. Since the sectors are not only heavy but rather tall and narrow, the transport system must provide a safe, stable, and repeatable method fo sector movement. This limited study indicates that the LAMPF-based method of transporting torus sectors offers a proven method of moving heavy items. In addition, the present state of the art in remote equipment is adequate for FED maintenance

  8. High spatial sampling global mode structure measurements via multichannel reflectometry in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, N A; Peebles, W A; Kubota, S; Zhang, J [Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095-7099 (United States); Bell, R E; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Menard, J E; Podesta, M [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Sabbagh, S A [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Tritz, K [Johns Hopkins University, Baltimore, MD 21218 (United States); Yuh, H [Nova Photonics, Princeton, NJ 08540 (United States)

    2011-10-15

    Global modes-including kinks and tearing modes (f <{approx} 50 kHz), toroidicity-induced Alfven eigenmodes (TAE; f {approx} 50-250 kHz) and global and compressional Alfven eigenmodes (GAE and CAE; f >{approx} 400 kHz)-play critical roles in many aspects of plasma performance. Their investigation on NSTX is aided by an array of fixed-frequency quadrature reflectometers used to determine their radial density perturbation structure. The array has been recently upgraded to 16 channels spanning 30-75 GHz (n{sub cutoff} = (1.1-6.9) x 10{sup 19} m{sup -3} in O-mode), improving spatial sampling and access to the core of H-mode plasmas. The upgrade has yielded significant new results that advance the understanding of global modes in NSTX. The GAE and CAE structures have been measured for the first time in the core of an NSTX high-power (6 MW) beam-heated H-mode plasma. The CAE structure is strongly core-localized, which has important implications for electron thermal transport. The TAE structure has been measured with greatly improved spatial sampling, and measurements of the TAE phase, the first in NSTX, show strong radial variation near the midplane, indicating radial propagation caused by non-ideal MHD effects. Finally, the tearing mode structure measurements provide unambiguous evidence of coupling to an external kink.

  9. A new equilibrium torus solution and GRMHD initial conditions

    Science.gov (United States)

    Penna, Robert F.; Kulkarni, Akshay; Narayan, Ramesh

    2013-11-01

    Context. General relativistic magnetohydrodynamic (GRMHD) simulations are providing influential models for black hole spin measurements, gamma ray bursts, and supermassive black hole feedback. Many of these simulations use the same initial condition: a rotating torus of fluid in hydrostatic equilibrium. A persistent concern is that simulation results sometimes depend on arbitrary features of the initial torus. For example, the Bernoulli parameter (which is related to outflows), appears to be controlled by the Bernoulli parameter of the initial torus. Aims: In this paper, we give a new equilibrium torus solution and describe two applications for the future. First, it can be used as a more physical initial condition for GRMHD simulations than earlier torus solutions. Second, it can be used in conjunction with earlier torus solutions to isolate the simulation results that depend on initial conditions. Methods: We assume axisymmetry, an ideal gas equation of state, constant entropy, and ignore self-gravity. We fix an angular momentum distribution and solve the relativistic Euler equations in the Kerr metric. Results: The Bernoulli parameter, rotation rate, and geometrical thickness of the torus can be adjusted independently. Our torus tends to be more bound and have a larger radial extent than earlier torus solutions. Conclusions: While this paper was in preparation, several GRMHD simulations appeared based on our equilibrium torus. We believe it will continue to provide a more realistic starting point for future simulations.

  10. Bifurcation structure of successive torus doubling

    International Nuclear Information System (INIS)

    Sekikawa, Munehisa; Inaba, Naohiko; Yoshinaga, Tetsuya; Tsubouchi, Takashi

    2006-01-01

    The authors discuss the 'embryology' of successive torus doubling via the bifurcation theory, and assert that the coupled map of a logistic map and a circle map has a structure capable of generating infinite number of torus doublings

  11. Numerical simulation of internal reconnection event in spherical tokamak

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Mizuguchi, Naoki; Sato, Tetsuya

    1999-07-01

    Three-dimensional magnetohydrodynamic simulations are executed in a full toroidal geometry to clarify the physical mechanisms of the Internal Reconnection Event (IRE), which is observed in the spherical tokamak experiments. The simulation results reproduce several main properties of IRE. Comparison between the numerical results and experimental observation indicates fairly good agreements regarding nonlinear behavior, such as appearance of localized helical distortion, appearance of characteristic conical shape in the pressure profile during thermal quench, and subsequent appearance of the m=2/n=1 type helical distortion of the torus. (author)

  12. Bounce Precession Fishbones in the National Spherical Tokamak Experiment

    International Nuclear Information System (INIS)

    Eric Fredrickson; Liu Chen; Roscoe White Eric Fredrickson; Liu Chen; Roscoe White

    2003-01-01

    Bursting modes are observed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40 (2000) 557], which are identified as bounce-precession-frequency fishbone modes. They are predicted to be important in high-current, low-shear discharges with a significant population of trapped particles with a large mean-bounce angle, such as produced by near-tangential beam injection into a large aspect-ratio device. Such a distribution is often stable to the usual precession-resonance fishbone mode. These modes could be important in ignited plasmas, driven by the trapped-alpha-particle population

  13. Fuzzy torus via q-Parafermion

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2007-01-01

    We note that the recently introduced fuzzy torus can be regarded as a q-deformed parafermion. Based on this picture, classification of the Hermitian representations of the fuzzy torus is carried out. The result involves Fock-type representations and new finite-dimensional representations for q being a root of unity as well as already known finite-dimensional ones

  14. AN OCCULTATION EVENT IN CENTAURUS A AND THE CLUMPY TORUS MODEL

    International Nuclear Information System (INIS)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2011-01-01

    We have analyzed 16 months of sustained monitoring observations of Centaurus A from the Rossi X-Ray Timing Explorer to search for changes in the absorbing column in the line of sight to the central nucleus. We present time-resolved spectroscopy which indicates that a discrete clump of material transited the line of sight to the central illuminating source over the course of ∼170 days between 2010 August and 2011 February with a maximum increase in the column density of about 8.4 × 10 22 cm –2 . This is the best quality data of such an event that has ever been analyzed with the shape of the ingress and egress clearly seen. Modeling the clump of material as roughly spherical with a linearly decreasing density profile and assuming a distance from the central nucleus commensurate with the dusty torus, we found that the clump would have a diameter of (1.4-2.4) × 10 15 cm with a central number density of n H = (1.8-3.0) × 10 7 cm –3 . This is consistent with previous results for a similar (though possibly much longer) occultation event inferred in this source in 2003-2004 and supports models of the molecular torus as a clumpy medium.

  15. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge, TN 37830 (United States); Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Bonoli, P. T.; Wright, J. C. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Pinsker, R. I.; Prater, R. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Qin, C. M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  16. Predictions and observations of global beta-induced Alfven-acoustic modes in JET and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N N [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Berk, H L [Institute for Fusion Studies, University of Texas, Austin, TX 78712 (United States); Crocker, N A [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kaye, S [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kubota, S [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Park, H [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Peebles, W [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Sabbagh, S A [Department of Applied Physics, Columbia University, New York, NY 10027-6902 (United States); Sharapov, S E [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Stutmat, D [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Tritz, K [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Levinton, F M [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States); Yuh, H [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States)

    2007-12-15

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.

  17. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  18. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    International Nuclear Information System (INIS)

    Virginia L. Finley

    2002-04-01

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface, ground, a nd

  19. Recent EBW Emission Results on NSTX

    Czech Academy of Sciences Publication Activity Database

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; LeBlanc, B.P.; Caughman, J.B.; Bigelow, T.S.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, Josef; Urban, Jakub; Sabbagh, S.A.

    2007-01-01

    Roč. 52, č. 16 (2007), s. 63-63 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/49th./. Orlando , Florida, 12.11.2007-16.11.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Content/901

  20. ELMs and the H-mode pedestal in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Sabbagh, S.A.; Bush, C.E.; Fredrickson, E.D.; Menard, J.E.; Stutman, D.; Tritz, K.; Bell, M.G.; Bell, R.E.; Boedo, J.A.; Gates, D.A.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Mueller, D.; Raman, R.; Roquemore, A.L.; Soukhanovskii, V.A.; Stevenson, T.

    2005-01-01

    We report on the behavior of ELMs in NBI-heated H-mode plasmas in NSTX. It is observed that the size of Type I ELMs, characterized by the change in plasma energy, decreases with increasing line-average density, as observed at conventional aspect ratio. It is also observed that the Type I ELM size decreases as the plasma equilibrium is shifted from a symmetric double-null toward a lower single-null configuration. Type II/III ELMs have also been observed in NSTX, as well as a high-performance regime with small ELMs which we designate Type V. The Type V ELMs are characterized by an intermittent n 1 magnetic pre-cursor oscillation rotating counter to the plasma current; the mode vanishes between Type V ELMs crashes. Without active pumping, the density rises continuously through the Type V phase, albeit at a slower rate than ELM-free discharges

  1. Pro-torus actions on Poincaré duality spaces

    Indian Academy of Sciences (India)

    duality spaces, Borel's dimension formula and topological splitting principle to local weights, hold if 'torus' is replaced by 'pro-torus'. Keywords. Pro-torus; Poincaré duality space; local weight. 1. Introduction. In the theory of linear representations of compact connected Lie groups, the crucial first step is restriction to the ...

  2. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  3. Status and Plans for NSTX-U Recovery

    Science.gov (United States)

    Hawryluk, R. J.; Gerhardt, S.; Menard, J.; Neumeyer, C.

    2017-10-01

    The NSTX-U device experienced a series of technical problems; the most recent of which was the failure of one of the poloidal magnetic field coils, which has rendered the device inoperable and in need of significant repair. As a result of these incidents, the Laboratory performed a very comprehensive analysis of all of the systems on NSTX-U. Through an integrated system's analysis approach, this process identified which actions need to be taken to form a corrective action plan to ensure reliable and predictable operation. The actions required to address the deficiencies were reviewed by external experts who made recommendations on four high-level programmatic decisions regarding the inner poloidal field coils, limitations to the required bakeout temperature needed for conditioning of the vacuum vessel, divertor and wall protection tiles and coaxial helicity injection. The plans for addressing the recommendations from the external review panels will be presented. This research was sponsored by the U.S. Dept. of Energy under contract DE-AC02-09CH11466.

  4. Momentum Transport Studies in High E x B Shear Plasmas in NSTX

    International Nuclear Information System (INIS)

    Solomon, W.M.; Kaye, S.M.; Bell, S.M.; LeBlanc, B.P.; Menard, B.P.; Rewoldt, B.P.; Wang, W.; Levinton, F.M.; Yuh, H.; Sabbagh, S.A.

    2008-01-01

    Experiments have been conducted on NSTX to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with E x B shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after non-resonant magnetic perturbations are applied to brake the plasma

  5. Three-Dimensional Neutral Transport Simulations of Gas Puff Imaging Experiments

    International Nuclear Information System (INIS)

    Stotler, D.P.; DIppolito, D.A.; LeBlanc, B.; Maqueda, R.J.; Myra, J.R.; Sabbagh, S.A.; Zweben, S.J.

    2003-01-01

    Gas Puff Imaging (GPI) experiments are designed to isolate the structure of plasma turbulence in the plane perpendicular to the magnetic field. Three-dimensional aspects of this diagnostic technique as used on the National Spherical Torus eXperiment (NSTX) are examined via Monte Carlo neutral transport simulations. The radial width of the simulated GPI images are in rough agreement with observations. However, the simulated emission clouds are angled approximately 15 degrees with respect to the experimental images. The simulations indicate that the finite extent of the gas puff along the viewing direction does not significantly degrade the radial resolution of the diagnostic. These simulations also yield effective neutral density data that can be used in an approximate attempt to infer two-dimensional electron density and temperature profiles from the experimental images

  6. Cirugía de torus mandibular

    Directory of Open Access Journals (Sweden)

    Manuel Ramon Osorio Castillo

    2014-06-01

    Full Text Available ResumenLos huesos maxilares no son ajenos a las patologías que se pueden presentar en el sistema esquelético. Algunas de esas condiciones y patologías son singulares por sus características clínicas, su distribución y prevalencia. Los torus palatinos, los torus mandibulares (TM y las exostosis de los maxilares son un claro ejemplo de ellos. Hasta la presente existen ideas especulativas acerca de su etiopatogenia, de los factores asociados, de su incidencia y prevalencia, de su necesidad de tratamiento, lo que puede crear confusión entre los clínicos tanto en diagnóstico como en el manejo.El torus como tumor óseo benigno puede localizarse en el maxilar a nivel del paladar, o en la mandíbula a nivel de las tablas internas; o puede aparecer en cualquier parte del esqueleto. El TM es una exostosis o crecimiento óseo en la superficie lingual de la mandíbula. Este crecimiento ocurre generalmente cerca de la línea milohioidea, opuesto a los premolares, pero se puede extender del canino al primer molar. La mucosa que los recubre tiende a ser fina y no tolera por lo general las fuerzas de las prótesis que se colocan encima de ellos. La incidencia del torus de la mandíbula es baja en el 6% a 12.5% entre caucásicos y en los habitantes de la llanura africana. De manera contraria, algunos autores reportan una prevalencia mucho más elevada en la Costa Atlántica Colombiana.Se presenta el caso de un paciente con torus mandibulares bilaterales, con muchos años de crecimiento, hasta que por situaciones tanto fonéticas como de ulceraciones repetitivas decidió someterse al acto quirúrgico de forma bilateral. Se presentan algunas consideraciones para el manejo de esta. (Duazary 2008; 111-114AbstractThe jawbone is not a strange to the pathologies that can occur in the skeletal system. Some of these terms and conditions are unique for their clinical features, distribution and prevalence. The torus palate, jawbone torus (TM in spanish and

  7. Temperature gradient driven electron transport in NSTX and Tore Supra

    International Nuclear Information System (INIS)

    Horton, W.; Wong, H.V.; Morrison, P.J.; Wurm, A.; Kim, J.H.; Perez, J.C.; Pratt, J.; Hoang, G.T.; LeBlanc, B.P.; Ball, R.

