WorldWideScience

Sample records for nsls vuv ring

  1. Magnet power supply control of the NSLS VUV and x-ray storage rings transfer lines

    International Nuclear Information System (INIS)

    Klein, J.D.; Ramamoorthy, S.; Singh, O.; Smith, J.D.

    1985-01-01

    The transfer lines for NSLS VUV and x-ray storage rings have been split. New power supplies have been incorporated with existing ones. The existing microprocessor system has been upgraded in order to control the additional functions. This system expands the input/output port of the microprocessor to an addressable serial/parallel link to each magnet power supply. The implementation of this system will be discussed

  2. Experience with a high-brightness storage ring: the NSLS 750 MeV vuv ring

    International Nuclear Information System (INIS)

    Galayda, J.

    1984-01-01

    The NSLS vuv ring is the first implementation of the proposals of R. Chasman and G.K. Green for a synchrotron radiation source with enhanced brightness: its lattice is a series of achromatic bends with two zero-gradient dipoles each, giving small damped emittance; and these bends are connected by straight sections with zero dispersion to accommodate wigglers and undulators without degrading the radiation damping properties of the ring. The virtues of the Chasman-Green lattice, its small betatron and synchrotron emittances, may be understood with some generality; e.g. the electron γm 0 c 2 energy and the number of achromatic bends M sets a lower limit on the betatron emittance of e/sub x/ > 7.7 x 10 -13 γ 2 /M meter-radians. There is strong interest in extrapolation of this type of lattice to 6 GeV and to 32 achromatic bends. The subject of this report is the progress toward achieving performance in the vuv ring limited by the radiation damping parameters optimized in its design. 14 refs., 4 figs., 1 tab

  3. Lifetime and performance of NSLS storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Halama, H.J.

    1988-01-01

    The performance of synchrotron light sources is measured primarily in terms of beam lifetime, beam size, and the recovery of normal operation after a section of the machine has been brought to atmospheric pressure. The beam lifetime and the beam size depend on the following phenomena: Beam gas interaction which can be either elastic or inelastic scattering on residual gas nuclei or electrons. With the exception of low energy machines, this phenomenon represents the main limiting factor on lifetime; Beam interaction with trapped ions causing both beam loss and defocussing. Residual gas molecules are ionized both by circulating beam and synchrotron radiation. The cross sections for both processes are comparable. The effects of this phenomenon are most troublesome at low energies. The problem can be eliminated by switching to positron beams. Installing clearing electrodes has also been successful; Intrabeam scattering (Touschek effect) is caused by Coulomb scattering among electrons of the same bunch as they execute betatron oscillations. The Touschek effect is strongly dependent on energy and in general is a problem only in low energy machines; and Various instabilities causing both slow and fast beam decay which have been observed in both NSLS rings. A special case due to dust particles that fall into the electron beam is commonly observed in early stages of conditioning. Coherent collective instabilities will not be discussed in this paper. 19 refs., 4 figs., 1 tab.

  4. Lifetime and performance of NSLS storage rings

    International Nuclear Information System (INIS)

    Halama, H.J.

    1988-01-01

    The performance of synchrotron light sources is measured primarily in terms of beam lifetime, beam size, and the recovery of normal operation after a section of the machine has been brought to atmospheric pressure. The beam lifetime and the beam size depend on the following phenomena: Beam gas interaction which can be either elastic or inelastic scattering on residual gas nuclei or electrons. With the exception of low energy machines, this phenomenon represents the main limiting factor on lifetime; Beam interaction with trapped ions causing both beam loss and defocussing. Residual gas molecules are ionized both by circulating beam and synchrotron radiation. The cross sections for both processes are comparable. The effects of this phenomenon are most troublesome at low energies. The problem can be eliminated by switching to positron beams. Installing clearing electrodes has also been successful; Intrabeam scattering (Touschek effect) is caused by Coulomb scattering among electrons of the same bunch as they execute betatron oscillations. The Touschek effect is strongly dependent on energy and in general is a problem only in low energy machines; and Various instabilities causing both slow and fast beam decay which have been observed in both NSLS rings. A special case due to dust particles that fall into the electron beam is commonly observed in early stages of conditioning. Coherent collective instabilities will not be discussed in this paper. 19 refs., 4 figs., 1 tab

  5. Real time global orbit feedback system for NSLS x-ray ring

    International Nuclear Information System (INIS)

    Yu, L.H.; Biscardi, R.; Bittner, J.; Fauchet, A.M.; Krinsky, F.S.; Nawrocky, R.J.; Rothman, J.; Singh, O.V.; Yang, K.M.

    1991-01-01

    We report on the design and commissioning of a real time harmonic global orbit feedback system for the NSLS X-ray ring. This system uses 8 pick-up electrode position monitors and 16 trim dipole magnets to eliminate 3 harmonic components of the orbit fluctuations. Because of the larger number of position monitors and trim magnets, the X-ray ring feedback system differs from the previously reported VUV ring system in that the Fourier analysis and harmonic generation networks are comprised of MDAC boards controlled by computer. The implementation of the global feedback system has resulted in a dramatic improvement of orbit stability, by more than a factor of five everywhere. Simultaneous operation of the global and several local bump feedback systems has been achieved. 4 refs., 5 figs

  6. DEGRADATION OF MAGNET EPOXY AT NSLS X-RAY RING.

    Energy Technology Data Exchange (ETDEWEB)

    HU,J.P.; ZHONG,Z.; HAAS,E.; HULBERT,S.; HUBBARD,R.

    2004-05-24

    Epoxy resin degradation was analyzed for NSLS X-ring magnets after two decades of 2.58-2.8 GeV continuous electron-beam operation, based on results obtained from thermoluminescent dosimeters irradiated along the NSLS ring and epoxy samples irradiated at the beamline target location. A Monte Carlo-based particle transport code, MCNP, was utilized to verify the dose from synchrotron radiation distributed along the axial- and transverse-direction in a ring model, which simulates the geometry of a ring quadrupole magnet and its central vacuum chamber downstream of the bending-magnet photon ports. The actual life expectancy of thoroughly vacuum baked-and-cured epoxy resin was estimated from radiation tests on similar polymeric materials using a radiation source developed for electrical insulation and mechanical structure studies.

  7. Storage-ring FEL for the vuv

    International Nuclear Information System (INIS)

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  8. PRELIMINARY IMPEDANCE BUDGET FOR NSLS-II STORAGE RING.

    Energy Technology Data Exchange (ETDEWEB)

    BLEDNYKH,A.; KRINSKY, S.

    2007-06-25

    The wakefield and impedance produced by the components of the NSLS-II storage ring have been computed for an electron bunch length of 3mm rms. The results are summarized in a table giving for each component, the loss factor ({kappa}{sub {parallel}}), the imaginary part of the longitudinal impedance at low frequency divided by the revolution harmonic (ImZ{sub {parallel}}/n), and the transverse kick factors ({kappa}{sub x}, {kappa}{sub y}).

  9. Characteristics and performance of the Los Alamos VUV beamline at the NSLS

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Trela, W.J.; Michaud, F.D.; Southworth, S.H.; Alkire, R.W.; Roy, P.; Rothe, R.; Walsh, P.J.; Shinn, N.

    1988-01-01

    We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Rowland circle instrument of the extended grasshopper design (ERG). A postmonochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed. Particular emphasis in the design has been placed on the reduction of stray and harmonic light. Higher order light is reduced by a grazing angle mirror low pass filter installed immediately downstream from the monochromator while stray light is reduced through the use of baffles and thin film filters. Also included in the line is a differential pumping section that permits gas phase and other experiments requiring pressures in the 10 -5 to 10 -4 Torr range to be coupled to the beamline. (orig.)

  10. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  11. Polarized wiggler for NSLS x-ray ring design considerations

    International Nuclear Information System (INIS)

    Friedman, A.; Krinsky, S.; Blum, E.

    1992-03-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler are presented, including photon flux, circular and linear polarization and spectrum. These parameters are compared to the synchrotron radiation from a bending magnet. Numerical values are calculated for radiation from the wiggler and bending magnet for the NSLS X-ray ring parameters. A conceptual design for such a wiggler is discussed and several different alternatives are analyzed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization, and also to produce time modulated linearly polarized radiation

  12. Performance and upgrades of the NSLS storage rings and photon sources

    International Nuclear Information System (INIS)

    1991-01-01

    The usefulness of synchrotron radiation sources is not only determined by current, energy and magnetic field but also orbit stability and lifetime. The status and developments at NSLS in storage ring performance are discussed. Efforts at NSLS to look toward the future in source development are presented. In particular, small gap undulator development and studies toward development of UV Free Electron Laser at the Accelerator Test Facility are described. 5 refs., 2 figs., 1 tab

  13. Estimate of the coupling impedance for the storage rings of the NSLS

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1979-08-01

    The most important ingredient to evaluate the stability of a particle beam in a storage ring is the longitudinal coupling impedance Z/n and the transverse impedance Z/sub perpendicular/ which is usually associated to the former. These impedances are calculated for the two storage rings which are part of the NSLS, namely the Ultra Violet Ring (UVR) and the X-Ray Ring (XRR)-the parameters for these two rings which are used throughout the paper are shown

  14. R.F. cavity design for the NSLS

    International Nuclear Information System (INIS)

    Batchelor, K.; Galayda, J.; Hawrylak, R.

    1981-01-01

    The r.f cavity design for the Booster, vuv ring and x-ray ring of the NSLS is described together with the mechanical design of tuners, coupling and monitoring loops and the temperature control systems. The results of higher order mode measurements as compared with Superfish calculations are also presented

  15. National synchrotron light source VUV storage ring

    International Nuclear Information System (INIS)

    Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Krinsky, S.; Schuchman, J.; van Steenbergen, A.

    1979-01-01

    A 700 MeV electron storage ring designed for synchrotron radiation applications is described. Lattice and stability calculations are presented and the vacuum, correction and injection systems are discussed

  16. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Hastings, J.B. (eds.)

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  17. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Hastings, J.B. [eds.

    1990-12-31

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  18. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    International Nuclear Information System (INIS)

    Johnson, E.D.; Hastings, J.B.

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop

  19. VUV Optics Development for the Elettra Storage Ring FEL

    CERN Document Server

    Guenster, Stefan

    2004-01-01

    Vacuum ultraviolet optical components for the storage ring FEL at Elettra are under continuous development in the European research consortium EUFELE. Target of the project is the progress to shorter lasing wavelengths in the VUV spectral range. The current status allows lasing with oxide mirror systems down to 190 nm. The main obstacles for the development of optical coatings for shorter wavelengths is the high energetic background of the synchrotron radiation impinging onto the front mirror in the laser cavity. Investigations in single layer systems and multilayer stacks of oxide or fluoride materials demonstrate that fluoride mirrors reach highest reflectivity values down to 140 nm, and oxide coatings possess a satisfactory resistance against the high energetic background irradiation. However, pure oxide multilayer stacks exhibit significant absorption below 190 nm and pure fluoride stacks suffer from strong degradation effects under synchrotron radiation. A solution could be hybrid systems, combining fluo...

  20. Plans to increase source brightness of NSLS x-ray ring

    International Nuclear Information System (INIS)

    Safranek, J.; Krinsky, S.

    1993-01-01

    We discuss plans to increase the NSLS X-Ray ring source brightness by an order of magnitude. Proposed improvements include doubling current from 250 mA to 500 mA, reducing vertical emittance by a factor of 6 and reducing insertion device gaps and periods by up to a factor of two. Experimental results are reported which indicate we have succeeded in reducing the vertical emittance below 2 Angstrom

  1. Insertion device development in the X13 straight of the NSLS X-Ray Ring

    International Nuclear Information System (INIS)

    Stefan, P.M.; Krinsky, S.; Kao, C.C.; Rakowsky, G.; Singh, O.; Solomon, L.

    1997-01-01

    On the NSLS X-Ray Storage Ring, the X13 straight section and beamline have been used for insertion-device-related R and D since 1990. The authors will describe three important projects: The Prototype Small-Gap Undulator (PSGU), the In-Vacuum Undulator (IVUN), and the Time Varying Elliptically Polarized Wiggler (EPW). The PSGU has successfully operated with a vertical aperture of only 3 mm, with minimal reduction in electron beam lifetime. The EPW has successfully run during regular user operations while switching at either 2 Hz or 100 Hz, with no adverse effects on other experiments. The IVUN project is a collaboration between NSLS and Spring-8, and installation is scheduled for May 1997

  2. UV-VUV FEL program at DUKE storage ring with OK-4 optical klystron

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Madey, J.M.J.; Vinokurov, N.A.

    1993-01-01

    A 1 GeV electron storage ring dedicated for UV-VUV FEL operation is under construction at the Duke University Free Electron Laser Laboratory. The UV-VUV-FEL project, based on the collaboration of the Duke FEL Laboratory and Budker Institute for Nuclear Physics is described. The main parameters of the DFELL storage ring, of the OK-4 optical klystron, and the experimental set-up are presented. The parameters of UV-VUV FEL are given and the possible future upgrades to this system are discussed

  3. Correlation of photon beam motion with vacuum chamber cooling on the NSLS x-ray ring

    International Nuclear Information System (INIS)

    Johnson, E.D.; Fauchet, A.M.; Zhang, Xiaohao.

    1991-01-01

    The NSLS X-ray ring exhibits a direct correlation between photon beam motion, and distortion of the ring vacuum chamber induced by fluctuations in the cooling system. We have made long term measurements of photon beam vertical position, accelerator vacuum chamber motion, process water temperatures, and angular motions of the magnets around one superperiod of the NSLS x-ray ring. Short term transients in water temperature cause deflection of the ring vacuum chamber which have in turn been shown to induce very small angular rotations of the magnets, on the order of 10 micro-radians. A larger and more difficult to correct effect is the drift in beam position over the course of a fill. This problem has been shown to be related to the thermal gradients that develop across the vacuum chamber which, as a consequence of the configuration of the chamber cooling, depend upon stored current. Orbit simulations based upon the measured rotations are in agreement with the observed beam motions, and reveal that certain patterns of correlated motions of the magnets can produce much larger errors than random motion or concerted motion of all the magnets. During the course of these measurements global orbit feedback was installed, and found to significantly reduce the orbit errors which could not be corrected at their source

  4. A digital feedback system for transverse orbit stabilization in the NSLS rings

    International Nuclear Information System (INIS)

    Friedman, A.; Bozoki, E.

    1993-01-01

    We are reporting on the design and preliminary results of a prototype digital feedback system for the storage rings at the NSLS. the system will use a nolinear eigenvector decomposition algorithm. It will have a wide dynamic range and will be able to correct noise in the orbit over a bandwidth in excess of 60 Hz. A Motorola-162 CPU board is used to sample the PUE's at a minimum rate of 200 Hz and an HP-742rt board is used to read the sampled signals and to generate a correction signal for the orbit correctors

  5. Operation of a small-gap undulator on the NSLS X-ray Ring

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, P.M.; Krinsky, S.; Rakowsky, G.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    The authors report results of an on-going experiment being carried out in the X13 straight section of the NSLS X-ray Ring which explores the limits of the operation of small-gap undulators. In particular, they discuss the operation of a 16 mm period small-gap undulator. At an electron beam current of 300 mA the variable gap vacuum chamber has been closed to an inner aperture of 3.8 mm with no effect on the electron beam lifetime. Measurements of the output radiation spectrum at a magnet gap of 7.5 mm are described.

  6. Global DC closed orbit correction experiments on the NSLS X-ray ring and SPEAR

    International Nuclear Information System (INIS)

    Chung, Y.; Decker, G.; Evans, K. Jr.; Safranek, J.; So, I.; Tang, Y.; Corbett, W.J.; Hettel, R.

    1993-01-01

    The global closed orbit correction experiments conducted on the NSLS X-ray ring and the SPEAR using the technique of singular value decomposition (SVD) are presented. The beam response matrix, defined as beam motion at beam position monitor (BPM) locations per unit kick by corrector magnets, was measured and then analyzed using SVD. The BPMs and correctors are reconfigured into open-quotes transformedclose quotes BPMs (t-BPMs) and open-quotes transformedclose quotes correctors (t-correctors), with each T-BPM coupled to at most one t-corrector and vice versa for orbit correction. The decoupled t-BPMs are used to estimate the limit on orbit correction, while the decoupled t-correctors are used to optimize the corrector strengths. As a result the vertical r.m.s. orbit error at the BPM locations was reduced from 208 μm to 61 μm about an arbitrary reference orbit in the NSLS X-ray ring. In SPEAR, the vertical closed orbit was brought to the BPM centers at the selected BPM locations with an r.m.s. error of 215 μm reduced from the initial 780 μm

  7. A proposed NSLS x-ray ring upgrade using B factory technology

    International Nuclear Information System (INIS)

    Blum, E.B.

    1995-01-01

    A proposed upgrade to the NSLS X-Ray Ring is described that will allow the storage of a 2.4 A. 3 GeV electron beam using technology developed for the PEP-II B factory at SLAC. In this configuration, a peak flux of greater than 10 16 photons/sec/0.1% bandwidth/5 mrad will be produced. The four existing 53 MHz RF cavities will be replaced with eight 476 MHz cavities. Two 952 MHz cavities will also be used to lengthen the bunch, increasing the Touschek life-time. A copper vacuum chamber will be needed to absorb the increased synchrotron radiation and a feedback system may be needed to prevent multi-bunch instabilities

  8. Automatic local beam steering systems for NSLS x-ray storage ring: Design and implementation

    International Nuclear Information System (INIS)

    Singh, O.V.; Nawrocky, R.; Flannigan, J.

    1991-01-01

    Recently, two local automatic steering systems, controlled by microprocessors, have been installed and commissioned in the NSLS X- Ray storage ring. In each system, the position of the electron beam is stabilized at two locations by four independent servo systems. This paper describes three aspects of the local feedback program: design; commissioning; and limitation. The system design is explained by identifying major elements such as beam position detectors, signal processors, compensation amplifiers, ratio amplifiers, trim equalizers and microprocessor feedback controllers. System commissioning involves steps such as matching trim compensation, determination of local orbit bumps, measurement of open loop responses and design of servo circuits. Several limitations of performance are also discussed. 7 refs., 2 figs

  9. Small-gap undulator experiment on the NSLS X-ray Ring

    International Nuclear Information System (INIS)

    Stefan, P.M.; Krinsky, S.; Rakowsky, G.; Solomon, L.

    1995-01-01

    We report results of an on-going experiment being carried out in the X13 straight section of the NSLS X-ray Ring which explores the limits of the operation of small-gap undulators. In particular, we discuss measurements of stored electron beam lifetime as a function of the vertical aperture presented by a 4-jaw scraper or a variable-aperture vacuum vessel. At an electron beam current of 300 mA the variable-aperture vacuum chamber was closed to an inner aperture of 3.8 mm with no effect on the electron beam lifetime. Measurements of the output radiation spectrum of a 16 mm period undulator at a magnet gap of 7.5 mm are also described

  10. Final design and status of the NSLS vacuum system

    International Nuclear Information System (INIS)

    Schuchman, J.C.

    1982-01-01

    We describe the final system, as built, reasons for changes and the general status of the NSLS. The NSLS is a dedicated facility for the purpose of producing synchrotron radiation. It consists of an electron linac-booster injector system, and two storage rings, one for uv research and the other for x-ray research. (Synchrotron radiation is produced by accelerating electrons in the storage rings.) The design current and energies are 1000 ma at 700 MeV for the vuv ring and 500 ma at 2.5 GeV for the x-ray ring. A total of 44 experimental beam ports are available for use. Since each beam port may be divided into two or more experimentall beam lines, it is quite plausible to have upward of 100 simultaneously operating beam lines

  11. On bunch lengthening using the fourth harmonic cavity in the NSLS VUV ring

    International Nuclear Information System (INIS)

    Wachtel, J.M.

    1988-02-01

    It has been suggested that the phase of the beam excited voltage in the harmonic cavity can be controlled by detuning its resonant frequency from the beam current harmonic. Unfortunately the detuning needed to flatten the acceleration waveform also corresponds to the region of Robinson instability for the harmonic cavity. Therefore, lengthening the bunch may be followed by large amplitude synchrotron oscillation of the bunch center of mass. Bunch lengthening is discussed in this note from several points of view. There follows a simple review of single electron oscillations in a quartic potential. Then equations are developed for the coupled oscillations of a cavity and a rigid bunch as a fully nonlinear, time dependent initial value problem. Next, a computer program that solves these equations for one, two or more cavities, with and without externally driven fields, is described and some simulations of the harmonic cavity interaction are shown. Finally, the fully nonlinear equations are linearized to derive a dispersion relation for the case of beam excitation in the harmonic cavity. 6 refs., 5 figs

  12. National Synchrotron Light Source user's manual: Guide to the VUV and x-ray beamlines

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User's Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines

  13. A fast VUV light pulser for testing ring-imaging Cerenkov counters

    International Nuclear Information System (INIS)

    Margulies, S.; Ozelis, J.

    1986-01-01

    A simple, fast, VUV light pulser for testing a TMAE-based, time-projection-chamber-type photon detector for a ring-imaging Cerenkov counter is described. The pulser consists of an automobile spark plug fired in a controlled atmosphere by a relaxation oscillator. The resulting VUV spectrum, spark-current pulse, and light pulse were investigated for hydrogen, xenon, krypton, and nitrogen fills. The best pulse (3.5 ns FWHM) was obtained with hydrogen at 60 kPa absolute pressure. Xenon was, generally, unsuitable because it continued to emit light for more than a microsecond after excitation. With krypton and nitrogen, no light was emitted in the wavelength region of interest except for a series of sharp lines attributable to the electrodes

  14. Performance of the upgraded NSLS beam position monitors

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Keane, J.

    1997-01-01

    The design and initial performance of the original NSLS beam position monitor were described by J. Bittner and R. Biscardi in 1989. The receiver, which processes signals from four button type pick-up electrodes by time-division multiplexing, operates at the third harmonic of the ring rf frequency (158.66 MHz). It has an output bandwidth of about 2 kHz and a dynamic signal range of approximately 36 dB. A total of 92 receivers have been installed in the NSLS X-ray and VUV storage rings for orbit monitoring and for real time feedback. As part of a continuous effort to improve the NSLS storage ring performance, the BPMs as well as other instrumentation systems have also been undergoing upgrades over the past two years to improve their performance. In the BPM, the front end has been modified to prevent saturation of the rf multiplexing switch, the detector operating point was changed to improve output signal linearity, the dynamic range was increased to over 60 dB, and the gain calibration was standardized to 0.5 volts/mm (i.e. 2 microm/mV). This paper describes the BPM modifications and presents some performance data and measurements on stored beam

  15. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    International Nuclear Information System (INIS)

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS

  16. An active interlock system for the NSLS x-ray ring insertion devices

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Biscardi, R.; Dabrowski, J.; Flannigan, J.; Ramamoorthy, S.; Rothman, J.; Smith, J.; So, I.; Thomas, M.; Decker, G.

    1991-01-01

    This paper describes the design and operation of an active interlock system which has been installed in the NSLS X-ray electron storage ing to protect the vacuum chamber from thermal damage by mis-steered high power photon beams from insertion devices (IDs). the system employs active beam position detectors to monitor beam motion in the ID straight sections and solid state logic circuitry to ''dump'' the stored beam in the event of a fault condition by interrupting the rf. To ensure a high degree of reliability, redundancy and continuous automatic checking has been incorporated into the design. Overall system integrity is checked periodically with beam at safe levels of beam current. 2 refs., 3 figs

  17. NSLS infra-red beam line (U3) conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.

    1984-02-09

    We describe the conceptual design of an infrared (I-R) beam line on the vacuum-ultra-violet storage ring of the National Synchrotron Light Source. The beam line forms part of the Phase II expansion of the NSLS. Consistent with the implementation of the current design is the extraction of hitherto wasted radiation and the establishment of a mezzanine floor or platform to make full use of the available headroom. This means that the I-R beam line, once established, does not interfere with any existing operations on the VUV floor.

  18. CHARACTERIZATION OF THE NEW NSLS INFARED MICROSPECTROSCOPY BEAMLINE U10B.

    Energy Technology Data Exchange (ETDEWEB)

    CARR,G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  19. Characterization of the new NSLS infrared microspectroscopy beamline U10B

    Energy Technology Data Exchange (ETDEWEB)

    Carr, G.L.

    1999-07-19

    The first of several new infrared beamlines, built on a modified bending magnet port of the NSLS VUV ring, is now operational for mid-infrared microspectroscopy. The port simultaneously delivers 40 mrad by 40 mrad to two separate beamlines and spectrometer endstations designated U10A and U10B. The latter is equipped with a scanning infrared microspectrometer. The combination of this instrument and high brightness synchrotron radiation makes diffraction-limited microspectroscopy practical. This paper describes the beamline's performance and presents quantitative information on the diffraction-limited resolution.

  20. NSLS control system upgrade

    International Nuclear Information System (INIS)

    Smith, J.D.; Ramamoorthy, Susila; Tang, Y.N.

    1994-01-01

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans. ((orig.))

  1. NSLS control system upgrade

    International Nuclear Information System (INIS)

    Smith, J.D.; Ramamoorthy, S.; Tang, Yong N.

    1995-01-01

    The NSLS consists of two storage rings, a booster and a linac. A major upgrade of the control system (installed in 1978) was undertaken and has been completed. The computer architecture is being changed from a three level star-network to a two level distributed system. The microprocessor subsystem, host computer and workstations, communication link and the main software components are being upgraded or replaced. Since the NSLS rings operate twenty four hours a day a year with minimum maintenance time, the key requirement during the upgrade phase is a non-disruptive transition with minimum downtime. Concurrent with the upgrade, some immediate improvements were required. This paper describes the various components of the upgraded system and outlines the future plans

  2. Nsls-II Boster

    Science.gov (United States)

    Gurov, S. M.; Akimov, A. V.; Akimov, V. E.; Anashin, V. V.; Anchugov, O. V.; Baranov, G. N.; Batrakov, A. M.; Belikov, O. V.; Bekhtenev, E. A.; Blum, E.; Bulatov, A. V.; Burenkov, D. B.; Cheblakov, P. B.; Chernyakin, A. D.; Cheskidov, V. G.; Churkin, I. N.; Davidsavier, M.; Derbenev, A. A.; Erokhin, A. I.; Fliller, R. P.; Fulkerson, M.; Gorchakov, K. M.; Ganetis, G.; Gao, F.; Gurov, D. S.; Hseuh, H.; Hu, Y.; Johanson, M.; Kadyrov, R. A.; Karnaev, S. E.; Karpov, G. V.; Kiselev, V. A.; Kobets, V. V.; Konstantinov, V. M.; Kolmogorov, V. V.; Korepanov, A. A.; Kramer, S.; Krasnov, A. A.; Kremnev, A. A.; Kuper, E. A.; Kuzminykh, V. S.; Levichev, E. B.; Li, Y.; Long, J. De; Makeev, A. V.; Mamkin, V. R.; Medvedko, A. S.; Meshkov, O. I.; Nefedov, N. B.; Neyfeld, V. V.; Okunev, I. N.; Ozaki, S.; Padrazo, D.; Petrov, V. V.; Petrichenkov, M. V.; Philipchenko, A. V.; Polyansky, A. V.; Pureskin, D. N.; Rakhimov, A. R.; Rose, J.; Ruvinskiy, S. I.; Rybitskaya, T. V.; Sazonov, N. V.; Schegolev, L. M.; Semenov, A. M.; Semenov, E. P.; Senkov, D. V.; Serdakov, L. E.; Serednyakov, S. S.; Shaftan, T. V.; Sharma, S.; Shichkov, D. S.; Shiyankov, S. V.; Shvedov, D. A.; Simonov, E. A.; Singh, O.; Sinyatkin, S. V.; Smaluk, V. V.; Sukhanov, A. V.; Tian, Y.; Tsukanova, L. A.; Vakhrushev, R. V.; Vobly, P. D.; Utkin, A. V.; Wang, G.; Wahl, W.; Willeke, F.; Yaminov, K. R.; Yong, H.; Zhuravlev, A.; Zuhoski, P.

    The National Synchrotron Light Source II is a third generation light source, which was constructed at Brookhaven National Laboratory. This project includes a highly-optimized 3 GeV electron storage ring, linac preinjector, and full-energy synchrotron injector. Budker Institute of Nuclear Physics built and delivered the booster for NSLS-II. The commissioning of the booster was successfully completed. This paper reviews fulfilled work by participants.

  3. NSLS 2005 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2005)

    International Nuclear Information System (INIS)

    MILLER, L.

    2006-01-01

    In 2005, the NSLS proved itself, once again, to be a center of scientific excellence. This remarkable facility, commissioned in the early 1980s, is still attracting some of the world's best researchers in almost every scientific field, who produce more than seven hundred scientific papers every year using the NSLS. The 'Science Highlights' and 'Feature Highlights' sections of this report are just a small sampling of the many, many impressive research projects conducted at the NSLS in 2005. For example, a user group synthesized and studied zinc-oxide nanowires, which have applications in many optical and electrical devices. Another user group studied how strontium and uranium are removed from high-level radioactive waste. And in another interesting study, users deciphered the basis for antibiotic resistance. However, as always, the success of these projects depends on the performance of the facility. Again this year, the rings were in top form--reliability was 96 percent for the x-ray ring and 99 percent for the VUV-IR ring. Additionally, to keep the NSLS as productive as possible and to continue to attract users, many beamline upgrade projects were completed this year. One of the highlights of these upgrades is the new mini-gap undulator installed at beamline X25. This insertion device is providing a much brighter x-ray source for the program at X25. In the always important area of safety, several noteworthy activities took place this year. In particular, NSLS staff made a major commitment to labeling and inspecting electrical equipment. And perhaps the best news is what didn't happen--there were no reportable occurrences related to environmental, safety, or health issues in 2005, and no injuries that resulted in restricted or lost time. We all owe thanks to the dedicated NSLS staff and users who have ensured that the NSLS remains a reliable, safe, up-to-date research facility. As 2005 came to an end, I stepped down as NSLS Chairman in order to focus my primary

  4. Harmonic Cavity Performance for NSLS-II

    CERN Document Server

    Blednykh, Alexei; Podobedov, Boris; Rose, James; Towne, Nathan A; Wang, Jiunn-Ming

    2005-01-01

    NSLS-II is a 3 GeV ultra-high brightness storage ring that is planned to succeed the present NSLS rings at Brookhaven. Ultra-low emittance bunch combined with a short bunch length results in the Touschek lifetime of only a few hours, which strongly advocates including harmonic RF in the baseline design of NSLS-II. This paper describes the required harmonic RF parameters, trade-offs between the possible choices and the expected system performance, including the implications on lifetime and instabilities.

  5. First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring

    Science.gov (United States)

    Yang, Xi; Tian, Yuke; Yu, Li Hua; Smaluk, Victor

    2018-04-01

    To realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fast corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.

  6. NSLS source development laboratory

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Blum, E.; Johnson, E.D.

    1995-01-01

    The National Synchrotron Light Source (NSLS) has initiated an ambitious project to develop fourth generation radiation sources. To achieve this goal, the Source Development Laboratory (SDL) builds on the experience gained at the NSLS, and at the highly successful BNL Accelerator Test Facility. The SDL accelerator system will consist of a high brightness short pulse linac, a station for coherent synchrotron and transition radiation experiments, a short bunch storage ring, and an ultra-violet free electron laser utilizing the NISUS wiggler. The electrons will be provided by a laser photocathode gun feeding a 210 MeV S-band electron linac, with magnetic bunch compression at 80 MeV. Electron bunches as short as 100 μm with 1 nC charge will be used for pump-probe experiments utilizing coherent transition radiation. Beam will also be injected into a compact storage ring which will be a source of millimeter wave coherent synchrotron radiation. The linac will also serve as the driver for an FEL designed to allow the study of various aspects of single pass amplifiers. The first FEL configuration will be as a self-amplified spontaneous emission (SASE) FEL at 900 nm. Seeded beam and sub-harmonic seeded beam operations will push the output wavelength below 200 nm. Chirped pulse amplification (CPA) operation will also be possible, and a planned energy upgrade (by powering a fifth linac section) to 310 MeV will extend the wavelength range of the FEL to below 100 nm

  7. The European UV/VUV storage ring FEL at ELETTRA: first operation and future prospects

    CERN Document Server

    Walker, R P; Couprie, Marie Emmanuelle; Dattoli, Giuseppe; Eriksson, M; Garzella, D; Giannessi, L; Marsi, M; Poole, M W; Renault, E; Roux, R; Trovò, M; Werin, S; Wille, K

    2001-01-01

    A European project to develop the first storage ring free-electron laser on a third-generation synchrotron radiation facility is presented, including a description of the main features, initial performance at 350 and 220 nm and future prospects.

  8. NSLS 2002 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2002)

    International Nuclear Information System (INIS)

    MILLER, L.

    2003-01-01

    The year 2002 has been another highly productive year at the NSLS and an impressive array of highlights from this scientific activity is included in this Activity Report. They have taken significant steps this past year toward better supporting beamlines and users. The number of user science support staff has been increased by about ten positions. They have also worked with their users, DOE, and the other DOE synchrotron facilities to develop a new, more flexible user access policy. Doing things safely remains a top priority, and they are reviewing their training and safety requirements to ensure they are thorough and everyone fully understands the necessity of abiding by them. A major development this past year was approval from DOE for BNL to begin the conceptual design of the Center for Functional Nanomaterials (CFN). The CFN will have a dramatic impact on nanoscience in the Northeast, facilitating the synthesis, characterization and scientific exploration of new classes of novel nanostructured materials. It will be located adjacent to the NSLS and a number of NSLS beamlines will be optimized to serve the needs of the nanoscience community. The NSLS and CFN user programs will be coordinated to facilitate easy access to both in a single visit. The VUV and X-Ray rings operated with excellent reliability as a result of continued attention to aging critical systems. The DUV-FEL achieved several important milestones this year, including production of Self-Amplified Spontaneous Emission (SASE) laser light at 400 nm and 266 nm, laser seeded saturation at 266 nm, and the first observation of High Gain Harmonic Generation (HGHG) light at 266 nm, with a third harmonic at 89 nm. Light from the DUV-FEL is now enabling user science experiments in ion pair imaging and they look forward to an expanding user program and a continued series of pioneering accelerator physics studies. In 2002, they continued to work with their user community to develop a plan to upgrade the

  9. Ion production and trapping in electron rings

    International Nuclear Information System (INIS)

    Gluckstern, R.C.; Ruggiero, A.G.

    1979-08-01

    The electron beam in the VUV and X-ray rings of NSLS will ionize residual gas by collisions. Positive ions will be produced with low velocity, and will be attracted by the electron beam to the beam axis. If they are trapped in stable (transverse) orbits, they may accumulate, thereby increasing the ν/sub x,z/ of the individual electrons. Since the accumulated ions are unlikely to be of uniform density, a spread in ν/sub x,z/ will also occur. Should these effects be serious, it may be necessary to introduce clearing electrodes, although this may increase Z/n in the rings, thereby adding to longitudinal instability problems. The seriousness of the above effect for the VUV and X-ray rings is estimated

  10. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    International Nuclear Information System (INIS)

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures

  11. Commissioning of NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Willeke, F.

    2015-05-03

    NSLS-II, the new 3rd generation light source at BNL was designed for a brightness of 1022 photons s-1mm-2mrad-2 (0.1%BW)-1. It was constructed between 2009 and 2014. The storage ring was commissioned in April 2014 which was followed by insertion device and beamline commissioning in the fall of 2014. All ambitious design parameters of the facility have already been achieved except for commissioning the full beam intensity of 500mA which requires more RF installation. This paper reports on the results of commissioning.

  12. NSLS-II Digital RF Controller Logic and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Holub, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gao, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kulpin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marques, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Oliva, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rose, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Towne, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) accelerator consists of the Storage Ring, the Booster Ring and Linac along with their associated cavities. Given the number, types and variety of functions of these cavities, we sought to limit the logic development effort by reuse of parameterized code on one hardware platform. Currently there are six controllers installed in the NSLS-II system. There are two in the Storage ring, two in the Booster ring, one in the Linac and one in the Master Oscillator Distribution system.

  13. RGA system for the NSLS

    International Nuclear Information System (INIS)

    Schuchman, J.C.; West, L.J.

