WorldWideScience

Sample records for nrf2-mediated antioxidant responses

  1. A systems biology perspective on Nrf2-mediated antioxidant response

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2010-01-01

    Cells in vivo are constantly exposed to reactive oxygen species (ROS) generated endogenously and exogenously. To defend against the deleterious consequences of ROS, cells contain multiple antioxidant enzymes expressed in various cellular compartments to scavenge these toxic species. Under oxidative stresses, these antioxidant enzymes are upregulated to restore redox homeostasis. Such an adaptive response results from the activation of a redox-sensitive gene regulatory network mediated by nuclear factor E2-related factor 2. To more completely understand how the redox control system is designed by nature to meet homeostatic goals, we have examined the network from a systems perspective using engineering approaches. As with man-made control devices, the redox control system can be decomposed into distinct functional modules, including transducer, controller, actuator, and plant. Cells achieve specific performance objectives by utilizing nested feedback loops, feedforward control, and ultrasensitive signaling motifs, etc. Given that endogenously generated ROS are also used as signaling molecules, our analysis suggests a novel mode of action to explain oxidative stress-induced pathological conditions and diseases. Specifically, by adaptively upregulating antioxidant enzymes, oxidative stress may inadvertently attenuate ROS signals that mediate physiological processes, resulting in aberrations of cellular functions and adverse consequences. Lastly, by simultaneously considering the two competing cellular tasks-adaptive antioxidant defense and ROS signaling-we re-examine the premise that dietary antioxidant supplements is generally beneficial to human health. Our analysis highlights some possible adverse effects of these widely consumed antioxidants.

  2. Shanxi Aged Vinegar Protects against Alcohol-Induced Liver Injury via Activating Nrf2-Mediated Antioxidant and Inhibiting TLR4-Induced Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ting Xia

    2018-06-01

    Full Text Available Shanxi aged vinegar (SAV is a typical fermented and antioxidant food, which has various health-promoting effects. This work aimed to explore the effects of SAV on alcohol-induced liver injury. A mice model of alcoholic liver injury was established to illuminate its potential mechanisms. All mice pretreated with SAV and then received an ethanol solution (50% w/v, 4.8 g/kg b.w.. The results showed that SAV ameliorated alcohol-induced histological changes and elevation of liver enzymes. SAV attenuated alcohol-induced oxidative stress by declining levels of hepatic oxidants, and restoring depletion of antioxidant enzyme activities in mice livers. Moreover, SAV alleviated alcohol-induced oxidative damage by activating nuclear factor erythroid-2-related factor 2 (Nrf2-mediated signal pathway. In addition, SAV prevented alcohol-induced inflammation by suppressing lipopolysaccharide (LPS level and activities of pro-inflammatory enzymes, and regulating inflammatory cytokines. SAV inhibited alcohol-induced inflammation through down-regulating the expression of Toll-like receptor 4 (TLR4-mediated inflammatory response. The findings provide crucial evidence for elucidating the hepatoprotective mechanisms of SAV and encourage the future application of SAV as a functional food for liver protection.

  3. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Woods, Courtney G.; Wong, Victoria; Collins, Sheila; Andersen, Melvin E.

    2008-01-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage

  4. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  5. Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages

    International Nuclear Information System (INIS)

    Woods, Courtney G.; Fu Jingqi; Xue Peng; Hou Yongyong; Pluta, Linda J.; Yang Longlong; Zhang Qiang; Thomas, Russell S.; Andersen, Melvin E.; Pi Jingbo

    2009-01-01

    Hypochlorous acid (HOCl) is potentially an important source of cellular oxidative stress. Human HOCl exposure can occur from chlorine gas inhalation or from endogenous sources of HOCl, such as respiratory burst by phagocytes. Transcription factor Nrf2 is a key regulator of cellular redox status and serves as a primary source of defense against oxidative stress. We recently demonstrated that HOCl activates Nrf2-mediated antioxidant response in cultured mouse macrophages in a biphasic manner. In an effort to determine whether Nrf2 pathways overlap with other stress pathways, gene expression profiling was performed in RAW 264.7 macrophages exposed to HOCl using whole genome mouse microarrays. Benchmark dose (BMD) analysis on gene expression data revealed that Nrf2-mediated antioxidant response and protein ubiquitination were the most sensitive biological pathways that were activated in response to low concentrations of HOCl (< 0.35 mM). Genes involved in chromatin architecture maintenance and DNA-dependent transcription were also sensitive to very low doses. Moderate concentrations of HOCl (0.35 to 1.4 mM) caused maximal activation of the Nrf2 pathway and innate immune response genes, such as IL-1β, IL-6, IL-10 and chemokines. At even higher concentrations of HOCl (2.8 to 3.5 mM) there was a loss of Nrf2-target gene expression with increased expression of numerous heat shock and histone cluster genes, AP-1-family genes, cFos and Fra1 and DNA damage-inducible Gadd45 genes. These findings confirm an Nrf2-centric mechanism of action of HOCl in mouse macrophages and provide evidence of interactions between Nrf2, inflammatory, and other stress pathways.

  6. Cancer Chemoprevention by Traditional Chinese Herbal Medicine and Dietary Phytochemicals: Targeting Nrf2-Mediated Oxidative Stress/Anti-Inflammatory Responses, Epigenetics, and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Jong Hun Lee

    2013-01-01

    Full Text Available Excessive oxidative stress induced by reactive oxygen species (ROS, reactive nitrogen species (RNS, and reactive metabolites of carcinogens alters cellular homeostasis, leading to genetic/epigenetic changes, genomic instability, neoplastic transformation, and cancer initiation/progression. As a protective mechanism against oxidative stress, antioxidant/detoxifying enzymes reduce these reactive species and protect normal cells from endo-/exogenous oxidative damage. The transcription factor nuclear factor-erythroid 2 p45 (NF-E2-related factor 2 (Nrf2, a master regulator of the antioxidative stress response, plays a critical role in the expression of many cytoprotective enzymes, including NAD(PH:quinine oxidoreductase (NQO1, heme oxygenase-1 (HO-1, UDP-glucuronosyltransferase (UGT, and glutathione S-transferase (GST. Recent studies demonstrated that many dietary phytochemicals derived from various vegetables, fruits, spices, and herbal medicines induce Nrf2-mediated antioxidant/detoxifying enzymes, restore aberrant epigenetic alterations, and eliminate cancer stem cells (CSCs. The Nrf2-mediated antioxidant response prevents many age-related diseases, including cancer. Owing to their fundamental contribution to carcinogenesis, epigenetic modifications and CSCs are novel targets of dietary phytochemicals and traditional Chinese herbal medicine (TCHM. In this review, we summarize cancer chemoprevention by dietary phytochemicals, including TCHM, which have great potential as a safer and more effective strategy for preventing cancer.

  7. Activation of endothelial nitric oxide synthase by dietary isoflavones: role of NO in Nrf2-mediated antioxidant gene expression.

