WorldWideScience

Sample records for nsf mutant zebrafish

  1. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  2. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  3. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  4. Characterization of a Weak Allele of Zebrafish cloche Mutant

    Science.gov (United States)

    Ma, Ning; Huang, Zhibin; Chen, Xiaohui; He, Fei; Wang, Kun; Liu, Wei; Zhao, Linfeng; Xu, Xiangmin; Liao, Wangjun; Ruan, Hua; Luo, Shenqiu; Zhang, Wenqing

    2011-01-01

    Hematopoiesis is a complicated and dynamic process about which the molecular mechanisms remain poorly understood. Danio rerio (zebrafish) is an excellent vertebrate system for studying hematopoiesis and developmental mechanisms. In the previous study, we isolated and identified a cloche 172 (clo 172) mutant, a novel allele compared to the original cloche (clo) mutant, through using complementation test and initial mapping. Here, according to whole mount in-situ hybridization, we report that the endothelial cells in clo 172 mutant embryos, although initially developed, failed to form the functional vascular system eventually. In addition, further characterization indicates that the clo 172 mutant exhibited weaker defects instead of completely lost in primitive erythroid cells and definitive hematopoietic cells compared with the clo s5 mutant. In contrast, primitive myeloid cells were totally lost in clo 172 mutant. Furthermore, these reappeared definitive myeloid cells were demonstrated to initiate from the remaining hematopoietic stem cells (HSCs) in clo 172 mutant, confirmed by the dramatic decrease of lyc in clo 172 runx1w84x double mutant. Collectively, the clo 172 mutant is a weak allele compared to the clo s5 mutant, therefore providing a model for studying the early development of hematopoietic and vascular system, as well as an opportunity to further understand the function of the cloche gene. PMID:22132109

  5. Histological Characterization of the Dicer1 Mutant Zebrafish Retina

    Directory of Open Access Journals (Sweden)

    Saeed Akhtar

    2015-01-01

    Full Text Available DICER1, a multidomain RNase III endoribonuclease, plays a critical role in microRNA (miRNA and RNA-interference (RNAi functional pathways. Loss of Dicer1 affects different developmental processes. Dicer1 is essential for retinal development and maintenance. DICER1 was recently shown to have another function of silencing the toxicity of Alu RNAs in retinal pigment epithelium (RPE cells, which are involved in the pathogenesis of age related macular degeneration. In this study, we characterized a Dicer1 mutant fish line, which carries a nonsense mutation (W1457Ter induced by N-ethyl-N-nitrosourea mutagenesis. Zebrafish DICER1 protein is highly conserved in the evolution. Zebrafish Dicer1 is expressed at the earliest stages of zebrafish development and persists into late developmental stages; it is widely expressed in adult tissues. Homozygous Dicer1 mutant fish (DICER1W1457Ter/W1457Ter have an arrest in early growth with significantly smaller eyes and are dead at 14–18 dpf. Heterozygous Dicer1 mutant fish have similar retinal structure to that of control fish; the retinal pigment epithelium (RPE cells are normal with no sign of degeneration at the age of 20 months.

  6. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.

    Science.gov (United States)

    Lim, K-H; Chang, Y-C; Chiang, Y-H; Lin, H-C; Chang, C-Y; Lin, C-S; Huang, L; Wang, W-T; Gon-Shen Chen, C; Chou, W-C; Kuo, Y-Y

    2016-10-07

    CALR mutations are identified in about 30% of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs) including essential thrombocythemia (ET) and primary myelofibrosis. Although the molecular pathogenesis of CALR mutations leading to MPNs has been studied using in vitro cell lines models, how mutant CALR may affect developmental hematopoiesis remains unknown. Here we took advantage of the zebrafish model to examine the effects of mutant CALR on early hematopoiesis and model human CALR-mutated MPNs. We identified three zebrafish genes orthologous to human CALR, referred to as calr, calr3a and calr3b. The expression of CALR-del52 and CALR-ins5 mutants caused an increase in the hematopoietic stem/progenitor cells followed by thrombocytosis without affecting normal angiogenesis. The expression of CALR mutants also perturbed early developmental hematopoiesis in zebrafish. Importantly, morpholino knockdown of mpl but not epor or csf3r could significantly attenuate the effects of mutant CALR. Furthermore, the expression of mutant CALR caused jak-stat signaling activation in zebrafish that could be blocked by JAK inhibitors (ruxolitinib and fedratinib). These findings showed that mutant CALR activates jak-stat signaling through an mpl-dependent mechanism to mediate pathogenic thrombopoiesis in zebrafish, and illustrated that the signaling machinery related to mutant CALR tumorigenesis are conserved between human and zebrafish.

  7. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-07-01

    Tuberous sclerosis complex (TSC is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1 kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors.

  8. Apoc2 loss-of-function zebrafish mutant as a genetic model of hyperlipidemia

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-08-01

    Full Text Available Apolipoprotein C-II (APOC2 is an obligatory activator of lipoprotein lipase. Human patients with APOC2 deficiency display severe hypertriglyceridemia while consuming a normal diet, often manifesting xanthomas, lipemia retinalis and pancreatitis. Hypertriglyceridemia is also an important risk factor for development of cardiovascular disease. Animal models to study hypertriglyceridemia are limited, with no Apoc2-knockout mouse reported. To develop a genetic model of hypertriglyceridemia, we generated an apoc2 mutant zebrafish characterized by the loss of Apoc2 function. apoc2 mutants show decreased plasma lipase activity and display chylomicronemia and severe hypertriglyceridemia, which closely resemble the phenotype observed in human patients with APOC2 deficiency. The hypertriglyceridemia in apoc2 mutants is rescued by injection of plasma from wild-type zebrafish or by injection of a human APOC2 mimetic peptide. Consistent with a previous report of a transient apoc2 knockdown, apoc2 mutant larvae have a minor delay in yolk consumption and angiogenesis. Furthermore, apoc2 mutants fed a normal diet accumulate lipid and lipid-laden macrophages in the vasculature, which resemble early events in the development of human atherosclerotic lesions. In addition, apoc2 mutant embryos show ectopic overgrowth of pancreas. Taken together, our data suggest that the apoc2 mutant zebrafish is a robust and versatile animal model to study hypertriglyceridemia and the mechanisms involved in the pathogenesis of associated human diseases.

  9. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  10. Effects of decreased muscle activity on developing axial musculature in nic b107 mutant zebrafish (Danio rerio)

    NARCIS (Netherlands)

    Meulen, van der T.; Schipper, H.; Leeuwen, van J.L.; Kranenbarg, S.

    2005-01-01

    The present paper discusses the effects of decreased muscle activity (DMA) on embryonic development in the zebrafish. Wild-type zebrafish embryos become mobile around 18 h post-fertilisation, long before the axial musculature is fully differentiated. As a model for DMA, the nicb107 mutant was used.

  11. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Adriana Rodríguez-Marí

    2010-07-01

    Full Text Available The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53 mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination.

  12. klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-Induced Vascular and Haematopoietic Phenotypes.

    Directory of Open Access Journals (Sweden)

    Peter Novodvorsky

    Full Text Available The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2 transduces blood flow into molecular signals responsible for a wide range of responses within the vasculature. KLF2 maintains a healthy, quiescent endothelial phenotype. Previous studies report a range of phenotypes following morpholino antisense oligonucleotide-induced klf2a knockdown in zebrafish. Targeted genome editing is an increasingly applied method for functional assessment of candidate genes. We therefore generated a stable klf2a mutant zebrafish and characterised its cardiovascular and haematopoietic development.Using Transcription Activator-Like Effector Nucleases (TALEN we generated a klf2a mutant (klf2ash317 with a 14bp deletion leading to a premature stop codon in exon 2. Western blotting confirmed loss of wild type Klf2a protein and the presence of a truncated protein in klf2ash317 mutants. Homozygous klf2ash317 mutants exhibit no defects in vascular patterning, survive to adulthood and are fertile, without displaying previously described morphant phenotypes such as high-output cardiac failure, reduced haematopoetic stem cell (HSC development or impaired formation of the 5th accessory aortic arch. Homozygous klf2ash317 mutation did not reduce angiogenesis in zebrafish with homozygous mutations in von Hippel Lindau (vhl, a form of angiogenesis that is dependent on blood flow. We examined expression of three klf family members in wildtype and klf2ash317 zebrafish. We detected vascular expression of klf2b (but not klf4a or biklf/klf4b/klf17 in wildtypes but found no differences in expression that might account for the lack of phenotype in klf2ash317 mutants. klf2b morpholino knockdown did not affect heart rate or impair formation of the 5th accessory aortic arch in either wildtypes or klf2ash317 mutants.The klf2ash317 mutation produces a truncated Klf2a protein but, unlike morpholino induced klf2a knockdown, does not affect cardiovascular development.

  13. Forward Genetic Screening Using Behavioral Tests in Zebrafish: A Proof of Concept Analysis of Mutants.

    Science.gov (United States)

    Gerlai, Robert; Poshusta, Tanya L; Rampersad, Mindy; Fernandes, Yohaan; Greenwood, Tammy M; Cousin, Margot A; Klee, Eric W; Clark, Karl J

    2017-01-01

    The zebrafish enjoys several advantages over other model organisms. It is small, easy to maintain, prolific, and numerous genetic tools are available for it. For example, forward genetic screens have allowed investigators to identify important genes potentially involved in a variety of functions from embryogenesis to cancer. However, despite its sophisticated behavioral repertoire, behavioral methods have rarely been utilized in forward genetic screens. Here, we employ a two-tiered strategy, a proof of concept study, to explore the feasibility of behavioral screens. We generated mutant lines using transposon-based insertional mutagenesis, allowing us to bias mutant selection with target genes expressed within the brain. Furthermore, we employed an efficient and fast behavioral pre-selection in which we investigated the locomotory response of 5-day post-fertilization old larval fish to hyperosmotic shock. Based on this assay, we selected five lines for our lower throughput secondary adult behavioral screen. The latter screen utilized tests in which computer animated image presentation and video-tracking-based automated quantification of behavior allowed us to compare heterozygous zebrafish with their wild-type siblings on their responses to a variety of stimuli. We found significant mutation induced adult behavioral alterations in 4 out of the 5 lines analyzed, including changes in response to social or fear inducing stimuli, to handling and novelty, or in habituation to novelty. We discuss the pros and cons of behavioral phenotyping and of the use of different forward genetic methods in biomedical research with zebrafish.

  14. Zebrafish eda and edar mutants reveal conserved and ancestral roles of ectodysplasin signaling in vertebrates.

    Directory of Open Access Journals (Sweden)

    Matthew P Harris

    2008-10-01

    Full Text Available The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda and ectodysplasin receptor (edar genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100 that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution.

  15. Zebrafish eda and edar Mutants Reveal Conserved and Ancestral Roles of Ectodysplasin Signaling in Vertebrates

    Science.gov (United States)

    Harris, Matthew P.; Rohner, Nicolas; Schwarz, Heinz; Perathoner, Simon; Konstantinidis, Peter; Nüsslein-Volhard, Christiane

    2008-01-01

    The genetic basis of the development and variation of adult form of vertebrates is not well understood. To address this problem, we performed a mutant screen to identify genes essential for the formation of adult skeletal structures of the zebrafish. Here, we describe the phenotypic and molecular characterization of a set of mutants showing loss of adult structures of the dermal skeleton, such as the rays of the fins and the scales, as well as the pharyngeal teeth. The mutations represent adult-viable, loss of function alleles in the ectodysplasin (eda) and ectodysplasin receptor (edar) genes. These genes are frequently mutated in the human hereditary disease hypohidrotic ectodermal dysplasia (HED; OMIM 224900, 305100) that affects the development of integumentary appendages such as hair and teeth. We find mutations in zebrafish edar that affect similar residues as mutated in human cases of HED and show similar phenotypic consequences. eda and edar are not required for early zebrafish development, but are rather specific for the development of adult skeletal and dental structures. We find that the defects of the fins and scales are due to the role of Eda signaling in organizing epidermal cells into discrete signaling centers of the scale epidermal placode and fin fold. Our genetic analysis demonstrates dose-sensitive and organ-specific response to alteration in levels of Eda signaling. In addition, we show substantial buffering of the effect of loss of edar function in different genetic backgrounds, suggesting canalization of this developmental system. We uncover a previously unknown role of Eda signaling in teleosts and show conservation of the developmental mechanisms involved in the formation and variation of both integumentary appendages and limbs. Lastly, our findings point to the utility of adult genetic screens in the zebrafish in identifying essential developmental processes involved in human disease and in morphological evolution. PMID:18833299

  16. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    LENUS (Irish Health Repository)

    Sapetto-Rebow, Beata

    2011-11-23

    Abstract Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.

  17. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    Directory of Open Access Journals (Sweden)

    Sapetto-Rebow Beata

    2011-11-01

    Full Text Available Abstract Background Genetic alterations in human topoisomerase II alpha (TOP2A are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm, a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization. Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome.

  18. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome

    Directory of Open Access Journals (Sweden)

    Stefanie M. Percival

    2015-08-01

    Full Text Available Mutations in ESCO2, one of two establishment of cohesion factors necessary for proper sister chromatid cohesion (SCC, cause a spectrum of developmental defects in the autosomal-recessive disorder Roberts syndrome (RBS, warranting in vivo analysis of the consequence of cohesion dysfunction. Through a genetic screen in zebrafish targeting embryonic-lethal mutants that have increased genomic instability, we have identified an esco2 mutant zebrafish. Utilizing the natural transparency of zebrafish embryos, we have developed a novel technique to observe chromosome dynamics within a single cell during mitosis in a live vertebrate embryo. Within esco2 mutant embryos, we observed premature chromatid separation, a unique chromosome scattering, prolonged mitotic delay, and genomic instability in the form of anaphase bridges and micronuclei formation. Cytogenetic studies indicated complete chromatid separation and high levels of aneuploidy within mutant embryos. Amongst aneuploid spreads, we predominantly observed decreases in chromosome number, suggesting that either cells with micronuclei or micronuclei themselves are eliminated. We also demonstrated that the genomic instability leads to p53-dependent neural tube apoptosis. Surprisingly, although many cells required Esco2 to establish cohesion, 10-20% of cells had only weakened cohesion in the absence of Esco2, suggesting that compensatory cohesion mechanisms exist in these cells that undergo a normal mitotic division. These studies provide a unique in vivo vertebrate view of the mitotic defects and consequences of cohesion establishment loss, and they provide a compensation-based model to explain the RBS phenotypes.

  19. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    Science.gov (United States)

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  20. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2011-03-01

    Tuberous sclerosis complex (TSC is an autosomal dominant disease caused by mutations in either the TSC1 (encodes hamartin or TSC2 (encodes tuberin genes. Patients with TSC have hamartomas in various organs throughout the whole body, most notably in the brain, skin, eye, heart, kidney and lung. To study the development of hamartomas, we generated a zebrafish model of TSC featuring a nonsense mutation (vu242 in the tsc2 gene. This tsc2vu242 allele encodes a truncated Tuberin protein lacking the GAP domain, which is required for inhibition of Rheb and of the TOR kinase within TORC1. We show that tsc2vu242 is a recessive larval-lethal mutation that causes increased cell size in the brain and liver. Greatly elevated TORC1 signaling is observed in tsc2vu242/vu242 homozygous zebrafish, and is moderately increased in tsc2vu242/+ heterozygotes. Forebrain neurons are poorly organized in tsc2vu242/vu242 homozygous mutants, which have extensive gray and white matter disorganization and ectopically positioned cells. Genetic mosaic analyses demonstrate that tsc2 limits TORC1 signaling in a cell-autonomous manner. However, in chimeric animals, tsc2vu242/vu242 mutant cells also mislocalize wild-type host cells in the forebrain in a non-cell-autonomous manner. These results demonstrate a highly conserved role of tsc2 in zebrafish and establish a new animal model for studies of TSC. The finding of a non-cell-autonomous function of mutant cells might help explain the formation of brain hamartomas and cortical malformations in human TSC.

  1. Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor β-subunit

    Science.gov (United States)

    Hirata, Hiromi; Saint-Amant, Louis; Downes, Gerald B.; Cui, Wilson W.; Zhou, Weibin; Granato, Michael; Kuwada, John Y.

    2005-01-01

    Bilateral alternation of muscle contractions requires reciprocal inhibition between the two sides of the hindbrain and spinal cord, and disruption of this inhibition should lead to simultaneous activation of bilateral muscles. At 1 day after fertilization, wild-type zebrafish respond to mechanosensory stimulation with multiple fast alternating trunk contractions, whereas bandoneon (beo) mutants contract trunk muscles on both sides simultaneously. Similar simultaneous contractions are observed in wild-type embryos treated with strychnine, a blocker of the inhibitory glycine receptor (GlyR). This result suggests that glycinergic synaptic transmission is defective in beo mutants. Muscle voltage recordings confirmed that muscles on both sides of the trunk in beo are likely to receive simultaneous synaptic input from the CNS. Recordings from motor neurons revealed that glycinergic synaptic transmission was missing in beo mutants. Furthermore, immunostaining with an antibody against GlyR showed clusters in wild-type neurons but not in beo neurons. These data suggest that the failure of GlyRs to aggregate at synaptic sites causes impairment of glycinergic transmission and abnormal behavior in beo mutants. Indeed, mutations in the GlyR β-subunit, which are thought to be required for proper localization of GlyRs, were identified as the basis for the beo mutation. These data demonstrate that GlyRβ is essential for physiologically relevant clustering of GlyRs in vivo. Because GlyR mutations in humans lead to hyperekplexia, a motor disorder characterized by startle responses, the zebrafish beo mutant should be a useful animal model for this condition. PMID:15928085

  2. Mutant human FUS Is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic zebrafish cells.

    Directory of Open Access Journals (Sweden)

    Jamie Rae Acosta

    Full Text Available FUS mutations can occur in familial amyotrophic lateral sclerosis (fALS, a neurodegenerative disease with cytoplasmic FUS inclusion bodies in motor neurons. To investigate FUS pathology, we generated transgenic zebrafish expressing GFP-tagged wild-type or fALS (R521C human FUS. Cell cultures were made from these zebrafish and the subcellular localization of human FUS and the generation of stress granule (SG inclusions examined in different cell types, including differentiated motor neurons. We demonstrate that mutant FUS is mislocalized from the nucleus to the cytosol to a similar extent in motor neurons and all other cell types. Both wild-type and R521C FUS localized to SGs in zebrafish cells, demonstrating an intrinsic ability of human FUS to accumulate in SGs irrespective of the presence of disease-associated mutations or specific cell type. However, elevation in relative cytosolic to nuclear FUS by the R521C mutation led to a significant increase in SG assembly and persistence within a sub population of vulnerable cells, although these cells were not selectively motor neurons.

  3. Zebrafish scarb2a insertional mutant reveals a novel function for the Scarb2/Limp2 receptor in notochord development.

    Science.gov (United States)

    Diaz-Tellez, Abigail; Zampedri, Cecilia; Ramos-Balderas, Jose L; García-Hernández, Fernando; Maldonado, Ernesto

    2016-04-01

    Scarb2 or Limp2 belong to a subfamily of Scavenger receptors described as lysosomal transmembrane glycosylated receptors, that are mutated in the human syndrome AMRF (action myoclonus-renal failure). The zebrafish insertional mutant scarb2a(hi1463Tg) has notochord defects, the notochord is a defining feature of chordates running along the center of the longitudinal axis and it is essential for forming the spinal column in all vertebrates. There are three paralogous scarb2 genes in zebrafish; scarb2a, scarb2b, and scarb2c. Both Scarb2a and Scarb2b proteins lack the classical di-leucine motif. We found that scarb2a(hi1463Tg) homozygous zebrafish embryos have a null mutation impairing vacuole formation in the notochord and simultaneously disrupting proper formation of the basement membrane resulting in its thickening at the ventral side of the notochord, which may be the cause for the anomalous upward bending observed in the trunk. Through whole-mount in situ hybridization, we detected scarb2a mRNA expression in the notochord and in the brain early in development. However, it is puzzling that scarb2a notochord mRNA expression is short-lived in the presumptive notochord and precedes the complete differentiation of the notochord. This work describes a novel function for the Scarb2 receptor as an essential glycoprotein for notochord development. © 2016 Wiley Periodicals, Inc.

  4. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI and pseudoxanthoma elasticum (PXE

    Directory of Open Access Journals (Sweden)

    Alexander Apschner

    2014-07-01

    Full Text Available In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf, which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1, a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues – most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin. Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord

  5. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants.

    Directory of Open Access Journals (Sweden)

    Tohei Yokogawa

    2007-10-01

    Full Text Available Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.

  6. Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia

    NARCIS (Netherlands)

    van Rooijen, E.; Voest, E.E.; Logister, I.; Korving, J.; Schwerte, T.; Schulte-Merker, S.; Giles, R.H.; van Eeden, F.J.

    2009-01-01

    We have generated 2 zebrafish lines carrying inactivating germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene ortholog vhl. Mutant embryos display a general systemic hypoxic response, including the up-regulation of hypoxia-induced genes by 1 day after fertilization and a severe

  7. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    Directory of Open Access Journals (Sweden)

    Amsterdam Adam

    2006-06-01

    Full Text Available Abstract Background Craniofacial birth defects result from defects in cranial neural crest (NC patterning and morphogenesis. The vertebrate craniofacial skeleton is derived from cranial NC cells and the patterning of these cells occurs within the pharyngeal arches. Substantial efforts have led to the identification of several genes required for craniofacial skeletal development such as the endothelin-1 (edn1 signaling pathway that is required for lower jaw formation. However, many essential genes required for craniofacial development remain to be identified. Results Through screening a collection of insertional zebrafish mutants containing approximately 25% of the genes essential for embryonic development, we present the identification of 15 essential genes that are required for craniofacial development. We identified 3 genes required for hyomandibular development. We also identified zebrafish models for Campomelic Dysplasia and Ehlers-Danlos syndrome. To further demonstrate the utility of this method, we include a characterization of the wdr68 gene. We show that wdr68 acts upstream of the edn1 pathway and is also required for formation of the upper jaw equivalent, the palatoquadrate. We also present evidence that the level of wdr68 activity required for edn1 pathway function differs between the 1st and 2nd arches. Wdr68 interacts with two minibrain-related kinases, Dyrk1a and Dyrk1b, required for embryonic growth and myotube differentiation, respectively. We show that a GFP-Wdr68 fusion protein localizes to the nucleus with Dyrk1a in contrast to an engineered loss of function mutation Wdr68-T284F that no longer accumulated in the cell nucleus and failed to rescue wdr68 mutant animals. Wdr68 homologs appear to exist in all eukaryotic genomes. Notably, we found that the Drosophila wdr68 homolog CG14614 could substitute for the vertebrate wdr68 gene even though insects lack the NC cell lineage. Conclusion This work represents a systematic

  8. Molecular Mechanisms Regulating Ocular Apoptosis in Zebrafish gdf6a Mutants

    DEFF Research Database (Denmark)

    Pant, Sameer D.; March, Lindsey D.; Famulski, Jakub K.

    2013-01-01

    intrinsic or extrinsic apoptotic mechanisms were involved, morpholino antisense oligonucleotides targeting baxa, baxb, and p53 were employed. Caspase-3 immunohistochemistry (IHC) was performed to assay apoptosis. Pharmacologic inhibition (using SB203580) and IHC were used to investigate the role of p38...... occurs 28 hours post fertilization (hpf) in gdf6a(-/-) mutants that is mediated independently of p53 by intrinsic mechanisms involving Bax proteins. Also, gdf6a(-/-) mutants exhibit markedly increased p38 MAP kinase activation that can be inhibited to significantly reduce retinal apoptosis. A reduction...... in retinal smad1 expression was also noted in gdf6a(-/-) mutants. CONCLUSIONS. gdf6a(-/-)-induced apoptosis is characterized by the involvement of intrinsic apoptotic pathways, p38 MAP kinases, and dysregulated smad expression. Modulation of key mediators can inhibit retinal apoptosis offering potential...

  9. A novel zebrafish mutant with wavy-notochord: an effective biological index for monitoring the copper pollution of water from natural resources.

    Science.gov (United States)

    Chen, Yau-Hung; Lin, Ji-Sheng

    2011-02-01

    We identified a novel zebrafish mutant that has wavy-notochord phenotypes, such as severely twisted notochord and posterior malformations, but has normal melanocytes. Histological evidences showed that proliferating vacuolar cells extended their growth to the muscle region, and consequently caused the wavy-notochord phenotypes. Interestingly, those malformations can be greatly reversed by exposure with copper, suggesting that copper plays an important role on wavy-notochord phenotypes. In addition, after long-term copper exposure, the surviving larvae derived from wavy-notochord mutants displayed bone malformations, such as twisted axial skeleton and osteophyte. These phenotypic changes and molecular evidences of wavy-notochord mutants are highly similar to those embryos whose lysyl oxidases activities have been inactivated. Taken together, we propose that (i) the putative mutated genes of this wavy-notochord mutant might be highly associated with the lysyl oxidase genes in zebrafish; and (ii) this fish model is an effective tool for monitoring copper pollution of water from natural resources. Copyright © 2009 Wiley Periodicals, Inc.

  10. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2017-11-01

    Full Text Available As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.

  11. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    McGown, Alexander; Shaw, Dame Pamela J; Ramesh, Tennore

    2016-07-26

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with death on average within 2-3 years of symptom onset. Mutations in superoxide dismutase 1 (SOD1) have been identified to cause ALS. Riluzole, the only neuroprotective drug for ALS provides life extension of only 3 months on average. Thishighlights the need for compound screening in disease models to identify new neuroprotective therapies for this disease. Zebrafish is an emerging model system that is well suited for the study of diseasepathophysiology and also for high throughput (HT) drug screening. The mutant sod1 zebrafish model of ALS mimics the hallmark features of ALS. Using a fluorescence based readout of neuronal stress, we developed a high throughput (HT) screen to identify neuroprotective compounds. Here we show that the zebrafish screen is a robust system that can be used to rapidly screen thousands ofcompounds and also demonstrate that riluzole is capable of reducing neuronal stress in this model system. The screen shows optimal quality control, maintaining a high sensitivity and specificity withoutcompromising throughput. Most importantly, we demonstrate that many compounds previously failed in human clinical trials, showed no stress reducing activity in the zebrafish assay. We conclude that HT drug screening using a mutant sod1 zebrafish is a reliable model system which supplemented with secondary assays would be useful in identifying drugs with potential for neuroprotective efficacy in ALS.

  12. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone.

    Directory of Open Access Journals (Sweden)

    Dale W Hailey

    Full Text Available Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglycoside antibiotics.

  13. Expression of ALS/FTD-linked mutant CCNF in zebrafish leads to increased cell death in the spinal cord and an aberrant motor phenotype.

    Science.gov (United States)

    Hogan, Alison L; Don, Emily K; Rayner, Stephanie L; Lee, Albert; Laird, Angela S; Watchon, Maxinne; Winnick, Claire; Tarr, Ingrid S; Morsch, Marco; Fifita, Jennifer A; Gwee, Serene S L; Formella, Isabel; Hortle, Elinor; Yuan, Kristy C; Molloy, Mark P; Williams, Kelly L; Nicholson, Garth A; Chung, Roger S; Blair, Ian P; Cole, Nicholas J

    2017-07-15

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Abnormal Nuclear Pore Formation Triggers Apoptosis in the Intestinal Epithelium of elys-Deficient Zebrafish

    NARCIS (Netherlands)

    de Jong-Curtain, Tanya A.; Parslow, Adam C.; Trotter, Andrew J.; Hall, Nathan E.; Verkade, Heather; Tabone, Tania; Christie, Elizabeth L.; Crowhurst, Meredith O.; Layton, Judith E.; Shepherd, Iain T.; Nixon, Susan J.; Parton, Robert G.; Zon, Leonard I.; Stainier, Didier Y. R.; Lieschke, Graham J.; Heath, Joan K.

    Background & Aims: Zebrafish mutants generated by ethylnitrosourea-mutagenesis provide a powerful toot for dissecting the genetic regulation of developmental processes, including organogenesis. One zebrafish mutant, "flotte lotte" (flo), displays striking defects in intestinal, liver, pancreas, and

  15. Biosecurity and Health Monitoring at the Zebrafish International Resource Center

    OpenAIRE

    Murray, Katrina N.; Varga, Zolt?n M.; Kent, Michael L.

    2016-01-01

    The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding ...

  16. Zebrafish Lacking Circadian Gene per2 Exhibit Visual Function Deficiency

    Directory of Open Access Journals (Sweden)

    Deng-feng Huang

    2018-03-01

    Full Text Available The retina has an intrinsic circadian clock, but the importance of this clock for vision is unknown. Zebrafish offer many advantages for studying vertebrate vision and circadian rhythm. Here, we explored the role of zebrafish per2, a light-regulated gene, in visual behavior and the underlying mechanisms. We observed that per2 mutant zebrafish larvae showed decreased contrast sensitivity and visual acuity using optokinetic response (OKR assays. Using a visual motor response (VMR assay, we observed normal OFF responses but abnormal ON responses in mutant zebrafish larvae. Immunofluorescence showed that mutants had a normal morphology of cone photoreceptor cells and retinal organization. However, electron microscopy showed that per2 mutants displayed abnormal and decreased photoreceptor ribbon synapses with arciform density, which resulted in retinal ON pathway defect. We also examined the expression of three cone opsins by quantitative real-time PCR (qRT-PCR, and the expression of long-wave-sensitive opsin (opn1lw and short-wave-sensitive opsin (opn1sw was reduced in mutant zebrafish larvae. qRT-PCR analyses also showed a down-regulation of the clock genes cry1ba and bmal1b in the adult eye of per2 mutant zebrafish. This study identified a mechanism by which a clock gene affects visual function and defined important roles of per2 in retinal information processing.

  17. NSF-CBMS Regional Conference

    CERN Document Server

    Rubenfeld, Lester

    1981-01-01

    The articles of these proceedings arise from a NSF-CBMS regional conference on the mathematical modeling of the hearing process, that was held at Rensselaer Polytechnic Institute in the summer of 1980. To put the a=ticles in perspective, it is best to briefly review the history of suc~ modeling. It has proceeded, more or less, in three stages. The first was initiated by Herman Helmholtz in the 1880's, whose theories dominated the subject for years. However, because of his lack of accurate experimental data and his heuristic arguments it became apparent that his models needed revision. Accordingly, based on the experimental observations of von Bekesy, the "long wave" theories were developed in the 1950's by investigators such as Zwislocki, Peterson, and Bogert. However, as the ex?eri~ents became more refined (such as Rhode's ~wssbauer Measurements) even these models came into question. This has brought on a flurry of 'activity in recent years into how to extend the models to account for these more recent eXT. ...

  18. Biosecurity and Health Monitoring at the Zebrafish International Resource Center.

    Science.gov (United States)

    Murray, Katrina N; Varga, Zoltán M; Kent, Michael L

    2016-07-01

    The Zebrafish International Resource Center (ZIRC) is a repository and distribution center for mutant, transgenic, and wild-type zebrafish. In recent years annual imports of new zebrafish lines to ZIRC have increased tremendously. In addition, after 15 years of research, we have identified some of the most virulent pathogens affecting zebrafish that should be avoided in large production facilities, such as ZIRC. Therefore, while importing a high volume of new lines we prioritize safeguarding the health of our in-house fish colony. Here, we describe the biosecurity and health-monitoring program implemented at ZIRC. This strategy was designed to prevent introduction of new zebrafish pathogens, minimize pathogens already present in the facility, and ensure a healthy zebrafish colony for in-house uses and shipment to customers.

  19. Defects of the Glycinergic Synapse in Zebrafish

    Science.gov (United States)

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish. PMID:27445686

  20. Opportunities for Funding at NSF

    Science.gov (United States)

    Kafafi, Zakya H.

    2009-03-01

    lead to a better quality of life and improved economic development for people all over the world will also be given. As science is becoming increasingly global, DMR is particularly interested in preparing students to be agile thinkers in this universal environment and in forging collaborations and cooperation among scientists and engineers around the world. Free movement of knowledge without any obstacles can only be achieved through a more coordinated approach for international collaboration. Following the presentation there will be a question-and-answer period. For additional information, visit the DMR Web page at www.nsf.gov/materials

  1. ESX-5-deficient Mycobacterium marinum is hypervirulent in adult zebrafish

    KAUST Repository

    Weerdenburg, Eveline M.

    2012-02-15

    ESX-5 is a mycobacterial type VII protein secretion system responsible for transport of numerous PE and PPE proteins. It is involved in the induction of host cell death and modulation of the cytokine response in vitro. In this work, we studied the effects of ESX-5 in embryonic and adult zebrafish using Mycobacterium marinum. We found that ESX-5-deficient M.marinum was slightly attenuated in zebrafish embryos. Surprisingly, the same mutant showed highly increased virulence in adult zebrafish, characterized by increased bacterial loads and early onset of granuloma formation with rapid development of necrotic centres. This early onset of granuloma formation was accompanied by an increased expression of pro-inflammatory cytokines and tissue remodelling genes in zebrafish infected with the ESX-5 mutant. Experiments using RAG-1-deficient zebrafish showed that the increased virulence of the ESX-5 mutant was not dependent on the adaptive immune system. Mixed infection experiments with wild-type and ESX-5 mutant bacteria showed that the latter had a specific advantage in adult zebrafish and outcompeted wild-type bacteria. Together our experiments indicate that ESX-5-mediated protein secretion is used by M.marinum to establish a moderate and persistent infection. © 2012 Blackwell Publishing Ltd.

  2. NSF's Career-Life Balance Initiative and the NSF Astronomy and Astrophysics Postdoctoral Fellowships

    Science.gov (United States)

    Ajhar, Edward A.

    2013-01-01

    In the fall of 2011, the National Science Foundation (NSF) began the Career-Life Balance Initiative to support graduate students, postdoctoral students, and early-career researchers in STEM fields. NSF is focusing first on its most prestigious programs for early-career scientists---the CAREER program and the postdoctoral programs, including the NSF Astronomy and Astrophysics Postdoctoral Fellowships (AAPF)---where career-life balance opportunities can help retain a significant fraction of early career talent. Subject to budget constraints, NSF plans to further integrate and enhance career-life balance opportunities over time through other programs, like the Graduate Research Fellowships Program and ADVANCE, and subsequently through the broader portfolio of NSF activities. In addition, to comply with Title IX, NSF has regulations to ensure that educational programs that receive NSF funds are free of gender discrimination and harassment. A primary goal of this presentation is to put facts about NSF into the hands of students, faculty, staff, administrators and other policy makers to benefit the advancement of career-life balance in the astronomical community. The presentation focus areas will (1) address common misconceptions about NSF rules regarding parental leave; (2) discuss benefits already available through the AAPF program, Graduate Research Fellowships, and other programs; and (3) listen to community concerns and issues to bring these back to the foundation for consideration. Did you know that NSF allows paid parental leave under many circumstances? For example, the AAPF program currently allows two months of paid parental leave during the fellow's tenure. What are the rules for NSF Graduate Research Fellowships? Come to the session and find out; the answers to such questions might surprise you.

  3. The HDAC Inhibitor TSA Ameliorates a Zebrafish Model of Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Johnson, Nathan M; Farr, Gist H; Maves, Lisa

    2013-09-17

    Zebrafish are an excellent model for Duchenne muscular dystrophy. In particular, zebrafish provide a system for rapid, easy, and low-cost screening of small molecules that can ameliorate muscle damage in dystrophic larvae. Here we identify an optimal anti-sense morpholino cocktail that robustly knocks down zebrafish Dystrophin (dmd-MO). We use two approaches, muscle birefringence and muscle actin expression, to quantify muscle damage and show that the dmd-MO dystrophic phenotype closely resembles the zebrafish dmd mutant phenotype. We then show that the histone deacetylase (HDAC) inhibitor TSA, which has been shown to ameliorate the mdx mouse Duchenne model, can rescue muscle fiber damage in both dmd-MO and dmd mutant larvae. Our study identifies optimal morpholino and phenotypic scoring approaches for dystrophic zebrafish, further enhancing the zebrafish dmd model for rapid and cost-effective small molecule screening.

  4. POCA Update: An NSF PAARE Project

    Science.gov (United States)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M., Jr.

    2011-01-01

    We report on the status of "A Partnership in Observational and Computational Astronomy (POCA)” under the NSF's "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. This partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. We have reached the midpoint of this 5-year award and discuss the successes, challenges and obstacles encountered to date. Included is a summary of our summer REU program, the POCA graduate fellowship program, faculty research capacity building, outreach activities, increased use of NSF facilities and shared resources. Additional POCA research presentations by the authors are described elsewhere in these proceedings. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory.

  5. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    Science.gov (United States)

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  6. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Joachim, E-mail: Joachim.Berger@Monash.edu [Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton (Australia); Sztal, Tamar; Currie, Peter D. [Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton (Australia)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  7. Quantification of birefringence readily measures the level of muscle damage in zebrafish

    International Nuclear Information System (INIS)

    Berger, Joachim; Sztal, Tamar; Currie, Peter D.

    2012-01-01

    Highlights: ► Report of an unbiased quantification of the birefringence of muscle of fish larvae. ► Quantification method readily identifies level of overall muscle damage. ► Compare zebrafish muscle mutants for level of phenotype severity. ► Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in an otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.

  8. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis

    OpenAIRE

    McGown, Alexander; Shaw, Dame Pamela J.; Ramesh, Tennore

    2016-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with death on average within 2?3 years of symptom onset. Mutations in superoxide dismutase 1 (SOD1) have been identified to cause ALS. Riluzole, the only neuroprotective drug for ALS provides life extension of only 3 months on average. Thishighlights the need for compound screening in disease models to identify new neuroprotective therapies for this disease. Zebrafish is an emerging model system that is well ...

  9. Definition of the zebrafish genome using flow cytometry and cytogenetic mapping

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2007-06-01

    Full Text Available Abstract Background The zebrafish (Danio rerio is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. Results Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. Conclusion The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.

  10. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    Science.gov (United States)

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  11. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    Directory of Open Access Journals (Sweden)

    Elizabeth C. Coffey

    2018-03-01

    Full Text Available Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA, which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle.

  12. Molecular genetics of pituitary development in zebrafish.

    Science.gov (United States)

    Pogoda, Hans-Martin; Hammerschmidt, Matthias

    2007-08-01

    The pituitary gland of vertebrates consists of two major parts, the neurohypophysis (NH) and the adenohypophysis (AH). As a central part of the hypothalamo-hypophyseal system (HHS), it constitutes a functional link between the nervous and the endocrine system to regulate basic body functions, such as growth, metabolism and reproduction. The development of the AH has been intensively studied in mouse, serving as a model for organogenesis and differential cell specification. However, given that the AH is a relatively recent evolutionary advance of the chordate phylum, it is also interesting to understand its development in lower chordate systems. In recent years, the zebrafish has emerged as a powerful lower vertebrate system for developmental studies, being amenable for large-scale genetic approaches, embryological manipulations, and in vivo imaging. Here, we present an overview of current knowledge of the mechanisms and genetic control of pituitary formation during zebrafish development. First, we describe the components of the zebrafish HHS, and the different pituitary cell types and hormones, followed by a description of the different steps of normal pituitary development. The central part of the review deals with the genes found to be essential for zebrafish AH development, accompanied by a description of the corresponding mutant phenotypes. Finally, we discuss future directions, with particular focus on evolutionary aspects, and some novel functional aspects with growing medical and social relevance.

  13. NSF-RANN Trace Contaminants Program directory

    International Nuclear Information System (INIS)

    Purnell, P.A.; Smith, S.K.; Wilkes, C.F.

    1976-10-01

    This directory is designed to aid effective communication throughout the National Science Foundation's Trace Contaminants Program, Research Applied to National Needs. The majority of the participants in the Program are represented by name, address, telephone number, and a very brief description of research interest. The directory has five major divisions to facilitate its use. Section I contains a listing of the program managers associated with the NSF-RANN Trace Contaminants Program. Section II lists the principal investigators, co-principal investigators, and coordinators of each of the research grants in the Program. Section III lists the personnel by individual projects. Section IV contains a total alphabetic listing complete with project titles and Section V contains a keyword index. This directory is maintained by the Toxic Materials Information Center as part of the Environmental Resource Center of the Information Center Complex, Information Division, Oak Ridge National Laboratory

  14. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish.

    Science.gov (United States)

    Chen, Yunru; Zeng, Shiyang; Hu, Ruikun; Wang, Xiangxiu; Huang, Weilai; Liu, Jiangfang; Wang, Luying; Liu, Guifen; Cao, Ying; Zhang, Yong

    2017-01-01

    Although the CRISPR/Cas9 has been successfully applied in zebrafish, considerable variations in efficiency have been observed for different gRNAs. The workload and cost of zebrafish mutant screening is largely dependent on the mutation rate of injected embryos; therefore, selecting more effective gRNAs is especially important for zebrafish mutant construction. Besides the sequence features, local chromatin structures may have effects on CRISPR/Cas9 efficiency, which remain largely unexplored. In the only related study in zebrafish, nucleosome organization was not found to have an effect on CRISPR/Cas9 efficiency, which is inconsistent with recent studies in vitro and in mammalian cell lines. To understand the effects of local chromatin structure on CRISPR/Cas9 efficiency in zebrafish, we first determined that CRISPR/Cas9 introduced genome editing mainly before the dome stage. Based on this observation, we reanalyzed our published nucleosome organization profiles and generated chromatin accessibility profiles in the 256-cell and dome stages using ATAC-seq technology. Our study demonstrated that chromatin accessibility showed positive correlation with CRISPR/Cas9 efficiency, but we did not observe a clear correlation between nucleosome organization and CRISPR/Cas9 efficiency. We constructed an online database for zebrafish gRNA selection based on local chromatin structure features that could prove beneficial to zebrafish homozygous mutant construction via CRISPR/Cas9.

  15. The SC State NSF PAARE Program

    Science.gov (United States)

    Walter, Donald; Ajello, Marco; Brittain, Sean; Cash, Jennifer; Fogle, Bryan; Hartmann, Dieter; Ho, Shirley; Howell, Steve; King, Jeremy; Leising, Mark; Smith, Daniel

    2018-01-01

    We report on the activities of our NSF PAARE program during Year 3 of the project. Our partnership under this award includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and individual investigators at NASA Ames and elsewhere. Our partnership with the Citizen CATE Experiment and involvement in the total solar eclipse which passed through our campus on August 21, 2017, will be discussed. The PAARE project continues to strengthen our partnership with Clemson. We are close to completing a memorandum of agreement between the two institutions that will allow for the seamless transfer of an undergraduate from SC State to Clemson’s graduate program in physics and astronomy. Additionally, we have worked together under the Citizen CATE project and through other research activities. SC State is a member of the National Astronomy Consortium (NAC) and participates through its faculty and undergraduates, one of whom (Wesley Red) is reporting on his summer internship at this conference. We also served as the state coordinator for South Carolina for the Citizen CATE Experiment. The August 21st path of totality crossed through our campus and the campus of our partner Clemson University. Additional colleges, universities and citizen scientist groups partnered with us to provide 7 sites of coverage across South Carolina from the foothills of the Appalachian mountains to the Atlantic Ocean near the site of departure of the shadow from the continental U.S. Support for this work includes our NSF PAARE award AST-1358913 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. CATE work has been supported by NASA SMD award NNX16AB92A to the National Solar Observatory. Additional details can be found at: http://physics.scsu.edu

  16. Whole-body and multispectral photoacoustic imaging of adult zebrafish

    Science.gov (United States)

    Huang, Na; Xi, Lei

    2016-10-01

    Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.

  17. NSF Funding Rate History By State and Organization

    Data.gov (United States)

    National Science Foundation — Contains FY 2006-FY 2015 National Science Foundation (NSF) funding rates for competitive research proposals by organizational unit. The funding rate is calculated by...

  18. NSF celebrates half a century with big plans

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The future looks good for the NSF as it approaches its 50th birthday. The Clinton administration has proposed a $675 million budget increase for the agency next year. The NSF has also been asked to lead most of the government's recent science initiatives such as those in nanotechnology and computing (1 page).

  19. 48 CFR 2515.215-70 - NSF negotiation authorities.

    Science.gov (United States)

    2010-10-01

    ... CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Negotiation Authorities 2515.215-70 NSF negotiation authorities. (a) Authorities. Citation: 42 U.S.C. 1870(c). (b) Application. When an NSF contract... international cooperation or national security.” Contracts or their modifications entered into under this...

  20. News Focus: NSF Director Erich Bloch Discusses Foundation's Problems, Outlook.

    Science.gov (United States)

    Chemical and Engineering News, 1987

    1987-01-01

    Relates the comments offered in an interview with Erich Bloch, the National Science Foundation (NSF) Director. Discusses issues related to NSF and its funding, engineering research centers, involvement with industry, concern for science education, computer centers, and its affiliation with the social sciences. (ML)

  1. 48 CFR 2527.7002 - NSF patent policy.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NSF patent policy. 2527... CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Disposition of Rights in Inventions 2527.7002 NSF patent policy. As authorized by the National Science Board at its 230th meeting, October 15-16, 1981, the...

  2. Swimming Effects on Developing Zebrafish

    NARCIS (Netherlands)

    Kranenbarg, S.; Pelster, B.