    1983-01-01

    The National Synchrotron Light Source (NSLS) is a synchrotron radiation source designed to provide photons for simultaneous experiments on a large number of individual beam lines. A residual gas analysis (RGA) system has been designed, and is currently being installed, which would protect the beam lines and the storage rings from contamination from any one offending beam line. The system consists of having separate analyzers, with their associated rf generators, in each beam line and storage ring. The analyzers will be multiplexed back to a central controller. A computer is used for routine monitoring and control. The analyzer chosen was the VG Instruments Model SX-200. Typical mass spectra will be presented along with our specifications for the RGA and our vacuum specifications for operating a typical beam line

  14. NSLS-II commissioning and operation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Bassi, G.; Bengtsson, J.; Blednykh, A.; Blum, E.; Cheng, W.; Choi, J.; Davidsaver, M.; Doom, L.; Fliller, R.; Ganetis, G.; Guo, W.; Hidaka, Y.; Kramer, S.; Li, Y.; Podobedov, B.; Qian, K.; Rose, J.; Seletskiy, S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2016-07-27

    The National Synchrotron Light Source II at Brookhaven National Lab is a third-generation synchrotron radiation facility that has been commissioned in 2014. The facility is based on a 3 GeV electron storage ring, which will circulate 500 mA of beam current at 1 nm rad horizontal emittance. The storage ring is 792 meters in circumference and will accommodate more than 60 beamlines in the final built-out. The beamline sources range from insertion-devices located in straight sections, bending magnets or three-pole-wigglers configured in multiple branches. The NSLS-II storage ring commissioning was successfully completed in July 2014 and the facility delivered the first user light on October 23, 2014. Currently the storage ring reached 300 mA beam current and achieved 1 nm rad of horizontal emittance with 3 sets of Damping Wigglers. At this point six NSLS-II project beamlines are routinely taking photons with beam current at 150 mA. This paper reviews the NSLS-II accelerator design and commissioning experience.

  15. NSLS-II Radio Frequency Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose J.; Gao F.; Goel, A.; Holub, B.; Kulpin, J.; Marques, C.; Yeddulla, M.

    2015-05-03

    The National Synchrotron Light Source II is a 3 GeV X-ray user facility commissioned in 2014. The NSLS-II RF system consists of the master oscillator, digital low level RF controllers, linac, booster and storage ring RF sub-systems, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system.

  16. NSLS RF system improvements

    International Nuclear Information System (INIS)

    Keane, J.; Thomas, M.; McKenzie-Wilson, R.; D'Alsace, R.; Ackerman, H.; Biscardi, R.; Langenbach, H.; Ramirez, G.

    1985-01-01

    It is required that the NSLS x-ray accelerator reach an energy of 2.5 GeV. An additional accelerating cavity and power amplifier system were installed to meet this goal. A new control system was designed to include phase and amplitude servos as well as computer interfacing. Commissioning and operating experience will be reported

  17. Correlator filters for feedback at SRS and NSLS

    International Nuclear Information System (INIS)

    Dykes, D.M.; Galayda, J.N.

    1987-01-01

    In order to amplify signals that are produced by an oscillating beam, it is desirable to first reject that part of the signal produced when the beam is not oscillating. This can be done through the use of correlator filters which have the advantages of simplicity, at least 200 MHz working bandwidth, and broadband matching to 50 ohms at both input and output. Correlator filters have been built for the National Synchrotron Light Source (NSLS), the Daresbury SRS storage ring, and the NSLS x-ray ring. This report describes the performance of the filters and their associated electronic circuits. (FI)

  18. NSLS-II booster timing system

    International Nuclear Information System (INIS)

    Cheblakov, P.; Karnaev, S.; De Long, J.

    2012-01-01

    NSLS-II light source includes the main storage ring with beam lines and injection part consisting of 200 MeV linac, a full-energy 3 GeV booster synchrotron and two transport lines. The booster timing system is a part of NSLS-II timing system which uses hardware from MicroResearch Finland: Event Generator (EVG) and Event Receivers (EVRs). The booster timing is based on the events coming from NSLS-II EVG: 'Pre-Injection', 'Injection', 'Pre-Extraction', 'Extraction'. These events are referenced to the selected RF bucket of the storage ring and correspond to the first RF bucket of the booster. EVRs provide triggers both for the injection and the extraction pulse devices. EVRs also provide the timing of booster cycle operation and generation of events for cycle-to-cycle updates of pulsed and ramping parameters, and synchronization of the booster beam instrumentation devices. This paper describes the final design of the booster timing system. The timing system functional diagrams and block diagram are presented. (authors)

  19. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  20. NSLS 2009 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Nasta K.; Mona R.

    2009-05-01

    2009 was an incredibly exciting year for light sources at Brookhaven. The National Synchrotron Light Source (NSLS) hosted more than 2,200 visiting researchers, who, along with the about 50 members of our scientific staff, produced a total of 957 publications - about 20 percent of which appeared in premier journals. Covering topics ranging from Alzheimer's disease detection to ethanol-powered fuel cells, a sampling of these findings can be found in this Activity Report. We've also seen the resurfacing of some of our long-time users hard work. I was very proud to hear that two of the three recipients of the 2009 Nobel Prize in Chemistry have ties to the NSLS. Venki Ramakrishnan, a former employee in Brookhaven's biology department and long-time user of the NSLS, now at Cambridge University, and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for their work on the structure and function of the ribosome. In the late 1990s, Ramakrishnan and Steitz used protein crystallography at the NSLS to gather atomic-level images of two ribosome subunits: 30S (Ramakrishnan) and 50S (Steitz). Both laureates solved the high-resolution structures for these subunits based on this data. After struggling with a rough budget for several years, we received excellent funding, and then some, this year. In addition to NSLS operations funding, we received $3 million in funds from the American Recovery and Reinvestment Act (ARRA). We used that additional money for two exciting projects: construction of a full-field x-ray microscope and acquisition of several advanced x-ray detectors. The x-ray microscope will be able to image objects with a targeted spatial resolution of 30 nanometers. This capability will be particularly important for new initiatives in energy research and will prepare our users for the projected 1-nanometer resolution benchmark at the National Synchrotron Light Source II

  1. NSLS 2009 Activity Report

    International Nuclear Information System (INIS)

    Nasta, K.; Mona, R.

    2009-01-01

    2009 was an incredibly exciting year for light sources at Brookhaven. The National Synchrotron Light Source (NSLS) hosted more than 2,200 visiting researchers, who, along with the about 50 members of our scientific staff, produced a total of 957 publications - about 20 percent of which appeared in premier journals. Covering topics ranging from Alzheimer's disease detection to ethanol-powered fuel cells, a sampling of these findings can be found in this Activity Report. We've also seen the resurfacing of some of our long-time users hard work. I was very proud to hear that two of the three recipients of the 2009 Nobel Prize in Chemistry have ties to the NSLS. Venki Ramakrishnan, a former employee in Brookhaven's biology department and long-time user of the NSLS, now at Cambridge University, and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for their work on the structure and function of the ribosome. In the late 1990s, Ramakrishnan and Steitz used protein crystallography at the NSLS to gather atomic-level images of two ribosome subunits: 30S (Ramakrishnan) and 50S (Steitz). Both laureates solved the high-resolution structures for these subunits based on this data. After struggling with a rough budget for several years, we received excellent funding, and then some, this year. In addition to NSLS operations funding, we received $3 million in funds from the American Recovery and Reinvestment Act (ARRA). We used that additional money for two exciting projects: construction of a full-field x-ray microscope and acquisition of several advanced x-ray detectors. The x-ray microscope will be able to image objects with a targeted spatial resolution of 30 nanometers. This capability will be particularly important for new initiatives in energy research and will prepare our users for the projected 1-nanometer resolution benchmark at the National Synchrotron Light Source II (NSLS-II). The

  2. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    Energy Technology Data Exchange (ETDEWEB)

    FOERSTER,C.

    1999-05-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware

  3. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B

    International Nuclear Information System (INIS)

    FOERSTER, C.

    1999-01-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of ∼ 1 x 10 -10 Torr without beam and ∼ 1 x 10 -9 Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not

  4. CONCEPTUAL DESIGN OF THE NSLS-II INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    SHAFTAN,T.; ROSE, T.; PINAYEV, I.; HEESE, R.; BENGTSSON, J.; SKARITKA, J.; MENG, W.; OZAKI, S.; MEIER, R.; STELMACH, C.; LITVINENKO, V.; PJEROV, S.; SHARMA, S.; GANETIS, G.; HSEUH, H.C.; JOHNSON, E.D.; TSOUPAS, N.; GUO, W.; BEEBE-WANG, J.; LUCCIO, A.U.; YU, L.H.; RAPARIA, D.; WANG, D.

    2007-06-25

    We present the conceptual design of the NSLS-II injection system [1,2]. The injection system consists of a low-energy linac, booster and transport lines. We review two different injection system configurations; a booster located in the storage ring tunnel and a booster housed in a separate building. We briefly discuss main parameters and layout of the injection system components.

  5. National synchrotron light source user's manual: Guide to the VUV and x-ray beamlines: Third edition

    International Nuclear Information System (INIS)

    Gmuer, N.F.; Thomlinson, W.; White-DePace, S.

    1989-01-01

    This report contains information on the following topics: A Word on the Writing of Beamline Descriptions; Beamline Equipment Utilization for General Users; the Vacuum Ultraviolet (VUV) Storage Ring and Beamlines; VUV Beamline Descriptions--An Explanation; VUV Beamline Descriptions; X-Ray Storage Ring and Beamlines; X-Ray Beamline Descriptions--An Explanation; and X-Ray Beamline Descriptions

  6. Accelerator Physics Challenges for the NSLS-II Project

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky,S.

    2009-05-04

    The NSLS-II is an ultra-bright synchrotron light source based upon a 3-GeV storage ring with a 30-cell (15 super-period) double-bend-achromat lattice with damping wigglers used to lower the emittance below 1 nm. In this paper, we discuss the accelerator physics challenges for the design including: optimization of dynamic aperture; estimation of Touschek lifetime; achievement of required orbit stability; and analysis of ring impedance and collective effects.

  7. NSLS-II Preliminary Design Report

    International Nuclear Information System (INIS)

    Dierker, S.

    2007-01-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES and H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the

  8. NSLS-II Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Dierker, S.

    2007-11-01

    Following the CD0 approval of the National Synchrotron Light Source II (NSLS-II) during August 2005, Brookhaven National Laboratory prepared a conceptual design for a worldclass user facility for scientific research using synchrotron radiation. DOE SC review of the preliminary baseline in December 2006 led to the subsequent CD1 approval (approval of alternative selection and cost range). This report is the documentation of the preliminary design work for the NSLS-II facility. The preliminary design of the Accelerator Systems (Part 1) was developed mostly based of the Conceptual Design Report, except for the Booster design, which was changed from in-storage-ring tunnel configuration to in external- tunnel configuration. The design of beamlines (Part 2) is based on designs developed by engineering firms in accordance with the specification provided by the Project. The conventional facility design (Part 3) is the Title 1 preliminary design by the AE firm that met the NSLS-II requirements. Last and very important, Part 4 documents the ES&H design and considerations related to this preliminary design. The NSLS-II performance goals are motivated by the recognition that major advances in many important technology problems will require scientific breakthroughs in developing new materials with advanced properties. Achieving this will require the development of new tools that will enable the characterization of the atomic and electronic structure, chemical composition, and magnetic properties of materials, at nanoscale resolution. These tools must be nondestructive, to image and characterize buried structures and interfaces, and they must operate in a wide range of temperatures and harsh environments. The NSLS-II facility will provide ultra high brightness and flux and exceptional beam stability. It will also provide advanced insertion devices, optics, detectors, and robotics, and a suite of scientific instruments designed to maximize the scientific output of the facility

  9. Design and Measurement of the NSLS II Quadrupole Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Rehak,M.; Jain, A. K.; Skaritka, J.; Spataro, C.

    2009-05-04

    The design and measurement of the NSLS-II ring quadrupoles prototypes are presented. These magnets are part of a larger prototype program described in [1]. Advances in software, hardware, and manufacturing have led to some new level of insight in the quest for the perfect magnet design. Three geometric features are used to minimize the first three allowed harmonics by way of optimization. Validations through measurement and confidence levels in calculations are established.

  10. NSLS annual report 1984

    Energy Technology Data Exchange (ETDEWEB)

    Klaffky, R.; Thomlinson, W. (eds.)

    1984-01-01

    The first comprehensive Annual Report of the National Synchrotron Light Source comes at a time of great activity and forward motion for the facility. In the following pages we outline the management changes that have taken place in the past year, the progress that has been made in the commissioning of the x-ray ring and in the enhanced utilization of the uv ring, together with an extensive discussion of the interesting scientific experiments that have been carried out.

  11. NSLS annual report 1984

    International Nuclear Information System (INIS)

    Klaffky, R.; Thomlinson, W.

    1984-01-01

    The first comprehensive Annual Report of the National Synchrotron Light Source comes at a time of great activity and forward motion for the facility. In the following pages we outline the management changes that have taken place in the past year, the progress that has been made in the commissioning of the x-ray ring and in the enhanced utilization of the uv ring, together with an extensive discussion of the interesting scientific experiments that have been carried out

  12. NSLS dipole power source

    International Nuclear Information System (INIS)

    Bagley, G.P.

    1980-01-01

    An SRC DC to DC converter is described which will operate at an output of 275 kW and will supply current to electron storage ring magnets requiring 5 hr stability of 50 ppM. The operation of this modified chopper is described and design equations are presented, along with the system control loop description

  13. NSLS dipole power source

    International Nuclear Information System (INIS)

    Bagley, G.P.

    1980-01-01

    An SCR DC to DC converter is described which will operate at an output of 275 kW and will supply current to electron storage ring magnets requiring 5 h stability of 50 ppM. The operation of this modified chopper is described and design equations are presented, along with the system control loop description

  14. NSLS-II injector commissioning and initial operation

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, B.; Blum, E.; Bassi, B.; Bengtsson, J.; Blednykh, A.; Buda, S.; Cheng, W.; Choi, J.; Cuppolo, J.; D Alsace, R.; Davidsaver, M.; DeLong, J.; Doom, L.; Durfee, d.; fliller, R.; Fulkerson, M.; Ganetis, G.; Gao, F.; Gardner, C.; Guo, W.; Heese, R.; Hidaka, Y.; Hu, Y.; Johanson, M.; Kosciuk, B.; Kowalski, S.; Dramer, S.; Krinsky, S.; Li, Y.; Louie, W.; Maggipinto, M.; Marino, P.; Mead, J.; Oliva, G.; Padrazo, D.; Pedersen, K.; Podobedov, B.; Rainer, R.; Rose, J.; Santana, M.; Seletskiy, S.; Shaftan, T.; Singh, O.; Singh, P.; Smalyuk, V.; Smith, R.; Summers, T.; Tagger, J.; Tian, Y.; Wahl, W.; Wang, G.; Weiner, G.; Willeke, F.; Yang, L.; Yang, X.; Zeitler, E.; Zitvogel, E.; Zuhoski, P.

    2015-05-03

    The injector for the National Synchrotron Light Source II (NSLS-II) storage ring consists of a 3 GeV booster synchrotron and a 200 MeV S-band linac. The linac was designed to produce either a single bunch with a charge of 0.5 nC of electrons or a train of bunches up to 300 ns long containing a total charge of 15 nC. The booster was designed to accelerate up to 15 nC each cycle in a train of bunches up to 300 ns long. Linac commissioning was completed in April 2012. Booster commissioning was started in November 2013 and completed in March 2014. All of the significant design goals were satisfied including beam emittance, energy spread, and transport efficiency. While the maximum booster charge accelerated was only 10 nC, this has proven to be more than sufficient for storage ring commissioning and operation. The injector has operated reliably during storage ring operation since then. Results will be presented showing measurements of linac and booster operating parameters achieved during commissioning and initial operation. Operating experience and reliability during the first year of NSLS-II operation will be discussed.

  15. Simulations Of Transverse Stacking In The NSLS-II Booster

    International Nuclear Information System (INIS)

    Fliller, R. III; Shaftan, T.

    2011-01-01

    The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme. We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.

  16. Duke storage rink UV/VUV FEL: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The 1 GeV Duke storage ring was successfully commissioned with parameters exceeding initial specification. The OK-4 FEL has arrived at the Duke FEL laboratory from the Novosibirsk Institute of Nuclear Physics. The OK-4 installation and commissioning is in progress. In this paper we describe the up-to-date status of the Duke storage ring and the OK-4 FEL. The projected performance of the OK-4 UV/VUV FEL is presented based on the electron beam parameters achieved. Initial plans to operate the OK-4 UV/VUV FEL at the Duke 1 GeV storage ring are outlined. Future plans and prospects of both the OK-4 FEL and the Duke storage ring are discussed.

  17. Beam line design for synchrotron spectroscopy in the VUV

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M R

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection.

  18. Beam line design for synchrotron spectroscopy in the VUV

    International Nuclear Information System (INIS)

    Howells, M.R.

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection

  19. Automated micromachining at the NSLS

    International Nuclear Information System (INIS)

    Ramotowski, Michelle; Johnson, Erik

    2000-01-01

    X14B, the newest beamline at the NSLS, saw its first light early this summer. Designed solely for deep x-ray lithography (DXRL), it is intended for processing large quantities of deep (up to a few mm), but essentially 2D in design, parts. It has an effective scan area of 637 cm2, and a hydraulic scan stage to move that area through the beam. In addition, work is being done at X27B for the development of in-the-round and true 3D lithography. The hydraulic scan stages, filter motors, and sample positioning motors on both beamlines are computer controlled. Scan time and speed are calculated based on beam current, and a beam monitor stops the scan if necessary (due to unexpected beam dump, etc) and re-starts it when appropriate. The user can start a scan to run overnight, and return the next morning to pick up a completed sample. In addition, scan progress can be checked remotely via a web page

  20. NSLS Control Monitor and its upgrade

    International Nuclear Information System (INIS)

    Ramamoorthy, S.; Smith, J.D.

    1993-01-01

    The NSLS Control Monitor is a real-time operating system designed for the microprocessor subsystems that control the machine hardware in the NSLS facility. Its major functions are to control the hardware in response to the commands from the host computers, monitor hardware status and report errors to the alarm handler. The software originally developed for the Multibus micros has been upgraded to run on the VME-based systems. The upgraded monitor provides ethernet communication with the new system and serial link with the old system. The dual link is the key feature for a smooth and nondisruptive transition at all levels of the control system. This paper describes the functions of the various modules of the monitor and future plans

  1. High power all solid state VUV lasers

    International Nuclear Information System (INIS)

    Zhang, Shen-jin; Cui, Da-fu; Zhang, Feng-feng; Xu, Zhi; Wang, Zhi-min; Yang, Feng; Zong, Nan; Tu, Wei; Chen, Ying; Xu, Hong-yan; Xu, Feng-liang; Peng, Qin-jun; Wang, Xiao-yang; Chen, Chuang-tian; Xu, Zu-yan

    2014-01-01

    Highlights: • Polarization and pulse repetition rate adjustable ps 177.3 nm laser was developed. • Wavelength tunable ns, ps and fs VUV lasers were developed. • High power ns 177.3 nm laser with narrow linewidth was investigated. - Abstract: We report the investigation on the high power all solid state vacuum ultra-violet (VUV) lasers by means of nonlinear frequency conversion with KBe 2 BO 3 F 2 (KBBF) nonlinear crystal. Several all solid state VUV lasers have developed in our group, including polarization and pulse repetition rate adjustable picosecond 177.3 nm VUV laser, wavelength tunable nanosecond, picosecond and femtosecond VUV lasers, high power ns 177.3 nm laser with narrow linewidth. The VUV lasers have impact, accurate and precise advantage

  2. Storage ring development at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design

  3. VUV-soft x-ray beamline for spectroscopy and calibration

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Trela, W.J.; Michaud, F.D.; Southworth, S.H.; Rothe, R.; Alkire, R.W.

    1986-01-01

    The authors describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Roland circle instrument of the extended grasshopper design (ERG). A post monochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed

  4. Infrared Extraction Change for the NSLS-II Storage Ring

    International Nuclear Information System (INIS)

    Blednykh, A.; Carr, L.; Coburn, D.; Krinsky, S.

    2009-01-01

    The short- and long-range wakepotentials have been studied for the design of the infrared (IR) extraction chamber with large full aperture: 67mm vertical and 134mm horizontal. The IR-chamber will be installed within a 2.6m long wide-gap bending magnet with 25m bend radius. Due to the large bend radius it is difficult to separate the light from the electron trajectory. The required parameters of the collected IR radiation at the extraction mirror are ∼50mrad horizontal and ∼25mrad vertical (full radiation opening angles). If the extraction mirror is seen by the beam, resonant modes are generated in the chamber. In this paper, we present the detailed calculated impedance for the design of the far-IR chamber, and show that placing the extraction mirror in the proper position eliminates the resonances. In this case, the impedance reduces to that of a simple tapered structure, which is acceptable in regard to its impact on the electron beam.

  5. Polarized wiggler for NSLS X-ray ring

    International Nuclear Information System (INIS)

    Friedman, A.; Zhang, X.; Krinsky, S.; Blum, E.B.

    1993-01-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler is discussed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization. The power is dissipated in the vacuum chamber due to the eddy current

  6. Insertion Device Upgrade Plans at the NSLS

    CERN Document Server

    Tanabe, Toshiya; Harder, David; Lehecka, Michael; Rakowsky, George; Skaritka, John

    2005-01-01

    This paper describes plans to upgrade insertion devices at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, U.S.A. The aging wiggler (W80) at X25 is being replaced by a 1 m long in-vacuum mini-gap undulator (MGU-18) optimized for a dedicated macromolecular crystallography program. A new, 1/3 m long, in-vacuum undulator (MGU-13.5), will be installed between a pair of RF cavities at X9, and will serve a new beamline dedicated for small angle x-ray scattering (SAXS). Both MGU’s will have provision for cryocooling the NdFeB hybrid arrays to 150K to raise the field and K-value and to obtain better spectral coverage. Design issues of the devices and other considerations, especially magnetic measurement methods in low temperature will be discussed.

  7. Tune measurement in the NSLS booster synchrotron

    International Nuclear Information System (INIS)

    Blum, E.B.; Nawrocky, R.

    1993-01-01

    The NSLS booster synchrotron can accelerate an electron beam from approximately 80 to 750 MeV in 0.7 sec. The betatron tunes can change during acceleration by as much as 0.1 units, causing beam loss as they cross resonance lines. Precise measurements with a conventional swept spectrum analyzer have always been difficult because of the rapid variation of tune as the magnets are ramped. We are now using a system based on a Tektronix 3052 digital spectrum analyzer that can obtain a complete frequency spectrum over a 10 MHz bandwidth in 200 μsec. Betatron oscillations are stimulated for the measurements by applying white noise to the beam through stripline electrodes. We will describe the instrumentation, our measurements of tune as a function time during the acceleration cycle, and the resulting improvements to the booster operation

  8. Penning plasma based simultaneous light emission source of visible and VUV lights

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, G. L., E-mail: glvyas27@gmail.com [Manipal University Jaipur (India); Prakash, R.; Pal, U. N. [CSIR-Central Electronics and Engineering Research Institute, Microwave Tubes Division (India); Manchanda, R. [Institute for Plasma Research (India); Halder, N. [Manipal University Jaipur (India)

    2016-06-15

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure helium in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.

  9. Latest experiences and future plans on NSLS-II insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, T.; Hidaka, Y.; Kitegi, C.; Hidas, D.; Musardo, M.; Harder, D. A.; Rank, J.; Cappadoro, P.; Fernandes, H.; Corwin, T. [Energy Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, U.S.A (United States)

    2016-07-27

    National Synchrotron Light Source-II (NSLS-II) is the latest storage ring of 3 GeV energy at the Brookhaven National Laboratory (BNL). The horizontal emittance of the electron beam with the currently installed six damping wigglers is 0.9 nm.rad, which could be further reduced to 0.5 nm.rad with more insertion devices (IDs). With only one RF cavity the beam current is restricted to 200 mA. Five hundred mA operation is envisaged for next year with an addition of the second cavity. Six (plus two branches) beamlines have been commissioned in the initial phase of the project. In July 2015, three NIH funded beamlines called “Advanced Beamlines for Biological Investigations with X-rays” (ABBIX) will be added for operation. This paper describes the experiences of ID development, installation, and commissioning for the NSLS-II project as well as our future plans to improve the performance of the facility in terms of source development.

  10. Low Horizontal Beta Function In Long Straights Of The NSLS-II Lattice

    International Nuclear Information System (INIS)

    Fanglei, L.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y.; Yang, L.

    2011-01-01

    The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 short straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimization of dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses dynamic aperture optimization for the NSLS-II lattice with alternate high and low horizontal beta function in the long straights, which is proposed for the optimization of the brightness of insertion devices. The linear optics is optimized to meet the requirements of lattice function and source properties. Nonlinear optimization for a lattice with working point at (37.18, 16.2) is performed. Considering the realistic magnets errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the lattice with high-low beta function has adequate dynamic aperture for good injection efficiency and sufficient Touschek lifetime.

  11. Progress and prospects at the national synchrotron light source (NSLS)

    International Nuclear Information System (INIS)

    Howells, M.R.

    1981-07-01

    This report discusses the NSLS project from inception until the present. The commencement and motivation for the program are considered from the viewpoint of the needs of various experiments and the concepts of the Basic Source is introduced. The Basic Source has high brightness and tunability within the ranges 0 to 0.3 keV and 3 to 20 keV. The inclusion of tunability implies the use of monochromators and the role of these is discussed. The Basic Source is important because it satisfies a very large proportion of users. The strategy of NSLS in providing a good Basic Source and special devices (monochromators and wigglers) to allow coverage of the energy ranges outside those of the Basic Source is described. The response of the NSLS to various other general and special needs of experimental users is described. Turning to the Free Electron Laser Project, a brief description of that device is given followed by a progress report of the overall NSLS construction program. The broad conclusion is that the NSLS facility will be completed within 2 to 3 months of its scheduled timescale and within its budget. This is considered to be a highly successful conclusion to the construction program

  12. Radiation safety interlocks at the NSLS

    International Nuclear Information System (INIS)

    Dickinson, T.

    1985-07-01

    The function of the NSLS interlock systems is to insure that no one is in an area where there is hazardous radiation, and to turn off the radiation source if a person somehow gains access to such an area. The interlock systems for the high hazard areas meet the following design requirements: (1) The system is redundant, that is no single failure can render the system unsafe. This is done by providing 2 independent systems or circuits; (2) In so far as possible, the two circuits are physically different. This minimizes the possibility of related coincident failures; (3) The design is fail safe. This means that the most likely failure modes leave the system in a safe condition. For example, the following failures are safe: Loss of power in any part of the system, any combination of shorts to ground, and any combination of open circuits; and (4) The interlock system must be testable. Redundancy sometimes makes testing difficult, but testing schemes must be worked out, since an untested interlock is undependable

  13. NSLS-II filling pattern measurement

    International Nuclear Information System (INIS)

    Yong Hu; Dalesio, L.B.; Kiman Ha; Pinayev, I.

    2012-01-01

    Multi-bunch injection will be deployed at NSLS-II. High bandwidth diagnostic beam monitors with high speed digitizers are used to measure bunch-by-bunch charge variation. In order to minimize intensity-correlated orbit oscillations due to uneven bunch patterns, we need to measure the filling pattern (also named bunch pattern or bunch structure). This paper focuses on filling pattern measurements: how to measure bunch structure and make this information available in EPICS-based control system. This measurement requires combination of 3 types of beam monitors (Wall Current Monitor, Fast Current Transformer and Beam Position Monitor), data acquisition and controls (fast digitizer, EPICS software, etc.) and Event Timing system. High-bandwidth filling pattern monitor requires high-speed digitizer to sample its analog output signal. The evaluation results of commercial fast digitizer Agilent Acqiris and high bandwidth detector Bergoz FCT are presented. We have also tested the algorithm software for filling pattern measurement as well as the interface to event timing system. It appears that filling pattern measurement system is well understood and the tests for control hardware and software have given good results

  14. Growth of Environmental Science at the NSLS

    International Nuclear Information System (INIS)

    Northrup, P.; Lanzirotti, A.; Celestian, A.

    2007-01-01

    In the 25 years since the National Synchrotron Light Source (NSLS) began operations, synchrotron 'user facilities' have had a growing impact on research in molecular environmental science (MES). For example, synchrotron-based analytical techniques have allowed researchers to determine the molecular-level speciation of environmentally relevant elements and evaluate their spatial distribution and phase association at very low concentration levels (low parts per million) with micrometer or nanometer resolution [1]. For the environmental scientist, one of the primary advantages of these synchrotron-based techniques is that samples need not be disturbed or destroyed for study; characterization can often be done in-situ in dilute and heterogeneous natural samples with no need for species separation, pre-concentration, or pre-treatment [2]. Liquids, hydrated solids, and biological samples can also often be directly analyzed, which is of fundamental importance in environmental science for understanding the molecular-scale processes that occur at mineral-water interfaces and in understanding how abiotic and biotic processes are involved in the distribution, mobility and ultimate fate of molecular species in the environment.

  15. Growth of Environmental Science at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Northrup,P.; Lanzirotti, A.; Celestian, A.

    2007-01-01

    In the 25 years since the National Synchrotron Light Source (NSLS) began operations, synchrotron 'user facilities' have had a growing impact on research in molecular environmental science (MES). For example, synchrotron-based analytical techniques have allowed researchers to determine the molecular-level speciation of environmentally relevant elements and evaluate their spatial distribution and phase association at very low concentration levels (low parts per million) with micrometer or nanometer resolution [1]. For the environmental scientist, one of the primary advantages of these synchrotron-based techniques is that samples need not be disturbed or destroyed for study; characterization can often be done in-situ in dilute and heterogeneous natural samples with no need for species separation, pre-concentration, or pre-treatment [2]. Liquids, hydrated solids, and biological samples can also often be directly analyzed, which is of fundamental importance in environmental science for understanding the molecular-scale processes that occur at mineral-water interfaces and in understanding how abiotic and biotic processes are involved in the distribution, mobility and ultimate fate of molecular species in the environment.

  16. Optimization of accelerator system performance at the NSLS

    International Nuclear Information System (INIS)

    Krinsky, S.

    1994-01-01

    There is an active program of accelerator development at the NSLS aimed at improving reliability, stability and brightness. Work is primarily focused on providing improved performance for the NSLS user community, however, important elements of our work have a generic character and should be of value to other synchrotron radiation facilities. In particular, we have successfully operated a small gap undulator with a full vertical beam aperture of only 3.8 mm, with no degradation of beam lifetime. This provides strong support for the belief that small gap, short period devices will play an important role in the future

  17. Development and commissioning of an x-ray beam alignment flag for NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Kosciuk, B., E-mail: bkosciuk@bnl.gov; Hu, Y.; Keister, J.; Seletskiy, S. [National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-07-27

    The NSLS-II Synchrotron Light Source is a 3 GeV electron storage ring recently commissioned and is now entering operations at Brookhaven National Laboratory. One of the major tasks was to commission the six project beamline front ends which required a diagnostic to resolve x-ray beam position for the purpose of beam alignment at low current. Since none of the front ends were outfitted with any x-ray diagnostics in the baseline design, an x-ray beam profile monitor or “flag” that could be easily installed into existing front end vacuum chambers was proposed to satisfy this requirement. Here we present the development of this novel device which utilizes a polycrystalline CVD diamond luminescent screen to produce a visible image of the x-ray beam cross-section and is then captured with a CCD camera.

  18. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  19. VUV Study of Electron-Pyrimidine Dissociative Excitation

    Science.gov (United States)

    Hein, Jeff; Al-Khazraji, Hajar; Tiessen, Collin; Lukic, Dragan; Trocchi, Joshuah; McConkey, William

    2013-05-01

    A crossed electron-gas beam system coupled to a VUV spectrometer has been used to investigate the dissociation of pyrimidine (C4H4N2) into excited atomic fragments in the electron-impact energy range from threshold to 375 eV. Data have been made absolute using Lyman- α from H2 as a secondary standard. The main features in the spectrum are the H Lyman series lines. The emission cross section of Lyman- α is measured to be (2.44 +/- 0.25) 10-18 cm2 at 100 eV impact energy. The probability of extracting C or N atoms from the ring is shown to be very small. Possible dissociation channels and excitation mechanisms in the parent molecule will be discussed. The authors thank NSERC (Canada) for financial support.

  20. Digital signal array processor for NSLS booster power supply upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1993-01-01

    The booster at the NSLS is being upgraded from 0.75 to 2 pulses per second. To accomplish this, new power supplied for the dipole, quadrupole, and sextupole have been installed. This paper will outline the design and function of the digital signal processor used as the primary control element in the power supply control system

  1. Experience with the UHV box coater and the evaporation procedure for VUV reflective coatings on the HADES RICH mirror

    CERN Document Server

    Maier-Komor, P; Wieser, J; Ulrich, A

    1999-01-01

    An UHV box coater was set up for the deposition of highly reflective layers in the vacuum ultraviolet (VUV) wavelength range on large-area mirror substrates. The VUV mirrors are needed for the ring imaging Cherenkov (RICH) detector of the high-acceptance di-electron spectrometer (HADES). The complete dry vacuum system is described. The spatial deposition distribution from the evaporation sources was measured. The reflectivity of the Al mirror layer was optimized for the wavelength range of 145-210 nm by varying the thickness of the MgF sub 2 protective layer. The setup for measuring the reflectivity in the VUV range is described and reflectivity data are presented.

  2. Additional Quadrupoles At Center Of Long Straights In The NSLS-II Lattice

    International Nuclear Information System (INIS)

    Lin, F.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y.; Yang, L.

    2011-01-01

    The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 shorter straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of installing additional quadrupoles at the center of selected long straight sections in order to provide two low-beta source locations for undulators in the same straight. The required modification to the linear lattice is discussed as well as the preservation of adequate dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses the possibility of producing two low-beta source locations for optimum brightness of undulators in the long straights of NSLS-II lattice by installing additional quadrupoles at the center. The linear optics is optimized to satisfy the requirements of lattice function and properties. Nonlinear optimization for a lattice with working point at (37.16, 17.22) is performed. Considering the magnets misalignment errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the modified high-low beta function lattice can achieve a modest dynamic aperture in this preliminary study. Further work will continue to expand the dynamic aperture to meet the requirement of good injection efficiency and sufficient Touschek lifetime.

  3. Localization experience and future plan of NSLS primary components

    International Nuclear Information System (INIS)

    Kim, Haesoo

    1992-01-01

    Korea Heavy Industries and Construction Company is planning to obtain technical self-reliance of the component design, manufacturing and installation of the NSLS primary components as much as the target of 87% by 1995 as indicated in the technical self-reliance plan by the Korea Electric Power Company in 1988. In order to achieve this target, Koch has been involved in the component design, manufacturing and project management of the NSLS components from the early stage of the Young 3 and 4 project. In parallel, Koch has increased the self-reliance of the various fields taking full advantage of the technical documents, computer codes, training and consultation supplied by the technology transfer agreement. This paper presents the re-evaluation of the current status of technical self reliance as well as the make up plan to be implemented during the UCH 3 and 4 project for the area identified as the weakness

  4. Macromolecular crystallography beamline X25 at the NSLS

    Energy Technology Data Exchange (ETDEWEB)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E., E-mail: berman@bnl.gov [Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000 (United States)

    2014-04-08

    A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented. Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  5. Macromolecular crystallography beamline X25 at the NSLS

    International Nuclear Information System (INIS)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    A description of the upgraded beamline X25 at the NSLS, operated by the PXRR and the Photon Sciences Directorate serving the Macromolecular Crystallography community, is presented. Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community

  6. Bending-magnet vacuum chambers for VUV ring at LNLS

    International Nuclear Information System (INIS)

    Castro, A.R.B. de; Rodrigues, A.R.D.; Gomes, P.A.P.; Baptista, C.A.R.

    1990-01-01

    We discuss design criteria dictated by optical, thermal, electrical impedance and structural considerations. The proposed chambers will provide 3 conventional light ports. A fourth port will allow extraction of back scattered soft X-rays. Cooled absorbers will collect the unused radiation while confining the photo-stimulated desorption to a vacuum antechamber away from the electron beam path. We describe the thermal considerations relating to the cooled sapphire filters needed in the visible light ports and the cooling requirements for the copper radiation absorbers. (author)

  7. Bending-magnet vacuum chambers for VUV ring at LNLS

    International Nuclear Information System (INIS)

    de Castro, A.R.B.; Rodrigues, A.R.D.; Gomes, P.A.P.; Baptista, C.A.R.P.

    1990-01-01

    This paper discusses design criteria dictated by optical, thermal, electrical impedance and structural considerations. The proposed chambers will provide 3 conventional light ports. A fourth port will allow extraction of back scattered soft X-rays. Cooled absorbers will collect the unused radiation while confining the photo-stimulated desorption to a vacuum antechamber away from the electron beam path. The authors describe the thermal considerations relating to the cooled sapphire filters needed in the visible light ports and the cooling requirements for the copper radiation absorbers

  8. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, E.Z.; Hastings, J. [eds.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  9. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users' meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide

  10. VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer

    Science.gov (United States)

    Seon, C. R.; Hong, J. H.; Song, I.; Jang, J.; Lee, H. Y.; An, Y. H.; Kim, B. S.; Jeon, T. M.; Park, J. S.; Choe, W.; Lee, H. G.; Pak, S.; Cheon, M. S.; Choi, J. H.; Kim, H. S.; Biel, W.; Bernascolle, P.; Barnsley, R.

    2017-08-01

    The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200-500 could be achieved in the wavelength range of 2.4-160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 1013-1015 photons/cm2 s.

  11. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs.

  12. In-situ reactive glow discharge cleaning of NSLS distributed ion pumps

    International Nuclear Information System (INIS)

    Johnson, E.D.; Chou, T.S.