    Science.gov (United States)

    Mann, Giovanni E; Rowlands, David J; Li, Francois Y L; de Winter, Patricia; Siow, Richard C M

    2007-07-15

    The endothelium plays a key role in the maintenance of vascular homeostasis, and increased oxidative stress in vascular disease leads to reduced nitric oxide bioavailability and impaired endothelium-dependent relaxation of resistance vessels. Although epidemiological evidence suggests that diets containing high amounts of natural antioxidants afford protection against coronary heart disease (CHD), antioxidant supplementation trials have largely reported only marginal health benefits. There is controversy concerning the cardiovascular benefits of prolonged estrogen/progestin or soy isoflavone therapy for postmenopausal women and patients with an increased risk of CHD. Research on the potential health benefits of soy isoflavones and other polyphenols contained in red wine, green and black tea and dark chocolate developed rapidly during the 1990's, and recent clinical trials and studies in animal models and cultured endothelial cells provide important and novel insights into the mechanisms by which dietary polyphenols afford protection against oxidative stress. In this review, we highlight that NO and reactive oxygen radicals may mediate dietary polyphenol induced activation of Nrf2, which in turn triggers antioxidant response element (ARE) driven transcription of phase II detoxifying and antioxidant defense enzymes in vascular cells.

  8. Transcription factor Nrf2 mediates an adaptive response to sulforaphane that protects fibroblasts in vitro against the cytotoxic effects of electrophiles, peroxides and redox-cycling agents

    International Nuclear Information System (INIS)

    Higgins, Larry G.; Kelleher, Michael O.; Eggleston, Ian M.; Itoh, Ken; Yamamoto, Masayuki; Hayes, John D.

    2009-01-01

    Sulforaphane can stimulate cellular adaptation to redox stressors through transcription factor Nrf2. Using mouse embryonic fibroblasts (MEFs) as a model, we show herein that the normal homeostatic level of glutathione in Nrf2 -/- MEFs was only 20% of that in their wild-type counterparts. Furthermore, the rate of glutathione synthesis following its acute depletion upon treatment with 3 μmol/l sulforaphane was very substantially lower in Nrf2 -/- MEFs than in wild-type cells, and the rebound leading to a ∼ 1.9-fold increase in glutathione that occurred 12-24 h after Nrf2 +/+ MEFs were treated with sulforaphane was not observed in Nrf2 -/- fibroblasts. Wild-type MEFs that had been pre-treated for 24 h with 3 μmol/l sulforaphane exhibited between 1.4- and 3.2-fold resistance against thiol-reactive electrophiles, including isothiocyanates, α,β-unsaturated carbonyl compounds (e.g. acrolein), aryl halides and alkene epoxides. Pre-treatment of Nrf2 +/+ MEFs with sulforaphane also protected against hydroperoxides (e.g. cumene hydroperoxide, CuOOH), free radical-generating compounds (e.g. menadione), and genotoxic electrophiles (e.g. chlorambucil). By contrast, Nrf2 -/- MEFs were typically ∼ 50% less tolerant of these agents than wild-type fibroblasts, and sulforaphane pre-treatment did not protect the mutant cells against xenobiotics. To test whether Nrf2-mediated up-regulation of glutathione represents the major cytoprotective mechanism stimulated by sulforaphane, 5 μmol/l buthionine sulfoximine (BSO) was used to inhibit glutathione synthesis. In Nrf2 +/+ MEFs pre-treated with sulforaphane, BSO diminished intrinsic resistance and abolished inducible resistance to acrolein, CuOOH and chlorambucil, but not menadione. Thus Nrf2-dependent up-regulation of GSH is the principal mechanism by which sulforaphane pre-treatment induced resistance to acrolein, CuOOH and chlorambucil, but not menadione.

  9. Dietary supplementation of curcumin augments heat stress tolerance through upregulation of nrf-2-mediated antioxidative enzymes and hsps in Puntius sophore.

    Science.gov (United States)

    Mahanty, Arabinda; Mohanty, Sasmita; Mohanty, Bimal P

    2017-08-01

    Heat stress is one of the major environmental concerns in global warming regime and rising temperature has resulted in mass mortalities of animals including fishes. Therefore, strategies for high temperature stress tolerance and ameliorating the effects of heat stress are being looked for. In an earlier study, we reported that Nrf-2 (nuclear factor E2-related factor 2) mediated upregulation of antioxidative enzymes and heat shock proteins (Hsps) provide survivability to fish under heat stress. In this study, we have evaluated the ameliorative potential of dietary curcumin, a potential Nrf-2 inducer in heat stressed cyprinid Puntius sophore. Fishes were fed with diet supplemented with 0.5, 1.0, and 1.5% curcumin at the rate 2% of body weight daily in three separate groups (n = 40 in each group) for 60 days. Fishes fed with basal diet (without curcumin) served as the control (n = 40). Critical thermal maxima (CTmax) was determined for all the groups (n = 10, in duplicates) after the feeding trial. Significant increase in the CTmax was observed in the group fed with 1.5% curcumin- supplemented fishes whereas it remained similar in groups fed with 0.5%, and 1% curcumin-supplemented diet, as compared to control. To understand the molecular mechanism of elevated thermotolerance in the 1.5% curcumin supplemented group, fishes were given a sub-lethal heat shock treatment (36 °C) for 6 h and expression analysis of nrf-2, keap-1, sod, catalase, gpx, and hsp27, hsp60, hsp70, hsp90, and hsp110 was carried out using RT-PCR. In the gill, expression of nrf-2, sod, catalase, gpx, and hsp60, hsp70, hsp90, and hsp110 was found to be elevated in the 1.5% curcumin-fed heat-shocked group compared to control and the basal diet-fed, heat-shocked fishes. Similarly, in the liver, upregulation in expression of nrf-2, sod, catalase, and hsp70 and hsp110 was observed in 1.5% curcumin supplemented and heat shocked group. Thus, this study showed that supplementation of curcumin

  10. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia.

    Science.gov (United States)

    Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana

    2011-03-01

    Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.

  11. Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway

    Directory of Open Access Journals (Sweden)

    Michelle R. Campbell

    2013-01-01

    Full Text Available Nuclear factor- (erythroid-derived 2 like 2 (NFE2L2, NRF2 is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1, and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.

  12. Nrf2 mediates redox adaptations to exercise

    Directory of Open Access Journals (Sweden)

    Aaron J. Done

    2016-12-01

    Full Text Available The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular exercise on nuclear factor erythroid 2-related factor 2 (Nrf2 activity and downstream targets of Nrf2 signaling. Nrf2 (encoded in humans by the NFE2L2 gene is the master regulator of antioxidant defenses, a transcription factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2 signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly, as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from animal studies translate to humans.

  13. UVA Irradiation Enhances Brusatol-Mediated Inhibition of Melanoma Growth by Downregulation of the Nrf2-Mediated Antioxidant Response

    Science.gov (United States)

    Wang, Mei; Shi, Guangwei; Bian, Chunxiang; Nisar, Muhammad Farrukh; Guo, Yingying; Wu, Yan; Li, Wei; Huang, Xiao; Jiang, Xuemei; Bartsch, Jörg W.