    2013-01-01

    Zebrafish represent an important vertebrate model species in developmental biology. This chapter reviews the effects of exercise on the development of the musculoskeletal system, the cardiovascular system, metabolic capacities of developing zebrafish, and regulation of these processes on the gene

  3. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    Science.gov (United States)

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Yoshiki Hotta and the dawn of zebrafish molecular neurogenetics in Japan.

    Science.gov (United States)

    Higashijima, Shin-Ichi; Okamoto, Hitoshi

    2012-03-01

    Abstract: After coming back to Japan to work in the Department of Physics at the University of Tokyo, Yoshiki Hotta spent a year or so on searching for behavioral mutants of goldfish. Although this endeavor did not succeed, he remained an adamant supporter of the development of zebrafish research in Japan. Here we review how his support helped zebrafish neurogenetics in Japan gain a unique position in the world research community.

  5. Cyberinfrastructure for the NSF Ocean Observatories Initiative

    Science.gov (United States)

    Orcutt, J. A.; Vernon, F. L.; Arrott, M.; Chave, A.; Krueger, I.; Schofield, O.; Glenn, S.; Peach, C.; Nayak, A.

    2007-12-01

    The Internet today is vastly different than the Internet that we knew even five years ago and the changes that will be evident five years from now, when the NSF Ocean Observatories Initiative (OOI) prototype has been installed, are nearly unpredictable. Much of this progress is based on the exponential growth in capabilities of consumer electronics and information technology; the reality of this exponential behavior is rarely appreciated. For example, the number of transistors on a square cm of silicon will continue to double every 18 months, the density of disk storage will double every year, and network bandwidth will double every eight months. Today's desktop 2TB RAID will be 64TB and the 10Gbps Regional Scale Network fiber optical connection will be running at 1.8Tbps. The same exponential behavior characterizes the future of genome sequencing. The first two sequences of composites of individuals' genes cost tens of millions of dollars in 2001. Dr. Craig Venter just published a more accurate complete human genome (his own) at a cost on the order of 100,000. The J. Craig Venter Institute has provided support for the X Prize for Genomics offering 10M to the first successful sequencing of a human genome for $1,000. It's anticipated that the prize will be won within five years. Major advances in technology that are broadly viewed as disruptive or revolutionary rather than evolutionary will often depend upon the exploitation of exponential expansions in capability. Applications of these ideas to the OOI will be discussed. Specifically, the agile ability to scale cyberinfrastructure commensurate with the exponential growth of sensors, networks and computational capability and demand will be described.

  6. The neurogenetic frontier—lessons from misbehaving zebrafish

    Science.gov (United States)

    Granato, Michael

    2008-01-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206

  7. The neurogenetic frontier--lessons from misbehaving zebrafish.

    Science.gov (United States)

    Burgess, Harold A; Granato, Michael

    2008-11-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.

  8. Zebrafish Health Conditions in the China Zebrafish Resource Center and 20 Major Chinese Zebrafish Laboratories.

    Science.gov (United States)

    Liu, Liyue; Pan, Luyuan; Li, Kuoyu; Zhang, Yun; Zhu, Zuoyan; Sun, Yonghua

    2016-07-01

    In China, the use of zebrafish as an experimental animal in the past 15 years has widely expanded. The China Zebrafish Resource Center (CZRC), which was established in 2012, is becoming one of the major resource centers in the global zebrafish community. Large-scale use and regular exchange of zebrafish resources have put forward higher requirements on zebrafish health issues in China. This article reports the current aquatic infrastructure design, animal husbandry, and health-monitoring programs in the CZRC. Meanwhile, through a survey of 20 Chinese zebrafish laboratories, we also describe the current health status of major zebrafish facilities in China. We conclude that it is of great importance to establish a widely accepted health standard and health-monitoring strategy in the Chinese zebrafish research community.

  9. ESO and NSF Sign Agreement on ALMA

    Science.gov (United States)

    2003-02-01

    Green Light for World's Most Powerful Radio Observatory On February 25, 2003, the European Southern Observatory (ESO) and the US National Science Foundation (NSF) are signing a historic agreement to construct and operate the world's largest and most powerful radio telescope, operating at millimeter and sub-millimeter wavelength. The Director General of ESO, Dr. Catherine Cesarsky, and the Director of the NSF, Dr. Rita Colwell, act for their respective organizations. Known as the Atacama Large Millimeter Array (ALMA), the future facility will encompass sixty-four interconnected 12-meter antennae at a unique, high-altitude site at Chajnantor in the Atacama region of northern Chile. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF also acts for the National Research Council of Canada and executes the project through the National Radio Astronomy Observatory (NRAO) operated by Associated Universities, Inc. (AUI). The conclusion of the ESO-NSF Agreement now gives the final green light for the ALMA project. The total cost of approximately 650 million Euro (or US Dollars) is shared equally between the two partners. Dr. Cesarsky is excited: "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward towards wonderful research projects. With ALMA we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvellous facility". "With this agreement, we usher in a new age of research in astronomy" says Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and

  10. Redundant roles of PRDM family members in zebrafish craniofacial development.

    Science.gov (United States)

    Ding, Hai-Lei; Clouthier, David E; Artinger, Kristin B

    2013-01-01

    PRDM proteins are evolutionary conserved Zn-Finger transcription factors that share a characteristic protein domain organization. Previous studies have shown that prdm1a is required for the specification and differentiation of neural crest cells in the zebrafish. Here we examine other members of this family, specifically prdm3, 5, and 16, in the differentiation of the zebrafish craniofacial skeleton. prdm3 and prdm16 are strongly expressed in the pharyngeal arches, while prdm5 is expressed specifically in the area of the forming neurocranium. Knockdown of prdm3 and prdm16 results in a reduction in the neural crest markers dlx2a and barx1 and defects in both the viscerocranium and the neurocranium. The knockdown of prdm3 and prdm16 in combination is additive in the neurocranium, but not in the viscerocranium. Injection of sub-optimal doses of prdm1a with prdm3 or prdm16 Morpholinos together leads to more severe phenotypes in the viscerocranium and neurocranium. prdm5 mutants have defects in the neurocranium and prdm1a and prdm5 double mutants also show more severe phenotypes. Overall, our data reveal that prdm3, 5, and 16 are involved in the zebrafish craniofacial development and that prdm1a may interact with prdm3, 5, and 16 in the formation of the craniofacial skeleton in zebrafish. Copyright © 2012 Wiley Periodicals, Inc.

  11. Generation and characterization of Kctd15 mutations in zebrafish.

    Directory of Open Access Journals (Sweden)

    Alison Heffer

    Full Text Available Potassium channel tetramerization domain containing 15 (Kctd15 was previously found to have a role in early neural crest (NC patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa, a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates.

  12. NSF Obligations for Top 200 Institutions by Fiscal Year

    Data.gov (United States)

    National Science Foundation — An text/xml file containing FY 2001 through FY 2015 National Science Foundation (NSF) obligations by institution for the top 200 recipients defined in terms of total...

  13. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investig......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish...... and investigate the effects of a few of these compounds in further detail. We identified and confirmed 57 compounds that altered pigment cell patterning, number, survival, or differentiation. Additional tissue targets and toxicity of small molecules are also discussed. Given that the majority of cell types...

  14. The NSF and the geosciences community: Rotating program officers

    Science.gov (United States)

    Batiza, Rodey; Rea, David K.; Rumble, Douglas, III

    The National Science Foundation (NSF) is a federal agency charged with the care and feeding of basic scientific research in U.S. colleges and universities. NSF is a major contributor toward the support of research in Earth, ocean, and atmospheric sciences, disciplines of great importance to AGU members.NSF makes a regular practice of employing scientists from universities, nonprofit research organizations, industry, and state or local governments as temporary program officers (“rotators”) with terms of service from 1 to 2 years. There are several reasons for the use of rotators: It brings to NSF people who have firsthand, recent knowledge of "what it is really like" beyond the Washington, D.C. beltway. Knowledge of new ideas, recent graduates, and a fresh look at the system are worth considerably more than the problems that arise owing to inexperienced program officers.It sheds some sunshine on internal NSF procedures when the rotator returns with his tales to his home institution.It provides NSF management with considerable flexibility in coping with changing staff requirements.

  15. Functional and Genetic Analysis of Choroid Plexus Development in Zebrafish

    Directory of Open Access Journals (Sweden)

    Hannah Elizabeth Henson

    2014-11-01

    Full Text Available The choroid plexus, an epithelial-based structure localized in the brain ventricle, is the major component of the blood-cerebrospinal fluid barrier. The choroid plexus produces the cerebrospinal fluid and regulates the components of the cerebrospinal fluid. Abnormal choroid plexus function is associated with neurodegenerative diseases, tumor formation in the choroid plexus epithelium, and hydrocephaly. In this study, we used zebrafish (Danio rerio as a model system to understand the genetic components of choroid plexus development. We generated an enhancer trap line, Et(cp:EGFPsj2, that expresses enhanced green fluorescent protein (EGFP in the choroid plexus epithelium. Using immunohistochemistry and fluorescent tracers, we demonstrated that the zebrafish choroid plexus possesses brain barrier properties such as tight junctions and transporter activity. Thus, we have established zebrafish as a functionally relevant model to study choroid plexus development. Using an unbiased approach, we performed a forward genetic dissection of the choroid plexus to identify genes essential for its formation and function. Using Et(cp:EGFPsj2, we isolated 10 recessive mutant lines with choroid plexus abnormalities, which were grouped into five classes based on GFP intensity, epithelial localization, and overall choroid plexus morphology. We also mapped the mutation for two mutant lines to chromosomes 4 and 21, respectively. The mutants generated in this study can be used to elucidate specific genes and signaling pathways essential for choroid plexus development, function, and/or maintenance and will provide important insights into how these genetic mutations contribute to disease.

  16. Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors

    Directory of Open Access Journals (Sweden)

    Jeng-Wei Lu

    2017-09-01

    Full Text Available Colorectal cancer (CRC is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.

  17. The essential role of endogenous ghrelin in growth hormone expression during zebrafish adenohypophysis development.

    Science.gov (United States)

    Li, Xi; He, Jiangyan; Hu, Wei; Yin, Zhan

    2009-06-01

    Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development.

  18. Congressional hearing reviews NSF major research and facilities projects

    Science.gov (United States)

    Showstack, Randy

    2012-03-01

    An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called "Risk management guide for large facilities" states that cost contingency is "that portion of the project budget required to cover `known unknowns,'" such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

  19. Disruption of the folate pathway in zebrafish causes developmental defects

    Directory of Open Access Journals (Sweden)

    Lee Marina S

    2012-04-01

    Full Text Available Abstract Background Folic acid supplementation reduces the risk of neural tube defects and congenital heart defects. The biological mechanisms through which folate prevents birth defects are not well understood. We explore the use of zebrafish as a model system to investigate the role of folate metabolism during development. Results We first identified zebrafish orthologs of 12 human folate metabolic genes. RT-PCR and in situ analysis indicated maternal transcripts supply the embryo with mRNA so that the embryo has an intact folate pathway. To perturb folate metabolism we exposed zebrafish embryos to methotrexate (MTX, a potent inhibitor of dihydrofolate reductase (Dhfr an essential enzyme in the folate metabolic pathway. Embryos exposed to high doses of MTX exhibited developmental arrest prior to early segmentation. Lower doses of MTX resulted in embryos with a shortened anterior-posterior axis and cardiac defects: linear heart tubes or incomplete cardiac looping. Inhibition of dhfr mRNA with antisense morpholino oligonucleotides resulted in embryonic lethality. One function of the folate pathway is to provide essential one-carbon units for dTMP synthesis, a rate-limiting step of DNA synthesis. After 24 hours of exposure to high levels of MTX, mutant embryos continue to incorporate the thymidine analog BrdU. However, additional experiments indicate that these embryos have fewer mitotic cells, as assayed with phospho-histone H3 antibodies, and that treated embryos have perturbed cell cycles. Conclusions Our studies demonstrate that human and zebrafish utilize similar one-carbon pathways. Our data indicate that folate metabolism is essential for early zebrafish development. Zebrafish studies of the folate pathway and its deficiencies could provide insight into the underlying etiology of human birth defects and the natural role of folate in development.

  20. Genetic modifiers of comatose mutations in Drosophila: insights into neuronal NSF (N-ethylmaleimide-sensitive fusion factor) functions.

    Science.gov (United States)

    Sanyal, Subhabrata; Krishnan, K S

    2012-09-01

    By the middle of the 20th century, development of powerful genetic approaches had ensured that the fruit fly would remain a model organism of choice for genetic and developmental studies. But in the 1970s, a few pioneering groups turned their attention to the prospect of using the fly for neurophysiological experiments. They proposed that in a poikilothermic organism such as Drosophila, temperature-sensitive or "ts" mutations in proteins that controlled nerve function would translate to a "ts" paralytic phenotype. This was by no means an obvious or even a likely assumption. However, following directed screens these groups soon reported dramatic demonstrations of reversible ts paralysis in fly mutants. Resultantly, these "simple" experiments led to the isolation of a number of conditional mutations including shibire, paralytic, and comatose. All have since been cloned and have enabled deep mechanistic insights into synaptic transmission and nerve conduction. comatose (comt) mutations, for example, were found to map to missense changes in dNSF1, a neuron-specific fly homolog of mammalian NSF (N-ethylmaleimide-sensitive fusion factor). Studies on comt were also some of the first to discriminate between nuanced models of NSF function during presynaptic transmitter release that have since been borne out by experiments in multiple preparations. Here, the authors present an overview of NSF function as it is understood today, with an emphasis on contributions from Drosophila beginning with experiments carried out by Obaid Siddiqi in the Benzer laboratory. The authors also outline initial results from a genetic screen for phenotypic modifiers of comt that hold the promise of further elucidating NSF function at the synapse. Over the years, the neuromuscular system of Drosophila has served as a uniquely accessible model to unravel mechanisms underlying synaptic transmission. To this day, ts paralysis remains one of the most emphatic demonstrations of nerve function in an

  1. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish.

    Science.gov (United States)

    Singh, Chanpreet; Oikonomou, Grigorios; Prober, David A

    2015-09-16

    Pharmacological studies in mammals suggest that norepinephrine (NE) plays an important role in promoting arousal. However, the role of endogenous NE is unclear, with contradicting reports concerning the sleep phenotypes of mice lacking NE due to mutation of dopamine β-hydroxylase (dbh). To investigate NE function in an alternative vertebrate model, we generated dbh mutant zebrafish. In contrast to mice, these animals exhibit dramatically increased sleep. Surprisingly, despite an increase in sleep, dbh mutant zebrafish have a reduced arousal threshold. These phenotypes are also observed in zebrafish treated with small molecules that inhibit NE signaling, suggesting that they are caused by the lack of NE. Using genetic overexpression of hypocretin (Hcrt) and optogenetic activation of hcrt-expressing neurons, we also find that NE is important for Hcrt-induced arousal. These results establish a role for endogenous NE in promoting arousal and indicate that NE is a critical downstream effector of Hcrt neurons.

  2. Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis.

    Science.gov (United States)

    Gansner, John M; Madsen, Erik C; Mecham, Robert P; Gitlin, Jonathan D

    2008-10-01

    Recent studies demonstrate that lysyl oxidase cuproenzymes are critical for zebrafish notochord formation, but the molecular mechanisms of copper-dependent notochord morphogenesis are incompletely understood. We, therefore, conducted a forward genetic screen for zebrafish mutants that exhibit notochord sensitivity to lysyl oxidase inhibition, yielding a mutant with defects in notochord and vascular morphogenesis, puff daddygw1 (pfdgw1). Meiotic mapping and cloning reveal that the pfdgw1 phenotype results from disruption of the gene encoding the extracellular matrix protein fibrillin-2, and the spatiotemporal expression of fibrillin-2 is consistent with the pfdgw1 phenotype. Furthermore, each aspect of the pfdgw1 phenotype is recapitulated by morpholino knockdown of fibrillin-2. Taken together, the data reveal a genetic interaction between fibrillin-2 and the lysyl oxidases in notochord formation and demonstrate the importance of fibrillin-2 in specific early developmental processes in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.

  3. Immunostaining of dissected zebrafish embryonic heart.

    Science.gov (United States)

    Yang, Jingchun; Xu, Xiaolei

    2012-01-10

    Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals. Copyright © 2012 Journal of Visualized Experiments

  4. Feature Binding in Zebrafish

    Directory of Open Access Journals (Sweden)

    P Neri

    2012-07-01

    Full Text Available Binding operations are primarily ascribed to cortex or similarly complex avian structures. My experiments show that the zebrafish, a lower vertebrate lacking cortex, supports visual feature binding of form and motion for the purpose of social behavior. These results challenge the notion that feature binding may require highly evolved neural structures and demonstrate that the nervous system of lower vertebrates can afford unexpectedly complex computations.

  5. Nephrogenic systemic fibrosis (NSF) and gadolinium-based contrast ...

    African Journals Online (AJOL)

    Nephrogenic systemic fibrosis (NSF), unknown before March 1997 and first described in 2000, is a systemic disorder characterised by widespread tissue fibrosis. The first known case occurred in 1997, after the use of gadolinium-based contrast agents (GBCAs) at high doses in patients with renal failure had become routine.

  6. The design of a switchyard for the NSF isotope separator

    International Nuclear Information System (INIS)

    Malcolm, I.C.; Grant, I.S.

    1982-01-01

    In examining design requirements for the optics of the NSF isotope separator, first-order considerations, voltage requirements, second-order considerations, and shim coil design are discussed. The results are given of a computer study of the system comprising of quadrupole triplet, magnetic and electrostatic sectors. The effects of the accuracy in the fabrication of the electrostatic sector are considered. (U.K.)

  7. NSF-Sponsored Biological and Chemical Oceanography Data Management Office

    Science.gov (United States)

    Allison, M. D.; Chandler, C. L.; Copley, N.; Galvarino, C.; Gegg, S. R.; Glover, D. M.; Groman, R. C.; Wiebe, P. H.; Work, T. T.; Biological; Chemical Oceanography Data Management Office

    2010-12-01

    Ocean biogeochemistry and marine ecosystem research projects are inherently interdisciplinary and benefit from improved access to well-documented data. Improved data sharing practices are important to the continued exploration of research themes that are a central focus of the ocean science community and are essential to interdisciplinary and international collaborations that address complex, global research themes. In 2006, the National Science Foundation Division of Ocean Sciences (NSF OCE) funded the Biological and Chemical Oceanography Data Management Office (BCO-DMO) to serve the data management requirements of scientific investigators funded by the National Science Foundation’s Biological and Chemical Oceanography Sections. BCO-DMO staff members work with investigators to manage marine biogeochemical, ecological, and oceanographic data and information developed in the course of scientific research. These valuable data sets are documented, stored, disseminated, and protected over short and intermediate time frames. One of the goals of the BCO-DMO is to facilitate regional, national, and international data and information exchange through improved data discovery, access, display, downloading, and interoperability. In May 2010, NSF released a statement to the effect that in October 2010, it is planning to require that all proposals include a data management plan in the form of a two-page supplementary document. The data management plan would be an element of the merit review process. NSF has long been committed to making data from NSF-funded research publicly available and the new policy will strengthen this commitment. BCO-DMO is poised to assist in creating the data management plans and in ultimately serving the data and information resulting from NSF OCE funded research. We will present an overview of the data management system capabilities including: geospatial and text-based data discovery and access systems; recent enhancements to data search tools; data

  8. LRRK2 phosphorylates pre-synaptic N-ethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate.

    Science.gov (United States)

    Belluzzi, Elisa; Gonnelli, Adriano; Cirnaru, Maria-Daniela; Marte, Antonella; Plotegher, Nicoletta; Russo, Isabella; Civiero, Laura; Cogo, Susanna; Carrion, Maria Perèz; Franchin, Cinzia; Arrigoni, Giorgio; Beltramini, Mariano; Bubacco, Luigi; Onofri, Franco; Piccoli, Giovanni; Greggio, Elisa

    2016-01-13

    Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins. Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion. We therefore investigated whether LRRK2 phosphorylates component(s) of the exo/endocytosis machinery. We have previously observed that LRRK2 interacts with NSF, a hexameric AAA+ ATPase that couples ATP hydrolysis to the disassembling of SNARE proteins allowing them to enter another fusion cycle during synaptic exocytosis. Here, we demonstrate that NSF is a substrate of LRRK2 kinase activity. LRRK2 phosphorylates full-length NSF at threonine 645 in the ATP binding pocket of D2 domain. Functionally, NSF phosphorylated by LRRK2 displays enhanced ATPase activity and increased rate of SNARE complex disassembling. Substitution of threonine 645 with alanine abrogates LRRK2-mediated increased ATPase activity. Given that the most common Parkinson's disease LRRK2 G2019S mutation displays increased kinase activity, our results suggest that mutant LRRK2 may impair synaptic vesicle dynamics via aberrant phosphorylation of NSF.

  9. Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord.

    Science.gov (United States)

    Ohata, Shinya; Uga, Hideko; Okamoto, Hitoshi; Katada, Toshiaki

    2018-06-27

    Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Imaging a seizure model in zebrafish with structured illumination light sheet microscopy

    Science.gov (United States)

    Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.

  11. Modeling tuberculous meningitis in zebrafish using Mycobacterium marinum

    Directory of Open Access Journals (Sweden)

    Lisanne M. van Leeuwen

    2014-09-01

    Full Text Available Tuberculous meningitis (TBM is one of the most severe extrapulmonary manifestations of tuberculosis, with a high morbidity and mortality. Characteristic pathological features of TBM are Rich foci, i.e. brain- and spinal-cord-specific granulomas formed after hematogenous spread of pulmonary tuberculosis. Little is known about the early pathogenesis of TBM and the role of Rich foci. We have adapted the zebrafish model of Mycobacterium marinum infection (zebrafish–M. marinum model to study TBM. First, we analyzed whether TBM occurs in adult zebrafish and showed that intraperitoneal infection resulted in granuloma formation in the meninges in 20% of the cases, with occasional brain parenchyma involvement. In zebrafish embryos, bacterial infiltration and clustering of infected phagocytes was observed after infection at three different inoculation sites: parenchyma, hindbrain ventricle and caudal vein. Infection via the bloodstream resulted in the formation of early granulomas in brain tissue in 70% of the cases. In these zebrafish embryos, infiltrates were located in the proximity of blood vessels. Interestingly, no differences were observed when embryos were infected before or after early formation of the blood-brain barrier (BBB, indicating that bacteria are able to cross this barrier with relatively high efficiency. In agreement with this observation, infected zebrafish larvae also showed infiltration of the brain tissue. Upon infection of embryos with an M. marinum ESX-1 mutant, only small clusters and scattered isolated phagocytes with high bacterial loads were present in the brain tissue. In conclusion, our adapted zebrafish–M. marinum infection model for studying granuloma formation in the brain will allow for the detailed analysis of both bacterial and host factors involved in TBM. It will help solve longstanding questions on the role of Rich foci and potentially contribute to the development of better diagnostic tools and therapeutics.

  12. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium

    Directory of Open Access Journals (Sweden)

    Toshiaki Mochizuki

    2014-09-01

    Full Text Available Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior–posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.

  13. Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model

    International Nuclear Information System (INIS)

    Marques, Ines J; Bagowski, Christoph P; Weiss, Frank Ulrich; Vlecken, Danielle H; Nitsche, Claudia; Bakkers, Jeroen; Lagendijk, Anne K; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Lerch, Markus M

    2009-01-01

    Aberrant regulation of cell migration drives progression of many diseases, including cancer cell invasion and metastasis formation. Analysis of tumour invasion and metastasis in living organisms to date is cumbersome and involves difficult and time consuming investigative techniques. For primary human tumours we establish here a simple, fast, sensitive and cost-effective in vivo model to analyse tumour invasion and metastatic behaviour. We fluorescently labelled small explants from gastrointestinal human tumours and investigated their metastatic behaviour after transplantation into zebrafish embryos and larvae. The transparency of the zebrafish embryos allows to follow invasion, migration and micrometastasis formation in real-time. High resolution imaging was achieved through laser scanning confocal microscopy of live zebrafish. In the transparent zebrafish embryos invasion, circulation of tumour cells in blood vessels, migration and micrometastasis formation can be followed in real-time. Xenografts of primary human tumours showed invasiveness and micrometastasis formation within 24 hours after transplantation, which was absent when non-tumour tissue was implanted. Furthermore, primary human tumour cells, when organotopically implanted in the zebrafish liver, demonstrated invasiveness and metastatic behaviour, whereas primary control cells remained in the liver. Pancreatic tumour cells showed no metastatic behaviour when injected into cloche mutant embryos, which lack a functional vasculature. Our results show that the zebrafish is a useful in vivo animal model for rapid analysis of invasion and metastatic behaviour of primary human tumour specimen

  14. 21st Century Kinematics : The 2012 NSF Workshop

    CERN Document Server

    2013-01-01

    21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will be provide admirable supporting theory for a graduate course in modern kinematics and should be of consid...

  15. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  16. Extracellular Gd-CA: Differences in prevalence of NSF

    International Nuclear Information System (INIS)

    Thomsen, Henrik S.; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development of nephrogenic systemic fibrosis, a generalized fibrotic disorder, in renal failure patients. As no prospective studies can be performed we must rely on retrospective data. From those data it is obvious that the prevalence of NSF is significantly higher after the unstable agent gadodiamide than after any other gadolinium-based agent (3-7% versus 0-1% per injection) in patients with reduced renal function. Prevalence after exposure to two gadodiamide injections is as high as 36% in patients with chronic kidney disease (CKD) stage 5. No report of NSF after the most stable agents has been reported in the peer-reviewed literature documenting that there is a difference between the various agents regarding triggering NSF

  17. Roles of brca2 (fancd1 in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish.

    Directory of Open Access Journals (Sweden)

    Adriana Rodríguez-Marí

    2011-03-01

    Full Text Available Mild mutations in BRCA2 (FANCD1 cause Fanconi anemia (FA when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53 rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture.

  18. The Zebrafish Model Organism Database (ZFIN)

    Data.gov (United States)

    U.S. Department of Health & Human Services — ZFIN serves as the zebrafish model organism database. It aims to: a) be the community database resource for the laboratory use of zebrafish, b) develop and support...

  19. Quantification of vestibular-induced eye movements in zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Mo Weike

    2010-09-01

    Full Text Available Abstract Background Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR, a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity. Results We have determined herein the basis of sensitivity of the larval eye movements with respect to vestibular stimulus, developmental stage, and sensory receptors of the inner ear. For our experiments, video recordings of larvae rotated sinusoidally at 0.25 Hz were analyzed to quantitate eye movements under infrared illumination. We observed a robust response that appeared as early as 72 hours post fertilization (hpf, which increased in amplitude over time. Unlike rotation about an earth horizontal axis, rotation about an earth vertical axis at 0.25 Hz did not evoke eye movements. Moreover, vestibular-induced responses were absent in mutant cdh23 larvae and larvae lacking anterior otoliths. Conclusions Our results provide evidence for a functional vestibulo-oculomotor circuit in 72 hpf zebrafish larvae that relies upon sensory input from anterior/utricular otolith organs.

  20. Completion of meiosis in male zebrafish (Danio rerio) despite lack of DNA mismatch repair gene mlh1.

    NARCIS (Netherlands)

    Leal, M.C.; Feitsma, H.; Cuppen, E.; Franca, L.R.; Schulz, R.W.

    2008-01-01

    Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile but

  1. Completion of meiosis in male zebrafish (Danio rerio) despite lack of DNA mismatch repair gene mlh1

    NARCIS (Netherlands)

    Leal, M.C.; Feitsma, H.; Cuppen, E.; França, L.R.; Schulz, R.W.

    2008-01-01

    Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile

  2. Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin-ECM adhesion complex.

    NARCIS (Netherlands)

    Postel, R.; Vakeel, P.; Topczewski, J.; Knoll, R.; Bakkers, J.

    2008-01-01

    Mechanical instability of skeletal muscle cells is the major cause of congenital muscular dystrophy. Here we show that the zebrafish lost-contact mutant, that lacks a functional integrin-linked kinase (ilk) gene, suffers from mechanical instability of skeletal muscle fibres. With genetic and

  3. Prolonged hypoxia increases survival even in Zebrafish (Danio rerio showing cardiac arrhythmia.

    Directory of Open Access Journals (Sweden)

    Renate Kopp

    Full Text Available Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia. Breakdance mutants (bre are characterized by chronically reduced cardiac output. Despite an about 50% heart rate reduction, they become adults, but survival rate significantly drops to 40%. Normoxic bre animals demonstrate increased hypoxia inducible factor 1 a (Hif-1α expression, which indicates an activated hypoxic signaling pathway. Consequently, cardiovascular acclimation, like cardiac hypertrophy and increased erythrocyte concentration, occurs. Thus, it was hypothesized, that under hypoxic conditions survival might be even more reduced. When bre mutants were exposed to hypoxic conditions, they surprisingly showed higher survival rates than under normoxic conditions and even reached wildtype values. In hypoxic wildtype zebrafish, survival yet exceeded normoxic control values. To specify physiological acclimation, cardiovascular and metabolic parameters were measured before hypoxia started (3 dpf, when the first differences in survival rate occurred (7 dpf and when survival rate plateaued (15 dpf. Hypoxic animals expectedly demonstrated Hif-1α accumulation and consequently enhanced convective oxygen carrying capacity. Moreover, bre animals showed a significantly enhanced heart rate under hypoxic conditions, which reached normoxic wildtype values. This improvement in convective oxygen transport ensured a sufficient oxygen and nutrient supply and was also reflected in the significantly higher mitochondrial activity. The highly optimized energy metabolism observed in hypoxic zebrafish larvae might be decisive for periods of higher energy demand due to organ development, growth and increased activity. However, hypoxia increased survival only during a

  4. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Science.gov (United States)

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  5. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    Directory of Open Access Journals (Sweden)

    Wei Cheng

    Full Text Available Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1. Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  6. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Directory of Open Access Journals (Sweden)

    Vincent Runtuwene

    2011-05-01

    Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome.

  7. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    Science.gov (United States)

    Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen

    2011-01-01

    SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000

  8. Object recognition memory in zebrafish.

    Science.gov (United States)

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  10. NSF-RANN Trace Contaminants Program directory. [Personnel directory

    Energy Technology Data Exchange (ETDEWEB)

    Purnell, P.A.; Smith, S.K.; Wilkes, C.F.

    1976-10-01

    This directory is designed to aid effective communication throughout the National Science Foundation's Trace Contaminants Program, Research Applied to National Needs. The majority of the participants in the Program are represented by name, address, telephone number, and a very brief description of research interest. The directory has five major divisions to facilitate its use. Section I contains a listing of the program managers associated with the NSF-RANN Trace Contaminants Program. Section II lists the principal investigators, co-principal investigators, and coordinators of each of the research grants in the Program. Section III lists the personnel by individual projects. Section IV contains a total alphabetic listing complete with project titles and Section V contains a keyword index. This directory is maintained by the Toxic Materials Information Center as part of the Environmental Resource Center of the Information Center Complex, Information Division, Oak Ridge National Laboratory.

  11. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  12. Update on the NSF PAARE Program at SC State

    Science.gov (United States)

    Walter, Donald K.; Ajello, Marco; Brittain, Sean D.; Cash, Jennifer; Hartmann, Dieter; Ho, Shirley; Howell, Steve B.; King, Jeremy R.; Leising, Mark D.; Smith, Daniel M.

    2017-01-01

    We report on results from our NSF PAARE program during Year 2 of the project. Our partnership under this PAARE award includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) as well as individual investigators at NASA Ames and Carnegie Mellon University. Our recent work on variable and peculiar stars, work with the Kepler Observatory and our educational products in cosmology for non-STEM majors will be presented. We have successfully piloted sharing our teaching resources by offering an upper-level astrophysics course taught at Clemson via video conferencing , allowing a graduating senior from SC State to take a course not available through his home institution. Additionally, we are working on a memorandum of agreement between the two institutions that will allow for the seamless transfer of an undergraduate from SC State to Clemson’s graduate program in physics and astronomy. Our curriculum work includes new web-based cosmology activities and laboratory experiments. SC State undergraduates are reporting at this conference on their work with the light curves of semiregular variables using Kepler data. Additionally, we are heavily involved in the Citizen CATE Experiment. A PAARE scholarship student from SC State and the PAARE PI traveled to Indonesia for the March 2016 solar eclipse. Their results are also being presented elsewhere at this conference (see Myles McKay’s poster). Support for this work includes our NSF PAARE award AST-1358913 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Additional support has been provided by the South Carolina Space Grant Consortium and from NASA to SC State under awards NNX11AB82G and NNX13AC24G. CATE work has been supported by NASA SMD award NNX16AB92A to the National Solar Observatory. Additional details can be found at: http://physics.scsu.edu

  13. Demonstration of differential quantitative requirements for NSF among multiple vesicle fusion pathways of GLUT4 using a dominant-negative ATPase-deficient NSF

    International Nuclear Information System (INIS)

    Chen Xiaoli; Matsumoto, Hideko; Hinck, Cynthia S.; Al-Hasani, Hadi; St-Denis, Jean-Francois; Whiteheart, Sidney W.; Cushman, Samuel W.

    2005-01-01

    In this study, we investigated the relative participation of N-ethylmaleimide-sensitive factor (NSF) in vivo in a complex multistep vesicle trafficking system, the translocation response of GLUT4 to insulin in rat adipose cells. Transfections of rat adipose cells demonstrate that over-expression of wild-type NSF has no effect on total, or basal and insulin-stimulated cell-surface expression of HA-tagged GLUT4. In contrast, a dominant-negative NSF (NSF-D1EQ) can be expressed at a low enough level that it has little effect on total HA-GLUT4, but does reduce both basal and insulin-stimulated cell-surface HA-GLUT4 by ∼50% without affecting the GLUT4 fold-translocation response to insulin. However, high expression levels of NSF-D1EQ decrease total HA-GLUT4. The inhibitory effect of NSF-D1EQ on cell-surface HA-GLUT4 is reversed when endocytosis is inhibited by co-expression of a dominant-negative dynamin (dynamin-K44A). Moreover, NSF-D1EQ does not affect cell-surface levels of constitutively recycling GLUT1 and TfR, suggesting a predominant effect of low-level NSF-D1EQ on the trafficking of GLUT4 from the endocytic recycling compared to the intracellular GLUT4-specific compartment. Thus, our data demonstrate that the multiple fusion steps in GLUT4 trafficking have differential quantitative requirements for NSF activity. This indicates that the rates of plasma and intracellular membrane fusion reactions vary, leading to differential needs for the turnover of the SNARE proteins

  14. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    International Nuclear Information System (INIS)

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    2009-01-01

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.

  15. The primary role of zebrafish nanog is in extra-embryonic tissue.

    Science.gov (United States)

    Gagnon, James A; Obbad, Kamal; Schier, Alexander F

    2018-01-09

    The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZ nanog ) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZ nanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation. © 2018. Published by The Company of Biologists Ltd.

  16. Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses.

    Science.gov (United States)

    Park, Jong-Su; Ryu, Jae-Ho; Choi, Tae-Ik; Bae, Young-Ki; Lee, Suman; Kang, Hae Jin; Kim, Cheol-Hee

    2016-10-01

    Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.

  17. NRAO Response to NSF Senior Review of Astronomy Facilities

    Science.gov (United States)

    2006-11-01

    The National Science Foundation's (NSF) Astronomy Senior Review Committee report (pdf file), released today, made major recommendations for restructuring the NSF's ground-based astronomy efforts, including significant changes for the National Radio Astronomy Observatory (NRAO). The committee's report urged that leadership in radio astronomy, including millimeter- and submillimeter-wave observatories, "remain centered at NRAO as it is, by far, the largest radio astronomy organization in the world." The report praised the record of management of NRAO and the scientific capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA), the Expanded Very Large Array (EVLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA). However, the report also recommended that some reductions and changes occur at the NRAO by 2011. Specifically, the report recommended that: (a) VLBA operations make a transition to a significant reliance on international funding or risk closure; (b) GBT operations costs be reduced; and (c) NRAO scientific staff costs be reduced. "The Senior Review Committee had the very difficult task of reconciling the needs of current facilities and funding new facilities for the future of astronomy. We appreciate their efforts and look forward to working with the NSF to ensure that the valuable and unique research capabilities of our NRAO telescopes continue to serve the astronomical community," said Dr. Fred K.Y. Lo, NRAO Director. The VLBA provides the greatest angular resolution, or ability to see fine detail, of any telescope in the world, greatly exceeding the capabilities of the Hubble Space Telescope and the future Square Kilometre Array. The committee recognized that, "if the VLBA is closed, a unique capability would likely be lost for decades." "The VLBA is used by scientists from around the world because of its unique capabilities. It has produced landmark research milestones and the committee recognized in its

  18. A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis.

    Science.gov (United States)

    Leacock, Stefanie W; Basse, Audrey N; Chandler, Garvin L; Kirk, Anne M; Rakheja, Dinesh; Amatruda, James F

    2012-01-01

    Ewing's sarcoma, a malignant bone tumor of children and young adults, is a member of the small-round-blue-cell tumor family. Ewing's sarcoma family tumors (ESFTs), which include peripheral primitive neuroectodermal tumors (PNETs), are characterized by chromosomal translocations that generate fusions between the EWS gene and ETS-family transcription factors, most commonly FLI1. The EWS-FLI1 fusion oncoprotein represents an attractive therapeutic target for treatment of Ewing's sarcoma. The cell of origin of ESFT and the molecular mechanisms by which EWS-FLI1 mediates tumorigenesis remain unknown, and few animal models of Ewing's sarcoma exist. Here, we report the use of zebrafish as a vertebrate model of EWS-FLI1 function and tumorigenesis. Mosaic expression of the human EWS-FLI1 fusion protein in zebrafish caused the development of tumors with histology strongly resembling that of human Ewing's sarcoma. The incidence of tumors increased in a p53 mutant background, suggesting that the p53 pathway suppresses EWS-FLI1-driven tumorigenesis. Gene expression profiling of the zebrafish tumors defined a set of genes that might be regulated by EWS-FLI1, including the zebrafish ortholog of a crucial EWS-FLI1 target gene in humans. Stable zebrafish transgenic lines expressing EWS-FLI1 under the control of the heat-shock promoter exhibit altered embryonic development and defective convergence and extension, suggesting that EWS-FLI1 interacts with conserved developmental pathways. These results indicate that functional targets of EWS-FLI1 that mediate tumorigenesis are conserved from zebrafish to human and provide a novel context in which to study the function of this fusion oncogene.

  19. Measurements on the NSF injector and analysing magnets

    International Nuclear Information System (INIS)

    Armitage, S.A.; Barker, D.; Eastham, D.A.; Kivlin, F.J.; Tait, N.R.S.

    1979-08-01

    Two 90 0 uniform field magnets are to be installed in the Nuclear Structure Facility (NSF). Their purpose and design are summarized. The effects of various field errors on the performance of a 90 0 double focusing magnet were investigated using a beam optics programme. The results were used to draw up the specification for the magnets. Subsequent checks were made on the angles β of the effective field boundaries with and without the field clamps in place and of the uniformity of the field along the beam orbit in the orbit plane. Checks were also made on radial uniformity in the orbit plane. In order to ensure reliability of calibration of the magnetic field in terms of the field at the NMR probe, reproducibility of field distributions for various excitation cycles was studied. Finally the performance of the magnets was checked directly using high quality α-sources located at the object point, detecting the image at the image point using a position sensitive surface barrier detector. The results of studies on the inflector magnet have been published. (author)

  20. Mechanisms of prickle1a function in zebrafish epilepsy and retinal neurogenesis

    Directory of Open Access Journals (Sweden)

    Xue Mei

    2013-05-01

    Epilepsy is a complex neurological disorder characterized by unprovoked seizures. The etiology is heterogeneous with both genetic and environmental causes. Genes that regulate neurotransmitters and ion channels in the central nervous system have been associated with epilepsy. However, a recent screening in human epilepsy patients identified mutations in the PRICKLE1 (PK1 locus, highlighting a potentially novel mechanism underlying seizures. PK1 is a core component of the planar cell polarity network that regulates tissue polarity. Zebrafish studies have shown that Pk1 coordinates cell movement, neuronal migration and axonal outgrowth during embryonic development. Yet how dysfunction of Pk1 relates to epilepsy is unknown. To address the mechanism underlying epileptogenesis, we used zebrafish to characterize Pk1a function and epilepsy-related mutant forms. We show that knockdown of pk1a activity sensitizes zebrafish larva to a convulsant drug. To model defects in the central nervous system, we used the retina and found that pk1a knockdown induces neurite outgrowth defects; yet visual function is maintained. Furthermore, we characterized the functional and biochemical properties of the PK1 mutant forms identified in human patients. Functional analyses demonstrate that the wild-type Pk1a partially suppresses the gene knockdown retinal defects but not the mutant forms. Biochemical analysis reveals increased ubiquitylation of one mutant form and decreased translational efficiency of another mutant form compared with the wild-type Pk1a. Taken together, our results indicate that mutation of human PK1 could lead to defects in neurodevelopment and signal processing, providing insight into seizure predisposition in these patients.

  1. 45 CFR 689.5 - Initial NSF handling of misconduct matters.

    Science.gov (United States)

    2010-10-01

    ... regulation. (c) If OIG determines that alleged research misconduct involves potential civil or criminal... FOUNDATION RESEARCH MISCONDUCT § 689.5 Initial NSF handling of misconduct matters. (a) NSF staff who learn of... awardee institution of the alleged research misconduct and encourage it to undertake an inquiry; (2) Defer...

  2. 78 FR 69839 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-11-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy...

  3. 75 FR 57463 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-09-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  4. 77 FR 4027 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-01-26

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  5. 76 FR 41234 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  6. 76 FR 19986 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86... FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S...

  7. 75 FR 63450 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-10-15

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... 20852. FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory...

  8. 76 FR 8358 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy.../NSF High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86... Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown Building, 1000...

  9. 45 CFR 680.11 - Staff involvement with NSF proposals and awards.

    Science.gov (United States)

    2010-10-01

    ... teaching careers to spend a year or two at NSF and then return to research and teaching, usually at the... SCIENCE FOUNDATION NATIONAL SCIENCE FOUNDATION RULES OF PRACTICE AND STATUTORY CONFLICT-OF-INTEREST EXEMPTIONS Rules of Practice for the National Science Foundation § 680.11 Staff involvement with NSF...

  10. Modeling Myeloid Malignancies Using Zebrafish

    Directory of Open Access Journals (Sweden)

    Kathryn S. Potts

    2017-12-01

    Full Text Available Human myeloid malignancies represent a substantial disease burden to individuals, with significant morbidity and death. The genetic underpinnings of disease formation and progression remain incompletely understood. Large-scale human population studies have identified a high frequency of potential driver mutations in spliceosomal and epigenetic regulators that contribute to malignancies, such as myelodysplastic syndromes (MDS and leukemias. The high conservation of cell types and genes between humans and model organisms permits the investigation of the underlying mechanisms of leukemic development and potential therapeutic testing in genetically pliable pre-clinical systems. Due to the many technical advantages, such as large-scale screening, lineage-tracing studies, tumor transplantation, and high-throughput drug screening approaches, zebrafish is emerging as a model system for myeloid malignancies. In this review, we discuss recent advances in MDS and leukemia using the zebrafish model.

  11. The role of Sox6 in zebrafish muscle fiber type specification.

    Science.gov (United States)

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation

  12. The genetics of hair-cell function in zebrafish.

    Science.gov (United States)

    Nicolson, Teresa

    2017-09-01

    Our ears are remarkable sensory organs, providing the important senses of balance and hearing. The complex structure of the inner ear, or 'labyrinth', along with the assorted neuroepithelia, have evolved to detect head movements and sounds with impressive sensitivity. The rub is that the inner ear is highly vulnerable to genetic lesions and environmental insults. According to National Institute of Health estimates, hearing loss is one of the most commonly inherited or acquired sensorineural diseases. To understand the causes of deafness and balance disorders, it is imperative to understand the underlying biology of the inner ear, especially the inner workings of the sensory receptors. These receptors, which are termed hair cells, are particularly susceptible to genetic mutations - more than two dozen genes are associated with defects in this cell type in humans. Over the past decade, a substantial amount of progress has been made in working out the molecular basis of hair-cell function using vertebrate animal models. Given the transparency of the inner ear and the genetic tools that are available, zebrafish have become an increasingly popular animal model for the study of deafness and vestibular dysfunction. Mutagenesis screens for larval defects in hearing and balance have been fruitful in finding key components, many of which have been implicated in human deafness. This review will focus on the genes that are required for hair-cell function in zebrafish, with a particular emphasis on mechanotransduction. In addition, the generation of new tools available for the characterization of zebrafish hair-cell mutants will be discussed.