    2005-01-01

    Electron thermal fluxes are derived from the power balance for Tore Supra (TS) and NSTX discharges with centrally deposited fast wave electron heating. Measurements of the electron temperature and density profiles, combined with ray tracing computations of the power absorption profiles, allow detailed interpretation of the thermal flux versus temperature gradient. Evidence supporting the occurrence of electron temperature gradient turbulent transport in the two confinement devices is found. With control of the magnetic rotational transform profile and the heating power, internal transport barriers are created in TS and NSTX discharges. These partial transport barriers are argued to be a universal feature of transport equations in the presence of invariant tori that are intrinsic to non-monotonic rotational transforms in dynamical systems

  8. Tool path in torus tool CNC machining

    Directory of Open Access Journals (Sweden)

    XU Ying

    2016-10-01

    Full Text Available This paper is about tool path in torus tool CNC machining.The mathematical model of torus tool is established.The tool path planning algorithm is determined through calculation of the cutter location,boundary discretization,calculation of adjacent tool path and so on,according to the conversion formula,the cutter contact point will be converted to the cutter location point and then these points fit a toolpath.Lastly,the path planning algorithm is implemented by using Matlab programming.The cutter location points for torus tool are calculated by Matlab,and then fit these points to a toolpath.While using UG software,another tool path of free surface is simulated of the same data.It is drew compared the two tool paths that using torus tool is more efficient.

  9. Overview of innovative PMI research on NSTX-U and associated PMI facilities at PPPL

    International Nuclear Information System (INIS)

    Ono, M.; Jaworski, M.; Kaita, R.; Skinner, C. N.; Allain, J. P.; Maingi, R.; Scotti, F.; Soukhanovskii, V. A.

    2013-01-01

    Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTX-U, the PMI research has received a strong emphasis. Moreover, with ∼15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m 2

  10. Mode-converted electron Bernstein wave emission research on CDX-U and NSTX

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C; Jones, B.; Munsat, T.; Hosea, J.C; Kaita, R.; Majeski, R.; Spaleta, J.; Wilson, J.R.; Wilgen, J.B.; Bell, G.L.; Rasmussen, D.A.; Ram, A.K.; Bers, A.; Harvey, R.W.; Smirnov, A.P.

    2003-01-01

    Electron Bernstein waves (EBWs) may enable electron temperature profile measurements and local electron heating and current drive in high β overdense (ω pe /ω ce >>1) plasmas. Significant results are presented from the measurement of X-mode radiation, converted from EBWs observed normal to the magnetic field on the mid-plane of overdense plasmas in CDX-U and NSTX. A radially scannable, in-vessel, quad-ridged antenna and Langmuir probe array on CDX-U studied EBW to X-mode conversion. A local limiter optimized the conversion efficiency by modifying the density scale length at the mode conversion layer. The fundamental EBW conversion efficiency increased, by an order of magnitude, to ∼100% when the local limiter and antenna were inserted near the conversion layer. This technique can be extended to large, high temperature devices. Another significant observation was that the EBW emission source was localized near the electron cyclotron resonance. As a result, mode-converted EBW radiometry has measured radial transport in CDX-U. In addition, a threefold increase in conversion efficiency was observed at the L to H transition in NSTX. Measured conversion efficiency agreed well with theoretical predictions. EBW ray tracing and bounce-averaged Fokker-Planck codes are being used to model EBW heating and current drive scenarios for NSTX equilibria with β up to 40%. So far, results show that it is possible to drive localized currents on the high field side of the magnetic axis in NSTX at β ∼ 12% with current drive efficiency which compares favorably with ECCD. (authors)

  11. Coaxial helicity injection and n=1 relaxation activity in the HIST spherical torus

    International Nuclear Information System (INIS)

    Nagata, M.

    2002-01-01

    Coaxial Helicity Injection (CHI) has demonstrated non-inductive current generation of spherical tokamak (ST) and spheromak plasmas on several devices. In order to understand comprehensively the role of the n=1 instability and relaxation on current generation processes in helicity-driven spherical systems, we have investigated dynamics of ST plasmas produced in the HIST device (major radius R=0.30 m, minor radius a=0.24 m, aspect ratio A=1.25, toroidal field B t t <150 kA and discharge time t<5 ms in the ST configuration) by decreasing the external toroidal field (TF) and reversing its sign in time. In results, we have discovered that the ST relaxes towards flipped ST configurations through formation of reversed-field pinches (RFPs)-like magnetic field profiles. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. This self-reversal of the poloidal field is thought to be evidence for 'global helicity conservation'. Furthermore, we have first demonstrated that a flipped ST plasma can be successfully sustained by CHI. (author)

  12. AN OCCULTATION EVENT IN CENTAURUS A AND THE CLUMPY TORUS MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424 (United States)

    2011-12-15

    We have analyzed 16 months of sustained monitoring observations of Centaurus A from the Rossi X-Ray Timing Explorer to search for changes in the absorbing column in the line of sight to the central nucleus. We present time-resolved spectroscopy which indicates that a discrete clump of material transited the line of sight to the central illuminating source over the course of {approx}170 days between 2010 August and 2011 February with a maximum increase in the column density of about 8.4 Multiplication-Sign 10{sup 22} cm{sup -2}. This is the best quality data of such an event that has ever been analyzed with the shape of the ingress and egress clearly seen. Modeling the clump of material as roughly spherical with a linearly decreasing density profile and assuming a distance from the central nucleus commensurate with the dusty torus, we found that the clump would have a diameter of (1.4-2.4) Multiplication-Sign 10{sup 15} cm with a central number density of n{sub H} = (1.8-3.0) Multiplication-Sign 10{sup 7} cm{sup -3}. This is consistent with previous results for a similar (though possibly much longer) occultation event inferred in this source in 2003-2004 and supports models of the molecular torus as a clumpy medium.

  13. Methanol in the L1551 Circumbinary Torus

    OpenAIRE

    White, Glenn J.; Fridlund, C. W. M.; Bergman, P.; Beardsmore, A.; Liseau, Rene; Phillips, R. R.

    2006-01-01

    We report observations of gaseous methanol in an edge-on torus surrounding the young stellar object L1551 IRS5. The peaks in the torus are separated by ~ 10,000 AU from L1551 IRS5, and contain ~ 0.03 earth masses of cold methanol. We infer that the methanol abundance increases in the outer part of the torus, probably as a result of methanol evaporation from dust grain surfaces heated by the shock luminosity associated with the shocks associated with the jets of an externally located x-ray sou...

  14. Overview of L-H power threshold studies in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Biewer, T.M.; Kaye, S.M.; Bell, R.E.; Gates, D.A.; Gerhardt, S.P.; Hosea, J.; LeBlanc, B.P.; Mueller, D.; Stevenson, T.A.; Wilson, J.R.; Chang, C.S.; Park, G-Y.; Meyer, H.; Raman, R.; Sabbagh, S.A.

    2010-01-01

    A summary of results from recent L-H power threshold (P LH ) experiments in the National Spherical Torus Experiment is presented. First P LH (normalized linearly by plasma density) was found to be a minimum in double-null configuration, tending to increase as the plasma was shifted more strongly towards lower- or upper-single null configuration with either neutral beam or rf heating. The measured P LH /n e was comparable with neutral beam or rf heating, suggesting that rotation was not playing a dominant role in setting the value of P LH . The role of triangularity (δ bot ) in setting P LH /n e is less clear: while 50% less auxiliary heating power was required to access H-mode at low δ bot than at high δ bot , the high δ bot discharges had lower ohmic heating and higher dW/dt, leading to comparable loss of power over a range of δ bot . In addition, the dependences of P LH on the density, species (helium versus deuterium), plasma current, applied non-axisymmetric error fields and lithium wall conditioning are summarized.

  15. Topological T-duality for torus bundles with monodromy

    Science.gov (United States)

    Baraglia, David

    2015-05-01

    We give a simplified definition of topological T-duality that applies to arbitrary torus bundles. The new definition does not involve Chern classes or spectral sequences, only gerbes and morphisms between them. All the familiar topological conditions for T-duals are shown to follow. We determine necessary and sufficient conditions for existence of a T-dual in the case of affine torus bundles. This is general enough to include all principal torus bundles as well as torus bundles with arbitrary monodromy representations. We show that isomorphisms in twisted cohomology, twisted K-theory and of Courant algebroids persist in this general setting. We also give an example where twisted K-theory groups can be computed by iterating T-duality.

  16. Partially collisional model of the Titan hydrogen torus

    International Nuclear Information System (INIS)

    Hilton, D.A.

    1987-01-01

    A numerical model was developed for atomic hydrogen densities in the Titan hydrogen torus. The effects of occasional collisions were included in order to accurately simulate physical conditions inferred from the Voyager 1 and 2 Ultraviolet Spectrometer (UVS) results of Broadfoot et al. (1981) and Sandel et al. (1982). The model employed Lagrangian perturbation of orbital elements of hydrogen atoms launched from Titan and Monte Carlo simulation of collisions and loss mechanisms. The torus is found to be azimuthally symmetric with the density sharply peaked at Titan's orbit, and decreasing rapidly in the outward and perpendicular directions and more gradually inward from 17 to 5 R/sub s/. The energetic hydrogen atoms from Saturn's upper atmosphere, first predicted by Shemansky and Smith (1982), were also investigated. Collisions of these Saturnian atoms with the torus population do not contribute to the torus density, and will lead to a net loss of torus atoms if their launch speeds from Saturn extend above 40 km/sec. The Saturnian atoms produce a corona which was modeled using the theory of Chamberlain (1963)

  17. Multicast Performance Analysis for High-Speed Torus Networks

    National Research Council Canada - National Science Library

    Oral, S; George, A

    2002-01-01

    ... for unicast-based and path-based multicast communication on high-speed torus networks. Software-based multicast performance results of selected algorithms on a 16-node Scalable Coherent Interface (SCI) torus are given...

  18. Easy web interfaces to IDL code for NSTX Data Analysis

    International Nuclear Information System (INIS)

    Davis, W.M.

    2012-01-01

    Highlights: ► Web interfaces to IDL code can be developed quickly. ► Dozens of Web Tools are used effectively on NSTX for Data Analysis. ► Web interfaces are easier to use than X-window applications. - Abstract: Reusing code is a well-known Software Engineering practice to substantially increase the efficiency of code production, as well as to reduce errors and debugging time. A variety of “Web Tools” for the analysis and display of raw and analyzed physics data are in use on NSTX [1], and new ones can be produced quickly from existing IDL [2] code. A Web Tool with only a few inputs, and which calls an IDL routine written in the proper style, can be created in less than an hour; more typical Web Tools with dozens of inputs, and the need for some adaptation of existing IDL code, can be working in a day or so. Efficiency is also increased for users of Web Tools because of the familiar interface of the web browser, and not needing X-windows, or accounts and passwords, when used within our firewall. Web Tools were adapted for use by PPPL physicists accessing EAST data stored in MDSplus with only a few man-weeks of effort; adapting to additional sites should now be even easier. An overview of Web Tools in use on NSTX, and a list of the most useful features, is also presented.

  19. Lithium Wall Conditioning And Surface Dust Detection On NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Allain, J.P.; Bell, M.G.; Friesen, F.Q.L.; Heim, B.; Jaworski, M.A.; Kugel, H.; Maingi, R.; Rais, B.; Taylor, C.N.