    1988-01-01

    Based on our experience with the in-situ cleaning of optical systems by reactive r.f. glow discharges and the conditioning and preparation of distributed ion pump (DIP) elements, we have sought to develop strategies for recovering from severe vacuum accidents by restoring DIP elements of storage rings such as those at the NSLS in-situ. In this paper we will describe a series of experiments conducted in a test apparatus to condition a so called ''egg-crate'' DIP in-situ, (this older type element being common in older storage rings). A new untreated element which was unable to pump below 5x10 /sup /minus/8/ Torr in its initial condition was treated in oxygen and subsequent argon r.f. discharges utilizing the pump element as the discharge electrode producing a nitrogen pumping speed of 168 l/s at 2x10 /sup /minus/8/ Torr. A light bake at 75/degree/C increased this to nearly 500 l/s at 5x10 /sup /minus/8/ Torr. After exposure to atmosphere the speed was reduced to nil at these pressures but subsequently recovered, without bakeout, by glow discharge cleaning. 22 refs., 6 figs

  13. NSLS-II: Nonlinear Model Calibration for Synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, J.

    2010-10-08

    This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics from Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was {approx} 1 x 10{sup -5} for 1024 turns (to calibrate the linear optics) and {approx} 1 x 10{sup -4} for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is {approx}0.1. Since the transverse damping time is {approx}20 msec, i.e., {approx}4,000 turns. There is no fundamental difference for: antiprotons, protons, and electrons in this case. Because the estimated accuracy for these methods in the field of particle accelerators has been naive, i.e., ignoring the impact of noise, we have also derived explicit formula, from first principles, for a quantitative statement. For e.g. N = 256 and 5% noise we obtain {delta}{nu} {approx} 1 x 10{sup -5}. A comparison with the state-of-the-arts in e.g. telecomm and electrical engineering since the 60s is quite revealing. For example, Kalman filter (1960), crucial for the: Ranger, Mariner, and Apollo (including the Lunar Module) missions during the 60s. Or Claude Shannon et al

  14. NSLS-II: Nonlinear Model Calibration for Synchrotrons

    International Nuclear Information System (INIS)

    Bengtsson, J.

    2010-01-01

    This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal Club Apr, 2010. However, since the estimated accuracy of these methods has been naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise, we will elaborate on this in some detail. A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has been understood, i.e., that the linear optics for the real accelerator has been calibrated. For synchrotron light source operations, this problem has been solved by the interactive LOCO technique/tool (Linear Optics from Closed Orbits). Before that, in the context of hadron accelerators, it has been done by signal processing of turn-by-turn BPM data. We have outlined how to make a basic calibration of the nonlinear model for synchrotrons. In particular, we have shown how this was done for LEAR, CERN (antiprotons) in the mid-80s. Specifically, our accuracy for frequency estimation was ∼ 1 x 10 -5 for 1024 turns (to calibrate the linear optics) and ∼ 1 x 10 -4 for 256 turns for tune footprint and betatron spectrum. For a comparison, the estimated tune footprint for stable beam for NSLS-II is ∼0.1. Since the transverse damping time is ∼20 msec, i.e., ∼4,000 turns. There is no fundamental difference for: antiprotons, protons, and electrons in this case. Because the estimated accuracy for these methods in the field of particle accelerators has been naive, i.e., ignoring the impact of noise, we have also derived explicit formula, from first principles, for a quantitative statement. For e.g. N = 256 and 5% noise we obtain (delta)ν ∼ 1 x 10 -5 . A comparison with the state-of-the-arts in e.g. telecomm and electrical engineering since the 60s is quite revealing. For example, Kalman filter (1960), crucial for the: Ranger, Mariner, and Apollo (including the Lunar Module) missions during the 60s. Or Claude Shannon et al since the 40s for that matter. Conclusion: what

  15. Kinematic mounting systems for NSLS beamlines and experiments

    International Nuclear Information System (INIS)

    Oversluizen, T.; Stoeber, W.; Johnson, E.D.

    1991-01-01

    Methods for kinematically mounting equipment are well established, but applications at synchrotron radiation facilities are subject to constraints not always encountered in more traditional laboratory settings. Independent position adjustment of beamline components can have significant benefits in terms of minimizing time spent aligning, and maximizing time spent acquiring data. In this paper, we use examples taken from beamlines at the NSLS to demonstrate approaches for optimization of the reproducibility, stability, excursion, and set-up time for various situations. From our experience, we extract general principles which we hope will be useful for workers at other synchrotron radiation facilities. 7 refs., 4 figs

  16. Materials research utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1986-08-01

    Research was conducted using NSLS synchrotron radiation on the following: decomposition kinetics of a supersaturated Ni-Si alloy, hexane monolayers on graphite, layering of Fe(CO) 5 on graphite, charge density waves, aging of Al-Li, superlattices in ternary MBE-grown semiconductor films, phase transformation in Cu-Be and Al-Zn, microstructural changes in complex alloys, diffuse x-ray scattering, ion conduction in Ag-Ge-Se glass, organic monolayers of the Langmuir Blodgett type, and residual stress in coating

  17. Specification and R and D Program on Magnet Alignment Tolerances for NSLS-II

    International Nuclear Information System (INIS)

    Kramer, S.L.; Jain, A.K.

    2009-01-01

    The NSLS-II light source is a proposed 3 GeV storage ring, with the potential for ultra-low emittance. Despite the reduced emittance goal for the bare lattice, the closed orbit amplification factors are on average >55 in both planes, for random quadrupole alignment errors. The high chromaticity will also require strong sextupoles and the low 3 GeV energy will require large dynamic and momentum aperture to insure adequate lifetime. This will require tight alignment tolerances (∼ 30(micro)m) on the multipole magnets during installation. By specifying tight alignment tolerances of the magnets on the support girders, the random alignment tolerances of the girders in the tunnel can be significantly relaxed. Using beam based alignment to find the golden orbit through the quadrupole centers, the closed orbit offsets in the multipole magnets will then be reduced to essentially the alignment errors of the magnets, restoring much of the dynamic aperture and lifetime of the bare lattice. Our R and D program to achieve these tight alignment tolerances of the magnets on the girders using a vibrating wire technique, will be discussed and initial results presented.

  18. The NSLS-II Multilayer Laue Lens Deposition System

    International Nuclear Information System (INIS)

    Conley, R.; Bouet, N.; Biancarosa, J.; Shen, Q.; Boas, L.; Feraca, J.; Rosenbaum, L.

    2009-01-01

    The NSLS-II(1) program has a requirement for an unprecedented level of x-ray nanofocusing and has selected the wedged multilayer Laue lens(2,3) (MLL) as the optic of choice to meet this goal. In order to fabricate the MLL a deposition system is required that is capable of depositing depth-graded and laterally-graded multilayers with precise thickness control over many thousands of layers, with total film growth in one run up to 100 m thick or greater. This machine design expounds on the positive features of a rotary deposition system(4) constructed previously for MLLs and will contain multiple stationary, horizontally-oriented magnetron sources where a transport will move a substrate back and forth in a linear fashion over shaped apertures at well-defined velocities to affect a multilayer coating.

  19. The initial scientific program at the NSLS infrared beamline

    International Nuclear Information System (INIS)

    Williams, G.P.

    1989-01-01

    Unique extraction optics (90 x 90 mrads) at the NSLS U4IR line offer high brightness beams at up to mm wavelengths with a ∼1ns pulse structure. Radiation from this port has now been carefully characterized and agrees well with calculations, making it 100--1000 times brighter than conventional sources in the middle and far infrared regions. Using rapid scan Michelson interferometers with liquid He cooled bolometer detectors we have been able for the first time to measure molecule substrate vibrations in surface science. We have also made the first measurements of the transmission of a film of the high Tc material YBaCuO in the BCS gap region. These initial experiments have demonstrated the advantages of the superior signal to noise available from this infrared beamline. 19 refs., 6 figs

  20. Advances in x-ray computed microtomography at the NSLS

    International Nuclear Information System (INIS)

    Dowd, B.A.; Andrews, A.B.; Marr, R.B.; Siddons, D.P.; Jones, K.W.; Peskin, A.M.

    1998-08-01

    The X-Ray Computed Microtomography workstation at beamline X27A at the NSLS has been utilized by scientists from a broad range of disciplines from industrial materials processing to environmental science. The most recent applications are presented here as well as a description of the facility that has evolved to accommodate a wide variety of materials and sample sizes. One of the most exciting new developments reported here resulted from a pursuit of faster reconstruction techniques. A Fast Filtered Back Transform (FFBT) reconstruction program has been developed and implemented, that is based on a refinement of the gridding algorithm first developed for use with radio astronomical data. This program has reduced the reconstruction time to 8.5 sec for a 929 x 929 pixel 2 slice on an R10,000 CPU, more than 8x reduction compared with the Filtered Back-Projection method

  1. VUV Spectroscopy in DIII-D Divertor

    International Nuclear Information System (INIS)

    Alkesh Punjabi; Nelson Jalufka

    2004-01-01

    The research carried out on this grant was motivated by the high power emission from the CIV doublet at 155 nm in the DIII-D divertor and to study the characteristics of the radiative divertor. The radiative divertor is designed to reduce the heat load to the target plates of the divertor by reducing the energy in the divertor plasma using upstream scrape-off-layer (SOL) radiation. In some cases, particularly in Partially Detached Divertor (PDD) operations, this emission accounts for more than 50% of the total radiation from the divertor. In PDD operation, produced by neutral gas injection, the particle flow to the target plate and the divertor temperature are significantly reduced. A father motivation was to study the CIV emission distribution in the lower, open divertor and the upper baffled divertor. Two Vacuum Ultra Violet Tangential viewing Television cameras (VUV TTV) were constructed and installed in the upper, baffled and the lower, open divertor. The images recorded by these cameras were then inverted to produce two-dimensional distributions of CIV in the poloidal plane. Results obtained in the project are summarized in this report

  2. GPLS VME Module: A Diagnostic and Display Tool for NSLS Micro Systems

    International Nuclear Information System (INIS)

    Ramamoorthy, S.; Smith, J. D.

    1999-01-01

    The General Purpose Light Source VME module is an integral part of every front-end micro in the NSLS control system. The board incorporates features such as a video character generator, clock signals, time-of-day clock, a VME bus interrupter and general-purpose digital inputs and outputs. This module serves as a valuable diagnostic and real-time display tool for the micro development as well as for the find operational systems. This paper describes the functions provided by the board for the NSLS micro control monitor software

  3. National Synchrotron Light Source annual report 1991

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system

  4. National Synchrotron Light Source annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. (eds.)

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  5. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. [eds.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  6. Reliability test: X-ray ring exit chambers crotch radiation absorbers. Final report

    International Nuclear Information System (INIS)

    Lynch, D.R.; Morgan, J.

    1999-01-01

    This report details the efforts by engineers at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory (BNL) to evaluate the reliability of water-cooled radiation absorbers used in the NSLS X-ray ring. These absorbers are part of the 16 dipole vacuum chambers which comprise the arc sections of the ring. They are located at the intersections (crotch) of the beamline exit ports with the electron beam chamber, and are commonly referred to as crotches. The purpose of these efforts was to demonstrate the reliability of the crotches under operating conditions that the crotches will be subjected to over the entire expected life of the ring. The efforts described include engineering calculations, finite element analysis, conceptual design for a reliability test, test implementation and descriptions, results and conclusions related to these analyses and tests

  7. The NSLS 100 element solid state array detector

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Beren, J.; Kraner, H.W.; Rogers, L.C.; Stephani, D.; Beuttenmuller, R.H.; Cramer, S.P.

    1992-01-01

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500 000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 elements Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10 x 10 matrix of 4 mm x 4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramming memory module provide for complete diagnostics and channel calibration. The entrie instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. (orig.)

  8. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam

  9. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    International Nuclear Information System (INIS)

    MILLER, L.

    2006-01-01

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven. However, with opportunities come challenges. One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007 budget

  10. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    Energy Technology Data Exchange (ETDEWEB)

    MILLER, L. (EDITOR)

    2006-12-31

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven! However, with opportunities come challenges! One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007

  11. Photostability studies of prebiotic molecules at the VUV region

    International Nuclear Information System (INIS)

    Tanaka, H; Medina, A; Mendes, L A V; Prudente, F V; Marinho, R R T; Homem, M G P

    2014-01-01

    In this work we report absolute cross section studies of prebiotic molecules measured in the VUV range using the double ion chamber technique and synchrotron radiation. Absorption, ionization and neutral decay cross sections will be presented, together with the absolute ionization quantum yield. Additionally, partial ion yield spectra were measured by a TOF mass spectrometer.

  12. Software environment and configuration for the DSP controlled NSLS booster power supplies

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1993-01-01

    The booster at the NSLS is being upgraded from 0.75 to 2 pulses per second by means of the installation of new dipole, quadrupole, and sextupole power supplies. The control system of these power supplies employs general purpose digital signal processing modules, and therefore, software support is required. This paper outlines the development system configuration, and the software environment

  13. TIME-RESOLVED INFRARED SPECTROSCOPY IN THE U121R BEAMLINE AT THE NSLS

    International Nuclear Information System (INIS)

    CARR, G.L.; LAVEIGNE, J.D.; LOBO, R.P.S.M.; REITZE, D.H.; TANNER, D.B.

    1999-01-01

    A facility for performing time-resolved infrared spectroscopy has been developed at the NSLS, primarily at beamline U12IR. The pulsed IR light from the synchrotron is used to perform pump-probe spectroscopy. The authors present here a description of the facility and results for the relaxation of photoexcitations in both a semiconductor and superconductor

  14. The high level programmer and user interface of the NSLS control system

    International Nuclear Information System (INIS)

    Tang, Y.N.; Smith, J.D.; Sathe, S.

    1993-01-01

    This paper presents the major components of the high level software in the NSLS upgraded control system. Both programmer and user interfaces are discussed. The use of the high-speed work stations, fast network communications, UNIX system, X-window and Motif have greatly changed and improved these interfaces

  15. Status of the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Heese, R.

    1987-04-01

    An overview of the present capabilities of the NSLS 750 MeV VUV ring and the 2.5 GeV x-ray ring is presented. Emphasis is placed on performance of the now operational facility, the efforts to improve this performance, a description of the ''Phase II'' upgrade, and outlook for the future

  16. Development of the XFP beamline for x-ray footprinting at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Bohon, Jen, E-mail: jbohon@bnl.gov; Sullivan, Michael; Abel, Don; Toomey, John; Chance, Mark R., E-mail: mark.chance@case.edu [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States); Dvorak, Joseph [Brookhaven National Laboratory, Upton, NY (United States)

    2016-07-27

    For over a decade, synchrotron-based footprinting studies at the NSLS X28C beamline have provided unique insights and approaches for examining the solution-state structures of large macromolecular assemblies, membrane proteins, and soluble proteins, for time-resolved studies of macromolecular dynamics, and most recently for in vivo studies of RNA-protein complexes. The transition from NSLS to NSLS-II has provided the opportunity to create an upgraded facility for the study of increasingly complex systems; progress on the development of the XFP (X-ray Footprinting for In Vitro and In Vivo Structural Studies of Biological Macromolecules) beamline at NSLS-II is presented here. The XFP beamline will utilize a focused 3-pole wiggler source to deliver a high flux density x-ray beam, where dynamics can be studied on the microsecond to millisecond timescales appropriate for probing biological macromolecules while minimizing sample perturbation. The beamline optics and diagnostics enable adaptation of the beam size and shape to accommodate a variety of sample morphologies with accurate measurement of the incident beam, and the upgrades in sample handling and environment control will allow study of highly sensitive or unstable samples. The XFP beamline is expected to enhance relevant flux densities more than an order of magnitude from that previously available at X28C, allowing static and time-resolved structural analysis of highly complex samples that have previously pushed the boundaries of x-ray footprinting technology. XFP, located at NSLS-II 17-BM, is anticipated to become available for users in 2016.

  17. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  18. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  19. Photoluminescence of phosphors for PDP with VUV excitation

    International Nuclear Information System (INIS)

    Lu, H.-C.; Chen, H.-K.; Tseng, T.-Y.; Kuo, W.-L.; Alam, M.S.; Cheng, B.-M.

    2005-01-01

    In a plasma display panel (PDP) He-Xe or Ne-Xe gaseous mixtures are subjected to electric discharge between two glass panels, so to generate VUV light. Red, green and blue phosphors absorb this VUV radiation and re-radiate the energy as visible light to produce the colors that appear on the screen. The phosphor plays an important role in the working of a PDP. To improve the efficiency of phosphors, we have established a photoluminescence end station coupled to the beam line of a synchrotron to study the luminescence of PDP phosphors. This luminescence is analyzed with a 0.32 m monochromator having maximum resolution 0.04 nm, and is monitored with a photomultiplier tube operated in a photon-counting mode. Preliminary data demonstrate the powerful performance of this end-station for studying PDP phosphors

  20. Strategy for Realizing High-Precision VUV Spectro-Polarimeter

    Science.gov (United States)

    Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.

    2014-12-01

    Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.

  1. Atomic and molecular effects in the VUV spectra of solids

    International Nuclear Information System (INIS)

    Sonntag, B.

    1977-10-01

    The VUV spectra of solids are often dominated by atomic or molecular effects, which clearly manifest themselves in the gross features of the spectra and the fine structure at inner shell excitation thresholds. Evidence for the influence of atomic and molecular matrix elements, multiplet-splitting and correlation is presented. Special emphasis is given to the direct experimental verification based on the comparison of atomic and solid state spectra. (orig.) [de

  2. High resolution VUV facility at INDUS-1

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Saraswathy, P.; Rao, P.M.R.; Mishra, A.P.; Kartha, V.B.

    1993-01-01

    Synchrotron radiation (SR) generated in the electron storage rings is an unique source for the study of atomic and molecular spectroscopy especially in the vacuum ultra violet region. Realizing the potential of this light source, efforts are in progress to develop a beamline facility at INDUS-1 to carry out high resolution atomic and molecular spectroscopy. This beam line consists of a fore-optic which is a combination of three cylindrical mirrors. The mirrors are so chosen that SR beam having a 60 mrad (horizontal) x 6 mrad (vertical) divergence is focussed onto a slit of a 6.65 metre off-plane spectrometer in Eagle Mount equipped with horizontal slit and vertical dispersion. The design of the various components of the beam line is completed. It is decided to build the spectrometer as per the requirements of the user community. Details of the various aspects of the beam line will be presented. (author). 3 figs

  3. Low-k films modification under EUV and VUV radiation

    International Nuclear Information System (INIS)

    Rakhimova, T V; Rakhimov, A T; Mankelevich, Yu A; Lopaev, D V; Kovalev, A S; Vasil'eva, A N; Zyryanov, S M; Kurchikov, K; Proshina, O V; Voloshin, D G; Novikova, N N; Krishtab, M B; Baklanov, M R

    2014-01-01

    Modification of ultra-low-k films by extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) emission with 13.5, 58.4, 106, 147 and 193 nm wavelengths and fluences up to 6 × 10 18  photons cm −2 is studied experimentally and theoretically to reveal the damage mechanism and the most ‘damaging’ spectral region. Organosilicate glass (OSG) and organic low-k films with k-values of 1.8–2.5 and porosity of 24–51% are used in these experiments. The Si–CH 3 bonds depletion is used as a criterion of VUV damage of OSG low-k films. It is shown that the low-k damage is described by two fundamental parameters: photoabsorption (PA) cross-section σ PA and effective quantum yield φ of Si–CH 3 photodissociation. The obtained σ PA and φ values demonstrate that the effect of wavelength is defined by light absorption spectra, which in OSG materials is similar to fused silica. This is the reason why VUV light in the range of ∼58–106 nm having the highest PA cross-sections causes strong Si–CH 3 depletion only in the top part of the films (∼50–100 nm). The deepest damage is observed after exposure to 147 nm VUV light since this emission is located at the edge of Si–O absorption, has the smallest PA cross-section and provides extensive Si–CH 3 depletion over the whole film thickness. The effective quantum yield slowly increases with the increasing porosity but starts to grow quickly when the porosity exceeds the critical threshold located close to a porosity of ∼50%. The high degree of pore interconnectivity of these films allows easy movement of the detached methyl radicals. The obtained results have a fundamental character and can be used for prediction of ULK material damage under VUV light with different wavelengths. (paper)

  4. The ANL X6B beamline at NSLS: A versatile facility

    International Nuclear Information System (INIS)

    Huang, K.G.; Ramanathan, M.; Montano, P.A.; Illinois Univ., Chicago, IL

    1994-07-01

    We have described the x-ray optics and beamline performance of the ANL X6B beam line at the NSLS. Considerable flexibility has been built into the beam line to accommodate a wide range of x-ray diffraction, scattering, and spectroscopy experiments with various requirements. We presented selected examples of experimental results and showed that with the high intensity, high energy resolution, high-q resolution, and energy tunability, the X6B beam line has become a versatile facility

  5. Probing colliding Calcium plasmas with emission and VUV absorption imaging

    International Nuclear Information System (INIS)

    Kavanagh, K.D.; Hirsch, J.S.; Kennedy, E.T.; Costello, T.; Poletto, L.; Nicolosi, P.

    2004-01-01

    Full text: Laser produced plasmas are formed when a short pulse and high power laser is focused onto a surface. Applications range from VUV/X-ray sources for lithography, microscopy and radiography to X-ray lasers, thin film deposition, analytical spectroscopy and electron/ion beam generation (and even acceleration). A battery of particle and optical techniques are now used to diagnose laser plasmas. One highly successful technique is gated-CCD (Charged Coupled Device) imaging of plasma plumes. It provides critical data on the early (creation) and late (expansion) phases of plasma plumes. However, this technique is limited to detecting only the excited (emitting) species in the plume. Recently, we developed a vacuum-UV (VUV) photoabsorption imaging facility called VPIF which enables one can track the evolution of dark plume matter or non-emitting plasma species residing in ground and metastable states. Although much is known about the dynamics of single laser plasma plumes expanding freely, little is known about the overlap between colliding plasma plumes. We are currently performing combined conventional gated CCD imaging and spectroscopy with VUV absorption imaging to map the evolution of the overlap volume of two colliding and interpenetrating plasma plumes. We are specifically tracking ground state singly ionized calcium in the plasmas by tuning into the inner shell 3p to 3d transition at 33.2 eV while the excited state species are tracked using transitions in the UV -NIR spectral range. The experiment may be cast as a model system for atmospheric and/or astrophysical colliding systems, e.g., when tracer elements are injected into supersonic winds at high altitude or when supernovae eject plasma into the solar wind

  6. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    Science.gov (United States)

    Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.

    2013-11-01

    The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.

  7. The VUV instrument SPICE for Solar Orbiter: performance ground testing

    Science.gov (United States)

    Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter

    2017-08-01

    SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  8. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    International Nuclear Information System (INIS)

    Singh, Param Jeet; Shastri, Aparna; D’Souza, R.; Jagatap, B.N.

    2013-01-01

    The VUV photoabsorption spectra of CHCl 3 and CDCl 3 in the energy region 6.2–11.8 eV (50,000–95,000 cm −1 ) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a 2 , 4a 1 , 4e, 3e, orbitals of CHCl 3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500–76,500 cm −1 have been reassigned to ν 3 and combination modes of ν 3 +ν 6 belonging to the 1a 2 →4p transition in contrast to earlier studies where they were assigned to a ν 3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl 3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν 3 and ν 6 modes in the 4p Rydberg state of CHCl 3 (CDCl 3 ) are proposed to be ∼454 (409) cm −1 and∼130 (129) cm −1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform. -- Highlights: •VUV photoabsorption spectra of CHCl 3 and CDCl 3 studied using synchrotron radiation. •Quantum defect analysis of Rydberg series converging to first four ionization limits. •Vibronic bands in 72,500–76,500 cm −1 region assigned to 1a 2 →4p Rydberg transition. •Vibrational progressions assigned to ν 3 and ν 3 +ν 6 using ab initio calculations. •Excellent agreement of TDDFT vertical excited energies with experimental spectrum

  9. Design and implementation of VUV-CD and LD measurements using an ac modulated polarizing undulator

    International Nuclear Information System (INIS)

    Yagi-Watanabe, K.; Yamada, T.; Tanaka, M.; Kaneko, F.; Kitada, T.; Ohta, Y.; Nakagawa, K.

    2005-01-01

    VUV circular dichroism (CD) and linear dichroism (LD) have been successfully measured at wavelengths beyond the conventional limit by using an ac modulated polarizing undulator. We have developed CD and LD measuring technique by polarization modulation at the source, without using transmission type polarizing modulator, to extend to the coverage to wavelengths shorter than 140-bar nm. AIST developed in 1986 ac polarizing undulator by using a electron storage ring 'TERAS' based on an original concept. The undulator which can produce any desired polarization of vertical- and horizontal-linear polarization (VLP and HLP) and right- and left-handed circular polarization (RCP and LCP) is specially well suited to both measurements of CD and LD. With this undulator, the polarization alternate in the order of VLP-RCP-HLP-RCP-VLP-LCP-HLP-LCP-VLP-, i.e. when circular polarization is modulated in f Hz, linear polarization alters in 2f Hz. This allows us simultaneous measurements of CD and LD. Since the TERAS can produce ac-modulated polarized radiation of wavelength as short as 40-bar nm, it is expected to have CD and LD measurement extended to 40-bar nm

  10. PTB’s radiometric scales for UV and VUV source calibration based on synchrotron radiation

    Science.gov (United States)

    Klein, Roman; Kroth, Simone; Paustian, Wolfgang; Richter, Mathias; Thornagel, Reiner

    2018-06-01

    The radiant intensity of synchrotron radiation can be accurately calculated with classical electrodynamics. This primary realization of the spectral radiant intensity has been used by PTB at several electron storage rings which have been optimized to be operated as primary source standards for the calibration of transfer sources in the spectral range of UV and VUV for almost 30 years. The transfer sources are compared to the primary source standard by means of suitable wavelength-dispersive transfer stations. The spectral range covered by deuterium lamps, which represent transfer sources that are easy to handle, is of particular relevance in practice. Here, we report on developments in the realization and preservation of the radiometric scales for spectral radiant intensity and spectral radiance in the wavelength region from 116 nm to 400 nm, based on a set of deuterium reference lamps, over the last few decades. An inside view and recommendations on the operation of the D2 lamps used for the realization of the radiometric scale are presented. The data has been recently compiled to illustrate the chronological behaviour at various wavelengths. Moreover, an overview of the internal and external validation measurements and intercomparisons is given.

  11. High resolution VUV matrix isolation spectroscopy using synchrotron radiation: N2 in Ne

    International Nuclear Information System (INIS)

    Guertler, P.; Koch, E.E.

    1980-01-01

    We have investigated the VUV absorption spectrum of nitrogen in a neon matrix exploiting the intense synchrotron radiation continuum of the storage ring DORIS and the high resolving power of a 3 m normal incidence monochromator. With an improved sample preparation technique we were able to observe both the allowed transitions b 1 PIsub(u) and b 1 Σ + sub(u) between 12.4 and 14.0 eV and even the forbidden transitions w 1 Δsub(u) and a 1 PIsub(g) between 8.0 and 11.0 eV. All four transitions consist of long progressions of sharp bands (GAMMA approx. 10 meV) which are deperturbed in the matrix due to the suppression of nearby Rydberg states. Using symmetry arguments, our analysis of the spectra leads us to the conclusion that the N 2 molecule is oriented along the (1,1,1) direction in the host lattice. A detailed fine structure is observed for most bands of the first time. This fine structure is caused by dynamical interactions of the excited molecules with the matrix and is interpreted as excitation of librational modes of the N 2 molecule and a selective coupling to phonon modes of the neon lattice. (orig.)

  12. Alignment for new Subaru ring

    International Nuclear Information System (INIS)

    Zhang, Ch.; Matsui, S.; Hashimoto, S.

    1999-01-01

    The New SUBARU is a synchrotron light source being constructed at the SPring-8 site. The main facility is a 1.5 GeV electron storage ring that provides light beam in the region from VUV to soft X-ray using SPring-8's 1 GeV linac as an injector. The ring, with a circumference of about 119 meters, is composed of six bending cells. Each bending cell has two normal dipoles of 34 degree and one inverse dipole of -8 degree. The ring has six straight sections: two very long straight sections for a 11-m long undulator and an optical klystron, four short straight sections for a 2.3-m undulator, a super-conducting wiggler, rf cavity and injection, etc. The magnets of the storage ring are composed of 12 dipoles (BMs), 6 invert dipoles (BIs), 56 quadrupoles and 44 sextupoles, etc. For the magnet alignment, positions of the dipoles (the BMs and BIs) are determined by network survey method. The multipoles, which are mounted on girders between the dipoles, are aligned with a laser-CCD camera system. This article presents the methodology used to position the different components and particularly to assure the precise alignment of the multipoles. (authors)

  13. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    International Nuclear Information System (INIS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-01-01

    Highlights: ► Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. ► The set up allows photoionization up to 20 eV. ► Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. ► Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4–20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  14. Future prospects for studies in the VUV-SX region

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Kitajima, Yoshinori

    1989-09-01

    This book carries papers presented at a workshop 'Future Prospects for Studies in the VUV-SX Region' held on March 22 and 23, 1989. The workshop focussed particularly on the promotion of research in the VUV and soft X-ray regions. Three sessions were held: Session 1 for studies in peripheral areas, Session 2 for theoretical studies, and Session 3 for recent developments. Session 1 covered five studies: 'Laser Spectroscopy: High-Resolution Observation of Highly Electronically Excited Gaseous Molecule', 'High-Resolution Electron Spectroscopy: Surface Phonon Spectroscopy', 'Experimental Study on Atoms and Molecules through Ion Trap', 'Basic Mechanism of Photo-Induced CVD', and 'Application of Circularly Polarized Light'. Session 2 covered five studies: 'Electronic State of High Tc Superconducting Oxide', 'Surface Condition and Electronic State', 'XES and XAS Study of Rare Earth Compound', 'Resonance Photoelectric Spectroscopy on Strongly Correlated Electronic System', and 'Circularly Polarized Light and Atomic Process in Soft X-Ray Region'. Session 3 covered six studies: 'Prospects of Application of Supercritical Liquid to Research on Physical Characteristics', 'Application of Orbit Radiation to Polarization Spectroscopy', 'XES Research for La Compounds', 'Characteristics of Ultra-Fine Particles', 'Surface Study by Angular-Resolution Photoelectric Spectroscopy', and 'EXAFS Study of Light Element'. (N.K.)

  15. An XUV/VUV free-electron laser oscillator

    Science.gov (United States)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  16. National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Lazarz, N.M.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines

  17. National Synchrotron Light Source. Annual report 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Lazarz, N.M. [eds.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

  18. Update on VUV and soft X-ray facilities at SSRL

    International Nuclear Information System (INIS)

    Waldhauer, A.

    1988-01-01

    The number of experimental stations at SSRL devoted to the VUV and soft X-ray region is increasing rapidly. In 1986 there were five VUV/soft X-ray beam lines in regular operation. These consisted of two grasshopper lines, a Seya-Namioka line, a white light lithography line, and the UHV double crystal line, Jumbo. By 1988 ten beam lines, including two with insertion devices, covering the spectral range 5-4000 eV in five overlapping ranges will be operational. With the addition of these new stations, SSRL will have increased dramatically its facilities for performing VUV and soft X-ray research. (orig.)

  19. VUV Processing of Polymers: Surface Modification and Deposition of Organic Thin Films

    International Nuclear Information System (INIS)

    Wertheimer, M.R.

    2006-01-01

    Materials processing based on the use of vacuum-ultraviolet (VUV) radiation has evolved from the status of 'laboratory curiosum' to that of technological reality, thanks to the availability of commercial light sources, first lasers but more recently VUV-lamps. We begin with a brief survey of application areas, still mostly 'high-tech' on account of the relatively elevated cost of the light sources. In this laboratory, we use a series of commercial VUV lamps (based on radio-frequency discharges in ampoules that are sealed with VUV-transparent MgF 2 ) that cover a broad spectral range, 120 nm 3 ) gas. This allowed us to achieve maximum bound N concentrations, [N] ∼ 25 at%, comparable to values achieved by plasma-induced nitriding. More recently, we have investigated the deposition of polymer-like ( V UV-polymer ) coatings by VUV-induced gas-phase photo-chemistry of ammonia-hydrocarbon mixtures, both gases that strongly absorb VUV photons. We use the same cylindrical high-vacuum reactor, with a VUV lamp and a VUV-sensitive photodiode detector at opposite ends; after measuring radiation intensity, the latter is replaced by a substrate holder, the frontal distance of which (with respect to the lamp) can be adjusted. For 'VUV-polymerization' experiments we have used two resonant lamps (low-pressure Kr and Xe), having 'monochromatic' emissions at λ 123.6 nm and 147.0 nm, respectively. The ammonia-hydrocarbon feed gas mixtures are characterised by their flow rate ratio, R ≡ NH 3 /C x H y , where C x H y designates methane (CH 4 ) or ethylene (C 2 H 4 ), the two 'monomers' investigated so far. Thin 'VUV-polymer' deposits were collected on MgF 2 or Si wafers placed on the substrate holder, and they were examined by a variety of physico-chemical techniques; for example, chemical structure and composition were characterized by X-ray photoelectron spectroscopy (XPS); layer thickness and refractive index, n, were determined by UV-VIS spectro-ellipsometry, and

  20. NSLS 2003 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2003)

    International Nuclear Information System (INIS)

    MILLER, L.

    2004-01-01

    The scientific productivity of the NSLS continues to be outstanding and the research conducted here has high impact. 2003 was no exception and some of the many highlights from this year's research activity are included in this Activity Report. We are especially pleased that one of our users, Professor Roderick MacKinnon (Rockefeller University), was the co-recipient of the 2003 Nobel Prize in Chemistry for work, much of which was done at the NSLS, explaining how proteins known as ion channels help to generate nerve impulses. It is also a particular pleasure to note that NSLS accelerator physicist Li Hua Yu was awarded the 2003 International Free Electron Laser Prize in recognition of his outstanding achievements, especially demonstrating High Gain Harmonic Generation (HGHG) at the DUV-FEL. Our vision for the NSLS in the next five to 10 years is for it to continue to serve as a vital resource for the nation and especially for the strong Northeast research community. To accomplish this, we are working to preserve and enhance its outstanding scientific productivity by providing increased user support and upgrading beamline and endstation instrumentation. For example, this past year we collaborated with scientists from the Albert Einstein College of Medicine and the BNL Biology Department to develop a new undulator beamline, X29, to meet the needs of macromolecular crystallography for high brightness x-rays. A new endstation on the undulator beamline X13B is being equipped with optics and instrumentation for microdiffraction and microprobe experiments. The wiggler beamline, X21, is being upgraded to provide high intensity and increased capacity for small angle x-ray scattering experiments on nanotemplated soft matter, biomaterials, and other systems. We are collaborating with the BNL Center for Functional Nanomaterials to develop a beamline for LEEM/PEEM studies, which will add important new capabilities for nanoscience and catalysis research. A new high-speed, high

  1. On-axis microscopes for the inelastic x-ray scattering beamline at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.; Antonelli, S.; Suvorov, A. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Flores, J. [Department of Physics and Astronomy, Stony Brook University, NY 11794 (United States)

    2016-07-27

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  2. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  3. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  4. VUV Spectroscopy of the Sun as a Star

    Science.gov (United States)

    Kankelborg, Charles; Philip, Judge; Winebarger, Amy R.; Kobayashi, Ken; Smart, Roy

    2017-08-01

    We describe a new sounding rocket mission to obtain the first high resolution, high quality VUV (100-200 nm) spectrum of the Sun-as-a-star. Our immediate science goal is to understand better the processes of chromospheric and coronal heating. HST data exist for a dozen or so Sun-like stars of a quality already beyond our ability to construct a comparable sun-as-a-star UV spectrum. The solar spectrum we obtain will enable us to understand the nature of magnetic energy dissipation as a Sun-like star evolves, and the dependence of magnetic activity on stellar mass and metallicity. This poster presents the instrument design, scientific prospects, and broader impacts of the proposed mission.

  5. A VUV prism spectrometer for RICH radiator refractometry

    CERN Document Server

    Moyssides, P G; Fokitis, E

    2000-01-01

    A prism spectrometer has been developed to operate in the VUV wavelength range from 120 to 200 nm. It can be used as a pre- disperser in conjunction with a Fabry-Perot based gas refractometer. This instrument has also been used to measure the refractive index of the liquid radiator C/sub 6/F/sub 14/ in various spectral lines. This radiator is used in the RICH detectors of the DELPHI experiment and has been proposed for ALICE, and LHCb experiments. The spectral resolution of the system is improved as the wavelength decreases and the data are consistent with a wavelength accuracy about 0.4 nm at 140 nm. The results for the dispersion curve of the above liquid are presented. (17 refs).

  6. Vacuum ultraviolet (VUV) absorption spectra of chromatin and its components

    International Nuclear Information System (INIS)

    Dodonova, N.Y.; Kiseleva, M.N.; Petrov, M.Y.; Tsyganenko, N.M.; Bubyakina, V.V.; Chikhirzhina, G.I.