  13. Studying disorders of vertebrate iron and heme metabolism using zebrafish.

    Science.gov (United States)

    van der Vorm, Lisa N; Paw, Barry H

    2017-01-01

    Iron is a crucial component of heme- and iron-sulfur clusters, involved in vital cellular functions such as oxygen transport, DNA synthesis, and respiration. Both excess and insufficient levels of iron and heme-precursors cause human disease, such as iron-deficiency anemia, hemochromatosis, and porphyrias. Hence, their levels must be tightly regulated, requiring a complex network of transporters and feedback mechanisms. The use of zebrafish to study these pathways and the underlying genetics offers many advantages, among others their optical transparency, ex-vivo development and high genetic and physiological conservations. This chapter first reviews well-established methods, such as large-scale mutagenesis screens that have led to the initial identification of a series of iron and heme transporters and the generation of a variety of mutant lines. Other widely used techniques are based on injection of RNA, including complementary morpholino knockdown and gene overexpression. In addition, we highlight several recently developed approaches, most notably endonuclease-based gene knockouts such as TALENs or the CRISPR/Cas9 system that have been used to study how loss of function can induce human disease phenocopies in zebrafish. Rescue by chemical complementation with iron-based compounds or small molecules can subsequently be used to confirm causality of the genetic defect for the observed phenotype. All together, zebrafish have proven to be - and will continue to serve as an ideal model to advance our understanding of the pathogenesis of human iron and heme-related diseases and to develop novel therapies to treat these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. ngs (notochord granular surface) gene encodes a novel type of intermediate filament family protein essential for notochord maintenance in zebrafish.

    Science.gov (United States)

    Tong, Xiangjun; Xia, Zhidan; Zu, Yao; Telfer, Helena; Hu, Jing; Yu, Jingyi; Liu, Huan; Zhang, Quan; Sodmergen; Lin, Shuo; Zhang, Bo

    2013-01-25

    The notochord is an important organ involved in embryonic patterning and locomotion. In zebrafish, the mature notochord consists of a single stack of fully differentiated, large vacuolated cells called chordocytes, surrounded by a single layer of less differentiated notochordal epithelial cells called chordoblasts. Through genetic analysis of zebrafish lines carrying pseudo-typed retroviral insertions, a mutant exhibiting a defective notochord with a granular appearance was isolated, and the corresponding gene was identified as ngs (notochord granular surface), which was specifically expressed in the notochord. In the mutants, the notochord started to degenerate from 32 hours post-fertilization, and the chordocytes were then gradually replaced by smaller cells derived from chordoblasts. The granular notochord phenotype was alleviated by anesthetizing the mutant embryos with tricaine to prevent muscle contraction and locomotion. Phylogenetic analysis showed that ngs encodes a new type of intermediate filament (IF) family protein, which we named chordostatin based on its function. Under the transmission electron microcopy, bundles of 10-nm-thick IF-like filaments were enriched in the chordocytes of wild-type zebrafish embryos, whereas the chordocytes in ngs mutants lacked IF-like structures. Furthermore, chordostatin-enhanced GFP (EGFP) fusion protein assembled into a filamentous network specifically in chordocytes. Taken together, our work demonstrates that ngs encodes a novel type of IF protein and functions to maintain notochord integrity for larval development and locomotion. Our work sheds light on the mechanisms of notochord structural maintenance, as well as the evolution and biological function of IF family proteins.

  15. Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Widrick, Jeffrey J; Alexander, Matthew S; Sanchez, Benjamin; Gibbs, Devin E; Kawahara, Genri; Beggs, Alan H; Kunkel, Louis M

    2016-11-01

    Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4-7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30-60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30-70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5-10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening. Copyright © 2016 the American Physiological Society.

  16. New Insights Into the Role of Estrogens in Male Fertility Based on Findings in Aromatase-Deficient Zebrafish.

    Science.gov (United States)

    Tang, Haipei; Chen, Yu; Liu, Yun; Yin, Yike; Li, Gaofei; Guo, Yin; Liu, Xiaochun; Lin, Haoran

    2017-09-01

    It has been demonstrated that estrogens are indispensable for male fertility in mammals. Aromatase (encoded by CYP19) catalyzes the final step of estradiol biosynthesis. However, less is known about the role of aromatase in male fertility in nonmammalian species. Fish aromatase is encoded by two separate genes: the gonad-specific cyp19a1a and the brain-specific cyp19a1b. In a recent study, we used transcription activatorlike effector nucleases to systematically generate cyp19a1a and cyp19a1b mutant lines and a cyp19a1a;cyp19a1b double-mutant line in zebrafish and demonstrated that cyp19a1a was indispensable for sex differentiation. In this study, we focused on male fertility in these aromatase-deficient zebrafish. Our results showed that all aromatase-deficient male fish had normal fertility even at 1 year after fertilization. Interestingly, we observed more spermatozoa in the cyp19a1a and double-mutant males than in the wild-type and cyp19a1b mutant males. The whole-body androgen levels, follicle-stimulating hormone β and luteinizing hormone β protein levels in the pituitary, and transcript levels of genes known to be involved in spermatogenesis and steroidogenesis in the testes were significantly higher in the cyp19a1a mutant and aromatase double-mutant males than in the wild-type and cyp19a1b mutant males. These results might explain why more spermatozoa were observed in these fish. Collectively, our findings indicate that estrogens are not needed to achieve and maintain normal fertility in male zebrafish. This finding challenges the traditional view that estrogens are indispensable for male fertility. Copyright © 2017 Endocrine Society.

  17. Promising rice mutants

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1988-01-01

    Two induced mutants namely, Mut NS 1 (tall) and Mut NS 5 (semi-dwarf) derived from rice variety Nizersail were evaluated for various agronomic characters at four locations in Bangladesh. Both the mutants matured about three weeks earlier and yielded significantly higher than the parent variety Nizersail. (author). 3 tabs., 9 refs

  18. Mutant heterosis in rice

    International Nuclear Information System (INIS)

    1987-01-01

    In the variety TKM6 a high yielding semidwarf mutant has been induced. This TKM6 mutant was used in test crosses with a number of other varieties and mutants to examine the extent of heterosis of dwarfs in rice and to select superior crosses. An excerpt of the published data is given. It appears from the backcross of the mutant with its original variety, that an increase in number of productive tillers occurs in the hybrid, leading to a striking grain yield increase, while the semi-dwarf culm length (the main mutant character) reverts to the normal phenotype. In the cross with IR8 on the other hand, there is only a minimal increase in tiller number but a substantial increase in TGW leading to more than 30% yield increase over the better parent

  19. Brokering technologies to realize the hydrology scenario in NSF BCube

    Science.gov (United States)

    Boldrini, Enrico; Easton, Zachary; Fuka, Daniel; Pearlman, Jay; Nativi, Stefano

    2015-04-01

    In the National Science Foundation (NSF) BCube project an international team composed of cyber infrastructure experts, geoscientists, social scientists and educators are working together to explore the use of brokering technologies, initially focusing on four domains: hydrology, oceans, polar, and weather. In the hydrology domain, environmental models are fundamental to understand the behaviour of hydrological systems. A specific model usually requires datasets coming from different disciplines for its initialization (e.g. elevation models from Earth observation, weather data from Atmospheric sciences, etc.). Scientific datasets are usually available on heterogeneous publishing services, such as inventory and access services (e.g. OGC Web Coverage Service, THREDDS Data Server, etc.). Indeed, datasets are published according to different protocols, moreover they usually come in different formats, resolutions, Coordinate Reference Systems (CRSs): in short different grid environments depending on the original data and the publishing service processing capabilities. Scientists can thus be impeded by the burden of discovery, access and normalize the desired datasets to the grid environment required by the model. These technological tasks of course divert scientists from their main, scientific goals. The use of GI-axe brokering framework has been experimented in a hydrology scenario where scientists needed to compare a particular hydrological model with two different input datasets (digital elevation models): - the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) dataset, v.2. - the Shuttle Radar Topography Mission (SRTM) dataset, v.3. These datasets were published by means of Hyrax Server technology, which can provide NetCDF files at their original resolution and CRS. Scientists had their model running on ArcGIS, so the main goal was to import the datasets using the available ArcPy library and have EPSG:4326 with the same resolution grid as the

  20. The importance of Zebrafish in biomedical research.

    Science.gov (United States)

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  1. 2017 Midwest Zebrafish Meeting Report.

    Science.gov (United States)

    Sandquist, Elizabeth; Petersen, Sarah C; Smith, Cody J

    2017-12-01

    The 2017 Midwest Zebrafish meeting was held from June 16 to 18 at the University of Cincinnati, sponsored by the Cincinnati Children's Hospital Divisions of Developmental Biology, Molecular Cardiovascular Biology, and Gastroenterology, Hepatology, and Nutrition. The meeting, organized by Saulius Sumanas, Joshua Waxman, and Chunyue Yin, hosted >130 attendees from 16 different states. Scientific sessions were focused on morphogenesis, neural development, novel technologies, and disease models, with Steve Ekker, Stephen Potter, and Lila Solnica-Krezel presenting keynote talks. In this article, we highlight the results and emerging themes from the meeting.

  2. Circadian rhythms in the pineal organ persist in zebrafish larvae that lack ventral brain

    Directory of Open Access Journals (Sweden)

    Goldstein-Kral Lauren

    2011-01-01

    Full Text Available Abstract Background The mammalian suprachiasmatic nucleus (SCN, located in the ventral hypothalamus, is a major regulator of circadian rhythms in mammals and birds. However, the role of the SCN in lower vertebrates remains poorly understood. Zebrafish cyclops (cyc mutants lack ventral brain, including the region that gives rise to the SCN. We have used cyc embryos to define the function of the zebrafish SCN in regulating circadian rhythms in the developing pineal organ. The pineal organ is the major source of the circadian hormone melatonin, which regulates rhythms such as daily rest/activity cycles. Mammalian pineal rhythms are controlled almost exclusively by the SCN. In zebrafish and many other lower vertebrates, the pineal has an endogenous clock that is responsible in part for cyclic melatonin biosynthesis and gene expression. Results We find that pineal rhythms are present in cyc mutants despite the absence of an SCN. The arginine vasopressin-like protein (Avpl, formerly called Vasotocin is a peptide hormone expressed in and around the SCN. We find avpl mRNA is absent in cyc mutants, supporting previous work suggesting the SCN is missing. In contrast, expression of the putative circadian clock genes, cryptochrome 1b (cry1b and cryptochrome 3 (cry3, in the brain of the developing fish is unaltered. Expression of two pineal rhythmic genes, exo-rhodopsin (exorh and serotonin-N-acetyltransferase (aanat2, involved in photoreception and melatonin synthesis, respectively, is also similar between cyc embryos and their wildtype (WT siblings. The timing of the peaks and troughs of expression are the same, although the amplitude of expression is slightly decreased in the mutants. Cyclic gene expression persists for two days in cyc embryos transferred to constant light or constant dark, suggesting a circadian clock is driving the rhythms. However, the amplitude of rhythms in cyc mutants kept in constant conditions decreased more quickly than in their

  3. Distinct and overlapping functions of ptpn11 genes in Zebrafish development.

    Directory of Open Access Journals (Sweden)

    Monica Bonetti

    Full Text Available The PTPN11 (protein-tyrosine phosphatase, non-receptor type 11 gene encodes SHP2, a cytoplasmic PTP that is essential for vertebrate development. Mutations in PTPN11 are associated with Noonan and LEOPARD syndrome. Human patients with these autosomal dominant disorders display various symptoms, including short stature, craniofacial defects and heart abnormalities. We have used the zebrafish as a model to investigate the role of Shp2 in embryonic development. The zebrafish genome encodes two ptpn11 genes, ptpn11a and ptpn11b. Here, we report that ptpn11a is expressed constitutively and ptpn11b expression is strongly upregulated during development. In addition, the products of both ptpn11 genes, Shp2a and Shp2b, are functional. Target-selected inactivation of ptpn11a and ptpn11b revealed that double homozygous mutants are embryonic lethal at 5-6 days post fertilization (dpf. Ptpn11a-/-ptpn11b-/- embryos showed pleiotropic defects from 4 dpf onwards, including reduced body axis extension and craniofacial defects, which was accompanied by low levels of phosphorylated Erk at 5 dpf. Interestingly, defects in homozygous ptpn11a-/- mutants overlapped with defects in the double mutants albeit they were milder, whereas ptpn11b-/- single mutants did not show detectable developmental defects and were viable and fertile. Ptpn11a-/-ptpn11b-/- mutants were rescued by expression of exogenous ptpn11a and ptpn11b alike, indicating functional redundance of Shp2a and Shp2b. The ptpn11 mutants provide a good basis for further unravelling of the function of Shp2 in vertebrate development.

  4. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This result mirrors known effects of selective serotonin reuptake inhibitors (SSRIs in modifying glucocorticoid signaling and alleviating stress disorders in human patients. Our results suggest that larval grs357 zebrafish can be used to study behavioral, physiological and molecular aspects of stress disorders. Most importantly, interactions between glucocorticoid and serotonin signaling appear to be highly conserved among vertebrates, suggesting deep homologies at the neural circuit level and opening up new avenues for research into psychiatric conditions.

  5. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.

    Science.gov (United States)

    Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh

    2016-04-01

    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.

  6. Using curriculum vitae to compare some impacts of NSF research grants with research center funding

    OpenAIRE

    Monica Gaughan; Barry Bozeman

    2002-01-01

    While traditional grants remain central in US federal support of academic scientists and engineers, the role of multidisciplinary NSF Centers is growing. Little is known about how funding through these Centers affects scientific output or (as is an NSF aim) increases academic collaboration with industry. This paper tests the use of CVs to examine how Center funding affects researchers' publication rates and their obtaining industry grants. Copyright , Beech Tree Publishing.

  7. A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle.

    Science.gov (United States)

    Dutton, Kirsten; Abbas, Leila; Spencer, Joanne; Brannon, Claire; Mowbray, Catriona; Nikaido, Masataka; Kelsh, Robert N; Whitfield, Tanya T

    2009-01-01

    In humans, mutations in the SOX10 gene are a cause of the auditory-pigmentary disorder Waardenburg syndrome type IV (WS4) and related variants. SOX10 encodes an Sry-related HMG box protein essential for the development of the neural crest; deafness in WS4 and other Waardenburg syndromes is usually attributed to loss of neural-crest-derived melanocytes in the stria vascularis of the cochlea. However, SOX10 is strongly expressed in the developing otic vesicle and so direct roles for SOX10 in the otic epithelium might also be important. Here, we examine the otic phenotype of zebrafish sox10 mutants, a model for WS4. As a cochlea is not present in the fish ear, the severe otic phenotype in these mutants cannot be attributed to effects on this tissue. In zebrafish sox10 mutants, we see abnormalities in all otic placodal derivatives. Gene expression studies indicate deregulated expression of several otic genes, including fgf8, in sox10 mutants. Using a combination of mutant and morphant data, we show that the three sox genes belonging to group E (sox9a, sox9b and sox10) provide a link between otic induction pathways and subsequent otic patterning: they act redundantly to maintain sox10 expression throughout otic tissue and to restrict fgf8 expression to anterior macula regions. Single-cell labelling experiments indicate a small and transient neural crest contribution to the zebrafish ear during normal development, but this is unlikely to account for the strong defects seen in the sox10 mutant. We discuss the implication that the deafness in WS4 patients with SOX10 mutations might reflect a haploinsufficiency for SOX10 in the otic epithelium, resulting in patterning and functional abnormalities in the inner ear.

  8. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    Science.gov (United States)

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  9. A review of monoaminergic neuropsychopharmacology in zebrafish.

    Science.gov (United States)

    Maximino, Caio; Herculano, Anderson Manoel

    2010-12-01

    Monoamine neurotransmitters are the major regulatory mechanisms in the vertebrate brain, involved in the adjustment of motivation, emotion, and cognition. The chemical anatomy of these systems is thought to be highly conserved in the brain of all vertebrates, including zebrafish. Recently, the development of behavioral assays in zebrafish allowed the neuropsychopharmacological investigation of these circuits and its functions. Here we review neuroanatomical, genetic, neurochemical, and psychopharmacological evidence regarding the roles of histaminergic, dopaminergic, noradrenergic, serotonergic, and melatonergic systems in this species. We conclude that, in spite of species differences, zebrafish are suitable for the investigation of neuropsychopharmacology of drugs that affect theses systems; nonetheless, more thorough validation of behavioral methods is still needed.

  10. Learning and memory in zebrafish larvae

    Science.gov (United States)

    Roberts, Adam C.; Bill, Brent R.; Glanzman, David L.

    2013-01-01

    Larval zebrafish possess several experimental advantages for investigating the molecular and neural bases of learning and memory. Despite this, neuroscientists have only recently begun to use these animals to study memory. However, in a relatively short period of time a number of forms of learning have been described in zebrafish larvae, and significant progress has been made toward their understanding. Here we provide a comprehensive review of this progress; we also describe several promising new experimental technologies currently being used in larval zebrafish that are likely to contribute major insights into the processes that underlie learning and memory. PMID:23935566

  11. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors

    Science.gov (United States)

    Low, Sean E.; Amburgey, Kimberly; Horstick, Eric; Linsley, Jeremy; Sprague, Shawn M.; Cui, Wilson W.; Zhou, Weibin; Hirata, Hiromi; Saint-Amant, Louis; Hume, Richard I.; Kuwada, John Y.

    2011-01-01

    Mutations in the gene encoding TRPM7 (trpm7), a member of the TRP superfamily of cation channels that possesses an enzymatically active kinase at its carboxyl terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations which abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons we found that TRPM7’s kinase activity, and selectivity for divalent cations over monovalent cations, were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses. PMID:21832193

  12. Zebrafish usp39 mutation leads to rb1 mRNA splicing defect and pituitary lineage expansion.

    Directory of Open Access Journals (Sweden)

    Yesenia Ríos

    2011-01-01

    Full Text Available Loss of retinoblastoma (Rb tumor suppressor function is associated with human malignancies. Molecular and genetic mechanisms responsible for tumorigenic Rb downregulation are not fully defined. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish ubiquitin specific peptidase 39 (usp39 mutation, the yeast and human homolog of which encodes a component of RNA splicing machinery. Zebrafish usp39 mutants exhibit microcephaly and adenohypophyseal cell lineage expansion without apparent changes in major hypothalamic hormonal and regulatory signals. Gene expression profiling of usp39 mutants revealed decreased rb1 and increased e2f4, rbl2 (p130, and cdkn1a (p21 expression. Rb1 mRNA overexpression, or antisense morpholino knockdown of e2f4, partially reversed embryonic pituitary expansion in usp39 mutants. Analysis of pre-mRNA splicing status of critical cell cycle regulators showed misspliced Rb1 pre-mRNA resulting in a premature stop codon. These studies unravel a novel mechanism for rb1 regulation by a neuronal mRNA splicing factor, usp39. Zebrafish usp39 regulates embryonic pituitary homeostasis by targeting rb1 and e2f4 expression, respectively, contributing to increased adenohypophyseal sensitivity to these altered cell cycle regulators. These results provide a mechanism for dysregulated rb1 and e2f4 pathways that may result in pituitary tumorigenesis.

  13. Multi-organ abnormalities and mTORC1 activation in zebrafish model of multiple acyl-CoA dehydrogenase deficiency.

    Directory of Open Access Journals (Sweden)

    Seok-Hyung Kim

    2013-06-01

    Full Text Available Multiple Acyl-CoA Dehydrogenase Deficiency (MADD is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463 that has an inactivating mutation in the etfa gene. dxa(vu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1 with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.

  14. Pregnancy-associated plasma protein-A (PAPP-A) modulates early developmental rate in zebrafish independent of its proteolytic activity

    DEFF Research Database (Denmark)

    Kjær-Sørensen, Kasper; Engholm, Ditte Høyer; Kamei, Hiroyasu

    2013-01-01

    the developmental rate beginning during gastrulation without affecting the normal patterning of the embryo. This phenotype is different from those resulting from deficiency of Igf receptor or ligand in zebrafish, suggesting a function of Papp-a outside the Igf system. Biochemical analysis of recombinant zebrafish...... Papp-a demonstrates conservation of proteolytic activity, specificity, and intrinsic regulatory mechanism. However, in vitro transcribed mRNA, which encodes a proteolytically inactive Papp-a mutant, recues the papp-a knockdown phenotype as efficient as wild-type Papp-a. Thus, the developmental...

  15. Episodic-like memory in zebrafish.

    Science.gov (United States)

    Hamilton, Trevor J; Myggland, Allison; Duperreault, Erika; May, Zacnicte; Gallup, Joshua; Powell, Russell A; Schalomon, Melike; Digweed, Shannon M

    2016-11-01

    Episodic-like memory tests often aid in determining an animal's ability to recall the what, where, and which (context) of an event. To date, this type of memory has been demonstrated in humans, wild chacma baboons, corvids (Scrub jays), humming birds, mice, rats, Yucatan minipigs, and cuttlefish. The potential for this type of memory in zebrafish remains unexplored even though they are quickly becoming an essential model organism for the study of a variety of human cognitive and mental disorders. Here we explore the episodic-like capabilities of zebrafish (Danio rerio) in a previously established mammalian memory paradigm. We demonstrate that when zebrafish were presented with a familiar object in a familiar context but a novel location within that context, they spend more time in the novel quadrant. Thus, zebrafish display episodic-like memory as they remember what object they saw, where they saw it (quadrant location), and on which occasion (yellow or blue walls) it was presented.

  16. Molecular cloning of a novel glucuronokinase/putative pyrophosphorylase from zebrafish acting in an UDP-glucuronic acid salvage pathway.

    Directory of Open Access Journals (Sweden)

    Roman Gangl

    Full Text Available In animals, the main precursor for glycosaminoglycan and furthermore proteoglycan biosynthesis, like hyaluronic acid, is UDP-glucuronic acid, which is synthesized via the nucleotide sugar oxidation pathway. Mutations in this pathway cause severe developmental defects (deficiency in the initiation of heart valve formation. In plants, UDP-glucuronic acid is synthesized via two independent pathways. Beside the nucleotide sugar oxidation pathway, a second minor route to UDP-glucuronic acid exist termed the myo-inositol oxygenation pathway. Within this myo-inositol is ring cleaved into glucuronic acid, which is subsequently converted to UDP-glucuronic acid by glucuronokinase and UDP-sugar pyrophosphorylase. Here we report on a similar, but bifunctional enzyme from zebrafish (Danio rerio which has glucuronokinase/putative pyrophosphorylase activity. The enzyme can convert glucuronic acid into UDP-glucuronic acid, required for completion of the alternative pathway to UDP-glucuronic acid via myo-inositol and thus establishes a so far unknown second route to UDP-glucuronic acid in animals. Glucuronokinase from zebrafish is a member of the GHMP-kinase superfamily having unique substrate specificity for glucuronic acid with a Km of 31 ± 8 µM and accepting ATP as the only phosphate donor (Km: 59 ± 9 µM. UDP-glucuronic acid pyrophosphorylase from zebrafish has homology to bacterial nucleotidyltransferases and requires UTP as nucleosid diphosphate donor. Genes for bifunctional glucuronokinase and putative UDP-glucuronic acid pyrophosphorylase are conserved among some groups of lower animals, including fishes, frogs, tunicates, and polychaeta, but are absent from mammals. The existence of a second pathway for UDP-glucuronic acid biosynthesis in zebrafish likely explains some previous contradictory finding in jekyll/ugdh zebrafish developmental mutants, which showed residual glycosaminoglycans and proteoglycans in knockout mutants of UDP

  17. A novel role for MAPKAPK2 in morphogenesis during zebrafish development.

    Directory of Open Access Journals (Sweden)

    Beth A Holloway

    2009-03-01

    Full Text Available One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp, which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses.

  18. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    Science.gov (United States)

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  19. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach.

    Science.gov (United States)

    Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei

    2017-07-01

    Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.

  20. Identification and characterization of zebrafish thrombocytes.

    Science.gov (United States)

    Jagadeeswaran, P; Sheehan, J P; Craig, F E; Troyer, D

    1999-12-01

    To analyse primary haemostasis in the zebrafish we have identified and characterized the zebrafish thrombocyte by morphologic, immunologic and functional approaches. Novel methods were developed for harvesting zebrafish blood with preservation of thrombocytes, and assaying whole blood adhesion/aggregation responses in microtitre plates. Light and electron microscopy of the thrombocyte illustrated morphological characteristics including the formation of aggregates, pseudopodia, and surface-connected vesicles analagous to the platelet canalicular system. Immunostaining with polyclonal antisera versus human platelet glycoproteins demonstrated the presence of glycoprotein Ib and IIb/IIIa-like complexes on the thrombocyte surface. Whole blood assays for adhesion/aggregation and ATP release showed ristocetin-induced adhesion without ATP release, and platelet agonist (collagen, arachidonic acid) induced aggregation with ATP release. Blood harvested from zebrafish treated with aspirin demonstrated inhibition of arachidonic acid induced aggregation and agonist induced ATP release, consistent with at least partial dependence on an intact cyclo oxygenase pathway. The combined morphologic immunologic and functional evidence suggest that the zebrafish thrombocyte is the haemostatic homologue of the mammalian platelet. Conservation of major haemostatic pathways involved in platelet function and coagulation suggests that the zebrafish is a relevant model for mammalian haemostasis and thrombosis.

  1. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  2. A zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis

    Directory of Open Access Journals (Sweden)

    Stefanie W. Leacock

    2012-01-01

    Ewing’s sarcoma, a malignant bone tumor of children and young adults, is a member of the small-round-blue-cell tumor family. Ewing’s sarcoma family tumors (ESFTs, which include peripheral primitive neuroectodermal tumors (PNETs, are characterized by chromosomal translocations that generate fusions between the EWS gene and ETS-family transcription factors, most commonly FLI1. The EWS-FLI1 fusion oncoprotein represents an attractive therapeutic target for treatment of Ewing’s sarcoma. The cell of origin of ESFT and the molecular mechanisms by which EWS-FLI1 mediates tumorigenesis remain unknown, and few animal models of Ewing’s sarcoma exist. Here, we report the use of zebrafish as a vertebrate model of EWS-FLI1 function and tumorigenesis. Mosaic expression of the human EWS-FLI1 fusion protein in zebrafish caused the development of tumors with histology strongly resembling that of human Ewing’s sarcoma. The incidence of tumors increased in a p53 mutant background, suggesting that the p53 pathway suppresses EWS-FLI1-driven tumorigenesis. Gene expression profiling of the zebrafish tumors defined a set of genes that might be regulated by EWS-FLI1, including the zebrafish ortholog of a crucial EWS-FLI1 target gene in humans. Stable zebrafish transgenic lines expressing EWS-FLI1 under the control of the heat-shock promoter exhibit altered embryonic development and defective convergence and extension, suggesting that EWS-FLI1 interacts with conserved developmental pathways. These results indicate that functional targets of EWS-FLI1 that mediate tumorigenesis are conserved from zebrafish to human and provide a novel context in which to study the function of this fusion oncogene.

  3. Antigen Uptake during Different Life Stages of Zebrafish (Danio rerio Using a GFP-Tagged Yersinia ruckeri.

    Directory of Open Access Journals (Sweden)

    Rozalia Korbut

    Full Text Available Immersion-vaccines (bacterins are routinely used for aquacultured rainbow trout to protect against Yersinia ruckeri (Yr. During immersion vaccination, rainbow trout take up and process the antigens, which induce protection. The zebrafish was used as a model organism to study uptake mechanisms and subsequent antigen transport in fish. A genetically modified Yr was developed to constitutively express green fluorescent protein (GFP and was used for bacterin production. Larval, juvenile and adult transparent zebrafish (tra:nac mutant received a bath in the bacterin for up to 30 minutes. Samples were taken after 1 min, 15 min, 30 min, 2 h, 12 h and 24 h. At each sampling point fish were used for live imaging of the uptake using a fluorescence stereomicroscope and for immunohistochemistry (IHC. In adult fish, the bacterin could be traced within 30 min in scale pockets, skin, oesophagus, intestine and fins. Within two hours post bath (pb Yr-antigens were visible in the spleen and at 24 h in liver and kidney. Bacteria were associated with the gills, but uptake at this location was limited. Antigens were rarely detected in the blood and never in the nares. In juvenile fish uptake of the bacterin was seen in the intestine 30 min pb and in the nares 2 hpb but never in scale pockets. Antigens were detected in the spleen 12 hpb. Zebrafish larvae exhibited major Yr uptake only in the mid-intestine enterocytes 24 hpb. The different life stages of zebrafish varied with regard to uptake locations, however the gut was consistently a major uptake site. Zebrafish and rainbow trout tend to have similar uptake mechanisms following immersion or bath vaccination, which points towards zebrafish as a suitable model organism for this aquacultured species.

  4. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...... levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies...

  5. Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement.

    Directory of Open Access Journals (Sweden)

    Motoko Iwashita

    2006-11-01

    Full Text Available Many animals have a variety of pigment patterns, even within a species, and these patterns may be one of the driving forces of speciation. Recent molecular genetic studies on zebrafish have revealed that interaction among pigment cells plays a key role in pattern formation, but the mechanism of pattern formation is unclear. The zebrafish jaguar/obelix mutant has broader stripes than wild-type fish. In this mutant, the development of pigment cells is normal but their distribution is altered, making these fish ideal for studying the process of pigment pattern formation. Here, we utilized a positional cloning method to determine that the inwardly rectifying potassium channel 7.1 (Kir7.1 gene is responsible for pigment cell distribution among jaguar/obelix mutant fish. Furthermore, in jaguar/obelix mutant alleles, we identified amino acid changes in the conserved region of Kir7.1, each of which affected K(+ channel activity as demonstrated by patch-clamp experiments. Injection of a bacterial artificial chromosome containing the wild-type Kir7.1 genomic sequence rescued the jaguar/obelix phenotype. From these results, we conclude that mutations in Kir7.1 are responsible for jaguar/obelix. We also determined that the ion channel function defect of melanophores expressing mutant Kir7.1 altered the cellular response to external signals. We discovered that mutant melanophores cannot respond correctly to the melanosome dispersion signal derived from the sympathetic neuron and that melanosome aggregation is constitutively activated. In zebrafish and medaka, it is well known that melanosome aggregation and subsequent melanophore death increase when fish are kept under constant light conditions. These observations indicate that melanophores of jaguar/obelix mutant fish have a defect in the signaling pathway downstream of the alpha2-adrenoceptor. Taken together, our results suggest that the cellular defect of the Kir7.1 mutation is directly responsible for

  6. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.

    Science.gov (United States)

    Kalueff, Allan V; Echevarria, David J; Homechaudhuri, Sumit; Stewart, Adam Michael; Collier, Adam D; Kaluyeva, Aleksandra A; Li, Shaomin; Liu, Yingcong; Chen, Peirong; Wang, JiaJia; Yang, Lei; Mitra, Anisa; Pal, Subharthi; Chaudhuri, Adwitiya; Roy, Anwesha; Biswas, Missidona; Roy, Dola; Podder, Anupam; Poudel, Manoj K; Katare, Deepshikha P; Mani, Ruchi J; Kyzar, Evan J; Gaikwad, Siddharth; Nguyen, Michael; Song, Cai

    2016-01-01

    Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Productive mutants of niger

    International Nuclear Information System (INIS)

    Misra, R.C.

    2001-01-01

    Seeds of six niger (Guizotia abyssinica Cass.) varieties ('GA-10', 'ONS-8', 'IGP-72', 'N-71', 'NB-9' and 'UN-4') were treated with 0.5, 0.75 and 1% ethyl methanesulphonate. After four generations of selection, 29 mutant lines were developed and those were evaluated from 1990-92 during Kharif (July to October) and Rabi (December to March) seasons. Average plant characteristics and yield data of four high yielding mutants along with 'IGP-76' (National Check), GA-10 (Zonal Check) and 'Semiliguda Local' (Local Check) are presented

  8. Connecting NSF funding to patent innovation in nanotechnology (2001-2004)

    International Nuclear Information System (INIS)

    Huang Zan; Chen Hsinchun; Li Xin; Roco, Mihail C.

    2006-01-01

    Nanotechnology research has experienced growth rapid in knowledge and innovations; it also attracted significant public funding in recent years. Several countries have recognized nanotechnology as a critical research domain that promises to revolutionize a wide range of fields of applications. In this paper, we present an analysis of the funding for nanoscale science and engineering (NSE) at the National Science Foundation (NSF) and its implications on technological innovation (number of patents) in this field from 2001 to 2004. Using a combination of basic bibliometric analysis and content visualization tools, we identify growth trends, research topic distribution, and the evolution in NSF funding and commercial patenting activities recorded at the United States Patent Office (USPTO). The patent citations are used to compare the impact of the NSF-funded research on nanotechnology development with research supported by other sources in the United States and abroad. The analysis shows that the NSF-funded researchers and patents authored by them have significantly higher impact based on patent citation measures in the four-year period than other comparison groups. The NSF-authored patent impact is growing faster with the lifetime of a patent, indicating the long-term importance of fundamental research

  9. A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish

    Directory of Open Access Journals (Sweden)

    Sergey V. Prykhozhij

    2017-06-01

    Full Text Available Clustered regularly interspaced palindromic repeats (CRISPR/Cas-based adaptive immunity against pathogens in bacteria has been adapted for genome editing and applied in zebrafish (Danio rerio to generate frameshift mutations in protein-coding genes. Although there are methods to detect, quantify and sequence CRISPR/Cas9-induced mutations, identifying mutations in F1 heterozygous fish remains challenging. Additionally, sequencing a mutation and assuming that it causes a frameshift does not prove causality because of possible alternative translation start sites and potential effects of mutations on splicing. This problem is compounded by the relatively few antibodies available for zebrafish proteins, limiting validation at the protein level. To address these issues, we developed a detailed protocol to screen F1 mutation carriers, and clone and sequence identified mutations. In order to verify that mutations actually cause frameshifts, we created a fluorescent reporter system that can detect frameshift efficiency based on the cloning of wild-type and mutant cDNA fragments and their expression levels. As proof of principle, we applied this strategy to three CRISPR/Cas9-induced mutations in pycr1a, chd7 and hace1 genes. An insertion of seven nucleotides in pycr1a resulted in the first reported observation of exon skipping by CRISPR/Cas9-induced mutations in zebrafish. However, of these three mutant genes, the fluorescent reporter revealed effective frameshifting exclusively in the case of a two-nucleotide deletion in chd7, suggesting activity of alternative translation sites in the other two mutants even though pycr1a exon-skipping deletion is likely to be deleterious. This article provides a protocol for characterizing frameshift mutations in zebrafish, and highlights the importance of checking mutations at the mRNA level and verifying their effects on translation by fluorescent reporters when antibody detection of protein loss is not possible.

  10. Evaluating human cancer cell metastasis in zebrafish

    International Nuclear Information System (INIS)

    Teng, Yong; Xie, Xiayang; Walker, Steven; White, David T; Mumm, Jeff S; Cowell, John K

    2013-01-01

    In vivo metastasis assays have traditionally been performed in mice, but the process is inefficient and costly. However, since zebrafish do not develop an adaptive immune system until 14 days post-fertilization, human cancer cells can survive and metastasize when transplanted into zebrafish larvae. Despite isolated reports, there has been no systematic evaluation of the robustness of this system to date. Individual cell lines were stained with CM-Dil and injected into the perivitelline space of 2-day old zebrafish larvae. After 2-4 days fish were imaged using confocal microscopy and the number of metastatic cells was determined using Fiji software. To determine whether zebrafish can faithfully report metastatic potential in human cancer cells, we injected a series of cells with different metastatic potential into the perivitelline space of 2 day old embryos. Using cells from breast, prostate, colon and pancreas we demonstrated that the degree of cell metastasis in fish is proportional to their invasion potential in vitro. Highly metastatic cells such as MDA231, DU145, SW620 and ASPC-1 are seen in the vasculature and throughout the body of the fish after only 24–48 hours. Importantly, cells that are not invasive in vitro such as T47D, LNCaP and HT29 do not metastasize in fish. Inactivation of JAK1/2 in fibrosarcoma cells leads to loss of invasion in vitro and metastasis in vivo, and in zebrafish these cells show limited spread throughout the zebrafish body compared with the highly metastatic parental cells. Further, knockdown of WASF3 in DU145 cells which leads to loss of invasion in vitro and metastasis in vivo also results in suppression of metastasis in zebrafish. In a cancer progression model involving normal MCF10A breast epithelial cells, the degree of invasion/metastasis in vitro and in mice is mirrored in zebrafish. Using a modified version of Fiji software, it is possible to quantify individual metastatic cells in the transparent larvae to correlate with

  11. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    Science.gov (United States)

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  12. Loss of col8a1a Function during Zebrafish Embryogenesis Results in Congenital Vertebral Malformations

    Science.gov (United States)

    Gray, Ryan S.; Wilm, Thomas; Smith, Jeff; Bagnat, Michel; Dale, Rodney M.; Topczewski, Jacek; Johnson, Stephen L.; Solnica-Krezel, Lilianna

    2014-01-01

    Congenital vertebral malformations (CVM) occur in 1 in 1,000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles (m531, vu41, vu105) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue. PMID:24333517

  13. The NSF Cybersecurity Center of Excellence: Translating Identity Management and Cybersecurity into Scientific Collaboration

    Science.gov (United States)

    Welch, V.

    2016-12-01

    Scientists care deeply about their collaborations: who is a member, who can access, produce, and correct data, and manager instruments critical to their science missions. The communities of cybersecurity and identity management professionals develop tools to support collaborations and the undertaking of trustworthy science, but there are large cultural and linguistic gaps between these communities and the scientists they service. The National Science Foundation has recently funded a NSF Cybersecurity Center of Excellence to help its community of projects by providing leadership and addressing the challenges of trustworthy science. A key goal of this NSF Center has been translating between the goals of the science community into requirements and risks understood by identity management and cybersecurity communities. This talk will give an update on the Center's efforts and other services it provides to the NSF community to bridge these cultures.

  14. CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR

    Science.gov (United States)

    Durakiewicz, Tomasz

    The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666

  15. NSF Support for Physics at the Undergraduate Level: A View from Inside

    Science.gov (United States)

    McBride, Duncan

    2015-03-01

    NSF has supported a wide range of projects in physics that involve undergraduate students. These projects include NSF research grants in which undergraduates participate; Research Experiences for Undergraduates (REU) centers and supplements; and education grants that range from upper-division labs that may include research, to curriculum development for upper- and lower-level courses and labs, to courses for non-majors, to Physics Education Research (PER). The NSF Divisions of Physics, Materials Research, and Astronomy provide most of the disciplinary research support, with some from other parts of NSF. I recently retired as the permanent physicist in NSF's Division of Undergraduate Education (DUE), which supports the education grants. I was responsible for a majority of DUE's physics grants and was involved with others overseen by a series of physics rotators. There I worked in programs entitled Instrumentation and Laboratory Improvement (ILI); Course and Curriculum Development (CCD); Course, Curriculum, and Laboratory Improvement (CCLI); Transforming Undergraduate STEM Education (TUES); and Improving Undergraduate STEM Education (IUSE). NSF support has enabled physics Principal Investigators to change and improve substantially the way physics is taught and the way students learn physics. The most important changes are increased undergraduate participation in physics research; more teaching using interactive engagement methods in classes; and growth of PER as a legitimate field of physics research as well as outcomes from PER that guide physics teaching. In turn these have led, along with other factors, to students who are better-prepared for graduate school and work, and to increases in the number of undergraduate physics majors. In addition, students in disciplines that physics directly supports, notably engineering and chemistry, and increasingly biology, are better and more broadly prepared to use their physics education in these fields. I will describe NSF

  16. Growth of the zebrafish heart

    NARCIS (Netherlands)

    de Pater, E.M.

    2010-01-01

    Outline of this thesis In order to find new genetic factors, which are involved in cardiac growth we performed a forward genetic screen and we report the outcome of this screen in chapter 2. We screened at 5 days post fertilization (dpf) for mutants with either an enlarged heart or reduced heart

  17. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish.

    Directory of Open Access Journals (Sweden)

    Vandana A Gupta

    Full Text Available Congenital muscular dystrophy (CMD is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2. Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.

  18. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Directory of Open Access Journals (Sweden)

    Sinnakaruppan Mathavan

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  19. Prevalence of NSF following intravenous gadolinium-contrast media administration in dialysis patients with endstage renal disease

    Energy Technology Data Exchange (ETDEWEB)

    Heinz-Peer, Gertraud, E-mail: gertraud.heinz@meduniwien.ac.a [Department of Radiology, Medical University of Vienna (Austria); Neruda, Anita [Department of Radiology, Medical University of Vienna (Austria); Watschinger, Bruno; Vychytil, Andreas [Department of Nephrology, Medical University of Vienna (Austria); Geusau, Alexandra [Department of Dermatology, Medical University of Vienna (Austria); Haumer, Markus [Department of Internal Medicine II, Medical University of Vienna (Austria); Weber, Michael [Department of Radiology, Medical University of Vienna (Austria)

    2010-10-15

    Purpose: To evaluate the prevalence of nephrogenic systemic fibrosis (NSF) in a patient population being at highest risk for developing this disease and to evaluate possible risk factors. Materials and methods: The radiological records of 552 patients with ESRD being on hemodialysis (HD) or peritoneal dialysis (PD) were retrospectively reviewed to identify whether the patients underwent MR-examinations with or without intravenous administration of GBCA. In case of exposure to GBCA, the number of contrast injections, the benchmark and the cumulative doses of GBCA, and possible cofactors regarding pathogenesis of NSF were recorded. Diagnosis of NSF was confirmed either by deep skin biopsy or by review of medical and histopathological records. Data of NSF patients were compared with data of dialysis patients who did not develop NSF after MR-examinations. Results: 146 dialysis patients underwent MRI without i.v.-administration of GBCA. No case of NSF was observed in this patient population. 195/552 patients proved to have a total number of 325 well-documented exposures to GBCA. Seven different types of GBCA were used during these MR-examinations. NSF prevalence rate was 1.6%. One patient died of NSF. Three different types of GBCA were involved in 6 NSF cases. 4/6 proved to be confounded cases. The cumulative dose of GBCA, history of thrombosis, recent surgery, and the combination of HD and PD proved to be significant cofactors for the development of NSF (p < .05). No significant difference regarding residual renal clearance (p = .898) and residual urine volume (p = .083) was found between NSF and non-NSF patients. Conclusion: The prevalence of NSF proved to be much lower in this high risk patient group being exposed to GBCA compared to the literature. NSF was not observed in ESRD patients undergoing MRI without administration of GBCA. Our data support a positive association between cumulative dose of GBCA and development of NSF. No positive association was found

  20. The zebrafish genome: a review and msx gene case study.

    Science.gov (United States)

    Postlethwait, J H

    2006-01-01

    Zebrafish is one of several important teleost models for understanding principles of vertebrate developmental, molecular, organismal, genetic, evolutionary, and genomic biology. Efficient investigation of the molecular genetic basis of induced mutations depends on knowledge of the zebrafish genome. Principles of zebrafish genomic analysis, including gene mapping, ortholog identification, conservation of syntenies, genome duplication, and evolution of duplicate gene function are discussed here using as a case study the zebrafish msxa, msxb, msxc, msxd, and msxe genes, which together constitute zebrafish orthologs of tetrapod Msx1, Msx2, and Msx3. Genomic analysis suggests orthologs for this difficult to understand group of paralogs.

  1. Cep70 and Cep131 contribute to ciliogenesis in zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Carl Matthias

    2009-03-01

    Full Text Available Abstract Background The centrosome is the cell's microtubule organising centre, an organelle with important roles in cell division, migration and polarity. However, cells can divide and flies can, for a large part of development, develop without them. Many centrosome proteins have been identified but the roles of most are still poorly understood. The centrioles of the centrosome are similar to the basal bodies of cilia, hair-like extensions of many cells that have important roles in cell signalling and development. In a number of human diseases, such Bardet-Biedl syndrome, centrosome/cilium proteins are mutated, leading to polycystic kidney disease, situs inversus, and neurological problems, amongst other symptoms. Results We describe zebrafish (Danio rerio embryos depleted for two uncharacterised, centrosome proteins, Cep70 and Cep131. The phenotype of these embryos resembles that of zebrafish mutants for intraflagellar transport proteins (IFTs, with kidney and ear development affected and left-right asymmetry randomised. These organs and processes are those affected in Bardet-Biedl syndrome and other similar diseases. Like these diseases, the root cause of the phenotype lies, in fact, in dysfunctional cilia, which are shortened but not eliminated in several tissues in the morphants. Centrosomes and basal bodies, on the other hand, are present. Both Cep70 and Cep131 possess a putative HDAC (histone deacetylase interacting domain. However, we could not detect in yeast two-hybrid assays any interaction with the deacetylase that controls cilium length, HDAC6, or any of the IFTs that we tested. Conclusion Cep70 and Cep131 contribute to ciliogenesis in many tissues in the zebrafish embryo: cilia are made in cep70 and cep131 morphant zebrafish embryos but are shortened. We propose that the role of these centrosomal/basal body proteins is in making the cilium and that they are involved in determination of the length of the axoneme.

  2. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs.

    Directory of Open Access Journals (Sweden)

    Finola E Moore

    Full Text Available Zinc Finger Nucleases (ZFNs made by Context-Dependent Assembly (CoDA and Transcription Activator-Like Effector Nucleases (TALENs provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%-76.8% compared to 1.1%-3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish.