    2011-01-01

    Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors

  20. Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U

    Science.gov (United States)

    Barchfeld, Robert Adam

    plasma diagnostics. Plasma diagnostics collect data from fusion reactors in a number of different ways. Among these are far infrared (FIR) laser based systems. By probing a fusion plasma with FIR lasers, many properties can be measured, such as density and density fluctuations. This dissertation discusses the theory and design of two laser based diagnostic instruments: 1) the Far Infrared Tangential Interferometer and Polarimeter (FIReTIP) systems, and 2) the High-ktheta Scattering System. Both of these systems have been designed and fabricated at UC Davis for use on the National Spherical Torus Experiment - Upgrade (NSTX-U), located at Princeton Plasma Physics Laboratory (PPPL). These systems will aid PPPL scientists in fusion research. The FIReTIP system uses 119 ?m methanol lasers to pass through the plasma core to measure a chord averaged plasma density through interferometry. It can also measure the toroidal magnetic field strength by the way of polarimetery. The High-ktheta Scattering System uses a 693 GHz formic acid laser to measure electron scale turbulence. Through collective Thomson scattering, as the probe beam passes through the plasma, collective electron motion will scatter power to a receiver with the angle determined by the turbulence wavenumber. This diagnostic will measure ktheta from 7 to 40 cm-1 with a 4-channel receiver array. The High-ktheta Scattering system was designed to facilitate research on electron temperature gradient (ETG) modes, which are believed to be a major contributor to anomalous transport on NSTX-U. The design and testing of these plasma diagnostics are described in detail. There are a broad range of components detailed including: optically pumped gas FIR lasers, overmoded low loss waveguide, launching and receiving optical designs, quasi-optical mixers, electronics, and monitoring and control systems. Additionally, details are provided for laser maintenance, alignment techniques, and the fundamentals of nano-CNC-machining.

  1. Comment on “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)

    International Nuclear Information System (INIS)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Soukhanovskii, V. A.; Umansky, M. V.

    2014-01-01

    In the recently published paper “Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake” [Phys. Plasmas 20, 102507 (2013)], the authors raise interesting and important issues concerning divertor physics and design. However, the paper contains significant errors: (a) The conceptual framework used in it for the evaluation of divertor “quality” is reduced to the assessment of the magnetic field structure in the outer Scrape-Off Layer. This framework is incorrect because processes affecting the pedestal, the private flux region and all of the divertor legs (four, in the case of a snowflake) are an inseparable part of divertor operation. (b) The concept of the divertor index focuses on only one feature of the magnetic field structure and can be quite misleading when applied to divertor design. (c) The suggestion to rename the divertor configurations experimentally realized on NSTX (National Spherical Torus Experiment) and DIII-D (Doublet III-D) from snowflakes to X-divertors is not justified: it is not based on comparison of these configurations with the prototypical X-divertor, and it ignores the fact that the NSTX and DIII-D poloidal magnetic field geometries fit very well into the snowflake “two-null” prescription

  2. Importance of Plasma Response to Non-axisymmetric Perturbations in Tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Garofalo, Andrea M.; Schaffer, Michael J.; Hawryluk, Richard J.; Kaye, Stanley M.; Gerhardt, Stefan P.; Sabbagh, Steve A. and the NSTX Team

    2009-01-01

    Tokamaks are sensitive to deviations from axisymmetry as small as (delta)B/B 0 ∼ 10 -4 . These non-axisymmetric perturbations greatly modify plasma confinement and performance by either destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with associated non-ambipolar transport. The Ideal Perturbed Equilibrium Code (IPEC) calculates ideal perturbed equilibria and provides important basis for understanding the sensitivity of tokamak plasmas to perturbations. IPEC calculations indicate that the ideal plasma response, or equivalently the effect by ideally perturbed plasma currents, is essential to explain locking experiments on National Spherical Torus eXperiment (NSTX) and DIII-D. The ideal plasma response is also important for Neoclassical Toroidal Viscosity (NTV) in non-ambipolar transport. The consistency between NTV theory and magnetic braking experiments on NSTX and DIII-D can be improved when the variation in the field strength in IPEC is coupled with generalized NTV theory. These plasma response effects will be compared with the previous vacuum superpositions to illustrate the importance. However, plasma response based on ideal perturbed equilibria is still not sufficiently accurate to predict the details of NTV transport, and can be inconsistent when currents associated with a toroidal torque become comparable to ideal perturbed currents

  3. Shielding of External Magnetic Perturbations By Torque In Rotating Tokamak Plasmas

    International Nuclear Information System (INIS)

    Park, Jong-Kyu; Boozer, Allen H.; Menard, Jonathan E.; Gerhardt, Stefan P.; Sabbagh, Steve A.

    2009-01-01

    The imposition of a nonaxisymmetric magnetic perturbation on a rotating tokamak plasma requires energy and toroidal torque. Fundamental electrodynamics implies that the torque is essentially limited and must be consistent with the external response of a plasma equilibrium (rvec f) = (rvec j) x (rvec B). Here magnetic measurements on National Spherical Torus eXperiment (NSTX) device are used to derive the energy and the torque, and these empirical evaluations are compared with theoretical calculations based on perturbed scalar pressure equilibria (rvec f) = (rvec (del))p coupled with the theory of nonambipolar transport. The measurement and the theory are consistent within acceptable uncertainties, but can be largely inconsistent when the torque is comparable to the energy. This is expected since the currents associated with the torque are ignored in scalar pressure equilibria, but these currents tend to shield the perturbation.

  4. The benefits of ITER for the portfolio of fusion configurations

    International Nuclear Information System (INIS)

    Goldston, R.J.

    2002-01-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  5. The benefits of ITER for the portfolio of fusion configurations

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J. [Princeton Plasma Physics Lab., NJ (United States)

    2002-10-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  6. Effect of robust torus on the dynamical transport

    International Nuclear Information System (INIS)

    Martins, C G L; Carvalho, R Egydio de; Caldas, I L; Roberto, M

    2010-01-01

    In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.

  7. Magnetic translation groups in an n-dimensional torus and their representations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    2002-01-01

    A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG in an n-dimensional torus is isomorphic to a central extension of a cyclic group Z ν 1 x···xZ ν 2l xT m by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG in a three-torus and apply the representation theory to three examples. We briefly describe a representation theory for a general n-torus. The MTG in an n-torus can be regarded as a generalization of the so-called noncommutative torus

  8. EBW H&CD Potential for Spherical Tokamaks

    Science.gov (United States)

    Urban, J.; Decker, J.; Peysson, Y.; Preinhaelter, J.; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.

    2011-12-01

    Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-ß regimes, in which the usual EC O- and X- modes are cut-off. In this case, electron Bernstein waves (EBWs) seem to be the only option that can provide features similar to the EC waves—controllable localized heating and current drive (H&) that can be utilized for core plasma heating as well as for accurate plasma stabilization. We first derive an analytical expression for Gaussian beam OXB conversion efficiency. Then, an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX) is performed. Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.

  9. Torus actions and their applications in topology and combinatorics

    CERN Document Server

    Buchstaber, Victor M

    2002-01-01

    The book presents the study of torus actions on topological spaces is presented as a bridge connecting combinatorial and convex geometry with commutative and homological algebra, algebraic geometry, and topology. This established link helps in understanding the geometry and topology of a space with torus action by studying the combinatorics of the space of orbits. Conversely, subtle properties of a combinatorial object can be realized by interpreting it as the orbit structure for a proper manifold or as a complex acted on by a torus. The latter can be a symplectic manifold with Hamiltonian torus action, a toric variety or manifold, a subspace arrangement complement, etc., while the combinatorial objects include simplicial and cubical complexes, polytopes, and arrangements. This approach also provides a natural topological interpretation in terms of torus actions of many constructions from commutative and homological algebra used in combinatorics. The exposition centers around the theory of moment-angle comple...

  10. Torus bifurcations in multilevel converter systems

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Yanochkina, Olga O.

    2011-01-01

    embedded one into the other and with their basins of attraction delineated by intervening repelling tori. The paper illustrates the coexistence of three stable tori with different resonance behaviors and shows how reconstruction of these tori takes place across the borders of different dynamical regimes....... The paper also demonstrates how pairs of attracting and repelling tori emerge through border-collision torus-birth and border-collision torus-fold bifurcations. © 2011 World Scientific Publishing Company....

  11. Induction effects of torus knots and unknots

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2017-09-01

    Geometric and topological aspects associated with induction effects of field lines in the shape of torus knots/unknots are examined and discussed in detail. Knots are assumed to lie on a mathematical torus of circular cross-section and are parametrized by standard equations. The induced field is computed by direct integration of the Biot-Savart law. Field line patterns of the induced field are obtained and several properties are examined for a large family of knots/unknots up to 51 crossings. The intensity of the induced field at the origin of the reference system (center of the torus) is found to depend linearly on the number of toroidal coils and reaches maximum values near the boundary of the mathematical torus. New analytical estimates and bounds on energy and helicity are established in terms of winding number and minimum crossing number. These results find useful applications in several contexts when the source field is either vorticity, electric current or magnetic field, from vortex dynamics to astrophysics and plasma physics, where highly braided magnetic fields and currents are present.

  12. Parametric Decay during HHFW on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bernabei, S.; Biewer, T.; Diem, S.; Hosea, J.; LeBlanc, B.; Phillips, C.K.; Ryan, P.; Swain, D.W.

    2005-01-01

    High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been observed to be accompanied by significant edge ion heating (T i >> T e ). This heating is found to be anisotropic with T perp > T par . Simultaneously, coherent oscillations have been detected with an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident fast wave (ω > 13ω ci ) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode. The observation of anisotropic heating is consistent with Bernstein wave damping, and the Bernstein waves should completely damp in the plasma periphery as they propagate toward a cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power, and to increase as the incident wave's toroidal wavelength increases. The frequencies of the daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the threshold for this decay in uniform plasma indicate an extremely small value of incident power should be required to drive the instability. While such decays are commonly observed at lower harmonics in conventional ICRF heating scenarios, they usually do not involve the loss of significant wave power from the pump wave. On NSTX an estimate of the power loss can be found by calculating the minimum power required to support the edge ion heating (presumed to come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident rf power ends up as decay waves

  13. Predications and Observations of Global Beta-induced Alfven-acoustic Modes in JET and NSTX

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.

    2008-01-01

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta 20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks

  14. Diagnostics for the Biased Electrode Experiment on NSTX

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Zweben, S.J.; Bush, C.E.; Kaita, R.; Marsalsa, R.J.; Maqueda, R.J.

    2009-01-01

    A linear array of four small biased electrodes was installed in NSTX in an attempt to control the width of the scrape-off layer (SOL) by creating a strong local poloidal electric field. The set of electrodes were separated poloidally by a 1 cm gap between electrodes and were located slightly below the midplane of NSTX, 1 cm behind the RF antenna and oriented so that each electrode is facing approximately normal to the magnetic field. Each electrode can be independently biased to ± 100 volts. Present power supplies limit the current on two electrodes to 30 amps the other two to 10 amps each. The effect of local biasing was measured with a set of Langmuir probes placed between the electrodes and another set extending radially outward from the electrodes, and also by the gas puff imaging diagnostic (GPI) located 1 m away along the magnetic field lines intersecting the electrodes. Two fast cameras were also aimed directly at the electrode array. The hardware and controls of the biasing experiment will be presented and the initial effects on local plasma parameters will be discussed

  15. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  16. Studying uniform thickness II: Transversely nonsimple iterated torus knots

    DEFF Research Database (Denmark)

    LaFountain, Douglas

    2011-01-01

    We prove that an iterated torus knot type in the standard contact 3-sphere fails the uniform thickness property (UTP) if and only if it is formed from repeated positive cablings, which is precisely when an iterated torus knot supports the standard contact structure. This is the first complete UTP...... classification for a large class of knots. We also show that all iterated torus knots that fail the UTP support cabling knot types that are transversely non-simple....

  17. Control and data acquisition upgrades for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.M., E-mail: bdavis@pppl.gov; Tchilinguirian, G.J., E-mail: gtchilin@pppl.gov; Carroll, T., E-mail: tcarroll@pppl.gov; Erickson, K.G., E-mail: kerickson@pppl.gov; Gerhardt, S.P., E-mail: sgerhardt@pppl.gov; Henderson, P., E-mail: phenderson@pppl.gov; Kampel, S.H., E-mail: skampel@pppl.gov; Sichta, P., E-mail: psichta@pppl.gov; Zimmer, G.N., E-mail: gzimmer@pppl.gov

    2016-11-15

    Highlights: • The NSTX-U upgrade is nearing completion, and various control and data acquisition upgrades are needed. • The Digital Coil Protection System is a major addition which provides hardware and software to protect the magnetic coils from the complex, increased, stresses added from the upgrade. • The increased computational requirements for the upgrade have largely followed Moore’s Law, and enhancements to the infrastructure and computer hardware should maintain or exceed the previous functionality. • Data requirements for Fast 2-D cameras have exceeded those of “conventional” time-varying signals. There has been a particular emphasis and increase in data from IR cameras. - Abstract: The extensive NSTX Upgrade (NSTX-U) Project includes major components which allow a doubling of the toroidal field strength to 1 T, of the Neutral Beam heating power to 12 MW, and the plasma current to 2 MA, and substantial structural enhancements to withstand the increased electromagnetic loads. The maximum pulse length will go from 1.5 to 5 s. The larger and more complex forces on the coils will be protected by a Digital Coil Protection System, which requires demanding real-time data input rates, calculations and responses. The amount of conventional digitized data for a given pulse is expected to increase from 2.5 to 5 GB per second of pulse. 2-D Fast Camera data is expected to go from 2.5 GB/pulse to 10, and another 2 GB/pulse is expected from new IR cameras. Our network capacity will be increased by a factor of 10, with 10 Gb/s fibers used for the major trunks. 32-core Linux systems will be used for several functions, including between-shot data processing, MDSplus data serving, between-shot EFIT analysis, real-time processing, and for a new capability, between-shot TRANSP. Improvements to the MDSplus events subsystem will be made through the use of both UDP and TCP/IP based methods and the addition of a dedicated “event server”.