    1984-01-01

    The electron absorption spectra of thin films of chromatin and chromatin components in the ultraviolet region (140-280 nm) were investigated. The absorption coefficients μ(lambda) of chromatin, nucleosomes with and without histone H1, total histones (TH), and DNA were compared. The spectra of nucleosomes differ from the sum-spectrum of DNA plus TH. The chromatin and nucleosome spectra are not similar in the spectral region of 190-160 nm. The lack of additivity of absorption coefficients at different wavelengths may be explained by different conformational changes of DNA, TH in nucleosomes and chromatin during the process of drying aqueous solutions for the preparation of thin films. The μ(lambda) values are useful for an estimate of the DNA and TH absorption in chromatin and nucleosomes in discussing UV and VUV irradiation damages. (Auth.)

  7. VUV spectroscopic measurement in current drive experiments in TRIAM-1M

    International Nuclear Information System (INIS)

    Hara, Shigemitsu; Kawasaki, Shoji; Jotaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Nakamura, Yukio; Hiraki, Naoji; Itoh, Satoshi

    1991-01-01

    VUV spectrum and time evolution of line intensity were measured. Steady-state transport equation was solved numerically, and the solution was qualitatively compared with the experimental results. (author)

  8. Uncooled Radiation Hard SiC Schottky VUV Detectors Capable of Single Photon Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to design, fabricate, characterize and commercialize very large area, uncooled and radiative hard 4H-SiC VUV detectors capable of near single...

  9. A scanning photoelectron microscope (SPEM) at the National Synchrotron Light Source (NSLS)

    International Nuclear Information System (INIS)

    Ade, H.; Kirz, J.; Hulbert, S.; Johnson, E.; Anderson, E.; Kern, D.; Brookhaven National Lab., Upton, NY; Lawrence Berkeley Lab., CA; International Business Machines Corp., Yorktown Heights, NY

    1989-01-01

    We are in the process of developing and commissioning a scanning photoelectron microscope (SPEM) at the X1A beamline of the National Synchrotron Light Source (NSLS). It is designed to make use of the Soft X-ray Undulator (SXU) at the NSLS. This high brightness source illuminates a Fresnel zone plate, which forms a focused probe, ≤ 0.2μm in size, on the specimen surface. A grating monochromator selects the photon energy in the 400-800 eV range with an energy resolution of better than 1 eV. The expected flux in the focus is in the 5 x 10 7 - 10 9 photons/s range. A single pass Cylindrical Mirror Analyzer (CMA) is used to record photoemission spectra, or to form an image within a fixed electron energy bandwidth as the specimen is mechanically scanned. As a first test, a 1000 mesh Au grid was successfully imaged with a resolution of about 1μm and the CMA tuned to the Au 4 f photoelectron peak. Once it is commissioned, a program is planned which will utilize the microscope to study beam sensitive systems, such as thin oxide/sub-oxide films of alumina and silica, and ultimately various adsorbates on these films. 14 refs., 4 figs

  10. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  11. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region

    International Nuclear Information System (INIS)

    Mayolet, A.

    1995-01-01

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the 'impurity bound exciton' model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author)

  12. Fluorescence-type Monochromatic X-ray Beam-position Monitor with High-spatial Resolution for the NSLS-II Beamlines

    International Nuclear Information System (INIS)

    Yoon, Phil S.; Siddons, D. Peter

    2010-01-01

    We developed a fluorescence-type monochromatic X-ray beam-position monitor (X-BPM) with high-spatial resolution for end-station experiments at the initial project beamlines of the NSLS-II. We designed a ring array of multi-segmented Si PIN-junction photodiodes to use as a position sensor. Further, we integrated a low-noise charge-preamplification HERMES4 ASIC chip into an electronic readout system for photon-counting application. A series of precision measurements to characterize electronically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise from the detector system is sufficiently low to meet our stringent requirements. Using a Gaussian beam, we parametrically modeled the optimum working distance to ensure the detector's best performance. Based upon the results from the parametric modeling, prototypes of the next versions of the X-BPM are being developed. In this paper, we describe the methodology for developing the new compact monochromatic X-ray BPM, including its instrumentation, detector modeling, and future plan.

  13. Design of ITER divertor VUV spectrometer and prototype test at KSTAR tokamak

    Science.gov (United States)

    Seon, Changrae; Hong, Joohwan; Song, Inwoo; Jang, Juhyeok; Lee, Hyeonyong; An, Younghwa; Kim, Bosung; Jeon, Taemin; Park, Jaesun; Choe, Wonho; Lee, Hyeongon; Pak, Sunil; Cheon, MunSeong; Choi, Jihyeon; Kim, Hyeonseok; Biel, Wolfgang; Bernascolle, Philippe; Barnsley, Robin; O'Mullane, Martin

    2017-12-01

    Design and development of the ITER divertor VUV spectrometer have been performed from the year 1998, and it is planned to be installed in the year 2027. Currently, the design of the ITER divertor VUV spectrometer is in the phase of detail design. It is optimized for monitoring of chord-integrated VUV signals from divertor plasmas, chosen to contain representative lines emission from the tungsten as the divertor material, and other impurities. Impurity emission from overall divertor plasmas is collimated through the relay optics onto the entrance slit of a VUV spectrometer with working wavelength range of 14.6-32 nm. To validate the design of the ITER divertor VUV spectrometer, two sets of VUV spectrometers have been developed and tested at KSTAR tokamak. One set of spectrometer without the field mirror employs a survey spectrometer with the wavelength ranging from 14.6 nm to 32 nm, and it provides the same optical specification as the spectrometer part of the ITER divertor VUV spectrometer system. The other spectrometer with the wavelength range of 5-25 nm consists of a commercial spectrometer with a concave grating, and the relay mirrors with the same geometry as the relay mirrors of the ITER divertor VUV spectrometer. From test of these prototypes, alignment method using backward laser illumination could be verified. To validate the feasibility of tungsten emission measurement, furthermore, the tungsten powder was injected in KSTAR plasmas, and the preliminary result could be obtained successfully with regard to the evaluation of photon throughput. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  14. New perspectives for organic chemistry and biochemistry in VUV: reaction kinetics, chirality and thermochemistry. Summaries

    International Nuclear Information System (INIS)

    Nahon, Laurent; Field, David; Gerber, Thomas; Knopp, Gregor; Beaud, Paul; Radi, Peter; Tulej, Marek; Dedonder-Lardeux, Claude; Jung, J.M.; Laprevote, Olivier; Thissen, Roland; Le Barbu, K.; Lahmani, F.; Zehnacker, A.; Maurizot, Jean Claude; Barbier, Bernard; Kagan, Henri B.

    2001-10-01

    The aim of this workshop was to examine the conditions of use of VUV for the study of complex molecular systems, and notably bio-molecules, a domain which is greatly expanding. The conclusions of this one-day workshop should allow to define new fields of utilization of the synchrotron radiation in VUV, to precise certain performances that are needed for the transferred line, to establish the complementarities with other VUV sources (lasers, free electron lasers, lamps) and to determine the eventual need for a second low energy light line at SOLEIL. The titles of the various abstract papers presented are (two papers are in English, the rest is in French): SU5, a high resolution and variable polarization VUV line that should be transferred at SOLEIL; Interstellar organic chemistry (in English); Application of spectroscopic techniques in the VUV to combustion relevant molecules (in English); Gaseous phase reaction kinetics (bi-molecular reactions in collision and in aggregates); Liquids of biological interest (excitation and relaxation close to the ionization threshold); Successes and impediments in protein mass spectrometry (the potential contribution of VUV synchrotron radiation); Stereo-specific effects; Complexes between chiral molecules; circular dichroism of biomolecules; Exobiology; asymmetric synthesis (principles and recent results)

  15. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  16. A tangentially viewing VUV TV system for the DIII-D divertor

    International Nuclear Information System (INIS)

    Nilson, D.G.; Ellis, R.; Fenstermacher, M.E.; Brewis, G.; Jalufka, N.

    1998-07-01

    A video camera system capable of imaging VUV emission in the 120--160 nm wavelength range, from the entire divertor region in the DIII-D tokamak, was designed. The new system has a tangential view of the divertor similar to an existing tangential camera system which has produced two dimensional maps of visible line emission (400--800 nm) from deuterium and carbon in the divertor region. However, the overwhelming fraction of the power radiated by these elements is emitted by resonance transitions in the ultraviolet, namely the C IV line at 155.0 nm and Ly-α line at 121.6 nm. To image the ultraviolet light with an angular view including the inner wall and outer bias ring in DIII-D, a 6-element optical system (f/8.9) was designed using a combination of reflective and refractive optics. This system will provide a spatial resolution of 1.2 cm in the object plane. An intermediate UV image formed in a secondary vacuum is converted to the visible by means of a phosphor plate and detected with a conventional CID camera (30 ms framing rate). A single MgF 2 lens serves as the vacuum interface between the primary and secondary vacuums; a second lens must be inserted in the secondary vacuum to correct the focus at 155 nm. Using the same tomographic inversion method employed for the visible TV, they reconstruct the poloidal distribution of the UV divertor light. The grain size of the phosphor plate and the optical system aberrations limit the best focus spot size to 60 microm at the CID plane. The optical system is designed to withstand 350 C vessel bakeout, 2 T magnetic fields, and disruption-induced accelerations of the vessel

  17. Materials research and beam line operation utilizing NSLS [National Synchrotron Light Source]: Progress report

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1987-10-01

    MATRIX is a group of scientists who have common interests in utilizing x-ray synchrotron radiation for materials research. This group has developed a specialized beam line (X-18A) for x-ray scattering studies at the National Synchrotron Light Source (NSLS). The beam line was designed to optimize experimental conditions for diffuse scattering and surface/interface studies. An extension of diffuse scattering to provide better quantitative data has been shown as well as a unique application to the solution of the phase problem. In the x-ray surface scattering area the first reported experiment to illustrate the capabilities for studying monolayers on water was performed. Current beam line upgrade projects are also described. In addition to a change to a UHV system and improvements dictated by operational experience, two new systems are described, a unique small angle scattering chamber (SAXS) for dynamic studies of nucleation and growth and a surface scattering chamber. 5 figs

  18. The APS x-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of third generation synchrotron radiation sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS x-ray undulators will increase the brilliance in the 3-40 KeV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve sub-micron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper

  19. The APS X-ray undulator photon beam position monitor and tests at CHESS and NSLS

    International Nuclear Information System (INIS)

    Shu, D.; Rodricks, B.; Barraza, J.; Sanchez, T.; Kuzay, T.M.

    1992-01-01

    The advent of thirs generation synchrotron sources, like the Advanced Photon Source (APS), will provide significant increases in brilliance over existing synchrotron sources. The APS X-ray undulators will increase the brilliance in the 3-40 keV range by several orders of magnitude. Thus, the design of the photon beam position monitor is a challenging engineering task. The beam position monitors must withstand the high thermal load, be able to achieve submicron spatial resolution while maintaining their stability, and be compatible with both undulators and wigglers. A preliminary APS prototype photon beam position monitor consisting of a CVD-diamond-based, tungsten-coated blade was tested on the APS/CHESS undulator at the Cornell High Energy Synchrotron Radiation Source (CHESS) and on the NSLS X-13 undulator beamline. Results from these tests, as well as the design of this prototype APS photon beam position monitor, will be discussed in this paper. (orig.)

  20. Magnetic Measurement System for the NSLS Superconducting Undulator Vertical Test Facility

    CERN Document Server

    Harder, David; Skaritka, John

    2005-01-01

    One of the challenges of small-gap superconducting undulators is measurement of magnetic fields within the cold bore to characterize the device performance and to determine magnetic field errors for correction or shimming, as is done for room-temperature undulators. Both detailed field maps and integrated field measurements are required. This paper describes a 6-element, cryogenic Hall probe field mapper for the NSLS Superconducting Undulator Vertical Test Facility (VTF). The probe is designed to work in an aperture only 3 mm high. A pulsed-wire insert is also being developed, for visualization of the trajectory, for locating steering errors and for determining integrated multi-pole errors. The pulsed-wire insert will be interchangeable with the Hall probe mapper. The VTF and the magnetic measurement systems can accommodate undulators up to 0.4 m in length.

  1. Performance of a correlator filter in betatron tune measurements and damping on the NSLS booster

    International Nuclear Information System (INIS)

    Galayda, J.

    1985-01-01

    A ''compensated correlator filter'', described by Kramer, et al. has been used for measurement and damping of betatron oscillations in the NSLS booster. The filter consists of a zero-degree power splitter, a 180-degree splitter, a length of 7/8'' air dielectric coaxial cable, and a short length of RG-58 cable. Connected to a beam position monitor, the output of the filter is proportional to the difference in transverse position of each bunch on subsequent turns. The useful bandwidth of the filter for damping rigid bunch oscillations extends from 10 MHz to 250 MHz, in contrast with the gigahertz bandwidth requirements for stochastic cooling, for which the filter was originally proposed. Attenuation of all rotation harmonics in this bandwidth is 40 to 60 dB

  2. A hard x-ray prototype production exposure station at NSLS

    International Nuclear Information System (INIS)

    Johnson, E.D.; Milne, J.C.

    1997-07-01

    Exposures conducted at the NSLS R and D beamline (X-27B) for High Aspect Ratio Precision Manufacture have proven sufficiently successful that the authors are constructing a dedicated hard x-ray exposure beamline. The new beamline (X-14B) provides an exposure field ∼ 120 mm wide, three times larger than that of X-27B. The scanner is based on the hydraulic system from the X-27B program. It is optimized for planar exposures and takes advantage of the full 525 mm stroke available. Exposures of multiple substrates and masks will be possible, with the fixturing supporting mounting of substrate holders from other groups (ALS, APS, CAMD, and UW). The function of this beamline is to establish a hard x-ray exposure station where manufacturing scale protocols can be developed and ultimately exploited for production runs

  3. Multiple energy computed tomography with monochromatic x rays from the NSLS

    International Nuclear Information System (INIS)

    Dilmanian, F.A.; Nachaliel, E.; Garrett, R.F.; Thomlinson, W.C.; Chapman, L.D.; Moulin, H.R.; Oversluizen, T.; Rarback, H.M.; Rivers, M.; Spanne, P.; Thompson, A.C.; Zeman, H.D.

    1991-01-01

    We used monochromatic x rays from the X17 superconducting wiggler beamline at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, for dual-energy quantitative computed tomography (CT) of a 27 mm-diameter phantom containing solutions of different KOH concentrations in cylindrical holes of 5-mm diameter. The CT configuration was a fixed horizontal fan-shaped beam of 1.5 mm height and 30 mm width, and a subject rotating around a vertical axis. The transmitted x rays were detected by a linear-array Si(Li) detector with 120 elements of 0.25 mm width each. We used a two-crystal Bragg-Bragg fixed-exit monochromator with Si crystals. Dual photon absorptiometry (DPA) CT data were taken at 20 and 38 keV. The reconstructed phantom images show the potential of the system for quantitative CT

  4. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  5. A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Mehdi; Mohseni, Madjid, E-mail: madjid.mohseni@ubc.ca

    2015-08-30

    Highlights: • Developing a comprehensive CFD simulation tool for VUV/UV photoreactors modeling. • Analysing impact of reactor hydrodynamics on the AOP performance of VUV/UV process. • Cutting the energy cost of VUV/UV process by means of improved-photoreactor design. • Experimentally verifying the CFD results using a VUV/UV prototype photoreactor. - Abstract: VUV/UV is a chemical-free and straightforward solution for the degradation of emerging contaminants from water sources. The objective of this work was to investigate the feasibility of VUV/UV advanced oxidation process for the effective degradation of a target micropollutant, atrazine, under continuous flow operation of 0.5–6.5 L/min. To provide an in-depth understanding of process, a comprehensive computational fluid dynamics (CFD) model, incorporating flow hydrodynamics, 185 nm VUV and 254 nm UV radiation propagation along with a complete kinetic scheme, was developed and validated experimentally. The experimental degradation rates and CFD predicted values showed great consistency with less than 2.9% average absolute relative deviation (AARD). Utilizing the verified model, energy-efficiency of the VUV/UV process under a wide range of reactor configurations was assessed in terms of electrical energy-per-order (EEO), ·OH concentration as well as delivered UV and VUV dose distributions. Thereby, the extent of mixing and circulation zones was found as key parameter controlling the treatment economy and energy-efficiency of the VUV/UV process. Utilizing a CFD-driven baffle design strategy, an improved VUV/UV process with up to 72% reduction in the total electrical energy requirement of atrazine degradation was introduced and verified experimentally.

  6. Performance of a novel VUV bending magnet beamline

    CERN Document Server

    Song, Y F; Hsieh, T F; Huang, L R; Chung, S C; Cheng, N F; Hsiung, G Y; Wang, D J; Chen, C T; Tsang, K L

    2001-01-01

    A novel high resolution, high flux bending magnet beamline with an energy range from 5 to 40 eV has been constructed at SRRC. This Dragon-like beamline, which horizontally collects 50 mrad of synchrotron radiation from a bending magnet source, uses four cylindrical gratings with an included angle of 140 deg. and a movable curved exit slit. The average photon flux with an energy resolving power of 1000 is about 2x10 sup 1 sup 2 photons/s, which is among the highest of all existing VUV bending magnet beamlines. An energy resolving power of 24,000 at 6.8 eV has been obtained from the Schumann-Runge bands (B sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction u lower limit End limit End sup - /leftarrow/gets A: =leftward arrow X sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction g lower limit End limit End sup -) absorption spectra of O sub 2 gas. A pho...

  7. Gas-filled cell as a narrow bandwidth bandpass filter in the VUV wavelength range

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-04-15

    We propose a method for spectrally filtering radiation in the VUV wavelength range by means of a monochromator constituted by a cell filled with a resonantly absorbing rare gas. Around particular wavelengths, the gas exhibits narrow-bandwidth absorbing resonances following the Fano profile. In particular, within the photon energy range 60 eV-65 eV, the correlation index of the Fano profiles for the photoionization spectra in Helium is equal to unity, meaning that the minimum of the cross-section is exactly zero. For sufficiently large column density in the gas cell, the spectrum of the incoming radiation will be attenuated by the background cross-section of many orders of magnitude, except for those wavelengths close to the point where the cross-section is zero. Remarkable advantages of a gas monochromator based on this principle are simplicity, efficiency and narrow-bandwidth. A gas monochromator installed in the experimental hall of a VUV SASE FEL facility would enable the delivery of a single-mode VUV laser beam. The design is identical to that of already existing gas attenuator systems for VUV or X-ray FELs. We present feasibility study and exemplifications for the FLASH facility in the VUV regime. (orig.)

  8. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami; Bé nilan, Yves; Farooq, Aamir

    2013-01-01

    synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV

  9. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    International Nuclear Information System (INIS)

    Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D.K.; Skinner, J.M.; Skinner, M.J.; Stoner-Ma, D.; Sweet, R.M.

    2011-01-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  10. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation

    International Nuclear Information System (INIS)

    Cao, M.H.; Wang, B.B.; Yu, H.S.; Wang, L.L.; Yuan, S.H.; Chen, J.

    2010-01-01

    The photochemical decomposition of perfluorooctanoic acid (PFOA) in aqueous periodate (IO 4 - ) was investigated under two types of low-pressure mercury lamps: one emits at 254 nm light (UV light) and the other emits both 254 nm and 185 nm light (VUV light). PFOA decomposed efficiently under VUV light irradiation while it decomposed poorly under UV light irradiation. The addition of IO 4 - significantly increased the rate of decomposition and defluorination of PFOA irradiated with UV light whereas it decreased both processes under VUV irradiation. Reactive radical (IO 3 ·) generated by photolysis of IO 4 - initiated the oxidation of PFOA in UV process. Aquated electrons (e aq - ), generated from water homolysis, scavenged IO 4 - resulting in decrease of reactive radical species production and PFOA decomposition. The shorter-chain perfluorocarboxylic acids (PFCAs) formed in a stepwise manner from long-chain PFCAs.

  11. Use of regularization method in the determination of ring parameters and orbit correction

    International Nuclear Information System (INIS)

    Tang, Y.N.; Krinsky, S.

    1993-01-01

    We discuss applying the regularization method of Tikhonov to the solution of inverse problems arising in accelerator operations. This approach has been successfully used for orbit correction on the NSLS storage rings, and is presently being applied to the determination of betatron functions and phases from the measured response matrix. The inverse problem of differential equation often leads to a set of integral equations of the first kind which are ill-conditioned. The regularization method is used to combat the ill-posedness

  12. A tool for symmetry studies in circular machines

    International Nuclear Information System (INIS)

    Bozoki, E.

    1988-05-01

    The use of the C [mrad/Amp] conversion factors of the orbit corrector magnets in the sudy of the symmetry properties of a circular accelerator or storage ring, and in the determination of the ratios of the β-functions at corrector locations is discussed. Measurements obtained for the VUV and x-ray rings of the NSLS at Brookhaven National Laboratory are presented. 4 refs., 7 figs., 3 tabs

  13. VUV light induced valence degeneration in Sm over-layer on HOPG

    International Nuclear Information System (INIS)

    Kutluk, G; Nakatake, M; Arita, M; Namatame, H; Taniguchi, M; Ishitobi, Y; Sumida, H

    2013-01-01

    Systematic investigation of the influence of vacuum ultraviolet (VUV) irradiation on the valence degeneration in a Sm over-layer on a HOPG substrate was performed using in-situ photoemission spectroscopy (XPS, UPS, and ARPES) for the Sm coverage regime of 0.05-3.6 Å. This investigation confirmed that VUV irradiation-induced degeneration of divalent Sm exerts a more profound effect than Sm contamination during photoemission spectroscopy even under UHV. We found that the charge transfer occurs mainly from divalent Sm to the HOPG surface.

  14. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, F. P., E-mail: fpsturm@lbl.gov [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Institut für Kernphysik, Universität Frankfurt, Max-von-Laue Str. 1, D-60438 Frankfurt (Germany); Wright, T. W.; Ray, D.; Zalyubovskaya, I.; Shivaram, N.; Slaughter, D. S.; Belkacem, A.; Weber, Th. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ranitovic, P. [Ultrafast X-Ray Science Lab, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); ELI-ALPS, ELI-Hu Nkft, Dugonics ter 13, Szeged H6720 (Hungary)

    2016-06-15

    We present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  15. Design of UHV chamber assembly and mirror mounts for high resolution VUV beam line at INDUS-1

    International Nuclear Information System (INIS)

    Saksena, G.D.; Sinha, A.K.; Bhattacharya, S.S.

    1993-01-01

    The reflecting optical system is designed for the high resolution VUV spectroscopy facility to be installed at INDUS-1. The fore-optics system consists of three cylindrical mirrors (M1, M2 and M3) to accept a 60 mrad (horizontal) x 6 mrad (vertical) diverging synchrotron beam from the storage ring in order to focus the image on the entrance slit of the vacuum spectrometer located at 13 m from the source point. In this paper we present some important details regarding mechanical design of the high resolution beam line consisting of mirror mounts, UHV chambers, associated mechanisms and beam pipes. The mirrors are mounted in an adjustable three point kinematic holder. In addition, these mounts are provided with a multi-plane alignment provision. Mirror mounts are placed inside VHV chambers which are provided with three translational and two rotational movements to facilitate initial as well as final on-line fine-tuned alignments. Beam pipes are connected to the VHV chambers through flanged bellows. Chambers, associated mechanisms, beam pipes with its non-rigid support and related pumping stations are positioned in the support structure rigidly. (author). 2 figs

  16. NSLS-II High Level Application Infrastructure And Client API Design

    International Nuclear Information System (INIS)

    Shen, G.; Yang, L.; Shroff, K.

    2011-01-01

    The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. It is an open structure platform, and we try to provide a narrow API set for client application. With this narrow API, existing applications developed in different language under different architecture could be ported to our platform with small modification. This paper describes system infrastructure design, client API and system integration, and latest progress. As a new 3rd generation synchrotron light source with ultra low emittance, there are new requirements and challenges to control and manipulate the beam. A use case study and a theoretical analysis have been performed to clarify requirements and challenges to the high level applications (HLA) software environment. To satisfy those requirements and challenges, adequate system architecture of the software framework is critical for beam commissioning, study and operation. The existing traditional approaches are self-consistent, and monolithic. Some of them have adopted a concept of middle layer to separate low level hardware processing from numerical algorithm computing, physics modelling, data manipulating, plotting, and error handling. However, none of the existing approaches can satisfy the requirement. A new design has been proposed by introducing service oriented architecture technology. The HLA is combination of tools for accelerator physicists and operators, which is same as traditional approach. In NSLS-II, they include monitoring applications and control routines. Scripting environment is very important for the later part of HLA and both parts are designed based on a common set of APIs. Physicists and operators are users of these APIs, while control system engineers and a few accelerator physicists are the developers of these APIs. With our Client/Server mode based approach, we leave how to retrieve information to the

  17. ring system

    African Journals Online (AJOL)

    1,3,2-DIAZABORACYCLOALKANE. RING SYSTEM. Negussie Retta" and Robert H. Neilson. 'Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Department of Chemistry, Texas Christian University.

  18. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  19. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-21

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  20. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  1. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  2. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  3. Hydrocarbons in interstellar ice analogues : UV-vis spectroscopy and VUV photochemistry

    NARCIS (Netherlands)

    Cuylle, Steven Hendrik

    2015-01-01

    This thesis treats the chemical behaviour of carbonaceous molecules in water-dominated interstellar ices. VUV photons are considered as the chemical trigger to induce solid state chemistry as it is omnipresent. Lyman- radiation occurs even in dense molecular clouds as a result of cosmic ray

  4. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    Science.gov (United States)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High sensitivity detection of desorbed biomolecules by photoionization with tunable VUV

    International Nuclear Information System (INIS)

    Moore, J.F.; Calaway, W.F.; Veryovkin, I.V.; Pellin, M.J.; Lewellen, J.W.; Li, Y.; Milton, S.V.; King, B.V.

    2004-01-01

    Full text: The spectral region from 7 to 11eV has two attributes that make it attractive for biomolecule photoionization: 1. high photoionization cross sections, leading to high detection efficiency, and 2. overlap with nearly all first ionization energies of biomolecules, allowing possible control over fragmentation by accessing different final states via tuning. The lack of available tunable lasers in this energy range has generally hindered exploitation of these features thus far. A free-electron laser in operation at Argonne National Laboratory provides high pulse energy, widely tunable VUV pulses of 300 fs duration. Coupled with a novel time-of-flight mass spectrometer, this laser is able to photoionize and detect biomolecules, including peptides and nucleosides. Either laser desorption or primary ion beams are used to desorb sample material, followed by photoionization with a VUV laser. The instrument uses novel ion optics to extract photoions from a large volume while maintaining high mass resolution. This approach is capable of yielding dramatically improved detection limits over more conventional methods such as MALDI and SIMS. In the case of the common peptide substance P, for example, a substantial improvement over the MALDI signal was observed using VUV photoionization with very little observed fragmentation of the molecule. Nucleosides and cisplatin were also measured with typically order of magnitude improvements in signal. These and other examples show clearly the benefits that can be obtained in high sensitivity mass spectrometry of biomolecules with the increasing availability of VUV laser sources

  6. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V. V.; Oepts, D.; van der Wiel, M. J.

    1997-01-01

    A possible way to carry out two-color IR+VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  7. A Cherenkov radiator for FEL-synchronized VUV-pulses at a linac-based FEL

    NARCIS (Netherlands)

    Goloviznin, V.V.; Oepts, W.; Wiel, van der M.J.

    1997-01-01

    A possible way to carry out two-color IR + VUV pump-probe experiments at linac-based FELs is proposed. The idea is to supply an FEL facility with a gas cell filled with helium or hydrogen, so that the electron beam, upon passage through the undulator, could be used to generate ultraviolet Cherenkov

  8. NSLS [National Synchrotron Light Source] X-19A beamline performance for x-ray absorption measurements

    International Nuclear Information System (INIS)

    Yang, C.Y.; Penner-Hahn, J.E.; Stefan, P.M.

    1989-01-01

    Characterization of the X-19A beamline at the National Synchrotron Light Source (NSLS) is described. The beamline is designed for high resolution x-ray absorption spectroscopy over a wide energy range. All of the beamline optical components are compatible with ultrahigh vacuum (UHV) operation. This permits measurements to be made in a window-less mode, thereby facilitating lower energy (<4 KeV) studies. To upgrade the beamline performance, several possible improvements in instrumentation and practice are discussed to increase photon statistics with an optimum energy resolution, while decreasing the harmonic contamination and noise level. A special effort has been made to improve the stability and UHV compatibility of the monochromator system. Initial x-ray absorption results demonstrate the capabilities of this beamline for x-ray absorption studies of low Z elements (e.g. S) in highly dilute systems. The future use of this beamline for carrying out various x-ray absorption experiments is presented. 10 refs., 4 figs

  9. Method for compensating bellows pressure loads while accommodating thermal deformations

    International Nuclear Information System (INIS)

    Woodle, M.H.

    1985-01-01

    Many metal bellows are used on storage ring vacuum chambers. They allow the ring to accommodate deformations associated with alignment, mechanical assembly and thermal expansion. The NSLS has two such electron storage rings, the vuv ring and the x-ray ring. Both rings utilize a number of welded metal bellows within the ring and at every beam port. There are provisions for 16 beam ports on the vuv and 28 ports in the x-ray ring. At each of these locations the bellows are acted on by an external pressure of 1 atmosphere, which causes a 520 lb reaction at the vacuum chamber beam port and at the beamline flange downstream of the bellows. The use of rigid tie rods across the bellows flanges to support this load is troublesome because most storage ring vacuum chambers are baked in situ to achieve high internal vacuum. Significant forces can develop on components if thermal deformation is restrained and damage could occur

  10. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  11. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  12. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  13. Ring interferometry

    CERN Document Server

    Malykin, Grigorii B; Zhurov, Alexei

    2013-01-01

    This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the

  14. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer

    Science.gov (United States)

    Sun, W. Q.; Shu, J. N.; Zhang, P.; Li, Z.; Li, N. N.; Liang, M.; Yang, B.

    2015-06-01

    In this study, we report on the development of a compact lamp-based vacuum ultraviolet (VUV) photoionization mass spectrometer (PIMS; hereafter referred to as VUV-PIMS) in our laboratory; it is composed of a radio frequency-powered VUV lamp, a VUV photoionizer, an ion-immigration region, and a reflection time-of-flight mass spectrometer. By utilizing the novel photoionizer consisting of a photoionization cavity and a VUV light baffle, extremely low background noise was obtained. An ultrasensitive detection limit (2σ) of 3 pptv was achieved for benzene after an acquisition time of 10 s. To examine its potential for application in real-time sample monitoring, the developed VUV-PIMS was employed for the continuous measurement of urban air for six days in Beijing, China. Strong signals of trace-level volatile organic compounds such as benzene and its alkylated derivatives were observed in the mass spectra. These initial experimental results reveal that the instrument can be used for the online monitoring of trace-level species in the atmosphere.

  15. Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry (GC-VUV-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Aerosol Dynamics Inc; Aerodyne Research, Inc.,; Tofwerk AG, Thun; Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Doug R.; Goldstein, Allen H.

    2011-09-13

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography-mass spectrometry (GC-MS) techniques. This work uses vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally"unresolved complex mixture" by separating components by GC retention time, tR, and mass-to-charge ratio, m/Q, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved based on tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally-relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. The classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  16. Measurement of impurity emission profiles in CHS Plasma using AXUV photodiode arrays and VUV bandpass filters

    International Nuclear Information System (INIS)

    Suzuki, C.; Peterson, B.J.; Ida, K.

    2004-01-01

    We have designed a compact and low-cost diagnostic system for spatiotemporal distributions of specific vacuum ultraviolet (VUV) emission lines from impurities in Compact Helical System (CHS) plasmas. The system consists of 20 channel absolute extreme ultraviolet photodiode arrays combined with interchangeable thin foil filters which have passbands in the VUV region. A compact mounting module which contains all the components including an in-vacuum preamplifier for immediate current-voltage conversion has been designed and successfully fabricated. A preliminary measurement with a single module using an aluminum foil filter has been carried out for monitoring the behavior of oxygen impurity in CHS, and initial results have been obtained. Two identical modules equipped with Versa Module European bus-based analog-digital converters will be available for future tomographic measurements

  17. Characterization of Vacuum Ultraviolet (VUV) Radiation for the Development of a Fluorescent Lamp

    International Nuclear Information System (INIS)

    Khatun, Hasina; Sharma, A. K.; Barhai, P. K.

    2011-01-01

    A negative unipolar pulsed voltage is applied to study internal electrical parameters of the xenon filled dielectric barrier discharge (DBD) sources. The VUV radiation emitted from these sources is characterized by means of the photoluminescence intensity of the red phosphor pellet. The red phosphor converts the VUV radiation into visible radiation and the emission spectra include a peak at 619.56 nm. The emission characteristics of the red phosphor are analyzed in terms of the pressure-distance (pd), rise time and frequency of the pulsed voltage waveform. The emission intensity measured at different operational conditions confirms that the formation and decay of the xenon excimer, Xe 2 *, increase with the increase in reduced electric field, E/N. After exceeding certain limits of E/N, the intensity of Xe 2 * decreases rapidly. (plasma technology)

  18. Lighting the way to the future: An anthology of improvements, developments, and research by NSLS staff and collaborators

    International Nuclear Information System (INIS)

    1996-01-01

    Following the commissioning phase of a scientific facility, it is essential to invent, adapt and improve new technologies so that the specification and performance of the facility is upgraded over it's lifetime. It is equally important that staff keep their expertise and research interests at the cutting edge and contribute, based on their unique experience, to the present and next generation of experiments at existing facilities and to the specification and R and D on which the next generation of facilities will be based. A synchrotron radiation facility such as the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory supports a very wide range of science which is dependent on the breadth of the electromagnetic spectrum which is generated. Scientists from many disciplines use radiation from the far infra-red (λ = 12 mm, Energy = 0.1 meV) through to extreme gamma rays (λ = 4 fm, Energy = 300 MeV). All aspects of the facility need continual improvement, development and research including the source itself, the optics of beamlines, experimental concepts and the performance of detectors. This collection of papers shows the scope of past work by NSLS staff and their collaborators, serves as a reminder of their achievements and as an indicator of the range, quality and quantity of work which is required to maintain a scientific user facility at the cutting edge

  19. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  20. Chemical evolution of Titan’s aerosol analogues under VUV irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Gavilan, Lisseth; Tigrine, Sarah; Vettier, Ludovic; Nahon, Laurent; Pernot, Pascal

    2017-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan’s ionosphere [1].After production in the ionosphere, Titan’s aerosols evolve through microphysics during their sedimentation down to Titan’s surface [2]. Starting with a few nanomers size in the upper atmosphere, they reach a fractal structure of a few hundreds nanometers close to the surface [3]. During sedimentation, aerosols are also submitted to solar irradiation. As laboratory analogs of Titan’s atmospheric aerosols (tholins) show a strong UV absorption [4], we suspect that VUV irradiation could also induce a chemical evolution of Titan’s aerosols during their descent in Titan’s atmosphere.The aim of this work ist to simulate the irradiation process occuring on the aerosols in Titan’s atmosphere and to address whether this irradiation impacts the chemical composition of the organic solids. First aerosol analogues were produced in a N2-CH4 plasma discharge as thin organic films of a few hundreds of nanometers thick [5]. Then those were irradiated at Lyman-α wavelength, the strongest VUV line in the solar spectrum, with a high photon flux on a synchrotron VUV beamline. We will present and discuss the significant chemical evolutions observed on the analogues after VUV irradiation by mid-IR absorption spectroscopy.[1] Waite et al. (2009) Science , 316, p. 870[2] Lavvas et al. (2011) Astrophysical Journal, 728:80[3] Tomasko et al. (2008) Planetary and Space Science, 56, p. 669[4] Mahjoub et al. (2012) Icarus 221, P. 670[5] Carrasco et al. (2016) Planetary and Space Science, 128, p. 52

  1. Luminescence mechanism in doubly Gd, Nd-codoped fluoride crystals for VUV scintillators

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Babin, Vladimir; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.; Nikl, Martin

    2016-01-01

    Roč. 169, Jan (2016), s. 682-689 ISSN 0022-2313. [International Conference on Luminescence and Optical Spectroscopy of Condensed Matter /17./. Wroclaw, 13.07.2014-18.07.2014] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : barium –lutetium–yttrium fluoride * lutetium fluoride * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  2. Experimental study of pyrolytic boron nitride at high temperature with and without proton and VUV irradiations

    International Nuclear Information System (INIS)

    Balat-Pichelin, M.; Eck, J.; Heurtault, S.; Glénat, H.