  3. Zebrafish con/disp1 reveals multiple spatiotemporal requirements for Hedgehog-signaling in craniofacial development

    Directory of Open Access Journals (Sweden)

    Schwend Tyler

    2009-11-01

    Full Text Available Abstract Background The vertebrate head skeleton is derived largely from cranial neural crest cells (CNCC. Genetic studies in zebrafish and mice have established that the Hedgehog (Hh-signaling pathway plays a critical role in craniofacial development, partly due to the pathway's role in CNCC development. Disruption of the Hh-signaling pathway in humans can lead to the spectral disorder of Holoprosencephaly (HPE, which is often characterized by a variety of craniofacial defects including midline facial clefting and cyclopia 12. Previous work has uncovered a role for Hh-signaling in zebrafish dorsal neurocranium patterning and chondrogenesis, however Hh-signaling mutants have not been described with respect to the ventral pharyngeal arch (PA skeleton. Lipid-modified Hh-ligands require the transmembrane-spanning receptor Dispatched 1 (Disp1 for proper secretion from Hh-synthesizing cells to the extracellular field where they act on target cells. Here we study chameleon mutants, lacking a functional disp1(con/disp1. Results con/disp1 mutants display reduced and dysmorphic mandibular and hyoid arch cartilages and lack all ceratobranchial cartilage elements. CNCC specification and migration into the PA primorida occurs normally in con/disp1 mutants, however disp1 is necessary for post-migratory CNCC patterning and differentiation. We show that disp1 is required for post-migratory CNCC to become properly patterned within the first arch, while the gene is dispensable for CNCC condensation and patterning in more posterior arches. Upon residing in well-formed pharyngeal epithelium, neural crest condensations in the posterior PA fail to maintain expression of two transcription factors essential for chondrogenesis, sox9a and dlx2a, yet continue to robustly express other neural crest markers. Histology reveals that posterior arch residing-CNCC differentiate into fibrous-connective tissue, rather than becoming chondrocytes. Treatments with Cyclopamine, to

  4. Shp2 knockdown and Noonan/LEOPARD mutant Shp2-induced gastrulation defects.

    Directory of Open Access Journals (Sweden)

    Chris Jopling

    2007-12-01

    Full Text Available Shp2 is a cytoplasmic protein-tyrosine phosphatase that is essential for normal development. Activating and inactivating mutations have been identified in humans to cause the related Noonan and LEOPARD syndromes, respectively. The cell biological cause of these syndromes remains to be determined. We have used the zebrafish to assess the role of Shp2 in early development. Here, we report that morpholino-mediated knockdown of Shp2 in zebrafish resulted in defects during gastrulation. Cell tracing experiments demonstrated that Shp2 knockdown induced defects in convergence and extension cell movements. In situ hybridization using a panel of markers indicated that cell fate was not affected by Shp2 knock down. The Shp2 knockdown-induced defects were rescued by active Fyn and Yes and by active RhoA. We generated mutants of Shp2 with mutations that were identified in human patients with Noonan or LEOPARD Syndrome and established that Noonan Shp2 was activated and LEOPARD Shp2 lacked catalytic protein-tyrosine phosphatase activity. Expression of Noonan or LEOPARD mutant Shp2 in zebrafish embryos induced convergence and extension cell movement defects without affecting cell fate. Moreover, these embryos displayed craniofacial and cardiac defects, reminiscent of human symptoms. Noonan and LEOPARD mutant Shp2s were not additive nor synergistic, consistent with the mutant Shp2s having activating and inactivating roles in the same signaling pathway. Our results demonstrate that Shp2 is required for normal convergence and extension cell movements during gastrulation and that Src family kinases and RhoA were downstream of Shp2. Expression of Noonan or LEOPARD Shp2 phenocopied the craniofacial and cardiac defects of human patients. The finding that defective Shp2 signaling induced cell movement defects as early as gastrulation may have implications for the monitoring and diagnosis of Noonan and LEOPARD syndrome.

  5. New tides: using zebrafish to study renal regeneration.

    Science.gov (United States)

    McCampbell, Kristen K; Wingert, Rebecca A

    2014-02-01

    Over the past several decades, the zebrafish has become one of the major vertebrate model organisms used in biomedical research. In this arena, the zebrafish has emerged as an applicable system for the study of kidney diseases and renal regeneration. The relevance of the zebrafish model for nephrology research has been increasingly appreciated as the understanding of zebrafish kidney structure, ontogeny, and the response to damage has steadily expanded. Recent studies have documented the amazing regenerative characteristics of the zebrafish kidney, which include the ability to replace epithelial populations after acute injury and to grow new renal functional units, termed nephrons. Here we discuss how nephron composition is conserved between zebrafish and mammals, and highlight how recent findings from zebrafish studies utilizing transgenic technologies and chemical genetics can complement traditional murine approaches in the effort to dissect how the kidney responds to acute damage and identify therapeutics that enhance human renal regeneration. Copyright © 2014 Mosby, Inc. All rights reserved.

  6. ngs (Notochord Granular Surface) Gene Encodes a Novel Type of Intermediate Filament Family Protein Essential for Notochord Maintenance in Zebrafish*

    Science.gov (United States)

    Tong, Xiangjun; Xia, Zhidan; Zu, Yao; Telfer, Helena; Hu, Jing; Yu, Jingyi; Liu, Huan; Zhang, Quan; Sodmergen; Lin, Shuo; Zhang, Bo

    2013-01-01

    The notochord is an important organ involved in embryonic patterning and locomotion. In zebrafish, the mature notochord consists of a single stack of fully differentiated, large vacuolated cells called chordocytes, surrounded by a single layer of less differentiated notochordal epithelial cells called chordoblasts. Through genetic analysis of zebrafish lines carrying pseudo-typed retroviral insertions, a mutant exhibiting a defective notochord with a granular appearance was isolated, and the corresponding gene was identified as ngs (notochord granular surface), which was specifically expressed in the notochord. In the mutants, the notochord started to degenerate from 32 hours post-fertilization, and the chordocytes were then gradually replaced by smaller cells derived from chordoblasts. The granular notochord phenotype was alleviated by anesthetizing the mutant embryos with tricaine to prevent muscle contraction and locomotion. Phylogenetic analysis showed that ngs encodes a new type of intermediate filament (IF) family protein, which we named chordostatin based on its function. Under the transmission electron microcopy, bundles of 10-nm-thick IF-like filaments were enriched in the chordocytes of wild-type zebrafish embryos, whereas the chordocytes in ngs mutants lacked IF-like structures. Furthermore, chordostatin-enhanced GFP (EGFP) fusion protein assembled into a filamentous network specifically in chordocytes. Taken together, our work demonstrates that ngs encodes a novel type of IF protein and functions to maintain notochord integrity for larval development and locomotion. Our work sheds light on the mechanisms of notochord structural maintenance, as well as the evolution and biological function of IF family proteins. PMID:23132861

  7. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  8. Tributyltin and Zebrafish: Swimming in Dangerous Water

    Directory of Open Access Journals (Sweden)

    Clemilson Berto-Júnior

    2018-04-01

    Full Text Available Zebrafish has been established as a reliable biological model with important insertion in academy (morphologic, biochemical, and pathophysiological studies and pharmaceutical industry (toxicology and drug development due to its molecular complexity and similar systems biology that recapitulate those from other organisms. Considering the toxicological aspects, many efforts using zebrafish models are being done in order to elucidate the effects of endocrine disruptors, and some of them are focused on tributyltin (TBT and its mechanism of action. TBT is an antifouling agent applied in ship’s hull that is constantly released into the water and absorbed by marine organisms, leading to bioaccumulation and biomagnification effects. Thus, several findings of malformations and changes in the normal biochemical and physiologic aspects of these marine animals have been related to TBT contamination. In the present review, we have compiled the most significant studies related to TBT effects in zebrafish, also taking into consideration the effects found in other study models.

  9. Tributyltin and Zebrafish: Swimming in Dangerous Water

    Science.gov (United States)

    Berto-Júnior, Clemilson; de Carvalho, Denise Pires; Soares, Paula; Miranda-Alves, Leandro

    2018-01-01

    Zebrafish has been established as a reliable biological model with important insertion in academy (morphologic, biochemical, and pathophysiological studies) and pharmaceutical industry (toxicology and drug development) due to its molecular complexity and similar systems biology that recapitulate those from other organisms. Considering the toxicological aspects, many efforts using zebrafish models are being done in order to elucidate the effects of endocrine disruptors, and some of them are focused on tributyltin (TBT) and its mechanism of action. TBT is an antifouling agent applied in ship’s hull that is constantly released into the water and absorbed by marine organisms, leading to bioaccumulation and biomagnification effects. Thus, several findings of malformations and changes in the normal biochemical and physiologic aspects of these marine animals have been related to TBT contamination. In the present review, we have compiled the most significant studies related to TBT effects in zebrafish, also taking into consideration the effects found in other study models. PMID:29692757

  10. Connexin mutants and cataracts

    Directory of Open Access Journals (Sweden)

    Eric C Beyer

    2013-04-01

    Full Text Available The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8 have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death and formation of cytoplasmic accumulations (that may act as light scattering particles. These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

  11. Dr. Tulga Ersal at NSF Workshop Accessible Remote Testbeds ART'15

    Science.gov (United States)

    Event Archives Dr. Tulga Ersal at NSF Workshop Accessible Remote Testbeds ART'15 On November 12th, Dr Workshop on Accessible Remote Testbeds (ART'15) at Georgia Tech. From the event website: The rationale behind the ART'15 workshop is that remote-access testbeds could, if done right, significantly change how

  12. 78 FR 58569 - Notice of Meeting; NSF Synchrotron Subcommittee of the Advisory Committee for Mathematical and...

    Science.gov (United States)

    2013-09-24

    ... report findings--Murray Gibson, Northeastern University 2. Importance of materials research facilities...--Patricia Dehmer, DOE 3. Biology/biomaterials talk--importance of materials research facilities--Pupa... Materials Research on its facilities portfolio including the role it and NSF should play in synchrotron...

  13. 77 FR 64799 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Department of Energy... Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires... Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25...

  14. 78 FR 46330 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-07-31

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy...

  15. 78 FR 12043 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-02-21

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of...

  16. Development of a Consensus Standard for School Equipment: NSF/NSSEA 380

    Science.gov (United States)

    Breitner, Ashlee

    2011-01-01

    For many years, the school supplies and equipment industry has investigated methods to ensure product safety and compliance across all its product categories. In early 2010, NSF International and the National School Supply and Equipment Association (NSSEA) came together to develop quality standards for products and equipment designed for use in…

  17. 77 FR 33449 - DOE/NSF High Energy Physics Advisory Panel

    Science.gov (United States)

    2012-06-06

    ... DEPARTMENT OF ENERGY DOE/NSF High Energy Physics Advisory Panel AGENCY: Office of Science... High Energy Physics Advisory Panel (HEPAP). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat..., Executive Secretary; High Energy Physics Advisory Panel; U.S. Department of Energy; SC-25/ Germantown...

  18. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish

    Science.gov (United States)

    Tong, Xiangjun; Zu, Yao; Li, Zengpeng; Li, Wenyuan; Ying, Lingxiao; Yang, Jing; Wang, Xin; He, Shuonan; Liu, Da; Zhu, Zuoyan; Chen, Jianming; Lin, Shuo; Zhang, Bo

    2014-01-01

    The T-box transcription factor Tbx5 (Tbx5a in zebrafish) plays a crucial role in the formation of cardiac chambers in a dose-dependent manner. Its deregulation leads to congenital heart disease. However, little is known regarding its regulation. Here we isolate a zebrafish mutant with heart malformations, called 34c. The affected gene is identified as kctd10, a member of the potassium channel tetramerization domain (KCTD)-containing family. In the mutant, the expressions of the atrioventricular canal marker genes, such as tbx2b, hyaluronan synthase 2 (has2), notch1b and bmp4, are changed. The knockdown of tbx5 rescues the ectopic expression of has2, and knockdown of either tbx5a or has2 alleviates the heart defects. We show that Kctd10 directly binds to Tbx5 to repress its transcriptional activity. Our results reveal a new essential factor for cardiac development and suggest that KCTD10 could be considered as a new causative gene of congenital heart disease.

  19. Otolith tethering in the zebrafish otic vesicle requires Otogelin and α-Tectorin.

    Science.gov (United States)

    Stooke-Vaughan, Georgina A; Obholzer, Nikolaus D; Baxendale, Sarah; Megason, Sean G; Whitfield, Tanya T

    2015-03-15

    Otoliths are biomineralised structures important for balance and hearing in fish. Their counterparts in the mammalian inner ear, otoconia, have a primarily vestibular function. Otoliths and otoconia form over sensory maculae and are attached to the otolithic membrane, a gelatinous extracellular matrix that provides a physical coupling between the otolith and the underlying sensory epithelium. In this study, we have identified two proteins required for otolith tethering in the zebrafish ear, and propose that there are at least two stages to this process: seeding and maintenance. The initial seeding step, in which otolith precursor particles tether directly to the tips of hair cell kinocilia, fails to occur in the einstein (eis) mutant. The gene disrupted in eis is otogelin (otog); mutations in the human OTOG gene have recently been identified as causative for deafness and vestibular dysfunction (DFNB18B). At later larval stages, maintenance of otolith tethering to the saccular macula is dependent on tectorin alpha (tecta) function, which is disrupted in the rolling stones (rst) mutant. α-Tectorin (Tecta) is a major constituent of the tectorial membrane in the mammalian cochlea. Mutations in the human TECTA gene can cause either dominant (DFNA8/12) or recessive (DFNB21) forms of deafness. Our findings indicate that the composition of extracellular otic membranes is highly conserved between mammals and fish, reinforcing the view that the zebrafish is an excellent model system for the study of deafness and vestibular disease. © 2015. Published by The Company of Biologists Ltd.

  20. Linking the GLOBE Program With NASA and NSF Large-Scale Experiments

    Science.gov (United States)

    Filmer, P. E.

    2005-12-01

    NASA and the NSF, the sponsoring Federal agencies for the GLOBE Program, are seeking the participation of science teams who are working at the cutting edge of Earth systems science in large integrated Earth systems science programs. Connecting the GLOBE concept and structure with NASA and NSF's leading Earth systems science programs will give GLOBE schools and students access to top scientists, and expose them to programs that have been designated as scientific priorities. Students, teachers, parents, and their communities will be able to see how scientists of many disciplines work together to learn about the Earth system. The GLOBE solicitation released by the NSF targets partnerships between GLOBE and NSF/NASA-funded integrated Earth systems science programs. This presentation will focus on the goals and requirements of the NSF solicitation. Proponents will be expected to provide ways for the GLOBE community to interact with a group of scientists from their science programs as part of a wider joint Earth systems science educational strategy (the sponsoring agencies', GLOBE's, and the proposing programs'). Teams proposing to this solicitation must demonstrate: - A focus on direct connections with major NSF Geosciences and/or Polar Programs and/or NASA Earth-Sun research programs that are related to Earth systems science; - A demonstrable benefit to GLOBE and to NSF Geosciences and/or Polar Programs or NASA Earth-Sun education goals (providing access to program researchers and data, working with GLOBE in setting up campaigns where possible, using tested GLOBE or non-GLOBE protocols to the greatest extent possible, actively participating in the wider GLOBE community including schools, among other goals); - An international component; - How the existing educational efforts of the large science program will coordinate with GLOBE; - An Earth systems science education focus, rather than a GLOBE protocol-support focus; - A rigorous evaluation and assessment component

  1. Culturable gut microbiota diversity in zebrafish.

    Science.gov (United States)

    Cantas, Leon; Sørby, Jan Roger Torp; Aleström, Peter; Sørum, Henning

    2012-03-01

    The zebrafish (Danio rerio) is an increasingly used laboratory animal model in basic biology and biomedicine, novel drug development, and toxicology. The wide use has increased the demand for optimized husbandry protocols to ensure animal health care and welfare. The knowledge about the correlation between culturable zebrafish intestinal microbiota and health in relation to environmental factors and management procedures is very limited. A semi-quantitative level of growth of individual types of bacteria was determined and associated with sampling points. A total of 72 TAB line zebrafish from four laboratories (Labs A-D) in the Zebrafish Network Norway were used. Diagnostic was based on traditional bacterial culture methods and biochemical characterization using commercial kits, followed by 16S rDNA gene sequencing from pure subcultures. Also selected Gram-negative isolates were analyzed for antibiotic susceptibility to 8 different antibiotics. A total of 13 morphologically different bacterial species were the most prevalent: Aeromonas hydrophila, Aeromonas sobria, Vibrio parahaemolyticus, Photobacterium damselae, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas luteola, Comamonas testosteroni, Ochrobactrum anthropi, Staphylococcus cohnii, Staphylococcus epidermidis, Staphylococcus capitis, and Staphylococcus warneri. Only Lab B had significantly higher levels of total bacterial growth (OR=2.03), whereas numbers from Lab C (OR=1.01) and Lab D (OR=1.12) were found to be similar to the baseline Lab A. Sexually immature individuals had a significantly higher level of harvested total bacterial growth than mature fish (OR=0.82), no statistically significant differences were found between male and female fish (OR=1.01), and the posterior intestinal segment demonstrated a higher degree of culturable bacteria than the anterior segment (OR=4.1). Multiple antibiotic (>3) resistance was observed in 17% of the strains. We propose that a rapid conventional

  2. Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsinchun [The University of Arizona, Department of Management Information Systems (United States); Roco, Mihail C. [National Science Foundation (United States); Son, Jaebong; Jiang, Shan, E-mail: jiangs@email.arizona.edu; Larson, Catherine A.; Gao, Qiang [The University of Arizona, Department of Management Information Systems (United States)

    2013-09-15

    In a relatively short interval for an emerging technology, nanotechnology has made a significant economic impact in numerous sectors including semiconductor manufacturing, catalysts, medicine, agriculture, and energy production. A part of the United States (US) government investment in basic research has been realized in the last two decades through the National Science Foundation (NSF), beginning with the nanoparticle research initiative in 1991 and continuing with support from the National Nanotechnology Initiative after fiscal year 2001. This paper has two main goals: (a) present a longitudinal analysis of the global nanotechnology development as reflected in the United States Patent and Trade Office (USPTO) patents and Web of Science (WoS) publications in nanoscale science and engineering (NSE) for the interval 1991-2012; and (b) identify the effect of basic research funded by NSF on both indicators. The interval has been separated into three parts for comparison purposes: 1991-2000, 2001-2010, and 2011-2012. The global trends of patents and scientific publications are presented. Bibliometric analysis, topic analysis, and citation network analysis methods are used to rank countries, institutions, technology subfields, and inventors contributing to nanotechnology development. We then, examined how these entities were affected by NSF funding and how they evolved over the past two decades. Results show that dedicated NSF funding used to support nanotechnology R and D was followed by an increased number of relevant patents and scientific publications, a greater diversity of technology topics, and a significant increase of citations. The NSF played important roles in the inventor community and served as a major contributor to numerous nanotechnology subfields.

  3. Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding

    International Nuclear Information System (INIS)

    Chen, Hsinchun; Roco, Mihail C.; Son, Jaebong; Jiang, Shan; Larson, Catherine A.; Gao, Qiang

    2013-01-01

    In a relatively short interval for an emerging technology, nanotechnology has made a significant economic impact in numerous sectors including semiconductor manufacturing, catalysts, medicine, agriculture, and energy production. A part of the United States (US) government investment in basic research has been realized in the last two decades through the National Science Foundation (NSF), beginning with the nanoparticle research initiative in 1991 and continuing with support from the National Nanotechnology Initiative after fiscal year 2001. This paper has two main goals: (a) present a longitudinal analysis of the global nanotechnology development as reflected in the United States Patent and Trade Office (USPTO) patents and Web of Science (WoS) publications in nanoscale science and engineering (NSE) for the interval 1991–2012; and (b) identify the effect of basic research funded by NSF on both indicators. The interval has been separated into three parts for comparison purposes: 1991–2000, 2001–2010, and 2011–2012. The global trends of patents and scientific publications are presented. Bibliometric analysis, topic analysis, and citation network analysis methods are used to rank countries, institutions, technology subfields, and inventors contributing to nanotechnology development. We then, examined how these entities were affected by NSF funding and how they evolved over the past two decades. Results show that dedicated NSF funding used to support nanotechnology R and D was followed by an increased number of relevant patents and scientific publications, a greater diversity of technology topics, and a significant increase of citations. The NSF played important roles in the inventor community and served as a major contributor to numerous nanotechnology subfields

  4. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish.

    Directory of Open Access Journals (Sweden)

    Wanlada Klangnurak

    Full Text Available We previously reported the microarray-based selection of three ovulation-related genes in zebrafish. We used a different selection method in this study, RNA sequencing analysis. An additional eight up-regulated candidates were found as specifically up-regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starmaker gene (stm, were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation-inducing candidate genes, and a novel function of the stm gene was investigated.

  5. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs.

    Directory of Open Access Journals (Sweden)

    Raman Sood

    Full Text Available Recently, it has been shown that targeted mutagenesis using zinc-finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs can be used to generate knockout zebrafish lines for analysis of their function and/or developing disease models. A number of different methods have been developed for the design and assembly of gene-specific ZFNs and TALENs, making them easily available to most zebrafish researchers. Regardless of the choice of targeting nuclease, the process of generating mutant fish is similar. It is a time-consuming and multi-step process that can benefit significantly from development of efficient high throughput methods. In this study, we used ZFNs assembled through either the CompoZr (Sigma-Aldrich or the CoDA (context-dependent assembly platforms to generate mutant zebrafish for nine genes. We report our improved high throughput methods for 1 evaluation of ZFNs activity by somatic lesion analysis using colony PCR, eliminating the need for plasmid DNA extractions from a large number of clones, and 2 a sensitive founder screening strategy using fluorescent PCR with PIG-tailed primers that eliminates the stutter bands and accurately identifies even single nucleotide insertions and deletions. Using these protocols, we have generated multiple mutant alleles for seven genes, five of which were targeted with CompoZr ZFNs and two with CoDA ZFNs. Our data also revealed that at least five-fold higher mRNA dose was required to achieve mutagenesis with CoDA ZFNs than with CompoZr ZFNs, and their somatic lesion frequency was lower (<5% when compared to CopmoZr ZFNs (9-98%. This work provides high throughput protocols for efficient generation of zebrafish mutants using ZFNs and TALENs.

  6. Zebrafish swimming in the flow: a particle image velocimetry study

    Directory of Open Access Journals (Sweden)

    Violet Mwaffo

    2017-11-01

    Full Text Available Zebrafish is emerging as a species of choice for the study of a number of biomechanics problems, including balance development, schooling, and neuromuscular transmission. The precise quantification of the flow physics around swimming zebrafish is critical toward a mechanistic understanding of the complex swimming style of this fresh-water species. Although previous studies have elucidated the vortical structures in the wake of zebrafish swimming in placid water, the flow physics of zebrafish swimming against a water current remains unexplored. In an effort to illuminate zebrafish swimming in a dynamic environment reminiscent of its natural habitat, we experimentally investigated the locomotion and hydrodynamics of a single zebrafish swimming in a miniature water tunnel using particle image velocimetry. Our results on zebrafish locomotion detail the role of flow speed on tail beat undulations, heading direction, and swimming speed. Our findings on zebrafish hydrodynamics offer a precise quantification of vortex shedding during zebrafish swimming and demonstrate that locomotory patterns play a central role on the flow physics. This knowledge may help clarify the evolutionary advantage of burst and cruise swimming movements in zebrafish.

  7. The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio Embryos and Eleutheroembryos Exposed to Methylmercury.

    Directory of Open Access Journals (Sweden)

    Francisco X Mora-Zamorano

    Full Text Available This study is an adaptation of the nicotine-evoked locomotor response (NLR assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf, however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf by means of acute nicotine exposure (30-240μM. Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM. Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine.

  8. Zebrafish in Toxicology and Environmental Health.

    Science.gov (United States)

    Bambino, Kathryn; Chu, Jaime

    2017-01-01

    As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. © 2017 Elsevier Inc. All rights reserved.

  9. Visualizing infections and immune mechanisms in zebrafish

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Korbut, Rozalia; Mehrdana, Foojan

    , immunological reactions during e.g. transplant rejections or the spread and pathogenicity of pathogens. We have, in our laboratory, used the zebrafish as a model for aquacultured fish species and their pathogens. We have 1) visualized antigen uptake in vivo following a bath in a soup containing fluorescent...

  10. Highly Efficient ENU Mutagenesis in Zebrafish.

    NARCIS (Netherlands)

    de Bruijn, E.; Cuppen, E.; Feitsma, H.

    2009-01-01

    ENU (N-ethyl-N-nitrosourea) mutagenesis is a widely accepted and proven method to introduce random point mutations in the genome. Because there are no targeted knockout strategies available for zebrafish so far, random mutagenesis is currently the preferred method in both forward and reverse genetic

  11. A zebrafish model of inflammatory lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Kazuhide S. Okuda

    2015-10-01

    Full Text Available Inflammatory bowel disease (IBD is a disabling chronic inflammatory disease of the gastrointestinal tract. IBD patients have increased intestinal lymphatic vessel density and recent studies have shown that this may contribute to the resolution of IBD. However, the molecular mechanisms involved in IBD-associated lymphangiogenesis are still unclear. In this study, we established a novel inflammatory lymphangiogenesis model in zebrafish larvae involving colitogenic challenge stimulated by exposure to 2,4,6-trinitrobenzenesulfonic acid (TNBS or dextran sodium sulphate (DSS. Treatment with either TNBS or DSS resulted in vascular endothelial growth factor receptor (Vegfr-dependent lymphangiogenesis in the zebrafish intestine. Reduction of intestinal inflammation by the administration of the IBD therapeutic, 5-aminosalicylic acid, reduced intestinal lymphatic expansion. Zebrafish macrophages express vascular growth factors vegfaa, vegfc and vegfd and chemical ablation of these cells inhibits intestinal lymphatic expansion, suggesting that the recruitment of macrophages to the intestine upon colitogenic challenge is required for intestinal inflammatory lymphangiogenesis. Importantly, this study highlights the potential of zebrafish as an inflammatory lymphangiogenesis model that can be used to investigate the role and mechanism of lymphangiogenesis in inflammatory diseases such as IBD.

  12. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  13. Patterns of free calcium in zebrafish embryos

    NARCIS (Netherlands)

    Creton, R; Speksnijder, JE; Jaffe, LF

    Direct knowledge of Ca2+ patterns in vertebrate development is largely restricted to early stages, in which they control fertilization, ooplasmic segregation and cleavage. To explore new roles of Ca2+ in vertebrate development, we injected the Ca2+ indicator aequorin into zebrafish eggs and imaged

  14. Effects of alpha particles on zebrafish embryos

    International Nuclear Information System (INIS)

    Yum, E.H.W.; Choi, V.W.Y.; Yu, K.N.; Li, V.W.T.; Cheng, S.H.

    2008-01-01

    Full text: Ionizing radiation such as X-ray and alpha particles can damage cellular macromolecules, which can lead to DNA single- and double-strand breaks. In the present work, we studied the effects of alpha particles on dechorionated zebrafish embryos. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 μm were prepared from commercially available PADC films (with thickness of 100 μm) by chemical etching and used as support substrates for holding zebrafish embryos for alpha-particle irradiation. These films recorded alpha-particle hit positions, quantified the number and energy of alpha particles actually incident on the embryo cells, and thus enabled the calculation of the dose absorbed by the embryo cells. Irradiation was made at 1.25 hours post fertilization (hpf) with various absorbed dose. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed on the embryos at different time stages after irradiation. Marked apoptosis was detected only in embryos at earlier time stages. The results showed that DNA double-strand break during zebrafish embryogenesis can be induced by alpha-particle irradiation, which suggests that zebrafish is a potential model for assessing the effects of alpha-particle radiation

  15. Polarization and migration in the zebrafish posterior lateral line system.

    Directory of Open Access Journals (Sweden)

    Hildur Knutsdottir

    2017-04-01

    Full Text Available Collective cell migration plays an important role in development. Here, we study the posterior lateral line primordium (PLLP a group of about 100 cells, destined to form sensory structures, that migrates from head to tail in the zebrafish embryo. We model mutually inhibitory FGF-Wnt signalling network in the PLLP and link tissue subdivision (Wnt receptor and FGF receptor activity domains to receptor-ligand parameters. We then use a 3D cell-based simulation with realistic cell-cell adhesion, interaction forces, and chemotaxis. Our model is able to reproduce experimentally observed motility with leading cells migrating up a gradient of CXCL12a, and trailing (FGF receptor active cells moving actively by chemotaxis towards FGF ligand secreted by the leading cells. The 3D simulation framework, combined with experiments, allows an investigation of the role of cell division, chemotaxis, adhesion, and other parameters on the shape and speed of the PLLP. The 3D model demonstrates reasonable behaviour of control as well as mutant phenotypes.

  16. Photorepair mutants of Arabidopsis

    International Nuclear Information System (INIS)

    Jiang, C.Z.; Yee, J.; Mitchell, D.L.; Britt, A.B.

    1997-01-01

    UV radiation induces two major DNA damage products, the cyclobutane pyrimidine dimer (CPD) and, at a lower frequency, the pyrimidine (6-4) pyrimidinone dimer (6-4 product). Although Escherichia coli and Saccharomyces cerevisiae produce a CPD-specific photolyase that eliminates only this class of dimer, Arabidopsis thaliana, Drosophila melanogaster, Crotalus atrox, and Xenopus laevis have recently been shown to photoreactivate both CPDs and 6-4 products. We describe the isolation and characterization of two new classes of mutants of Arabidopsis, termed uvr2 and uvr3, that are defective in the photoreactivation of CPDs and 6-4 products, respectively. We demonstrate that the CPD photolyase mutation is genetically linked to a DNA sequence encoding a type II (metazoan) CPD photolyase. In addition, we are able to generate plants in which only CPDs or 6-4 products are photoreactivated in the nuclear genome by exposing these mutants to UV light and then allowing them to repair one or the other class of dimers. This provides us with a unique opportunity to study the biological consequences of each of these two major UV-induced photoproducts in an intact living system

  17. Construindo Marcas Mutantes

    Directory of Open Access Journals (Sweden)

    Elizete De Azevedo Kreutz

    2012-09-01

    Full Text Available O presente artigo é o resultado de estudos realizados desde 2000 e busca instrumentalizar os proñssionals para a construção de Marcas Mutantes, que é   uma tendência contemporânea nas estratégias comunicacionais e de branding. Embora esta estratégia ainda não esteja consolidada, observamos que a mesma tem obtido um crescimento constante e tem sido adotadas pelas mais diferentes categorias de marcas e não apenas por aquelas direcionadas aos jovens, ao esporte, ao entretenimento, como era no principia. Com base na Hermenêutica de Profundidade de Thompson (1995, alicerçada nas pesquisas bibliográficas, de intemet, entrevistas e análise semiótica, desenhamos um método de construção de Marcas Mutantes dividido em sete fases. Como resultado, esperamos que este estudo possa auxiliar na compreensão dos processos envolvidos, ao mesmo tempo que provoque a discussão sobreo mesmo e, por consequência, o seu aprimoramento.

  18. Essential role for the alpha 1 chain of type VIII collagen in zebrafish notochord formation.

    Science.gov (United States)

    Gansner, John M; Gitlin, Jonathan D

    2008-12-01

    Several zebrafish mutants identified in large-scale forward genetic screens exhibit notochord distortion. We now report the cloning and further characterization of one such mutant, gulliver(m208) (gul(m208)). The notochord defect in gul(m208) mutants is exacerbated under conditions of copper depletion or lysyl oxidase cuproenzyme inhibition that are without a notochord effect on wild-type embryos. The gul(m208) phenotype results from a missense mutation in the gene encoding Col8a1, a lysyl oxidase substrate, and morpholino knockdown of col8a1 recapitulates the notochord distortion observed in gul(m208) mutants. Of interest, the amino acid mutated in gul(m208) Col8a1 is highly conserved, and the equivalent substitution in a closely related human protein, COL10A1, causes Schmid metaphyseal chondrodysplasia. Taken together, the data identify a new protein essential for notochord morphogenesis, extend our understanding of gene-nutrient interactions in early development, and suggest that human mutations in COL8A1 may cause structural birth defects. (c) 2008 Wiley-Liss, Inc.

  19. Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence

    Directory of Open Access Journals (Sweden)

    Yokoi Hayato

    2011-04-01

    Full Text Available Abstract Background Large volumes of lymph can be collected from the eye-sacs of bubble-eye goldfish. We attempted to induce vitellogenin (Vtg in the eye-sac lymph of bubble-eye goldfish and develop a method for visualizing Vtg incorporation by zebrafish oocytes using FITC-labeling. Methods Estrogen efficiently induced Vtg in the eye-sac lymph of goldfish. After FITC-labeled Vtg was prepared, it was injected into mature female zebrafish. Results Incorporation of FITC-labeled Vtg by zebrafish oocytes was detected in in vivo and in vitro experiments. The embryos obtained from zebrafish females injected with FITC-labeled Vtg emitted FITC fluorescence from the yolk sac and developed normally. Conclusion This method for achieving Vtg incorporation by zebrafish oocytes could be useful in experiments related to the development and endocrinology of zebrafish oocytes.

  20. Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development.

    Science.gov (United States)

    Raghunath, Azhwar; Perumal, Ekambaram

    2018-01-01

    The versatility offered by zebrafish (Danio rerio) makes it a powerful and an attractive vertebrate model in developmental toxicity and teratogenicity assays. Apart from the newly introduced chemicals as drugs, xenobiotics also induce abnormal developmental abnormalities and congenital malformations in living organisms. Over the recent decades, zebrafish embryo/larva has emerged as a potential tool to test teratogenicity potential of these chemicals. Zebrafish responds to compounds as mammals do as they share similarities in their development, metabolism, physiology, and signaling pathways with that of mammals. The methodology used by the different scientists varies enormously in the zebrafish embryotoxicity test. In this chapter, we present methods to assess lethality and malformations during zebrafish development. We propose two major malformations scoring systems: binomial and relative morphological scoring systems to assess the malformations in zebrafish embryos/larvae. Based on the scoring of the malformations, the test compound can be classified as a teratogen or a nonteratogen and its teratogenic potential is evaluated.

  1. Laser capture microdissection of gonads from juvenile zebrafish

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John; Morthorst, Jane Ebsen

    2009-01-01

    was adjusted and optimised to isolate juvenile zebrafish gonads. Results: The juvenile zebrafish gonad is not morphologically distinguishable when using dehydrated cryosections on membrane slides and a specific staining method is necessary to identify the gonads. The protocol setup in this study allows......Background: Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type...... of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex...

  2. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    Science.gov (United States)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  3. Supporting "The Best and Brightest" in Science and Engineering: NSF Graduate Research Fellowships

    OpenAIRE

    Richard B. Freeman; Tanwin Chang; Hanley Chiang

    2005-01-01

    The National Science Foundation's (NSF) Graduate Research Fellowship (GRF) is a highly prestigious award for science and engineering (S&E) graduate students. This paper uses data from 1952 to 2004 on the population of over 200,000 applicants to the GRF to examine the determinants of the number and characteristics of applicants and the characteristics of awardees. In the early years of the program, GRF awards went largely to physical science and mathematics students and disproportionately to w...

  4. US Global Change Research Program Distributed Cost Budget Interagency Funds Transfer from DOE to NSF

    Energy Technology Data Exchange (ETDEWEB)

    Uhle, Maria [National Science Foundation (NSF), Washington, DC (United States)

    2016-09-22

    These funds were transferred from DOE to NSF as DOE's contribution to the U.S. Global Change Research Program in support of 4 internationalnactivities/programs as approved by the U.S. Global Change Research Program on 14 March 2014. The programs are the International Geosphere-Biosphere Programme, the DIVERSITAS programme, and the World Climate Research Program. All program awards ended as of 09-23-2015.

  5. Isozyme differences in barley mutants

    Energy Technology Data Exchange (ETDEWEB)

    AI-Jibouri, A A.M.; Dham, K M [Department of Botany, Nuclear Research Centre, Baghdad (Iraq)

    1990-01-01

    Full text: Thirty mutants (M{sub 11}) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  6. Isozyme differences in barley mutants

    International Nuclear Information System (INIS)

    AI-Jibouri, A.A.M.; Dham, K.M.

    1990-01-01

    Full text: Thirty mutants (M 11 ) of barley (Hordeum vulgare L.) induced by physical and chemical mutagens were analysed for isozyme composition using polyacrylamide gel electrophoresis. Results show that these mutants were different in the isozymes leucine aminopeptidase, esterase and peroxidase. The differences included the number of forms of each enzyme, relative mobility value and their intensity on the gel. Glutamate oxaloacetate transaminase isozyme was found in six molecular forms and these forms were similar in all mutants. (author)

  7. Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy.

    Directory of Open Access Journals (Sweden)

    Angela S Laird

    Full Text Available Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43 is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS and frontotemporal lobe dementia (FTLD. These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.

  8. Expanded progenitor populations, vitreo-retinal abnormalities, and Müller glial reactivity in the zebrafish leprechaun/patched2 retina

    Directory of Open Access Journals (Sweden)

    Bibliowicz Jonathan

    2009-10-01

    Full Text Available Abstract Background The roles of the Hedgehog (Hh pathway in controlling vertebrate retinal development have been studied extensively; however, species- and context-dependent findings have provided differing conclusions. Hh signaling has been shown to control both population size and cell cycle kinetics of proliferating retinal progenitors, and to modulate differentiation within the retina by regulating the timing of cell cycle exit. While cell cycle exit has in turn been shown to control cell fate decisions within the retina, a direct role for the Hh pathway in retinal cell fate decisions has yet to be established in vivo. Results To gain further insight into Hh pathway function in the retina, we have analyzed retinal development in leprechaun/patched2 mutant zebrafish. While lep/ptc2 mutants possessed more cells in their retinas, all cell types, except for Müller glia, were present at identical ratios as those observed in wild-type siblings. lep/ptc2 mutants possessed a localized upregulation of GFAP, a marker for 'reactive' glia, as well as morphological abnormalities at the vitreo-retinal interface, where Müller glial endfeet terminate. In addition, analysis of the over-proliferation phenotype at the ciliary marginal zone (CMZ revealed that the number of proliferating progenitors, but not the rate of proliferation, was increased in lep/ptc2 mutants. Conclusion Our results indicate that Patched2-dependent Hh signaling does not likely play an integral role in neuronal cell fate decisions in the zebrafish retina. ptc2 deficiency in zebrafish results in defects at the vitreo-retinal interface and Müller glial reactivity. These phenotypes are similar to the ocular abnormalities observed in human patients suffering from Basal Cell Naevus Syndrome (BCNS, a disorder that has been linked to mutations in the human PTCH gene (the orthologue of the zebrafish ptc2, and point to the utility of the lep/ptc2 mutant line as a model for the study of BCNS

  9. Mutations in zebrafish pitx2 model congenital malformations in Axenfeld-Rieger syndrome but do not disrupt left-right placement of visceral organs.

    Science.gov (United States)

    Ji, Yongchang; Buel, Sharleen M; Amack, Jeffrey D

    2016-08-01

    Pitx2 is a conserved homeodomain transcription factor that has multiple functions during embryonic development. Mutations in human PITX2 cause autosomal dominant Axenfeld-Rieger syndrome (ARS), characterized by congenital eye and tooth malformations. Pitx2(-/-) knockout mouse models recapitulate aspects of ARS, but are embryonic lethal. To date, ARS treatments remain limited to managing individual symptoms due to an incomplete understanding of PITX2 function. In addition to regulating eye and tooth development, Pitx2 is a target of a conserved Nodal (TGFβ) signaling pathway that mediates left-right (LR) asymmetry of visceral organs. Based on its highly conserved asymmetric expression domain, the Nodal-Pitx2 axis has long been considered a common denominator of LR development in vertebrate embryos. However, functions of Pitx2 during asymmetric organ morphogenesis are not well understood. To gain new insight into Pitx2 function we used genome editing to create mutations in the zebrafish pitx2 gene. Mutations in the pitx2 homeodomain caused phenotypes reminiscent of ARS, including aberrant development of the cornea and anterior chamber of the eye and reduced or absent teeth. Intriguingly, LR asymmetric looping of the heart and gut was normal in pitx2 mutants. These results suggest conserved roles for Pitx2 in eye and tooth development and indicate Pitx2 is not required for asymmetric looping of zebrafish visceral organs. This work establishes zebrafish pitx2 mutants as a new animal model for investigating mechanisms underlying congenital malformations in ARS and high-throughput drug screening for ARS therapeutics. Additionally, pitx2 mutants present a unique opportunity to identify new genes involved in vertebrate LR patterning. We show Nodal signaling-independent of Pitx2-controls asymmetric expression of the fatty acid elongase elovl6 in zebrafish, pointing to a potential novel pathway during LR organogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Evaluation of tall rice mutant

    International Nuclear Information System (INIS)

    Hakim, L.; Azam, M.A.; Miah, A.J.; Mansur, M.A.; Akanda, H.R.

    1989-01-01

    One tall mutant (Mut NS1) of rice variety Nizersail was put to multilocation on-farm trial. It showed improvement over the parent in respect of by earlier maturity and higher grain yield at all locations and thus it appears as an improved mutant of Nizersail. (author). 6 refs

  11. Evaluation of visible implant elastomer tags in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Claudia Hohn

    2013-11-01

    The use of the visible implant elastomer (VIE tagging system in zebrafish (Danio rerio was examined. Two tag orientations (horizontal and vertical at the dorsal fin base were tested for tag retention, tag fragmentation and whether VIE tags affected growth and survival of juvenile zebrafish (1–4 month post hatch. Six tag locations (abdomen, anal fin base, caudal peduncle, dorsal fin base, pectoral fin base, isthmus and 5 tag colors (yellow, red, pink, orange, blue were evaluated for ease of VIE tag application and tag visibility in adult zebrafish. Long-term retention (1 year and multiple tagging sites (right and left of dorsal fin and pectoral fin base were examined in adult zebrafish. Lastly, survival of recombination activation gene 1−/− (rag1−/− zebrafish was evaluated after VIE tagging. The best tag location was the dorsal fin base, and the most visible tag color was pink. Growth rate of juvenile zebrafish was not affected by VIE tagging. Horizontal tagging is recommended in early stages of fish growth (1–2 months post hatch. VIE tags were retained for 1 year and tagging did not interfere with long-term growth and survival. There was no mortality associated with VIE tagging in rag1−/− zebrafish. The VIE tagging system is highly suitable for small-sized zebrafish. When familiar with the procedure, 120 adult zebrafish can be tagged in one hour. It does not increase mortality in adult zebrafish or interfere with growth in juvenile or adult zebrafish.

  12. Targeted knock-in of CreER T2 in zebrafish using CRISPR/Cas9.

    Science.gov (United States)

    Kesavan, Gokul; Hammer, Juliane; Hans, Stefan; Brand, Michael

    2018-04-01

    New genome-editing approaches, such as the CRISPR/Cas system, have opened up great opportunities to insert or delete genes at targeted loci and have revolutionized genetics in model organisms like the zebrafish. The Cre-loxp recombination system is widely used to activate or inactivate genes with high spatial and temporal specificity. Using a CRISPR/Cas9-mediated knock-in strategy, we inserted a zebrafish codon-optimized CreER T2 transgene at the otx2 gene locus to generate a conditional Cre-driver line. We chose otx2 as it is a patterning gene of the anterior neural plate that is expressed during early development. By knocking in CreER T2 upstream of the endogenous ATG of otx2, we utilized this gene's native promoter and enhancer elements to perfectly match CreER T2 and endogenous otx2 expression patterns. Next, by combining this novel driver line with a Cre-dependent reporter line, we show that only in the presence of tamoxifen can efficient Cre-loxp-mediated recombination be achieved in the anterior neural plate-derived tissues like the telencephalon, the eye and the optic tectum. Our results imply that the otx2:CreER T2 transgenic fish will be a valuable tool for lineage tracing and conditional mutant studies in larval and adult zebrafish.

  13. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    International Nuclear Information System (INIS)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  14. Molecular and Chemical Genetic Approaches to Developmental Origins of Aging and Disease in Zebrafish

    Science.gov (United States)

    Sasaki, Tomoyuki; Kishi, Shuji

    2013-01-01

    The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins

  15. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    Science.gov (United States)

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  16. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  17. Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Ondřej; Stachura, D.L.; Machoňová, Olga; Pajer, Petr; Brynda, Jiří; Zon, L.I.; Traver, D.; Bartůněk, Petr

    2014-01-01

    Roč. 124, č. 2 (2014), s. 220-228 ISSN 0006-4971 R&D Projects: GA ČR GAP305/10/0953 Grant - others:NIH(US) K01-DK087814-01A1; NIH(US) R01-DK074482 Keywords : Zebrafish * hematopoiesis * progenitors * thrombopoietin * erythropoietin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.452, year: 2014

  18. Disease modeling in genetic kidney diseases: zebrafish.

    Science.gov (United States)

    Schenk, Heiko; Müller-Deile, Janina; Kinast, Mark; Schiffer, Mario

    2017-07-01

    Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.

  19. Social dominance modulates eavesdropping in zebrafish

    Science.gov (United States)

    Abril-de-Abreu, Rodrigo; Cruz, Ana S.; Oliveira, Rui F.