    2018-01-01

    Brusatol (BR) is a potent inhibitor of Nrf2, a transcription factor that is highly expressed in cancer tissues and confers chemoresistance. UVA-generated reactive oxygen species (ROS) can damage both normal and cancer cells and may be of potential use in phototherapy. In order to provide an alternative method to treat the aggressive melanoma, we sought to investigate whether low-dose UVA with BR is more effective in eliminating melanoma cells than the respective single treatments. We found that BR combined with UVA led to inhibition of A375 melanoma cell proliferation by cell cycle arrest in the G1 phase and triggers cell apoptosis. Furthermore, inhibition of Nrf2 expression attenuated colony formation and tumor development from A375 cells in heterotopic mouse models. In addition, cotreatment of UVA and BR partially suppressed Nrf2 and its downstream target genes such as HO-1 along with the PI3K/AKT pathway. We propose that cotreatment increased ROS-induced cell cycle arrest and cellular apoptosis and inhibits melanoma growth by regulating the AKT-Nrf2 pathway in A375 cells which offers a possible therapeutic intervention strategy for the treatment of human melanoma. PMID:29670684

  14. Hericium erinaceus Inhibits TNF-α-Induced Angiogenesis and ROS Generation through Suppression of MMP-9/NF-κB Signaling and Activation of Nrf2-Mediated Antioxidant Genes in Human EA.hy926 Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hebron C. Chang

    2016-01-01

    Full Text Available Hericium erinaceus (HE is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926 cells upon tumor necrosis factor-α- (TNF-α- stimulation (10 ng/mL. The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50–200 μg/mL significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9 and intercellular adhesion molecule-1 (ICAM-1. Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB followed by suppression of I-κB (inhibitor-κB degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1, γ-glutamylcysteine synthetase (γ-GCLC, and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2 related factor-2 (Nrf2 in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities of H. erinaceus may contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.

  15. Hericium erinaceus Inhibits TNF-α-Induced Angiogenesis and ROS Generation through Suppression of MMP-9/NF-κB Signaling and Activation of Nrf2-Mediated Antioxidant Genes in Human EA.hy926 Endothelial Cells.

    Science.gov (United States)

    Chang, Hebron C; Yang, Hsin-Ling; Pan, Jih-Hao; Korivi, Mallikarjuna; Pan, Jian-You; Hsieh, Meng-Chang; Chao, Pei-Min; Huang, Pei-Jane; Tsai, Ching-Tsan; Hseu, You-Cheng

    2016-01-01

    Hericium erinaceus (HE) is an edible mushroom that has been shown to exhibit anticancer and anti-inflammatory activities. We investigated the antiangiogenic and antioxidant potentials of ethanol extracts of HE in human endothelial (EA.hy926) cells upon tumor necrosis factor-α- (TNF-α-) stimulation (10 ng/mL). The underlying molecular mechanisms behind the pharmacological efficacies were elucidated. We found that noncytotoxic concentrations of HE (50-200 μg/mL) significantly inhibited TNF-α-induced migration/invasion and capillary-like tube formation of endothelial cells. HE treatment suppressed TNF-α-induced activity and/or overexpression of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, HE downregulated TNF-α-induced nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) followed by suppression of I-κB (inhibitor-κB) degradation. Data from fluorescence microscopy illustrated that increased intracellular ROS production upon TNF-α-stimulation was remarkably inhibited by HE pretreatment in a dose-dependent manner. Notably, HE triggered antioxidant gene expressions of heme oxygenase-1 (HO-1), γ-glutamylcysteine synthetase (γ-GCLC), and glutathione levels, which may contribute to inhibition of ROS. Increased antioxidant status was associated with upregulated nuclear translocation and transcriptional activation of NF-E2 related factor-2 (Nrf2) in HE treated cells. Our findings conclude that antiangiogenic and anti-inflammatory activities of H. erinaceus may contribute to its anticancer property through modulation of MMP-9/NF-κB and Nrf2-antioxidant signaling pathways.

  16. Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Quanchao Sun

    2017-01-01

    Full Text Available Lung ischemia/reperfusion (I/R injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway.

  17. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    increase in the intracellular level of glutathione and total glutathione S-transferase content. SCE significantly elevated the messenger ribonucleic acid and protein levels of P-glycoprotein and multidrug resistance-associated protein 2 and 4, whereas the expression of organic anion transporting peptide 1A2 and 1B1 was significantly downregulated by SCE. Knockdown of Nrf2 by small interfering ribonucleic acid attenuated the regulatory effect of SCE on these DMEs and drug transporters. SCE significantly upregulated Nrf2 and promoted the translocation of Nrf2 from cytoplasm to the nuclei. Additionally, SCE significantly suppressed the expression of cytosolic Kelch-like ECH-associated protein 1 (the repressor of Nrf2 and remarkably increased Nrf2 stability in HepG2 cells. Taken together, our findings suggest that the hepatoprotective effects of SCE may be partially ascribed to the modulation of DMEs and drug transporters via Nrf2-mediated signaling pathway. SCE may alter the pharmacokinetics of other coadministered drugs that are substrates of these DMEs and transporters and thus cause unfavorable herb–drug interactions. Keywords: Nrf2, Keap1, HepG2 cell, drug metabolizing enzyme, drug transporter, P-gp, MRP, OATP, Schisandra chinensis

  18. The Role of Nrf2-Mediated Pathway in Cardiac Remodeling and Heart Failure

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2014-01-01

    Full Text Available Heart failure (HF is frequently the consequence of sustained, abnormal neurohormonal, and mechanical stress and remains a leading cause of death worldwide. The key pathophysiological process leading to HF is cardiac remodeling, a term referring to maladaptation to cardiac stress at the molecular, cellular, tissue, and organ levels. HF and many of the conditions that predispose one to HF are associated with oxidative stress. Increased generation of reactive oxygen species (ROS in the heart can directly lead to increased necrosis and apoptosis of cardiomyocytes which subsequently induce cardiac remodeling and dysfunction. Nuclear factor-erythroid-2- (NF-E2- related factor 2 (Nrf2 is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes that are ubiquitously expressed in the cardiovascular system. Emerging evidence has revealed that Nrf2 and its target genes are critical regulators of cardiovascular homeostasis via the suppression of oxidative stress, which is the key player in the development and progression of HF. The purpose of this review is to summarize evidence that activation of Nrf2 enhances endogenous antioxidant defenses and counteracts oxidative stress-associated cardiac remodeling and HF.