    2014-01-01

    Highlights: • New results for the high temperature study of pBN in high vacuum for the heat shield of solar probes. • Physico-chemical behavior of pBN studied up to 1700 K with proton and VUV irradiations. • Rather low effect of synergistic aggressions on the microstructure of pBN material. • The α/ε ratio of pBN coating on C/C measured up to 2200 K is 20% lower than for the C/C itself. - Abstract: In the frame of future exploration missions such as Solar Probe Plus (NASA) and PHOIBOS (ESA), research was carried out to study pyrolytic BN material envisaged as coating for their heat shields. The physico-chemical behavior of CVD pBN at very high temperature with or without hydrogen ions and VUV (Vacuum Ultra-Violet) irradiations was studied in high vacuum together with the in situ measurement of the thermal radiative properties conditioning the thermal equilibrium of the heat shield. Experimental results obtained on massive pBN samples are presented through in situ mass spectrometry and mass loss rate, and post-test microstructural characterization by XRD, SEM, AFM and nano-indentation techniques, some of them leading to mechanical properties. It could be concluded that synergistic effect of high temperature, protons and VUV radiation has an impact on the emission of gaseous species, the mass loss rate and the mechanical properties of the material

  3. VUV/UV light inducing accelerated phenol degradation with a low electric input.

    Science.gov (United States)

    Li, Mengkai; Wen, Dong; Qiang, Zhimin; Kiwi, John

    2017-01-23

    This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4-6 min. The HO˙ and HO 2 ˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The effects of initial concentrations of phenol, H 2 O 2 and Fe 3+ as well as solution pH on phenol degradation kinetics were examined. Increasing the initial phenol concentration slowed down the phenol degradation, whereas increasing the initial H 2 O 2 or Fe 3+ concentration accelerated the phenol degradation. The optimal solution pH was 3.7. At both 254 and 185 nm, increasing phenol concentration enhanced its absorption for the incident photons. The reaction mechanism for the degradation of phenol was suggested consistent with the results obtained. This study indicates that the VUV/UV photo-Fenton process has potential applications in the treatment of industrial wastewater containing phenol and related aromatic pollutants.

  4. UV-VUV laser induced phenomena in SiO2 glass

    International Nuclear Information System (INIS)

    Kajihara, Koichi; Ikuta, Yoshiaki; Oto, Masanori; Hirano, Masahiro; Skuja, Linards; Hosono, Hideo

    2004-01-01

    Creation and annihilation of point defects were studied for SiO 2 glass exposed to ultraviolet (UV) and vacuum UV (VUV) lights to improve transparency and radiation toughness of SiO 2 glass to UV-VUV laser light. Topologically disordered structure of SiO 2 glass featured by the distribution of Si-O-Si angle is a critical factor degrading transmittance near the fundamental absorption edge. Doping with terminal functional groups enhances the structural relaxation and reduces the number of strained Si-O-Si bonds by breaking up the glass network without creating the color centers. Transmittance and laser toughness of SiO 2 glass for F 2 laser is greatly improved in fluorine-doped SiO 2 glass, often referred as 'modified silica glass'. Interstitial hydrogenous species are mobile and reactive at ambient temperature, and play an important role in photochemical reactions induced by exposure to UV-VUV laser light. They terminate the dangling-bond type color centers, while enhancing the formation of the oxygen vacancies. These findings are utilized to develop a deep-UV optical fiber transmitting ArF laser photons with low radiation damage

  5. IEEE Particle Accelerator Conference on Accelerator Science and Technology Held in San Francisco, California on 6-9 May 1991. Volume 5

    Science.gov (United States)

    1991-05-01

    Progress on bunch lengthening at the NSLS VUV ring - R. Biscardi, W. Broome, S. Buda, J. Keane, G. Ramirez , J. Wachtel, and J. M . Wang...applied to KAON - George A. Ludgate, Edwin A. Osberg, and Don A. Dohan .................................................................... 1350...Wiggler Magnert foir DELTAI3.0O .. . . . . . . ... . . ... . . . . . . r-iPeriodlenth’ 95 CMj !I# dn~’ Centr.l minetk l id 5.5?’ D.. rua ~q ppobt1 6 20

  6. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region; Etude des processus d`absorption et de transfert d`energie au sein de materiaux inorganiques luminescents dans le domaine UV et VUV

    Energy Technology Data Exchange (ETDEWEB)

    Mayolet, A

    1995-11-29

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the `impurity bound exciton` model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author) 134 refs.

  7. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy. Progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1984-01-01

    Research is reported for x-ray studies at NSLS. Energy-loss spectroscopy experiments (EXAFS) were performed on various materials including iron, silicon, gold, glass, niobium-aluminum alloys, and metglass

  8. Ultra-high vacuum system of the Brookhaven National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Foerster, C.L.

    1995-01-01

    The rings of the National Synchrotron Light Source (NSLS) have been supplying light to numerous users for approximately a decade and recently a fully conditioned machine vacuum at design currents was obtained. A brief description of the x-ray storage ring, the VUV storage ring and their current supply is given along with some of their features. The ultra-high vacuum system employed for the storage rings and their advantages for the necessary stored beam environments are discussed including, a brief history of time. 15 refs., 2 tabs., 8 figs

  9. An automatic beam steering system for the NSLS X-17T beam line using closed orbit feedback

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Ma, Li; Rarback, H.M.; Singh, O.V.; Yu, L.H.

    1987-01-01

    Initial observations of motion of the undulator radiation in the NSLS X-17T beam line clearly indicated that the beam had to be stabilized in both directions to be usable for the planned soft x-ray imaging experiments. The low frequency spectra of beam motion contained peaks in the range from dc to 60 Hz and at higher frequencies. A beam steering system employing closed orbit feedback has been designed and installed to stabilize the beam in both planes. In each plane of motion, beam position is measured with a beam position detector and a correction signal is fed back to a local four magnet orbit bump to dynamically control the angle of the radiation at the source. This paper describes the design and performance of the beam steering system

  10. NSLS 3: Conceptual design report: 750 MeV e+ or e- injector

    International Nuclear Information System (INIS)

    1986-05-01

    The 750 MeV positron or electron injector is comprised of an electron linear accelerator which accelerates an intense beam of electrons to an energy of about 250 MeV, a positron converter, a second linear accelerator that boosts the final positron energy to 750 MeV, and a damping ring in which radiation damping is used to reduce the emittance of the positron beam for injection into the storage rings. The reasons for the need of a new injector are enumerated. The conceptual design of the system and its component systems are described, as well as project cost, schedule, and manpower requirements

  11. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    Energy Technology Data Exchange (ETDEWEB)

    Ranković, M. Lj. [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Canon, F. [INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, F-21000 Dijon (France); Nahon, L. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); Giuliani, A. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); INRA, UAR1008, CEPIA, Rue de la Géraudière, BP 71627, 44316 Nantes (France); Milosavljević, A. R., E-mail: vraz@ipb.ac.rs [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-12-28

    We have studied the Vacuum Ultraviolet (VUV) photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4, and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insight into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. The photodissociation yields appear to be very different for the various observed fragmentation channels, depending on both the types of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.

  12. Efficient degradation of H2S over transition metal modified TiO2 under VUV irradiation: Performance and mechanism

    Science.gov (United States)

    Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao

    2018-03-01

    Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.

  13. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Science.gov (United States)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  14. Experimental study of carbon materials behavior under high temperature and VUV radiation: Application to Solar Probe+ heat shield

    International Nuclear Information System (INIS)

    Eck, J.; Sans, J.-L.; Balat-Pichelin, M.

    2011-01-01

    The aim of the Solar Probe Plus (SP+) mission is to understand how the solar corona is heated and how the solar wind is accelerated. To achieve these goals, in situ measurements are necessary and the spacecraft has to approach the Sun as close as 9.5 solar radii. This trajectory induces extreme environmental conditions such as high temperatures and intense Vacuum Ultraviolet radiation (VUV). To protect the measurement and communication instruments, a heat shield constituted of a carbon material is placed on the top of the probe. In this study, the physical and chemical behavior of carbon materials is experimentally investigated under high temperatures (1600-2100 K), high vacuum (10 -4 Pa) and VUV radiation in conditions near those at perihelion for SP+. Thanks to several in situ and ex situ characterizations, it was found that VUV radiation induced modification of outgassing and of mass loss rate together with alteration of microstructure and morphology.

  15. A VUV photoionization organic aerosol mass spectrometric study with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fang Wenzheng; Lei Gong; Shan Xiaobin; Liu Fuyi [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui, Hefei 230029 (China); Wang Zhenya [Laboratory of Environmental Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Sheng Liusi, E-mail: lssheng@ustc.edu.cn [School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Anhui, Hefei 230029 (China)

    2011-04-15

    Research highlights: {yields} A photoionization aerosol time-of-flight mass spectrometer (ATOFMS) has been developed for on-line analysis of organic compounds in aerosol particles using tunable vacuum ultraviolet (VUV) synchrotron radiation. {yields} The degree of fragmentation of molecule can be controlled either by the heater temperature or by the photon energy. {yields} The direct determination of the IEs of benzopheneone (9.07 eV), salicylic acid (8.72 eV), and urea (9.85 eV) are measured from the photoionization efficiency spectra. {yields} The species can be identified by their molecular and fragment ions weights as well as by the comparisions between their theoretical and experimental ionization energies. - Abstract: A photoionization aerosol time-of-flight mass spectrometer (ATOFMS) has been developed for on-line analysis of organic compounds in aerosol particles using tunable vacuum ultraviolet (VUV) synchrotron radiation. Aerosol particles can be sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. The particles are vaporized when they impact on a heater, and then the nascent vapor is softly photoionized by synchrotron radiation. The degree of fragmentation of molecule can be controlled either by the heater temperature or by the photon energy. Thus, fragment-free tunable VUV mass spectra are obtained by tuning the photon energy close to the ionization energies (IEs) of the sample molecules. The direct determination of the IEs of benzophenone (9.07 eV), salicylic acid (8.72 eV), and urea (9.85 eV) are measured from the photoionization efficiency spectra with uncertainties of {+-}50 meV. Ab initio calculations have been employed to predict the theoretical ionization energy.

  16. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR

    KAUST Repository

    Es-sebbar, Et-touhami

    2013-01-01

    Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.

  17. Combined UV-C/H2O2-VUV processes for the treatment of an actual slaughterhouse wastewater.

    Science.gov (United States)

    Naderi, Kambiz Vaezzadeh; Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab; Abdekhodaie, Mohammad Jafar

    2017-05-04

    In this study, a three-factor, three-level Box-Behnken design with response surface methodology were used to maximize the TOC removal and minimize the H 2 O 2 residual in the effluent of the combined UV-C/H 2 O 2 -VUV system for the treatment of an actual slaughterhouse wastewater (SWW) collected from one of the meat processing plants in Ontario, Canada. The irradiation time and the initial concentrations of total organic carbon (TOC o ) and hydrogen peroxide (H 2 O 2o ) were the three predictors, as independent variables, studied in the design of experiments. The multiple response approach was used to obtain desirability response surfaces at the optimum factor settings. Subsequently, the optimum conditions to achieve the maximum percentage TOC removal of 46.19% and minimum H 2 O 2 residual of 1.05% were TOC o of 213 mg L -1 , H 2 O 2o of 450 mg L -1 , and irradiation time of 9 min. The attained optimal operating conditions were validated with a complementary test. Consequently, the TOC removal of 45.68% and H 2 O 2 residual of 1.03% were achieved experimentally, confirming the statistical model reliability. Three individual processes, VUV alone, VUV/H 2 O 2 , and UV-C/H 2 O 2 , were also evaluated to compare their performance for the treatment of the actual SWW using the optimum parameters obtained in combined UV-C/H 2 O 2 -VUV processes. Results confirmed that an adequate combination of the UV-C/H 2 O 2 -VUV processes is essential for an optimized TOC removal and H 2 O 2 residual. Finally, respirometry analyses were also performed to evaluate the biodegradability of the SWW and the BOD removal efficiency of the combined UV-C/H 2 O 2 -VUV processes.

  18. Gain length dependence on phase shake in the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J. [DESY/HASYLAB, Hamburg (Germany); Schneidmiller, E.A. [Automatic Systems Corporation, Samara (Russian Federation); Pierini, P. [INFN, Milano (Italy)

    1995-12-31

    The TTF VUV FEL, which is in its design stage at DESY, consists of a 30 m long SASE FEL which will radiate around 6 nm, driven by a superconducting linac with final energy of 1 GeV. One of the important issues in its design is the undulator performance, which is studied in this paper. The present setup, including FODO lattice, is discussed in this paper. Results of simulations, including the realistic wiggler field errors and beam stearing, are presented. Dependence of the performance, in particular the gain and saturation length as well as the saturation peak power, on the wiggler field errors is discussed.

  19. The linear lattice design of an advanced VUV/SXR photon source for Daresbury

    International Nuclear Information System (INIS)

    Clarke, J.A.; Corlett, J.N.; Poole, M.W.; Smith, S.L.; Suller, V.P.; Welbourne, L.A.

    1992-01-01

    The linear lattice design of an advanced synchrotron radiation source in the VUV/SXR region, optimised to produce undulator radiation with high brilliance over the range 5-1000 eV, is discussed. The photon source is based on a 10 cell double bend achromat which will operate over the range 0.5-1.2 GeV. The linear lattice properties over the total available working region are presented for this structure. It is demonstrated that the circular lattice can be extended to a racetrack configuration by the inclusion of two long matched straights with free lengths of over 15 m each. (author) 8 refs.; 5 figs.; 1 tab

  20. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  1. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    Science.gov (United States)

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  2. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: moussavi@modares.ac.ir; Shekoohiyan, Sakine

    2016-11-15

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N{sub 2} was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N{sub 2} selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  3. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    International Nuclear Information System (INIS)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-01-01

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N_2 was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N_2 selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  4. Behaviour of large-area avalanche photodiodes under intense magnetic fields for VUV- visible- and X-ray photon detection

    International Nuclear Information System (INIS)

    Fernandes, L.M.P.; Antognini, A.; Boucher, M.; Conde, C.A.N.; Huot, O.; Knowles, P.; Kottmann, F.; Ludhova, L.; Mulhauser, F.; Pohl, R.; Schaller, L.A.; Santos, J.M.F. dos; Taqqu, D.; Veloso, J.F.C.A.

    2003-01-01

    The behaviour of large-area avalanche photodiodes for X-rays, visible and vacuum-ultra-violet (VUV) light detection in magnetic fields up to 5 T is described. For X-rays and visible light detection, the photodiode pulse amplitude and energy resolution were unaffected from 0 to 5 T, demonstrating the insensitivity of this type of detector to strong magnetic fields. For VUV light detection, however, the photodiode relative pulse amplitude decreases with increasing magnetic field intensity reaching a reduction of about 24% at 5 T, and the energy resolution degrades noticeably with increasing magnetic field

  5. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. [Argonne National Lab., IL (United States)

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  6. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  7. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  8. Calibration of the x-ray ring quadrupoles, BPMs, and orbit correctors using the measured orbit response matrix

    International Nuclear Information System (INIS)

    Safranek, J.; Lee, M.

    1994-02-01

    The quadrupole strengths, beam position monitor (BPM) gains, and orbit correction magnet strengths were adjusted in a computer model of the NSLS X-Ray ring in order to best fit the model orbit response matrix to the measured matrix. The model matrix was fit tot the 4320 data points in the measured matrix with an rms difference of only 2 to 3 microns, which is due primarily to noise in the BPM measurements. The strengths of the 56 individual quadrupoles in the X-Ray ring were determined to an accuracy of about 0.2%. The BPM and orbit corrector calibrations were also accurately determined. A through analysis of both random and systematic errors is included

  9. Effects of photoirradiation in UV and VUV regions during plasma exposure to polymers

    International Nuclear Information System (INIS)

    Cho, Ken; Setsuhara, Yuichi; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Interactions between photons irradiated from Ar-O 2 mixture plasmas and polymer surfaces were investigated on the basis of depth analyses of chemical bonding states in the nano-surface layer of polyethylene terephthalate (PET) films via hard X-ray photoelectron spectroscopy (HXPES) and conventional X-ray photoelectron spectroscopy (XPS). The PET films were exposed to photons from the Ar-O 2 mixture plasmas by covering the PET samples with MgF 2 and quartz windows as optical filters for evaluation of photoirradiation effects in ultraviolet (UV) and vacuum ultraviolet (VUV) regions. The HXPES results indicated that the degradation of the chemical bonding states due to photoirradiation in regions was insignificant in deeper regions up to about 50 nm from the surface. Whereas, conventional XPS analysis showed that C-O bond, O=C-O bond and C=O bond increased after photoirradiation in UV and VUV regions. These results suggest that the increase in oxygen functionalities (C-O bond, O=C-O bond and C=O bond) may be attributed to chemical reactions and/or terminations of scissed bonds via photodecompositions of the polymer with oxygen and/or OH species (oxygen molecules and radicals during plasma exposure and/or oxygen molecules and moisture after taking the PET samples out of the plasma reactor to the ambient air) in the vicinity of the sample surface.

  10. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    International Nuclear Information System (INIS)

    Bellili, A.; Hochlaf, M.; Schwell, M.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.

    2014-01-01

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed

  11. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  12. Production and detection of axion-like particles at the VUV-FEL. Letter of intent

    International Nuclear Information System (INIS)

    Koetz, U.; Ringwald, A.; Tschentscher, T.

    2006-06-01

    Recently, the PVLAS collaboration has reported evidence for an anomalously large rotation of the polarization of light generated in vacuum in the presence of a transverse magnetic field. This may be explained through the production of a new light spin-zero particle coupled to two photons. In this Letter of Intent, we propose to test this hypothesis by setting up a photon regeneration experiment which exploits the photon beam of the Vacuum-UltraViolet Free-Electron Laser VUV-FEL, sent along the transverse magnetic field of a linear arrangement of dipole magnets of size B L ∼ 30 Tm. The high photon energies available at the VUV-FEL increase substantially the expected photon regeneration rate in the mass range implied by the PVLAS anomaly, in comparison to the rate expected at visible lasers of similar power. We find that the particle interpretation of the PVLAS result can be tested within a short running period. The pseudoscalar vs. scalar nature can be determined by varying the direction of the magnetic field with respect to the laser polarization. The mass of the particle can be measured by running at different photon energies. The proposed experiment offers a window of opportunity for a firm establishment or exclusion of the particle interpretation of the PVLAS anomaly before other experiments can compete. (Orig.)

  13. Photofragmentation spectra of halogenated methanes in the VUV photon energy range

    Energy Technology Data Exchange (ETDEWEB)

    Cartoni, Antonella, E-mail: antonella.cartoni@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, Roma 00185 (Italy); Bolognesi, Paola; Fainelli, Ettore; Avaldi, Lorenzo [CNR-IMIP, Area della Ricerca di Roma 1, Monterotondo Scalo (Rm) 00015 (Italy)

    2014-05-14

    In this paper an investigation of the photofragmentation of dihalomethanes CH{sub 2}X{sub 2} (X = F, Cl, Br, I) and chlorinated methanes (CH{sub n}Cl{sub 4−n} with n = 0–3) with VUV helium, neon, and argon discharge lamps is reported and the role played by the different halogen atoms is discussed. Halogenated methanes are a class of molecules used in several fields of chemistry and the study of their physical and chemical proprieties is of fundamental interest. In particular their photodissociation and photoionization are of great importance since the decomposition of these compounds in the atmosphere strongly affects the environment. The results of the present work show that the halogen-loss is the predominant fragmentation channel for these molecules in the VUV photon energy range and confirm their role as reservoir of chlorine, bromine, and iodine atoms in the atmosphere. Moreover, the results highlight the peculiar feature of CH{sub 2}F{sub 2} as a source of both fluorine and hydrogen atoms and the characteristic formation of I{sub 2}{sup +} and CH{sub 2}{sup +} ions from the photofragmentation of the CH{sub 2}I{sub 2} molecule.

  14. Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy

    International Nuclear Information System (INIS)

    Guan, Jiwen; Hu, Yongjun; Xie, Min; Bernstein, Elliot R.

    2012-01-01

    Highlights: ► The carbonyl overtone of acetone clusters is observed by IR-VUV spectroscopy. ► Acetone molecules in the dimer are stacked with an antiparallel way. ► The structure of the acetone trimer and the tetramer are the cyclic structures. ► The carbonyl groups would interact with the methyl groups in acetone clusters. ► These weak interactions are further confirmed by H/D substitution experiment. -- Abstract: Size-selected IR–VUV spectroscopy is employed to detect vibrational characteristics in the region 2850 ∼ 3550 cm −1 of neutral acetone and its clusters (CH 3 COCH 3 ) n (n = 1–4). Features around 3440 cm −1 in the spectra of acetone monomer and its clusters are assigned to the carbonyl stretch (CO) overtone. These features red-shift from 3455 to 3433 cm −1 as the size of the clusters increases from the monomer to the tetramer. Based on calculations, the experimental IR spectra in the C=O overtone region suggest that the dominant structures for the acetone trimer and tetramer should be cyclic in the supersonic expansion sample. This study also suggests that the carbonyl groups interact with the methyl groups in the acetone clusters. These weak interactions are further confirmed by the use of deuterium substitution.

  15. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bellili, A.; Hochlaf, M., E-mail: hochlaf@univ-mlv.fr, E-mail: martin.schwell@lisa.u-pec.fr [Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 bd Descartes, 77454 Marne-la-Vallée (France); Schwell, M., E-mail: hochlaf@univ-mlv.fr, E-mail: martin.schwell@lisa.u-pec.fr; Bénilan, Y.; Fray, N.; Gazeau, M.-C. [Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS, Institut Pierre et Simon Laplace, Universités Paris-Est Créteil et Paris Diderot, 61 Avenue du Général de Gaulle, 94010 Créteil (France); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Guillemin, J.-C. [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Poisson, L. [Laboratoire Francis Perrin, CNRS URA 2453, CEA, IRAMIS, Laboratoire Interactions Dynamique et Lasers, Bât 522, F-91191 Gif/Yvette (France)

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  16. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  17. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    Science.gov (United States)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparison of different undulator schemes with superimposed alternating gradients for the VUV-FEL at the TESLA Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Pflueger, J.; Nikitina, Y.M. [DESY/HASYLAB, Hamburg (Germany)

    1995-12-31

    For the VUV-FEL at the TESLA Test Facility an undulator with a total length of 30 m is needed. In this study three different approaches to realize an undulator with a sinusoidal plus a superimposed quadrupolar field were studied with the 3D code MAFIA.

  19. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    International Nuclear Information System (INIS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O_3 catalytic oxidation. • O_3 byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O_3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O_3 catalytic decomposition and utilization. Benzene and O_3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O_3 was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  20. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  1. VUV Pump and Probe of Phase Separation and Oxygen Interstitials in La2NiO4+y Using Spectromicroscopy

    Directory of Open Access Journals (Sweden)

    Antonio Bianconi

    2018-02-01

    Full Text Available While it is known that strongly correlated transition metal oxides described by a multi-band Hubbard model show microscopic multiscale phase separation, little is known about the possibility to manipulate them with vacuum ultraviolet (VUV, 27 eV lighting. We have investigated the photo-induced effects of VUV light illumination of a super-oxygenated La2NiO4+y single crystal by means of scanning photoelectron microscopy. VUV light exposure induces the increase of the density of states (DOS in the binding energy range around Eb = 1.4 eV below EF. The photo-induced states in this energy region have been predicted due to clustering of oxygen interstitials by band structure calculations for large supercell of La2CuO4.125. We finally show that it is possible to generate and manipulate oxygen rich domains by VUV illumination as it was reported for X-ray illumination of La2CuO4+y. This phenomenology is assigned to oxygen-interstitials ordering and clustering by photo-illumination forming segregated domains in the La2NiO4+y surface.

  2. Photocatalytic oxidation of indoor toluene: Process risk analysis and influence of relative humidity, photocatalysts, and VUV irradiation

    International Nuclear Information System (INIS)

    Zhao, Weirong; Dai, Jiusong; Liu, Feifei; Bao, Jiaze; Wang, Yan; Yang, Yong; Yang, Yanan; Zhao, Dongye

    2012-01-01

    Concentrations of 13 gaseous intermediates in photocatalytic oxidation (PCO) of toluene in indoor air were determined in real-time by proton transfer reaction mass spectrometry and desorption intensities of 7 adsorbed intermediates on the surface of photocatalysts were detected by temperature‐programmed desorption‐mass spectrometry. Effects of relative humidity (RH), photocatalysts, and vacuum ultraviolet (VUV) irradiation on the distribution and category of the intermediates and health risk influence index (η) were investigated. RH enhances the formation rate of hydroxide radicals, leading to more intermediates with higher oxidation states in gas phase. N doping promotes the separation of photo-generated electrons and holes and enhances PCO activity accordingly. VUV irradiation results in higher mineralization rate and more intermediates with higher oxidation states and lower toxicity e.g. carboxylic acids. Health risk analysis indicates that higher RH, N doping of TiO 2 , and VUV lead to “greener” intermediates and smaller η. Finally, a conceptual diagram was proposed to exhibit the scenario of η varied with extent of mineralization for various toxicities of inlet pollutants. Highlights: ► 13 volatile intermediates in PCO of toluene were determined in real-time by PTR-MS. ► 7 adsorbed intermediates on surface of photocatalyst were determined by TPD-MS. ► Higher RH, N doping of TiO 2 , and VUV irradiation lead to “greener” intermediates. ► Health risk index relies on extent of mineralization and toxicities of inlet VOCs.

  3. Flux and brightness calculations for various synchrotron radiation sources

    International Nuclear Information System (INIS)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring

  4. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  5. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  6. Intensity calibrations of the broadband VUV impurity survey spectrometer - KT2

    International Nuclear Information System (INIS)

    Hawkes, N.; Peacock, N.; Lawson, K.

    1991-08-01

    Since first becoming operational in 1984 the survey spectrometer, KT2, has undergone slight modifications on the Joint European Torus Joint Undertaking (JET), and following a failure at one point the original spectrometer-'A', was exchanged for an almost identical instrument-'B'. Periodically, calibrations have been performed on the diagnostic using the diverse techniques of charge exchange branching ratios, deuterium lamp transfer irradiance standard, branching ratios from visible transitions, VUV transfer radiance standard and model calculations of line intensities in low Z ions from JET. Comparisons have been made with the theoretical instrument performance and with the prototype instruments of similar construction. This report summarises these various calibrations, carried out by the Culham Task Agreement team, until the end of 1990 when the responsability for the operation of the diagnostic was handed over to JET staff. (author)

  7. Interaction ligand – proteine : la sensation d’astringence sous les rayons VUV de DESIRS

    OpenAIRE

    Canon, Francis

    2013-01-01

    L’astringence est la sensation d’assèchement et de rugosité à l’intérieur de la bouche qui accompagne la consommation de produits d’origine végétale, tels que le vin ou le thé, ou certains fruits peu mûrs. Les tanins, métabolites secondaires des végétaux, sont à l’origine de cette sensation, qui reste encore mal caractérisée. Une nouvelle approche utilisant la spectrométrie de masse couplée au rayonnement VUV, développée sur les lignes DESIRS et DISCO, a permis de mieux comprendre les mécanis...

  8. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  9. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    Science.gov (United States)

    Arneodo, F.; Benabderrahmane, M. L.; Bruno, G.; Conicella, V.; Di Giovanni, A.; Fawwaz, O.; Messina, M.; Candela, A.; Franchi, G.

    2018-06-01

    We present the performances and characterization of an array made of S13370-3050CN (VUV4 generation) Multi-Pixel Photon Counters manufactured by Hamamatsu and equipped with a low power consumption preamplifier operating at liquid xenon temperature (∼ 175 K). The electronics is designed for the readout of a matrix of maximum dimension of 8 × 8 individual photosensors and it is based on a single operational amplifier. The detector prototype presented in this paper utilizes the Analog Devices AD8011 current feedback operational amplifier, but other models can be used depending on the application. A biasing correction circuit has been implemented for the gain equalization of photosensors operating at different voltages. The results show single photon detection capability making this device a promising choice for future generation of large scale dark matter detectors based on liquid xenon, such as DARWIN.

  10. 172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films

    International Nuclear Information System (INIS)

    Elsner, Christian; Naumov, Sergej; Zajadacz, Joachim; Buchmeiser, Michael R.

    2009-01-01

    Emission from Xe 2 * excimers exhibiting photon energies between 7 and 10 eV can be used to induce strong surface modification effects on polymeric materials in the top 100 nm layer. In order to identify suitable monomers for this VUV-based process, the photodegradation mechanism of different organosilanes of the general structure R-CH 2 -Si(OCH 3 ) 3 was elucidated by quantum chemical calculations. Herein, the photodegradation of 3-aminopropyltrimethoxysilane films by the use of a 172 nm excimer lamp under different irradiation conditions is described and completed by micropatterning experiments. The presence of 1000-5000 ppm oxygen was found to promote the transformation process to an inorganic-like surface. The films obtained were analyzed by X-ray photoelectron spectroscopy, contact angle measurements and fluorescence microscopy after covalent attachment of a fluorescent dye to the remaining amino groups. Complementary, silver staining was used to visualize photopatterning.

  11. VUV spectroscopy of pure LiCaAlF6 crystals

    International Nuclear Information System (INIS)

    Kirm, M.; True, M.; Vielhauer, S.; Zimmerer, G.; Shiran, N.V.; Shpinkov, I.; Spassky, D.; Shimamura, K.; Ichinose, N.

    2005-01-01

    Reflection, excitation and luminescence spectra of as-grown and X-ray irradiated high-purity LiCaAlF 6 crystals were studied in the temperature range of 10-300 K using synchrotron radiation in VUV. The intrinsic luminescence of samples at 10 K consists of a non-elementary broad band with maximum at 4.4 eV under excitation at 11.45 eV. It is ascribed to the radiative decay of self-trapped excitons. The energy gap is estimated to be 12.65 eV in LiCaAlF 6 . Under interband excitation a red shift of luminescence was observed. The electron-hole recombination leads to the emission peaking at 3.7 eV. The excitation processes and origin of overlapping emissions of LiCaAlF 6 are discussed

  12. The nuclear isomer transition in Thorium-229. Search for the VUV photon

    Energy Technology Data Exchange (ETDEWEB)

    Stellmer, Simon [TU Wien (Austria). Atominstitut; VCQ, Vienna (Austria); Schreitl, Matthias; Schumm, Thorsten [TU Wien (Austria). Atominstitut; Yoshimura, Koji [Okayama University (Japan)

    2015-07-01

    The isotope {sup 229}Th is believed to possess a low-lying nuclear excitation, at an energy of about 7.8(5) eV, corresponding to a wavelength of 160(10) nm. Convincing direct evidence of the existence of this state, for instance by observation of its excitation or decay, is still pending. Optical excitation of the isomer state is an exceptional challenge, as the required wavelength is not known, the transition is believed to be extremely narrow, and the choice of suitable lasers is limited. Instead, we use synchrotron radiation at 29 keV to populate the second excited state, which then decays into the desired isomer state. This state proceeds further into the ground state under emission of the much sought-after VUV photon. This photon is detected in a spectrometer. The measurements are performed at the SPring-8 facility in Japan; we will report on the latest status of the experiment.

  13. Design and project status of the National Synchrotron Light Source; storage rings (2.5 GeV, 0.7 GeV) for the generation of bright synchrotron radiation sources

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1980-01-01

    Two high intensity storage rings are being constructed at Brookhaven National Laboratory for the generation of intense fluxes of synchrotron radiation in the vuv wavelength region (700 MeV ring, lambda/sub c/ = 31.5 A) and in the x-ray wavelength region (2.5 GeV ring, lambda/sub c/ = 2.5 A). A description is given of the facility, the main features of the storage rings are presented and the basic parameters are enumerated. High field superconducting wigglers, to lower the short wavelength cutoff in the x-ray ring, and undulators, for flux enhancement or a free electron laser experiment will be incorporated and parameters are given here. Special design aspects to optimize the electron storage rings as dedicated synchrotron radiation sources will be emphasized and the status of the project will be given

  14. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes

    Science.gov (United States)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712

  15. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes.

    Science.gov (United States)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  16. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    International Nuclear Information System (INIS)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  17. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan [Université de Toulouse, UPS-OMP, Institut de Recherche en Astrophysique et Planétologie, Toulouse (France); Giuliani, Alexandre; Nahon, Laurent [Synchrotron SOLEIL, LOrme des Merisiers, F-91192 Gif sur Yvette Cedex (France); Martin, Serge [Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne cedex (France); Champeaux, Jean-Philippe [Laboratoire Collisions Agrégats Réactivité, Université de Toulouse, UPS-IRSAMC, CNRS, 118 Route de Narbonne, Bat 3R1B4, F-31062 Toulouse Cedex 9 (France); Mayer, Paul M., E-mail: christine.joblin@irap.omp.eu [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5 (Canada)

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  18. VUV treatment combined with mechanical strain of stretchable polymer foils resulting in cell alignment

    Energy Technology Data Exchange (ETDEWEB)

    Barb, R.-A. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Magnus, B. [Innovacell Biotechnologie AG, Innsbruck (Austria); Innerbichler, S. [Innerbichler GmbH, Breitenbach am Inn (Austria); Greunz, T. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Wiesbauer, M. [Institute of Applied Physics, Johannes Kepler University Linz (Austria); Marksteiner, R. [Innovacell Biotechnologie AG, Innsbruck (Austria); Stifter, D. [CDL-MS-MACH, Johannes Kepler University Linz (Austria); Heitz, J., E-mail: johannes.heitz@jku.at [Institute of Applied Physics, Johannes Kepler University Linz (Austria)

    2015-01-15

    Highlights: • Elastic polyurethane (PU) foils were exposed to the vacuum-UV in reactive atmosphere. • The photomodification resulted in improved cytocompatibilty. • Parallel microgrooves formed on the irradiated PU surfaces after strong elongation. • Cells seeded onto microgrooves aligned their shapes in the direction of the grooves. • Elongation occurred also for cells on PU subjected to cyclic mechanical stretching. - Abstract: Cell-alignment along a defined direction can have a direct effect on the cell functionality and differentiation. Oriented micro- or nanotopographic structures on cell culture substrates can induce cell-alignment. Surface chemistry, wettability, and stiffness of the substrate are also important material features as they strongly influence the cell–substrate interactions. For improved bio-compatibility, highly elastic polyurethane (PU) foils were exposed to the vacuum-UV (VUV) light of a Xe{sub 2}{sup *} excimer lamp at 172 nm in a nitrogen containing atmosphere (N{sub 2} or NH{sub 3}). The irradiation resulted in a change in the chemical surface composition. Additionally, the formation of regular parallel microgrooves was observed on the irradiated surfaces after strong uni-axial deformation (i.e., more than about 50% strain) of the photo-modified PU foils. Cell seeding experiments demonstrated that the VUV modified polymer foils strongly enhance cell adhesion and proliferation. Cells seeded onto microgrooves aligned their shapes and elongated in the direction of the grooves. A similar effect was observed for cells seeded on photo-modified PU foils subjected to cyclic mechanical stretching at lower strain levels (i.e., typically 10% strain) without groove-formation. The cells had also here an elongated shape, however they not always align in a defined direction relative to the stretching.

  19. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses

    International Nuclear Information System (INIS)

    Gaudin, J.

    2005-11-01

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  20. Performance of a Rapid-Scan Vacuum Michelson Interferometer at the NSLS

    International Nuclear Information System (INIS)

    Brierly, P.; Dumas, P.; Smith, M.; Williams, G.P.

    2001-01-01

    A commercial Nicolet Magna series rapid-scan Michelson Fourier Transform Infrared (FTIR) was installed in a vacuum housing and integrated into the U4IR beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. The frequency reference laser was mounted outside vacuum, but the moving mirror mechanism and the dynamic alignment system for the fixed mirror were in vacuum. The performance of the instrument was measured in the usual way by measuring the repeatability of data collected under specific conditions of aperture, resolution and mirror scanning velocity. We briefly discuss the beamline design, to put the interferometer in context, then present signal to noise data which we discuss in terms of both instrument performance and also storage ring stability. Under optimal conditions, the instrument has a reproducibility of 0.01% in 1 minute of measuring time at a resolution of 2 cmss, -1 , over a range from 100-3000 cm -1

  1. Use of eigenvectors in understanding and correcting storage ring orbits

    International Nuclear Information System (INIS)

    Friedman, A.; Bozoki, E.

    1994-01-01

    The response matrix A is defined by the equation X=AΘ, where Θ is the kick vector and X is the resulting orbit vector. Since A is not necessarily a symmetric or even a square matrix we symmetrize it by using A T A. Then we find the eigenvalues and eigenvectors of this A T A matrix. The physical interpretation of the eigenvectors for circular machines is discussed. The task of the orbit correction is to find the kick vector Θ for a given measured orbit vector X. We are presenting a method, in which the kick vector is expressed as linear combination of the eigenvectors. An additional advantage of this method is that it yields the smallest possible kick vector to correct the orbit. We will illustrate the application of the method to the NSLS X-ray and UV storage rings and the resulting measurements. It will be evident, that the accuracy of this method allows the combination of the global orbit correction and local optimization of the orbit for beam lines and insertion devices. The eigenvector decomposition can also be used for optimizing kick vectors, taking advantage of the fact that eigenvectors with corresponding small eigenvalue generate negligible orbit changes. Thus, one can reduce a kick vector calculated by any other correction method and still stay within the tolerance for orbit correction. The use of eigenvectors in accurately measuring the response matrix and the use of the eigenvalue decomposition orbit correction algorithm in digital feedback is discussed. (orig.)