    2015-01-01

    Group living animals may eavesdrop on signalling interactions between conspecifics and integrate it with their own past social experience in order to optimize the use of relevant information from others. However, little is known about this interplay between public (eavesdropped) and private social information. To investigate it, we first manipulated the dominance status of bystander zebrafish. Next, we either allowed or prevented bystanders from observing a fight. Finally, we assessed their behaviour towards the winners and losers of the interaction, using a custom-made video-tracking system and directional analysis. We found that only dominant bystanders who had seen the fight revealed a significant increase in directional focus (a measure of attention) towards the losers of the fights. Furthermore, our results indicate that information about the fighters' acquired status was collected from the signalling interaction itself and not from post-interaction status cues, which implies the existence of individual recognition in zebrafish. Thus, we show for the first time that zebrafish, a highly social model organism, eavesdrop on conspecific agonistic interactions and that this process is modulated by the eavesdroppers' dominance status. We suggest that this type of integration of public and private information may be ubiquitous in social learning processes. PMID:26361550

  20. Afferent connectivity of the zebrafish habenulae

    Directory of Open Access Journals (Sweden)

    Katherine Jane Turner

    2016-04-01

    Full Text Available The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates.Here we describe the main afferents to the habenulae in larval and adult zebrafish.We observe afferents from the subpallium, nucleus rostrolateralis,posterior tuberculum, posterior hypothalamic lobe, median raphe, olfactory bulb to the right habenula and from the parapineal to the lefthabenula.In addition,we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus(vENT,confirming and extending observations of Amo et al.(2014.Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hpf.No afferents to the habenula were observed from the dorsal entopeduncular nucleus(dENT.Consequently,we confirm that the vENT(and not the dENT should be considered as the entopeduncular nucleus proper in zebrafish.Furthermore,comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus,being homologous to the entopeduncular nucleus of mammals(internal segment of the globus pallidus of primates by both embryonic origin and projections,as previously suggested by Amo et al.(2014.Key words: habenula,connections,afferents,entopeduncular nucleus,posterior tuberculum,basal ganglia,zebrafish

  1. CERKL knockdown causes retinal degeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Marina Riera

    Full Text Available The human CERKL gene is responsible for common and severe forms of retinal dystrophies. Despite intense in vitro studies at the molecular and cellular level and in vivo analyses of the retina of murine knockout models, CERKL function remains unknown. In this study, we aimed to approach the developmental and functional features of cerkl in Danio rerio within an Evo-Devo framework. We show that gene expression increases from early developmental stages until the formation of the retina in the optic cup. Unlike the high mRNA-CERKL isoform multiplicity shown in mammals, the moderate transcriptional complexity in fish facilitates phenotypic studies derived from gene silencing. Moreover, of relevance to pathogenicity, teleost CERKL shares the two main human protein isoforms. Morpholino injection has been used to generate a cerkl knockdown zebrafish model. The morphant phenotype results in abnormal eye development with lamination defects, failure to develop photoreceptor outer segments, increased apoptosis of retinal cells and small eyes. Our data support that zebrafish Cerkl does not interfere with proliferation and neural differentiation during early developmental stages but is relevant for survival and protection of the retinal tissue. Overall, we propose that this zebrafish model is a powerful tool to unveil CERKL contribution to human retinal degeneration.

  2. Use of zebrafish to study Shigella infection

    Science.gov (United States)

    Duggan, Gina M.

    2018-01-01

    ABSTRACT Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo. Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio), with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans. PMID:29590642

  3. Use of zebrafish to study Shigella infection

    Directory of Open Access Journals (Sweden)

    Gina M. Duggan

    2018-02-01

    Full Text Available Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo. Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio, with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans.

  4. Cell migration during heart regeneration in zebrafish.

    Science.gov (United States)

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene

    International Nuclear Information System (INIS)

    Tian, Jingjing; Hu, Jia; Chen, Mingli; Yin, Huancai; Miao, Peng; Bai, Pengli; Yin, Jian

    2017-01-01

    Previous studies in our lab have revealed that both P-glycoprotein (Pgp) and multi-resistance associated protein (Mrp) 1 played important roles in the detoxification of heavy metals and polycyclic aromatic hydrocarbon (PAH) in zebrafish embryos. This paper aims to extend this research by using mrp1-deficient model to illustrate the individual function of Mrp1. In this respect, CRISPR/Cas9 system was employed to generate a frameshift mutation in zebrafish mrp1 causing premature translational stops in Mrp1. Significant reduction on the efflux function of Mrps was found in mutant zebrafish embryos, which correlated well with the significantly enhanced accumulation and toxicity of cadmium chloride (CdCl_2) and benzo[a]pyrene (BαP), indicating the protective role of the corresponding protein. The different alteration on the accumulation and toxicity of Cd"2"+ and BαP could be attributed to the fact that Cd"2"+ and its metabolites were mainly excreted by Mrp1, while BαP was primarily pumped out by Pgp. More importantly, the compensation mechanism for the absence of Mrp1, including elevated glutathione (GSH) level and up-regulated expression of pgp and mrp2 were also found. Thus, mrp1-deficient zebrafish embryo could be a useful tool in the investigation of Mrp1 functions in the early life stages of aquatic organisms. However, compensation mechanism should be taken into consideration in the interpretation of results obtained with mrp1-deficient fish.

  6. The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jingjing [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Hu, Jia [School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu (China); Chen, Mingli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Huancai [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Miao, Peng; Bai, Pengli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Jian, E-mail: yinj@sibet.ac.cn [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China)

    2017-05-15

    Previous studies in our lab have revealed that both P-glycoprotein (Pgp) and multi-resistance associated protein (Mrp) 1 played important roles in the detoxification of heavy metals and polycyclic aromatic hydrocarbon (PAH) in zebrafish embryos. This paper aims to extend this research by using mrp1-deficient model to illustrate the individual function of Mrp1. In this respect, CRISPR/Cas9 system was employed to generate a frameshift mutation in zebrafish mrp1 causing premature translational stops in Mrp1. Significant reduction on the efflux function of Mrps was found in mutant zebrafish embryos, which correlated well with the significantly enhanced accumulation and toxicity of cadmium chloride (CdCl{sub 2}) and benzo[a]pyrene (BαP), indicating the protective role of the corresponding protein. The different alteration on the accumulation and toxicity of Cd{sup 2+} and BαP could be attributed to the fact that Cd{sup 2+} and its metabolites were mainly excreted by Mrp1, while BαP was primarily pumped out by Pgp. More importantly, the compensation mechanism for the absence of Mrp1, including elevated glutathione (GSH) level and up-regulated expression of pgp and mrp2 were also found. Thus, mrp1-deficient zebrafish embryo could be a useful tool in the investigation of Mrp1 functions in the early life stages of aquatic organisms. However, compensation mechanism should be taken into consideration in the interpretation of results obtained with mrp1-deficient fish.

  7. NSF Lower Atmospheric Observing Facilities (LAOF) in support of science and education

    Science.gov (United States)

    Baeuerle, B.; Rockwell, A.

    2012-12-01

    Researchers, students and teachers who want to understand and describe the Earth System require high quality observations of the atmosphere, ocean, and biosphere. Making these observations requires state-of-the-art instruments and systems, often carried on highly capable research platforms. To support this need of the geosciences community, the National Science Foundation's (NSF) Division of Atmospheric and Geospace Sciences (AGS) provides multi-user national facilities through its Lower Atmospheric Observing Facilities (LAOF) Program at no cost to the investigator. These facilities, which include research aircraft, radars, lidars, and surface and sounding systems, receive NSF financial support and are eligible for deployment funding. The facilities are managed and operated by five LAOF partner organizations: the National Center for Atmospheric Research (NCAR); Colorado State University (CSU); the University of Wyoming (UWY); the Center for Severe Weather Research (CSWR); and the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). These observational facilities are available on a competitive basis to all qualified researchers from US universities, requiring the platforms and associated services to carry out various research objectives. The deployment of all facilities is driven by scientific merit, capabilities of a specific facility to carry out the proposed observations, and scheduling for the requested time. The process for considering requests and setting priorities is determined on the basis of the complexity of a field campaign. The poster will describe available observing facilities and associated services, and explain the request process researchers have to follow to secure access to these platforms for scientific as well as educational deployments. NSF/NCAR GV Aircraft

  8. Characterization of behavioral and endocrine effects of LSD on zebrafish.

    Science.gov (United States)

    Grossman, Leah; Utterback, Eli; Stewart, Adam; Gaikwad, Siddharth; Chung, Kyung Min; Suciu, Christopher; Wong, Keith; Elegante, Marco; Elkhayat, Salem; Tan, Julia; Gilder, Thomas; Wu, Nadine; Dileo, John; Cachat, Jonathan; Kalueff, Allan V

    2010-12-25

    Lysergic acid diethylamide (LSD) is a potent hallucinogenic drug that strongly affects animal and human behavior. Although adult zebrafish (Danio rerio) are emerging as a promising neurobehavioral model, the effects of LSD on zebrafish have not been investigated previously. Several behavioral paradigms (the novel tank, observation cylinder, light-dark box, open field, T-maze, social preference and shoaling tests), as well as modern video-tracking tools and whole-body cortisol assay were used to characterize the effects of acute LSD in zebrafish. While lower doses (5-100 microg/L) did not affect zebrafish behavior, 250 microg/L LSD increased top dwelling and reduced freezing in the novel tank and observation cylinder tests, also affecting spatiotemporal patterns of activity (as assessed by 3D reconstruction of zebrafish traces and ethograms). LSD evoked mild thigmotaxis in the open field test, increased light behavior in the light-dark test, reduced the number of arm entries and freezing in the T-maze and social preference test, without affecting social preference. In contrast, LSD affected zebrafish shoaling (increasing the inter-fish distance in a group), and elevated whole-body cortisol levels. Overall, our findings show sensitivity of zebrafish to LSD action, and support the use of zebrafish models to study hallucinogenic drugs of abuse. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. FishNet: an online database of zebrafish anatomy

    Directory of Open Access Journals (Sweden)

    Gibson Abigail J

    2007-08-01

    Full Text Available Abstract Background Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish. Results To overcome this deficit we have utilized the technique of optical projection tomography to produce three-dimensional (3D models of larval fish. In order to view and display these models we have created FishNet http://www.fishnet.org.au, an interactive reference of zebrafish anatomy spanning the range of zebrafish development from 24 h until adulthood. Conclusion FishNet contains more than 36 000 images of larval zebrafish, with more than 1 500 of these being annotated. The 3D models can be manipulated on screen or virtually sectioned. This resource represents the first complete embryo to adult atlas for any species in 3D.

  10. A bioenergetic model for zebrafish Danio rerio (Hamilton)

    Science.gov (United States)

    Chizinski, C.J.; Sharma, Bibek; Pope, K.L.; Patino, R.

    2008-01-01

    A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18-32?? C) of water temperatures, and evaluated with a 50 day laboratory trial at 28?? C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. ?? 2008 The Authors.

  11. Identification of Spt5 target genes in zebrafish development reveals its dual activity in vivo.

    Directory of Open Access Journals (Sweden)

    Keerthi Krishnan

    Full Text Available Spt5 is a conserved essential protein that represses or stimulates transcription elongation in vitro. Immunolocalization studies on Drosophila polytene chromosomes suggest that Spt5 is associated with many loci throughout the genome. However, little is known about the prevalence and identity of Spt5 target genes in vivo during development. Here, we identify direct target genes of Spt5 using fog(sk8 zebrafish mutant, which disrupts the foggy/spt5 gene. We identified that fog(sk8 and their wildtype siblings differentially express less than 5% of genes examined. These genes participate in diverse biological processes from stress response to cell fate specification. Up-regulated genes exhibit shorter overall gene length compared to all genes examined. Through chromatin immunoprecipitation in zebrafish embryos, we identified a subset of developmentally critical genes that are bound by both Spt5 and RNA polymerase II. The protein occupancy patterns on these genes are characteristic of both repressive and stimulatory elongation regulation. Together our findings establish Spt5 as a dual regulator of transcription elongation in vivo and identify a small but diverse set of target genes critically dependent on Spt5 during development.

  12. Continual low-level MEK inhibition ameliorates cardio-facio-cutaneous phenotypes in zebrafish

    Directory of Open Access Journals (Sweden)

    Corina Anastasaki

    2012-07-01

    Cardio-facio-cutaneous (CFC syndrome is caused by germline mutations in KRAS, BRAF and MEK1/2. The highly selective and potent MEK inhibitors that have been developed as anti-cancer agents hold potential as therapeutics for CFC syndrome. We have previously shown that the effects of CFC mutations on zebrafish gastrulation can be prevented by a 1-hour treatment with MEK inhibitors within a specific developmental time-window. However, MEK activity is essential for normal development and PD0325901 treatment outside this treatment window leads to additional developmental defects in MEK-dependent tissues. We now test ten different doses of PD0325901 at six developmental time points and assess the effects on body axis length, heart development and craniofacial structures in zebrafish embryos. Notably, we find that a continuous low-level dose of PD0325901 that has only minor inhibition of MEK activity can prevent the action of both the common CFC BRAFQ257R kinase-active allele and the BRAFG596V kinase-impaired mutant allele through the first 5 days of development. These results provide a detailed study of the effects of PD0325901 in development and show that, unlike in cancer, which requires robust inhibition of MAPK signalling, a partial reduction in phospho-ERK1/2 activity is sufficient to moderate the developmental effects of BRAFCFC mutations.

  13. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.

    Science.gov (United States)

    Missinato, Maria A; Saydmohammed, Manush; Zuppo, Daniel A; Rao, Krithika S; Opie, Graham W; Kühn, Bernhard; Tsang, Michael

    2018-03-06

    Zebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase. Here, we show that suppressing Dusp6 function enhances cardiac regeneration. Inactivation of Dusp6 by small molecules or by gene inactivation increased cardiomyocyte proliferation, coronary angiogenesis, and reduced fibrosis after ventricular resection. Inhibition of Erbb or PDGF receptor signaling suppressed cardiac regeneration in wild-type zebrafish, but had a milder effect on regeneration in dusp6 mutants. Moreover, in rat primary cardiomyocytes, NRG1-stimulated proliferation can be enhanced upon chemical inhibition of Dusp6 with BCI. Our results suggest that Dusp6 attenuates Ras/MAPK signaling during regeneration and that suppressing Dusp6 can enhance cardiac repair. © 2018. Published by The Company of Biologists Ltd.

  14. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI.

    Science.gov (United States)

    Jin, Hao; Sood, Raman; Xu, Jin; Zhen, Fenghua; English, Milton A; Liu, P Paul; Wen, Zilong

    2009-02-01

    One unique feature of vertebrate definitive hematopoiesis is the ontogenic switching of hematopoietic stem cells from one anatomical compartment or niche to another. In mice, hematopoietic stem cells are believed to originate in the aorta-gonad-mesonephros (AGM), subsequently migrate to the fetal liver (FL) and finally colonize the bone marrow (BM). Yet, the differentiation potential of hematopoietic stem cells within early niches such as the AGM and FL remains incompletely defined. Here, we present in vivo analysis to delineate the differentiation potential of definitive hematopoietic stem/progenitor cells (HSPCs) in the zebrafish AGM and FL analogies, namely the ventral wall of dorsal aorta (VDA) and the posterior blood island (PBI), respectively. Cell fate mapping and analysis of zebrafish runx1(w84x) and vlad tepes (vlt(m651)) mutants revealed that HSPCs in the PBI gave rise to both erythroid and myeloid lineages. However, we surprisingly found that HSPCs in the VDA were not quiescent but were uniquely adapted to generate myeloid but not erythroid lineage cells. We further showed that such distinct differentiation output of HSPCs was, at least in part, ascribed to the different micro-environments present in these two niches. Our results highlight the importance of niche in shaping the differentiation output of developing HSPCs.

  15. Photoelastic examination of borosilicate glass discs used in the insulating legs for the NSF tandem

    International Nuclear Information System (INIS)

    Acton, W.J.; Cundy, D.

    1981-04-01

    The results are presented of a photoelastic stress analysis carried out to establish the effect of re-annealing borosilicate glass discs used in the insulating legs of the 30 MV tandem van de Graaff accelerator of the NSF. The results show that re-annealing of the glass discs has no measurable effect on reducing the high stress at inclusions and re-emphasise the need to exercise great care in selecting suitable discs for use in the insulating legs. (U.K.)

  16. The Swedish mutant barley collection

    International Nuclear Information System (INIS)

    1989-01-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  17. The Swedish mutant barley collection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Full text: The Swedish mutation research programme in barley began about 50 years ago and has mainly been carried out at Svaloev in co-operation with the institute of Genetics at the University of Lund. The collection has been produced from different Swedish high-yielding spring barley varieties, using the following mutagens: X-rays, neutrons, several organic chemical compounds such as ethyleneimine, several sulfonate derivatives and the inorganic chemical mutagen sodium azide. Nearly 10,000 barley mutants are stored in the Nordic Gene Bank and documented in databases developed by Udda Lundquist, Svaloev AB. The collection consists of the following nine categories with 94 different types of mutants: 1. Mutants with changes in the spike and spikelets; 2. Changes in culm length and culm composition; 3. Changes in growth types; 4. Physiological mutants; 5. Changes in awns; 6. Changes in seed size and shape; 7. Changes in leaf blades; 8. Changes in anthocyanin and colour; 9. Resistance to barley powdery mildew. Barley is one of the most thoroughly investigated crops in terms of induction of mutations and mutation genetics. So far, about half of the mutants stored at the Nordic Gene Bank, have been analysed genetically; They constitute, however, only a minority of the 94 different mutant types. The genetic analyses have given valuable insights into the mutation process but also into the genetic architecture of various characters. A number of mutants of two-row barley have been registered and commercially released. One of the earliest released, Mari, an early maturing, daylength neutral, straw stiff mutant, is still grown in Iceland. The Swedish mutation material has been used in Sweden, but also in other countries, such as Denmark, Germany, and USA, for various studies providing a better understanding of the barley genome. The collection will be immensely valuable for future molecular genetical analyses of clone mutant genes. (author)

  18. Examination of a Palatogenic Gene Program in Zebrafish

    Science.gov (United States)

    Swartz, Mary E.; Sheehan-Rooney, Kelly; Dixon, Michael J.; Eberhart, Johann K.

    2011-01-01

    Human palatal clefting is debilitating and difficult to rectify surgically. Animal models enhance our understanding of palatogenesis and are essential in strategies designed to ameliorate palatal malformations in humans. Recent studies have shown that the zebrafish palate, or anterior neurocranium, is under similar genetic control to the amniote palatal skeleton. We extensively analyzed palatogenesis in zebrafish to determine the similarity of gene expression and function across vertebrates. By 36 hpf palatogenic cranial neural crest cells reside in homologous regions of the developing face compared to amniote species. Transcription factors and signaling molecules regulating mouse palatogenesis are expressed in similar domains during palatogenesis in zebrafish. Functional investigation of a subset of these genes, fgf10a, tgfb2, pax9 and smad5 revealed their necessity in zebrafish palatogenesis. Collectively, these results suggest that the gene regulatory networks regulating palatogenesis may be conserved across vertebrate species, demonstrating the utility of zebrafish as a model for palatogenesis. PMID:22016187

  19. Macrophage–Microbe Interactions: Lessons from the Zebrafish Model

    Directory of Open Access Journals (Sweden)

    Nagisa Yoshida

    2017-12-01

    Full Text Available Macrophages provide front line defense against infections. The study of macrophage–microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio larvae provide a unique platform to study macrophage–microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans.

  20. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    Science.gov (United States)

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  1. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system.

    Science.gov (United States)

    Hur, Matthew; Gistelinck, Charlotte A; Huber, Philippe; Lee, Jane; Thompson, Marjorie H; Monstad-Rios, Adrian T; Watson, Claire J; McMenamin, Sarah K; Willaert, Andy; Parichy, David M; Coucke, Paul; Kwon, Ronald Y

    2017-09-08

    Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.

  2. Morphological and Physiological Interactions Between GnRH3 and Hypocretin/Orexin Neuronal Systems in Zebrafish (Danio rerio).

    Science.gov (United States)

    Zhao, Yali; Singh, Chanpreet; Prober, David A; Wayne, Nancy L

    2016-10-01

    GnRH neurons integrate internal and external cues to control sexual maturation and fertility. Homeostasis of energy balance and food intake correlates strongly with the status of reproduction. Neuropeptides secreted by the hypothalamus involved in modulating energy balance and feeding may play additional roles in the regulation of reproduction. Hypocretin (Hcrt) (also known as orexin) is one such peptide, primarily controlling sleep/wakefulness, food intake, and reward processing. There is a growing body of evidence indicating that Hcrt/orexin (Hcrt) modulates reproduction through interacting with the hypothalamo-pituitary-gonadal axis in mammals. To explore potential morphological and functional interactions between the GnRH and Hcrt neuronal systems, we employed a variety of experimental approaches including confocal imaging, immunohistochemistry, and electrophysiology in transgenic zebrafish, in which fluorescent proteins are genetically expressed in GnRH3 and Hcrt neurons. Our imaging data revealed close apposition and direct connection between GnRH3 and Hcrt neuronal systems in the hypothalamus during larval development through adulthood. Furthermore, the Hcrt receptor (HcrtR) is expressed in GnRH3 neurons. Electrophysiological data revealed a reversible inhibitory effect of Hcrt on GnRH3 neuron electrical activity, which was blocked by the HcrtR antagonist almorexant. In addition, Hcrt had no effect on the electrical activity of GnRH3 neurons in the HcrtR null mutant zebrafish (HcrtR -/- ). Our findings demonstrate a close anatomical and functional relationship between Hcrt and GnRH neuronal systems in zebrafish. It is the first demonstration of a link between neuronal circuits controlling sleeping/arousal/feeding and reproduction in zebrafish, an important animal model for investigating the molecular genetics of development.

  3. Knockdown of Pnpla6 protein results in motor neuron defects in zebrafish

    Directory of Open Access Journals (Sweden)

    Yang Song

    2013-03-01

    Mutations in patatin-like phospholipase domain containing 6 (PNPLA6, also known as neuropathy target esterase (NTE or SPG39, cause hereditary spastic paraplegia (HSP. Although studies on animal models, including mice and Drosophila, have extended our understanding of PNPLA6, its roles in neural development and in HSP are not clearly understood. Here, we describe the generation of a vertebrate model of PNPLA6 insufficiency using morpholino oligonucleotide knockdown in zebrafish (Danio rerio. Pnpla6 knockdown resulted in developmental abnormalities and motor neuron defects, including axon truncation and branching. The phenotypes in pnpla6 knockdown morphants were rescued by the introduction of wild-type, but not mutant, human PNPLA6 mRNA. Our results also revealed the involvement of BMP signaling in pnpla6 knockdown phenotypes. Taken together, these results demonstrate an important role of PNPLA6 in motor neuron development and implicate overexpression of BMP signaling as a possible mechanism underlying the developmental defects in pnpla6 morphants.

  4. Triclosan Lacks (Anti-Estrogenic Effects in Zebrafish Cells but Modulates Estrogen Response in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Hélène Serra

    2018-04-01

    Full Text Available Triclosan (TCS, an antimicrobial agent widely found in the aquatic environment, is suspected to act as an endocrine disrupting compound, however mechanistic information is lacking in regards to aquatic species. This study assessed the ability of TCS to interfere with estrogen receptor (ER transcriptional activity, in zebrafish-specific in vitro and in vivo reporter gene assays. We report that TCS exhibits a lack of either agonistic or antagonistic effects on a panel of ER-expressing zebrafish (ZELH-zfERα and -zfERβ and human (MELN cell lines. At the organism level, TCS at concentrations of up to 0.3 µM had no effect on ER-regulated brain aromatase gene expression in transgenic cyp19a1b-GFP zebrafish embryos. At a concentration of 1 µM, TCS interfered with the E2 response in an ambivalent manner by potentializing a low E2 response (0.625 nM, but decreasing a high E2 response (10 nM. Altogether, our study suggests that while modulation of ER-regulated genes by TCS may occur in zebrafish, it does so irrespective of a direct binding and activation of zfERs.

  5. A dominant negative zebrafish Ahr2 partially protects developing zebrafish from dioxin toxicity.

    Directory of Open Access Journals (Sweden)

    Kevin A Lanham

    Full Text Available The toxicity by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD is thought to be caused by activation of the aryl hydrocarbon receptor (AHR. However, our understanding of how AHR activation by TCDD leads to toxic effects is poor. Ideally we would like to manipulate AHR activity in specific tissues and at specific times. One route to this is expressing dominant negative AHRs (dnAHRs. This work describes the construction and characterization of dominant negative forms of the zebrafish Ahr2 in which the C-terminal transactivation domain was either removed, or replaced with the inhibitory domain from the Drosophila engrailed repressor protein. One of these dnAhr2s was selected for expression from the ubiquitously active e2fα promoter in transgenic zebrafish. We found that these transgenic zebrafish expressing dnAhr2 had reduced TCDD induction of the Ahr2 target gene cyp1a, as measured by 7-ethoxyresorufin-O-deethylase activity. Furthermore, the cardiotoxicity produced by TCDD, pericardial edema, heart malformation, and reduced blood flow, were all mitigated in the zebrafish expressing the dnAhr2. These results provide in vivo proof-of-principle results demonstrating the effectiveness of dnAHRs in manipulating AHR activity in vivo, and demonstrating that this approach can be a means for blocking TCDD toxicity.

  6. Transcriptome Analysis of Chemically-Induced Sensory Neuron Ablation in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Jane A Cox

    Full Text Available Peripheral glia are known to have a critical role in the initial response to axon damage and degeneration. However, little is known about the cellular responses of non-myelinating glia to nerve injury. In this study, we analyzed the transcriptomes of wild-type and mutant (lacking peripheral glia zebrafish larvae that were treated with metronidazole. This treatment allowed us to conditionally and selectively ablate cranial sensory neurons whose axons are ensheathed only by non-myelinating glia. While transcripts representing over 27,000 genes were detected by RNAseq, only a small fraction (~1% of genes were found to be differentially expressed in response to neuronal degeneration in either line at either 2 hrs or 5 hrs of metronidazole treatment. Analysis revealed that most expression changes (332 out of the total of 458 differentially expressed genes occurred over a continuous period (from 2 to 5 hrs of metronidazole exposure, with a small number of genes showing changes limited to only the 2 hr (55 genes or 5 hr (71 genes time points. For genes with continuous alterations in expression, some of the most meaningful sets of enriched categories in the wild-type line were those involving the inflammatory TNF-alpha and IL6 signaling pathways, oxidoreductase activities and response to stress. Intriguingly, these changes were not observed in the mutant line. Indeed, cluster analysis indicated that the effects of metronidazole treatment on gene expression was heavily influenced by the presence or absence of glia, indicating that the peripheral non-myelinating glia play a significant role in the transcriptional response to sensory neuron degeneration. This is the first transcriptome study of metronidazole-induced neuronal death in zebrafish and the response of non-myelinating glia to sensory neuron degeneration. We believe this study provides important insight into the mechanisms by which non-myelinating glia react to neuronal death and degeneration in

  7. Report of the 4th European Zebrafish Principal Investigator Meeting.

    Science.gov (United States)

    Lopes, Susana S; Distel, Martin; Linker, Claudia; Fior, Rita; Monteiro, Rui; Bianco, Isaac H; Portugues, Ruben; Strähle, Uwe; Saúde, Leonor

    2016-12-01

    The European Zebrafish Principal Investigator Meeting (EZPM) is an ideal forum for group leaders using this fantastic animal model not only to discuss science but also to strengthen their interactions, to push forward technological advances, and to define guidelines for the use of this fish in research. The city of Lisbon (Portugal) was voted by the European group leaders to be the setting for the 4th EZPM, and the organizing committee, composed by Leonor Saúde (iMM Lisboa, PT), Susana Lopes (CEDOC, PT), Michael Orger (Champalimaud Foundation, PT), Rui Oliveira (ISPA, PT), and António Jacinto (CEDOC, PT), was very enthusiastic to organize a productive event. The 4th EZPM took place from March 15 to 19 at Pavilhão do Conhecimento, a Science Museum and Educational Center winner of The Great Prize FAD of Arquitecture 1999 and The Society for Environmental Graphic Design Award 2011. Over 5 days, 135 group leaders (89 men and 46 women) coming from 19 different European countries and also from the United States, Turkey, Israel, Chile, and Singapore presented and discussed their recent research achievements. In addition to the scientific oral and poster presentations, the group leaders gathered in very lively community sessions on morphants versus mutants (chaired by Didier Stainier, Max Planck Institute for Heart and Lung Research, DE), funding issues (chaired by Uwe Strahle, KIT-ITG, DE), and gender equality (chaired by Corinne Houart, KCL, United Kingdom). One of the highlights of the 4th EZPM was the guided visit to Oceanário de Lisboa, an international award-winning place that celebrates life with a stunning display of living aquatic creatures.

  8. Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish

    Directory of Open Access Journals (Sweden)

    Changwen Zhang

    2016-11-01

    Full Text Available Alcoholic liver disease (ALD results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the

  9. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish.

    Science.gov (United States)

    Botthof, Jan Gregor; Bielczyk-Maczyńska, Ewa; Ferreira, Lauren; Cvejic, Ana

    2017-05-30

    RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.

  10. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    Directory of Open Access Journals (Sweden)

    Mei Li

    Full Text Available Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM. This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  11. Zebrafish: an animal model for research in veterinary medicine.

    Science.gov (United States)

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  12. Mutants of alfalfa mosaic virus

    International Nuclear Information System (INIS)

    Roosien, J.

    1983-01-01

    In this thesis the isolation and characterization of a number of mutants of alfalfa mosaic virus, a plant virus with a coat protein dependent genome, is described. Thermo-sensitive (ts) mutants were selected since, at least theoretically, ts mutations can be present in all virus coded functions. It was found that a high percentage of spontaneous mutants, isolated because of their aberrant symptoms, were ts. The majority of these isolates could grow at the non-permissive temperature in the presence of a single wild type (wt) component. To increase the mutation rate virus preparations were treated with several mutagens. After nitrous acid treatment or irradiation with ultraviolet light, an increase in the level of mutations was observed. UV irradiation was preferred since it did not require large amounts of purified viral components. During the preliminary characterization of potential ts mutants the author also obtained one structural and several symptom mutants which were analysed further (chapter 7, 8 and 9). The properties of the ts mutants are described in chapter 3-7. (Auth.)

  13. Root hair mutants of barley

    International Nuclear Information System (INIS)

    Engvild, K.C.; Rasmussen, K.

    2005-01-01

    Barley mutants without root hairs or with short or reduced root hairs were isolated among M 2 seeds of 'Lux' barley (Hordeum vulgare L.) after acidified sodium azide mutagenesis. Root hair mutants are investigated intensively in Arabidopsis where about 40 genes are known. A few root hair mutants are known in maize, rice, barley and tomato. Many plants without root hairs grow quite well with good plant nutrition, and mutants have been used for investigations of uptake of strongly bound nutrients like phosphorus, iron, zinc and silicon. Seed of 'Lux' barley (Sejet Plant Breeding, Denmark) were soaked overnight, and then treated with 1.5-millimolarsodium azide in 0.1 molar sodium phosphate buffer, pH 3, for 2.5 hours according to the IAEA Manual on Mutation Breeding (2nd Ed.). After rinsing in tap water and air-drying, the M 2 seeds were sown in the field the same day. Spikes, 4-6 per M 1 plant, were harvested. The mutation frequency was similar to that obtained with other barley cultivars from which low-phytate mutants were isolated [5]. Seeds were germinated on black filter paper in tap water for 3 or 4 days before scoring for root hair mutants

  14. Adaptive locomotor behavior in larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  15. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    Science.gov (United States)

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  16. Premature aging in telomerase-deficient zebrafish

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    2013-09-01

    The study of telomere biology is crucial to the understanding of aging and cancer. In the pursuit of greater knowledge in the field of human telomere biology, the mouse has been used extensively as a model. However, there are fundamental differences between mouse and human cells. Therefore, additional models are required. In light of this, we have characterized telomerase-deficient zebrafish (Danio rerio as the second vertebrate model for human telomerase-driven diseases. We found that telomerase-deficient zebrafish show p53-dependent premature aging and reduced lifespan in the first generation, as occurs in humans but not in mice, probably reflecting the similar telomere length in fish and humans. Among these aging symptoms, spinal curvature, liver and retina degeneration, and infertility were the most remarkable. Although the second-generation embryos died in early developmental stages, restoration of telomerase activity rescued telomere length and survival, indicating that telomerase dosage is crucial. Importantly, this model also reproduces the disease anticipation observed in humans with dyskeratosis congenita (DC. Thus, telomerase haploinsufficiency leads to anticipation phenomenon in longevity, which is related to telomere shortening and, specifically, with the proportion of short telomeres. Furthermore, p53 was induced by telomere attrition, leading to growth arrest and apoptosis. Importantly, genetic inhibition of p53 rescued the adverse effects of telomere loss, indicating that the molecular mechanisms induced by telomere shortening are conserved from fish to mammals. The partial rescue of telomere length and longevity by restoration of telomerase activity, together with the feasibility of the zebrafish for high-throughput chemical screening, both point to the usefulness of this model for the discovery of new drugs able to reactivate telomerase in individuals with DC.

  17. Novel biomarkers of perchlorate exposure in zebrafish

    Science.gov (United States)

    Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.

    2005-01-01

    Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.

  18. Cholinergic innervation of the zebrafish olfactory bulb.

    Science.gov (United States)

    Edwards, Jeffrey G; Greig, Ann; Sakata, Yoko; Elkin, Dimitry; Michel, William C

    2007-10-20

    A number of fish species receive forebrain cholinergic input but two recent reports failed to find evidence of cholinergic cell bodies or fibers in the olfactory bulbs (OBs) of zebrafish. In the current study we sought to confirm these findings by examining the OBs of adult zebrafish for choline acetyltransferase (ChAT) immunoreactivity. We observed a diffuse network of varicose ChAT-positive fibers associated with the nervus terminalis ganglion innervating the mitral cell/glomerular layer (MC/GL). The highest density of these fibers occurred in the anterior region of the bulb. The cellular targets of this cholinergic input were identified by exposing isolated OBs to acetylcholine receptor (AChR) agonists in the presence of agmatine (AGB), a cationic probe that permeates some active ion channels. Nicotine (50 microM) significantly increased the activity-dependent labeling of mitral cells and juxtaglomerular cells but not of tyrosine hydroxlase-positive dopaminergic neurons (TH(+) cells) compared to control preparations. The nAChR antagonist mecamylamine, an alpha7-nAChR subunit-specific antagonist, calcium-free artificial cerebrospinal fluid, or a cocktail of ionotropic glutamate receptor (iGluR) antagonists each blocked nicotine-stimulated labeling, suggesting that AGB does not enter the labeled neurons through activated nAChRs but rather through activated iGluRs following ACh-stimulated glutamate release. Deafferentation of OBs did not eliminate nicotine-stimulated labeling, suggesting that cholinergic input is primarily acting on bulbar neurons. These findings confirm the presence of a functioning cholinergic system in the zebrafish OB.

  19. Learning and memory in zebrafish (Danio rerio).

    Science.gov (United States)

    Gerlai, R

    2016-01-01

    Learning and memory are defining features of our own species inherently important to our daily lives and to who we are. Without our memories we cease to exist as a person. Without our ability to learn individuals and collectively our society would cease to function. Diseases of the mind still remain incurable. The interest in understanding of the mechanisms of learning and memory is thus well founded. Given the complexity of such mechanisms, concerted efforts have been made to study them under controlled laboratory conditions, ie, with laboratory model organisms. The zebrafish, although new in this field, is one such model organism. The rapidly developing forward- and reverse genetic methods designed for the zebrafish and the increasing use of pharmacological tools along with numerous neurobiology techniques make this species perhaps the best model for the analysis of the mechanisms of complex central nervous system characteristics. The fact that it is an evolutionarily ancient and simpler vertebrate, but at the same time it possesses numerous conserved features across multiple levels of biological organization makes this species an excellent tool for the analysis of the mechanisms of learning and memory. The bottleneck lies in our understanding of its cognitive and mnemonic features, the topic of this chapter. The current paper builds on a chapter published in the previous edition and continues to focus on associative learning, but now it extends the discussion to other forms of learning and to recent discoveries on memory-related features and findings obtained both in adults and larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Characterization of the Zebrafish Homolog of Zipper Interacting Protein Kinase

    Directory of Open Access Journals (Sweden)

    Brandon W. Carr

    2014-06-01

    Full Text Available Zipper-interacting protein kinase (ZIPK is a conserved vertebrate-specific regulator of actomyosin contractility in smooth muscle and non-muscle cells. Murine ZIPK has undergone an unusual divergence in sequence and regulation compared to other ZIPK orthologs. In humans, subcellular localization is controlled by phosphorylation of threonines 299 and 300. In contrast, ZIPK subcellular localization in mouse and rat is controlled by interaction with PAR-4. We carried out a comparative biochemical characterization of the regulation of the zebrafish ortholog of ZIPK. Like the human orthologs zebrafish ZIPK undergoes nucleocytoplasmic-shuttling and is abundant in the cytoplasm, unlike the primarily nuclear rat ZIPK. Rat ZIPK, but not human or zebrafish ZIPK, interacts with zebrafish PAR-4. Mutation of the conserved residues required for activation of the mammalian orthologs abrogated activity of the zebrafish ZIPK. In contrast to the human ortholog, mutation of threonine 299 and 300 in the zebrafish ZIPK has no effect on the activity or subcellular localization. Thus, we found that zebrafish ZIPK functions in a manner most similar to the human ZIPK and quite distinct from murine orthologs, yet the regulation of subcellular localization is not conserved.

  1. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    Science.gov (United States)

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  2. Zebrafish: A Versatile Animal Model for Fertility Research

    Directory of Open Access Journals (Sweden)

    Jing Ying Hoo

    2016-01-01

    Full Text Available The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  3. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    Directory of Open Access Journals (Sweden)

    Hyde David R

    2007-10-01

    Full Text Available Abstract Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO, subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease.

  4. The zebrafish world of colors and shapes: preference and discrimination.

    Science.gov (United States)

    Oliveira, Jessica; Silveira, Mayara; Chacon, Diana; Luchiari, Ana

    2015-04-01

    Natural environment imposes many challenges to animals, which have to use cognitive abilities to cope with and exploit it to enhance their fitness. Since zebrafish is a well-established model for cognitive studies and high-throughput screening for drugs and diseases that affect cognition, we tested their ability for ambient color preference and 3D objects discrimination to establish a protocol for memory evaluation. For the color preference test, zebrafish were observed in a multiple-chamber tank with different environmental color options. Zebrafish showed preference for blue and green, and avoided yellow and red. For the 3D objects discrimination, zebrafish were allowed to explore two equal objects and then observed in a one-trial test in which a new color, size, or shape of the object was presented. Zebrafish showed discrimination for color, shape, and color+shape combined, but not size. These results imply that zebrafish seem to use some categorical system to discriminate items, and distracters affect their ability for discrimination. The type of variables available (color and shape) may favor zebrafish objects perception and facilitate discrimination processing. We suggest that this easy and simple memory test could serve as a useful screening tool for cognitive dysfunction and neurotoxicological studies.

  5. Mutants induced in winter rye (Secale cereale L.): Short straw-mutant No. 2714 and late-senescence mutant

    Energy Technology Data Exchange (ETDEWEB)

    Muszynski, S; Darlewska, M [Department of Plant Breeding and Seed Science, Warsaw Agricultural University, Warsaw (Poland)

    1990-01-01

    Full text: Mutants were induced by treating dormant seeds with ionizing radiation (fast neutrons) or chemicals (N-nitroso-N-ethyl urea or sodium azide). Among several mutants obtained, of special value is the short-straw mutant No. 2714 and a late senescent mutant. (author)

  6. Characterization of the first knock-out aldh7a1 zebrafish model for pyridoxine-dependent epilepsy using CRISPR-Cas9 technology.

    Science.gov (United States)

    Zabinyakov, Nikita; Bullivant, Garrett; Cao, Feng; Fernandez Ojeda, Matilde; Jia, Zheng Ping; Wen, Xiao-Yan; Dowling, James J; Salomons, Gajja S; Mercimek-Andrews, Saadet

    2017-01-01

    Pyridoxine dependent epilepsy (PDE) is caused by likely pathogenic variants in ALDH7A1 (PDE-ALDH7A1) and inherited autosomal recessively. Neurotoxic alpha-amino adipic semialdehyde (alpha-AASA), piperideine 6-carboxylate and pipecolic acid accumulate in body fluids. Neonatal or infantile onset seizures refractory to anti-epileptic medications are clinical features. Treatment with pyridoxine, arginine and lysine-restricted diet does not normalize neurodevelopmental outcome or accumulation of neurotoxic metabolites. There is no animal model for high throughput drug screening. For this reason, we developed and characterized the first knock-out aldh7a1 zebrafish model using CRISPR-Cas9 technology. Zebrafish aldh7a1 mutants were generated by using a vector free method of CRISPR-Cas9 mutagenesis. Genotype analysis of aldh7a1 knock-out zebrafish was performed by high resolution melt analysis, direct sequencing and QIAxcel system. Electroencephalogram was performed. Alpha-AASA, piperideine 6-carboxylate and pipecolic acid, were measured by liquid chromatography-tandem mass spectrometry. Our knock-out aldh7a1 zebrafish has homozygous 5 base pair (bp) mutation in ALDH7A1. Knock-out aldh7a1 embryos have spontaneous rapid increase in locomotion and a rapid circling swim behavior earliest 8-day post fertilization (dpf). Electroencephalogram revealed large amplitude spike discharges compared to wild type. Knock-out aldh7a1 embryos have elevated alpha-AASA, piperideine 6-carboxylate and pipecolic acid compared to wild type embryos at 3 dpf. Knock-out aldh7a1 embryos showed no aldh7a1 protein by western blot compared to wild type. Our knock-out aldh7a1 zebrafish is a well characterized model for large-scale drug screening using behavioral and biochemical features and accurately recapitulates the human PDE-ALDH7A1 disease.

  7. Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding

    Directory of Open Access Journals (Sweden)

    Lovestone Simon

    2007-12-01

    Full Text Available Abstract Background Shedding of the Alzheimer amyloid precursor protein (APP ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as α-secretase(s. However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. Results Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Roßner et al (2004, phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPα. Conclusion Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP.

  8. Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding.

    Science.gov (United States)

    Ikin, Annat F; Causevic, Mirsada; Pedrini, Steve; Benson, Lyndsey S; Buxbaum, Joseph D; Suzuki, Toshiharu; Lovestone, Simon; Higashiyama, Shigeki; Mustelin, Tomas; Burgoyne, Robert D; Gandy, Sam

    2007-12-09

    Shedding of the Alzheimer amyloid precursor protein (APP) ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC) or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN) and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as alpha-secretase(s). However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES) responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Rossner et al (2004), phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPalpha. Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP.

  9. Method for somatic cell nuclear transfer in zebrafish.

    Science.gov (United States)

    Siripattarapravat, Kannika; Cibelli, Jose B

    2011-01-01

    Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step of the published protocol as well as preparations of equipments and reagents used in zebrafish SCNT. All describable detailed-tips are elaborated in texts and figures. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Rajiv Sainath

    Full Text Available During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch

  11. The search for evolutionary developmental origins of aging in zebrafish: a novel intersection of developmental and senescence biology in the zebrafish model system.

    Science.gov (United States)

    Kishi, Shuji

    2011-09-01

    Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and

  12. Application of water quality indices NSF, DINIUS and BMWP to Ayura Creek, Antioquia, Colombia

    International Nuclear Information System (INIS)

    Gonzalez Melendez, Viky; Caicedo Quintero, Orlando; Aguirre Ramirez, Nestor

    2013-01-01

    This investigation evaluates the quality of water in the creek The Ayura (municipality of Envigado, Antioquia, Colombia), through application of the National Sanitation Foundation (NSF) and Dinius quality indexes, and the biotic index BMWP/Col. the estimate of these indexes was conducted with data collected in three sites and three moments. Physicochemical and microbiological variables were determinate; we also performed a qualitative and quantitative sampling of aquatic macroinvertebrates. Using this methodology the behavior of physical-chemical and biological community in the different sites was studied. The physicochemical and aquatic macroinvertebrate indexes results showed that site 1 provides a good quality of water and the sites 2 and 3 a middle deteriorated water quality.

  13. Structural analysis of wind turbine rotors for NSF-NASA Mod-0 wind power system

    Science.gov (United States)

    Spera, D. A.

    1976-01-01

    Preliminary estimates are presented of vibratory loads and stresses in hingeless and teetering rotors for the proposed NSF-NASA Mod-0 wind power system. Preliminary blade design utilizes a tapered tubular aluminum spar which supports nonstructural aluminum ribs and skin and is joined to the rotor hub by a steel shank tube. Stresses in the shank of the blade are calculated for static, rated, and overload operating conditions. Blade vibrations were limited to the fundamental flapping modes, which were elastic cantilever bending for hingeless rotor blades and rigid-body rotation for teetering rotor blades. The MOSTAB-C computer code was used to calculate aerodynamic and mechanical loads. The teetering rotor has substantial advantages over the hingeless rotor with respect to shank stresses, fatigue life, and tower loading. The hingeless rotor analyzed does not appear to be structurally stable during overloads.