  19. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian [School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009 (China); Yin, Shasha; Yang, Jun; Zhang, Qin; Liu, Yangyang [Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093 (China); Huang, Fengjie, E-mail: hfj@cpu.edu.cn [School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009 (China); Cao, Wangsen, E-mail: wangsencao@nju.edu.cn [Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093 (China)

    2016-08-01

    Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renal fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders. - Highlights: • Sinomenine has strong potency of inhibiting renal fibrosis in UUO mouse kidney. • Sinomenine attenuates the expression of profibrogenic proteins. • Sinomenine balances renal fibrosis-associated oxidative stress. • Sinomenine mitigates profibrogenic

  20. Lycopene inhibits NF-κB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells.

    Science.gov (United States)

    Yang, Po-Min; Chen, Huang-Zhi; Huang, Yu-Ting; Hsieh, Chia-Wen; Wung, Being-Sun

    2017-06-01

    The endothelial expression of cell adhesion molecules plays a leading role in atherosclerosis. Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to have anti-inflammatory properties. In the present study, we demonstrate a putative mechanism for the anti-inflammatory effects of lycopene. We demonstrate that lycopene inhibits the adhesion of tumor necrosis factor α (TNFα)-stimulated monocytes to endothelial cells and suppresses the expression of intercellular cell adhesion molecule-1 (ICAM-1) at the transcriptional level. Moreover, lycopene was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein, IκBα, following 6 h of pre-treatment. In TNFα-stimulated endothelial cells, nuclear factor-κB (NF-κB) nuclear translocation and transcriptional activity were abolished by up to 12 h of lycopene pre-treatment. We also found that lycopene increased the intracellular glutathione (GSH) level and glutamate-cysteine ligase expression. Subsequently, lycopene induced nuclear factor-erythroid 2 related factor 2 (Nrf2) activation, leading to the increased expression of downstream of heme oxygenase-1 (HO-1). The use of siRNA targeting HO-1 blocked the inhibitory effects of lycopene on IκB degradation and ICAM-1 expression. The inhibitory effects of lycopene thus appear to be mediated through its induction of Nrf2-mediated HO-1 expression. Therefore, the findings of the present study indicate that lycopene suppresses the activation of TNFα-induced signaling pathways through the upregulation of Nrf2-mediated HO-1 expression.

  1. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses

    Science.gov (United States)

    Chaiprasongsuk, Anyamanee; Onkoksoong, Tasanee; Pluemsamran, Thanyawan; Limsaengurai, Saowalak; Panich, Uraiwan

    2015-01-01

    Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. PMID:26765101

  2. Accumulation and detoxification dynamics of Chromium and antioxidant responses in juvenile rare minnow, Gobiocypris rarus.

    Science.gov (United States)

    Yuan, Cong; Li, Meng; Zheng, Yao; Zhou, Ying; Wu, Feili; Wang, Zaizhao

    2017-09-01

    Hexavalent chromium (Cr 6+ ) compounds are hazardous via all exposure routes. To explore the dynamics of Cr accumulation and elimination and to reveal the mechanisms underlying detoxification and antioxidation in juvenile Gobiocypris rarus, one-month old G. rarus larvae were exposed to 0.1mgL -1 Cr 6+ for four weeks for accumulation and subsequently placed to clean water for another week for depuration. The contents of Cr were measured weekly in the whole body of G. rarus juveniles. The activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST) and glutathione reductase (GR), and contents of glutathione (GSH) and malonaldehyde (MDA), and transcripts of cat, Cu/Zn-sod, Mn-sod, gpx1, gstpi, gr, mt1, nrf2 and uba52 were determined. The results indicated that G. rarus juveniles had a strong ability to resist the Cr accumulation by Cr 6+ exposure and to remove Cr from the body in clean water. In addition, GST and MT proteins may be involved in the detoxification of Cr 6+ . Moreover, Cr 6+ -induced GST detoxification in G. rarus juveniles might be accomplished through the Nrf2-mediated regulation of gene expressions. The antioxidant enzyme systems exhibited a response mechanism of the protective enzymes in organisms when they are subjected to external environmental stress. Two weeks of Cr 6+ treatments could have led to the damage and consecutive degradation of antioxidant enzymes via ubiquitination, and MT proteins could be involved in protecting the activity of these enzymes. The capability of antioxidant enzyme systems to recover from the Cr 6+ -induced damage was strong in G. rarus juveniles after Cr 6+ was removed from the water. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dioscin alleviates BDL- and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lina; Tao, Xufeng; Xu, Youwei; Han, Xu; Qi, Yan; Xu, Lina; Yin, Lianhong; Peng, Jinyong, E-mail: jinyongpeng2014@163.com

    2016-02-01

    Oxidative stress is involved in hepatic stellate cells (HSCs) activation and extracellular matrix overproduction. We previously reported the promising effects of dioscin against CCl{sub 4}-induced liver fibrosis, but its effects and mechanisms on BDL- and DMN-induced liver fibrosis remain unknown. The results in the present study indicated that dioscin significantly inhibited HSCs activation and attenuated hepatic fibrosis in rats. Furthermore, dioscin markedly up-regulated the levels of sirtuin 1 (Sirt1), HO-1, GST, GCLC and GCLM via increasing the nuclear translocation of nuclear erythroid factor 2-related factor 2 (Nrf2), which in turn inhibited mitogen-activated protein kinase 14 (p38 MAPK) phosphorylation and reduced the levels of COL1A1, COL3A1, α-SMA and fibronectin. These results were further validated by knockdown of Sirt1 and Nrf2 using siRNAs silencing, and abrogation of p38 MAPK using SB-203580 (a p38 MAPK inhibitor) in HSC-T6 and LX-2 cells. Collectively, our findings confirmed the potent effects of dioscin against liver fibrosis and also provided novel insights into the mechanisms of this compound as a candidate for the prevention of liver fibrosis in the future. - Highlights: • Dioscin showed potent effects against BDL- and DMN-induced liver fibrosis in rats. • Dioscin significantly suppressed oxidative stress. • Dioscin triggered Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway. • Dioscin should be developed as a novel candidate to treat liver fibrosis.

  4. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Wang, Dapeng [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Yamanaka, Kenzo [Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba (Japan); An, Yan, E-mail: dranyan@126.com [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China)

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  5. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-01-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  6. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response.

    Science.gov (United States)

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E; Pi, Jingbo

    2011-04-08

    There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs³(+)) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs³(+) exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs³(+) exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in adipocytes. Taken together our studies suggest that prolonged low-level iAs³(+) exposure activates the cellular adaptive oxidative stress response, which impairs insulin-stimulated ROS signaling that is involved in ISGU, and thus causes insulin resistance in adipocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response.

    Science.gov (United States)

    Seo, Ji Yeon; Pyo, Euisun; An, Jin-Pyo; Kim, Jinwoong; Sung, Sang Hyun; Oh, Won Keun

    2017-01-01

    Therapeutic approach of Alzheimer's disease (AD) has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata , and focused on the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated heme oxygenase (HO)-1-inducing effects and the inhibitory activity of amyloid beta (A β ) 42 -induced microglial activation related to Nrf2 and nuclear factor κ B (NF- κ B)-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE) gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular A β 42 in BV-2 cells and decreased the production of interleukin (IL)-6, IL-1 β , prostaglandin (PG)E 2 , and nitric oxide (NO) because of artificial phagocytic A β 42 . It decreased pNF- κ B accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS) and cyclooxygenase II (COX-II) in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits A β 42 -overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  8. Andrographolide Activates Keap1/Nrf2/ARE/HO-1 Pathway in HT22 Cells and Suppresses Microglial Activation by Aβ42 through Nrf2-Related Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Ji Yeon Seo

    2017-01-01

    Full Text Available Therapeutic approach of Alzheimer’s disease (AD has been gradually diversified. We examined the therapeutic and preventive potential of andrographolide, which is a lactone diterpenoid from Andrographis paniculata, and focused on the Kelch-like ECH-associated protein 1 (Keap1/nuclear factor (erythroid-derived 2-like 2 (Nrf2-mediated heme oxygenase (HO-1-inducing effects and the inhibitory activity of amyloid beta (Aβ42-induced microglial activation related to Nrf2 and nuclear factor κB (NF-κB-mediated inflammatory responses. Andrographolide induced the expression and translocation of Nrf2 from the cytoplasm to the nucleus, thereby activating antioxidant response element (ARE gene transcription and HO-1 expression in murine hippocampal HT22 cells. Andrographolide eliminated intracellular Aβ42 in BV-2 cells and decreased the production of interleukin (IL-6, IL-1β, prostaglandin (PGE2, and nitric oxide (NO because of artificial phagocytic Aβ42. It decreased pNF-κB accumulation in the nucleus and the expression of inducible nitric oxide synthase (i-NOS and cyclooxygenase II (COX-II in the microglial BV-2 cell line. In summary, andrographolide activates Nrf2-mediated HO-1 expression and inhibits Aβ42-overexpressed microglial BV-2 cell activation. These results suggested that andrographolide might have the potential for further examination of the therapeutics of AD.