  18. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    International Nuclear Information System (INIS)

    Zhang, J.; Crocker, N. A.; Carter, T. A.; Kubota, S.; Peebles, W. A.

    2010-01-01

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.

  19. Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai; Soukhoterin, Evgeniy; Mosekilde, Erik

    2007-01-01

    This paper discusses the mechanisms of torus formation and torus destruction in a dc/dc converter with relay control and hysteresis. We establish a chart of the dynamical modes in the input voltage versus load resistance parameter plane. This chart displays several different torus bifurcations...

  20. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean-Paul [Purdue Univ., West Lafayette, IN (United States)

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  1. Reactor assessments of advanced bumpy torus configurations

    International Nuclear Information System (INIS)

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1984-02-01

    Recently, several innovative approaches were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator - snakey torus). Preliminary evaluations of reactor implications of each approach have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties deduced from provisional configurations that implement the approach but are not necessarily optimized. Further optimization is needed in all cases to evaluate the full potential of each approach. Results of these studies indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past

  2. Comparison of neutral density profiles measured using Dα and C5+ in NSTX-U

    Science.gov (United States)

    Bell, R. E.; Scotti, F.; Diallo, A.; Leblanc, B. P.; Podesta, M.; Sabbagh, S. A.

    2017-10-01

    Edge neutral density profiles determined from two different measurements are compared on NSTX-U plasmas. Neutral density measurements were not typical on NSTX plasmas. An array of fibers dedicated to the measurement of passive emission of C5+, used to subtract background emission for charge exchange recombination spectroscopy (CHERS), can be used to infer deuterium neutral density near the plasma edge. The line emission from C5+ is dominated by charge exchange with neutral deuterium near the plasma edge. An edge neutral density diagnostic consisting of a camera with a Dα filter was installed on NSTX-U. The line-integrated measurements from both diagnostics are inverted to obtain local emissivity profiles. Neutral density is then inferred using atomics rates from ADAS and profile measurements from Thomson scattering and CHERS. Comparing neutral density profiles from the two diagnostic measurements helps determine the utility of using the more routinely available C5+ measurements for neutral density profiles. Initial comparisons show good agreement between the two measurements inside the separatrix. Supported by US DoE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  3. Raman Spectroscopy of Carbon Dust Samples from NSTX

    International Nuclear Information System (INIS)

    Raitses, Y.; Skinner, C.H.; Jiang, F.; Duffy, T.S.

    2008-01-01

    The Raman spectrum of dust particles exposed to the NSTX plasma is different from the spectrum of unexposed particles scraped from an unused graphite tile. For the unexposed particles, the high energy G-mode peak (Raman shift ∼1580 cm -1 ) is much stronger than the defect-induced D-mode peak (Raman shift ∼1350 cm -1 ), a pattern that is consistent with Raman spectrum for commercial graphite materials. For dust particles exposed to the plasma, the ratio of G-mode to D-mode peaks is lower and becomes even less than 1. The Raman measurements indicate that the production of carbon dust particles in NSTX involves modifications of the physical and chemical structure of the original graphite material. These modifications are shown to be similar to those measured for carbon deposits from atmospheric pressure helium arc discharge with an ablating anode electrode made from a graphite tile material. We also demonstrate experimentally that heating to 2000-2700 K alone can not explain the observed structural modifications indicating that they must be due to higher temperatures needed for graphite vaporization, which is followed either by condensation or some plasma-induced processes leading to the formation of more disordered forms of carbon material than the original graphite.

  4. He Puff System For Dust Detector Upgrade

    International Nuclear Information System (INIS)

    Rais, B.; Skinner, C.H.; Roquemore, A.L.

    2010-01-01

    Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar.

  5. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    Science.gov (United States)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  6. Theory and observation of compressional Alfven eigenmodes in low aspect ratio plasma

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.

    2002-01-01

    A new theory of radially and poloidally localized Compressional Alfven Eigenmodes (CAE) in low aspect ratio plasma is reported. The theory is applied to identify recently observed instabilities in the MHz frequency range in National Spherical Torus experiments (NSTX). The frequency of observed CAEs is correlated with the characteristic Alfven velocity of the plasma. The observed high frequency modes are explained as CAEs driven by energetic beam ions. The CAE frequency is determined by the Alfven frequency at the mode location on the low field side of the plasma and is given approximately by ω CAE v A m=r, where m is the poloidal mode number, and r is the local minor radius. CAEs are destabilized by free energy in the energetic ion velocity space gradient via Doppler shifted cyclotron resonance with beam ions. Properties of the CAE instability driven by different NBI ion distributions are presented. (author)

  7. Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts. Final Technical Report

    International Nuclear Information System (INIS)

    Pigarov, Alexander

    2012-01-01

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  8. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    Science.gov (United States)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  9. Application studies of spherical tokamak plasma merging

    International Nuclear Information System (INIS)

    Ono, Yasushi; Inomoto, Michiaki

    2012-01-01

    The experiment of plasma merging and heating has long history in compact torus studies since Wells. The study of spherical tokamak (ST), starting from TS-3 plasma merging experiment of Tokyo University in the late 1980s, is followed by START of Culham laboratory in the 1900s, TS-4 and UTST of Tokyo University and MAST of Culham laboratory in the 2000s, and last year by VEST of Soul University. ST has the following advantages: 1) plasma heating by magnetic reconnection at a MW-GW level, 2) rapid start-up of high beta plasma, 3) current drive/flux multiplication and distribution control of ST plasma, 4) fueling and helium-ash exhaust. In the present article, we emphasize that magnetic reconnection and plasma merging phenomena are important in ST plasma study as well as in plasma physics. (author)

  10. On some Closed Magnetic Curves on a 3-torus

    Energy Technology Data Exchange (ETDEWEB)

    Munteanu, Marian Ioan, E-mail: marian.ioan.munteanu@gmail.com [Alexandru Ioan Cuza University of Iaşi, Faculty of Mathematics (Romania); Nistor, Ana Irina, E-mail: ana.irina.nistor@gmail.com [Gh. Asachi Technical University of Iaşi, Department of Mathematics and Informatics (Romania)

    2017-06-15

    We consider two magnetic fields on the 3-torus obtained from two different contact forms on the Euclidean 3-space and we study when their corresponding normal magnetic curves are closed. We obtain periodicity conditions analogues to those for the closed geodesics on the torus.

  11. Testing Gyrokinetics on C-Mod and NSTX

    International Nuclear Information System (INIS)

    Redi, M.H.; Dorland, W.; Fiore, C.L.; Stutman, D.; Baumgaertel, J.A.; Davis, B.; Kaye, S.M.; McCune, D.C.; Menard, J.; Rewoldt, G.

    2005-01-01

    Quantitative benchmarks of computational physics codes against experiment are essential for the credible application of such codes. Fluctuation measurements can provide necessary critical tests of nonlinear gyrokinetic simulations, but such require extraordinary computational resources. Linear micro-stability calculations with the GS2 [1] gyrokinetic code have been carried out for tokamak and ST experiments which exhibit internal transport barriers (ITB) and good plasma confinement. Qualitative correlation is found for improved confinement before and during ITB plasmas on Alcator C-Mod [2] and NSTX [3], with weaker long wavelength micro-instabilities in the plasma core regions. Mixing length transport models are discussed. The NSTX L-mode is found to be near marginal stability for kinetic ballooning modes. Fully electromagnetic, linear, gyrokinetic calculations of the Alcator C-Mod ITB during off-axis rf heating, following four plasma species and including the complete electron response show ITG/TEM microturbulence is suppressed in the plasma core and in the barrier region before barrier formation, without recourse to the usual requirements of velocity shear or reversed magnetic shear [4-5]. No strongly growing long or short wavelength drift modes are found in the plasma core but strong ITG/TEM and ETG drift wave turbulence is found outside the barrier region. Linear microstability analysis is qualitatively consistent with the experimental transport analysis, showing low transport inside and high transport outside the ITB region before barrier formation, without consideration of ExB shear stabilization

  12. Torus type thermonuclear device

    International Nuclear Information System (INIS)

    Gomei, Yoshio.

    1982-01-01

    Purpose: To facilitate heat removal at limiters and enable helium discharge without using a diverter by the separate disposition of a main limiter receiving the heat from plasmas and an auxiliary limiter for helium discharge. Constitution: A main limiter for establishing and maintaining torus plasmas and an auxiliary limiter for helium discharge are disposed separately. The auxiliary limiter is disposed between the magnetic plane at the position where the plasmas in the confining region begin to contact the main limiter and the first blanket wall. Thus, a sufficient contact area with the plasmas can be taken for the main limiter disposed to the inside of the torus to thereby avoid excess heat concentration. Further, helium ions transported through a passage along the magnetic plane between the main limiter and the first blanket wall to the exhaust chamber are neutralized and thereafter discharged by the auxiliary limiter. (Moriyama, K.)

  13. Electron Bernstein Wave Coupling and Emission Measurements on NSTX

    Czech Academy of Sciences Publication Activity Database

    Taylor, G.; Diem, S.J.; Caughman, J.; Efthimion, P.; Harvey, R.W.; LeBlanc, B.P.; Philips, C.K.; Preinhaelter, Josef; Urban, Jakub

    2006-01-01

    Roč. 51, č. 7 (2006), s. 177 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf

  14. Effect of Various EFIT NSTX Equilibria on EBW Simulations

    Czech Academy of Sciences Publication Activity Database

    Urban, Jakub; Preinhaelter, Josef; Sabbagh, S.; Pavlo, Pavol; Vahala, L.; Vahala, G.

    2006-01-01

    Roč. 51, č. 7 (2006), QPI.00027 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania , 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf

  15. Compact torus equilibria set up in the rotamak by rotating magnetic fields

    International Nuclear Information System (INIS)

    Storer, R.G.

    1983-01-01

    In the Rotamak, a rotating magnetic field is used to drive a steady toroidal current in a compact torus device. High power, short duration (approx.=80 μs) and low power, long duration experiments (approx.=3 ms) have been studied. In both of these experiments a steady phase exists which is well described by the assumption that the plasma is in an averaged magnetohydrodynamic pressure balance situation. Using a model based on this assumption, self-consistency imposes conditions relating the temperature and density of the plasma to the steady components of the internal magnetic fields. In the high power experiment, this steady phase evolves into a second steady phase, with lower toroidal current, which has a #betta#=1, mirror-like configuration which also appears to satisfy local pressure balance but with the magnetic axis (minimum of the poloidal flux) at the centre of the spherical vessel. (orig.)

  16. Principal noncommutative torus bundles

    DEFF Research Database (Denmark)

    Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve

    2008-01-01

    of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...

  17. Linear pinch driven by a moving compact torus

    International Nuclear Information System (INIS)

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.L.

    1984-01-01

    In principle, a Z-pinch of sufficiently large aspect ratio can provide arbitrarily high magnetic field intensity for the confinement of plasma. In practice, however, achievable field intensities and timescales are limited by parasitic inductances, pulse driver power, current, voltage, and voltage standoff of nearby insulating surfaces or surrounding gas. Further, instabilities may dominate to prevent high fields (kink mode) or enhance them (sausage mode) but in a nonuniform and uncontrollable way. In this paper we discuss an approach to producing a high-field-intensity pinch using a moving compact torus. The moving torus can serve as a very high power driver and may be used to compress a pre-established pinch field, switch on an accelerating pinch field, or may itself be reconfigured to form an intense pinch. In any case, the high energy, high energy density, and high velocity possible with an accelerated compact torus can provide extremely high power to overcome, by a number of orders of magnitude, the limitations to pinch formation described earlier. In this paper we will consider in detail pinches formed by reconfiguration of the compact torus

  18. Fabrication of an alumina torus for thermonuclear fusion containment

    International Nuclear Information System (INIS)

    Hauth, W.E.; Blake, R.D.; Dickinson, J.M.; Rutz, H.L.; Stoddard, S.D.

    1978-05-01

    A 235-cm-diam torus has been fabricated for plasma containment during thermonuclear fusion experiments. This 30-cm-diam torus consists of sixty 99.5%-alumina segments, 80% of which are assembled by forming vacuum-tight ceramic-to-ceramic seals. Selection of sealing materials and techniques are discussed

  19. Lagrangian Description of Nonadiabatic Particle Motion in Spherical Tori

    Energy Technology Data Exchange (ETDEWEB)

    R.B. White; Yu.V. Yakovenko; Ya.I. Kolesnichenko

    2002-06-21

    The ability of a device to provide adiabatic motion of charged particles is crucial for magnetic confinement. As the magnetic field in the present-day spherical tori, e.g., MAST and NSTX, is much lower than in the conventional tokamaks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of importance in these devices, affecting the stochasticity threshold for the interaction of the ions with electromagnetic perturbations. In addition, FLR by itself may result in non-conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a Lagrangian approach to description of the resonant collisionless motion of charged particles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1], where only time-independent perturbations were considered. The approach is used to find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2] and the cyclotron-resonance-induced (CRI) diffusion (for the case of the firs t cyclotron resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the magnetic moment variation caused by FLR is found.