  14. Proceedings: Joint DOE/NSF Workshop on flow of particulates and fluids

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    These proceedings are the result of the Fifth DOR-NSF Workshop on fundamental research in the area of particulate two-phase flow and granular flow. The present collection of twenty contributions from universities and national laboratories is based on research projects sponsored by either the Department of Energy or the National Science Foundation. These papers illustrate some of the latest advances in theory, simulations, and experiments. The papers from the Workshop held September 29--October 1, 1993 have been separated into three basic areas: experiments, theory, and numerical simulations. A list of attendees at the workshop is included at the end of the proceedings. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Monitoring the consequences of decreased ozone protection: The NSF ultraviolet radiation monitoring network

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The effects of decreased protection from ultraviolet radiation are as troubling as the continuing depletion of stratospheric ozone. Evidence exists to clearly link ozone depletion to changes in the antarctic marine environment. Results of two 1992 papers are summarized here. Enhanced exposure to mid-range UV radiation was found to be affecting marine ecosystems with a recorded 6-12 percent reduction in primary productivity directly related to the ozone layer depletion. In another experiment, a model was developed indicating that the ozone hole could reduce near-surface photosynthesis by as much as 12-15 percent. The NSF UV monitoring system in place for these and other experiments uses a spectroradiometer, making hourly, high-resolution measurements of the distribution of UV surface irradiance

  16. Preparing Scientists for Scientific Careers: Broader Impacts from an NSF CAREER Award

    Science.gov (United States)

    Crosby, Alfred

    2008-03-01

    The scientific focus of my NSF CAREER Award is the impact of patterns, topographical and surface chemical in design, on the adhesion of soft polymer interfaces. Although this topic has provided a strong foundation for the mentoring and training of graduate students, the primary broader impacts of my award have focused on the development of ``soft'' skills in graduate and post-doctoral researchers in STEM disciplines. I have developed a course on ``Scientific and Engineering Management,'' which provides an open forum for students to explore the skills that, in many ways, define successful careers for many scientists. Topics include: leadership, proposal writing, group management, communication in diverse environments, and ethics. In this presentation, I highlight the primary phases of this program, how it meshes with scientific goals, and general statements about the mission of education outreach within STEM disciplines.

  17. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    Science.gov (United States)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  18. Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators.

    Directory of Open Access Journals (Sweden)

    Lindsay Barone

    2017-10-01

    Full Text Available In a 2016 survey of 704 National Science Foundation (NSF Biological Sciences Directorate principal investigators (BIO PIs, nearly 90% indicated they are currently or will soon be analyzing large data sets. BIO PIs considered a range of computational needs important to their work, including high performance computing (HPC, bioinformatics support, multistep workflows, updated analysis software, and the ability to store, share, and publish data. Previous studies in the United States and Canada emphasized infrastructure needs. However, BIO PIs said the most pressing unmet needs are training in data integration, data management, and scaling analyses for HPC-acknowledging that data science skills will be required to build a deeper understanding of life. This portends a growing data knowledge gap in biology and challenges institutions and funding agencies to redouble their support for computational training in biology.

  19. Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators.

    Science.gov (United States)

    Barone, Lindsay; Williams, Jason; Micklos, David

    2017-10-01

    In a 2016 survey of 704 National Science Foundation (NSF) Biological Sciences Directorate principal investigators (BIO PIs), nearly 90% indicated they are currently or will soon be analyzing large data sets. BIO PIs considered a range of computational needs important to their work, including high performance computing (HPC), bioinformatics support, multistep workflows, updated analysis software, and the ability to store, share, and publish data. Previous studies in the United States and Canada emphasized infrastructure needs. However, BIO PIs said the most pressing unmet needs are training in data integration, data management, and scaling analyses for HPC-acknowledging that data science skills will be required to build a deeper understanding of life. This portends a growing data knowledge gap in biology and challenges institutions and funding agencies to redouble their support for computational training in biology.

  20. Year 4 Of The NSF-funded PAARE Project At SC State

    Science.gov (United States)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M.

    2012-01-01

    We summarize the progress made through Year 4 of "A Partnership in Observational and Computational Astronomy (POCA)". This NSF-funded project is part of the "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. Our partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. Fellowships provided by POCA as well as recruitment efforts on the national level have resulted in enrolling a total of four underrepresented minorities into the Ph.D. program in astronomy at Clemson. We report on the success and challenges to recruiting students into the undergraduate physics major with astronomy option at SC State. Our summer REU program under POCA includes underrepresented students from across the country conducting research at each of our three institutions. Examples are given of our inquiry-based, laboratory exercises and web- based activities related to cosmology that have been developed with PAARE funding. We discuss our ground-based photometric and spectroscopic study of RV Tauri and Semi-Regular variables which has been expanded to include successful Cycle 2 Kepler observations of a dozen of these objects reported elsewhere at this conference (see D.K. Walter, et.al.). Support for the POCA project is provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Support for the Kepler observations is provided by NASA to South Carolina State University under award NNX11AB82G.

  1. Building A Drought Science Learning Community: Education and Engagement in an NSF CAREER Grant

    Science.gov (United States)

    Quiring, S. M.

    2011-12-01

    This paper describes the education and engagement plan of the NSF CAREER award that I received in 2011 (Role of Soil Moisture in Seasonal to Interannual Climate Variability in the U.S. Great Plains; NSF Award #1056796). A key component of this plan is the development of a Drought Science Learning Community. A learning community is a program of courses and activities, which may include social and academic activities outside the classroom, that form a single program of instruction. Learning communities serve to increase faculty-student and student-student interaction, improve active and collaborative learning, and develop curricular coherence. The goal of a learning community is to encourage integration of learning across courses and to involve students with one of the grand challenges facing society. Students will be recruited from a Freshman Year Seminar (FYS) that I teach every Fall. Students who belong to the learning community will participate in the Water Management and Hydrological Sciences Seminar Series, relevant field trips, and monthly brown bag lunch meetings where students and faculty will discuss their current research projects and recently published scientific articles. Students who participate in learning community activities will benefit from a common intellectual experience that will help them to develop linkages between courses, regular interactions with faculty mentors, and the opportunity to contribute to faculty research. All students will be encouraged to complete an undergraduate thesis as the capstone experience of their participation in the learning community. In addition to describing the organization of the education and engagement plan, I will also discuss expected outcomes, best practices and lessons learned.

  2. tortuga refines Notch pathway gene expression in the zebrafish presomitic mesoderm at the post-transcriptional level.

    Science.gov (United States)

    Dill, Kariena K; Amacher, Sharon L

    2005-11-15

    We have identified the zebrafish tortuga (tor) gene by an ENU-induced mutation that disrupts the presomitic mesoderm (PSM) expression of Notch pathway genes. In tor mutants, Notch pathway gene expression persists in regions of the PSM where expression is normally off in wild type embryos. The expression of hairy/Enhancer of split-related 1 (her1) is affected first, followed by the delta genes deltaC and deltaD, and finally, by another hairy/Enhancer of split-related gene, her7. In situ hybridization with intron-specific probes for her1 and deltaC indicates that transcriptional bursts of expression are normal in tor mutants, suggesting that tor normally functions to refine her1 and deltaC message levels downstream of transcription. Despite the striking defects in Notch pathway gene expression, somite boundaries form normally in tor mutant embryos, although somitic mesoderm defects are apparent later, when cells mature to form muscle fibers. Thus, while the function of Notch pathway genes is required for proper somite formation, the tor mutant phenotype suggests that precise oscillations of Notch pathway transcripts are not essential for establishing segmental pattern in the presomitic mesoderm.

  3. Afferent Connectivity of the Zebrafish Habenulae

    Science.gov (United States)

    Turner, Katherine J.; Hawkins, Thomas A.; Yáñez, Julián; Anadón, Ramón; Wilson, Stephen W.; Folgueira, Mónica

    2016-01-01

    The habenulae are bilateral nuclei located in the dorsal diencephalon that are conserved across vertebrates. Here we describe the main afferents to the habenulae in larval and adult zebrafish. We observe afferents from the subpallium, nucleus rostrolateralis, posterior tuberculum, posterior hypothalamic lobe, median raphe; we also see asymmetric afferents from olfactory bulb to the right habenula, and from the parapineal to the left habenula. In addition, we find afferents from a ventrolateral telencephalic nucleus that neurochemical and hodological data identify as the ventral entopeduncular nucleus (vENT), confirming and extending observations of Amo et al. (2014). Fate map and marker studies suggest that vENT originates from the diencephalic prethalamic eminence and extends into the lateral telencephalon from 48 to 120 hour post-fertilization (hpf). No afferents to the habenula were observed from the dorsal entopeduncular nucleus (dENT). Consequently, we confirm that the vENT (and not the dENT) should be considered as the entopeduncular nucleus “proper” in zebrafish. Furthermore, comparison with data in other vertebrates suggests that the vENT is a conserved basal ganglia nucleus, being homologous to the entopeduncular nucleus of mammals (internal segment of the globus pallidus of primates) by both embryonic origin and projections, as previously suggested by Amo et al. (2014). PMID:27199671

  4. nr0b1 (DAX1) mutation in zebrafish causes female-to-male sex reversal through abnormal gonadal proliferation and differentiation.

    Science.gov (United States)

    Chen, Sijie; Zhang, Hefei; Wang, Fenghua; Zhang, Wei; Peng, Gang

    2016-09-15

    Sex determinations are diverse in vertebrates. Although many sex-determining genes and pathways are conserved, the mechanistic roles of these genes and pathways in the genetic sex determination are not well understood. DAX1 (encoded by the NR0B1 gene) is a vertebrate specific orphan nuclear receptor that regulates gonadal development and sexual determination. In human, duplication of the NR0B1 gene leads to male-to-female sex reversal. In mice, Nr0b1 shows both pro-testis and anti-testis functions. We generated inheritable nr0b1 mutation in the zebrafish and found the nr0b1 mutation caused homozygous mutants to develop as fertile males due to female-to-male sex reversal. The nr0b1 mutation did not increase Caspase-3 labeling nor tp53 expression in the developing gonads. Introduction of a tp53 mutation into the nr0b1 mutant did not rescue the sex-reversal phenotype. Further examination revealed reduction in cell proliferation and abnormal somatic cell differentiation in the nr0b1 mutant gonads at the undifferentiated and bi-potential ovary stages. Together, our results suggest nr0b1 regulates somatic cell differentiation and cell proliferation to ensure normal sex development in the zebrafish. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Phenotype classification of zebrafish embryos by supervised learning.

    Directory of Open Access Journals (Sweden)

    Nathalie Jeanray

    Full Text Available Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.

  6. Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yao Xiao

    2016-09-01

    Full Text Available A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents.

  7. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  8. Zebrafish models in neuropsychopharmacology and CNS drug discovery.

    Science.gov (United States)

    Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J

    2017-07-01

    Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.

  9. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    International Nuclear Information System (INIS)

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok; Payumo, Alexander Y.; Chen, James K.; Kwon, Ho Jeong

    2013-01-01

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases

  10. Social learning of an associative foraging task in zebrafish

    Science.gov (United States)

    Zala, Sarah M.; Määttänen, Ilmari

    2013-05-01

    The zebrafish ( Danio rerio) is increasingly becoming an important model species for studies on the genetic and neural mechanisms controlling behaviour and cognition. Here, we utilized a conditioned place preference (CPP) paradigm to study social learning in zebrafish. We tested whether social interactions with conditioned demonstrators enhance the ability of focal naïve individuals to learn an associative foraging task. We found that the presence of conditioned demonstrators improved focal fish foraging behaviour through the process of social transmission, whereas the presence of inexperienced demonstrators interfered with the learning of the control focal fish. Our results indicate that zebrafish use social learning for finding food and that this CPP paradigm is an efficient assay to study social learning and memory in zebrafish.

  11. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanhong [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Bai, Chenglian; Du, Changchun; Liao, Junhua [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035 (China)

    2016-01-25

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl{sub 2}), benzo[a]pyrene (BaP), and

  12. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    International Nuclear Information System (INIS)

    Chen, Yuanhong; Huang, Changjiang; Bai, Chenglian; Du, Changchun; Liao, Junhua; Dong, Qiaoxiang

    2016-01-01

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl_2), benzo[a]pyrene (BaP), and

  13. Zebrafish models for the functional genomics of neurogenetic disorders.

    Science.gov (United States)

    Kabashi, Edor; Brustein, Edna; Champagne, Nathalie; Drapeau, Pierre

    2011-03-01

    In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Two-Photon-Based Photoactivation in Live Zebrafish Embryos

    OpenAIRE

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-01-01

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a...

  15. Study on radiation modifiers with zebrafish as a vertebrate model

    International Nuclear Information System (INIS)

    Lei Jixiao; Ni Jin; Cai Jianming; Shen Jianliang

    2010-01-01

    Zebrafish (Danio rerio) as a vertebrate model system has been used in a series of biomedical experiments by scientists. It offers distinctive benefits as a laboratory model system, especially for embryonic development, gene expression, drug screening and human disease model. In this paper, the typical radiation modifiers, such as Amifostine, DF-1, AG1478, Flavopiridol and DNA repair proteins involved in biomedical process by use of zebrafish have been reviewed. (authors)

  16. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo

    International Nuclear Information System (INIS)

    Wu, Qin; Yan, Wei; Liu, Chunsheng; Li, Li; Yu, Liqin; Zhao, Sujuan; Li, Guangyu

    2016-01-01

    Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. α1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons. - Highlights: • MCLR accumulation induces developmental neurotoxicity in zebrafish embryo. • The decrease of dopamine levels might be associated with the MCLR-induced developmental neurotoxicity in zebrafish larvae. • The alternation of cholinergic system might contribute to the change of neurobehavior in zebrafish larvae exposure with MCLR. - MCLR accumulation induces developmental neurotoxicity by affecting cholinergic system, dopaminergic signaling, and the development of neurons in zebrafish embryo.

  17. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    Science.gov (United States)

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ian G Woods

    2005-03-01

    Full Text Available Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.

  19. High magnetic field induced otolith fusion in the zebrafish larvae.

    Science.gov (United States)

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-04-11

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.

  20. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights.

    Science.gov (United States)

    Harrison, Nicholas R; Laroche, Fabrice J F; Gutierrez, Alejandro; Feng, Hui

    2016-01-01

    Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.

  1. Normal anatomy and histology of the adult zebrafish.

    Science.gov (United States)

    Menke, Aswin L; Spitsbergen, Jan M; Wolterbeek, Andre P M; Woutersen, Ruud A

    2011-08-01

    The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.

  2. Exploration of NSF-ATE Projects Approaches in the Integration of Technology and Engineering Education at the K-12 Levels

    Science.gov (United States)

    Strobel, Johannes; Mendoza Díaz, Noemi V.

    2012-01-01

    Access to post-secondary education, specifically in the technical, two-year institution area, is a topic of growing interest in the country. Funding agencies, such as NSF, via the Advanced Technological Education Program (ATE), are supporting initiatives and research aimed at increasing the number of technicians and engineers and improving…

  3. Cryptosporidium sebagai Indikator Biologi dan Indeks Nsf-Wqi untuk Mengevaluasi Kualitas Air (Studi Kasus: Hulu Sungai Citarum, Kabupaten Bandung

    Directory of Open Access Journals (Sweden)

    Tastaptyani Kurnia Nufutomo

    2017-11-01

    Full Text Available Kualitas air yang menurun di Hulu Sungai Citarum dapat disebabkan oleh banyak faktor. Faktor-faktor tersebut dapat diketahui dari parameter fisika, kimia dan biologi. Parameter biologi yang digunakan untuk mengevaluasi kualitas air adalah  mikroorganisme patogen yang menimbulkan penyakit di sistem pencernaan seperti diare akut, yaitu Coliform dan Cryptosporidium. Tujuan penelitian ini adalah untuk mengetahui status kualitas air di Hulu Sungai Citarum dengan indeks kualitas air NSF-WQI, mengetahui hubungan dan pengaruh parameter fisik dan kimia air terhadap parameter biologi, menentukan faktor utama dari parameter air yang paling berpengaruh dan mengetahui hubungan serta pengaruh faktor utama tersebut terhadap Cryptosporidium. Metode yang digunakan adalah  mengambil sampel di tiap stasiun dengan composite, mengidentifikasi dan analisis Coliform dengan MPN dan identifikasi Crytosporidium dengan Ziehl Neelsen staining, kemudian menganalisis parameter kimia dan fisika dengan indeks NSF-WQI, lalu data tersebut diolah menggunakan metode statistik PCA. Hasil pengukuran kualitas air berdasarkan NSF-WQI adalah kualitas air di Hulu Sungai Citarum termasuk kategori buruk dan medium. Keberadaan Cryptosporidium di Hulu Sungai Citarum disebabkan oleh 2 (dua faktor utama, yaitu faktor pertama terdiri dari DO, turbiditas, NO2, NH4 dan total Colifom, sedangkan faktor kedua terdiri dari TSS, COD dan PO4. Kedua faktor tersebut tidak signifikan dengan keberadaan Cryptosporidium di Hulu Sungai Citarum. Kata kunci: Cryptosporidium, Hulu Sungai Citarum, Indeks NSF-WQI, Kualitas Air

  4. Year-Long Peer Mentoring Activity to Enhance the Retention of Freshmen STEM Students in a NSF Scholarship Program

    Science.gov (United States)

    Cutright, Teresa J.; Evans, Edward

    2016-01-01

    The last year of a National Science Foundation (NSF) funded scholarship program was used to provide pseudo-formal peer mentoring activities to engineering, mathematics, and science undergraduates. A one-credit class was used to afford time for peer mentors and mentees to interact. During the fall semester, seniors augmented each week's topics with…

  5. Evaluation of NSF's Program of Grants and Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE)

    Science.gov (United States)

    National Academies Press, 2009

    2009-01-01

    In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…

  6. Quo natas, Danio?—Recent Progress in Modeling Cancer in Zebrafish

    Directory of Open Access Journals (Sweden)

    Stefanie Kirchberger

    2017-08-01

    Full Text Available Over the last decade, zebrafish has proven to be a powerful model in cancer research. Zebrafish form tumors that histologically and genetically resemble human cancers. The live imaging and cost-effective compound screening possible with zebrafish especially complement classic mouse cancer models. Here, we report recent progress in the field, including genetically engineered zebrafish cancer models, xenotransplantation of human cancer cells into zebrafish, promising approaches toward live investigation of the tumor microenvironment, and identification of therapeutic strategies by performing compound screens on zebrafish cancer models. Given the recent advances in genome editing, personalized zebrafish cancer models are now a realistic possibility. In addition, ongoing automation will soon allow high-throughput compound screening using zebrafish cancer models to be part of preclinical precision medicine approaches.

  7. The U.S. NSF Ocean Observatories Initiative: A Modern Virtual Observatory

    Science.gov (United States)

    Orcutt, John; Vernon, Frank; Peach, Cheryl; Arrott, Matthew; Graybeal, John; Farcas, Claudiu; Farcas, Emilia; Krueger, Ingolf; Meisinger, Michael; Chave, Alan

    2010-05-01

    The NSF Ocean Observatories Initiative (OOI) began a five-year construction period in October 2009. The Consortium on Ocean Leadership (COL) manages the overall program with Implementing Organizations for Coastal/Global Scale Nodes (CGSN) at Woods Hole, Oregon State and Scripps; the Regional Cabled Network (RCN) at U of Washington and Cyberinfrastructure (CI) at UCSD and more than ten subcontractors. The NSF has made a commitment to support the observatory operations and maintenance for a 30-year period; a minimal period of time to measure physical, chemical and biological data over a length of time possibly sufficient to measure secular changes associated with climate and geodesy. The CI component is a substantial departure from previous approaches to data distribution and management. These innovations include the availability of data in near-real-time with latencies of seconds, open access to all data, analysis of the data stream for detection and modeling, use of the derived knowledge to modify the network with minimal or no human interaction and maintenance of data provenance through time as new versions of the data are created through QA/QC processes. The network architecture is designed to be scalable so that addition of new sensors is straightforward and inexpensive with costs increasing linearly at worst. Rather than building new computer infrastructure (disk farms and computer clusters), we are presently exploiting Amazon's Extensible Computing Cloud (EC2) and Simple Storage System (S3) to reduce long-term commitments to hardware and maintenance in order to minimize operations and maintenance costs. The OOI CI is actively partnering with other organizations (e.g. NOAA's IOOS) to integrate existing data systems using many of the same technologies to improve broad access to existing and planned observing systems, including those that provide critical climate data. Because seasonal and annual variability of most measureable parameters is so large, the

  8. Professional Development for Graduate Students through Internships at Federal Labs: an NSF/USGS Collaboration

    Science.gov (United States)

    Snow, E.; Jones, E.; Patino, L. C.; Wasserman, E.; Isern, A. R.; Davies, T.

    2016-12-01

    In 2013 the White House initiated an effort to coordinate STEM education initiatives across federal agencies. This idea spawned several important collaborations, one of which is a set of National Science Foundation programs designed to place graduate students in federal labs for 2-12 months of their Ph.D. training. The Graduate Research Internship Program (GRIP) and the Graduate Student Preparedness program (GSP) each have the goal of exposing PhD students to the federal work environment while expanding their research tools and mentoring networks. Students apply for supplementary support to their Graduate Research Fellowship (GRIP) or their advisor's NSF award (GSP). These programs are available at several federal agencies; the USGS is one partner. At the U.S. Geological Survey, scientists propose projects, which students can find online by searching USGS GRIP, or students and USGS scientists can work together to develop a research project. At NSF, projects are evaluated on both the scientific merit and the professional development opportunities they afford the student. The career development extends beyond the science (new techniques, data, mentors) into the professional activity of writing the proposal, managing the budget, and working in a new and different environment. The USGS currently has 18 GRIP scholars, including Madeline Foster-Martinez, a UC Berkeley student who spent her summer as a GRIP fellow at the USGS Pacific Coastal and Marine Science Center working with USGS scientist Jessica Lacy. Madeline's Ph.D. work is on salt marshes and she has studied geomorphology, accretion, and gas transport using a variety of research methods. Her GRIP fellowship allowed her to apply new data-gathering tools to the question of sediment delivery to the marsh, and build and test a model for sediment delivery along marsh edges. In addition, she gained professional skills by collaborating with a new team of scientists, running a large-scale field deployment, and

  9. Calibration and Field Deployment of the NSF G-V VCSEL Hygrometer

    Science.gov (United States)

    DiGangi, J. P.; O'Brien, A.; Diao, M.; Hamm, C.; Zhang, Q.; Beaton, S. P.; Zondlo, M. A.

    2012-12-01

    Cloud formation and dynamics have a significant influence on the Earth's radiative forcing budget, which illustrates the importance of clouds with respect to global climate. Therefore, an accurate understanding of the microscale processes dictating cloud formation is crucial for accurate computer modeling of global climate change. A critical tool for understanding these processes from an airborne platform is an instrument capable of measuring water vapor with both high accuracy and time, thus spatial, resolution. Our work focuses on an open-path, compact, vertical-cavity surface-emitting laser (VCSEL) absorption-based hygrometer, capable of 25 Hz temporal resolution, deployed on the NSF/NCAR Gulfstream-V aircraft platform. The open path nature of our instrument also helps to minimize sampling artifacts. We will discuss our efforts toward achieving within 5% accuracy over 5 orders of magnitude of water vapor concentrations. This involves an intercomparison of five independent calibration methods: ice surface saturators using an oil temperature bath, solvent slush baths (e.g. chloroform/LN2, water/ice), a research-grade frost point hygrometer, static pressure experiments, and Pt catalyzed hydrogen gas. This wide variety of available tools allows us to accurately constrain the calibrant water vapor concentrations both before and after the VCSEL hygrometer sampling chamber. For example, the mixing ratio as measured by research-grade frost point hygrometer after the VCSEL hygrometer agreed within 2% of the mixing ration expected from the water/ice bubbler source before the VCSEL over the temperature range -50°C to 20°C. Finally, due to the compact nature of our instrument, we are able to perform these calibrations simultaneously at the same temperatures (-80°C to 30°C) and pressures (150 mbar to 760 mbar) as sampled ambient air during a flight. This higher accuracy can significantly influence the science utilizing this data, which we will illustrate using

  10. An Analysis of NSF Geosciences Research Experience for Undergraduate Site Programs from 2009 through 2011

    Science.gov (United States)

    Rom, E. L.; Patino, L. C.; Weiler, S.; Sanchez, S. C.; Colon, Y.; Antell, L.

    2011-12-01

    The Research Experience for Undergraduate (REU) Program at the U.S. National Science Foundation (NSF) provides U.S. undergraduate students from any college or university the opportunity to conduct research at a different institution and gain a better understanding of research career pathways. The Geosciences REU Sites foster research opportunities in areas closely aligned with geoscience programs, particularly those related to earth, atmospheric and ocean sciences. The aim of this paper is to provide an overview of the Geosciences REU Site programs run in 2009 through 2011. A survey requesting information on recruitment methods, student demographics, enrichment activities, and fields of research was sent to the Principal Investigators of each of the active REU Sites. Over 70% of the surveys were returned with the requested information from about 50 to 60 sites each year. The internet is the most widely used mechanism to recruit participants, with personal communication as the second most important recruiting tool. The admissions rate for REU Sites in Geosciences varies from less than 10% to 50%, with the majority of participants being rising seniors and juniors. Many of the participants come from non-PhD granting institutions. Among the participants, gender distribution varies by discipline, with ocean sciences having a large majority of women and earth sciences having a majority of men. Regarding ethnic diversity, the REU Sites reflect the difficulty of attracting diverse students into Geosciences as a discipline; a large majority of participants are Caucasian and Asian students. Furthermore, participants from minority-serving institutions and community colleges constitute a small percentage of those taking part in these research experiences. The enrichment activities are very similar across the REU Sites, and mimic activities common to the scientific community, including intellectual exchange of ideas (lab meetings, seminars, and professional meetings

  11. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Developmental toxicity of cartap on zebrafish embryos.

    Science.gov (United States)

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis.

  13. An algorithm to track laboratory zebrafish shoals.

    Science.gov (United States)

    Feijó, Gregory de Oliveira; Sangalli, Vicenzo Abichequer; da Silva, Isaac Newton Lima; Pinho, Márcio Sarroglia

    2018-05-01

    In this paper, a semi-automatic multi-object tracking method to track a group of unmarked zebrafish is proposed. This method can handle partial occlusion cases, maintaining the correct identity of each individual. For every object, we extracted a set of geometric features to be used in the two main stages of the algorithm. The first stage selected the best candidate, based both on the blobs identified in the image and the estimate generated by a Kalman Filter instance. In the second stage, if the same candidate-blob is selected by two or more instances, a blob-partitioning algorithm takes place in order to split this blob and reestablish the instances' identities. If the algorithm cannot determine the identity of a blob, a manual intervention is required. This procedure was compared against a manual labeled ground truth on four video sequences with different numbers of fish and spatial resolution. The performance of the proposed method is then compared against two well-known zebrafish tracking methods found in the literature: one that treats occlusion scenarios and one that only track fish that are not in occlusion. Based on the data set used, the proposed method outperforms the first method in correctly separating fish in occlusion, increasing its efficiency by at least 8.15% of the cases. As for the second, the proposed method's overall performance outperformed the second in some of the tested videos, especially those with lower image quality, because the second method requires high-spatial resolution images, which is not a requirement for the proposed method. Yet, the proposed method was able to separate fish involved in occlusion and correctly assign its identity in up to 87.85% of the cases, without accounting for user intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. International perspective on nanotechnology papers, patents, and NSF awards (2000-2016)

    Science.gov (United States)

    Zhu, Hongyi; Jiang, Shan; Chen, Hsinchun; Roco, Mihail C.

    2017-11-01

    This paper presents the development of nanotechnology between 2000 and 2016 as reflected in the Web of Science papers, United States Patent and Trademark Office (USPTO), World International Property Organization (WIPO) patents, and National Science Foundation (NSF) awards, with a special reference to the United States (US), European Union (EU27), P.R. China, Japan, and South Korea. The field of nanotechnology is branching out into novel scientific and technology platforms, and it is increasingly difficult to separate foundational nanoscale components from divergent application areas. The average global growth rate has been sustained at about 15% for both papers and patents in the selected interval. The growth rates among regions are non-uniform. P.R. China and South Korea have increased faster in both the numbers and quality of their scientific publications, and currently P.R. China has the largest volume of nanotechnology publications and South Korea the most publications per capita in the field of nanotechnology. The US, EU27, and Japan are maintaining leadership in the upstream, better cited, conceptual components of nanotechnology research and development.

  15. Cybersecurity Implications for Industry, Academia, and Parents: A Qualitative Case Study in NSF STEM Education

    Science.gov (United States)

    Stevenson, Gregory V.

    Rationale: Former President Barack Obama's 3.9 trillion for the 2015 fiscal year budget request included a 2.9 billion investment in Science, Technology, Engineering and Math (STEM) education. Research then showed that the national spending for cybersecurity has exceeded $10.7 billion in the 2015 fiscal year. Nonetheless, the number of cyberattacks has risen year after year since 2012, potentially due to the lack of education and training in cybersecurity. Methodology: A qualitative case study research was conducted to explore and investigate the lived professional experiences of experts from San Antonio Texas whose efforts were aligned to increase the number of qualified cybersecurity professionals. To qualify the organizational needs for cybersecurity professionals, the study gathered expert opinions by surveying human resource managers pertaining to the needs of cybersecurity education. To refine and further validate data collection efforts, the study involved researcher observations and a survey of a narrow cohort to perform analytic induction to eliminate bias and exhaust the exploratory research (Maxwell, 2005). Result: The findings of the case study will: 1) help augment the importance of cybersecurity education in pre-kindergarten through 12th grade, 2) be utilized as a single guide for school leaders in the process of developing cybersecurity education strategies, and 3) in the longer term, be used by the National Sciences Foundation (NSF) as an effective model to institute cybersecurity education practices nationwide and thereby reduce the existing trouble of the nation by criminal cyber actors.

  16. Cofilin-1 inactivation leads to proteinuria--studies in zebrafish, mice and humans.

    Directory of Open Access Journals (Sweden)

    Sharon Ashworth

    Full Text Available BACKGROUND: Podocytes are highly specialized epithelial cells on the visceral side of the glomerulus. Their interdigitating primary and secondary foot processes contain an actin based contractile apparatus that can adjust to changes in the glomerular perfusion pressure. Thus, the dynamic regulation of actin bundles in the foot processes is critical for maintenance of a well functioning glomerular filtration barrier. Since the actin binding protein, cofilin-1, plays a significant role in the regulation of actin dynamics, we examined its role in podocytes to determine the impact of cofilin-1 dysfunction on glomerular filtration. METHODS AND FINDINGS: We evaluated zebrafish pronephros function by dextran clearance and structure by TEM in cofilin-1 morphant and mutant zebrafish and we found that cofilin-1 deficiency led to foot process effacement and proteinuria. In vitro studies in murine and human podocytes revealed that PMA stimulation induced activation of cofilin-1, whereas treatment with TGF-β resulted in cofilin-1 inactivation. Silencing of cofilin-1 led to an accumulation of F-actin fibers and significantly decreased podocyte migration ability. When we analyzed normal and diseased murine and human glomerular tissues to determine cofilin-1 localization and activity in podocytes, we found that in normal kidney tissues unphosphorylated, active cofilin-1 was distributed throughout the cell. However, in glomerular diseases that affect podocytes, cofilin-1 was inactivated by phosphorylation and observed in the nucleus. CONCLUSIONS: Based on these in vitro and in vivo studies we concluded cofilin-1 is an essential regulator for actin filament recycling that is required for the dynamic nature of podocyte foot processes. Therefore, we describe a novel pathomechanism of proteinuria development.

  17. Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish.

    Science.gov (United States)

    Dupont, Christian; Viljoen, Albertus; Thomas, Sangeeta; Roquet-Banères, Françoise; Herrmann, Jean-Louis; Pethe, Kevin; Kremer, Laurent

    2017-11-01

    Pulmonary infections caused by Mycobacterium abscessus are emerging as a global threat, especially in cystic fibrosis patients. Further intensifying the concern of M. abscessus infection is the recent evidence of human-to-human transmission of the infection. M. abscessus is a naturally multidrug-resistant fast-growing pathogen for which pharmacological options are limited. Repurposing antitubercular drugs represents an attractive option for the development of chemotherapeutic alternatives against M. abscessus infections. Bedaquiline (BDQ), an ATP synthase inhibitor, has recently been approved for the treatment of multidrug-resistant tuberculosis. Herein, we show that BDQ has a very low MIC against a vast panel of clinical isolates. Despite being bacteriostatic in vitro , BDQ was highly efficacious in a zebrafish model of M. abscessus infection. Remarkably, a very short period of treatment was sufficient to protect the infected larvae from M. abscessus -induced killing. This was corroborated with reduced numbers of abscesses and cords, considered to be major pathophysiological signs in infected zebrafish. Mode-of-action studies revealed that BDQ triggered a rapid depletion of ATP in M. abscessus in vitro , consistent with the drug targeting the F o F 1 ATP synthase. Importantly, despite a failure to select in vitro for spontaneous mutants that are highly resistant to BDQ, the transfer of single nucleotide polymorphisms leading to D29V or A64P substitutions in atpE conferred high resistance, thus resolving the target of BDQ in M. abscessus Overall, this study indicates that BDQ is active against M. abscessus in vitro and in vivo and should be considered for clinical use against the difficult-to-manage M. abscessus pulmonary infections. Copyright © 2017 American Society for Microbiology.

  18. Depdc5 knockdown causes mTOR-dependent motor hyperactivity in zebrafish.

    Science.gov (United States)

    de Calbiac, Hortense; Dabacan, Adriana; Marsan, Elise; Tostivint, Hervé; Devienne, Gabrielle; Ishida, Saeko; Leguern, Eric; Baulac, Stéphanie; Muresan, Raul C; Kabashi, Edor; Ciura, Sorana

    2018-05-01

    DEPDC5 was identified as a major genetic cause of focal epilepsy with deleterious mutations found in a wide range of inherited forms of focal epilepsy, associated with malformation of cortical development in certain cases. Identification of frameshift, truncation, and deletion mutations implicates haploinsufficiency of DEPDC5 in the etiology of focal epilepsy. DEPDC5 is a component of the GATOR1 complex, acting as a negative regulator of mTOR signaling. Zebrafish represents a vertebrate model suitable for genetic analysis and drug screening in epilepsy-related disorders. In this study, we defined the expression of depdc5 during development and established an epilepsy model with reduced Depdc5 expression. Here we report a zebrafish model of Depdc5 loss-of-function that displays a measurable behavioral phenotype, including hyperkinesia, circular swimming, and increased neuronal activity. These phenotypic features persisted throughout embryonic development and were significantly reduced upon treatment with the mTORC1 inhibitor, rapamycin, as well as overexpression of human WT DEPDC5 transcript. No phenotypic rescue was obtained upon expression of epilepsy-associated DEPDC5 mutations (p.Arg487* and p.Arg485Gln), indicating that these mutations cause a loss of function of the protein. This study demonstrates that Depdc5 knockdown leads to early-onset phenotypic features related to motor and neuronal hyperactivity. Restoration of phenotypic features by WT but not epilepsy-associated Depdc5 mutants, as well as by mTORC1 inhibition confirm the role of Depdc5 in the mTORC1-dependent molecular cascades, defining this pathway as a potential therapeutic target for DEPDC5 -inherited forms of focal epilepsy.

  19. cables1 Is Required for Embryonic Neural Development: Molecular, Cellular, and Behavioral Evidence From the Zebrafish

    Science.gov (United States)

    GROENEWEG, JOLIJN W.; WHITE, YVONNE A.R.; KOKEL, DAVID; PETERSON, RANDALL T.; ZUKERBERG, LAWRENCE R.; BERIN, INNA; RUEDA, BO R.; WOOD, ANTONY W.

    2014-01-01

    SUMMARY In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway. PMID:21268180

  20. Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions

    International Nuclear Information System (INIS)

    Teraoka, Hiroki; Urakawa, Satsuki; Nanba, Satomi; Nagai, Yuhki; Wu Dong; Imagawa, Tomohiro; Tanguay, Robert L.; Svoboda, Kurt; Handley-Goldstone, Heather M.; Stegeman, John J.; Hiraga, Takeo

    2006-01-01

    Dithiocarbamates form a large group of chemicals that have numerous uses in agriculture and medicine. It has been reported that dithiocarbamates, including thiuram (tetramethylthiuram disulfide), cause wavy distortions of the notochord in zebrafish and other fish embryos. In the present study, we investigated the mechanism underlying the toxicity of thiuram in zebrafish embryos. When embryos were exposed to thiuram (2-1000 nM: 0.48-240 μg/L) from 3 h post fertilization (hpf) (30% epiboly) until 24 hpf (Prim-5), all embryos develop wavy notochords, disorganized somites, and have shortened yolk sac extensions. The thiuram response was specific and did not cause growth retardation or mortality at 24 hpf. The thiuram-dependent responses showed the same concentration dependence with a waterborne EC 5 values of approximately 7 nM. Morphometric measurements revealed that thiuram does not affect the rate of notochord lengthening. However, the rate of overall body lengthening was significantly reduced in thiuram-exposed animals. Other dithiocarbamates, such as ziram, caused similar malformations to thiuram. While expression of genes involved in somitogenesis was not affected, the levels of notochord-specific transcripts were altered after the onset of malformations. Distortion of the notochord started precisely at 18 hpf, which is concomitant with onset of spontaneous rhythmic trunk contractions. Abolishment of spontaneous contractions using tricaine, α-bungarotoxin, and a paralytic mutant sofa potato, resulted in normal notochord morphology in the presence of thiuram. These results indicate that muscle activity is necessary to reveal the underlying functional deficit and suggest that the developmental target of dithiocarbamates impairs trunk plasticity through an unknown mechanism

  1. The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication.

    Science.gov (United States)

    Yabe, Taijiro; Ge, Xiaoyan; Pelegri, Francisco

    2007-12-01

    A female-sterile zebrafish maternal-effect mutation in cellular atoll (cea) results in defects in the initiation of cell division starting at the second cell division cycle. This phenomenon is caused by defects in centrosome duplication, which in turn affect the formation of a bipolar spindle. We show that cea encodes the centriolar coiled-coil protein Sas-6, and that zebrafish Cea/Sas-6 protein localizes to centrosomes. cea also has a genetic paternal contribution, which when mutated results in an arrested first cell division followed by normal cleavage. Our data supports the idea that, in zebrafish, paternally inherited centrosomes are required for the first cell division while maternally derived factors are required for centrosomal duplication and cell divisions in subsequent cell cycles. DNA synthesis ensues in the absence of centrosome duplication, and the one-cycle delay in the first cell division caused by cea mutant sperm leads to whole genome duplication. We discuss the potential implications of these findings with regards to the origin of polyploidization in animal species. In addition, the uncoupling of developmental time and cell division count caused by the cea mutation suggests the presence of a time window, normally corresponding to the first two cell cycles, which is permissive for germ plasm recruitment.

  2. The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish.

    Science.gov (United States)

    Myhre, J Layne; Hills, Jordan A; Prill, Kendal; Wohlgemuth, Serene L; Pilgrim, David B

    2014-03-01

    The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the most widely accepted hypotheses for this process include the "molecular ruler" model, in which the massive protein titin defines the length of the sarcomere and provides a scaffold along which the myosin thick filament is assembled, and the "premyofibril" model, which proposes that thick filament formation does not require titin, but that a "premyofibril" consisting of non-muscle myosin, α-actinin and cytoskeletal actin is used as a template. Each model posits a different order of necessity of the various components, but these have been difficult to test in vivo. Zebrafish motility mutants with developmental defects in sarcomere patterning are useful for the elucidation of such mechanisms, and here we report the analysis of the herzschlag mutant, which shows deficits in both cardiac and skeletal muscle. The herzschlag mutant produces a truncated titin protein, lacking the C-terminal rod domain that is proposed to act as a thick filament scaffold, yet muscle patterning is still initiated, with grossly normal thick and thin filament assembly. Only after embryonic muscle contraction begins is breakdown of sarcomeric myosin patterning observed, consistent with the previously noted role of titin in maintaining the contractile integrity of mature sarcomeres. This conflicts with the "molecular ruler" model of early sarcomere patterning and supports a titin-independent model of thick filament organization during sarcomerogenesis. These findings are also consistent with the symptoms of human titin myopathies that exhibit a late onset, such as tibial muscular dystrophy. Copyright © 2013

  3. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    Directory of Open Access Journals (Sweden)

    Zizhen Yao

    2013-04-01

    The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.

  4. Multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy in a zebrafish model of retinal vascular occlusion and remodeling

    Science.gov (United States)

    Li, Xiaoyue; Spitz, Kathleen; Bozic, Ivan; Tao, Yuankai K.

    2018-02-01

    Neovascularization in diabetic retinopathy (DR) and age-related macular degeneration (AMD) result in severe vision-loss and are two of the leading causes of blindness. The structural, metabolic, and vascular changes underlying retinal neovascularization are unknown and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a robust ophthalmological model because its retina has comparable structure to the human retina and its fecundity and life-cycle enable development of mutant phenotypes of human pathologies. Here, we perform multimodal imaging with OCT and fluorescence confocal scanning laser ophthalmoscopy (cSLO) to identify changes in retinal structure and function in a zebrafish model of vascular leakage. Transgenic zebrafish with EGFP tagged plasma protein were imaged longitudinally at six time points over two weeks to visualize vascular perfusion changes from diethylaminobenzaldehyde (DEAB) treatment. Complementary contrast from OCT-A perfusion maps and cSLO imaging of plasma protein EGFP shows vascular occlusions posttreatment. cSLO images confirm presence of vessels despite loss of OCT-A signal. Plasma protein EGFP contrast also shows significant changes in vessel structure as compared to baseline images. OCT structural volumes show empty vessel cross-sections confirming non-perfusion. In addition, we present algorithms for automated biometric identification of OCT datasets using OCT-A vascular patterns in the presence of significant vascular perfusion changes. These results establish a framework for large-scale in vivo assays to identify novel anti-angiogenic compounds and understand the mechanisms ofneovascularization associated with retinal ocular pathologies.

  5. Cyp1a reporter zebrafish reveals target tissues for dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun-Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Park, Hye-Jeong [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Jin Hee [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Kim, Suhyun [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Williams, Darren R. [New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Myeong-Kyu [Department of Neurology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Jung, Young Do [Department of Biochemistry, Chonnam National University Medical School, Gwangju (Korea, Republic of); Teraoka, Hiroki [School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu (Japan); Park, Hae-Chul [Graduate School of Medicine, Korea University, Ansan (Korea, Republic of); Choy, Hyon E., E-mail: hyonchoy@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Shin, Boo Ahn, E-mail: bashin@chonnam.ac.kr [Department of Microbiology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Choi, Seok-Yong, E-mail: zebrafish@chonnam.ac.kr [Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju (Korea, Republic of); School of Biological Sciences and Technology, Chonnam National University, Gwangju (Korea, Republic of)

    2013-06-15

    Highlights: •2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic anthropogenic substance ever identified. •Transgenic cyp1a reporter zebrafish reveals target tissues for TCDD. •The retinal bipolar cells, otic vesicle, lateral line, pancreas, cloaca and pectoral fin bud are novel targets in zebrafish for TCDD. •Our findings will further understanding of human health risks by TCDD. -- Abstract: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10 pM for 72 h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.

  6. Evaluation of color preference in zebrafish for learning and memory.

    Science.gov (United States)

    Avdesh, Avdesh; Martin-Iverson, Mathew T; Mondal, Alinda; Chen, Mengqi; Askraba, Sreten; Morgan, Newman; Lardelli, Michael; Groth, David M; Verdile, Giuseppe; Martins, Ralph N

    2012-01-01

    There is growing interest in using zebrafish (Danio rerio) as a model of neurodegenerative disorders such as Alzheimer's disease. A zebrafish model of tauopathies has recently been developed and characterized in terms of presence of the pathological hallmarks (i.e., neurofibrillary tangles and cell death). However, it is also necessary to validate these models for function by assessing learning and memory. The majority of tools to assess memory and learning in animal models involve visual stimuli, including color preference. The color preference of zebrafish has received little attention. To validate zebrafish as a model for color-associated-learning and memory, it is necessary to evaluate its natural preferences or any pre-existing biases towards specific colors. In the present study, we have used four different colors (red, yellow, green, and blue) to test natural color preferences of the zebrafish using two procedures: Place preference and T-maze. Results from both experiments indicate a strong aversion toward blue color relative to all other colors (red, yellow, and green) when tested in combinations. No preferences or biases were found among reds, yellows, and greens in the place preference procedure. However, red and green were equally preferred and both were preferred over yellow by zebrafish in the T-maze procedure. The results from the present study show a strong aversion towards blue color compared to red, green, and yellow, with yellow being less preferred relative to red and green. The findings from this study may underpin any further designing of color-based learning and memory paradigms or experiments involving aversion, anxiety, or fear in the zebrafish.

  7. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo.

    Directory of Open Access Journals (Sweden)

    Daniel Brönnimann

    Full Text Available Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo.Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations.Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001. Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01 and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03.In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.

  8. Mutant genes in pea breeding

    International Nuclear Information System (INIS)

    Swiecicki, W.K.