  9. Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver.

    Science.gov (United States)

    Cavin, C; Marin-Kuan, M; Langouët, S; Bezençon, C; Guignard, G; Verguet, C; Piguet, D; Holzhäuser, D; Cornaz, R; Schilter, B

    2008-04-01

    Coffee consumption has been associated with a significant decrease in the risk of developing chronic diseases such as Parkinson disease, diabetes type-2 and several types of cancers (e.g. colon, liver). In the present study, a coffee-dependent induction of enzymes involved in xenobiotic detoxification processes was observed in rat liver and primary hepatocytes. In addition, coffee was found to induce the mRNA and protein expression of enzymes involved in cellular antioxidant defenses. These inductions were correlated with the activation of the Nrf2 transcription factor as shown using an ARE-reporter luciferase assay. The induction of detoxifying enzymes GSTs and AKR is compatible with a protection against both genotoxicity and cytotoxicity of aflatoxin B1 (AFB1). This hypothesis was confirmed in in vitro and ex vivo test systems, where coffee reduced both AFB1-DNA and protein adducts. Interestingly, coffee was also found to inhibit cytochrome CYP1A1/2, indicating that other mechanisms different from a stimulation of detoxification may also play a significant role in the chemoprotective effects of coffee. Further investigations in either human liver cell line and primary hepatocytes indicated that the chemoprotective effects of coffee against AFB1 genotoxicity are likely to be of relevance for humans. These data strongly suggest that coffee may protect against the adverse effects of AFB1. In addition, the coffee-mediated stimulation of the Nrf2-ARE pathway resulting in increased endogenous defense mechanisms against electrophilic but also oxidative insults further support that coffee may be associated with a protection against various types of chemical stresses.

  10. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    International Nuclear Information System (INIS)

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-01-01

    Highlights: → In 3T3-L1 adipocytes iAs 3+ decreases insulin-stimulated glucose uptake. → iAs 3+ attenuates insulin-induced phosphorylation of AKT S473. → iAs 3+ activates the cellular adaptive oxidative stress response. → iAs 3+ impairs insulin-stimulated ROS signaling. → iAs 3+ decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs 3+ ) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs 3+ exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs 3+ exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in

  11. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  12. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins

    Directory of Open Access Journals (Sweden)

    Kirtikar Shukla

    2017-01-01

    Full Text Available We have shown earlier that pretreatment of cultured cells with aldose reductase (AR inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG- induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1 and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK-α1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins.

  13. Aldose Reductase Inhibitor Protects against Hyperglycemic Stress by Activating Nrf2-Dependent Antioxidant Proteins.

    Science.gov (United States)

    Shukla, Kirtikar; Pal, Pabitra Bikash; Sonowal, Himangshu; Srivastava, Satish K; Ramana, Kota V

    2017-01-01

    We have shown earlier that pretreatment of cultured cells with aldose reductase (AR) inhibitors prevents hyperglycemia-induced mitogenic and proinflammatory responses. However, the effects of AR inhibitors on Nrf2-mediated anti-inflammatory responses have not been elucidated yet. We have investigated how AR inhibitor fidarestat protects high glucose- (HG-) induced cell viability changes by increasing the expression of Nrf2 and its dependent phase II antioxidant enzymes. Fidarestat pretreatment prevents HG (25 mM)-induced Thp1 monocyte viability. Further, treatment of Thp1 monocytes with fidarestat caused a time-dependent increase in the expression as well as the DNA-binding activity of Nrf2. In addition, fidarestat augmented the HG-induced Nrf2 expression and activity and also upregulated the expression of Nrf2-dependent proteins such as hemeoxygenase-1 (HO1) and NQO1 in Thp1 cells. Similarly, treatment with AR inhibitor also induced the expression of Nrf2 and HO1 in STZ-induced diabetic mice heart and kidney tissues. Further, AR inhibition increased the HG-induced expression of antioxidant enzymes such as SOD and catalase and activation of AMPK- α 1 in Thp1 cells. Our results thus suggest that pretreatment with AR inhibitor prepares the monocytes against hyperglycemic stress by overexpressing the Nrf2-dependent antioxidative proteins.

  14. Lico A Enhances Nrf2-Mediated Defense Mechanisms against t-BHP-Induced Oxidative Stress and Cell Death via Akt and ERK Activation in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2015-01-01

    Full Text Available Licochalcone A (Lico A exhibits various biological properties, including anti-inflammatory and antioxidant activities. In this study, we investigated the antioxidative potential and mechanisms of Lico A against tert-butyl hydroperoxide- (t-BHP- induced oxidative damage in RAW 264.7 cells. Our results indicated that Lico A significantly inhibited t-BHP-induced cytotoxicity, apoptosis, and reactive oxygen species (ROS generation and reduced glutathione (GSH depletion but increased the glutamate-cysteine ligase modifier (GCLM subunit and the glutamate-cysteine ligase catalytic (GCLC subunit genes expression. Additionally, Lico A dramatically upregulated the antioxidant enzyme heme oxygenase 1 (HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf2, which were associated with inducing Nrf2 nuclear translocation, decreasing Keap1 protein expression and increasing antioxidant response element (ARE promoter activity. Lico A also obviously induced the activation of serine/threonine kinase (Akt and extracellular signal-regulated kinase (ERK, but PI3K/Akt and ERK inhibitors treatment displayed clearly decreased levels of LicoA-induced Nrf2 nuclear translocation and HO-1 expression, respectively. Furthermore, Lico A treatment markedly attenuated t-BHP-induced oxidative damage, which was reduced by treatment with PI3K/Akt, ERK, and HO-1 inhibitors. Therefore, Lico A might have a protective role against t-BHP-induced cytotoxicity by modulating HO-1 and by scavenging ROS via the activation of the PI3K/Akt and ERK/Nrf2 signaling pathways.

  15. Physiological and antioxidant responses of three leguminous ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-11-02

    Nov 2, 2009 ... 2College of Animal Science and Technology, Yangzhoug University, Yangzhoug, ... The study investigated the physiological behaviors and antioxidant responses ... into H2O2, which is further scavenged by CAT and various.