  2. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  3. Birth Control Ring

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's ...

  4. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  5. A high-energy double-crystal fixed exit monochromator for the X17 superconducting wiggler beam line at the NSLS

    International Nuclear Information System (INIS)

    Garrett, R.F.; Dilmanian, F.A.; Oversluizen, T.; Lenhard, A.; Berman, L.E.; Chapman, L.D.; Stoeber, W.

    1992-01-01

    A high-energy double-crystal x-ray monochromator has been constructed for use on the X-17 beam line at the National Synchrotron Light Source (NSLS). Its design is based on the ''boomerang'' right angle linkage, and features a fixed exit beam, a cooled first crystal, and an energy range of 8--92 keV. The entire mechanism is UHV compatible. The design is described and performance details, obtained in testing at the X17 beam line, are presented

  6. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    Science.gov (United States)

    Gao, Hong

    The tunable vacuum ultraviolet (VUV) laser generated through the two-photon resonance-enhanced four-wave mixing scheme is combined with the newly developed time-slice velocity map imaging photoion method to study the photodissociation of small molecules in the VUV region, and with the velocity map imaging photoelectron method to study the photoionization of free radicals. The photodissociation dynamics of NO in the energy region around 13.5 eV has been investigated. Branching ratios of the three lowest dissociation channels of 12C 16O that produce C(3P) + O(3P), C( 1D) + O(3P) and C(3P) + O(1D) are measured for the first time in the VUV region from 102,500 cm-1 to 110,500 cm-1, valuable information of the dissociation dynamics for this prototype system has been deduced. We demonstrated an experiment that has two independently tunable VUV lasers and a time-slice velocity map imaging setup, this provides us a global way to perform systematic state-selected photodissociation of small molecules via state-selected detection of the atomic products in the VUV region. The velocity map imaging photoelectron method was successfully used to obtain the photoelectron spectrum of the propargyl radical (C3H3) via a single VUV photoionization process. The propargyl radical is generated by the 193 nm laser photodissociation of the precursor C3H3Cl. This is the first time that the velocity map imaging photoelectron method is used to get the photoelectron spectra of free radicals, indicating that it is a powerful technique for studying the photoionization of free radicals which are always hard to be produced with high enough number densities for spectroscopic studies. This dissertation is mainly based on the following peer-reviewed journal articles: 1. Hong Gao, Yang Pan, Lei Yang, Jingang Zhou, C. Y. Ng and William M. Jackson. "Time-slice velocity-map ion imaging studies of the Photodissociation of NO in the vacuum ultraviolet region", the Journal of Chemical Physics, 136, 134302

  7. User oriented end-station on VUV pump-probe magneto-optical ellipsometry at ELI beamlines

    Science.gov (United States)

    Espinoza, Shirly; Neuber, Gerd; Brooks, Christopher D.; Besner, Bastian; Hashemi, Maryam; Rübhausen, Michael; Andreasson, Jakob

    2017-11-01

    A state of the art ellipsometer for user operations is being implemented at ELI Beamlines in Prague, Czech Republic. It combines three of the most promising and exotic forms of ellipsometry: VUV, pump-probe and magneto-optical ellipsometry. This new ellipsometer covers a spectral operational range from the NIR up to the VUV, with high through-put between 1 and 40 eV. The ellipsometer also allows measurements of magneto-optical spectra with a 1 kHz switchable magnetic field of up to 1.5 T across the sample combining ellipsometry and Kerr spectroscopy measurements in an unprecedented spectral range. This form of generalized ellipsometry enables users to address diagonal and off-diagonal components of the dielectric tensor within one measurement. Pump-probe measurements enable users to study the dynamic behaviour of the dielectric tensor in order to resolve the time-domain phenomena in the femto to 100 ns range.

  8. Demonstration of resonant photopumping of Mo VII by Mo XII for a VUV laser near 600 Angstrom

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Aumayr, F.; Schwob, J.L.; Suckewer, S.

    1993-09-01

    We present data of experiments on the resonant photopumping of Mo VII by Mo XII as a method of generating a coherent VUV source near 600 angstrom. The experiment is based on a scheme proposed by Feldman and Reader in which the 4p 6 -- 4p 5 6s transition in Mo VII in resonantly photopumped by the 5s 2 S 1/2 -- 4p 2 P 1/2 transition in Mo XII. Results of the laser produced plasma experiments show the successful enhancement of the population of the Mo VII 4p 5 6s upper lasing level when pumped by an adjacent Mo VII plasma. No enhancement was seen in a control experiment where the Mo VII plasma was pumped by a Zr X plasma. Improvements of the intensity of the Mo XII pump source, achieved using an additional pump laser, lead to the generation of a population inversion for the VUV transition

  9. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  10. UV and VUV characteristics of (YGd)2O3:Eu phosphor particles prepared by spray pyrolysis from polymeric precursors

    International Nuclear Information System (INIS)

    Kim, E.J.; Kang, Y.C.; Park, H.D.; Ryu, S.K.

    2003-01-01

    Red-emitting (YGd) 2 O 3 :Eu phosphor particles, with high luminescence efficiency under vacuum ultraviolet (VUV) and ultraviolet (UV) excitation, were prepared by a large-scale spray pyrolysis process. To control the morphology of phosphor particles under severe preparation conditions, spray solution with polymeric precursors were introduced in spray pyrolysis. The prepared (YGd) 2 O 3 :Eu phosphor particles had spherical shape and filled morphology even after post-treatment irrespective of Gd/Y ratio. In the case of solution with polymeric precursors, long polymeric chains formed by esterification reaction in a hot tubular reactor; the droplets turned into viscous gel, which retarded the precipitation of nitrate salts and promoted the volume precipitation of droplets. The brightness of (YGd) 2 O 3 :Eu phosphor particles increased with increasing gadolinium content, and the Gd 2 O 3 :Eu phosphor had the highest luminescence intensity under UV and VUV excitation. The maximum peak intensity of Gd 2 O 3 :Eu phosphor particles under UV and VUV were 118 and 110% of the commercial Y 2 O 3 :Eu phosphor particles, respectively

  11. EUV-VUV photochemistry in the upper atmospheres of Titan and the early Earth

    Science.gov (United States)

    Imanaka, H.; Smith, M. A.

    2010-12-01

    Titan, the organic-rich moon of Saturn, possesses a thick atmosphere of nitrogen, globally covered with organic haze layers. The recent Cassini’s INMS and CAPS observations clearly demonstrate the importance of complex organic chemistry in the ionosphere. EUV photon radiation is the major driving energy source there. Our previous laboratory study of the EUV-VUV photolysis of N2/CH4 gas mixtures demonstrates a unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons in Titan’s upper atmosphere (Imanaka and Smith, 2007, 2009). Such EUV photochemistry could also have played important roles in the formation of complex organic molecules in the ionosphere of the early Earth. It has been suggested that the early Earth atmosphere may have contained significant amount of reduced species (CH4, H2, and CO) (Kasting, 1990, Pavlov et al., 2001, Tian et al., 2005). Recent experimental study, using photon radiation at wavelengths longer than 110 nm, demonstrates that photochemical organic haze could have been generated from N2/CO2 atmospheres with trace amounts of CH4 or H2 (Trainer et al., 2006, Dewitt et al., 2009). However, possible EUV photochemical processes in the ionosphere are not well understood. We have investigated the effect of CO2 in the possible EUV photochemical processes in simulated reduced early Earth atmospheres. The EUV-VUV photochemistry using wavelength-tunable synchrotron light between 50 - 150 nm was investigated for gas mixtures of 13CO2/CH4 (= 96.7/3.3) and N2/13CO2/CH4 (= 90/6.7/3.3). The onsets of unsaturated hydrocarbon formation were observed at wavelengths shorter than the ionization potentials of CO2 and N2, respectively. This correlation indicates that CO2 can play a similar catalytic role to N2 in the formation of heavy organic species, which implies that EUV photochemistry might have significant impact on the photochemical generation of organic haze layers in the upper atmosphere of the early Earth.

  12. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy: Annual progress report

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1986-01-01

    Although only in operation since May, 1985, the X-11 participation research team (PRT) at the NSLS has already demonstrated that it is one of the leading centers of x-ray absorption spectroscopy (XAS). During this time, results have been obtained and programs initiated in a number of areas, for example: interfaces, including deposited metal-metal and metal-semiconductor systems, multilayers and ion implanted layers; electrochemical systems, including Pt electrode fuel cells, Ni oxide battery electrodes, conducting polymers, passivation and corrosion; catalysts, including highly-dispersed supported metal catalysts and zeolite systems; quasi-crystals, heavy fermion systems, uranium and neptunium compounds, rare gas clusters, disordered metals and semiconductors, ferroelectric transition; and, biological systems and related models, including synthetic porphyrins and a number of metalloproteins. In concert with these scientific results have been a number of developments involving the technique itself. These include implementation of unique optical systems on both the A and B lines for optical performance over their designed energy ranges, advances in experimental capability, particular in glancing angle studies, optimization of ion chambers for surface studies, the improvement of electron yield detectors, and improved software for data acquisition and analysis. This report emphasizes some of the research highlights and significant developments of our PRT which occurred during the past year. A detailed bibliography of papers and talks resulting from work done at our beamline and the progress reports for our PRT which were in the 1985 NSLS Annual Report are appended

  13. Laser-plasma sourced, temperature dependent, VUV spectrophotometer using dispersive analysis

    International Nuclear Information System (INIS)

    French, R.H.

    1990-01-01

    We have developed a vacuum ultraviolet spectrophotometer with wide energy and temperature range coverage, utilizing a laser-plasma light source (LPLS), CO 2 -laser sample heating and time-resolved dispersive analysis. Reflection and transmission spectra can be taken from 1.7 to 40 eV (31-700 nm) on samples at 15-1800 K with a time resolution of 20-400 ns. These capabilities permit the study of the temperature dependence of the electronic structure, encompassing the effects of thermal lattice expansion and electron-phonon interaction, and changes in the electronic structure associated with equilibrium and metastable phase transitions and stress relaxation. The LPLS utilizes a samarium laser-plasma created by a Q-switched Nd:YAG laser (500 mJ/pulse) to produce high brightness, stable, continuum radiation. The spectrophotometer is of a single beam design using calibrated iridium reference mirrors. White light is imaged off the sample in to the entrance slit of a 1-m polychromator. The resolution is 0.1 to 0.3 nm. The dispersed light is incident on a focal plane phosphor, fiber-optic-coupled to an image-intensified reticon detector. For spectroscopy between 300 and 1800 K, the samples are heated in situ with a 150 Watt CO 2 laser. The signal to noise ratio in the VUV, for samples at 1800 K, is excellent. From 300 K to 15 K samples are cooled using a He cryostat. (orig.)

  14. Evaluation of 1024 channel VUV-photo-diodes for soft x-ray diagnostic applications

    International Nuclear Information System (INIS)

    Molvik, A.W.

    1997-01-01

    We tested the operation of 1024 channel diode arrays (Model AXUV-1024, from IRD, Inc.) in subdued room light to establish that they worked and to determine the direction and speed of the scan of the 1024 channels. Further tests were performed in vacuum in the HAP, High-Average-Power Facility. There we found that the bare or glass covered diodes detected primarily visible light as expected, but diodes filtered by aluminized parylene, produced a signal consistent with soft x-rays. It is probable that the spectral response and sensitivity, as discussed below, reproduce that previously demonstrated by 1 to 16 channel VUV-photodiodes; however, significantly more effort would be required to establish that experimentally. These detectors appear to be worth further evaluation where 25 w spatial resolution bolometers or spectrograph detectors of known sensitivity are required, and single-shot or 0.02-0.2s time response is adequate. (Presumably, faster readout would be available with custom drive circuitry.)

  15. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    International Nuclear Information System (INIS)

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-01-01

    In this work we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations

  16. VUV-sensitive silicon-photomultipliers for the nEXO-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, Gerrit; Bayerlein, Reimund; Hufschmidt, Patrick; Jamil, Ako; Schneider, Judith; Wagenpfeil, Michael; Ziegler, Tobias; Hoessl, Juergen; Anton, Gisela; Michel, Thilo [ECAP, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany)

    2016-07-01

    The nEXO (next Enriched Xenon Observatory) experiment will search for the neutrinoless double beta decay of Xe-136 with a liquid xenon TPC (Time ProjectionChamber). The sensitivity of the experiment is related to the energy resolution, which itself depends on the accuracies of the measurements of the amount of drifting electrons and the number of scintillation photons with their wavelength being in the vacuum ultraviolet band. Silicon Photomultipliers (SiPM) shall be used for the detection of the scintillation light, since they can be produced extremely radiopure. Commercially available SiPM do not fulfill all requirements of the nEXO experiment, thus a dedicated development is necessary. To characterize the silicon photomultipliers, we have built a test apparatus for xenon liquefaction, in which a VUV-sensitive photomultiplier tube can be operated together with the SiPM. In this contribution we present our apparatus for the SiPM characterization measurements and our latest results on the test of the silicon photomultipliers for the detection of xenon scintillation light.

  17. Interaction of VUV-photons with molecules. Spectroscopy and dynamics of molecular superexcited states

    International Nuclear Information System (INIS)

    Hatano, Y.

    2002-01-01

    Complete text of publication follows. A survey is given of recent progress in experimental studies of the interaction of VUV-photons with molecules, i.e., those of photoabsorption, photoionization, and photodissociation of molecules in the excitation photon energy range of 10-50 eV, with a particular emphasis placed on current understanding of the spectroscopy and dynamics of formed molecular superexcited states. These studies are of great importance in understanding the interaction of ionizing radiation with matter. Molecules studied are ranged from simple diatomic and triatomic molecules to polyatomic molecules such as hydrocarbons. Most of the observed molecular superexcited states are assigned to high Rydber states which are vibrationally, doubly, or inner-core excited and converge to each of ion states. Non-Rydberg superexcited states are also observed. Dissociation into neutral fragments in comparison with ionization is of unexpectedly great importance in the observed decay of each of these state-assigned superexcited molecules. Dissociation dynamics as well as its products of superexcited states are remarkably different from those of lower excited states below about ionization thresholds. Some remarks are also presented of molecules in the condensed phase

  18. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX

    International Nuclear Information System (INIS)

    Tritz, Kevin; Finkenthal, Michael; Stutman, Dan; Bell, Ronald E; Boyle, Dennis; Kaita, Robert; Kozub, Tom; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John; Beiersdorfer, Peter; Clementson, Joel; Kubota, Shigeyuki

    2014-01-01

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments. (paper)

  19. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    International Nuclear Information System (INIS)

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia, S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-01-01

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands

  20. VUV photoemission studies of candidate Large Hadron Collider vacuum chamber materials

    CERN Document Server

    Cimino, R; Baglin, V

    1999-01-01

    In the context of future accelerators and, in particular, the beam vacuum of the Large Hadron Collider (LHC), a 27 km circumference proton collider to be built at CERN, VUV synchrotron radiation (SR) has been used to study both qualitatively and quantitatively candidate vacuum chamber materials. Emphasis is given to show that angle and energy resolved photoemission is an extremely powerful tool to address important issues relevant to the LHC, such as the emission of electrons that contributes to the creation of an electron cloud which may cause serious beam instabilities and unmanageable heat loads on the cryogenic system. Here we present not only the measured photoelectron yields from the proposed materials, prepared on an industrial scale, but also the energy and in some cases the angular dependence of the emitted electrons when excited with either a white light (WL) spectrum, simulating that in the arcs of the LHC, or monochromatic light in the photon energy range of interest. The effects on the materials ...

  1. VUV Fourier-transform absorption study of the Lyman and Werner bands in D2

    Science.gov (United States)

    de Lange, Arno; Dickenson, Gareth D.; Salumbides, Edcel J.; Ubachs, Wim; de Oliveira, Nelson; Joyeux, Denis; Nahon, Laurent

    2012-06-01

    An extensive survey of the D2 absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer employing synchrotron radiation. The frequency range of 90 000-119 000 cm-1 covers the full depth of the potential wells of the B sideset{^1}{+u}{Σ}, B^' } sideset{^1}{+u}{Σ}, and C 1Πu electronic states up to the D(1s) + D(2ℓ) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ≈0.35 cm-1. Extended calibration methods are employed to extract line positions of D2 lines at absolute accuracies of 0.03 cm-1. The D 1Πu and B^' ' } sideset{^1}{+u}{Σ} electronic states correlate with the D(1s) + D(3ℓ) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively, v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D2. The observations are compared with previous studies, both experimental and theoretical.

  2. VUV spectroscopy and photochemistry of five interstellar and putative prebiotic molecules

    Science.gov (United States)

    Schwell, M.; Gaie-Levrel, F.; Bénilan, Y.; Gazeau, M.-C.; Fray, N.; Saul, G.; Champion, N.; Leach, S.; Guillemin, J.-C.

    2012-02-01

    For many years, our group has been investigating the VUV spectroscopy and photochemistry of molecules of astrophysical (Jochims et al. 2006a,b; Leach et al. 2008; Schwell et al. 2012) and prebiotic interest (Schwell et al. 2006). Polyynes and cyano-polyynes that are abundant in the interstellar medium (ISM) and in planetary atmospheres, have been investigated too (e.g. Fray et al. 2010). An aerosol source for reactive and thermo-labile compounds has been developed (Gaie-Levrel et al. 2011) to perform gas-phase measurements. These are necessary to measure intrinsic molecular properties and to compare to quantum chemical calculations. Besides measuring absolute absorption and photoionization cross sections, dissociative channels and their involved excited states are identified for a number of molecules of interstellar interest. Branching ratios of the respective elementary photoreactions are determined in order to understand and model the photochemistry occurring in the ISM. Some very recent results on the dissociative photoionization of methylformate (MF), glycolaldehyde (GA), dimethylether (DIM), aminoacetonitrile (AAC) and cyanoacetylene (CA), are presented here.

  3. DOE/DMS workshop on future synchrotron VUV and x-ray beam Lines

    International Nuclear Information System (INIS)

    Green, P.H.

    1992-03-01

    This document contains an overview of the participating DOE Laboratory beam line interests and the projected science to be addressed on these beam lines, both at new and existing synchrotron facilities. The scientific programs associated with present and planned synchrotron research by DOE Laboratories are discussed in chapters titled ''VUV and Soft X-Ray Research'' and ''Hard X-Ray Research.'' This research encompasses a broad range of the nation's scientific and technical research needs from fundamental to applied, in areas including environmental, biological, and physical sciences; new materials; and energy-related technologies. The projected cost of this proposed construction has been provided in tabular form using a uniform format so that anticipated DOE and outside funding agency contributions for construction and for research and development can be determined. The cost figures are, of course, subject to uncertainties of detailed design requirements and the availability of facility-designed generic components and outside vendors. The report also contains a compendium (as submitted by the beam line proposers) of the design capabilities, the anticipated costs, and the scientific programs of projected beam line construction at the four synchrotron facilities. A summary of the projected cost of these beam lines to be requested of DOE is compiled

  4. Collimation system for the VUV free-electron laser at the TESLA test facility

    International Nuclear Information System (INIS)

    Schlarb, H.

    2001-11-01

    To perform a proof-of-principle experiment for a Free Electron Laser operating at VUV wavelengths an undulator has been installed in the TESLA Test Facility linac phase I. To meet the requirements on the magnetic field quality in the undulator, a hybrid type structure with NdFeB permanent magnets has been chosen. The permanent magnets are sensitive to radiation by high energy particles. In order to perform the various experiments planned at the TESLA Test Facility linac, a collimator section has been installed to protect the undulator from radiation. In this thesis the design, performance and required steps for commissioning the collimator system are presented. To identify potential difficulties for the linac operation, the beam halo and the dark current transport through the entire linac is discussed. Losses of primary electrons caused by technical failures, component misalignments, and operation errors are investigated by tracking simulations, in order to derive a complete understanding of the absorbed dose in the permanent magnets of the undulator. Various topics related to a collimator system such as the removal of secondary particles produced at the collimators, generation and shielding of neutrons, excitation of wake fields, and beam based alignment concepts are important subjects of this thesis. (orig.)

  5. VUV emission spectroscopy diagnostics of a 14 GHz ECR negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, R., E-mail: duo0364@mail4.doshisha.ac.jp; Ichikawa, T.; Kasuya, T.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Nishiura, M. [Graduate School of Frontier Sciences The University of Tokyo, Kashiwara, Chiba 277-8561 (Japan); Shimozuma, T. [National lnstitute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2015-04-08

    Vacuum Ultra Violet(VUV) emission from a 4 cm diameter 2 cm long compact ion source excited by 14 GHz microwave has been investigated. Intensity ratio of band spectrum emission near Ly-α to Ly-α line spectrum is determined from the measured spectrum. which shows preferential excitation of molecules near the entrance of microwave input power. The ratio does not depend strongly upon pressure nor the input microwave power when the intensity is integrated over the volume of the plasma. The spatial distribution of the spectrum intensity ratio exhibits concentrations near microwave inlet and the opposite side where the microwave matching structure is located. The ratio at these peripheral regions is about two times as high as that of the central region. The ratio increased in proportion to the ion source pressure up to about 3.0 Pa, indicating efficient production of high energy electrons by ECR up to this pressure.

  6. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  7. VUV study of impurity generation during ICRF heating experiments on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Manning, H.L.

    1986-06-01

    A 2.2 meter grazing incidence VUV monochromator has been converted into a time-resolving spectrograph by the addition of a new detector system, based on a microchannel plate image intensifier linked to a 1024-element linear photodiode array. The system covers the wavelength range 15 to 1200 A (typically 40 A at a time) with resolution of up to .3 A FWHM. Time resolution is selectable down to 0.5 msec. The system sensitivity was absolutely calibrated below 150 A by a soft x-ray calibration facility. The spectrograph was installed on the Alcator C tokamak at MIT to monitor plasma impurity emission. There, cross-calibration with a calibrated EUV monochromator was performed above 400 A. Calibration results, system performance characteristics, and data from Alcator C are presented. Observations of impurity behavior are presented from a series of ICRF heating experiments (180 MHz, 50 to 400 kW) performed on the Alcator C tokamak, using graphite limiters and stainless steel antenna Faraday shields

  8. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  9. Token ring technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  10. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  11. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  12. Coherent x-rays and vacuum-ultraviolet radiation from storage-ring-based undulators and free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1984-12-01

    High-brightness electron storage rings and permanent-magnet technology provide a basis for the development of coherent radiation in the 10- to 1000-A (xuv) spectral range. The most assured route to the production of coherent x-rays and vuv is the simple interaction between properly constrained relativistic electrons and permanent-magnet undulators, a subject that is already well understood and where technology is well advanced. Other techniques are less well developed, but with increasing degrees of technical challenge they will provide additional coherence properties. Transverse optical klystrons (TOKs) provide an opportunity for additional coherence at certain harmonics of longer-wavelength lasers. Free electron lasers (FELs) extend coherence capabilities substantially through two possible routes: one is the development of suitable mirror coatings. Both FEL techniques would provide vuv radiation and soft x rays with extremely narrow spectral content. Research on all of these techniques (undulators, TOKs, and FELs) is possible in a single facility based on a high-brightness electron storage ring, referred to herein as a Coherent xuv Facility (CXF). Individual items from the report were prepared separately for the data base

  13. EBT ring physics

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers

  14. Enhancement of VUV emission from a coaxial xenon excimer ultraviolet lamp driven by distorted bipolar square voltages

    Energy Technology Data Exchange (ETDEWEB)

    Jou, S.Y.; Hung, C.T.; Chiu, Y.M.; Wu, J.S. [Department of Mechanical Engineering, National Chiao Tung University, Hsinchu (China); Wei, B.Y. [High-Efficiency Gas Discharge Lamps Group, Material and Chemical Research Laboratories, Hsinchu (China)

    2011-12-15

    Enhancement of vacuum UV emission (172 nm VUV) from a coaxial xenon excimer UV lamp (EUV) driven by distorted 50 kHz bipolar square voltages, as compared to that by sinusoidal voltages, is investigated numerically in this paper. A self-consistent radial one-dimensional fluid model, taking into consideration non-local electron energy balance, is employed to simulate the discharge physics and chemistry. The discharge is divided into two three-period portions; these include: the pre-discharge, the discharge (most intense at 172 nm VUV emission) and the post-discharge periods. The results show that the efficiency of VUV emission using the distorted bipolar square voltages is much greater than when using sinusoidal voltages; this is attributed to two major mechanisms. The first is the much larger rate of change of the voltage in bipolar square voltages, in which only the electrons can efficiently absorb the power in a very short period of time. Energetic electrons then generate a higher concentration of metastable (and also excited dimer) xenon that is distributed more uniformly across the gap, for a longer period of time during the discharge process. The second is the comparably smaller amount of ''wasted'' power deposition by Xe{sup +}{sub 2} in the post-discharge period, as driven by distorted bipolar square voltages, because of the nearly vanishing gap voltage caused by the shielding effect resulting from accumulated charges on both dielectric surfaces (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. National Synchrotron Light Source: Annual report 1986 for the period of October 1, 1985 through September 30, 1986

    International Nuclear Information System (INIS)

    White-DePace, S.; Gmur, N.

    1986-10-01

    The National Synchrotron Light Source (NSLS) is the nation's largest facility dedicated solely to the production of synchrotron radiation. The facility has two electron storage rings: a vacuum ultraviolet (VUV) ring which operates at an electron energy of 750 MeV designed for optimum radiation at energies from 10 eV to 1 keV, and an x-ray ring which operates at 2.5 GeV to optimize radiation from 1 keV to 20 keV. A total of 44 beam ports emanate from these rings. Each beam port is capable of supporting one to four experiments. The VUV and x-ray rings presently accommodate over 800 scientists representing over 71 universities, industries, and government laboratories. Both basic and applied research are being done at the NSLS by groups from a variety of disciplines which include physics, chemistry, materials science, metallurgy, biology, and medicine. Among the techniques used are EXAFS (extended x-ray absorption fine structure), scattering, diffraction, topography, fluorescence, gas phase spectroscopy, lithography, tomography, microscopy, and circular dichroism

  16. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    Science.gov (United States)

    Champey, Patrick R.; Kobayashi, Ken; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  17. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.

    2005-09-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. Ths paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (orig.)

  18. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.D.

    2006-03-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. This paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (Orig.)

  19. Statistical properties of SASE FEL radiation: experimental results from the VUV FEL at the TESLA test facility at DESY

    International Nuclear Information System (INIS)

    Yurkov, M.V.

    2002-01-01

    This paper presents an experimental study of the statistical properties of the radiation from a SASE FEL. The experiments were performed at the TESLA Test Facility VUV SASE FEL at DESY operating in a high-gain linear regime with a gain of about 10 6 . It is shown that fluctuations of the output radiation energy follows a gamma-distribution. We also measured for the first time the probability distribution of SASE radiation energy after a narrow-band monochromator. The experimental results are in good agreement with theoretical predictions, the energy fluctuations after the monochromator follow a negative exponential distribution

  20. Hydrothermal synthesis and luminescent properties of LnPO4:Tb,Bi (Ln=La,Gd) phosphors under UV/VUV excitation

    International Nuclear Information System (INIS)

    Wang Yuhua; Wu Chunfang; Wei Jie

    2007-01-01

    Monoclinic LnPO 4 :Tb,Bi (Ln=La,Gd) phosphors were prepared by hydrothermal reaction and their luminescent properties under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation were investigated. LaPO 4 :Tb,Bi phosphor and GdPO 4 :Tb phosphor showed the strongest emission intensity under 254 and 147 nm excitation, respectively, because of the different energy transfer models. In UV region, Bi 3+ absorbed most energy then transferred to Tb 3+ , but in VUV region it was the host which absorbed most energy and transferred to Tb 3+

  1. On the Laurent polynomial rings

    International Nuclear Information System (INIS)

    Stefanescu, D.

    1985-02-01

    We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)

  2. Research using synchrotron radiation at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Thomlinson, W.

    1982-01-01

    The National Synchrotron Light Source (NSLS) is now becoming operational with synchrotron radiation experiments beginning on the 700 MeV VUV electron storage ring. Commissioning of the 2.5 GeV x-ray storage ring has also begun with the experimental program expected to begin in 1983. The current status of the experimental program and instrumentation and the plans for future developments, will be discussed. Although some early results have been obtained on VUV beam lines no attempt will be made in this paper to describe them. Instead, an overview of the beam line characteristics will be given, with an indication of those already operational. In the oral presentation some initial experimental results will be discussed

  3. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  4. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  5. Advances in vacuum ultraviolet detection with multistep gaseous detectors and application to Cherenkov ring imaging

    CERN Document Server

    Breskin, Amos; Charpak, Georges; Peisert, Anna; Policarpo, Armando; Sauli, Fabio

    1981-01-01

    The multistep avalanche chamber permits an efficient detection of VUV photons. In a two-step proportional mode charges higher than 1 pC are obtained from single electrons. By using as the final localization step a spark chamber viewed by a TV digitizer it is easy to have imaging of complex patterns. This is applied to Cherenkov ring imaging and (K, pi ) separation with 3 sigma up to 320 GeV is envisaged. The properties of various photoionizable vapours have been studied. By combining a scintillation xenon chamber with a photoionization wire chamber, a resolution of 8.3% (FWHM) has been obtained for 5.9 keV X- rays using tetrakis(dimethylamine)-ethylene vapour. (15 refs).

  6. Applications of UV-storage ring free electron lasers: the case of super-ACO

    CERN Document Server

    Nahon, L; Couprie, Marie Emmanuelle; Merola, F; Dumas, P; Marsi, M; Taleb-Ibrahimi, A; Nutarelli, D; Roux, R; Billardon, M

    1999-01-01

    The potential of UV-storage ring free electron lasers (SRFELs) for the performance of original application experiments is shown with a special emphasis concerning their combination with the naturally synchronized synchrotron radiation (SR). The first two-color FEL+SR experiment, performed in surface science at Super-ACO is reported. The experimental parameters found to be the most important as gathered from the acquired experience, are underlined and discussed. Finally, future prospects for the scientific program of the Super-ACO FEL are presented with two-color experiments combining the FEL with SR undulator-based XUV and VUV beamlines as well as with a SR white light bending magnet beamline emiting in the IR-UV (20 mu m-0.25 mu m).

  7. On arbitrarily graded rings

    Indian Academy of Sciences (India)

    58

    paper is devoted to the study of arbitrary rings graded through arbitrary sets. .... which recover certain multiplicative relations among the homogeneous components ... instance the case in which the grading set A is an Abelian group, where the ...

  8. The g-2 ring

    CERN Multimedia

    1974-01-01

    The precise measurement of "g-2", the anomalous magnetic moment of the muon, required a special muon storage ring with electrostatic focussing and very accurate knowledge of the magnetic bending field. For more details see under photo 7405430.

  9. [Liesegang's rings resembling helminthiasis].

    Science.gov (United States)

    Zámecník, M; Riedl, I

    1996-12-01

    So called Liesegang's rings are lamellar corpuscles which develop after periodical precipitation of oversaturated solutions in gel medium. They can occur in cysts, closed cavities, inflammatory exudates and necroses. They resemble parasitic eggs, larvae or adult forms. A case of 28-year-old woman is presented with many Liesegang's rings in a stuff from dilated renal calyx. Their preliminary evaluation considered helminths, especially Dioctophyma renale.

  10. Storage ring group summary

    International Nuclear Information System (INIS)

    King, N.M.

    1980-01-01

    The Storage Ring Group set out to identify and pursue salient problems in accelerator physics for heavy ion fusion, divorced from any particular reference design concept. However, it became apparent that some basic parameter framework was required to correlate the different study topics. As the Workshop progressed, ring parameters were modified and updated. Consequently, the accompanying papers on individual topics will be found to refer to slightly varied parameters, according to the stage at which the different problems were tackled

  11. The rings of Uranus

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.; Mink, D.

    1977-01-01

    A description is given of the observation of five brief occultations of the star SAO 158687 which occurred both before and after its occultation by Uranus on March 10, 1977. The events were observed with a three-channel occultation photometer, attached to a 91-cm telescope. The observations indicate that at least five rings encircle the planet Uranus. Possible reasons for the narrowness of the Uranus rings are discussed.

  12. A VUV photoionization measurement and ab-initio calculation of the ionization energy of gas phase SiO2

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Ahmed, Musahid; Metz, Ricardo B.

    2008-12-05

    In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2 and ionization energy estimates are revealed from such measurements. A state-to-state ionizationenergy of 12.60 (+-0.05) eV is recorded by fitting two prominent peaks in the PIE curve for the following process: 1SUM O-Si-O --> 2PRODg [O-Si-O]+. Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of 2PRODg [O-Si-O]+ which is observed in the PIE spectrum to be 0.11 eV (890 cm-1) above the ground state of the cation and agrees with the 892 cm-1 symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.

  13. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by Fe(0)/GAC micro-electrolysis and VUV-Fenton photolysis.

    Science.gov (United States)

    Zhang, Li-Hong; Cheng, Jian-Hua; You, Xia; Liang, Xiao-Yan; Hu, Yong-You

    2016-07-01

    Perfluorooctanoic acid (PFOA) is extremely persistent and bioaccumulative in the environment; thus, it is very urgent to investigate an effective and moderate technology to treat the pollution of PFOA. In this study, a process combined iron and granular activated carbon (Fe(0)/GAC) micro-electrolysis with VUV-Fenton system is employed for the remediation of PFOA. Approximately 50 % PFOA (10 mg L(-1)) could be efficiently defluorinated under the following conditions: pH 3.0, dosage of Fe 7.5 g L(-1), dosage of GAC 12.5 g L(-1), and concentration of H2O2 22.8 mmol L(-1). Meanwhile, during the process, evident defluorination was observed and the concentration of fluoride ion was eventually 3.23 mg L(-1). The intermediates including five shorter-chain perfluorinated carboxylic acids (PFCAs), i.e., C7, C6, C5, C4, and C3, were also analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) and defluorination mechanisms of PFOA was proposed, which involved photochemical of OH·, direct photolysis (185-nm VUV), and photocatalytic degradation of PFOA in the presence of Fe(3+) (254-nm UV).

  14. Future prospect of the research study using intense and bright synchrotron radiation in VUV and soft x-ray region

    International Nuclear Information System (INIS)

    Tanaka, Kenichiro; Miyahara, Tsuneaki

    1987-02-01

    This report is the summary of the contents of the study meeting 'Future prospect of the research study using intense and bright synchrotron radiation in VUV and soft x-ray region' sponsored by PF, held on October 20 and 21, 1986. This study meeting was held by inviting those who are particularly interested in the basic field among the users of VUV and soft x-ray region, and the research on the application field was excluded. The objective of the discussion of this study meeting was to talk about the dream that if a high luminance light source which is 100 - 1000 times more intense in terms of luminous flux intensity is completed, what can we do with it. Three sessions on the themes 'How the existing research fields will develop', 'What the possible new research fields are' and 'Comment from the technical aspect' were held. More than seven years elapsed since the beginning of construction of the Photon Factory. Many excellent results have been obtained. As of October, 1986, the beam lines available for experiment are 11, the themes of common utilization experiment in progress are 300, and the number of registered researchers exceeded 1000. The development of a new light emission source is to be undertaken. (Kako, I.)

  15. UHV photoelectron x-ray beam position monitor

    International Nuclear Information System (INIS)

    Johnson, E.D.; Oversluizen, T.

    1989-01-01

    As part of our research program to develop viable beam position monitors for both the X-ray and VUV beamlines at the NSLS, we have constructed vertical photon beam position monitors which are presently mounted in two front-ends in the X-ray ring. These area-type detectors are located before the safety shutters and are, therefore, able to monitor the beam position even during injection. The features of this type of monitor which contribute to its long-term stability, position sensitivity, and immunity to horizontal beam motion have been examined and will be discussed. 6 refs., 4 figs

  16. Laser-synchrotron hybrid experiments. A photon to tickle - a photon to poke

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R. (National Inst. of Standards and Technology, Gaithersburg, MD (United States)); Shuker, R. (Ben Gurion Univ., Beer Shiva (Israel)); O' Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A. (Tennessee Univ., Knoxville, TN (United States)); Carr, G.L. (Grumman Corporation Research Center, Bethpage, NY (United States)); Williams, G.P.; Hirschmugl, C.J. (National Synchrotron Light Source, Upton, NY (United States)); Etemad, S.; Inam, A. (Belcore, Redbank, NJ (United States)); Tanner, D.B. (Florida Univ., Gainesville, FL (United States))

    1992-08-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked Nd-YAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments. (orig.).