    1990-01-01

    Full text: Mutations of genes Dpo (dehiscing pods) and A (anthocyanin synthesis) played a role in pea domestication. A number of other genes were important in cultivar development for 3 types of usage (dry seeds, green vegetable types, fodder), e.g. fn, fna, le, p, v, fas and af. New genes (induced and spontaneous), are important for present ideotypes and are registered by the Pisum Genetics Association (PGA). Comparison of a pea variety ideotype with the variation available in gene banks shows that breeders need 'new' features. In mutation induction experiments, genotype, mutagen and method of treatment (e.g. combined or fractionated doses) are varied for broadening the mutation spectrum and selecting more genes of agronomic value. New genes are genetically analysed. In Poland, some mutant varieties with the gene afila were registered, controlling lodging by a shorter stem and a higher number of internodes. Really non-lodging pea varieties could strongly increase seed yield. But the probability of detecting a major gene for lodging resistance is low. Therefore, mutant genes with smaller influence on plant architecture are sought, to combine their effect by crossing. Promising seem to be the genes rogue, reductus and arthritic as well as a number of mutant genes not yet genetically identified. The gene det for terminal inflorescence - similarly to Vicia faba - changes plant development. Utilisation of assimilates and ripening should be better. Improvement of harvest index should give higher seed yield. A number of genes controlling disease resistance are well known (eg. Fw, Fnw, En, mo and sbm). Important in mass screening of resistance are closely linked gene markers. Pea gene banks collect respective lines, but mutants induced in highly productive cultivars would be better. Inducing gene markers sometimes seems to be easier than transfer by crossing. Mutation induction in pea breeding is probably more important because a high number of monogenic features are

  9. Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish

    Directory of Open Access Journals (Sweden)

    Wohland Thorsten

    2008-09-01

    Full Text Available Abstract Background Early events in vertebrate liver development have been the major focus in previous studies, however, late events of liver organogenesis remain poorly understood. Liver vasculogenesis in vertebrates occurs through the interaction of endoderm-derived liver epithelium and mesoderm-derived endothelial cells (ECs. In zebrafish, although it has been found that ECs are not required for liver budding, how and when the spatio-temporal pattern of liver growth is coordinated with ECs remains to be elucidated. Results To study the process of liver development and vasculogenesis in vivo, a two-color transgenic zebrafish line Tg(lfabf:dsRed; elaA:EGFP was generated and named LiPan for liver-specific expression of DsRed RFP and exocrine pancreas-specific expression of GFP. Using the LiPan line, we first followed the dynamic development of liver from live embryos to adult and showed the formation of three distinct yet connected liver lobes during development. The LiPan line was then crossed with Tg(fli1:EGFPy1 and vascular development in the liver was traced in vivo. Liver vasculogenesis started at 55–58 hpf when ECs first surrounded hepatocytes from the liver bud surface and then invaded the liver to form sinusoids and later the vascular network. Using a novel non-invasive and label-free fluorescence correction spectroscopy, we detected blood circulation in the liver starting at ~72 hpf. To analyze the roles of ECs and blood circulation in liver development, both cloche mutants (lacking ECs and Tnnt2 morphants (no blood circulation were employed. We found that until 70 hpf liver growth and morphogenesis depended on ECs and nascent sinusoids. After 72 hpf, a functional sinusoidal network was essential for continued liver growth. An absence of blood circulation in Tnnt2 morphants caused defects in liver vasculature and small liver. Conclusion There are two phases of liver development in zebrafish, budding and growth. In the growth phase

  10. Pilot study of large-scale production of mutant pigs by ENU mutagenesis.

    Science.gov (United States)

    Hai, Tang; Cao, Chunwei; Shang, Haitao; Guo, Weiwei; Mu, Yanshuang; Yang, Shulin; Zhang, Ying; Zheng, Qiantao; Zhang, Tao; Wang, Xianlong; Liu, Yu; Kong, Qingran; Li, Kui; Wang, Dayu; Qi, Meng; Hong, Qianlong; Zhang, Rui; Wang, Xiupeng; Jia, Qitao; Wang, Xiao; Qin, Guosong; Li, Yongshun; Luo, Ailing; Jin, Weiwu; Yao, Jing; Huang, Jiaojiao; Zhang, Hongyong; Li, Menghua; Xie, Xiangmo; Zheng, Xuejuan; Guo, Kenan; Wang, Qinghua; Zhang, Shibin; Li, Liang; Xie, Fei; Zhang, Yu; Weng, Xiaogang; Yin, Zhi; Hu, Kui; Cong, Yimei; Zheng, Peng; Zou, Hailong; Xin, Leilei; Xia, Jihan; Ruan, Jinxue; Li, Hegang; Zhao, Weiming; Yuan, Jing; Liu, Zizhan; Gu, Weiwang; Li, Ming; Wang, Yong; Wang, Hongmei; Yang, Shiming; Liu, Zhonghua; Wei, Hong; Zhao, Jianguo; Zhou, Qi; Meng, Anming

    2017-06-22

    N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research.

  11. An extra early mutant of pigeonpea

    International Nuclear Information System (INIS)

    Ravikesavan, R.; Kalaimagal, T.; Rathnaswamy, R.

    2001-01-01

    The redgram (Cajanus cajan (L.) Huth) variety 'Prabhat DT' was gamma irradiated with 100, 200, 300 and 400 Gy doses. Several mutants have been identified viz., extra early mutants, monostem mutants, obcordifoliate mutants and bi-stigmatic mutants. The extra early mutant was obtained when treated with 100 Gy dose. The mutant was selfed and forwarded from M 2 to M 4 generation. In the M 4 generation the mutant line was raised along with the parental variety. Normal cultural practices were followed and the biometrical observations were recorded. It was observed that for the characters viz., total number of branches per plant, number of pods per plants, seeds per pod, 100 seed weight and seed yield per plant there was no difference between the mutant and parent variety. Whereas, regarding the days to flowering and maturity the mutants were earlier than the parents. The observation was recorded from two hundred plants each. The mutant gives the same yield in 90 days as that of the parent variety in 107 days, which make it an economic mutant

  12. Problem-Solving Test: Tryptophan Operon Mutants

    Science.gov (United States)

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  13. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish

    Science.gov (United States)

    Irion, Uwe; Frohnhöfer, Hans Georg; Krauss, Jana; Çolak Champollion, Tuǧba; Maischein, Hans-Martin; Geiger-Rudolph, Silke; Weiler, Christian; Nüsslein-Volhard, Christiane

    2014-01-01

    Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin 41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen, we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish; however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores. DOI: http://dx.doi.org/10.7554/eLife.05125.001 PMID:25535837

  14. Harmonin (Ush1c is required in zebrafish Müller glial cells for photoreceptor synaptic development and function

    Directory of Open Access Journals (Sweden)

    Jennifer B. Phillips

    2011-11-01

    Usher syndrome is the most prevalent cause of hereditary deaf-blindness, characterized by congenital sensorineural hearing impairment and progressive photoreceptor degeneration beginning in childhood or adolescence. Diagnosis and management of this disease are complex, and the molecular changes underlying sensory cell impairment remain poorly understood. Here we characterize two zebrafish models for a severe form of Usher syndrome, Usher syndrome type 1C (USH1C: one model is a mutant with a newly identified ush1c nonsense mutation, and the other is a morpholino knockdown of ush1c. Both have defects in hearing, balance and visual function from the first week of life. Histological analyses reveal specific defects in sensory cell structure that are consistent with these behavioral phenotypes and could implicate Müller glia in the retinal pathology of Usher syndrome. This study shows that visual defects associated with loss of ush1c function in zebrafish can be detected from the onset of vision, and thus could be applicable to early diagnosis for USH1C patients.

  15. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Capelle, Martinus [Crucell, P.O. Box 2048, NL-2301 Leiden (Netherlands); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich, Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  16. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    International Nuclear Information System (INIS)

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-01-01

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes

  17. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Science.gov (United States)

    Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D

    2013-01-01

    The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  18. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  19. TOXICITY EVALUATION OF NEW ENGINEERED NANOMATERIALS IN ZEBRAFISH

    Directory of Open Access Journals (Sweden)

    Maria Violetta Brundo

    2016-04-01

    Full Text Available The effect of the nanoparticles on the marine organisms, depends on their size, chemical composition, surface structure, solubility and shape.In order to take advantage from their activity, preserving the surrounding environment from a possible pollution, we are trying to trap the nanoparticles into new nanomaterials. The nanomaterials tested were synthesized proposing a ground-breaking approach by an upside-down vision of the Au/TiO2nano-system to avoid the release of nanoparticles. The system was synthesized by wrapping Au nanoparticles with a thin layer of TiO2. The non-toxicity of the nano-system was established by testing the effect of the material on zebrafish larvae. Danio rerio o zebrafish was considered a excellent model for the environmental biomonitoring of aquatic environments and the Zebrafish Embryo Toxicity Test is considered an alternative method of animal test. For this reason zebrafish larvae were exposed to different concentrations of nanoparticles of TiO2 and Au and new nanomaterials. As biomarkers of exposure, we evaluated the expression of metallothioneins by immunohistochemistry analysis and western blotting analysis also. The results obtained by toxicity test showed that neither mortality as well as sublethal effects were induced by the different nanomaterials and nanoparticles tested. Only zebrafish larvae exposed to free Au nanoparticles showed a different response to anti-MT antibody. In fact, the immunolocalization analysis highlighted an increase of the metallothioneins synthesis.

  20. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    International Nuclear Information System (INIS)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang; Huang, Changjiang; Yang, Dongren

    2016-01-01

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  1. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  2. Biotransformation of ginsenosides F4 and Rg6 in zebrafish.

    Science.gov (United States)

    Shen, Wen-Wen; Zhang, Hai-Xia; Qiu, Shou-Bei; Wei, Ying-Jie; Zhu, Fen-Xia; Wang, Jing; Wang, Dan-Dan; Jia, Xiao-Bin; Tang, Dao-Quan; Chen, Bin

    2017-03-28

    Ginsenosides F 4 and Rg 6 (GF 4 and GRg 6 ), two main active components of steamed notoginseng or red ginseng, are dehydrated disaccharide saponins. In this work, biotransformation of ginsenosides F 4 and Rg 6 in zebrafish was investigated by qualitatively identifying their metabolites and then proposing their possible metabolic pathways. The prediction of possible metabolism of ginsenosides F 4 and Rg 6 using zebrafish model which can effectively simulate existing mammals model was early and quickly performed. Metabolites of ginsenosides F 4 and Rg 6 after exposing to zebrafish for 24 h were identified by Ultraperformance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. A total of 8 and 6 metabolites of ginsenosides F 4 and Rg 6 were identified in zebrafish, respectively. Of these, 7 and 5, including M1, M3-M5, M7-M9 and N1 (N5), N2, N4 (N9), N7-N8 were reported for the first time as far as we know. The mechanisms of their biotransformation involved were further deduced to be desugarization, glucuronidation, sulfation, dehydroxylation, loss of C-17 and/or C-23 residue pathways. It was concluded that loss of rhamnose at position C-6 and glucuronidation at position C-3 in zebrafish were considered as the main physiologic and metabolic processes of ginsenosides F 4 and ginsenosides Rg 6 , respectively.

  3. Evaluation of MWNT toxic effects on daphnia and zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Olasagasti, Maider; Rainieri, Sandra [AZTI-TECNALIA, Parque Tecnologico de Bizkaia 609, 48160 Derio (Spain)], E-mail: srainieri@azti.es; Alvarez, Noelia; Vera, Carolina [INASMET-TECNALIA, Mikeletegi pasealekua, 2, Parque Tecnologico, 20009 San Sebastian (Spain)

    2009-05-01

    Organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) embryos were exposed to a range of different concentrations of COOH-functionalized MWCNT suspended in an aqueous solution of Tween 20. Immobilization of daphnia and growth retardation, inhibition and malformation of zebrafish embryos were the endpoints tested after 24 and 48 hours. Immobilization of daphnia could be observed from 3 to 16 ppm and an increasing mortality of zebrafish embryo was detected at all the concentration tested. To identify more subtle toxic effects, we took advantage of the extensive information available on the zebrafish genome and monitored by RT-PCR the expression patterns of different zebrafish genes that could act as toxicity bio-markers. At some of the concentrations tested, changes in the expression profiles of the genes examined were detected. Our results suggest that MWCNT could potentially represent a risk to human health and environment, therefore a wider range of concentrations and further testing of this molecules should be carried out to define possible limitations in their use.

  4. Influence of carbon nanotube length on toxicity to zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Cheng J

    2012-07-01

    Full Text Available Jinping Cheng,1,2 Shuk Han Cheng11Department of Biology and Chemistry, City University of Hong Kong, Hong Kong; 2State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, ChinaAbstract: There is currently a large difference of opinion in nanotoxicology studies of nanomaterials. There is concern about why some studies have indicated that there is strong toxicity, while others have not. In this study, the length of carbon nanotubes greatly affected their toxicity in zebrafish embryos. Multiwalled carbon nanotubes (MWCNTs were sonicated in a nitric acid solution for 24 hours and 48 hours. The modified MWCNTs were tested in early developing zebrafish embryo. MWCNTs prepared with the longer sonication time resulted in severe developmental toxicity; however, the shorter sonication time did not induce any obvious toxicity in the tested developing zebrafish embryos. The cellular and molecular changes of the affected zebrafish embryos were studied and the observed phenotypes scored. This study suggests that length plays an important role in the in vivo toxicity of functionalized CNTs. This study will help in furthering the understanding on current differences in toxicity studies of nanomaterials.Keywords: length, carbon nanotubes, sonication, developmental toxicity, zebrafish

  5. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Tamaru, Yutaka; Ogata, Shin; Takebayashi, Shin-ichiro; Ogata, Masato; Okumura, Katsuzumi

    2015-12-01

    Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.

  6. Neurotransmitter-Regulated Regeneration in the Zebrafish Retina

    Directory of Open Access Journals (Sweden)

    Mahesh B. Rao

    2017-04-01

    Full Text Available Summary: Current efforts to repair damaged or diseased mammalian retinas are inefficient and largely incapable of fully restoring vision. Conversely, the zebrafish retina is capable of spontaneous regeneration upon damage using Müller glia (MG-derived progenitors. Understanding how zebrafish MG initiate regeneration may help develop new treatments that prompt mammalian retinas to regenerate. We show that inhibition of γ-aminobutyric acid (GABA signaling facilitates initiation of MG proliferation. GABA levels decrease following damage, and MG are positioned to detect decreased ambient levels and undergo dedifferentiation. Using pharmacological and genetic approaches, we demonstrate that GABAA receptor inhibition stimulates regeneration in undamaged retinas while activation inhibits regeneration in damaged retinas. : Unlike mammals, zebrafish regenerate following retina damage from a resident adult stem cell (Müller glia. Dissecting the mechanisms that zebrafish use could lead to new therapeutic targets to treat retinal diseases. Patton and colleagues have discovered a mechanism by which decreased GABA levels are sensed by Müller glia to initiate a regenerative response. Keywords: zebrafish, retina, regeneration, Müller glia, GABA

  7. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Yang, Dongren, E-mail: yangdongren@yahoo.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China)

    2016-07-15

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  8. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    Science.gov (United States)

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  9. Pharmacological analyses of learning and memory in zebrafish (Danio rerio).

    Science.gov (United States)

    Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-12-01

    Over the last decade, zebrafish (Danio rerio) have become valuable as a complementary model in behavioral pharmacology, opening a new avenue for understanding the relationships between drug action and behavior. This species offers a useful intermediate approach bridging the gap between in vitro studies and traditional mammalian models. Zebrafish offer great advantages of economy compared to their rodent counterparts, their complex brains and behavioral repertoire offer great translational potential relative to in vitro models. The development and validation of a variety of tests to measure behavior, including cognition, in zebrafish have set the stage for the use of this animal for behavioral pharmacology studies. This has led to research into the basic mechanisms of cognitive function as well as screening for potential cognition-improving drug therapies, among other lines of research. As with all models, zebrafish have limitations, which span pharmacokinetic challenges to difficulties quantifying behavior. The use, efficacy and limitations associated with a zebrafish model of cognitive function are discussed in this review, within the context of behavioral pharmacology. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Sustaining professional development gains after the NSF-CCLI grant ends

    Science.gov (United States)

    Grove, K.; Dekens, P. S.; Dempsey, D. P.

    2012-12-01

    At San Francisco State University we aimed to transform our freshman-level courses in geology, oceanography, and meteorology using funding from a NSF-CCLI grant—"Creating an academic community to foster curiosity and discovery in introductory Geoscience classes" (2010-2012). In addition to creating a new laboratory space and new laboratory materials, we focused on the professional development of graduate teaching assistants (GTAs) and other departmental instructors. Previously, GTAs were given little support to gain teaching skills and present interesting labs, and there was little communication among the various instructors of the introductory courses. We aimed to change the tenor of the department by infusing discussions about effective teaching practices into the daily academic lives of faculty and GTAs and by creating institutional structures to ensure that innovations continued beyond the life of the NSF grant. We entitled this function of the department a Teaching and Learning Community (TLC). An essential element of the TLC, and the institutionalization of project activities, was to create a new graduate seminar course—"Our Dynamic Classroom"—that is offered every semester. This course was created to provide a mechanism for instructors to meet each week to discuss aspects of teaching pedagogy and to share classroom experiences. Each week a GTA or faculty member leads the discussion. Typical weekly topics include: what is inquiry-based learning, understanding students' misconceptions, teaching quantitative skills, what is the affective domain, improving students' writing skills. In response to participant feedback, the course now focuses more on the needs of specific instructors teaching specific courses. For example, in Spring 2012, seminar participants identified several issues GTAs were encountering, such as students failing to read instructions for labs before executing them, and some members of small collaborative groups not actively participating

  11. The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development.

    Science.gov (United States)

    Chang, Amy L; Pribbenow, Christine M

    2016-05-01

    The American Society for Microbiology (ASM) established its ASM-NSF (National Science Foundation) Biology Scholars Program (BSP) to promote undergraduate education reform by 1) supporting biologists to implement evidence-based teaching practices, 2) engaging life science professional societies to facilitate biologists' leadership in scholarly teaching within the discipline, and 3) participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM) reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL) to more than 270 participants ("scholars") from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER). To identify the BSP's long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program's 2010-2014 scholars (n = 127) and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life sciences and helps

  12. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    Science.gov (United States)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns

  13. The ASM-NSF Biology Scholars Program: An Evidence-Based Model for Faculty Development

    Directory of Open Access Journals (Sweden)

    Amy L. Chang

    2016-05-01

    Full Text Available The American Society for Microbiology (ASM established its ASM-NSF (National Science Foundation Biology Scholars Program (BSP to promote undergraduate education reform by 1 supporting biologists to implement evidence-based teaching practices, 2 engaging life science professional societies to facilitate biologists’ leadership in scholarly teaching within the discipline, and 3 participating in a teaching community that fosters disciplinary-level science, technology, engineering, and mathematics (STEM reform. Since 2005, the program has utilized year-long residency training to provide a continuum of learning and practice centered on principles from the scholarship of teaching and learning (SoTL to more than 270 participants (“scholars” from biology and multiple other disciplines. Additionally, the program has recruited 11 life science professional societies to support faculty development in SoTL and discipline-based education research (DBER. To identify the BSP’s long-term outcomes and impacts, ASM engaged an external evaluator to conduct a study of the program’s 2010­–2014 scholars (n = 127 and society partners. The study methods included online surveys, focus groups, participant observation, and analysis of various documents. Study participants indicate that the program achieved its proposed goals relative to scholarship, professional society impact, leadership, community, and faculty professional development. Although participants also identified barriers that hindered elements of their BSP participation, findings suggest that the program was essential to their development as faculty and provides evidence of the BSP as a model for other societies seeking to advance undergraduate science education reform. The BSP is the longest-standing faculty development program sponsored by a collective group of life science societies. This collaboration promotes success across a fragmented system of more than 80 societies representing the life

  14. NSF-Sponsored Summit on the Future of Undergraduate Geoscience Education: outcomes

    Science.gov (United States)

    Mosher, S.

    2014-12-01

    The NSF-sponsored Summit on the Future of Undergraduate Geoscience Education made major progress toward developing a collective community vision for the geosciences. A broad spectrum of the geoscience education community, ~200 educators from research universities/four and two year colleges, focused on preparation of undergraduates for graduate school and future geoscience careers, pedagogy, use of technology, broadening participation/retention of underrepresented groups, and preparation of K-12 science teachers. Participants agreed that key concepts, competencies and skills learned throughout the curriculum were more important than specific courses. Concepts included understanding Earth as complex, dynamic system, deep time, evolution of life, natural resources, energy, hazards, hydrogeology, surface processes, Earth materials and structure, and climate change. Skills/competencies included ability to think spatially and temporally, reason inductively and deductively, make and use indirect observations, engage in complex open, coupled systems thinking, and work with uncertainty, non-uniqueness, and incompleteness, as well as critical thinking, problem solving, communication, and ability to think like a scientist and continue to learn. Successful ways of developing these include collaborative, integrative projects involving teams, interdisciplinary projects, fieldwork and research experiences, as well as flipped classrooms and integration and interactive use of technology, including visualization, simulation, modeling and analysis of real data. Wider adoption of proven, effective best practices is our communities' main pedagogical challenge, and we focused on identifying implementation barriers. Preparation of future teachers in introductory and general geoscience courses by incorporating Next Generation Science Standards and using other sciences/math to solve real world geoscience problems should help increase diversity and number of future geoscientists and

  15. Transforming Research in Oceanography through Education, Ethnography and Rapidly Evolving Technologies: An NSF-INSPIRE project.

    Science.gov (United States)

    German, C. R.; Croff Bell, K. L.; Pallant, A.; Mirmalek, Z.; Jasanoff, S.; Rajan, K.

    2014-12-01

    This paper will discuss a new NSF-INSPIRE project that brings together research conducted in the fields of Ocean Sciences, Education & Human Resources and Computer and Information Science & Engineering. Specifically, our objective is to investigate new methods by which telepresence can be used to conduct cutting edge research and provide authentic educational experiences to undergraduate students, remotely. We choose to conduct this research in an Oceanographic context for two reasons: first with the move toward smaller research ships in the national Oceanographic research fleet, we anticipate that access to berth space at sea will continue to be at a premium. Any component of traditional oceanographic research that can be ported to shore without loss of effectiveness would be of immediate benefit to the Ocean Sciences. Equally, however, we argue that any improvements to work place and/or education practices that we can identify while delivering research and education from the bottom of the deep ocean should be readily mappable to any other scientific or engineering activities that seek to make use of telepresence in less extreme remote environments. Work on our TREET project, to-date, has included recruitment of 6 early career scientists keen to take advantage of the research opportunity provided, together with two senior science mentors with experience using Telepresence and a cohort of undergraduate students at three of the ECS partner Universities, spanning 4 time zones across the continental US. Following a 12-week synchronous on-line seminar series taught in Spring-Summer 2014, the entire team joined together at the Inner Space Center in Sept-Oct 2014 to participate, virtually, in a cruise of research and exploration to the Kick'Em Jenny underwater volcano and adjacent cold seep sites, conducted by the Ocean Exploration Trust's ROV Hercules aboard the Exploration Vessel Nautilus. Our presentation will include preliminary results from that cruise.

  16. Institutional transformation: An analysis of change initiatives at NSF ADVANCE institutions

    Science.gov (United States)

    Plummer, Ellen W.

    The purpose of this study was to examine how institutional culture promoted or impeded the implementation of round one and two NSF ADVANCE initiatives designed to improve academic climates for women in science and engineering. This study was conducted in two phases. In phase one, 35 participants from 18 institutions were interviewed to answer three research questions. Participants identified a policy, process, or program designed to improve academic cultures for women in science and engineering fields. Participants also identified strategies that promoted the implementation of these efforts, and discussed factors that impeded these efforts. In phase two, site visits were conducted at two institutions to answer a fourth research question. How did institutional culture shape the design and implementation of faculty search processes? Policies, processes, and programs were implemented by participants at the institutional, departmental, and individual levels and included family friendly and dual career policies at the institutional level, improved departmental faculty search and climate improvement processes, and mentoring programs and training for department heads at the individual level. Communication and leadership strategies were key to the successful implementation of policies, processes, and programs designed to achieve institutional transformation. Communication strategies involved shaping change messages to reach varied audiences often with the argument that change efforts would improve the climate for everyone not just women faculty members. Administrative and faculty leaders from multiple levels proved important to change efforts. Institutional Transformation Institutional culture shaped initiatives to improve faculty search processes. Faculty leaders in both settings used data to persuade faculty members of the need for change. At one site, data that included national availability information was critical to advancing the change agenda. At the other site

  17. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    Science.gov (United States)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  18. Zebrafish Database: Customizable, Free, and Open-Source Solution for Facility Management.

    Science.gov (United States)

    Yakulov, Toma Antonov; Walz, Gerd

    2015-12-01

    Zebrafish Database is a web-based customizable database solution, which can be easily adapted to serve both single laboratories and facilities housing thousands of zebrafish lines. The database allows the users to keep track of details regarding the various genomic features, zebrafish lines, zebrafish batches, and their respective locations. Advanced search and reporting options are available. Unique features are the ability to upload files and images that are associated with the respective records and an integrated calendar component that supports multiple calendars and categories. Built on the basis of the Joomla content management system, the Zebrafish Database is easily extendable without the need for advanced programming skills.

  19. Dwarf mutant of rice variety Seratus Malam

    International Nuclear Information System (INIS)

    Mugiono, P. S.; Soemanggono, A.M.R.

    1989-01-01

    Full text: Seeds of 'Seratus Malam', a local tall upland variety with long panicles and high yield potential were irradiated with 10-50 krad gamma rays in 1983. From 50,000 M 2 plants, 130 semidwarf mutants and 1 dwarf mutant were selected. The dwarf mutant M-362 was obtained from the 10 krad treatment. The mutant shows about 50% reduction in plant height, but also in number of productive tillers. Thus the yield per plant is also significantly less. However, the mutant gene is not allelic to DGWG and therefore may be useful in cross breeding. (author)

  20. Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish.

    Science.gov (United States)

    López-Schier, Hernán; Starr, Catherine J; Kappler, James A; Kollmar, Richard; Hudspeth, A J

    2004-09-01

    The proper orientation of mechanosensory hair cells along the lateral-line organ of a fish or amphibian is essential for the animal's ability to sense directional water movements. Within the sensory epithelium, hair cells are polarized in a stereotyped manner, but the mechanisms that control their alignment relative to the body axes are unknown. We have found, however, that neuromasts can be oriented either parallel or perpendicular to the anteroposterior body axis. By characterizing the strauss mutant zebrafish line and by tracking labeled cells, we have demonstrated that neuromasts of these two orientations originate from, respectively, the first and second primordia. Furthermore, altering the migratory pathway of a primordium reorients a neuromast's axis of planar polarity. We propose that the global orientation of hair cells relative to the body axes is established through an interaction between directional movement by primordial cells and the timing of neuromast maturation.

  1. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD.

    Directory of Open Access Journals (Sweden)

    Yuanquan Song

    2009-12-01

    Full Text Available In humans, mutations in electron transfer flavoprotein (ETF or electron transfer flavoprotein dehydrogenase (ETFDH lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.

  2. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation.

    Science.gov (United States)

    Zhang, J; Talbot, W S; Schier, A F

    1998-01-23

    The zebrafish one-eyed pinhead (oep) mutation disrupts embryonic development, resulting in cyclopia and defects in endoderm, prechordal plate, and ventral neuroectoderm formation. We report the molecular isolation of oep using a positional cloning approach. The oep gene encodes a novel EGF-related protein with similarity to the EGF-CFC proteins cripto, cryptic, and FRL-1. Wild-type oep protein contains a functional signal sequence and is membrane-associated. Following ubiquitous maternal and zygotic expression, highest levels of oep mRNA are found in the gastrula margin and in axial structures and forebrain. Widespread misexpression of both membrane-attached and secreted forms of oep rescues prechordal plate and forebrain development in mutant embryos but does not lead to the ectopic induction of these cell types in wild-type fish. These results establish an essential but permissive role for an EGF-related ligand during vertebrate gastrulation.

  3. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein.

    Science.gov (United States)

    Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N

    2015-07-15

    Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype

  4. The Zebrafish Models to Explore Genetic and Epigenetic Impacts on Evolutionary Developmental Origins of Aging

    Science.gov (United States)

    Kishi, Shuji

    2014-01-01

    Can we reset, reprogram, rejuvenate or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact/noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes, in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages (“embryonic/larval senescence”). Subsequently, at least some of these mutant animals were found to show shortened lifespan, while some others would be expected to live longer in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other

  5. Distinct and Cooperative Roles of amh and dmrt1 in Self-Renewal and Differentiation of Male Germ Cells in Zebrafish.

    Science.gov (United States)

    Lin, Qiaohong; Mei, Jie; Li, Zhi; Zhang, Xuemei; Zhou, Li; Gui, Jian-Fang

    2017-11-01

    Spermatogenesis is a fundamental process in male reproductive biology and depends on precise balance between self-renewal and differentiation of male germ cells. However, the regulative factors for controlling the balance are poorly understood. In this study, we examined the roles of amh and dmrt1 in male germ cell development by generating their mutants with Crispr/Cas9 technology in zebrafish. Amh mutant zebrafish displayed a female-biased sex ratio, and both male and female amh mutants developed hypertrophic gonads due to uncontrolled proliferation and impaired differentiation of germ cells. A large number of proliferating spermatogonium-like cells were observed within testicular lobules of the amh -mutated testes, and they were demonstrated to be both Vasa- and PH3-positive. Moreover, the average number of Sycp3- and Vasa-positive cells in the amh mutants was significantly lower than in wild-type testes, suggesting a severely impaired differentiation of male germ cells. Conversely, all the dmrt1 -mutated testes displayed severe testicular developmental defects and gradual loss of all Vasa-positive germ cells by inhibiting their self-renewal and inducing apoptosis. In addition, several germ cell and Sertoli cell marker genes were significantly downregulated, whereas a prominent increase of Insl3-positive Leydig cells was revealed by immunohistochemical analysis in the disorganized dmrt1 -mutated testes. Our data suggest that amh might act as a guardian to control the balance between proliferation and differentiation of male germ cells, whereas dmrt1 might be required for the maintenance, self-renewal, and differentiation of male germ cells. Significantly, this study unravels novel functions of amh gene in fish. Copyright © 2017 by the Genetics Society of America.

  6. N-Ethylmaleimide–Sensitive Factor b (nsfb) Is Required for Normal Pigmentation of the Zebrafish Retinal Pigment Epithelium

    Science.gov (United States)

    Hanovice, Nicholas J.; Daly, Christina M. S.; Gross, Jeffrey M.

    2015-01-01

    Purpose Despite the number of albinism-causing mutations identified in human patients and animal models, there remain a significant number of cases for which no mutation has been identified, suggesting that our understanding of melanogenesis is incomplete. Previously, we identified two oculocutaneous albinism mutations in zebrafish, au13 and au18. Here, we sought to identify the mutated loci and determine how the affected proteins contribute to normal pigmentation of the retinal pigment epithelium (RPE). Methods Complementation analyses revealed that au13 and au18 belonged to a single complementation group, suggesting that they affected the same locus. Whole-genome sequencing and single nucleotide polymorphism (SNP) analysis was performed to identify putative mutations, which were confirmed by cDNA sequencing and mRNA rescue. Transmission electron microscopy (TEM) and image quantification were used to identify the cellular basis of hypopigmentation. Results Whole-genome sequencing and SNP mapping identified a nonsense mutation in the N-ethylmaleimide–sensitive factor b (nsfb) gene in au18 mutants. Complementary DNA sequencing confirmed the presence of the mutation (C893T), which truncates the nsfb protein by roughly two-thirds (Y297X). No coding sequence mutations were identified in au13, but quantitative PCR revealed a significant decrease in nsfb expression, and nsfb mRNA injection rescued the hypopigmentation phenotype, suggesting a regulatory mutation. In situ hybridization revealed that nsfb is broadly expressed during embryonic development, including in the RPE. Transmission electron microscopy analyses indicated that average melanosome density and maturity were significantly decreased in nsfb mutants. Conclusions au18 and au13 contain mutations in nsfb, which encodes a protein that is required for the maturation of melanosomes in zebrafish RPE. PMID:26618645

  7. Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish.

    Science.gov (United States)

    Seiler, Christoph; Gebhart, Nichole; Zhang, Yong; Shinton, Susan A; Li, Yue-sheng; Ross, Nicola L; Liu, Xingjun; Li, Qin; Bilbee, Alison N; Varshney, Gaurav K; LaFave, Matthew C; Burgess, Shawn M; Balciuniene, Jorune; Balciunas, Darius; Hardy, Richard R; Kappes, Dietmar J; Wiest, David L; Rhodes, Jennifer

    2015-01-01

    Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain) genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP) during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.

  8. Mutagenesis Screen Identifies agtpbp1 and eps15L1 as Essential for T lymphocyte Development in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Christoph Seiler

    Full Text Available Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.

  9. Advancements in zebrafish applications for 21st century toxicology.

    Science.gov (United States)

    Garcia, Gloria R; Noyes, Pamela D; Tanguay, Robert L

    2016-05-01

    The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Two-photon-based photoactivation in live zebrafish embryos.

    Science.gov (United States)

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  11. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane Ebsen; Andersen, Ole

    2008-01-01

    BACKGROUND: The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine...... the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS......: In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high...

  12. The Hypocretin/Orexin Neuronal Networks in Zebrafish.

    Science.gov (United States)

    Elbaz, Idan; Levitas-Djerbi, Talia; Appelbaum, Lior

    2017-01-01

    The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.

  13. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    DEFF Research Database (Denmark)

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.

    2015-01-01

    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors...... as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult...... zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance...

  14. Hypoxia-induced retinopathy model in adult zebrafish

    DEFF Research Database (Denmark)

    Cao, Ziquan; Jensen, Lasse D.; Rouhi, Pegah

    2010-01-01

    Hypoxia-induced vascular responses, including angiogenesis, vascular remodeling and vascular leakage, significantly contribute to the onset, development and progression of retinopathy. However, until recently there were no appropriate animal disease models recapitulating adult retinopathy available....... In this article, we describe protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1: EGFP zebrafish are placed in hypoxic water for 3-10 d and retinal neovascularization is analyzed using confocal microscopy. It usually takes 11 d to obtain conclusive results using the hypoxia......-induced retinopathy model in adult zebrafish. This model provides a unique opportunity to study kinetically the development of retinopathy in adult animals using noninvasive protocols and to assess therapeutic efficacy of orally active antiangiogenic drugs....

  15. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  16. Alcohol impairs predation risk response and communication in zebrafish.

    Directory of Open Access Journals (Sweden)

    Thiago Acosta Oliveira

    Full Text Available The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.

  17. Mutation of the Na+/K+-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish.

    Science.gov (United States)

    Pott, Alexander; Bock, Sarah; Berger, Ina M; Frese, Karen; Dahme, Tillman; Keßler, Mirjam; Rinné, Susanne; Decher, Niels; Just, Steffen; Rottbauer, Wolfgang

    2018-05-08

    The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we deciphered the pathogenesis of the bradycardia in the homozygous zebrafish mutant hiphop (hip) and identified a missense-mutation (N851K) in Na + /K + -ATPase α1-subunit (atp1a1a.1). N851K affects zebrafish Na + /K + -ATPase ion transport capacity, as revealed by in vitro pump current measurements. Inhibition of the Na + /K + -ATPase in vivo indicates that hip rather acts as a hypomorph than being a null allele. Consequently, reduced Na + /K + -ATPase function leads to prolonged QT interval and refractoriness in the hip mutant heart, as shown by electrocardiogram and in vivo electrical stimulation experiments. We here demonstrate for the first time that Na + /K + -ATPase plays an essential role in heart rate regulation by prolonging myocardial repolarization. Copyright © 2018. Published by Elsevier Ltd.

  18. Running the Stop Sign: Readthrough of a Premature UAG Termination Signal in the Translation of a Zebrafish (Danio rerio) Taurine Biosynthetic Enzyme.

    Science.gov (United States)

    Larkin, Mary E M; Place, Allen R

    2017-06-03

    The UAG termination codon is generally recognized as the least efficient and least frequently used of the three universal stop codons. This is substantiated by numerous studies in an array of organisms. We present here evidence of a translational readthrough of a mutant nonsense UAG codon in the transcript from the cysteine sulfinic acid decarboxylase ( csad ) gene (ENSDARG00000026348) in zebrafish. The csad gene encodes the terminal enzyme in the taurine biosynthetic pathway. Taurine is a critical amino acid for all animals, playing several essential roles throughout the body, including modulation of the immune system. The sa9430 zebrafish strain (ZDB-ALT-130411-5055) has a point mutation leading to a premature stop codon (UAG) 20 amino acids 5' of the normal stop codon, UGA. Data from immunoblotting, enzyme activity assays, and mass spectrometry provide evidence that the mutant is making a CSAD protein identical to that of the wild-type (XP_009295318.1) in terms of size, activity, and amino acid sequence. UAG readthrough has been described in several species, but this is the first presentation of a case in fish. Also presented are the first data substantiating the ability of a fish CSAD to utilize cysteic acid, an alternative to the standard substrate cysteine sulfinic acid, to produce taurine.

  19. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Science.gov (United States)

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  20. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Du Miaomiao [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Dandan; Yan Changzhou [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhang Xian, E-mail: xzhang@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2012-05-15

    Structural dissimilarities of hexabromocyclododecane diastereoisomers could raise substantial differences in physicochemical, biological and toxicological properties. In order to fully assess the environmental safety and health risk of hexabromocyclododecanes (HBCDs), zebrafish embryos were used to evaluate the developmental toxicity of individual HBCD diastereoisomers ({alpha}-HBCD, {beta}-HBCD and {gamma}-HBCD). Four-hour post-fertilization (hpf) zebrafish embryos were exposed to different concentrations of HBCD diastereoisomers (0, 0.01, 0.1 and 1.0 mg/l) until 120 hpf. The results showed that exposure to HBCDs can affect the development of zebrafish embryos/larvae in a dose-dependent and diastereoselective manner. The diastereoisomers {alpha}-, {beta}- and {gamma}-HBCD at 0.01 mg/l had little effect on the development of zebrafish embryos except that exposure to 0.01 mg/l {gamma}-HBCD significantly delayed hatching (P < 0.05). At 0.1 mg/l, {alpha}-HBCD resulted in depressed heart rate of larvae (96 hpf) and delayed hatching, whereas {beta}- and {gamma}-HBCD both caused significant hatching delay and growth inhibition (P < 0.05). In addition, a remarkable and significant increase in mortality and malformation rate was noted at 0.1 mg/l {gamma}-HBCD exposure groups (P < 0.05). At 1.0 mg/l, {alpha}-, {beta}- and {gamma}-HBCD significantly affected all of the endpoints monitored (P < 0.05). Additionally, HBCD diastereoisomers could induce the generation of reactive oxygen species (ROS) and the activities of caspase-3 and caspase-9 in a dose-dependent manner. The results indicated that HBCD diastereoisomers could cause developmental toxicity to zebrafish embryos through inducing apoptosis by ROS formation. The overall results showed a good agreement confirming that the order of developmental toxicity of HBCD diastereoisomers in zebrafish is {gamma}-HBCD > {beta}-HBCD > {alpha}-HBCD.

  1. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael Stobb

    Full Text Available Mapping the detailed connectivity patterns (connectomes of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  2. Expression of sall4 in taste buds of zebrafish.

    Science.gov (United States)

    Jackson, Robyn; Braubach, Oliver R; Bilkey, Jessica; Zhang, Jing; Akimenko, Marie-Andrée; Fine, Alan; Croll, Roger P; Jonz, Michael G

    2013-07-01

    We characterized the expression of sall4, a gene encoding a zinc finger transcription factor involved in the maintenance of embryonic stem cells, in taste buds of zebrafish (Danio rerio). Using an enhancer trap line (ET5), we detected enhanced green fluorescent protein (EGFP) in developing and adult transgenic zebrafish in regions containing taste buds: the lips, branchial arches, and the nasal and maxillary barbels. Localization of EGFP to taste cells of the branchial arches and lips was confirmed by co-immunolabeling with antibodies against calretinin and serotonin, and a zebrafish-derived neuronal marker (zn-12). Transgenic insertion of the ET construct into the zebrafish genome was evaluated and mapped to chromosome 23 in proximity (i.e. 23 kb) to the sall4 gene. In situ hybridization and expression analysis between 24 and 96 h post-fertilization (hpf) demonstrated that transgenic egfp expression in ET5 zebrafish was correlated with the spatial and temporal pattern of expression of sall4 in the wild-type. Expression was first observed in the central nervous system and branchial arches at 24 hpf. At 48 hpf, sall4 and egfp expression was observed in taste bud primordia surrounding the mouth and branchial arches. At 72 and 96 hpf, expression was detected in the upper and lower lips and branchial arches. Double fluorescence in situ hybridization at 3 and 10 dpf confirmed colocalization of sall4 and egfp in the lips and branchial arches. These studies reveal sall4 expression in chemosensory cells and implicate this transcription factor in the development and renewal of taste epithelia in zebrafish. Copyright © 2013 Wiley Periodicals, Inc.

  3. Neutron induced bystander effect among zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  4. Toxicity of silver nanoparticles in zebrafish models

    Energy Technology Data Exchange (ETDEWEB)

    Asharani, P V; Valiyaveettil, Suresh [Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Wu Yilian; Gong Zhiyuan [Department of Biological Sciences, National University of Singapore, Science Drive 4, 117543 (Singapore)], E-mail: chmsv@nus.edu.sg

    2008-06-25

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag{sup +} ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  5. Toxicity of silver nanoparticles in zebrafish models

    International Nuclear Information System (INIS)

    Asharani, P V; Valiyaveettil, Suresh; Wu Yilian; Gong Zhiyuan

    2008-01-01

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag + ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development

  6. Cadmium affects retinogenesis during zebrafish embryonic development

    International Nuclear Information System (INIS)

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-01-01

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos

  7. Application of embryonic and adult zebrafish for nanotoxicity assessment.

    Science.gov (United States)

    Wang, Jiangxin; Zhu, Xiaoshan; Chen, Yongsheng; Chang, Yung

    2012-01-01

    As an emerging model for toxicological studies, zebrafish has been explored for nanotoxicity assessment. In addition to endpoint examination of embryo/fish mortality and/or developmental disorders, molecular analyses of differential gene expression have also been employed to evaluate toxic effects associated with the exposure to nanomaterials. Here, we describe zebrafish-based assays, including both embryo and adult, for evaluation of nanotoxicity caused by metal oxide nanoparticles (NPs), in particular, zinc oxide (ZnO) and titanium oxide (TiO(2)) nanoparticles.

  8. The neural basis of visual behaviors in the larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Fog1 is required for cardiac looping in zebrafish

    OpenAIRE

    Walton, R. Zaak; Bruce, Ashley E.E.; Olivey, Harold E.; Najib, Khalid; Johnson, Vanitha; Earley, Judy U.; Ho, Robert K.; Svensson, Eric C.

    2006-01-01

    To further our understanding of FOG gene function during cardiac development, we utilized zebrafish to examine FOG’s role in the early steps of heart morphogenesis. We identified fragments of three fog genes in the zebrafish genomic database and isolated full-length coding sequences for each of these genes by using a combination of RT-PCR and 5′-RACE. One gene was similar to murine FOG-1 (fog1), while the remaining two were similar to murine FOG-2 (fog2a and fog2b). All Fog proteins were able...

  10. PNRI mutant variety: Cordyline 'Afable'

    International Nuclear Information System (INIS)

    Aurigue, Fernando B.

    2012-01-01

    Cordyline 'Afable', registered by the Philippine Nuclear Research Institute as NSIC 2009 Or-83, is an induced mutant developed from Cordyline 'Kiwi' by treating stem cuttings with acute gamma radiation from a Cobalt-60 source. The new mutant is identical to Cordyline 'Kiwi' in growth habit but differs in foliage color, and exhibits field resistance to Phytophthora sp., a fungus that causes leaf blight and rot in Ti plants. Results of this mutation breeding experiment showed that leaf color was altered by gamma irradiation and resistance to fungal diseases was improved. It also demonstrated how mutations that occur in nature may be generated artificially. Propagation of cordyline 'Afable' is true-to-type by vegetative propagation methods, such as separation of suckers and offshoots, shoot tip cutting, and top cutting. Aside from landscaping material, terrarium or dish-garden plant, it is ideal as containerized plant for indoor and outdoor use. The leaves or shoots may be harvested as cut foliage for flower arrangements. (author)

  11. UPLC/MS MS data of testosterone metabolites in human and zebrafish liver microsomes and whole zebrafish larval microsomes

    Directory of Open Access Journals (Sweden)

    Moayad Saad

    2018-02-01

    Full Text Available This article represents data regarding a study published in Toxicology in vitro entitled “ in vitro CYP-mediated drug metabolism in the zebrafish (embryo using human reference compounds” (Saad et al., 2017 [1]. Data were acquired with ultra-performance liquid chromatography – accurate mass mass spectrometry (UPLC-amMS. A full spectrum scan was conducted for the testosterone (TST metabolites from the microsomal stability assay in zebrafish and humans. The microsomal proteins were extracted from adult zebrafish male (MLM and female (FLM livers, whole body homogenates of 96 h post fertilization larvae (EM and a pool of human liver microsomes from 50 donors (HLM. Data are expressed as the abundance from the extracted ion chromatogram of the metabolites.

  12. NSF GK-12 Fellows as Mentors for K-12 Teachers Participating in Field Research Experiences

    Science.gov (United States)

    Ellins, K.; Perry, E.

    2005-12-01

    by the GK-12 Fellows was important in helping teachers transfer components of a challenging field research experience to their students. Participating research scientists were able to convey the importance of their science to a wider audience. NSF GK-12 Fellows gained valuable experience in communicating scientific knowledge and field skills to K-12 teachers and students, became more knowledgeable about K-12 science education and were exposed to advances in pedagogy.