  16. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins

    International Nuclear Information System (INIS)

    Nakaso, Kazuhiro; Nakamura, Chiharu; Sato, Hiromi; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2006-01-01

    Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson's disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, γGCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K-Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K-Nrf2 system may be a useful therapeutic strategy for PD

  17. DNA Protecting Activities of Nymphaea nouchali (Burm. f Flower Extract Attenuate t-BHP-Induced Oxidative Stress Cell Death through Nrf2-Mediated Induction of Heme Oxygenase-1 Expression by Activating MAP-Kinases

    Directory of Open Access Journals (Sweden)

    Md Badrul Alam

    2017-09-01

    Full Text Available This study was performed to investigate the antioxidant activities of Nymphaea nouchali flower (NNF extract and the underlying mechanism using RAW 264.7 cells. The presence of gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate, caffeic acid, quercetin, and apigenin in the NNF was confirmed by high-performance liquid chromatography (HPLC. The extract had a very potent capacity to scavenge numerous free radicals. NNF extract was also able to prevent DNA damage and quench cellular reactive oxygen species (ROS generation induced by tert-Butyl hydroperoxide (t-BHP with no signs of toxicity. The NNF extract was able to augment the expression of both primary and phase II detoxifying enzyme, resulting in combat the oxidative stress. This is accomplished by phosphorylation of mitogen-activated protein kinase (MAP kinase (p38 kinase and extracellular signal-regulated kinase (ERK followed by enhancing the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2. This attenuates cellular ROS generation and confers protection from cell death. Altogether, the results of current study revealed that Nymphaea nouchali flower could be a source of natural phytochemicals that could lead to the development of new therapeutic agents for preventing oxidative stress associated diseases and attenuating disease progression.

  18. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. Copyright © 2015. Published by Elsevier B.V.

  19. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis

    Czech Academy of Sciences Publication Activity Database

    Večeřa, Josef; Krishnan, N.; Mithöfer, A.; Vogel, H.; Kodrík, Dalibor

    2012-01-01

    Roč. 155, č. 2 (2012), s. 389-395 ISSN 1532-0456 R&D Projects: GA ČR GAP501/10/1215 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * antioxidant response * antioxidant enzymes Subject RIV: ED - Physiology Impact factor: 2.707, year: 2012

  20. Licochalcone A Upregulates Nrf2 Antioxidant Pathway and Thereby Alleviates Acetaminophen-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Hongming Lv

    2018-03-01

    investigations firstly implicated that Lico A has protective potential against APAP-induced hepatotoxicity which may be strongly associated with the Nrf2-mediated defense mechanisms.

  1. Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values.

    Science.gov (United States)

    Escher, Beate I; van Daele, Charlotte; Dutt, Mriga; Tang, Janet Y M; Altenburger, Rolf

    2013-07-02

    The induction of adaptive stress response pathways is an early and sensitive indicator of the presence of chemical and non-chemical stressors in cells. An important stress response is the Nrf-2 mediated oxidative stress response pathway where electrophilic chemicals or chemicals that cause the formation of reactive oxygen species initiate the production of antioxidants and metabolic detoxification enzymes. The AREc32 cell line is sensitive to chemicals inducing oxidative stress and has been previously applied for water quality monitoring of organic micropollutants and disinfection byproducts. Here we propose an algorithm for the derivation of effect-based water quality trigger values for this end point that is based on the combined effects of mixtures of regulated chemicals. Mixture experiments agreed with predictions by the mixture toxicity concept of concentration addition. The responses in the AREc32 and the concentrations of 269 individual chemicals were quantified in nine environmental samples, ranging from treated effluent, recycled water, stormwater to drinking water. The effects of the detected chemicals could explain less than 0.1% of the observed induction of the oxidative stress response in the sample, affirming the need to use effect-based trigger values that account for all chemicals present.

  2. Antioxidant responses and cellular adjustments to oxidative stress.

    Science.gov (United States)

    Espinosa-Diez, Cristina; Miguel, Verónica; Mennerich, Daniela; Kietzmann, Thomas; Sánchez-Pérez, Patricia; Cadenas, Susana; Lamas, Santiago

    2015-12-01

    Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Copyright © 2015. Published by Elsevier B.V.

  3. Enhanced antioxidative responses of a salt-resistant wheat cultivar ...

    African Journals Online (AJOL)

    Enhanced antioxidative responses of a salt-resistant wheat cultivar facilitate its adaptation to salt stress. L Chen, H Yin, J Xu, X Liu. Abstract. Wheat cultivars capable of accumulating minerals under salt stress are of considerable interest for their potential to improve crop productivity and crop quality. This study addressed the ...

  4. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  5. Antioxidant responses of cortex neurons to iron loading

    Directory of Open Access Journals (Sweden)

    PABLA AGUIRRE

    2006-01-01

    Full Text Available Brain cells have a highly active oxidative metabolism, yet they contain only low to moderate superoxide dismutase and catalase activities. Thus, their antioxidant defenses rely mainly on cellular reduced glutathione levels. In this work, in cortical neurons we characterized viability and changes in reduced and oxidized glutathione levels in response to a protocol of iron accumulation. We found that massive death occurred after 2 days in culture with 10 mM Fe. Surviving cells developed an adaptative response that included increased synthesis of GSH and the maintenance of a glutathione-based reduction potential. These results highlight the fundamental role of glutathione homeostasis in the antioxidant response and provide novel insights into the adaptative mechanisms of neurons subjected to progressive iron loads.

  6. NFE2-Related Transcription Factor 2 Coordinates Antioxidant Defense with Thyroglobulin Production and Iodination in the Thyroid Gland.

    Science.gov (United States)

    Ziros, Panos G; Habeos, Ioannis G; Chartoumpekis, Dionysios V; Ntalampyra, Eleni; Somm, Emmanuel; Renaud, Cédric O; Bongiovanni, Massimo; Trougakos, Ioannis P; Yamamoto, Masayuki; Kensler, Thomas W; Santisteban, Pilar; Carrasco, Nancy; Ris-Stalpers, Carrie; Amendola, Elena; Liao, Xiao-Hui; Rossich, Luciano; Thomasz, Lisa; Juvenal, Guillermo J; Refetoff, Samuel; Sykiotis, Gerasimos P

    2018-06-01

    The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated

  7. Antioxidants

    Science.gov (United States)

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  8. Antioxidant response elements: Discovery, classes, regulation and potential applications

    Directory of Open Access Journals (Sweden)

    Azhwar Raghunath

    2018-07-01

    Full Text Available Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs, which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Keywords: Antioxidant response elements, Antioxidant genes, ARE-reporter constructs, ARE SNPs, Keap1/Nrf2/ARE pathway, Oxidative stress

  9. Albumin Antioxidant Response to Stress in Diabetic Nephropathy Progression

    Science.gov (United States)

    Medina-Navarro, Rafael; Corona-Candelas, Itzia; Barajas-González, Saúl; Díaz-Flores, Margarita; Durán-Reyes, Genoveva