  20. Lagrangian Description of Nonadiabatic Particle Motion in Spherical Tori

    International Nuclear Information System (INIS)

    White, R.B.; Yakovenko, Yu.V.; Kolesnichenko, Ya.I.

    2002-01-01

    The ability of a device to provide adiabatic motion of charged particles is crucial for magnetic confinement. As the magnetic field in the present-day spherical tori, e.g., MAST and NSTX, is much lower than in the conventional tokamaks, effects of the finite Larmor radius (FLR) on the motion of fast ions are of importance in these devices, affecting the stochasticity threshold for the interaction of the ions with electromagnetic perturbations. In addition, FLR by itself may result in non-conservation (jumps) of the magnetic moment of particles [4]. In this work we propose a Lagrangian approach to description of the resonant collisionless motion of charged particles under a perturbation, allowing for FLR. The work generalizes results of Ref. [1], where only time-independent perturbations were considered. The approach is used to find the stochasticity thresholds for the Goldston-White-Boozer (GWB) diffusion [2] and the cyclotron-resonance-induced (CRI) diffusion (for the case of the first cyclotron resonance, the latter was discovered in Ref. [3]). In addition, a new expression for the magnetic moment variation caused by FLR is found

  1. NSTX Tangential Divertor Camera

    International Nuclear Information System (INIS)

    Roquemore, A.L.; Ted Biewer; Johnson, D.; Zweben, S.J.; Nobuhiro Nishino; Soukhanovskii, V.A.

    2004-01-01

    Strong magnetic field shear around the divertor x-point is numerically predicted to lead to strong spatial asymmetries in turbulence driven particle fluxes. To visualize the turbulence and associated impurity line emission near the lower x-point region, a new tangential observation port has been recently installed on NSTX. A reentrant sapphire window with a moveable in-vessel mirror images the divertor region from the center stack out to R 80 cm and views the x-point for most plasma configurations. A coherent fiber optic bundle transmits the image through a remotely selected filter to a fast camera, for example a 40500 frames/sec Photron CCD camera. A gas puffer located in the lower inboard divertor will localize the turbulence in the region near the x-point. Edge fluid and turbulent codes UEDGE and BOUT will be used to interpret impurity and deuterium emission fluctuation measurements in the divertor

  2. On the conditions for the onset of nonlinear chirping structures in NSTX

    Science.gov (United States)

    Duarte, Vinicius; Podesta, Mario; Berk, Herbert; Gorelenkov, Nikolai

    2015-11-01

    The nonlinear dynamics of phase space structures is a topic of interest in tokamak physics in connection with fast ion loss mechanisms. The onset of phase-space holes and clumps has been theoretically shown to be associated with an explosive solution of an integro-differential, nonlocal cubic equation that governs the early mode amplitude evolution in the weakly nonlinear regime. The existence and stability of the solutions of the cubic equation have been theoretically studied as a function of Fokker-Planck coefficients for the idealized case of a single resonant point of a localized mode. From realistic computations of NSTX mode structures and resonant surfaces, we calculate effective pitch angle scattering and slowing-down (drag) collisional coefficients and analyze NSTX discharges for different cases with respect to chirping experimental observation. Those results are confronted to the theory that predicts the parameters region that allow for chirping to take place.

  3. The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study

    Science.gov (United States)

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.

  4. Surgical management of palatine Torus - case series

    Directory of Open Access Journals (Sweden)

    Thaís Sumie Nozu Imada

    Full Text Available INTRODUCTION: Torus palatinus is a specific name to identify exostoses developed in the hard palate along the median palatine suture. Despite of not being a pathological condition, its presence requires attention and knowledge regarding its management. Surgical removal of exostoses is indicated when the patient frequently traumatizes the area of palatine torus during mastication and speech or when it is necessary for the rehabilitation of the upper arcade with complete dentures. OBJECTIVE: The aim of this article is to present three cases of Torus palatinus and to discuss the management of them. CASE REPORT: In the first case, a 57-year-old Caucasian man sought oral rehabilitation of his edentulous maxilla but presented a hard nodules in the hard palate; in the second case, a 40-year-old Caucasian woman was referred for frequent trauma of palatal mucosa during mastication, aesthetic complaint, and discomfort caused by the trauma of her tongue in this area; and in the third case, a 45-year-old Caucasian woman presented with a lesion on the palate that caused difficulty swallowing. When the Torus palatinus was impairing the basic physiological functions of the patients, all cases were surgically treated, improving the patients' quality of life. FINAL CONSIDERATION: The dentist should be properly prepared to choose the best from among the existing surgical approaches for each individual lesion in order to improve the results and avoid possible complications.

  5. Ideal MHD Stability Characteristics of Advanced Operating Regimes in Spherical Torus Plasmas and the Role of High Harmonic Fast Waves

    International Nuclear Information System (INIS)

    Kessel, C.E.; Manickam, J.; Menard, J.E.; Jardin, S.C.; Kaye, S.M.

    1999-01-01

    The ARIES reactor study group has found an economically attractive ST-based reactor configuration with: A = 1.6, κ = 3.4, delta = 0.65, β = 50%, β N = 7.3, f BS = 0.95, R 0 = 3.2 meters, B t0 = 2.08 Tesla, and I P = 28.5 MA which yields a cost of electricity of approximately 80mils/kWh. MHD stability analysis finds that a broad pressure profile is optimal for wall-stabilizing the pressure driven kink modes typical of such configurations, and that wall stabilization is crucial to achieving the high β needed for an economical power plant. The 6MW high-harmonic fast wave system presently being installed on NSTX should allow real-time control of the plasma β, and in combination with NBI may permit experimental investigations of the effect of pressure profile peaking on MHD stability in the near-term. In the longer term, ejection of ions through resonant interaction with HHFW might be used to induce a controllable edge radial electric field with potentially interesting effects on edge MHD and confinement

  6. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  7. Reversed magnetic shear suppression of electron-scale turbulence on NSTX

    Science.gov (United States)

    Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.

    2009-11-01

    Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001

  8. The motional stark effect with laser-induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2010-05-01

    The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.

  9. The study of non-axisymmetric control coil applications in NSTX-U

    Science.gov (United States)

    Park, J.-K.; Menard, J. E.; Kim, K.; Gerhardt, S. P.; Maingi, R.; Bialek, J. M.; Sabbagh, S. A.; Berkery, J. W.; Boozer, A. H.; Canik, J. M.; Evans, T. E.

    2013-10-01

    As expanded 3D field capability is essential to meet NSTX-U programmatic goals and support ITER, non-axisymmetric control coil (NCC) configurations have been proposed and studied to assess potential physics applications. IPEC-NTV, POCA, and TRIP-3D code analysis show that NCC can provide a range of non-resonant error field control while minimizing resonant error field, and enhance NTV variability to better control rotation and shear, and also largely vary stochastic layers in the edge while maintaining similar plasma response characteristics. VALEN-3D analysis shows that RWM control performance increases with NCC and indicates even the possibility of operation near the ideal-wall limit. In addition, 3D analysis using stellarator codes such as COBRA indicates that NCC can directly broaden ballooning unstable region across radius and thus can be used to improve ELM pacing in NSTX-U. Relevant figures-of-merit are defined and used to quantify these NCC physics capabilities, as will be presented with future analysis plans. This work was supported by DOE Contract DE-AC02-09CH11466.

  10. Three-dimensional Reconstruction of Dust Particle Trajectories in the NSTX

    International Nuclear Information System (INIS)

    Boeglin, W.U.; Roquemore, A.L.; Maqueda, R.

    2009-01-01

    Highly mobile incandescent dust particles are routinely observed on NSTX using two fast cameras operating in the visible region. An analysis method to reconstruct dust particle trajectories in space using two fast cameras is presented in this paper. Position accuracies of a few millimeters depending on the particle's location have been achieved and particle velocities between 10 and 200 m/s have been observed

  11. Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2017-04-15

    Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety concerns (Federici et al., 2001) . It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance (Ono et al., 2013, 2014) . The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium (LL) divertor (RLLD) concept (Ono et al., 2013) and its variant, the active liquid lithium divertor concept (ARLLD) (Ono et al., 2014) , taking advantage of the enhanced non-coronal Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/s of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤450 °C than the first wall ∼600–700 °C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ∼1 l/s (l/s) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust/impurities are removed by relatively simple filter and cold/hot trap systems. Using a

  12. Various semiclassical limits of torus conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Alkalaev, Konstantin [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of General and Applied Physics, Moscow Institute of Physics and Technology,Institutskiy per. 7, Dolgoprudnyi, Moscow region, 141700 (Russian Federation); Geiko, Roman [Mathematics Department, National Research University Higher School of Economics,Usacheva str. 6, Moscow, 119048 (Russian Federation); Rappoport, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, Moscow, 127994 (Russian Federation)

    2017-04-12

    We study four types of one-point torus blocks arising in the large central charge regime. There are the global block, the light block, the heavy-light block, and the linearized classical block, according to different regimes of conformal dimensions. It is shown that the blocks are not independent being connected to each other by various links. We find that the global, light, and heavy-light blocks correspond to three different contractions of the Virasoro algebra. Also, we formulate the c-recursive representation of the one-point torus blocks which is relevant in the semiclassical approximation.

  13. The Columbia Non-neutral Torus

    International Nuclear Information System (INIS)

    Pedersen, Thomas Sunn

    2009-01-01

    Final report for the Columbia Non-neutral Torus. This details the results from the design, construction and initial operation of the Columbia Non-neutral Torus. During the duration of this grant, I designed, built, and operated the Columbia Nonneutral Torus, the world's lowest aspect ratio stellarator, and arguably, the world's simplest stellarator. This demonstrates the ease and robustness of the chosen stellarator design and allowed us to commence the investigation of the physics of non-neutral plasmas confined on magnetic surfaces. These plasmas are unique in many ways and had not previously been studied in a stellarator. Our first results showed that it is possible to confine and study a relatively cold pure electron plasma in a stellarator. We confirmed that the plasma is stable, and that the plasma is reasonably well confined in a stellarator configuration. These results were published in Physics of Plasmas (2006) and Physical Review Letters (2006). They enabled the existing program which is resolving the underlying transport processes in a classical stellarator with intense self-electric fields and enable the next phase of operation, electron-positron plasma physics. During the period of this grant, two students were trained in experimental plasma physics and both received their PhD degrees shortly after the grant terminated. One student is now employed in the financial services industry, the other is a postdoctoral associate at Los Alamos National Laboratory. The chief goals were to build and begin operation of the Columbia Non-neutral Torus. These goals were achieved in the third year of funding. The development of diagnostic methods and the confirmation of stable equilibria were also achieved during the grant period. In summary, the main scientific goals were all met. The main educational goals were also met, as the experiment became the training ground not only for the two aforementioned graduate students but also for a number of undergraduate students

  14. Advanced ST plasma scenario simulations for NSTX

    International Nuclear Information System (INIS)

    Kessel, C.E.; Synakowski, E.J.; Gates, D.A.; Kaye, S.M.; Menard, J.; Phillips, C.K.; Taylor, G.; Wilson, R.; Harvey, R.W.; Mau, T.K.

    2005-01-01

    Integrated scenario simulations are done for NSTX that address four primary milestones for developing advanced ST configurations: high β and high β N inductive discharges to study all aspects of ST physics in the high beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high βfor flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal startup and plasma current rampup. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam (NB) deposition profile and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at β N 's of 7.7-9, I P = 1.0 MA and B T = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H 98(y,2 ) = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations (author)

  15. Modeling of Neoclassical Tearing Mode Stability for Generalized Toroidal Geometry

    International Nuclear Information System (INIS)

    A.L. Rosenberg; D.A. Gates; A. Pletzer; J.E. Menard; S.E. Kruger; C.C. Hegna; F. Paoletti; S. Sabbagh

    2002-01-01

    Neoclassical tearing modes (NTMs) can lead to disruption and loss of confinement. Previous analysis of these modes used large aspect ratio, low beta (plasma pressure/magnetic pressure) approximations to determine the effect of NTMs on tokamak plasmas. A more accurate tool is needed to predict the onset of these instabilities. As a follow-up to recent theoretical work, a code has been written which computes the tearing mode island growth rate for arbitrary tokamak geometry. It calls PEST-3 [A. Pletzer et al., J. Comput. Phys. 115, 530 (1994)] to compute delta prime, the resistive magnetohydrodynamic (MHD) matching parameter. The code also calls the FLUXGRID routines in NIMROD [A.H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)] for Dnc, DI and DR [C.C. Hegna, Phys. Plasmas 6, 3980 (1999); A.H. Glasser et al., Phys. Fluids 18, 875 (1975)], which are the bootstrap current driven term and the ideal and resistive interchange mode criterion, respectively. In addition to these components, the NIMROD routines calculate alphas-H, a new correction to the Pfirsch-Schlter term. Finite parallel transport effects were added and a National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] equilibrium was analyzed. Another program takes the output of PEST-3 and allows the user to specify the rational surface, island width, and amount of detail near the perturbed surface to visualize the total helical flux. The results of this work will determine the stability of NTMs in an spherical torus (ST) [Y.-K.M. Peng et al., Nucl. Fusion 26, 769 (1986)] plasma with greater accuracy than previously achieved

  16. Translation of an FRC plasma into a quasi-spherical confinement region

    International Nuclear Information System (INIS)

    Sekiguchi, Jun'ichi; Asai, Tomohiko; Takahashi, Tsutomu; Takahashi, Toshiki

    2014-01-01

    Translation of a Field-Reversed Configuration (FRC) into a quasi-spherical confinement region with super-alfvenic translation speed has been successfully conducted. Translation speed can be controlled in the range from 80 to 150 km/s by changing statically filled gas pressure. The translated FRC experiences radial decompression process rapidly when it enters into the confinement chamber. The separatrix shape of translated FRC is controlled through the translation process. Especially, in the case of FRC translation into deuterium gas atmosphere, elongation of the FRC is roughly unity. It indicates possible application of center solenoid onto the high-beta compact torus of FRC. Also, as a new finding, a rotational instability with an n=2 deformation has been observed in the translated FRC. (author)

  17. On the energy crisis in the Io plasma torus

    Science.gov (United States)

    Smith, Robert A.; Bagenal, Fran; Cheng, Andrew F.; Strobel, Darrell

    1988-01-01

    Recent calculations of the energy balance of the Io plasma torus show that the observed UV and EUV radiation cannot be maintained solely via energy input by the ion pickup mechanism. Current theoretical models of the torus must be modified to include non-local energy input. It is argued that the required energy may be supplied by inward diffusion of energetic heavy ions with energies less than about 20 keV.