  13. NSF Workshop Report: Discovering General Principles of Nervous System Organization by Comparing Brain Maps across Species

    Science.gov (United States)

    Striedter, Georg F.; Belgard, T. Grant; Chen, Chun-Chun; Davis, Fred P.; Finlay, Barbara L.; Güntürkün, Onur; Hale, Melina E.; Harris, Julie A.; Hecht, Erin E.; Hof, Patrick R.; Hofmann, Hans A.; Holland, Linda Z.; Iwaniuk, Andrew N.; Jarvis, Erich D.; Karten, Harvey J.; Katz, Paul S.; Kristan, William B.; Macagno, Eduardo R.; Mitra, Partha P.; Moroz, Leonid L.; Preuss, Todd M.; Ragsdale, Clifton W.; Sherwood, Chet C.; Stevens, Charles F.; Stüttgen, Maik C.; Tsumoto, Tadaharu; Wilczynski, Walter

    2014-01-01

    supported, at least in part, through existing mechanisms at NSF, NIH, and other agencies. It will also be important to develop new integrated software and database systems for cross-species data analyses. Multidisciplinary efforts to develop such analytical tools should be supported financially. Finally, training opportunities should be created to stimulate multidisciplinary, integrative research into brain structure, function, and evolution. PMID:24603302

  14. Gamma ray induced mutants in Coleus

    International Nuclear Information System (INIS)

    Vasudevan, K.; Jos, J.S.

    1988-01-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M 1 V 1 generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m 2 area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing

  15. Gamma ray induced mutants in Coleus

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, K; Jos, J S [Central Tuber Crops Research Institute, Trivandrum, Kerala (India)

    1988-07-01

    The germplasm collection of Chinese potato (Coleus parviflorus Benth) contains almost no variation for yield contributing traits. The crop does not produce seeds. Treatment of underground tubers with 1 kR, 2 kR, 3 kR and 4 kR gamma rays resulted in 50 morphologically different mutants which are maintained as mutant clones. In the M{sub 1}V{sub 1} generation, suspected mutant sprouts, were carefully removed and grown separately. The most interesting mutant types are the following: (i) erect mutant with spoon shaped light green leaves, 30 cm long inflorescences against 20 cm in the control, cylindrical tubers measuring ca. 7.0 cm long and 3 cm girth against 4 cm and 2.5 cm in the control (ii) early mutants 1 and 2, one having less leaf serration, the other having light green small leaves and dwarf type (iii) fleshy leaf mutant, dark green, thick and smooth leaves. Control plants spread almost in 1 m{sup 2} area and bear tubers from the nodes of branches. In the early mutants tuber formation is mainly restricted to the base of the plant, which makes harvest easier. The crop usually matures within 150 - 160 days, the early mutants are ready for harvest 100 days after planting. As the mutants are less spreading, the yield could be increased by closer spacing.

  16. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  17. Zebrafish Expression Ontology of Gene Sets (ZEOGS): A Tool to Analyze Enrichment of Zebrafish Anatomical Terms in Large Gene Sets

    Science.gov (United States)

    Marsico, Annalisa

    2013-01-01

    Abstract The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene

  18. The Arctic Cooperative Data and Information System: Data Management Support for the NSF Arctic Research Program (Invited)

    Science.gov (United States)

    Moore, J.; Serreze, M. C.; Middleton, D.; Ramamurthy, M. K.; Yarmey, L.

    2013-12-01

    The NSF funds the Advanced Cooperative Arctic Data and Information System (ACADIS), url: (http://www.aoncadis.org/). It serves the growing and increasingly diverse data management needs of NSF's arctic research community. The ACADIS investigator team combines experienced data managers, curators and software engineers from the NSIDC, UCAR and NCAR. ACADIS fosters scientific synthesis and discovery by providing a secure long-term data archive to NSF investigators. The system provides discovery and access to arctic related data from this and other archives. This paper updates the technical components of ACADIS, the implementation of best practices, the value of ACADIS to the community and the major challenges facing this archive for the future in handling the diverse data coming from NSF Arctic investigators. ACADIS provides sustainable data management, data stewardship services and leadership for the NSF Arctic research community through open data sharing, adherence to best practices and standards, capitalizing on appropriate evolving technologies, community support and engagement. ACADIS leverages other pertinent projects, capitalizing on appropriate emerging technologies and participating in emerging cyberinfrastructure initiatives. The key elements of ACADIS user services to the NSF Arctic community include: data and metadata upload; support for datasets with special requirements; metadata and documentation generation; interoperability and initiatives with other archives; and science support to investigators and the community. Providing a self-service data publishing platform requiring minimal curation oversight while maintaining rich metadata for discovery, access and preservation is challenging. Implementing metadata standards are a first step towards consistent content. The ACADIS Gateway and ADE offer users choices for data discovery and access with the clear objective of increasing discovery and use of all Arctic data especially for analysis activities

  19. Sharing mutants and experimental information prepublication using FgMutantDb (https://scabusa.org/FgMutantDb).

    Science.gov (United States)

    Baldwin, Thomas T; Basenko, Evelina; Harb, Omar; Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E; Bregitzer, Phil P

    2018-06-01

    There is no comprehensive storage for generated mutants of Fusarium graminearum or data associated with these mutants. Instead, researchers relied on several independent and non-integrated databases. FgMutantDb was designed as a simple spreadsheet that is accessible globally on the web that will function as a centralized source of information on F. graminearum mutants. FgMutantDb aids in the maintenance and sharing of mutants within a research community. It will serve also as a platform for disseminating prepublication results as well as negative results that often go unreported. Additionally, the highly curated information on mutants in FgMutantDb will be shared with other databases (FungiDB, Ensembl, PhytoPath, and PHI-base) through updating reports. Here we describe the creation and potential usefulness of FgMutantDb to the F. graminearum research community, and provide a tutorial on its use. This type of database could be easily emulated for other fungal species. Published by Elsevier Inc.

  20. Myosin heavy chain expression in cranial, pectoral fin, and tail muscle regions of zebrafish embryos.

    Science.gov (United States)

    Peng, Mou-Yun; Wen, Hui-Ju; Shih, Li-Jane; Kuo, Ching-Ming; Hwang, Sheng-Ping L

    2002-12-01

    To investigate whether different myosin heavy chain (MHC) isoforms may constitute myofibrils in the trunk and tail musculature and if their respective expression may be regulated by spadetail (spt) and no tail (brachyury), we identified and characterized mRNA expression patterns of an embryonic- and tail muscle-specific MHC gene (named myhz2) during zebrafish development in wild type, spt, and ntl mutant embryos. The identified myhz2 MHC gene encodes a polypeptide containing 1,935 amino acids. Deduced amino acid comparisons showed that myhz2 MHC shared 92.6% sequence identity with that of carp fast skeletal MHC. Temporal and spatial myhz2 MHC mRNA expression patterns were analyzed by quantitative RT-PCR and whole-mount in situ hybridization using primer pairs and probes designed from the 3'-untranslated region (UTR). Temporally myhz2 MHC mRNA appears in pharyngula embryos and peaks in protruding-mouth larvae. The expression level decreased in 7-day-old hatching larvae, and mRNA expression was not detectable in adult fish. Spatially in pharyngula embryos, mRNA was localized only in the tail somite region, while in long-pec embryos, transcripts were also expressed in the two cranial muscle elements of the adductor mandibulae and medial rectus, as well as in pectoral fin muscles and the tail muscle region. Myhz2 MHC mRNA was expressed in most cranial muscle elements, pectoral fin muscles, and the tail muscle region of 3-day-old hatching larvae. In contrast, no expression of myhz2 MHC mRNA could be observed in spt prim-15 mutant embryos. In spt long-pec mutant embryos, transcripts were expressed in two cranial muscle elements and the tail muscle region, but not in pectoral fin muscles, while only trace amounts of myhz2 MHC mRNA were expressed in the remaining tail muscle region of 38 hpf and long-pec ntl mutant embryos. Copyright 2002 Wiley-Liss, Inc.

  1. Zebrafish syntenic relationship to human/mouse genomes revealed by radiation hybrid mapping

    International Nuclear Information System (INIS)

    Samonte, Irene E.

    2007-01-01

    Zebrafish (Danio rerio) is an excellent model system for vertebrate developmental analysis and a new model for human disorders. In this study, however, zebrafish was used to determine its syntenic relationship to human/mouse genomes using the zebrafish-hamster radiation hybrid panel. The focus was on genes residing on chromosomes 6 and 17 of human and mouse, respectively, and some other genes of either immunologic or evolutionary importance. Gene sequences of interest and zebrafish expressed sequence tags deposited in the GenBank were used in identifying zebrafish homologs. Polymerase chain reaction (PCR) amplification, cloning and subcloning, sequencing, and phylogenetic analysis were done to confirm the homology of the candidate genes in zebrafish. The promising markers were then tested in the 94 zebrafish-hamster radiation hybrid panel cell lines and submitted for logarithm of the odds (LOD) score analysis to position genes on the zebrafish map. A total of 19 loci were successfully mapped to zebrafish linkage groups 1, 14, 15, 19, and 20. Four of these loci were positioned in linkage group 20, whereas, 3 more loci were added in linkage group 19, thus increasing to 34 loci the number of human genes syntenic to the group. With the sequencing of the zebrafish genome, about 20 more MHC genes were reported linked on the same group. (Author)

  2. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond.

    Science.gov (United States)

    Kalueff, Allan V; Gebhardt, Michael; Stewart, Adam Michael; Cachat, Jonathan M; Brimmer, Mallorie; Chawla, Jonathan S; Craddock, Cassandra; Kyzar, Evan J; Roth, Andrew; Landsman, Samuel; Gaikwad, Siddharth; Robinson, Kyle; Baatrup, Erik; Tierney, Keith; Shamchuk, Angela; Norton, William; Miller, Noam; Nicolson, Teresa; Braubach, Oliver; Gilman, Charles P; Pittman, Julian; Rosemberg, Denis B; Gerlai, Robert; Echevarria, David; Lamb, Elisabeth; Neuhauss, Stephan C F; Weng, Wei; Bally-Cuif, Laure; Schneider, Henning

    2013-03-01

    Zebrafish (Danio rerio) are rapidly gaining popularity in translational neuroscience and behavioral research. Physiological similarity to mammals, ease of genetic manipulations, sensitivity to pharmacological and genetic factors, robust behavior, low cost, and potential for high-throughput screening contribute to the growing utility of zebrafish models in this field. Understanding zebrafish behavioral phenotypes provides important insights into neural pathways, physiological biomarkers, and genetic underpinnings of normal and pathological brain function. Novel zebrafish paradigms continue to appear with an encouraging pace, thus necessitating a consistent terminology and improved understanding of the behavioral repertoire. What can zebrafish 'do', and how does their altered brain function translate into behavioral actions? To help address these questions, we have developed a detailed catalog of zebrafish behaviors (Zebrafish Behavior Catalog, ZBC) that covers both larval and adult models. Representing a beginning of creating a more comprehensive ethogram of zebrafish behavior, this effort will improve interpretation of published findings, foster cross-species behavioral modeling, and encourage new groups to apply zebrafish neurobehavioral paradigms in their research. In addition, this glossary creates a framework for developing a zebrafish neurobehavioral ontology, ultimately to become part of a unified animal neurobehavioral ontology, which collectively will contribute to better integration of biological data within and across species.

  3. Connexin 39.9 Protein Is Necessary for Coordinated Activation of Slow-twitch Muscle and Normal Behavior in Zebrafish*

    Science.gov (United States)

    Hirata, Hiromi; Wen, Hua; Kawakami, Yu; Naganawa, Yuriko; Ogino, Kazutoyo; Yamada, Kenta; Saint-Amant, Louis; Low, Sean E.; Cui, Wilson W.; Zhou, Weibin; Sprague, Shawn M.; Asakawa, Kazuhide; Muto, Akira; Kawakami, Koichi; Kuwada, John Y.

    2012-01-01

    In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca2+ transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers. PMID:22075003

  4. Management and Stewardship of Airborne Observational Data for the NSF/NCAR HIAPER (GV) and NSF/NCAR C-130 at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    Science.gov (United States)

    Aquino, J.

    2014-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies. The data collected are an important legacy of these field campaigns. A comprehensive metadata database and integrated cyber-infrastructure, along with a robust data workflow that begins during the field phase and extends to long-term archival (current aircraft data holdings go back to 1967), assures that: all data and associated software are safeguarded throughout the data handling process; community standards of practice for data stewardship and software version control are followed; simple and timely community access to collected data and associated software tools are provided; and the quality of the collected data is preserved, with the ultimate goal of supporting research and the reproducibility of published results. The components of this data system to be presented include: robust, searchable web access to data holdings; reliable, redundant data storage; web-based tools and scripts for efficient creation, maintenance and update of data holdings; access to supplemental data and documentation; storage of data in standardized data formats; comprehensive metadata collection; mature version control; human-discernable storage practices; and procedures to inform users of changes. In addition, lessons learned, shortcomings, and desired upgrades

  5. Studies on reduced height mutants in rice

    International Nuclear Information System (INIS)

    Narahari, P.; Bhagwat, S.G.

    1984-01-01

    Two cross-bred derivatives of the mutant TR5xTR17 and TR21 continued to show promise and were advanced to wider scale testing. TR5 was found to carry a semi-dwarfing gene different from that in IR8. New semi-dwarf mutants were screened from M 2 through M 4 from two separate radiation experiments. The gibberellin response of seedlings of mutant and tester strains was evaluated and crosses of tester stocks and mutant semi-dwarfs were made for genetic analyses. (author)

  6. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish.

    Science.gov (United States)

    Viringipurampeer, I A; Shan, X; Gregory-Evans, K; Zhang, J P; Mohammadi, Z; Gregory-Evans, C Y

    2014-05-01

    Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6c(w59) mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6c(w59) embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6c(w59) mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment.

  7. Statistical Analysis of Zebrafish Locomotor Response.

    Science.gov (United States)

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

  8. Hydroxylated PBDEs induce developmental arrest in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Crystal Y., E-mail: Crystal_usenko@baylor.edu; Hopkins, David C.; Trumble, Stephen J., E-mail: Stephen_trumble@baylor.edu; Bruce, Erica D., E-mail: Erica_bruce@baylor.edu

    2012-07-01

    The ubiquitous spread of polybrominated diphenyl ethers (PBDEs) has led to concerns regarding the metabolites of these congeners, in particular hydroxylated PBDEs. There are limited studies regarding the biological interactions of these chemicals, yet there is some concern they may be more toxic than their parent compounds. In this study three hydroxylated PBDEs were assessed for toxicity in embryonic zebrafish: 3-OH-BDE 47, 5-OH-BDE 47, and 6-OH-BDE 47. All three congeners induced developmental arrest in a concentration-dependent manner; however, 6-OH-BDE 47 induced adverse effects at lower concentrations than the other congeners. Furthermore, all three induced cell death; however apoptosis was not observed. In short-term exposures (24–28 hours post fertilization), all hydroxylated PBDEs generated oxidative stress in the region corresponding to the cell death at 5 and 10 ppm. To further investigate the short-term effects that may be responsible for the developmental arrest observed in this study, gene regulation was assessed for embryos exposed to 0.625 ppm 6-OH-BDE 47 from 24 to 28 hpf. Genes involved in stress response, thyroid hormone regulation, and neurodevelopment were significantly upregulated compared to controls; however, genes related to oxidative stress were either unaffected or downregulated. This study suggests that hydroxylated PBDEs disrupt development, and may induce oxidative stress and potentially disrupt the cholinergic system and thyroid hormone homeostasis. -- Highlights: ► OH-PBDEs induce developmental arrest in a concentration-dependent manner. ► Hydroxyl group location influences biological interaction. ► OH-PBDEs induce oxidative stress. ► Thyroid hormone gene regulation was disrupted following exposure. ► To our knowledge, this is the first whole organism study of OH-PBDE toxicity.

  9. Triazole-induced gene expression changes in the zebrafish embryo

    NARCIS (Netherlands)

    Hermsen, S.A.B.; Pronk, T.; van den Brandhof, E.J.; van der Ven, L.T.; Piersma, A.H.|info:eu-repo/dai/nl/071276947

    2012-01-01

    The zebrafish embryo is considered to provide a promising alternative test model for developmental toxicity testing. Most systems use morphological assessment of the embryos, however, microarray analyses may increase sensitivity and predictability of the test by detecting more subtle and detailed

  10. Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish

    Directory of Open Access Journals (Sweden)

    Vanessa H. Quinlivan

    2017-11-01

    Full Text Available The developing zebrafish is a well-established model system for studies of energy metabolism, and is amenable to genetic, physiological, and biochemical approaches. For the first 5 days of life, nutrients are absorbed from its endogenous maternally deposited yolk. At 5 days post-fertilization, the yolk is exhausted and the larva has a functional digestive system including intestine, liver, gallbladder, pancreas, and intestinal microbiota. The transparency of the larval zebrafish, and the genetic and physiological similarity of its digestive system to that of mammals make it a promising system in which to address questions of energy homeostasis relevant to human health. For example, apolipoprotein expression and function is similar in zebrafish and mammals, and transgenic animals may be used to examine both the transport of lipid from yolk to body in the embryo, and the trafficking of dietary lipids in the larva. Additionally, despite the identification of many fatty acid and lipid transport proteins expressed by vertebrates, the cell biological processes that mediate the transport of dietary lipids from the intestinal lumen to the interior of enterocytes remain to be elucidated. Genetic tractability and amenability to live imaging and a range of biochemical methods make the larval zebrafish an ideal model in which to address open questions in the field of lipid transport, energy homeostasis, and nutrient metabolism.

  11. DNA mismatch repair, genome instability and cancer in zebrafish

    NARCIS (Netherlands)

    Feitsma, H.

    2008-01-01

    The objective of this study was to find out whether the zebrafish can be an appropriate model for studying DNA repair and cancer. For this purpose three fish lines were used that lack components of an important mechanism for the repair of small DNA damage: DNA mismatch repair. These fish are

  12. In vivo nanotoxicity testing using the zebrafish embryo assay

    Czech Academy of Sciences Publication Activity Database

    Rizzo, L. Y.; Golombek, S. K.; Mertens, M. E.; Pan, Y.; Laaf, D.; Broda, J.; Jayapaul, J.; Möckel, D.; Šubr, Vladimír; Hennink, W. E.; Storm, G.; Simon, U.; Jahnen-Dechent, W.; Kiessling, F.; Lammers, T.

    2013-01-01

    Roč. 1, č. 32 (2013), s. 3918-3925 ISSN 2050-750X R&D Projects: GA ČR GAP301/12/1254 Institutional support: RVO:61389013 Keywords : nanomaterials * zebrafish * toxicity Subject RIV: CD - Macromolecular Chemistry

  13. Automated visual tracking for studying the ontogeny of zebrafish swimming

    NARCIS (Netherlands)

    Fontaine, E.; Lentink, D.; Kranenbarg, S.; Müller, U.K.; Leeuwen, van J.L.; Barr, A.H.; Burdick, J.W.

    2008-01-01

    The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current

  14. Early gonad development in zebrafish ( Danio rerio ) | Okuthe ...

    African Journals Online (AJOL)

    Gonadogenesis in zebrafish goes through an initial ovarian phase then subsequently into either ovarian or testicular phases. How germ cells choose to commit to an oogenic fate and enter meiosis or alternatively not enter meiosis and commit to a spermatogenetic fate remains a key question. This study investigated events ...

  15. In Vivo Nanotoxicity Testing using the Zebrafish Embryo Assay.

    Science.gov (United States)

    Rizzo, Larissa Y; Golombek, Susanne K; Mertens, Marianne E; Pan, Yu; Laaf, Dominic; Broda, Janine; Jayapaul, Jabadurai; Möckel, Diana; Subr, Vladimir; Hennink, Wim E; Storm, Gert; Simon, Ulrich; Jahnen-Dechent, Willi; Kiessling, Fabian; Lammers, Twan

    2013-06-10

    Nanoparticles are increasingly used for biomedical purposes. Many different diagnostic and therapeutic applications are envisioned for nanoparticles, but there are often also serious concerns regarding their safety. Given the fact that numerous new nanomaterials are being developed every day, and that not much is known about the long-term toxicological impact of exposure to nanoparticles, there is an urgent need to establish efficient methods for nanotoxicity testing. The zebrafish (Danio rerio) embryo assay has recently emerged as an interesting 'intermediate' method for in vivo nanotoxicity screening, enabling (semi-) high-throughput analyses in a system significantly more complex than cultured cells, but at the same time also less 'invasive' and less expensive than large-scale biocompatibility studies in mice or rats. The zebrafish embryo assay is relatively well-established in the environmental sciences, but it has not yet gained wide notice in the nanomedicine field. Using prototypic polymeric drug carriers, gold-based nanodiagnostics and nanotherapeutics, and iron oxide-based nanodiagnostics, we here show that toxicity testing using zebrafish embryos is easy, efficient and informative, and faithfully reflects, yet significantly extends, cell-based toxicity testing. We therefore expect that the zebrafish embryo assay will become a popular future tool for in vivo nanotoxicity screening.

  16. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    Science.gov (United States)

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  17. Hormetic effect induced by depleted uranium in zebrafish embryos

    International Nuclear Information System (INIS)

    Ng, C.Y.P.; Cheng, S.H.; Yu, K.N.

    2016-01-01

    Highlights: • Studied hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio). • Hormesis observed at 24 hpf for exposures to 10 μg/l of depleted U (DU). • Hormesis not observed before 30 hpf for exposures to 100 μg/l of DU. • Hormetic effect induced in zebrafish embryos in a dose-and time-dependent manner. - Abstract: The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4 h post fertilization (hpf), and were then exposed to 10 or 100 μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  18. Finding clues to the riddle of sex determination in zebrafish

    Indian Academy of Sciences (India)

    ... to instruct retention of the ovarian fate. The mechanism and identity of this instructive signal remain unknown. We hypothesize that sex in zebrafish is a culmination of combinatorial effects of the genome, germ cells and the environment with inputs from epigenetic factors translating the biological meaning of this interaction.

  19. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Science.gov (United States)

    Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.

    2018-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362

  20. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish.

    Directory of Open Access Journals (Sweden)

    Beng-Siang Khor

    Full Text Available A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway.

  1. Hormetic effect induced by depleted uranium in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y.P. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Cheng, S.H., E-mail: bhcheng@cityu.edu.hk [Department of Biomedical Sciences, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong)

    2016-06-15

    Highlights: • Studied hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio). • Hormesis observed at 24 hpf for exposures to 10 μg/l of depleted U (DU). • Hormesis not observed before 30 hpf for exposures to 100 μg/l of DU. • Hormetic effect induced in zebrafish embryos in a dose-and time-dependent manner. - Abstract: The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4 h post fertilization (hpf), and were then exposed to 10 or 100 μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100 μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  2. Thyroidal angiogenesis in zebrafish ( Danio rerio ) exposed to high ...

    African Journals Online (AJOL)

    As a well known environmental contaminant, perchlorate inhibits thyroidal iodide uptake and reduces thyroid hormone levels. In zebrafish (Danio rerio) exposed to high concentrations of sodium perchlorate (200, 350 and 500 mg/L) for 10 days, remarkable angiogenesis was identified, not only histopathologically but also ...

  3. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    Due to the well characterized genome, overall highly synteny with the human genome and its suitability for functional genomics studies, the zebrafish is considered to be an ideal animal model for basic studies of mechanisms of diseases and immunity in vertebrates including humans. While several s...

  4. Repairing quite swimmingly: advances in regenerative medicine using zebrafish.

    Science.gov (United States)

    Goessling, Wolfram; North, Trista E

    2014-07-01

    Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. © 2014. Published by The Company of Biologists Ltd.

  5. Zebrafish genetics gets the Scube on Hedgehog secretion.

    Science.gov (United States)

    Ingham, Philip W

    2012-11-15

    Inspired by a zebrafish mutation, two recent studies by Creanga and colleagues (pp. 1312-1325) and Tukachinsky and colleagues have shed new light on the way in which lipidated Hedgehog proteins are secreted and released from expressing cells, suggesting a model for the sequential action of the Disp and Scube2 proteins in this process.

  6. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.

    Science.gov (United States)

    Todd, Douglas W; Philip, Rohit C; Niihori, Maki; Ringle, Ryan A; Coyle, Kelsey R; Zehri, Sobia F; Zabala, Leanne; Mudery, Jordan A; Francis, Ross H; Rodriguez, Jeffrey J; Jacob, Abraham

    2017-08-01

    Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.

  7. Automated processing of zebrafish imaging data: a survey.

    Science.gov (United States)

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  8. Melatonin mitigates neomycin-induced hair cell injury in zebrafish.

    Science.gov (United States)

    Oh, Kyoung Ho; Rah, Yoon Chan; Hwang, Kyu Ho; Lee, Seung Hoon; Kwon, Soon Young; Cha, Jae Hyung; Choi, June

    2017-10-01

    Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p melatonin for 1 h in SEM findings. Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.

  9. Egfl6 is involved in zebrafish notochord development.

    Science.gov (United States)

    Wang, Xueqian; Wang, Xin; Yuan, Wei; Chai, Renjie; Liu, Dong

    2015-08-01

    The epidermal growth factor (EGF) repeat motif defines a superfamily of diverse protein involved in regulating a variety of cellular and physiological processes, such as cell cycle, cell adhesion, proliferation, migration, and neural development. Egfl6, an EGF protein, also named MAGE was first cloned in human tissue. Up to date, the study of zebrafish Egfl6 expression pattern and functional analysis of Egfl6 involved in embryonic development of vertebrate in vivo is thus far lacking. Here we reported that Egfl6 was involved in zebrafish notochord development. It was shown that Egfl6 mRNA was expressed in zebrafish, developing somites, fin epidermis, pharyngeal arches, and hindbrain region. Particularly the secreted Egfl6 protein was significantly accumulated in notochord. Loss of Egfl6 function in zebrafish embryos resulted in curved body with distorted notochord in the posterior trunk. It was observed that expression of all Notch ligand and receptors in notochord of 28 hpf Egfl6 morphants was not affected, except notch2, which was up-regulated. We found that inhibition of Notch signaling by DAPT efficiently rescued notochord developmental defect of Egfl6 deficiency embryos.

  10. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish.

    Science.gov (United States)

    Savoldi, Robson; Polari, Daniel; Pinheiro-da-Silva, Jaquelinne; Silva, Priscila F; Lobao-Soares, Bruno; Yonamine, Mauricio; Freire, Fulvio A M; Luchiari, Ana C

    2017-01-01

    The combined infusion of Banisteriopsis caapi stem and Psychotria viridis leaves, known as ayahuasca, has been used for centuries by indigenous tribes. The infusion is rich in N , N -dimethyltryptamine (DMT) and monoamine oxidase inhibitors, with properties similar to those of serotonin. Despite substantial progress in the development of new drugs to treat anxiety and depression, current treatments have several limitations. Alternative drugs, such as ayahuasca, may shed light on these disorders. Here, we present time-course behavioral changes induced by ayahuasca in zebrafish, as first step toward establishing an ideal concentration for pre-clinical evaluations. We exposed adult zebrafish to five concentrations of the ayahuasca infusion: 0 (control), 0.1, 0.5, 1, and 3 ml/L ( n = 14 each group), and behavior was recorded for 60 min. We evaluated swimming speed, distance traveled, freezing and bottom dwelling every min for 60 min. Swimming speed and distance traveled decreased with an increase in ayahuasca concentration while freezing increased with 1 and 3 ml/L. Bottom dwelling increased with 1 and 3 ml/L, but declined with 0.1 ml/L. Our data suggest that small amounts of ayahuasca do not affect locomotion and reduce anxiety-like behavior in zebrafish, while increased doses of the drug lead to crescent anxiogenic effects. We conclude that the temporal analysis of zebrafish behavior is a sensitive method for the study of ayahuasca-induced functional changes in the vertebrate brain.

  11. Cell fate determination in zebrafish embryonic and adult muscle development

    NARCIS (Netherlands)

    Tee, J.M.

    2010-01-01

    We are interested in how the genetic basis of muscle precursor cells determines the outcome of the muscle cell fate, and thus leading to disruption in muscle formation and maintenance. We utilized the zebrafish carrying mutations in both Axin1 and Apc1, resulting in overactivation of the

  12. Automated Processing of Zebrafish Imaging Data: A Survey

    Science.gov (United States)

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  13. Ontogeny of Classical and Operant Learning Behaviors in Zebrafish

    Science.gov (United States)

    Valente, Andre; Huang, Kuo-Hua; Portugues, Ruben; Engert, Florian

    2012-01-01

    The performance of developing zebrafish in both classical and operant conditioning assays was tested with a particular focus on the emergence of these learning behaviors during development. Strategically positioned visual cues paired with electroshocks were used in two fully automated assays to investigate both learning paradigms. These allow the…

  14. Thyroidal angiogenesis in zebrafish (Danio rerio) exposed to high ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... As a well known environmental contaminant, perchlorate inhibits thyroidal iodide uptake and reduces thyroid hormone levels. In zebrafish (Danio rerio) exposed to high concentrations of sodium perchlorate (200, 350 and 500 mg/L) for 10 days, remarkable angiogenesis was identified, not only.

  15. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Directory of Open Access Journals (Sweden)

    Lucy A. Heap

    2018-01-01

    Full Text Available The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC/stratum griseum periventriculare (SPV, and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.

  16. Behavioral Changes Over Time Following Ayahuasca Exposure in Zebrafish

    Directory of Open Access Journals (Sweden)

    Robson Savoldi

    2017-07-01

    Full Text Available The combined infusion of Banisteriopsis caapi stem and Psychotria viridis leaves, known as ayahuasca, has been used for centuries by indigenous tribes. The infusion is rich in N, N-dimethyltryptamine (DMT and monoamine oxidase inhibitors, with properties similar to those of serotonin. Despite substantial progress in the development of new drugs to treat anxiety and depression, current treatments have several limitations. Alternative drugs, such as ayahuasca, may shed light on these disorders. Here, we present time-course behavioral changes induced by ayahuasca in zebrafish, as first step toward establishing an ideal concentration for pre-clinical evaluations. We exposed adult zebrafish to five concentrations of the ayahuasca infusion: 0 (control, 0.1, 0.5, 1, and 3 ml/L (n = 14 each group, and behavior was recorded for 60 min. We evaluated swimming speed, distance traveled, freezing and bottom dwelling every min for 60 min. Swimming speed and distance traveled decreased with an increase in ayahuasca concentration while freezing increased with 1 and 3 ml/L. Bottom dwelling increased with 1 and 3 ml/L, but declined with 0.1 ml/L. Our data suggest that small amounts of ayahuasca do not affect locomotion and reduce anxiety-like behavior in zebrafish, while increased doses of the drug lead to crescent anxiogenic effects. We conclude that the temporal analysis of zebrafish behavior is a sensitive method for the study of ayahuasca-induced functional changes in the vertebrate brain.

  17. The Lowe syndrome protein OCRL1 is required for endocytosis in the zebrafish pronephric tubule.

    Directory of Open Access Journals (Sweden)

    Francesca Oltrabella

    2015-04-01

    Full Text Available Lowe syndrome and Dent-2 disease are caused by mutation of the inositol 5-phosphatase OCRL1. Despite our increased understanding of the cellular functions of OCRL1, the underlying basis for the renal tubulopathy seen in both human disorders, of which a hallmark is low molecular weight proteinuria, is currently unknown. Here, we show that deficiency in OCRL1 causes a defect in endocytosis in the zebrafish pronephric tubule, a model for the mammalian renal tubule. This coincides with a reduction in levels of the scavenger receptor megalin and its accumulation in endocytic compartments, consistent with reduced recycling within the endocytic pathway. We also observe reduced numbers of early endocytic compartments and enlarged vacuolar endosomes in the sub-apical region of pronephric cells. Cell polarity within the pronephric tubule is unaffected in mutant embryos. The OCRL1-deficient embryos exhibit a mild ciliogenesis defect, but this cannot account for the observed impairment of endocytosis. Catalytic activity of OCRL1 is required for renal tubular endocytosis and the endocytic defect can be rescued by suppression of PIP5K. These results indicate for the first time that OCRL1 is required for endocytic trafficking in vivo, and strongly support the hypothesis that endocytic defects are responsible for the renal tubulopathy in Lowe syndrome and Dent-2 disease. Moreover, our results reveal PIP5K as a potential therapeutic target for Lowe syndrome and Dent-2 disease.

  18. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Science.gov (United States)

    Housley, Michael P; Njaine, Brian; Ricciardi, Filomena; Stone, Oliver A; Hölper, Soraya; Krüger, Marcus; Kostin, Sawa; Stainier, Didier Y R

    2016-06-01

    Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD), lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  19. Cavin4b/Murcb Is Required for Skeletal Muscle Development and Function in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael P Housley

    2016-06-01

    Full Text Available Skeletal muscles provide metazoans with the ability to feed, reproduce and avoid predators. In humans, a heterogeneous group of genetic diseases, termed muscular dystrophies (MD, lead to skeletal muscle dysfunction. Mutations in the gene encoding Caveolin-3, a principal component of the membrane micro-domains known as caveolae, cause defects in muscle maintenance and function; however it remains unclear how caveolae dysfunction underlies MD pathology. The Cavin family of caveolar proteins can form membrane remodeling oligomers and thus may also impact skeletal muscle function. Changes in the distribution and function of Cavin4/Murc, which is predominantly expressed in striated muscles, have been reported to alter caveolae structure through interaction with Caveolin-3. Here, we report the generation and phenotypic analysis of murcb mutant zebrafish, which display impaired swimming capacity, skeletal muscle fibrosis and T-tubule abnormalities during development. To understand the mechanistic importance of Murc loss of function, we assessed Caveolin-1 and 3 localization and found it to be abnormal. We further identified an in vivo function for Murc in Erk signaling. These data link Murc with developmental defects in T-tubule formation and progressive muscle dysfunction, thereby providing a new candidate for the etiology of muscular dystrophy.

  20. Pharmacological treatment and BBB-targeted genetic therapy for MCT8-dependent hypomyelination in zebrafish

    Directory of Open Access Journals (Sweden)

    David Zada

    2016-11-01

    Full Text Available Hypomyelination is a key symptom of Allan-Herndon-Dudley syndrome (AHDS, a psychomotor retardation associated with mutations in the thyroid-hormone (TH transporter MCT8 (monocarboxylate transporter 8. AHDS is characterized by severe intellectual deficiency, neuromuscular impairment and brain hypothyroidism. In order to understand the mechanism for TH-dependent hypomyelination, we developed an mct8 mutant (mct8−/− zebrafish model. The quantification of genetic markers for oligodendrocyte progenitor cells (OPCs and mature oligodendrocytes revealed reduced differentiation of OPCs into oligodendrocytes in mct8−/− larvae and adults. Live imaging of single glial cells showed that the number of oligodendrocytes and the length of their extensions are reduced, and the number of peripheral Schwann cells is increased, in mct8−/− larvae compared with wild type. Pharmacological analysis showed that TH analogs and clemastine partially rescued the hypomyelination in the CNS of mct8−/− larvae. Intriguingly, triiodothyronine (T3 treatment rescued hypomyelination in mct8−/− embryos before the maturation of the blood–brain barrier (BBB, but did not affect hypomyelination in older larvae. Thus, we expressed Mct8-tagRFP in the endothelial cells of the vascular system and showed that even relatively weak mosaic expression completely rescued hypomyelination in mct8−/− larvae. These results suggest potential pharmacological treatments and BBB-targeted gene therapy that can enhance myelination in AHDS and possibly in other TH-dependent brain disorders.

  1. Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct.

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2007-01-01

    Full Text Available Pronephros, a developmental model for adult mammalian kidneys (metanephros and a functional kidney in early teleosts, consists of glomerulus, tubule, and duct. These structural and functional elements are responsible for different kidney functions, e.g., blood filtration, waste extraction, salt recovery, and water balance. During pronephros organogenesis, cell differentiation is a key step in generating different cell types in specific locations to accomplish designated functions. However, it is poorly understood what molecules regulate the differentiation of different cell types in different parts of the kidney. Two types of epithelial cells, multi-cilia cells and principal cells, are found in the epithelia of the zebrafish distal pronephric duct. While the former is characterized by at least 15 apically localized cilia and expresses centrin2 and rfx2, the latter is characterized by a single primary cilium and sodium pumps. Multi-cilia cells and principal cells differentiate from 17.5 hours post-fertilization onwards in a mosaic pattern. Jagged2a-Notch1a/Notch3-Her9 is responsible for specification and patterning of these two cell types through a lateral inhibition mechanism. Furthermore, multi-cilia cell hyperplasia was observed in mind bomb mutants and Mind bomb was shown to interact with Jagged2a and facilitate its internalization. Taken together, our findings add a new paradigm of Notch signaling in kidney development, namely, that Jagged2a-Notch signaling modulates cell fate choice in a nephric segment, the distal pronephric duct.

  2. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction.

    Science.gov (United States)

    Jenkins, Molly H; Alrowaished, Sarah S; Goody, Michelle F; Crawford, Bryan D; Henry, Clarissa A

    2016-01-01

    Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.

  3. HCV IRES-mediated core expression in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ye Zhao

    Full Text Available The lack of small animal models for hepatitis C virus has impeded the discovery and development of anti-HCV drugs. HCV-IRES plays an important role in HCV gene expression, and is an attractive target for antiviral therapy. In this study, we report a zebrafish model with a biscistron expression construct that can co-transcribe GFP and HCV-core genes by human hepatic lipase promoter and zebrafish liver fatty acid binding protein enhancer. HCV core translation was designed mediated by HCV-IRES sequence and gfp was by a canonical cap-dependent mechanism. Results of fluorescence image and in situ hybridization indicate that expression of HCV core and GFP is liver-specific; RT-PCR and Western blotting show that both core and gfp expression are elevated in a time-dependent manner for both transcription and translation. It means that the HCV-IRES exerted its role in this zebrafish model. Furthermore, the liver-pathological impact associated with HCV-infection was detected by examination of gene markers and some of them were elevated, such as adiponectin receptor, heparanase, TGF-β, PDGF-α, etc. The model was used to evaluate three clinical drugs, ribavirin, IFNα-2b and vitamin B12. The results show that vitamin B12 inhibited core expression in mRNA and protein levels in dose-dependent manner, but failed to impact gfp expression. Also VB12 down-regulated some gene transcriptions involved in fat liver, liver fibrosis and HCV-associated pathological process in the larvae. It reveals that HCV-IRES responds to vitamin B12 sensitively in the zebrafish model. Ribavirin did not disturb core expression, hinting that HCV-IRES is not a target site of ribavirin. IFNα-2b was not active, which maybe resulted from its degradation in vivo for the long time. These findings demonstrate the feasibility of the zebrafish model for screening of anti-HCV drugs targeting to HCV-IRES. The zebrafish system provides a novel evidence of using zebrafish as a HCV model organism.

  4. Elucidating the mechanism of action of tributyltin (TBT) in zebrafish.

    Science.gov (United States)

    McGinnis, Courtney L; Crivello, Joseph F

    2011-05-01

    Tributyltin (TBT), an antifouling agent, has been implicated in the masculinization of fish species worldwide, but the masculinizing mechanism is not fully understood. We have examined the actions of TBT as an endocrine disruptor in zebrafish (Danio rerio). In HeLa cells transiently co-transfected with plasmid constructs containing the zebrafish estrogen receptors (zfERα, zfERβ(1) and zfERβ(2)) and the zebrafish estrogen response element (zfERE-tk-luc), ethinyl estradiol (EE2) induced luciferase activity 4 to 6-fold and was inhibited by TBT. In HeLa cells transiently co-transfected with the zebrafish androgen receptor (zfAR) and the murine androgen receptor response element (ARE-slp-luc), testosterone induced luciferase activity was not inhibited by TBT. In HeLa cells co-transfected with zfERα, zfERβ(1) and zfERβ(2) and a plasmid containing zebrafish aromatase (zfCyp19b-luc), TBT inhibited luciferase activity. In zebrafish exposed to 1mg/kg and 5mg/kg TBT in vivo, there was a increase in liver sulfotransferase and a decrease acyl-CoA testosterone acyltransferase activity. Real-time PCR analysis of sexual differentiation markers in fish exposed to TBT in vivo revealed a tissue-specific response. In brain there was increased production of Sox9, Dax1, and SF1 mRNA, an androgenizing effect, while in the liver there was increased production of Dax1, Cyp19a and zfERβ(1) mRNA but decreased production of Sox9 mRNA, a feminizing effect. In the gonads there was increased production of zfERα and zfCyp19a mRNA, again a feminizing effect. TBT has an overall masculinizing effect but the masculinizing effect is tempered by a feminizing effect on gene transcription in certain tissues. These results are discussed in the context of TBT as an endocrine disruptor in zebrafish. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Genetic fingerprinting of mutant rose cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Prasad, K V; Singh, K P; Singh, A.P. [Division of Floriculture and Landscaping, Indian Agricultural Research Institute, Pusa, New Delhi (India)], E-mail: kvprasad66@gmail.com

    2008-07-01

    Six rose mutants evolved at the Indian Agricultural Research Institute, New Delhi from four parent cultivars were characterized based on RAPD markers. Contrary to the earlier findings our effort has conclusively proven that the RAPD markers are indeed robust tools to discern the mutants from their parents. Among 40 primers screened, 7 primers produced inconsistent banding pattern. The number of polymorphic bands varied between 4 (OPA 14) and 10 (OPA1) with an average of 6.5 bands per primer. The percentage polymorphism ranged from 62.5 (OPM 9) to 100 percent (OPA 1). Most of the primers produced monomorphic bands between parent and mutant rose cultivars. When primer OPA 2 was used a specific band of 2.5 kb was noticed in mutant cv. Pusa Urmil and cv. Pusa Abhishek but was absent in parent cv. Jantar Mantar. A polymorphic band of 750 bp was noticed in the parent Kiss of Fire and helped in differentiating the parent from its mutant when amplified with OPK 3. Primer OPS 16 produced discriminatory band of 800 bp in mutant cv. Pink Sport of Montezuma while it was absent in its parent cv. Montezuma. Another specific band of 650 bp was present in parent cv. Montezuma and absent in its mutant cv. Pink Sport of Montezuma signifying the uniqueness of the mutant. Primer OPM 5 brought out distinct polymorphism among the parent Jantar Mantar and its three mutants with absence of a specific band of 1.5 kb in the parent. The four parents and 6 mutants were divided into four distinct groups in the Dendogram constructed by UPGMA method. The most genetically similar cultivar among the 10 cultivars analyzed are Montezuma and its pink sport of Montezuma whereas Abhisarika a mutant of cv. Kiss of Fire was distinctly different and formed a separate cluster. (author)

  6. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    International Nuclear Information System (INIS)

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-01-01

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  7. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yu-Ju; Chen, Yau-Hung, E-mail: yauhung@mail.tku.edu.tw

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  8. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    Science.gov (United States)

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015

  9. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    Science.gov (United States)

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  10. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish.

    Science.gov (United States)

    Shams, Soaleha; Amlani, Shahid; Buske, Christine; Chatterjee, Diptendu; Gerlai, Robert

    2018-01-01

    The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions. © 2017 Wiley Periodicals, Inc.

  11. Generation and characterization of pigment mutants of ...

    African Journals Online (AJOL)

    Compared to the wild CC-124, these mutants are characterized by a decrease in chlorophyll a & b content and an increase in carotenoids. The lowest decrease in chlorophyll a was 3 to 4 folds, while the highest increase in carotenoids was 2 to 4 folds. The result of bio-test, using the resulting pigment mutant of C. reinhardtii ...

  12. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish

    OpenAIRE

    Faught, Erin; Best, Carol; Vijayan, Mathilakath M.

    2016-01-01

    Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to mon...

  13. A mutant of a mutant of a mutant of a ...: Irradiation of progressive radiation-induced mutants in a mutation-breeding programme with Chrysanthenum morifolium RAM

    International Nuclear Information System (INIS)

    Broertjes, C.; Koene, P.; Veen, J.W.H. van.

    1980-01-01

    Radiation-induced sports in Chrysanthemum morifolium RAM. have been reported for several years. It has become an everyday practice to produce flower-colour mutants from outstanding cross-breeding products, even before they are distributed for the commercial production of cut flowers. One of the most successful and recent examples is that of cv. Horim, of which hundreds of mutants were produced by successive use of radiation-induced mutants in the mutation-breeding programme. Over about 4 years a variety of flower-colour mutants was obtained, not only largely including the outstanding characteristics of the original cultivar but sometimes even with an appreciable improvement in quality and yield. It is expected that the latter types, the Miros group, will soon completely supersede the spontaneous or raditation-induced Horim sports and mutants and take over the leading position of the Horim group in the production of all-year-round (AYR) cut-flowers. (orig.)

  14. Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation.

    Science.gov (United States)

    Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L

    2017-09-01

    Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    Science.gov (United States)

    Eom, Dae Seok; Inoue, Shinya; Patterson, Larissa B; Gordon, Tiffany N; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M

    2012-01-01

    The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.

  16. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

    Directory of Open Access Journals (Sweden)

    Dae Seok Eom

    Full Text Available The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11. We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate patte