    2014-01-01

    Background A new component of the protein antioxidant capacity, designated Response Surplus (RS), was recently described. A major feature of this component is the close relationship between protein antioxidant capacity and molecular structure. Oxidative stress is associated with renal dysfunction in patients with renal failure, and plasma albumin is the target of massive oxidation in nephrotic syndrome and diabetic nephropathy. The aim of the present study was to explore the albumin redox state and the RS component of human albumin isolated from diabetic patients with progressive renal damage. Methods/Principal Findings Serum aliquots were collected and albumin isolated from 125 diabetic patients divided into 5 groups according to their estimated glomerular filtration rate (GFR). In addition to clinical and biochemical variables, the albumin redox state, including antioxidant capacity, thiol group content, and RS component, were evaluated. The albumin antioxidant capacity and thiol group content were reciprocally related to the RS component in association with GFR reduction. The GFR decline and RS component were significantly negatively correlated (R = –0.83, palbumin to stress in relation to the progression of diabetic renal disease was evaluated. The findings confirm that the albumin molecular structure is closely related to its redox state, and is a key factor in the progression of diabetes nephropathy. PMID:25187963

  10. Antioxidant Responses Induced by UVB Radiation in Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Hans Köhler

    2017-05-01

    Full Text Available Deschampsia antarctica Desv. is one of two vascular plants that live in the Maritime Antarctic Territory and is exposed to high levels of ultraviolet-B (UVB radiation. In this work, antioxidant physiology of D. antarctica was studied in response to UVB induced oxidative changes. Samples were collected from Antarctica and maintained in vitro culture during 2 years. Plants were sub-cultured in a hydroponic system and exposed to 21.4 kJ m-2 day-1, emulating summer Antarctic conditions. Results showed rapid and significant increases in reactive oxygen species (ROS at 3 h, which rapidly decreased. No dramatic changes were observed in photosynthetic efficiency, chlorophyll content, and level of thiobarbituric acid reactive species (MDA. The enzymatic (superoxide dismutase, SOD and total peroxidases, POD and non-enzymatic antioxidant activity (total phenolic increased significantly in response to UVB treatment. These findings suggest that tolerance of D. antarctica to UVB radiation could be attributed to its ability to activate both enzymatic and non-enzymatic antioxidant systems.

  11. Antioxidant responses of chickpea plants subjected to boron toxicity.

    Science.gov (United States)

    Ardic, M; Sekmen, A H; Tokur, S; Ozdemir, F; Turkan, I

    2009-05-01

    This study investigated oxidative stress and the antioxidant response to boron (B) of chickpea cultivars differing in their tolerance to drought. Three-week-old chickpea seedlings were subjected to 0.05 (control), 1.6 or 6.4 mm B in the form of boric acid (H(3)BO(3)) for 7 days. At the end of the treatment period, shoot length, dry weight, chlorophyll fluorescence, B concentration, malondialdehyte content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. The 1.6 mm B treatment did not cause significant changes in shoot length of cultivars, although shoot length increased in the drought-tolerant Gökce and decreased in the drought-sensitive Küsmen after 6.4 mm B treatment. Dry weights of both cultivars decreased with 6.4 mm B treatment. Chlorophyll fluorescence (Fv/Fm) did not change in Gökce at either B level. Nor did it change in Küsmen with 1.6 mm B but Fv/Fm decreased with 6.4 mm B. Boron concentration in the shoots of both cultivars increased significantly with increasing levels of applied B. Significant increases in total SOD activity were observed in shoots of both cultivars given 1.6 and 6.4 mm B. Shoot extracts exhibited five activity bands, two of which were identified as MnSOD and Cu/ZnSOD. In comparison to the control group, all enzyme activities (except APX and SOD) decreased with 1.6 mm B stress. GR activity decreased, while activities of CAT, POX and APX did not change with 6.4 mm B in Küsmen. On the other hand, activities of CAT, APX and SOD increased in Gökce at both B levels. In addition, lipid peroxidation was higher in Küsmen than in Gökce, indicating more damage by B to membrane lipids in the former cultivar. These results suggest that (i) Gökce is tolerant and Küsmen is sensitive to B, and (ii) B tolerance of Gökce might be closely related to increased capacity of the antioxidative system (total SOD, CAT and APX) to

  12. Antioxidant response elements: Discovery, classes, regulation and potential applications.

    Science.gov (United States)

    Raghunath, Azhwar; Sundarraj, Kiruthika; Nagarajan, Raju; Arfuso, Frank; Bian, Jinsong; Kumar, Alan P; Sethi, Gautam; Perumal, Ekambaram

    2018-07-01

    Exposure to antioxidants and xenobiotics triggers the expression of a myriad of genes encoding antioxidant proteins, detoxifying enzymes, and xenobiotic transporters to offer protection against oxidative stress. This articulated universal mechanism is regulated through the cis-acting elements in an array of Nrf2 target genes called antioxidant response elements (AREs), which play a critical role in redox homeostasis. Though the Keap1/Nrf2/ARE system involves many players, AREs hold the key in transcriptional regulation of cytoprotective genes. ARE-mediated reporter constructs have been widely used, including xenobiotics profiling and Nrf2 activator screening. The complexity of AREs is brought by the presence of other regulatory elements within the AREs. The diversity in the ARE sequences not only bring regulatory selectivity of diverse transcription factors, but also confer functional complexity in the Keap1/Nrf2/ARE pathway. The different transcription factors either homodimerize or heterodimerize to bind the AREs. Depending on the nature of partners, they may activate or suppress the transcription. Attention is required for deeper mechanistic understanding of ARE-mediated gene regulation. The computational methods of identification and analysis of AREs are still in their infancy. Investigations are required to know whether epigenetics mechanism plays a role in the regulation of genes mediated through AREs. The polymorphisms in the AREs leading to oxidative stress related diseases are warranted. A thorough understanding of AREs will pave the way for the development of therapeutic agents against cancer, neurodegenerative, cardiovascular, metabolic and other diseases with oxidative stress. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  14. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  15. Response of total phenolic content and antioxidant activities of bush ...

    African Journals Online (AJOL)

    The positive health benefits associated with tea are made possible by the antioxidant activity of phenolic compounds present in tea. The total phenolic content and antioxidant activity of bush tea (Athrixia phylicoides DC.) and special tea (Monsonia burkeana) were studied. The extractions were done in triplicate using cold ...

  16. Physiological and biochemical responses of thyme plants to some antioxidants

    Directory of Open Access Journals (Sweden)

    SALWA A. ORABI

    2014-11-01

    Full Text Available Orabi SA, Talaat IM, Balbaa LK. 2014. Physiological and biochemical responses of thyme plants to some antioxidants. Nusantara Bioscience 6: 118-125. Two pot experiments were conducted to investigate the effect of tryptophan, nicotinamide and α-tocopherol (each at 50 and 100 mg/L on plant growth, essential oil yield and its main constituents. All treatments significantly promoted plant height, and increased fresh and dry mass (g/plant of thyme (Thymus vulgaris L.. The treatment with 100 mg/L nicotinamide showed increasing in total potassium mainly in the first cut. Total soluble sugars, oil percentage and oil yield and protein recorded increments with tryptophan treatments. Treatment of Thymus plants with 100 mg/L nicotinamide observed the highest percentage of thymol (67.61%. Oxygenated compounds recorded the highest value with 50 mg/L α-tocopherol treatment, while the maximum non-oxygenated ones resulted from the application of 100 mg/L nicotinamide. All treatments under study significantly affected the activity of oxidoreductase enzymes (POX and PPO. Nicotinamide at the concentration of 100 mg/L recorded the highest increments in APX and GR and the lowest values in oxidoreductase enzyme activities added to the lowest values of lipid peroxidation to enhance the best protection of thyme plants.