  17. VUV photoemission studies of candidate Large Hadron Collider vacuum chamber materials

    Directory of Open Access Journals (Sweden)

    R. Cimino

    1999-06-01

    Full Text Available In the context of future accelerators and, in particular, the beam vacuum of the Large Hadron Collider (LHC, a 27 km circumference proton collider to be built at CERN, VUV synchrotron radiation (SR has been used to study both qualitatively and quantitatively candidate vacuum chamber materials. Emphasis is given to show that angle and energy resolved photoemission is an extremely powerful tool to address important issues relevant to the LHC, such as the emission of electrons that contributes to the creation of an electron cloud which may cause serious beam instabilities and unmanageable heat loads on the cryogenic system. Here we present not only the measured photoelectron yields from the proposed materials, prepared on an industrial scale, but also the energy and in some cases the angular dependence of the emitted electrons when excited with either a white light (WL spectrum, simulating that in the arcs of the LHC, or monochromatic light in the photon energy range of interest. The effects on the materials examined of WL irradiation and /or ion sputtering, simulating the SR and ion bombardment expected in the LHC, were investigated. The studied samples exhibited significant modifications, in terms of electron emission, when exposed to the WL spectrum from the BESSY Toroidal Grating Monochromator beam line. Moreover, annealing and ion bombardment also induce substantial changes to the surface thereby indicating that such surfaces would not have a constant electron emission during machine operation. Such characteristics may be an important issue to define the surface properties of the LHC vacuum chamber material and are presented in detail for the various samples analyzed. It should be noted that all the measurements presented here were recorded at room temperature, whereas the majority of the LHC vacuum system will be maintained at temperatures below 20 K. The results cannot therefore be directly applied to these sections of the machine until

  18. Luminescent properties of (Y,Gd)BO3:Bi3+,RE3+ (RE=Eu, Tb) phosphor under VUV/UV excitation

    International Nuclear Information System (INIS)

    Zeng Xiaoqing; Im, Seoung-Jae; Jang, Sang-Hun; Kim, Young-Mo; Park, Hyoung-Bin; Son, Seung-Hyun; Hatanaka, Hidekazu; Kim, Gi-Young; Kim, Seul-Gi

    2006-01-01

    Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO 3 :Bi 3+ ,Eu 3+ and strong green emission for (Y,Gd)BO 3 :Bi 3+ ,Tb 3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 . The luminescence enhancement of Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors is due to energy transfer from Bi 3+ ion to Eu 3+ or Tb 3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi 3+ and Eu 3+ or Tb 3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp

  19. Some Aspects of Ring Theory

    CERN Document Server

    Herstein, IN

    2011-01-01

    S. Amitsur: Associative rings with identities.- I.N. Herstein: Topics in ring theory.- N. Jacobson: Representation theory of Jordan algebras.- I. Kaplansky: The theory of homological dimension.- D. Buchsbaum: Complexes in local ring theory.- P.H. Cohn: Two topics in ring theory.- A.W. Goldie: Non-commutative localisation.

  20. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  1. National Synchrotron Light Source 2008 Activity Report

    International Nuclear Information System (INIS)

    Nasta, K.

    2009-01-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R and D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  2. National Synchrotron Light Source 2008 Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for

  3. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  4. The Rings of Saturn

    Science.gov (United States)

    Cuzzi, J. N.; Filacchione, G.; Marouf, E. A.

    2018-03-01

    One could become an expert on Saturn's iconic rings pretty easily in the early 1970s, as very little was known about them beyond the distinction between the A, B, and C rings, and the Cassini Division or "gap" between rings A and B (Alexander, 1962; Bobrov, 1970). Water ice was discovered spectroscopically on the ring particle surfaces, and radar and microwave emission observations proved that the particles must be centimeters to meters in size, consisting primarily, not just superficially, of water ice (Pollack, 1975). While a 2:1 orbital resonance with Mimas had long been suspected of having something to do with the Cassini Division, computers of the time were unable to model the subtle dynamical effects that we now know to dominate ring structure. This innocent state of affairs was exploded by the Voyager 1 and 2 encounters in 1980 and 1981. Spectacular images revealed filigree structure and odd regional color variations, and exquisitely detailed radial profiles of fluctuating particle abundance were obtained from the first stellar and radio occultations, having resolution almost at the scale of single particles. Voyager-era understanding was reviewed by Cuzzi et al. (1984) and Esposito et al. (1984). While the Voyager data kept ring scientists busy for decades, planning which led to the monumentally successful NASA-ESA-ASI Cassini mission, which arrived in 2004, had been under way even before Voyager got to Saturn. A review of pre-Cassini knowledge of Saturn's Rings can be found in Orton et al. (2009). This chapter will build on recent topical and process-specific reviews that treat the gamut of ring phenomena and its underlying physics in considerable detail (Colwell et al., 2009; Cuzzi et al., 2009; Horányi et al., 2009; Schmidt et al., 2009; Esposito, 2010; Tiscareno, 2013b; Esposito, 2014). We will follow and extend the general organization of Cuzzi et al. (2010), the most recent general discussion of Saturn's rings. For brevity and the benefit of the

  5. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  6. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  7. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  8. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H{sub 2}S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jiménez-Escobar, A.; Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Fung, H.-S. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Ip, W.-H. [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2015-01-10

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H{sub 2}S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H{sub 2}S and CO{sub 2}:H{sub 2}S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS{sub 2}, OCS, SO{sub 2}, etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H{sub 2}S ice mixtures is higher than that of CO{sub 2}:H{sub 2}S ice mixtures; (2) a lower concentration of H{sub 2}S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS{sub 2} differ significantly upon VUV and EUV irradiations. Furthermore, CS{sub 2} was produced only after VUV photoprocessing of CO:H{sub 2}S ices, while the VUV-induced production of SO{sub 2} occurred only in CO{sub 2}:H{sub 2}S ice mixtures. More generally, the production yields of OCS, H{sub 2}S{sub 2}, and CS{sub 2} were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H{sub 2}S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments.

  9. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H2S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S.; Nuevo, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M.; Wu, C.-Y. R.; Fung, H.-S.; Ip, W.-H.

    2015-01-01

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H 2 S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H 2 S and CO 2 :H 2 S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS 2 , OCS, SO 2 , etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H 2 S ice mixtures is higher than that of CO 2 :H 2 S ice mixtures; (2) a lower concentration of H 2 S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS 2 differ significantly upon VUV and EUV irradiations. Furthermore, CS 2 was produced only after VUV photoprocessing of CO:H 2 S ices, while the VUV-induced production of SO 2 occurred only in CO 2 :H 2 S ice mixtures. More generally, the production yields of OCS, H 2 S 2 , and CS 2 were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H 2 S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments

  10. Almost ring theory

    CERN Document Server

    2003-01-01

    This book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that of an "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras.

  11. Compact electron storage rings

    International Nuclear Information System (INIS)

    Williams, G.P.

    1987-01-01

    There have been many recent developments in the area of compact storage rings. Such rings would have critical wavelengths of typically 10 A, achieved with beam energies of several hundreds of MeV and superconducting dipole fields of around 5 Tesla. Although the primary motivation for progress in this area is that of commercial x-ray lithography, such sources might be an attractive source for college campuses to operate. They would be useful for many programs in materials science, solid state, x-ray microscopy and other biological areas. We discuss the properties of such sources and review developments around the world, primarily in the USA, japan and W. Germany

  12. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  13. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...

  14. The Saturnian rings

    International Nuclear Information System (INIS)

    Alfven, H.

    1975-09-01

    The structure of the Saturnian rings is traditionally believed to be due to resonances caused by Mimas (and possibly other satellites). It is shown that both theoretical and observational evidence rule out this interpretation. The increased observational accuracy on one hand and the increased understanding of the cosmogonic processes on the other makes it possible to explain the structure of the ring system as a product of condensation from a partially corotating plasma. In certain respects the agreement between theory and observations is about 1%. (Auth.)

  15. RINGED ACCRETION DISKS: INSTABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  16. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  17. Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements

    Science.gov (United States)

    Ishikawa, R.; Bando, T.; Hara, H.; Ishikawa, S.; Kano, R.; Kubo, M.; Katsukawa, Y.; Kobiki, T.; Narukage, N.; Suematsu, Y.; Tsuneta, S.; Aoki, K.; Miyagawa, K.; Ichimoto, K.; Kobayashi, K.; Auchère, F.; Clasp Team

    2014-10-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman-α line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δ a (error in amplitude of linear polarization), azimuth error Δφ (error in the direction of linear polarization), and spurious polarization ɛ (false linear polarization signals). The error ɛ should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt Δ φspectro-polarimeter features a continuously rotating MgF2 waveplate (Ishikawa et al. 2013), a dual-beam spectrograph with a spherical grating working also as a beam splitter, and two polarization analyzers (Bridou et al. 2011), which are mounted at 90 degree from each other to measure two orthogonal polarization simultaneously. For the optical layout of the CLASP instrument, see Figure 3 in Kubo et al. (2014). Considering the continuous rotation of the half-waveplate, the modulation efficiency is 0.64 both for Stokes Q and U. All the raw data are returned and demodulation (successive addition or subtraction of images) is done on the ground. We control the CLASP polarization performance in the following three steps. First, we evaluate the throughput and polarization properties of each optical component in the Lyman-α line, using the Ultraviolet Synchrotron ORbital Radiation Facility (UVSOR) at the Institute for Molecular Science. The second step

  18. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  19. Flushing Ring for EDM

    Science.gov (United States)

    Earwood, L.

    1985-01-01

    Removing debris more quickly lowers cutting time. Operation, cutting oil and pressurized air supplied to ring placed around workpiece. Air forces oil through small holes and agitates oil as it flows over workpiece. High flow rate and agitation dislodge and remove debris. Electrical discharge removes material from workpiece faster.

  20. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  1. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  2. SXLS storage ring design

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    X-ray lithography has emerged as a strong candidate to meet the demands of ever finer linewidths on integrated circuits, particularly for linewidths less than .25 microns. Proximity printing X-ray lithography makes use of soft X-rays to shadow print an image of a mask onto a semiconductor wafer to produce integrated circuits. To generate the required X-rays in sufficient quantities to make commercial production viable, electron storage rings have been proposed as the soft X-ray sources. Existing storage rings have been used to do the initial development work and the success of these efforts has led the lithographers to request that new rings be constructed that are dedicated to X-ray lithography. As a result of a series of workshops held at BNL [10.3] which were attended by both semiconductor and accelerator scientists, the following set of zeroth order specifications' on the light and electron beam of a storage ring for X-ray lithography were developed: critical wavelength of light: λ c = 6 to 10 angstroms, white light power: P = 0.25 to 2.5 watts/mrad, horizontal collection angle per port: θ = 10 to 50 mrad, electron beam sizes: σ x ∼ σ y y ' < 1 mrad

  3. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  4. Algebras, rings and modules

    CERN Document Server

    Hazewinkel, Michiel; Kirichenko, V V

    Provides both the classical aspects of the theory of groups and their representations as well as a general introduction to the modern theory of representations, including the representations of quivers and finite partially ordered sets. This volume provides the theory of semiprime Noetherian semiperfect and semidistributive rings.

  5. Lattices for antiproton rings

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)

  6. Propellers in Saturn's rings

    Science.gov (United States)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between

  7. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  8. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  9. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  10. Ultra-high vacuum system of the Brookhaven National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, C.L.

    1995-12-31

    The rings of the National Synchrotron Light Source (NSLS) have been supplying light to numerous users for approximately a decade and we recently enjoyed a fully conditioned machine vacuum at design currents. A brief description of the X-Ray storage ring, the VUV storage ring and their current supply is given along with some of their features. The ultra-high vacuum system employed for the storage rings and their advantages for the necessary stored beam environments are discussed including, a brief history of time. After several hundred amp hours of stored beam current operation, very little improvement in machine performance was seen due to conditioning. Sections of the rings were vented, to dry nitrogen and replacement components were pre-baked and pre-argon glow conditioned prior to installation. Very little machine conditioning was needed to return to operation after recovering vacuum due to well established conditioning procedures. All straight sections in the X-Ray ring and the VUV ring have been filled with various insertion devices and most are fully operational. Each storage ring has a computer controlled total pressure and partial pressure monitoring system for the ring and its beam ports, to insure good vacuum.

  11. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  12. Design of low energy ring(s)

    CERN Document Server

    Lachaize, Antoine

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times [1], [2], [3].General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 [4]. More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS [5], [6], [7].Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitate injectio...

  13. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2012-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...

  14. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  15. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1989-01-01

    At the time of the submission of the original proposal more than 7 years ago, the X-11 PRT had set as a goal to develop one of the leading and most comprehensive x-ray absorption beam lines in the world. By any measure we have been successful. As is well documented in previous annual progress report and in the NSLS annual reports, our PRT has been extremely productive in a wide range of topics in materials science, solid state physics, chemistry and biology. Well over 100 papers have been published acknowledging the support of this contract and this continues at a rate of about 30 papers per year and about 20 invited presentations per year. Significant in this report are major studies in high T c compounds, advances in interface studies, new results in premelting phenomena, several pioneering studies in application of XAS to electrochemistry and significant progress in our understanding of the structure of amorphous chalcogenide systems and their photostructural changes

  16. Formation of a PRT and the instrumentation of x-ray diffraction on the NSLS. Progress report, September 1, 1980-October 30, 1981

    International Nuclear Information System (INIS)

    Liedl, G.L.

    1981-09-01

    The Midwest Analytical Team for Research Instrumentation of X-Rays (MATRIX) was organized to formulate a research team to design, construct and utilize a port at NSLS for diffuse scattering. MATRIX, which was formally initiated in September of 1980 upon receipt of funding, consists of active members from Purdue University, Northwestern University, University of Illinois, Iowa State University, Michigan Technological University, University of Missouri, and Argonne National Laboratories. The Executive Committee and all design teams have met three times with two other meetings scheduled for 1981. The first year's design phase is near completion and has concentrated around the diffractometer system, beam line, and computer control system. Some changes which have influenced the design progress are the addition of a full time design person and the inclusion of added expertise in our design teams. These changes have accelerated our progress beyond the state originally estimated. These factors have made it possible to advance some aspects of our design, in particular, the monochromator-mirror design which had been reserved for the second year. The final design phase is expected to be completed in early 1982 with installation in late summer of 1982. Initial research on local atomic arrangements and lattice effects will then be initiated

  17. Wavefront propagation simulations for a UV/soft x-ray beamline: Electron Spectro-Microscopy beamline at NSLS-II

    Science.gov (United States)

    Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.

    2014-09-01

    A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.

  18. Ring Confidential Transactions

    Directory of Open Access Journals (Sweden)

    Shen Noether

    2016-12-01

    Full Text Available This article introduces a method of hiding transaction amounts in the strongly decentralized anonymous cryptocurrency Monero. Similar to Bitcoin, Monero is a cryptocurrency which is distributed through a proof-of-work “mining” process having no central party or trusted setup. The original Monero protocol was based on CryptoNote, which uses ring signatures and one-time keys to hide the destination and origin of transactions. Recently the technique of using a commitment scheme to hide the amount of a transaction has been discussed and implemented by Bitcoin Core developer Gregory Maxwell. In this article, a new type of ring signature, A Multilayered Linkable Spontaneous Anonymous Group signature is described which allows one to include a Pedersen Commitment in a ring signature. This construction results in a digital currency with hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation. The author would like to note that early drafts of this were publicized in the Monero Community and on the #bitcoin-wizards IRC channel. Blockchain hashed drafts are available showing that this work was started in Summer 2015, and completed in early October 2015. An eprint is also available at http://eprint.iacr.org/2015/1098.

  19. BaY2F8 single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    International Nuclear Information System (INIS)

    Pushkar', A A; Uvarova, T V; Molchanov, V N

    2008-01-01

    BaY 2 F 8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY 2 F 8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined. (active media)

  20. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2014-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction...... and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268, (2010) and give a similar description of the sp2n-fusion ring in terms of non-commutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also...... compute the fusion rings for type G2....

  1. Separation of VUV/UV photons and reactive particles in the effluent of a He/O{sub 2} atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, S; Benedikt, J [Coupled plasma-solid state systems, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany); Lackmann, J-W; Narberhaus, F; Bandow, J E [Mikrobiologie, Fakultaet fuer Biologie, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany); Denis, B [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44780 Bochum (Germany)

    2011-07-27

    Cold atmospheric pressure plasmas can be used for treatment of living tissues or for inactivation of bacteria or biological macromolecules. The treatment is usually characterized by a combined effect of UV and VUV radiation, reactive species and ions. This combination is usually beneficial for the effectiveness of the treatment but it makes the study of fundamental interaction mechanisms very difficult. Here we report on an effective separation of VUV/UV photons and heavy reactive species in the effluent of a microscale atmospheric pressure plasma jet ({mu}-APPJ). The separation is realized by an additional flow of helium gas under well-defined flow conditions, which deflects heavy particles in the effluent without affecting the VUV and UV photons. Both components of the effluent, the photons and the reactive species, can be used separately or in combination for sample treatment. The results of treatment of a model plasma polymer film and vegetative Bacillus subtilis and Escherichia coli cells are shown and discussed. A simple model of the He gas flow and reaction kinetics of oxygen atoms in the gas phase and at the surface is used to provide a better understanding of the processes in the plasma effluent. The new jet modification, called X-Jet for its appearance, will simplify the investigation of interaction mechanisms of atmospheric pressure plasmas with biological samples.

  2. VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8–24 eV photon energy range

    International Nuclear Information System (INIS)

    Schwell, Martin; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire; Es-Sebbar, Et.; Garcia, Gustavo A.; Nahon, Laurent; Champion, Norbert; Leach, Sydney

    2012-01-01

    Highlights: ► We study the VUV photoionization of acetamide in the 8–24 eV photon energy range. ► Electron/ion coincidence measurements are performed using synchrotron radiation. ► The adiabatic ionization energy of acetamide is determined by TPEPICO measurements. ► VUV induced fragmentation pathways of acetamide are assigned and discussed. - Abstract: A VUV photoionization study of acetamide was carried out over the 8–24 eV photon energy range using synchrotron radiation and photoelectron/photoion coincidence (PEPICO) spectroscopy. Threshold photoelectron photoion coincidence (TPEPICO) measurements were also made. Photoion yield curves and branching ratios were measured for the parent ion and six fragment ions. The adiabatic ionization energy of acetamide was determined as I.E. (1 2 A′) = (9.71 ± 0.02) eV, in agreement with an earlier reported photoionization mass spectrometry (PIMS) value. The adiabatic energy of the first excited state of the ion, 1 2 A″, was determined to be ≈10.1 eV. Assignments of the fragment ions and the pathways of their formation by dissociative photoionization were made. The neutral species lost in the principal dissociative photoionization processes are CH 3 , NH 2 , NH 3 , CO, HCCO and NH 2 CO. Heats of formation are derived for all ions detected and are compared with literature values. Some astrophysical implications of these results are discussed.

  3. Ultrawide spectral broadening and compression of single extremely short pulses in the visible, uv-vuv, and middle infrared by high-order stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kalosha, V. P.; Herrmann, J.

    2003-01-01

    We present the results of a comprehensive analytical and numerical study of ultrawide spectral broadening and compression of isolated extremely short visible, uv-vuv and middle infrared (MIR) pulses by high-order stimulated Raman scattering in hollow waveguides. Spectral and temporal characteristics of the output pulses and the mechanism of pulse compression using dispersion of the gas filling and output glass window are investigated without the slowly varying envelope approximation. Physical limitations due to phase mismatch, velocity walk off, and pump-pulse depletion as well as improvements through the use of pump-pulse sequences and dispersion control are studied. It is shown that phase-locked pulses as short as ∼2 fs in the visible and uv-vuv, and 6.5 fs in the MIR can be generated by coherent scattering in impulsively excited Raman media without the necessity of external phase control. Using pump-pulse sequences, shortest durations in the range of about 1 fs for visible and uv-vuv probe pulses are predicted

  4. Imaging with Mass Spectrometry: A SIMS and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2008-12-05

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As2, Au and Au2, are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered Asm (m=1,2) and Aun (n=1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by ~;;0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  5. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation.

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi 3 + beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm 2 . The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  6. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation

    Science.gov (United States)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  7. Scientific opportunities for FEL amplifier based VUV and X-ray research

    International Nuclear Information System (INIS)

    Johnson, E.D.

    1994-01-01

    It has become increasingly clear to a wide cross section of the synchrotron radiation research community that FELs will be the cornerstone of Fourth Generation Radiation Sources. Through the coherent generation of radiation, they provide as much as 12 orders of magnitude increase in peak power over the third generation storage ring machines of today. Facilities have been proposed which will extend the operating wavelength of these devices well beyond the reach of existing solid state laser technology. In addition, it appears possible to generate pulses of unprecedented brevity, down to a few femtoseconds, with mJ pulse energies. The combination of these attributes has stimulated considerable interest in short wavelength FELs for experiments in chemical, surface, and solid state physics, biology and materials science. This paper provides a brief overview of how the features of these FEL's relate to the experimental opportunities

  8. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    Wilcke, H.; Boehmer, W.; Schwentner, N.

    1982-04-01

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm 2 . The light flux at the sample reaches 7 x 10 12 photons nm -1 s -1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  9. Tree Rings: Timekeepers of the Past.

    Science.gov (United States)

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  10. SOR-ring failure

    International Nuclear Information System (INIS)

    Kitamura, Hideo

    1981-01-01

    It was in the autumn of 1976 that the SOR-ring (synchrotron radiation storage ring) has commenced the regular operation. Since then, the period when the operation was interrupted due to the failures of SOR-ring itself is in total about 8 weeks. Failures and accidents have occurred most in the vacuum system. Those failure experiences are described on the vacuum, electromagnet, radio-frequency acceleration and beam transport systems with their interrupted periods. The eleven failures in the vacuum system have been reported, such as bellows breakage in a heating-evacuating period, leakage from the bellows of straight-through valves (made in U.S.A. and Japan), and leakage from the joint flange of the vacuum system. The longest interruption was 5 weeks due to the failure of a domestically manufactured straight-through valve. The failures of the electromagnet system involve the breakage in a cooling water system, short circuit of a winding in the Q magnet power transformer, blow of a fuse protecting the deflection magnet power source by the current less than the rating, and others. The failures of the RF acceleration system include the breakage of an output electronic tube the breakage of a cavity ceramic, RF voltage fluctuation due to the contact deterioration at a cavity electrode, and the failure of grid bias power source. It is necessary to select the highly reliable components for the vacuum system because the vacuum system failures require longer time for recovery, and very likely to induce secondary and tertiary failures. (Wakatsuki, Y.)

  11. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  12. Ring-constrained Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos

    2008-01-01

    . This new operation has important applications in decision support, e.g., placing recycling stations at fair locations between restaurants and residential complexes. Clearly, RCJ is defined based on a geometric constraint but not on distances between points. Thus, our operation is fundamentally different......We introduce a novel spatial join operator, the ring-constrained join (RCJ). Given two sets P and Q of spatial points, the result of RCJ consists of pairs (p, q) (where p ε P, q ε Q) satisfying an intuitive geometric constraint: the smallest circle enclosing p and q contains no other points in P, Q...

  13. Femtoslicing in Storage Rings

    CERN Document Server

    Khan, Shaukat

    2005-01-01

    The generation of ultrashort synchrotron radiation pulses by laser-induced energy modulation of electrons and their subsequent transverse displacement, now dubbed "femtoslicing," was demonstrated at the Advanced Light Source in Berkeley. More recently, a femtoslicing user facility was commissioned at the BESSY storage ring in Berlin, and another project is in progress at the Swiss Light Source. The paper reviews the principle of femtoslicing, its merits and shortcomings, as well as the variations of its technical implementation. Various diagnostics techniques to detect successful laser-electron interaction are discussed and experimental results are presented.

  14. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  15. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  16. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  17. NRL ion ring program

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.; Golden, J.; Drobot, A.; Mahaffey, R.A.; Marsh, S.J.; Pasour, J.A.

    1977-01-01

    An experiment is under way to form a storng proton ring using the 200 ka, 1.2 MeV, 50 nsec hollow proton beam recently generated at NRL. The 5 m long magnetic field configuration consists of a magnetic cusp, a compressing magnetic field, a gate field and a magnetic mirror. The midplane value of the magnetic mirror is such that the major radius of the ring will be about 10 cm. The degree of field reversal that will be achieved with 5 x 10 16 protons per pulse from the existing beam depends upon the field reversal is possible with the 600 kA proton beam that would be generated from the low inductance coaxial triode coupled to the upgraded Gamble II generator. The propagation and trapping of an intense proton beam in the experimental magnetic field configuration is investigated numerically. The results show that the self magnetic has a very pronounced effect on the dynamics of the gyrating protons

  18. Flexible ring seal

    International Nuclear Information System (INIS)

    Abbes, Claude; Gournier, Andre; Rouaud, Christian; Villepoix, Raymond de.

    1976-01-01

    The invention concerns a flexible metal ring seal, able to ensure a perfect seal between two bearings due to the crushing and elastic deformation properties akin to similar properties in elastomers. Various designs of seal of this kind are already known, particularly a seal made of a core formed by a helical wire spring with close-wound turns and with high axial compression ratio, closed on itself and having the shape of an annulus. This wire ring is surrounded by at least one envelope having at rest the shape of a toroidal surface of which the generating circle does not close on itself. In a particular design mode, the seal in question can include, around the internal spring, two envelopes of which one in contact with the spring is composed of a low ductility elastic metal, such as mild steel or stainless steel and the other is, on the contrary, made of a malleable metal, such as copper or nickel. The first envelope evenly distributes the partial crushing of the spring, when the seal is tightened, on the second envelope which closely fits the two surfaces between which the seal operates. The stress-crushing curve characteristic of the seal comprises two separate parts, the first with a relatively sharp slope corresponds to the start of the seal compression phase, enabling at least some of these curves to reach the requisite seal threshold very quickly, then, beyond this, a second part, practically flat, where the stress is appreciably constant for a wide operating bracket [fr

  19. Magnetization of two coupled rings

    International Nuclear Information System (INIS)

    Avishai, Y; Luck, J M

    2009-01-01

    We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum

  20. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-01-01

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two second generation'' storage rings that currently provide the world's most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  1. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-12-31

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ``second generation`` storage rings that currently provide the world`s most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  2. Stability and vibration control in synchrotron light source buildings

    International Nuclear Information System (INIS)

    Godel, J.B.

    1991-01-01

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ''second generation'' storage rings that currently provide the world's most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels

  3. Demonstration of two-electron (shake-up) photoionization and population inversions in the visible and VUV

    International Nuclear Information System (INIS)

    Silfvast, W.T.; Wood, O.R. II; Al-Salameh, D.Y.

    1986-01-01

    The two-electron (shake-up) photoionization process has been shown to be an effective mechanism for producing large population inversions in He/sup +/ with gain at 164 nm and in Ar/sup +/ with gain at 428 and 477 nm and for observing the first autoionizing states in Cd/sup +/. Such a mechanism was recently proposed as an excitation mechanism for a VUV laser in lithium. In each species the rapid excitation and detection using broadband emission from a 30-mJ 100-ps duration laser-produced plasma and a detection system with subnanosecond time resolution were essential in observing these effects. In He, gains of up to 0.8 cm/sup -1/ for durations of 2-4 ns at 164.0 nm on the He-like (n = 3-2) transition in He/sup +/ were measured by comparing the plasma emission from a well-defined volume with and without the presence of a mirror of known reflectivity. The n = 3 upper laser level is pumped not only directly via two-electron photoionization from the neutral ground state but also indirectly (in times of the order of 1-2 ns) via electron collisions from photoionization-pumped higher-lying levels. The decay rate of the photoionization-pumped radiation-trapped lower laser level is increased by a unique process involving absorption of radiation via photoionization of ground state neutral helium atoms

  4. Silicon photomultipliers for the detection of VUV scintillation light in LXe for the nEXO experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Tobias; Jamil, Ako; Bayerlein, Reimund; Hoessl, Juergen; Hufschmidt, Patrick; Schneider, Judith; Wagenpfeil, Michael; Wrede, Gerrit; Anton, Gisela; Michel, Thilo [Erlangen Centre for Astroparticle Physics, Erlangen 91058 (Germany)

    2016-07-01

    The future nEXO (next Enriched Xenon Observatory) experiment with a single phase TPC design will use about 4 m{sup 2} of SiPMs for the detection of the VUV (vacuum ultraviolet) scintillation light (λ=175 nm) from LXe to search for the neutrinoless double beta (0νββ) decay of {sup 136}Xe. Commercially available SiPMs are not sensitive to ultraviolet light, because of an antireflective coating on top of the sensitive area. In addition, they suffer from relatively high dark count rate at room temperature and correlated avalanches, such as crosstalk and afterpulsing. The core criteria, for having an energy resolution of about 1% (σ) at the Q-value of the 0νββ decay of {sup 136}Xe (2457.8 keV), are a photon detection efficiency (PDE) of at least 15% at 175 nm and a correlated avalanche probability (CAP) of less than 20% at -100 C. We considered different approaches for optimizing both PDE and CAP. These improved SiPMs from several vendors were tested in different test setups at temperatures of about -100 C with respect to the criteria required in the nEXO experiment.

  5. The implementation of the Wendelstein 7-X control a data acquisition concepts at VUV/XUV overview spectrometers HEXOS

    International Nuclear Information System (INIS)

    Schacht, Jörg; Pingel, Steffen; Herbst, Uwe; Hennig, Christine; Burhenn, Rainer; Hollfeld, Klaus-Peter; Jordan, Frank

    2013-01-01

    Highlights: ► Shown in this paper is the implementation of the W7-X CoDaC concept for the HEXOS diagnostic. ► It explains the field, process and supervision level. ► The paper contains descriptions of the slow and fast control and data acquisition stations. ► It introduces the diagnosticians view to CoDaC via high level concept. -- Abstract: HEXOS (high efficiency extreme ultraviolet overview spectrometer) is an optimized set of four efficient VUV/XUV spectrometers. It is suitable for a complete coverage of the wavelength range of interest with sufficient spectral resolution. The spectrometers cover the entire wavelength range of 2.5–160 nm with high performance (up to 9999 spectra at spectra rate of 1000 s −1 ). To operate according to the Wendelstein 7-X (W7-X) control and data acquisition guidelines all necessary concepts for safety, autonomous and subordinated operation, and segment program controlled experiment operation will be implemented at HEXOS. The design of the HEXOS control and data acquisition system and the implementation of the main W7-X control and data acquisition concepts are described. An outlook on the test phase at the TEXTOR (Tokamak Experiment for Technology Oriented Research) device and the commissioning phase at W7-X is given

  6. Experimental and theoretical studies of the VUV emission and absorption spectra of H2, HD and D2 molecules

    International Nuclear Information System (INIS)

    Roudjane, M.

    2007-12-01

    The aim of this thesis is to carry out an experimental study of the absorption and emission spectra of the D 2 and HD isotopes, with high resolution, in the VUV domain and to supplement it by a theoretical study of the excited electronic states involved in the observed transitions. The emission spectra of HD and D 2 are produced by Penning discharge source operating under low pressure and are recorded in the spectral range 78 - 170 nm. The recorded spectra contains more than 20.000 lines. The analysis of the spectrum consists in identifying and assigning the lines to the electronic transitions between energy levels of the molecule. The present analysis is based on our theoretical calculations of the ro-vibrational energy levels of the excited electronic states and the transition probabilities from these states towards the energy levels of the fundamental state. The theoretical results are obtained by resolving the coupled equations between the excited electronic states B 1 Σ u 1 , B' 1 Σ u 1 , C 1 Π u 1 and D 1 Π u 1 , taking into account the nonadiabatic couplings between these states, and they are obtained in the adiabatic approximation for the excited electronic states B''B-bar 1 Σ u + , D' 1 Π u 1 and D'' 1 Π u 1 . The equations are resolved using a modern method based on the discretization variables representation method. In addition, we have carried out a study of the absorption spectra of the HD and D 2 molecules

  7. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  8. Radar imaging of Saturn's rings

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal

  9. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  10. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  11. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  12. Ground Movement in SSRL Ring

    International Nuclear Information System (INIS)

    Sunikumar, Nikita

    2011-01-01

    Users of the Stanford Synchrotron Radiation Lightsource (SSRL) are being affected by diurnal motion of the synchrotron's storage ring, which undergoes structural changes due to outdoor temperature fluctuations. In order to minimize the effects of diurnal temperature fluctuations, especially on the vertical motion of the ring floor, scientists at SSRL tried three approaches: painting the storage ring white, covering the asphalt in the middle of the ring with highly reflective Mylar and installing Mylar on a portion of the ring roof and walls. Vertical motion in the storage ring is measured by a Hydrostatic Leveling System (HLS), which calculates the relative height of water in a pipe that extends around the ring. The 24-hr amplitude of the floor motion was determined using spectral analysis of HLS data, and the ratio of this amplitude before and after each experiment was used to quantitatively determine the efficacy of each approach. The results of this analysis showed that the Mylar did not have any significant effect on floor motion, although the whitewash project did yield a reduction in overall HLS variation of 15 percent. However, further analysis showed that the reduction can largely be attributed to a few local changes rather than an overall reduction in floor motion around the ring. Future work will consist of identifying and selectively insulating these local regions in order to find the driving force behind diurnal floor motion in the storage ring.

  13. ring og refleksion

    DEFF Research Database (Denmark)

    Wahlgren, B.; Rattleff, Pernille; Høyrup, S.

    State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen.......State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen....

  14. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  15. The Rotating Ring-Ring Electrode. Theory and Experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kelly, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  16. Combustion synthesis and optical properties of Oxy-borate phosphors YCa4O(BO3)3:RE3+ (RE = Eu3+, Tb3+) under UV, VUV excitation

    International Nuclear Information System (INIS)

    Ingle, J.T.; Gawande, A.B.; Sonekar, R.P.; Omanwar, S.K.; Wang, Yuhua; Zhao, Lei

    2014-01-01

    Graphical abstract: VUV Photoluminescence of YCa 4 O(BO 3 ) 3 : Eu 3+ and YCa 4 O(BO 3 ) 3 : Tb 3+ for PDPs applications. Highlights: • Inorganic Oxy-borate phosphors YCa 4 O(BO 3 ) 3 :Eu 3+ ,Tb 3+ was synthesized by novel solution combustion synthesis. • This single host produces efficient and intense Red and Green color for display applications. • Good agreement with CIE co-ordinates as prescribes by NTCL, for flat panel, PDP display color. • Synthesized materials were characterized using powder XRD, FE-SEM, UV and VUV Spectophotometer. -- Abstract: The inorganic Oxy-borate host phosphors YCa 4 O(BO 3 ) 3 :RE 3+ (RE = Eu 3+ ,Tb 3+ ) were synthesized by a novel solution combustion technique. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The heat generated in reaction is use for auto combustion of precursors. The structures of the prepared samples were confirmed by powder XRD technique. The photoluminescence properties of the powder samples were investigated under UV and VUV excitation; “The phosphor YCa 4 O(BO 3 ) 3 :Eu 3+ and YCa 4 O(BO 3 ) 3 :Tb 3+ shows strong absorption in UV and VUV region and exhibits intense red and green emission upon excited by 254 nm UV and 147 nm VUV radiation”

  17. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  18. Does the sun ring

    International Nuclear Information System (INIS)

    Isaak, G.R.

    1978-01-01

    The work of various groups, which have been investigating the possibility of measuring the periodicities of solar oscillations in an attempt to test theoretical models of the sun, is reported. In particular the observation of small velocity oscillations of the surface layers of the sun that permits the measurement of the sound waves (or phonons) in the solar atmosphere, is discussed. Oscillations with periods of 2.65 h, 58 and 40 min and amplitudes of 2.7, 0.8 and 0.7 ms -1 respectively are reported. Support for a periodicity at about 2.65 h from a number of other groups using other measuring techniques are considered. It is felt that the most probable interpretation of the observed solar oscillations is that the sun is a resonator which is ringing. (UK)

  19. How Jupiter's Ring Was Discovered.

    Science.gov (United States)

    Elliot, James; Kerr, Richard

    1985-01-01

    "Rings" (by astronomer James Elliot and science writer Richard Kerr) is a nontechnical book about the discovery and exploration of ring systems from the time of Galileo to the era of the Voyager spacecraft. One of this book's chapters is presented. (JN)

  20. Pyrimidine-pyridine ring interconversion

    NARCIS (Netherlands)

    Plas, van der H.C.

    2003-01-01

    This chapter discusses the pyrimidine-to-pyridine ring transformation and pyridine-to-pyrimidine ring transformation. In nucleophile-induced pyrimidine-to-pyridine rearrangements, two types of reactions can be distinguished depending on the structure of the nucleophile: (1) reactions in which the

  1. The search for low photodesorption coatings

    International Nuclear Information System (INIS)

    Foerster, C.L.; Korn, G.

    1990-01-01

    Low photo desorption (PSD) from surfaces of vacuum chambers increases the beam lifetime and reduces the cost of the pumping system of any storage ring. In compact rings where all radiated power (∼10 kW) is incident on a few meters only, low PSD and good thermal conductivity of photon absorbers are of particular importance. An experimental chamber in which one meter long bars can be exposed to white photon beam with 500 eV critical energy has been built and installed on the U10B beamline in the VUV ring at the NSLS. Several reference bars made of high purity copper and a TiN coating on copper have been measured. Subsequent runs will include gold coating on copper, aluminum (200 degree C baked), diamond coating on copper and uncoated beryllium bars. In this paper the desorption coefficients will be measured and compared. 6 refs., 4 figs

  2. Binomial Rings: Axiomatisation, Transfer and Classification

    OpenAIRE

    Xantcha, Qimh Richey

    2011-01-01

    Hall's binomial rings, rings with binomial coefficients, are given an axiomatisation and proved identical to the numerical rings studied by Ekedahl. The Binomial Transfer Principle is established, enabling combinatorial proofs of algebraical identities. The finitely generated binomial rings are completely classified. An application to modules over binomial rings is given.