  18. Long Term Monitoring of the Io Plasma Torus During the Galileo Encounter

    Science.gov (United States)

    Brown, Michael E.

    2002-01-01

    In the fall of 1999, the Galileo spacecraft made four passes into the Io plasma torus, obtaining the best in situ measurements ever of the particle and field environment in this densest region of the Jovian magnetosphere. Supporting observations from the ground are vital for understanding the global and temporal context of the in situ observations. We conducted a three-month-long Io plasma torus monitoring campaign centered on the time of the Galileo plasma torus passes to support this aspect of the Galileo mission. The almost-daily plasma density and temperature measurements obtained from our campaign allow the much more sparse but also much more detailed Galileo data to be used to address the issues of the structure of the Io plasma torus, the stability mechanism of the Jovian magnetosphere, the transport of material from the source region near Io, and the nature and source of persistent longitudinal variations. Combining the ground-based monitoring data with the detailed in situ data offers the only possibility for answering some of the most fundamental questions about the nature of the Io plasma torus.

  19. Computation of Quantum Bound States on a Singly Punctured Two-Torus

    International Nuclear Information System (INIS)

    Kar-Tim Chan; Zainuddin Hishamuddin; Molladavoudi Saeid

    2013-01-01

    We study a quantum mechanical system on a singly punctured two-torus with bound states described by the Maass waveforms which are eigenfunctions of the hyperbolic Laplace—Beltrami operator. Since the discrete eigenvalues of the Maass cusp form are not known analytically, they are solved numerically using an adapted algorithm of Hejhal and Then to compute Maass cusp forms on the punctured two-torus. We report on the computational results of the lower lying eigenvalues for the punctured two-torus and find that they are doubly-degenerate. We also visualize the eigenstates of selected eigenvalues using GridMathematica

  20. Maass Cusp Forms on Singly Punctured Two-Torus

    International Nuclear Information System (INIS)

    Siddig, Abubaker Ahmed Mohamed; Shah, Nurisya Mohd; Zainuddin, Hishamuddin

    2009-01-01

    Quantum mechanical systems on punctured surfaces modeled by hyperbolic spaces can play an interesting role in exploring quantum chaos and in studying behaviour of future quantum nano-devices. The case of singly-punctured two-torus, for example, has been well-studied in the literature particularly for its scattering states. However, the bound states on the punctured torus given by Maass cusp forms are lesser known. In this note, we report on the algorithm of numerically computing these functions and we present ten lower-lying eigenvalues for each odd and even Maass cusp forms.

  1. Simulation of the time development of EBW emission from NSTX

    Czech Academy of Sciences Publication Activity Database

    Preinhaelter, Josef; Urban, Jakub; Taylor, G.; Diem, S.; Vahala, L.; Vahala, G.

    2006-01-01

    Roč. 51, č. 4 (2006), K1.00024 ISSN 0003-0503. [International Sherwood Fusion Theory Conference/2006./. Dallas, Texas , 22.4.2006-25.4.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/APR06/baps/all_APR06.pdf http://meetings.aps.org/Meeting/APR06/Event/47670

  2. Quiet Periods in Edge Turbulence Preceding the L-H Transition in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.; Maqueda, R.J.; Hager, R.; Hallatschek, K.; Kaye, S.M.; Munsat, T.; Poli, F.M.; Roquemore, A.L.; Sechrest, Y.; Stotler, D.P.

    2010-01-01

    This paper describes the first observations in NSTX of 'quiet periods' in the edge turbulence preceding the L-H transition, as diagnosed by the GPI diagnostic near the outer midplane separatrix. During these quiet periods the GPI D light emission pattern was transiently similar to that seen during Hmode, i.e. with a relatively small fraction of the GPI light emission located outside the separatrix. These quiet periods had a frequency of ∼3 kHz for at least 30 msec before the L-H transition, and were correlated with changes in the direction of the local poloidal velocity. The GPI turbulence images were also analyzed to obtain an estimate for the dimensionless poloidal shearing S =(dVp/dr)(Lr/Lp). The values of S were strongly modulated by the quiet periods, but not otherwise varying for at least 30 msec preceding the L-H transition. Since neither the quiet periods nor the shear flow increased significantly immediately preceding the L-H transition, neither of these appears to be the trigger for this transition, at least for these cases in NSTX.

  3. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2004-04-07

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring

  4. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    International Nuclear Information System (INIS)

    Finley, Virginia L.

    2004-01-01

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring continue d under a

  5. Beta-induced Alfven-acoustic Eigenmodes in NSTX and DIII-D Driven by Beam Ions

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Van Zeeland, M.A.; Berk, H.L.; Crocker, N.A.; Darrow, D.; Fredrickson, E.; Fu, G.-Y.; Heidbrink, W.W.; Menard, J.; Nazikian, R.

    2009-01-01

    Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here Beta-induced Alfven-Acoustic Eigenmodes (BAAE) are reported confirming previous results [N.N. Gorelenkov H.L. Berk, N.A. Crocker et. al. Plasma Phys. Control. Fusion 49 B371 (2007)] The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J.L. Luxon, Nucl. Fusion 42 614 (2002)] and National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y.-K M. Peng et. al., Nucl. Fusion 40 3Y 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorated the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global Toroidicity-induced shear Alfven Eigenmode (TAE) instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy

  6. Beta-induced Alfven-acousti Eigenmodes in NSTX and DIII-D Driven by Beam Ions

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N. N.; Van Zeeland, M. A.; Berk, H. L.; Crocker, N. A.; Darrow, D.; Fredrickson, E.; Fu, G. Y.; Heidbrink, W. W.; Menard, J.; Nazikian, R.

    2009-03-06

    Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here Beta-induced Alfven-Acoustic Eigenmodes (BAAE) are reported confirming previous results [N.N. Gorelenkov H.L. Berk, N.A. Crocker et. al. Plasma Phys. Control. Fusion 49 B371 (2007)] The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J.L. Luxon, Nucl. Fusion 42 614 (2002)] and National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y.-K M. Peng et. al., Nucl. Fusion 40 3Y 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorated the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global Toroidicity-induced shear Alfven Eigenmode (TAE) instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy.

  7. Effect of torus wall flexibility on hydro-structural interaction in BWR containment system

    International Nuclear Information System (INIS)

    Lu, S.C.H.; McCauley, E.W.; Holman, G.S.

    1979-01-01

    The MARK I boiling water reactor (BWR) containment system is comprised of a light-bulb-shaped reactor compartment connected through vent pipes to a torus-shaped and partially water-filled pressure suppression chamber, or the wetwell. During either a normally occurring safety relief valve (SRV) discharge or a hypothetical loss-of-coolant accident (LOCA), air or steam is forced into the wetwell water pool for condensation and results in hydrodynamically induced loads on the torus shell. An analytical program is described which employs the finite element method to investigate the influence of torus wall flexibility on hydrodynamically induced pressure and the resultant force on the torus shell surface. The shell flexibility is characterized by the diameter-to-thickness ratio which is varied from the perfectly rigid case to the nominal plant condition. The general conclusion reached is that torus wall flexibility decreases both the maximum pressure seen by the shell wall and the total vertical load resulted from the hydrodynamically induced pressure

  8. Optimization of Outer Poloidal Field (PF) Coil Configurations for Inductive PF Coil-only Plasma Start-up on Spherical Tori

    International Nuclear Information System (INIS)

    Wonho Choe; Jayhyun Kim; Masayuki Ono

    2004-01-01

    The elimination of in-board ohmic heating solenoid is required for the spherical torus (ST) to function as an attractive fusion power plant. An in-board ohmic solenoid, along with the shielding needed for its insulation, increases the size and, hence, the cost of the plant. Here, we investigate using static as well as dynamic codes in ST geometries a solenoid-free start-up concept utilizing a set of out-board poloidal field coils. By using the static code, an optimization of coil positions as well as coil currents was performed to demonstrate that it is indeed possible to create a high quality multi-pole field null region while retaining significant flux (volt-seconds) needed for the subsequent current ramp-up. With the dynamic code that includes the effect of vacuum vessel eddy currents, we then showed that it is possible to maintain a large size field null region for several milliseconds in which sufficient ionization avalanche can develop in the applied toroidal electric field. Under the magnetic geometry typical of a next generation spherical torus experiment, it is shown that the well-known plasma breakdown conditions for conventional ohmic solenoid start-up of E(sub)TB(sub)T/B(sub)P ∼ (0.1-1) kV/m with V(sub)loop ∼ 6 V can be readily met while retaining significant volt-seconds ∼ 4 V-S sufficient to generate multi-MA plasma current in STs

  9. Plasma Science and Innovation Center at Washington, Wisconsin, and Utah State: Final Scientific Report for the University of Wisconsin-Madison

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl R. [Univ. of Wisconsin, Madison, WI (United States)

    2016-11-28

    The University of Wisconsin-Madison component of the Plasma Science and Innovation Center (PSI Center) contributed to modeling capabilities and algorithmic efficiency of the Non-Ideal Magnetohydrodynamics with Rotation (NIMROD) Code, which is widely used to model macroscopic dynamics of magnetically confined plasma. It also contributed to the understanding of direct-current (DC) injection of electrical current for initiating and sustaining plasma in three spherical torus experiments: the Helicity Injected Torus-II (HIT-II), the Pegasus Toroidal Experiment, and the National Spherical Torus Experiment (NSTX). The effort was funded through the PSI Center's cooperative agreement with the University of Washington and Utah State University over the period of March 1, 2005 - August 31, 2016. In addition to the computational and physics accomplishments, the Wisconsin effort contributed to the professional education of four graduate students and two postdoctoral research associates. The modeling for HIT-II and Pegasus was directly supported by the cooperative agreement, and contributions to the NSTX modeling were in support of work by Dr. Bickford Hooper, who was funded through a separate grant. Our primary contribution to model development is the implementation of detailed closure relations for collisional plasma. Postdoctoral associate Adam Bayliss implemented the temperature-dependent effects of Braginskii's parallel collisional ion viscosity. As a graduate student, John O'Bryan added runtime options for Braginskii's models and Ji's K2 models of thermal conduction with magnetization effects and thermal equilibration. As a postdoctoral associate, O'Bryan added the magnetization effects for ion viscosity. Another area of model development completed through the PSI-Center is the implementation of Chodura's phenomenological resistivity model. Finally, we investigated and tested linear electron parallel viscosity, leveraged by support from

  10. Exploring Torus Universes in Causal Dynamical Triangulations

    DEFF Research Database (Denmark)

    Budd, Timothy George; Loll, R.

    2013-01-01

    Motivated by the search for new observables in nonperturbative quantum gravity, we consider Causal Dynamical Triangulations (CDT) in 2+1 dimensions with the spatial topology of a torus. This system is of particular interest, because one can study not only the global scale factor, but also global...... shape variables in the presence of arbitrary quantum fluctuations of the geometry. Our initial investigation focusses on the dynamics of the scale factor and uncovers a qualitatively new behaviour, which leads us to investigate a novel type of boundary conditions for the path integral. Comparing large....... Apart from setting the stage for the analysis of shape dynamics on the torus, the new set-up highlights the role of nontrivial boundaries and topology....

  11. A major modification of the Joint European Torus using teleoperational techniques

    International Nuclear Information System (INIS)

    Rolfe, A.

    1998-04-01

    The Joint European Torus (JET) project was set up under the auspices of EURATOM in the late 1970's in order to study the feasibility of controlled Nuclear Fusion. The experimental device comprises a toroidal shaped vacuum vessel in which high temperature plasma is created and controlled. The inside of the torus is now inaccessible to personnel for around one year due to slightly elevated radiation levels. The JET programme however requires the immediate replacement of a major system within the torus and this must therefore be achieved using only remote handling techniques. This paper describes the preparations for this first fully remote handling shutdown at JET. (author)

  12. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Eden, G. G. van; Morgan, T. W. [Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven (Netherlands); Reinke, M. L.; Gray, T. K.; Lore, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Peterson, B. J.; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka 311-0193 (Japan); Pandya, S. N. [Institute for Plasma Research, Bhat Village, Gandhinagar, 382428 Gujarat (India)

    2016-11-15

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm{sup 2} Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  13. Infrared emission in Seyfert 2 galaxies - Reprocessed radiation from a dusty torus?

    Science.gov (United States)

    Storchi-Bergmann, Thaisa; Mulchaey, John S.; Wilson, Andrew S.

    1992-01-01

    New and existing data for a sample of nine Seyfert 2 galaxies with known 'ionization cones' are combined in order to test whether collimation results from shadowing of radiation from a small isotropic nuclear source by a thick dusty torus. The number of ionizing photons emitted by the compact nucleus is calculated from the emission-line ratios measured for gas within the cones. On the assumption that this compact nuclear source radiates isotropically, the optical-UV power incident on the torus, which is expected to be reradiated in the IR, is determined. It is found that the observed IRAS luminosities are consistent with the torus model in eight of the nine objects with sufficient data to perform the calculation. It is concluded that the data are generally consistent with collimation and reradiation by a dusty torus.

  14. Equilibrium-torus bifurcation in nonsmooth systems

    DEFF Research Database (Denmark)

    Zhusubahyev, Z.T.; Mosekilde, Erik

    2008-01-01

    Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium...... point. We obtain the chart of dynamic modes and show that there is a region of parameter space in which the system has a single stable node equilibrium point. Under variation of the parameters, this equilibrium may disappear as it collides with a discontinuity boundary between two smooth regions...... in the phase space. The disappearance of the equilibrium point is accompanied by the soft appearance of an unstable focus period-1 orbit surrounded by a resonant or ergodic torus. Detailed numerical calculations are supported by a theoretical investigation of the normal form map that represents the piecewise...

  15. Coaxial helicity injection and n=1 relaxation activity in the HIST spherical torus

    International Nuclear Information System (INIS)

    Nagata, M.; Oguro, T.; Kagei, Y.

    2003-01-01

    In order to understand comprehensively the role of the n=1 instability and relaxation on current generation processes in helicity-driven spherical systems, we have investigated dynamics of ST plasmas produced in the HIST device by decreasing the external toroidal field (TF) and reversing its sign in time. In result, we have discovered that the ST relaxes towards flipped ST configurations through formation of reversed-field pinches (RFPs)-like magnetic field profiles. Surprisingly, it has been observed that not only toroidal flux but also poloidal flux reverses sign spontaneously during the relaxation process. The dynamics associated to self-reversal of the magnetic fields is presently investigated by using three-dimensional magnetohydrodynamic (MHD) numerical simulations. Furthermore, we have first demonstrated that a flipped ST plasma can be successfully sustained by CHI. The n=1 relaxation activity is found to be essential in the current sustainment of the flipped ST as well as the spheromak and the unflipped ST. (author)

  16. 'Affine' algebras on the torus

    International Nuclear Information System (INIS)

    Zakkari, M.

    1993-07-01

    The analysis of the Kac-Moody ''like'' algebra L-circumflex 2 (G) on the torus is performed. It will be seen that the root systems construction leading to a Cartan matrix is not possible. Different twist of L-circumflex 2 λ (G) are discussed. Connections with known results are done. (author). 10 refs

  17. Study of a spherical torus based volumetric neutron source for nuclear technology testing and development. Final report of a scientific research supported by the USDOE/SBIR program

    International Nuclear Information System (INIS)

    Cheng, E.T.

    1999-01-01

    A plasma based, deuterium and tritium (DT) fueled, volumetric 14 MeV neutron source (VNS) has been considered as a possible facility to support the development of the demonstration fusion power reactor (DEMO). It can be used to test and develop necessary fusion blanket and divertor components and provide sufficient database, particularly on the reliability of nuclear components necessary for DEMO. The VNS device complement to ITER by reducing the cost and risk in the development of DEMO. A low cost, scientifically attractive, and technologically feasible volumetric neutron source based on the spherical torus (ST) concept has been conceived. The ST-VNS, which has a major radius of 1.07 m, aspect ratio 1.4, and plasma elongation 3, can produce a neutron wall loading from 0.5 to 5 MW/m 2 at the outboard test section with a modest fusion power level from 38 to 380 MW. It can be used to test necessary nuclear technologies for fusion power reactor and develop fusion core components include divertor, first wall, and power blanket. Using staged operation leading to high neutron wall loading and optimistic availability, a neutron fluence of more than 30 MW-y/m 2 is obtainable within 20 years of operation. This will permit the assessments of lifetime and reliability of promising fusion core components in a reactor relevant environment. A full scale demonstration of power reactor fusion core components is also made possible because of the high neutron wall loading capability. Tritium breeding in such a full scale demonstration can be very useful to ensure the self-sufficiency of fuel cycle for a candidate power blanket concept

  18. The geometric Schwinger model on the torus. Pt. 1

    International Nuclear Information System (INIS)

    Joos, H.

    1990-01-01

    The author analyzes the Euclidean version of the geometric Schwinger model on the torus. After the calculation of the zero mode wave functions associated with the different topological sectors, which can be expressed by θ functions defined on the two-dimensional torus, he determines the regularized effective action and discusses the propagator related to it. Finally he studies applications to the standard questions like the particle spectrum, the screening of the static potential, and the appearance of the anomaly. (HSI)

  19. Magnetostatics of the uniformly polarized torus

    DEFF Research Database (Denmark)

    Beleggia, Marco; De Graef, Marc; Millev, Yonko

    2009-01-01

    We provide an exhaustive description of the magnetostatics of the uniformly polarized torus and its derivative self-intersecting (spindle) shapes. In the process, two complementary approaches have been implemented, position-space analysis of the Laplace equation with inhomogeneous boundary condit...

  20. Development of Operation Scenario for Spherical Tokamak at SNU

    International Nuclear Information System (INIS)

    Sung, C. K.; Park, Y. S.; Lee, H. Y.; Kang, J.; Hwang, Y. S.

    2009-01-01

    Several concepts for nuclear fusion plant exist. In these concepts, tokamak is the most promising one to realize nuclear fusion plant. Though tokamak has leading concept, and this has world record in fusion heating power, tokamak has the critical drawback: low heating efficiency. That is the reason why we need another alternative concept which compensates tokamak's disadvantage. Spherical Torus(ST) is one of these kinds of concepts. ST is a kind of tokamak which has low aspect ratio. This feature gives ST advantages compared to conventional tokamak: high efficiency, compactness, low cost. However, ST lacks central region for solenoid that is needed to start-up and sustain. Since it is the most efficient that initializing and sustaining by using solenoid, this is ST's intrinsic limitation. To overcome this, a new device which can start-up and sustain ST plasmas by means of continuous tokamak plasma injection has been designed

  1. Success and failure of the plasma analogy for Laughlin states on a torus

    Science.gov (United States)

    Fremling, Mikael

    2017-01-01

    We investigate the nature of the plasma analogy for the Laughlin wave function on a torus describing the quantum Hall plateau at ν =\\frac{1}{q} . We first establish, as expected, that the plasma is screening if there are no short nontrivial paths around the torus. We also find that when one of the handles has a short circumference—i.e. the thin-torus limit—the plasma no longer screens. To quantify this we compute the normalization of the Laughlin state, both numerically and analytically. In the thin torus limit, the analytical form of the normalization simplify and we can reconstruct the normalization and analytically extend it back into the 2D regime. We find that there are geometry dependent corrections to the normalization, and this in turn implies that the plasma in the plasma analogy is not screening when in the thin torus limit. Despite the breaking of the plasma analogy in this limit, the analytical approximation is still a good description of the normalization for all tori, and also allows us to compute hall viscosity at intermediate thickness.

  2. Bumpy torus annulus startup

    International Nuclear Information System (INIS)

    Sperling, J.L.; Hamasaki, S.; Krall, N.A.

    1982-01-01

    In order that a stable bumpy torus plasma configuration can be attained, it is first necessary to irradiate the plasma with sufficient external power to cause annulus formation. To estimate the power required to initiate annuli, it is assumed that quasilinear electron-cyclotron heating by microwaves is the dominant electron heating mechanism. A scaling law for required microwave power is derived which shows that annulus formation is assisted by smaller cross-section areas, lower density, lower microwave frequency, and higher C-mode temperature. The scaling law is quantitatively evaluated for NBT, EBT-1, EBT-S, EBT-P, and EBT-R parameters. The resulting power estimates are consistent with the available microwave power in previous and present experiments. In larger projected bumpy tori, like EBT-P and EBT-R, it may be necessary to initiate annulus formation at densities which are lower than in the stable T-mode so that the necessary microwave power can be reduced to reasonably modest levels. It is suggested that instabilities as well as rf heating can aid the formation of bumpy torus electron annuli. Rf experiments on NBT and EBT-S would be beneficial in determining the capability of rf power to assist annulus startup

  3. Measurements and 2-D Modeling of Recycling and Edge Transport in Discharges with Lithium-coated PFCs in NSTX

    International Nuclear Information System (INIS)

    Canik, John; Maingi, R.; Soukhanovskii, V.A.; Bell, R.E.; Kugel, H.; LeBlanc, B.; Osborne, T.H.

    2011-01-01

    The application of lithium coatings on plasma facing components has been shown to profoundly affect plasma performance in the National Spherical Torus Experiment, improving energy confinement and eliminating edge-localized modes. The edge particle balance during these ELM-free discharges has been studied through 2-D plasma-neutrals modeling, constrained by measurements of the upstream plasma density and temperature profiles and the divertor heat flux and D-alpha emission. The calculations indicate that the reduction in divertor D-alpha emission with lithium coatings applied is consistent with a drop in recycling coefficient from R similar to 0.98 to R similar to 0.9. The change in recycling is not sufficient to account for the change in edge density profiles: interpretive modeling indicates similar transport coefficients within the edge transport barrier (D/chi(e) similar to 0.2/1.0 m(2)/s), but a widening of the barrier with lithium.

  4. TORUS Annual Continuation and Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Arbanas, Goran [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Elster, Charlotte [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Echer, Jutta [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nunes, Filomena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-02-24

    The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding supports one postdoctoral researcher for the years 1 through 4. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve directreaction calculations. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.

  5. A time-dependent anisotropic plasma chemistry model of the Io plasma torus

    Science.gov (United States)

    Arridge, C. S.

    2016-12-01

    The physics of the Io plasma torus is typically modelled using one box neutral-plasma chemistry models, often referred to as neutral cloud theory models (e.g., Barbosa 1994; Delamere and Bagenal 2003). These models incorporate electron impact and photoionisation, charge exchange, molecular dissociation/recombination reactions, atomic radiatiative losses and Coulomb collisional heating. Isotropic Maxwellian distributions are usually assumed in the implementation of these models. Observationally a population of suprathermal electrons has been identified in the plasma torus and theoretically they have been shown to be important in reproducing the observed ionisation balance in the torus (e.g., Barbosa 1994). In this paper we describe an anisotropic plasma chemistry model for the Io torus that is inspired by ion cyclotron wave observations (Huddleston et al. 1994; Leisner et al. 2011), ion anisotropies due to pick up (Wilson et al. 2008), and theoretical ideas on the maintenance of the suprathermal electron population (Barbosa 1994). We present both steady state calculations and also time varying solutions (e.g., Delamere et al. 2004) where increases in the neutral source rate in the torus generates perturbations in ion anisotropies that subsequently decay over a timescale much longer than the duration of the initial perturbation. We also present a method for incorporating uncertainties in reaction rates into the model.

  6. Nonlinear evolution of magnetic islands in a two fluid torus

    International Nuclear Information System (INIS)

    Sugiyama, L.E.; Park, W.

    1996-01-01

    A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress

  7. Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission

    Science.gov (United States)

    Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.

    2018-01-01

    Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.

  8. ITER - torus vacuum pumping system remote handling issues

    International Nuclear Information System (INIS)

    Stringer, J.

    1992-11-01

    This report describes further design issues concerning remote maintenance of torus vacuum pumping systems options for ITER. The key issues under investigation in this report are flask support systems for valve seal exchange operations for the compound cryopump scheme and remote maintenance of a proposed multiple turbomolecular pump (TMP) system, an alternative ITER torus exhaust pumping option. Previous studies have shown that the overhead support methods for seal exchange flask equipment could malfunction due to valve/flask misalignment. A floor-mounted support system is described in this report. This scheme provides a more rigid support system for seal exchange operations. An alternative torus pumping system, based on the use of multiple TMPs, is studied from a remote maintenance standpoint. In this concept, centre distance spacing for pump/valve assemblies is too restrictive for remote maintenance. Recommendations are made for adequate spacing of these assemblies based on commercially-available 0.8 m and 1.0 m diameter valves. Fewer pumps will fit in this arrangement, which implies a need for larger TMPs. Pumps of this size are not commercially available. Other concerns regarding the servicing and storage of remote handling equipment in cells are also identified. (9 figs.)