  3. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  4. Proton and electron impact on molecular and atomic oxygen: I. High resolution fluorescence spectra in the visible and VUV spectral range and emission cross-sections for dissociative ionisation and excitation of O2

    International Nuclear Information System (INIS)

    Wilhelmi, O.; Schartner, K.H.

    2000-01-01

    For pt.II see ibid., vol.11, p.45-58, 2000. Molecular oxygen O 2 was dissociated in collisions with protons and electrons in the intermediate velocity range (p + -energies: 17-800 keV, e - -energies: 0.2-2 keV). Fluorescence from excited atomic and singly ionised fragments and from singly ionised molecules was detected in the VUV and in the visible and near UV spectral range. Highly resolved spectra are presented for the VUV (46-131 nm) and the near UV/visible (340-605 nm) spectral range. Absolute emission cross-sections have been determined for dissociative ionisation and excitation leading to fluorescence in the VUV. Results are compared with published data. (orig.)

  5. Degradation mechanisms of the blue-emitting phosphor BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} under baking and VUV-irradiating treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shuxiu E-mail: shuxiu_zhang@dyden.co.jp; Kono, Toshihiko; Ito, Akira; Yasaka, Taketo; Uchiike, Heiju

    2004-01-01

    The luminescent properties of an Eu{sup 2+}-activated hexagonal aluminate, BaMgAl{sub 10}O{sub 17} (BAM), were studied under 147- and 254-nm excitations. The BAM samples were thermally treated by baking and then irradiated in vacuum ultraviolet (VUV) rays. The results show that the emission efficiency of Eu{sup 2+} in BAM under 147-nm excitation degraded seriously after baking or VUV-irradiating treatments, while no significant degradation was observed under 254-nm excitation. The degree of degradation depended on the excitation wavelength, and the absorption edge of the BAM host was suggested to be close to 175 nm (7.2 eV). The differences between the thermal-induced and the VUV-irradiation-induced degradations, and their mechanisms are discussed for the color plasma display applications.

  6. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  7. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    Directory of Open Access Journals (Sweden)

    Keisuke Iwano

    2016-10-01

    Full Text Available We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV to near-infrared (NIR window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H, deuterium (D, and helium (He ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  8. VUV and soft x-ray ionization of a plant volatile: Vanillin (C8H8O3)

    Science.gov (United States)

    Betancourt, A. Moreno; Coutinho, L. H.; Bernini, R. B.; de Moura, C. E. V.; Rocha, A. B.; de Souza, G. G. B.

    2016-03-01

    Plant volatiles are emitted by plants in response to several forms of stress, including interaction with energetic photons. In the present work, we discuss the interaction of extreme UV and soft X-ray photons with a plant volatile, vanillin. The single and double (multiple) ionization of the vanillin molecule have been studied for the first time using time-of-flight mass spectrometry and VUV and soft X-ray photons (synchrotron radiation, at 12.0 eV, 21.2 eV, 130 eV, 310 eV, 531 eV, and 550 eV). At 12.0 and 21.2 eV, only singly charged species are observed and the parent ion, C8H8O3+, is the dominant species. Energy differences for some selected fragments were calculated theoretically in this energy region. At 130 eV, direct double and triple ionization of the valence electrons may occur. The fragmentation increases and CHO+ becomes one of the main cations in the mass spectrum. The molecular ion is still the dominant species, but other fragments, such as C6H5O+, begin to present similar intensities. At 310 eV, C 1s electrons may be ionized and Auger processes give rise to dissociative doubly ionized cations. Ionization around the O 1s edge has been studied both at the 531 eV resonance and above the ionization edge. Resonant and normal Auger processes play a significant role in each case and a large fragmentation of the molecule is observed at both photon energies, with intense fragments such as CHO+ and CH3+ being clearly observed. A near edge X-ray absorption fine structure spectrum of the vanillin molecule was obtained around the O 1s ionization threshold. In addition, the fragmentation of vanillin has also been studied using a fast beam of electrons (800 eV), for the sake of comparison.

  9. VUV and soft x-ray ionization of a plant volatile: Vanillin (C8H8O3)

    International Nuclear Information System (INIS)

    Betancourt, A. Moreno; Moura, C. E. V. de; Rocha, A. B.; Souza, G. G. B. de; Coutinho, L. H.; Bernini, R. B.

    2016-01-01

    Plant volatiles are emitted by plants in response to several forms of stress, including interaction with energetic photons. In the present work, we discuss the interaction of extreme UV and soft X-ray photons with a plant volatile, vanillin. The single and double (multiple) ionization of the vanillin molecule have been studied for the first time using time-of-flight mass spectrometry and VUV and soft X-ray photons (synchrotron radiation, at 12.0 eV, 21.2 eV, 130 eV, 310 eV, 531 eV, and 550 eV). At 12.0 and 21.2 eV, only singly charged species are observed and the parent ion, C 8 H 8 O 3 + , is the dominant species. Energy differences for some selected fragments were calculated theoretically in this energy region. At 130 eV, direct double and triple ionization of the valence electrons may occur. The fragmentation increases and CHO + becomes one of the main cations in the mass spectrum. The molecular ion is still the dominant species, but other fragments, such as C 6 H 5 O + , begin to present similar intensities. At 310 eV, C 1s electrons may be ionized and Auger processes give rise to dissociative doubly ionized cations. Ionization around the O 1s edge has been studied both at the 531 eV resonance and above the ionization edge. Resonant and normal Auger processes play a significant role in each case and a large fragmentation of the molecule is observed at both photon energies, with intense fragments such as CHO + and CH 3 + being clearly observed. A near edge X-ray absorption fine structure spectrum of the vanillin molecule was obtained around the O 1s ionization threshold. In addition, the fragmentation of vanillin has also been studied using a fast beam of electrons (800 eV), for the sake of comparison.

  10. Tinkering at the main-ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1982-08-23

    To improve production of usable antiprotons using the proton beam from the main ring and the lossless injection of cooled antiprotons into the main ring, modifications of the main ring lattice are recommended.

  11. Is the bell ringing?

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    During the Nobel prize-winning UA1 experiment, scientists in the control room used to ring a bell if a particularly interesting event had occurred. Today, the “CMS Exotica hotline” routine produces a daily report that lists the exotic events that were recorded the day before.   Display of an event selected by the Exotica routine. Take just a very small fraction of the available data (max. 5%); define the events that you want to keep and set the parameters accordingly; run the Exotica routine and only look at the very few images that the system has selected for you. This is the recipe that a small team of CMS researchers has developed to identify the signals coming from possible new physics processes. “This approach does not replace the accurate data analysis on the whole set of data. However, it is a very fast and effective way to focus on just a few events that are potentially very interesting”, explains Maurizio Pierini (CERN), who developed the...

  12. Characteristics of a nanosecond-barrier-discharge-pumped multiwave UV – VUV lamp on a mixture of argon, krypton and vapours of freon

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, A K; Minya, A I; Hrytsak, R V; Gomoki, Z T [Uzhgorod National University, Uzhgorod (Ukraine)

    2015-02-28

    We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar – Kr – CCl{sub 4}, which emits in the spectral range of 170 – 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl{sub 2} (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised. (uv - vuv emitters)

  13. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  14. Quantum Fourier Transform Over Galois Rings

    OpenAIRE

    Zhang, Yong

    2009-01-01

    Galois rings are regarded as "building blocks" of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to the quantum algorit...

  15. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  16. Researches on the Piston Ring

    Science.gov (United States)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  17. Soft Congruence Relations over Rings

    Science.gov (United States)

    Xin, Xiaolong; Li, Wenting

    2014-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively. PMID:24949493

  18. Distributively generated matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-04-01

    It is known that if R is a near ring with identity then (I,+) is abelian if (I + ,+) is abelian and (I,+) is abelian if (I*,+) is abelian [S.J. Abbasi, J.D.P. Meldrum, 1991]. This paper extends these results. We show that if R is a distributively generated near ring with identity then (I,+) is included in Z(R), the center of R, if (I + ,+) is included in Z(M n (R)), the center of matrix near ring M n (R). Furthermore (I,+) is included in Z(R) if (I*,+) is included in Z(M n (R)). (author). 5 refs

  19. SMARANDACHE NON-ASSOCIATIVE RINGS

    OpenAIRE

    Vasantha, Kandasamy

    2002-01-01

    An associative ring is just realized or built using reals or complex; finite or infinite by defining two binary operations on it. But on the contrary when we want to define or study or even introduce a non-associative ring we need two separate algebraic structures say a commutative ring with 1 (or a field) together with a loop or a groupoid or a vector space or a linear algebra. The two non-associative well-known algebras viz. Lie algebras and Jordan algebras are mainly built using a vecto...

  20. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  1. Autumn study on storage rings

    CERN Multimedia

    1974-01-01

    The first two weeks of October have seen storage ring people from accelerator Laboratories throughout the world at CERN to study the fundamental problems of very high energy protonproton colliding beam machines.

  2. Minimal Gromov-Witten rings

    International Nuclear Information System (INIS)

    Przyjalkowski, V V

    2008-01-01

    We construct an abstract theory of Gromov-Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov-Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov-Witten theory of Fano varieties (of unspecified dimension). The Gromov-Witten theory of any quantum minimal variety is a homomorphism from this ring to C. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by 'prime two-pointed invariants'. We also find solutions of the differential equation of type DN for a Fano variety of dimension N in terms of the generating series of one-pointed Gromov-Witten invariants

  3. Cosmic rings from colliding galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mitton, S

    1976-11-18

    Research on two ring galaxies has led to the proposal of an interaction model to account for the rings. It is envisaged that this class of galaxy is created when a compact galaxy crashes through the disc of a spiral galaxy. The results of a spectroscopic investigation of the galaxy known as the Cartwheel and of another ring galaxy 11 NZ 4 are discussed. The general picture of ring galaxies which emerges from these studies of a massive starry nucleus with a necklace of emitting gas and some spokes and along the spin axis of the wheel a small companion galaxy that is devoid of interstellar gas. An explanation of these properties is considered.

  4. Ring lasers - a brief history

    Science.gov (United States)

    Klein, Tony

    2017-10-01

    Used these days in inertial navigation, ring lasers are also used in recording the tiniest variations in the Earth's spin, as well in detecting earthquakes and even the drift of continents. How did it all begin?

  5. Ring insertions as light sources

    International Nuclear Information System (INIS)

    Green, G.K.

    1975-01-01

    Bending magnets can be inserted in the long straight sections of electron storage rings to produce synchrotron radiation. If the design is carefully proportioned, the bending magnets create only a small perturbation of the properties of the ring. The resulting spectra have favorable optical properties as sources for spectroscopy and diffraction studies. The characteristics of the source are discussed, and the geometrical requirements of the magnets are presented

  6. Collector ring project at FAIR

    International Nuclear Information System (INIS)

    Dolinskii, A; Blell, U; Dimopoulou, C; Gorda, O; Leibrock, H; Litvinov, S; Laier, U; Schurig, I; Weinrich, U; Berkaev, D; Koop, I; Starostenko, A; Shatunov, P

    2015-01-01

    The collector ring is a dedicated ring for fast cooling of ions coming from separators at the FAIR project. To accommodate optimal technical solutions, a structure of a magnet lattice was recently reviewed and modified. Consequently, more appropriate technical solutions for the main magnets could be adopted. A general layout and design of the present machine is shown. The demanding extraction schemes have been detailed and open design issues were completed. (paper)

  7. Synlig læring

    DEFF Research Database (Denmark)

    Brandsen, Mads

    2017-01-01

    Introduktionen af John Hatties synlig læring i den danske skoleverden møder stadig meget kritik. Mange lærere og pædagoger oplever synlig læring som en tornado, der vil opsuge og ødelægge deres særlige danske udgave af den kontinentale dannelsestænkning, didaktik og pædagogik. Spørgsmålet er om...

  8. The circular RFQ storage ring

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1998-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features used in a conventional storage ring and an ion trap, and is basically a linear RFQ bend on itself. In summary the advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  9. The Circular RFQ Storage Ring

    International Nuclear Information System (INIS)

    Ruggiero, A. G.

    1999-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features of conventional storage rings and ion traps, and is basically a linear RFQ bent on itself. The advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  10. Electrically charged dilatonic black rings

    International Nuclear Information System (INIS)

    Kunduri, Hari K.; Lucietti, James

    2005-01-01

    In this Letter we present (electrically) charged dilatonic black ring solutions of the Einstein-Maxwell-dilaton theory in five dimensions and we consider their physical properties. These solutions are static and as in the neutral case possess a conical singularity. We show how one may remove the conical singularity by application of a Harrison transformation, which physically corresponds to supporting the charged ring with an electric field. Finally, we discuss the slowly rotating case for arbitrary dilaton coupling

  11. Low emittance electron storage rings

    Science.gov (United States)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  12. Resonance capture and Saturn's rings

    International Nuclear Information System (INIS)

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab

  13. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  14. Selective Generation of the Radical Cation Isomers [CH3CN](•+) and [CH2CNH](•+) via VUV Photoionization of Different Neutral Precursors and Their Reactivity with C2H4.

    Science.gov (United States)

    Polášek, Miroslav; Zins, Emilie-Laure; Alcaraz, Christian; Žabka, Ján; Křížová, Věra; Giacomozzi, Linda; Tosi, Paolo; Ascenzi, Daniela

    2016-07-14

    Experimental and theoretical studies have been carried out to demonstrate the selective generation of two different C2H3N(+) isomers, namely, the acetonitrile [CH3CN](•+) and the ketenimine [CH2CNH](•+) radical cations. Photoionization and dissociative photoionization experiments from different neutral precursors (acetonitrile and butanenitrile) have been performed using vacuum ultraviolet (VUV) synchrotron radiation in the 10-15 eV energy range, delivered by the DESIRS beamline at the SOLEIL storage ring. For butanenitrile (CH3CH2CH2CN) an experimental ionization threshold of 11.29 ± 0.05 eV is obtained, whereas the appearance energy for the formation of [CH2CNH](•+) fragments is 11.52 ± 0.05 eV. Experimental findings are fully supported by theoretical calculations at the G4 level of theory (ZPVE corrected energies at 0 K), giving a value of 11.33 eV for the adiabatic ionization energy of butanenitrile and an exothermicity of 0.49 for fragmentation into [CH2CNH](•+) plus C2H4, hampered by an energy barrier of 0.29 eV. The energy difference between [CH3CN](•+) and [CH2CNH](•+) is 2.28 eV (with the latter being the lowest energy isomer), and the isomerization barrier is 0.84 eV. Reactive monitoring experiments of the [CH3CN](•+) and [CH2CNH](•+) isomers with C2H4 have been performed using the CERISES guided ion beam tandem mass spectrometer and exploiting the selectivity of ethylene that gives exothermic charge exchange and proton transfer reactions with [CH3CN](•+) but not with [CH2CNH](•+) isomers. In addition, minor reactive channels are observed leading to the formation of new C-C bonds upon reaction of [CH3CN](•+) with C2H4, and their astrochemical implications are briefly discussed.

  15. A new broadly tunable (7.4-10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry

    Science.gov (United States)

    Hanna, S. J.; Campuzano-Jost, P.; Simpson, E. A.; Robb, D. B.; Burak, I.; Blades, M. W.; Hepburn, J. W.; Bertram, A. K.

    2009-01-01

    A laser based vacuum ultraviolet (VUV) light source using resonance enhanced four wave difference mixing in xenon gas was developed for near threshold ionization of organics in atmospheric aerosol particles. The source delivers high intensity pulses of VUV light (in the range of 1010 to 1013 photons/pulse depending on wavelength, 5 ns FWHM) with a continuously tunable wavelength from 122 nm (10.2 eV) to 168 nm (7.4 eV)E The setup allows for tight (caffeine aerosols vaporized by a pulsed CO2 laser in an ion trap mass spectrometer. Mass spectra from single particles down to 300 nm in diameter were collected. Excellent signal to noise characteristics for these small particles give a caffeine detection limit of 8 × 105 molecules which is equivalent to a single 75 nm aerosol, or approximately 1.5% of a 300 nm particleE The appearance energy of caffeine originating from the aerosol was also measured and found to be 7.91 ± 0.05 eV, in good agreement with literature values.

  16. Spectral-kinetic characteristics of Pr3+ luminescence in LiLuF4 host upon excitation in the UV-VUV range

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Zimmerer, G.; Shiran, N.; Voronova, V.; Nesterkina, V.; Gektin, A.; Shimamura, K.; Villora, E.; Jing, F.; Shalapska, T.; Voloshinovskii, A.

    2008-01-01

    Spectral-kinetic study of Pr 3+ luminescence has been performed for LiLuF 4 :Pr(0.1 mol%) single crystal upon the excitation within 5-12 eV range at T=8 K. The fine-structure of Pr 3+ 4f 2 →4f 5d excitation spectra is shown for LiLuF 4 :Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr 3+ ions into 4f 5d involving 4f 1 core in the ground state. Favourable conditions have been revealed in LiLuF 4 :Pr(0.1 mol%) for the transformation of UV-VUV excitation quanta into the visible range. Lightly doped LiLuF 4 :Pr crystals are considered as the promising luminescent materials possessing the efficient Pr 3+3 P 0 visible emission upon UV-VUV excitation. The mechanism of energy transfer between Lu 3+ host ion and Pr 3+ impurity is discussed

  17. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    International Nuclear Information System (INIS)

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-01-01

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.

  18. Phase-Space Tomography of Giant Pulses in Storage Ring FEL Theory and Experiment

    CERN Document Server

    Chalut, K

    2005-01-01

    The use of giant pulses in storage ring FEL provides for high peak power at the fundamental wavelength and for effective generating of high VUV harmonics. This process is accompanied by a complex nonlinear dynamics of electron beam, which cannot be described by simple models. In this paper we compare the results of numerical simulations, performed by self-consistent #uvfel code, with experimental observations of electron beam evolution in the longitudinal phase space. The evolution of the electron beam distribution was obtained from the images recorded by dual-sweep streak-camera. The giant pulse process occurs on a short fast time scale compared with synchrotron oscillation period, which make standard methods of tomography inapplicable. We had developed a novel method of reconstruction, an SVD-Based Phase-Space Tomography, which allows to reconstruct phase space distribution from as few as two e-bunch profiles separated by about 3 degrees of rotation in the phase space. This technique played critical role in...

  19. Accretion in Saturn's F Ring

    Science.gov (United States)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  20. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  1. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  2. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  3. Structure and dynamics of ringed galaxies

    International Nuclear Information System (INIS)

    Buta, R.J.

    1984-01-01

    In many spiral and SO galaxies, single or multiple ring structures are visible in the disk. These inner rings (r), outer rings (R), and nuclear rings (nr) were investigated by means of morphology, photometry, and spectroscopy in order to provide basic data on a long neglected phenomenon. The metric properties of each ring are investigated and found to correlate with the structure of the parent galaxy. When properly calibrated, inner rings in barred (SB) systems can be used as geometric extragalactic distance indicators to distances in excess of 100 Mpc. Other statistics are presented that confirm previous indications that the rings have preferred shapes, relative sizes, and orientations with respect to bars. A survey is made of the less homogeneous non-barred (SA) ringed systems, and the causes of the inhomogeneity are isolated. It is shown that rings can be identified in multiple-ring SA systems that are exactly analogous to those in barred spirals

  4. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    International Nuclear Information System (INIS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-01-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  5. Pure subrings of the rings

    International Nuclear Information System (INIS)

    Tsarev, Andrei V

    2009-01-01

    Pure subrings of finite rank in the Z-adic completion of the ring of integers and in its homomorphic images are considered. Certain properties of these rings are studied (existence of an identity element, decomposability into a direct sum of essentially indecomposable ideals, condition for embeddability into a csp-ring, etc.). Additive groups of these rings and conditions under which these rings are subrings of algebraic number fields are described. Bibliography: 12 titles.

  6. Primitivity and weak distributivity in near rings and matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-08-01

    This paper shows the structure of matrix near ring constructed over a weakly distributive and primative near ring. It is proved that a weakly distributive primitive near ring is a ring and the matrix near rings constructed over it is also a bag. (author). 14 refs

  7. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons

    2016-09-01

    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  8. HYPERAUTOFLUORESCENT RING IN AUTOIMMUNE RETINOPATHY

    Science.gov (United States)

    LIMA, LUIZ H.; GREENBERG, JONATHAN P.; GREENSTEIN, VIVIENNE C.; SMITH, R. THEODORE; SALLUM, JULIANA M. F.; THIRKILL, CHARLES; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2015-01-01

    Purpose To report the presence of a hyperautofluorescent ring and corresponding spectral-domain optical coherence tomography (SD-OCT) features seen in patients with autoimmune retinopathy. Methods All eyes were evaluated by funduscopic examination, full-fleld electroretinography, fundus autofluorescence, and SD-OCT. Further confirmation of the diagnosis was obtained with immunoblot and immunohistochemistry testing of the patient’s serum. Humphrey visual fields and microperimetry were also performed. Results Funduscopic examination showed atrophic retinal pigment epithelium (RPE) associated with retinal artery narrowing but without pigment deposits. The scotopic and photopic full-field electroretinograms were nondetectable in three patients and showed a cone–rod pattern of dysfunction in one patient. Fundus autofluorescence revealed a hyperautofluorescent ring in the parafoveal region, and the corresponding SD-OCT demonstrated loss of the photoreceptor inner segment–outer segment junction with thinning of the outer nuclear layer from the region of the hyperautofluorescent ring toward the retinal periphery. The retinal layers were generally intact within the hyperautofluorescent ring, although the inner segment–outer segment junction was disrupted, and the outer nuclear layer and photoreceptor outer segment layer were thinned. Conclusion This case series revealed the structure of the hyperautofluorescent ring in autoimmune retinopathy using SD-OCT. Fundus autofluorescence and SD-OCT may aid in the diagnosis of autoimmune retinopathy and may serve as a tool to monitor its progression. PMID:22218149

  9. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  10. Proton storage ring summer workshop

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.

    1977-10-01

    During the week of August 16, 1976 a Workshop was held at the Los Alamos Scientific Laboratory (LASL) on the Proton Storage Ring (PSR) for the Weapons Neutron Research Facility (WNRF). Written contributions were solicited from each of the participants in the Workshop, and the contributions that were received are presented. The papers do not represent polished or necessarily complete work, but rather represent ''first cuts'' at their respective areas. Topics covered include: (1) background information on the storage ring; (2) WNRF design; (3) rf transient during filling; (4) rf capture; (5) beam bunch compression; (6) transverse space charge limits; (7) transverse resistive instability in the PSR; (8) longitudinal resistive instability; (9) synchrotron frequency splitting; (10) E Quintus Unum--off resonance; (11) first harmonic bunching in the storage ring; (12) kicker considerations; (13) beam extraction; (14) ferrite kicker magnets; and (15) E Quintus Unum: a possible ejection scheme

  11. New Main Ring control system

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Ducar, R.; Franck, A.; Gomilar, J.; Hendricks, B.; Smedinghoff, J.

    1990-03-01

    The Fermilab Main Ring control system has been operational for over sixteen years. Aging and obsolescence of the equipment make the maintenance difficult. Since the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab accelerators except the Main Ring. Modernization of the equipment and standardization of the hardware and software have thus become inevitable. The Tevatron CAMAC serial system has been chosen as a basic foundation in order to make the Main Ring control system compatible with the rest of the accelerator complex. New hardware pieces including intelligent CAMAC modules have been designed to satisfy unique requirements. Fiber optic cable and repeaters have been installed in order to accommodate new channel requirements onto the already saturated communication medium system. 8 refs., 2 figs

  12. Tree rings and radiocarbon calibration

    International Nuclear Information System (INIS)

    Barbetti, M.

    1999-01-01

    Only a few kinds of trees in Australia and Southeast Asia are known to have growth rings that are both distinct and annual. Those that do are therefore extremely important to climatic and isotope studies. In western Tasmania, extensive work with Huon pine (Lagarostrobos franklinii) has shown that many living trees are more than 1,000 years old, and that their ring widths are sensitive to temperature, rainfall and cloud cover (Buckley et al. 1997). At the Stanley River there is a forest of living (and recently felled) trees which we have sampled and measured. There are also thousands of subfossil Huon pine logs, buried at depths less than 5 metres in an area of floodplain extending over a distance of more than a kilometre with a width of tens of metres. Some of these logs have been buried for 50,000 years or more, but most of them belong to the period between 15,000 years and the present. In previous expeditions in the 1980s and 1990s, we excavated and sampled about 350 logs (Barbetti et al. 1995; Nanson et al. 1995). By measuring the ring-width patterns, and matching them between logs and living trees, we have constructed a tree-ring dated chronology from 571 BC to AD 1992. We have also built a 4254-ring floating chronology (placed by radiocarbon at ca. 3580 to 7830 years ago), and an earlier 1268-ring chronology (ca. 7,580 to 8,850 years ago). There are many individuals, or pairs of logs which match and together span several centuries, at 9,000 years ago and beyond

  13. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  14. Superconducting proton ring for PETRA

    International Nuclear Information System (INIS)

    Baynham, E.

    1979-01-01

    A powerful new facility for colliding beam physics could be provided by adding a proton storage ring in the range of several hundred GeV to the electron-positron storage ring PETRA at DESY. This can be achieved in an economic way utilizing the PETRA tunnel and taking advantage of the higher magnetic fields of superconducting magnets which would be placed above or below the PETRA magnets. A central field of 4 Tesla in the bending magnets corresponds to a proton energy of 225 GeV. (orig.)

  15. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  16. Supersymmetric rings in field theory

    International Nuclear Information System (INIS)

    Blanco-Pillado, Jose J.; Redi, Michele

    2006-01-01

    We study the dynamics of BPS string-like objects obtained by lifting monopole and dyon solutions of N = 2 Super-Yang-Mills theory to five dimensions. We present exact traveling wave solutions which preserve half of the supersymmetries. Upon compactification this leads to macroscopic BPS rings in four dimensions in field theory. Due to the fact that the strings effectively move in six dimensions the same procedure can also be used to obtain rings in five dimensions by using the hidden dimension

  17. Damping ring designs and issues

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Decking, Winfried

    2003-01-01

    The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed

  18. Laparoscopic appendicectomy using endo-ring applicator and fallope rings

    International Nuclear Information System (INIS)

    Ali, Iyoob V; Maliekkal, Joji I

    2009-01-01

    Wider adoption of laparoscopic appendicectomy (LA) is limited by problems in securing the appendiceal base as well as the cost and the duration compared with the open procedure. The objective of this study was to assess the feasibility and efficacy of a new method for securing the appendiceal base in LA, so as to make the entire procedure simpler and cheaper, and hence, more popular. Twenty-five patients who were candidates for appendicectomy (emergency as well as elective) and willing for the laparoscopic procedure were selected for this study. Ports used were 10 mm at the umbilicus, 5 mm at the lower right iliac fossa, and 10 mm at the left iliac fossa. Extremely friable, ruptured, or turgid organs of diameters larger than 8 mm were excluded from the study. The mesoappendix was divided close to the appendix by diathermy. Fallope rings were applied to the appendiceal base using a special ring applicator, and the appendix was divided and extracted through the lumen of the applicator. The procedure was successful in 23 (92%) cases, and the mean duration of the procedure was 20 minutes (15-32 minutes). There were no procedural complications seen during a median follow-up of two weeks. The equipment and rings were cheaper when compared with that of the standard methods of securing the base of the appendix. LA using fallope rings is a safe, simple, easy-to-learn, and economically viable method. (author)

  19. Update on VUV beamlines

    International Nuclear Information System (INIS)

    Waldhauer, A.

    1985-01-01

    On the building 131 mezzanine a new station, the 18 degree line, is planned for Beam Line III that will cover the photon energy range from 5 to 50 eV with high resolution and good flux. This station will use the Seya-Namioka monochromator that is currently in use on the 8 degree line, along with new input optics including a Silicon Carbide mirror as the first optical element. The overall flux should be higher that on the current 8 degree line at all photon energies, especially above 25 eV. Procurement has started and installation of the major components will occur during the winter and spring of 1986 with beam available to users in the fall of 1986. The Seya-Namioka monochromator will be replaced on Beam Line I by a toroidal grating monochromator (TGM). This TGM will cover the photon energy range from 9 to 170 eV and will use the existing M 0 mirror, with new M 1 and refocussing mirrors. The support frame will be designed to compensate for the instability of the slab which plagues the current 8 degree line, so the resolution should be limited by the monochromator and not the location of the beam line. The TGM is scheduled to arrive during the summer of 1986

  20. Examination techniques for non-magnetic rings

    International Nuclear Information System (INIS)

    Metala, M.J.; Kilpatrick, N.L.; Frank, W.W.

    1990-01-01

    Until the introduction of 18Mn18Cr rings a few years ago, most non-magnetic steel rings for generator rotors were made from 18Mn5Cr alloy steel, which is highly susceptible to stress corrosion cracking in the presence of water. This, the latest in a series of papers on the subject of non-magnetic rings by the authors' company, provides a discussion of nondestructive examination of 18Mn5Cr rings for stress corrosion distress. With rings on the rotor, fluorescent penetrant, ultrasonic and special visual techniques are applied. With rings off the rotor, the fluorescent penetrant technique is used, with and without stress enhancement

  1. Ring diagrams and phase transitions

    International Nuclear Information System (INIS)

    Takahashi, K.

    1986-01-01

    Ring diagrams at finite temperatures carry most infrared-singular parts among Feynman diagrams. Their effect to effective potentials are in general so significant that one must incorporate them as well as 1-loop diagrams. The author expresses these circumstances in some examples of supercooled phase transitions

  2. WR stars with ring nebulae

    International Nuclear Information System (INIS)

    Tutukov, A.

    1982-01-01

    It is shown that most of usually apparently single nitrogen WR stars with ring emission nebulae around them (WN + Neb) are a probable product of the evolution of a massive close binary with initial masses of components exceeding approximately 20 solar masses. (Auth.)

  3. Characteristic of Rings. Prime Fields

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-12-01

    Full Text Available The notion of the characteristic of rings and its basic properties are formalized [14], [39], [20]. Classification of prime fields in terms of isomorphisms with appropriate fields (ℚ or ℤ/p are presented. To facilitate reasonings within the field of rational numbers, values of numerators and denominators of basic operations over rationals are computed.

  4. Ring laser frequency biasing mechanism

    International Nuclear Information System (INIS)

    McClure, R.E.

    1975-01-01

    A ring laser cavity including a magnetically saturable member for differentially phase shifting the contradirectional waves propagating in the laser cavity, the phase shift being produced by the magneto-optic interaction occurring between the light waves and the magnetization in the cavity forming component as the light waves are reflected therefrom is described

  5. Counting problems for number rings

    NARCIS (Netherlands)

    Brakenhoff, Johannes Franciscus

    2009-01-01

    In this thesis we look at three counting problems connected to orders in number fields. First we study the probability that for a random polynomial f in Z[X] the ring Z[X]/f is the maximal order in Q[X]/f. Connected to this is the probability that a random polynomial has a squarefree

  6. Progressiv læring

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    2017-01-01

    SAMMENFATNING I denne evalueringsrapport præsenterer Nationalt Center for Kompetenceudvikling ved Aarhus Universitet (herefter NCK) og Rambøll Management Consulting (herefter Rambøll) den værktøjsspecifikke evaluering af Progressiv Læring som pædagogisk værktøj for de ni implementeringsskoler i s...

  7. Wands of the Black Ring

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena

    2005-01-01

    Roč. 37, č. 7 (2005), s. 1277-1287 ISSN 0001-7701 R&D Projects: GA ČR GP202/03/P017; GA AV ČR KJB1019403 Institutional research plan: CEZ:AV0Z10190503 Keywords : algebraic classification * Petrov classification * black ring Subject RIV: BA - General Mathematics Impact factor: 1.550, year: 2005

  8. Substitution of matrices over rings

    NARCIS (Netherlands)

    Hautus, M.L.J.

    1995-01-01

    For a given commutative ring with an identity element, we define and study the substitution of a matrix with entries in into a matrix polynomial or rational function over . A Bezout-type remainder theorem and a "partial-substitution rule" are derived and used to obtain a number of results. The

  9. Exercises in modules and rings

    CERN Document Server

    Lam, TY

    2009-01-01

    This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.

  10. On commutativity theorems for rings

    Directory of Open Access Journals (Sweden)

    H. A. S. Abujabal

    1990-01-01

    Full Text Available Let R be an associative ring with unity. It is proved that if R satisfies the polynomial identity [xny−ymxn,x]=0(m>1,n≥1, then R is commutative. Two or more related results are also obtained.

  11. The spectral characteristics of Gd sub 2 SiO sub 5 :Eu sup 3 sup + in VUV-UV range

    CERN Document Server

    Chen Yong; Wei Ya Guang; Tao Ye

    2002-01-01

    Synchrotron radiation source was used to investigated the spectral characteristics of Gd sub 2 SiO sub 5 :Eu sup 3 sup + in VUV-UV range. The various energy transfers at room temperature and 10 K, including from host or Gd sup 3 sup + ions to Eu sup 3 sup + ions and transfer between Eu sup 3 sup + ions at two different lattice sites, were discussed. In addition the emission spectra under 186 nm and 276 nm excitation were compared from the view of quantum cutting. The results indicate that Gd sub 2 SiO sub 5 :Eu sup 3 sup + is a kind of material with potential high efficiency quantum cutting

  12. IR + VUV double resonance spectroscopy and extended density functional theory studies of ketone solvation by alcohol: 2-butanone·(methanol)n, n = 1-4 clusters.

    Science.gov (United States)

    Shin, Joong-Won; Bernstein, Elliot R

    2017-09-28

    Infrared plus vacuum ultraviolet (IR + VUV) photoionization vibrational spectroscopy of 2-butanone/methanol clusters [MEK·(MeOH) n , n = 1-4] is performed to explore structures associated with hydrogen bonding of MeOH molecules to the carbonyl functional group of the ketone. IR spectra and X3LYP/6-31++G(d,p) calculations show that multiple isomers of MEK·(MeOH) n are generated in the molecular beam as a result of several hydrogen bonding sites available to the clusters throughout the size range investigated. Isomer interconversion involving solvating MeOH rearrangement should probably occur for n = 1 and 2. The mode energy for a hydrogen bonded OH stretching transition gradually redshifts as the cluster size increases. Calculations suggest that the n = 3 cluster isomers adopt structures in which the MEK molecule is inserted into the cyclic MeOH hydrogen bond network. In larger structures, the cyclic network may be preserved.

  13. 21 CFR 870.3800 - Annuloplasty ring.

    Science.gov (United States)

    2010-04-01

    ...) Identification. An annuloplasty ring is a rigid or flexible ring implanted around the mitral or tricuspid heart valve for reconstructive treatment of valvular insufficiency. (b) Classification. Class II (special...

  14. International Tree Ring Data Bank (ITRDB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tree ring data from the International Tree Ring Data Bank and World Data Center for Paleoclimatology archives. Data include raw treering measurements (most are...

  15. Planetary ring systems properties, structures, and evolution

    CERN Document Server

    Murray, Carl D

    2018-01-01

    Planetary rings are among the most intriguing structures of our solar system and have fascinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring–particle orbits is followed by a review of the known planetary ring systems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties and their origins, and investigations using computer simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field's future. Researchers of all levels will benefit from this thorough and engaging presentation.

  16. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  17. Mathematical simulation of bearing ring grinding process

    Science.gov (United States)

    Koltunov, I. I.; Gorbunova, T. N.; Tumanova, M. B.

    2018-03-01

    The paper suggests the method of forming a solid finite element model of the bearing ring. Implementation of the model allowed one to evaluate the influence of the inner cylindrical surface grinding scheme on the ring shape error.

  18. Dynamics of long ring Raman fiber laser

    Science.gov (United States)

    Sukhanov, Sergey V.; Melnikov, Leonid A.; Mazhirina, Yulia A.

    2016-04-01

    The numerical model for dynamics of long fiber ring Raman laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees numerical method. Different regimes of a long ring fiber Raman laser are investigated.

  19. Genetics Home Reference: ring chromosome 20 syndrome

    Science.gov (United States)

    ... drugs. Prolonged seizure episodes known as non-convulsive status epilepticus also appear to be characteristic of ring chromosome ... K, Takahashi Y. Ring chromosome 20 and nonconvulsive status epilepticus. A new epileptic syndrome. Brain. 1997 Jun;120 ( ...

  20. The Hi-Ring DCN Architecture

    DEFF Research Database (Denmark)

    Galili, Michael; Kamchevska, Valerija; Ding, Yunhong

    2016-01-01

    We will review recent work on the proposed hierarchical ring-based architecture (HiRing) proposed for data center networks. We will discuss the architecture and initial demonstrations of optical switching performance and time-domain synchronization......We will review recent work on the proposed hierarchical ring-based architecture (HiRing) proposed for data center networks. We will discuss the architecture and initial demonstrations of optical switching performance and time-domain synchronization...