  9. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Boyle, D.P. [Princeton University, Princeton, NJ (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Scotti, F.; Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-04-15

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10–30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar to the one in this experiment.

  10. THE DIFFERENCES IN THE TORUS GEOMETRY BETWEEN HIDDEN AND NON-HIDDEN BROAD LINE ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Kohei; Ueda, Yoshihiro [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Packham, Christopher; Lopez-Rodriguez, Enrique; Alsip, Crystal D. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Almeida, Cristina Ramos; Ramos, Andrés Asensio; González-Martín, Omaira [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain); Alonso-Herrero, Almudena [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Díaz-Santos, Tanio [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Elitzur, Moshe [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Hönig, Sebastian F. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Levenson, Nancy A. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Mason, Rachel E. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Perlman, Eric S., E-mail: ichikawa@kusastro.kyoto-u.ac.jp [Department of Physics and Space Sciences, 150 W. University Blvd., Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2015-04-20

    We present results from the fitting of infrared (IR) spectral energy distributions of 21 active galactic nuclei (AGNs) with clumpy torus models. We compiled high spatial resolution (∼0.3–0.7 arcsec) mid-IR (MIR) N-band spectroscopy, Q-band imaging, and nuclear near- and MIR photometry from the literature. Combining these nuclear near- and MIR observations, far-IR photometry, and clumpy torus models enables us to put constraints on the torus properties and geometry. We divide the sample into three types according to the broad line region (BLR) properties: type-1s, type-2s with scattered or hidden broad line region (HBLR) previously observed, and type-2s without any published HBLR signature (NHBLR). Comparing the torus model parameters gives us the first quantitative torus geometrical view for each subgroup. We find that NHBLR AGNs have smaller torus opening angles and larger covering factors than HBLR AGNs. This suggests that the chance to observe scattered (polarized) flux from the BLR in NHBLR could be reduced by the dual effects of (a) less scattering medium due to the reduced scattering volume given the small torus opening angle and (b) the increased torus obscuration between the observer and the scattering region. These effects give a reasonable explanation for the lack of observed HBLR in some type-2 AGNs.

  11. The CLAS12 Torus Detector Magnet at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Luongo, Cesar [Jefferson Lab; Ballard, Joshua [Jefferson Lab; Biallas, George [Jefferson Lab; Elouadrhiri, Latifa [Jefferson Lab; Fair, Ruben [Jefferson Lab; Ghoshal, Probir [Jefferson Lab; Kashy, Dave [Jefferson Lab; Legg, Robert [Jefferson Lab; Pastor, Orlando [Jefferson Lab; Rajput-Ghoshal, Renuka [Jefferson Lab; Rode, Claus [Jefferson Lab; Wiseman, Mark [Jefferson Lab; Young, Glenn [Jefferson Lab; Elementi, Luciano [Fermilab; Krave, Steven [Fermilab; Makarov, Alexander [Fermilab; Nobrega, Fred [Fermilab; Velev, George [Fermilab

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, which is part of the detector for the 12-GeV accelerator upgrade at Jefferson Laboratory (JLab). The coils were wound/fabricated by Fermilab, with JLab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. This paper provides an overview of the CLAS12 Torus magnet features and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  12. A disrupted molecular torus around Eta Carinae as seen in 12CO with ALMA

    Science.gov (United States)

    Smith, Nathan; Ginsburg, Adam; Bally, John

    2018-03-01

    We present Atacama Large Millimeter Array (ALMA) observations of 12CO 2-1 emission from circumstellar material around the massive star Eta Carinae (η Car). These observations reveal new structural details about the cool equatorial torus located ˜4000 au from the star. The CO torus is not a complete azimuthal loop, but rather, is missing its near side, which appears to have been cleared away. The missing material matches the direction of apastron in the eccentric binary system, making it likely that η Car's companion played an important role in disrupting portions of the torus soon after ejection. Molecular gas seen in ALMA data aligns well with the cool dust around η Car previously observed in mid-infrared (IR) maps, whereas hot dust resides at the inner surface of the molecular torus. The CO also coincides with the spatial and velocity structure of near-IR H2 emission. Together, these suggest that the CO torus seen by ALMA is actually the pinched waist of the Homunculus polar lobes, which glows brightly because it is close to the star and warmer than the poles. The near side of the torus appears to be a blowout, associated with fragmented equatorial ejecta. We discuss implications for the origin of various features north-west of the star. CO emission from the main torus implies a total gas mass in the range of 0.2-1 M⊙ (possibly up to 5 M⊙ or more, although with questionable assumptions). Deeper observations are needed to constrain CO emission from the cool polar lobes.

  13. Rotating field current drive in spherical plasmas

    International Nuclear Information System (INIS)

    Brotherton-Ratcliffe, D.; Storer, R.G.

    1988-01-01

    The technique of driving a steady Hall current in plasmas using a rotating magnetic field is studied both numerically and analytically in the approximation of negligible ion flow. A spherical plasma bounded by an insulating wall and immersed in a uniform magnetic field which has both a rotating component (for current drive) and a constant ''vertical'' component (for MHD equilibrium) is considered. The problem is formulated in terms of an expansion of field quantities in vector spherical harmonics. The numerical code SPHERE solves the resulting pseudo-harmonic equations by a multiple shooting technique. The results presented, in addition to being relevant to non-inductive current drive generally, have a direct relevance to the rotamak experiments. For the case of no applied vertical field the steady state toroidal current driven by the rotating field per unit volume of plasma is several times less than in the long cylinder limit for a plasma of the same density, resistivity and radius. The application of a vertical field, which for certain parameter regimes gives rise to a compact torus configuration, improves the current drive dramatically and in many cases gives ''better'' current drive than the long cylinder limit. This result is also predicted by a second order perturbation analysis of the pseudo-harmonic equations. A steady state toroidal field is observed which appears consistent with experimental observations in rotamaks regarding magnitude and spatial dependence. This is an advance over previous analytical theory which predicted an oppositely directed toroidal field of undefined magnitude. (author)

  14. Concept of a charged fusion product diagnostic for NSTX.

    Science.gov (United States)

    Boeglin, W U; Valenzuela Perez, R; Darrow, D S

    2010-10-01

    The concept of a new diagnostic for NSTX to determine the time dependent charged fusion product emission profile using an array of semiconductor detectors is presented. The expected time resolution of 1-2 ms should make it possible to study the effect of magnetohydrodynamics and other plasma activities (toroidal Alfvén eigenmodes (TAE), neoclassical tearing modes (NTM), edge localized modes (ELM), etc.) on the radial transport of neutral beam ions. First simulation results of deuterium-deuterium (DD) fusion proton yields for different detector arrangements and methods for inverting the simulated data to obtain the emission profile are discussed.

  15. Edge Turbulence Imaging on NSTX and Alcator C-Mod

    International Nuclear Information System (INIS)

    S.J. Zweben; R.A. Maqueda; J.L. Terry; B. Bai; C.J. Boswell; C.E. Bush; D. D'Ippolito; E.D. Fredrickson; M. Greenwald; K. Hallatschek; S. Kaye; B. LaBombard; R. Maingi; J. Myra; W.M. Nevins; B.N. Rogers; D.P. Stotler; J. Wilgen; and X.Q. Xu

    2002-01-01

    Edge turbulence images have been made using an ultra-high speed CCD camera on both NSTX and Alcator C-Mod. In both cases, the D-alpha or HeI (587.6 nm) line emission from localized deuterium or helium gas puffs was viewed along a local magnetic field line near the outer midplane. Fluctuations in this line emission reflect fluctuations in electron density and/or electron temperature through the atomic excitation rates, which can be modeled using the DEGAS-2 code. The 2-D structure of the measured turbulence can be compared with theoretical simulations based on 3-D fluid models

  16. The classical theory of the bumpy torus relativistic annulus

    International Nuclear Information System (INIS)

    Hamasaki, S.; Krall, N.A.; Sperling, J.L.

    1983-01-01

    The relativistic electron annulus is a critical component of the bumpy torus magnetic fusion concept. An analysis of the annulus is presented in which the ring steady state is determined by the explicit balance of quasi-linear heating and classical losses, i.e. collisions and synchrotron radiation. Both anisotropy and loss-cone effects are included in the formalism. It is demonstrated that a large number of electron cyclotron harmonics, not just the first and second, contribute in an appreciable way to annulus steady state and power balance. Without a loss cone, the analysis reproduces the relativistic passing electron population observed in bumpy tori on confined drift surfaces near the centre of the bumpy torus cross-section. Loss-cone effects permit an annulus population with large perpendicular pressure to exist. It is shown that the balance between quasi-linear heating and the classical losses cannot account for the experimental scaling of bumpy torus annulus temperature; therefore, processes not included in the classical ring power balance model must contribute in a non-trivial way to observed annulus properties. (author)

  17. Physics of integrated high-performance NSTX plasmas

    International Nuclear Information System (INIS)

    Menard, J. E.; Bell, M. G.; Bell, R. E.; Fredrickson, E. D.; Gates, D. A.; Heidbrink, W.; Kaita, R.; Kaye, S. M.; Kessel, C. E.; Kugel, H.; LeBlanc, B. P.; Lee, K. C.; Levinton, F. M.; Maingi, R.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S. F.; Peebles, T.; Peng, M.; Raman, R.; Redi, M.; Roquemore, L.; Sabbagh, S. A.; Skiner, C. H.; Sontag, A.; Soukhanovskii, V.; Stratton, B.; Stutman, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Wade, M.; Wilson, J. R.; Zhu, W.

    2005-01-01

    An overarching goal of magnetic fusion research is the integration of steady state operation with high fusion power density, high plasma β, good thermal and fast particle confinement, and manageable heat and particle fluxes to reactor internal components. NSTX has made significant progress in integrating and understanding the interplay between these competing elements. Sustained high elongation up to 2.5 and H-mode transitions during the I p ramp-up have increased β p and reduced l i at high current resulting in I p flat-top durations exceeding 0.8s for I p >0.8MA. These shape and profile changes delay the onset of deleterious global MHD activity yielding β N values >4.5 and β T ∼20% maintained for several current diffusion times. Higher ∫ N discharges operating above the non-wall limit are sustained via rotational stabilization of the RWM. H-mode confinement scaling factors relative to H98(y,2) span the range 1±0.4 for B T >4kG and show a stron (Nearly linear) residual scaling with B T . Power balance analysis indicates the electron thermal transport dominates the loss power in beam-heated H m ode discharges, but the core χ e can be significantly reduced through current profile modification consistent with reversed magnetic shear. Small ELM regimes have been obtained in high performance plasmas on NSTX, but the ELM type and associated pedestal energy loss are found to depend sensitively on the boundary elongation, magnetic balance, and edge collisionality. NPA data and TRANSP analysis suggest resonant interactions with mid-radius tearing modes may lead to large fast-ion transport. The associated fast-ion diffusion and/or loss likely impact(s) both the driven current and power deposition profiles from NBI heating. Results from experiments to initiate the plasma without the ohmic solenoid and integrated scenario with the TSC code will also be described. (Author)

  18. Torus as phase space: Weyl quantization, dequantization, and Wigner formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it [Dipartimento di Matematica, Università di Bari, I-70125 Bari (Italy)

    2016-08-15

    The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.

  19. High Speed Images of Edge Plasmas in NSTX and Alcator C-Mod

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Grulke, O.; Terry, J.L.; Zweben, S.J.

    2007-01-01

    This talk will describe the high speed imaging diagnostics on NSTX and Alcator C-Mod and show movies of various edge phenomena, including turbulence during L-modes and H modes, L-H and H-L transitions, effects of MHD activity and ELMs of various types, and wide angle views of the toroidal vs. poloidal structure of these edge '' filaments ''. Issues concerning the interpretation of these images will be discussed. (author)

  20. An alternative to the compact torus ICF driver

    International Nuclear Information System (INIS)

    Latter, A.L.; Martinelli, E.A.

    1992-11-01

    Plasma guns have been used in the Controlled Thermonuclear Reaction (CTR) Program to inject energetic deuterium-tritium plasma into a magnetic confinement machine, also for dense-plasma-focus devices to achieve fusion utilizing Z-pinches. In this report we propose another CTR application of a plasma gun: accelerating the plasma in a coaxial geometry to a speed in the neighborhood of a centimeter per shake with a total kinetic energy of about 20 MJ. The kinetic energy is efficiently converted to x-rays in a time of about a shake, and the x-ray pulse is used to implode an Inertial Confinement Fusion (ICF) capsule. As far as we know the plasma gun application we are proposing has not been explored before, but we observe that the LLNL Compact Torus Program hopes to accelerate a compact-torus-plasma to a comparable speed and energy and, in one of its applications, to generate x-rays for ICF purposes. In fact, the only difference between the LLNL Compact Torus Program and what we are proposing is that our plasma does not rely on imbedded magnetic fields and currents to minimize instabilities. We minimize instabilities by snowplowing the plasma to its required speed in a single shock. Which approach is better requires additional investigation