  17. Nrf2, the Master Regulator of Anti-Oxidative Responses

    Directory of Open Access Journals (Sweden)

    Sandra Vomund

    2017-12-01

    Full Text Available Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2. Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.

  18. Sulforaphane protects rodent retinas against ischemia-reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway.

    Directory of Open Access Journals (Sweden)

    Hong Pan

    Full Text Available Retinal ischemia-reperfusion (I/R injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF, which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2-mediated induction of heme oxygenase-1 (HO-1. This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p. injected with SF (12.5 mg/kg or vehicle (corn oil once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II (ZnPP, 30 mg/kg, i.p. treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL, and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.

  19. Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Sarifakiogullari Serpil

    2005-11-01

    Full Text Available Abstract Background Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. Methods Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. Results Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p In subjects with nonalcoholic steatohepatitis, fibrosis score was significantly correlated with total peroxide level, total antioxidant response and oxidative stress index (p 0.05. Conclusion Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis.

  20. Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis.

    Science.gov (United States)

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Fusun F; Sabuncu, Tevfik; Aslan, Mehmet; Sarifakiogullari, Serpil; Gunaydin, Necla; Erel, Ozcan

    2005-11-11

    Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p total peroxide level and mean oxidative stress index were higher (all p total peroxide level, total antioxidant response and oxidative stress index (p 0.05). Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis.

  1. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mammary gene expression profiles during an intramammary challenge reveal potential mechanisms linking negative energy balance with impaired immune response

    DEFF Research Database (Denmark)

    Moyes, Kasey; Drackley, J K; Morin, D E

    2010-01-01

    Our objective was to compare mammary tissue gene expression profiles during a Streptococcus uberis (S. uberis) mastitis challenge between lactating cows subjected to dietary-induced negative energy balance (NEB; n = 5) and cows fed ad libitum to maintain positive energy balance (PEB; n = 5...... 0.05), with 86 DEG up-regulated and 201 DEG down-regulated. Canonical pathways most affected by NEB were IL-8 Signaling (10 genes), Glucocorticoid Receptor Signaling (13), and NRF2-mediated Oxidative Stress Response (10). Among genes differentially expressed by NEB, Cell Growth and Proliferation (48...

  3. ANTIOXIDANT SUPPLEMENTATION AND NASAL INFLAMMATORY RESPONSES AMONG YOUNG ASTHMATICS EXPOSED TO HIGH LEVELS OF OZONE

    Science.gov (United States)

    Background: Recent studies examining the inflammatory response in atopic asthma to ozone suggest a release of soluble mediators of inflammation factors that might be related to reactive oxygen species (ROS). Antioxidant could prove useful in subjects exposed to additional oxidati...

  4. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line

    International Nuclear Information System (INIS)

    Park, Hae-Ryung; Loch-Caruso, Rita

    2014-01-01

    expression of redox-sensitive genes. • Nrf2 inducers upregulated Nrf2-mediated oxidative stress responses. • Nrf2 inducers reduced BDE-47-stimulated IL-6 release and NF-κB activity

  5. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae-Ryung, E-mail: heaven@umich.edu; Loch-Caruso, Rita

    2014-11-15

    expression of redox-sensitive genes. • Nrf2 inducers upregulated Nrf2-mediated oxidative stress responses. • Nrf2 inducers reduced BDE-47-stimulated IL-6 release and NF-κB activity.

  6. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  7. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology.

    Science.gov (United States)

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young Ho; Lee, Chang-Ho; Hong, Sang Pil; Jeon, Yeo-Won; Kim, Young-Eon

    2013-10-31

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 ° C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg)/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  8. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Lan-Sook Lee

    2013-10-01

    Full Text Available Response surface methodology (RSM has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  9. Studies on the effects on growth and antioxidant responses of two marine microalgal species to uniconazole

    Science.gov (United States)

    Mei, Xueqiao; Zheng, Kang; Wang, Lingdong; Li, Yantuan

    2014-10-01

    Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase (SOD) and peroxidase (POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations (0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica ( P enzymes, superoxide dismutase (SOD) and catalase (CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.

  10. Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis

    OpenAIRE

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Fusun F; Sabuncu, Tevfik; Aslan, Mehmet; Sarifakiogullari, Serpil; Gunaydin, Necla; Erel, Ozcan

    2005-01-01

    Abstract Background Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. Methods Twenty-two subjects with biopsy proven nonalco...

  11. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    OpenAIRE

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young; Lee, Chang-Ho; Hong, Sang; Jeon, Yeo-Won; Kim, Young-Eon

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio ...

  12. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    Science.gov (United States)

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system.

    Science.gov (United States)

    Muhammad, Faheem; Wang, Aifei; Qi, Wenxiu; Zhang, Shixing; Zhu, Guangshan

    2014-01-01

    Regeneratable antioxidant property of nanoceria has widely been explored to minimize the deleterious influences of reactive oxygen species. Limited information is, however, available regarding the biological interactions and subsequent fate of nanoceria in body fluids. This study demonstrates a surprising dissolution of stable and ultrasmall (4 nm) cerium oxide nanoparticles (CeO2 NPs) in response to biologically prevalent antioxidant molecules (glutathione, vitamin C). Such a redox sensitive behavior of CeO2 NPs is subsequently exploited to design a redox responsive drug delivery system for transporting anticancer drug (camptothecin). Upon exposing the CeO2 capped and drug loaded nanoconstruct to vitamin c or glutathione, dissolution-accompanied aggregation of CeO2 nanolids unleashes the drug molecules from porous silica to achieve a significant anticancer activity. Besides stimuli responsive drug delivery, immobilization of nanoceria onto the surface of mesoporous silica also facilitates us to gain a basic insight into the biotransformation of CeO2 in physiological mediums.

  14. Yields, Phenolic Profiles and Antioxidant Activities of Ziziphus jujube Mill. in Response to Different Fertilization Treatments

    Directory of Open Access Journals (Sweden)

    Min Wang

    2013-09-01

    Full Text Available Increasing demand for more jujube (Ziziphus jujube Mill. production requires understanding the specific fertilization needs of jujube trees. This study was conducted to compare fruit yields, phenolic profiles and antioxidant activity of jujube in response to different fertilizers. Application of organic fertilizer appeared to enhance the phenolics and antioxidant activity accumulation of jujubes, compared to conventional fertilized jujubes. Amongst inorganic fertilizers, supplemental potassium as an individual nutrient improved the accumulation of phenolics in jujubes. Our results demonstrate that phenolics levels and antioxidant activity of jujube can be manipulated through fertilizer management and tracked by following proanthocyanidin concentrations. In a practical production context, the combination of organic fertilizers and inorganic fertilizers such as more supplemental individual potassium, and less supplemental individual nitrogen and phosphorus, might be the best management combination for achieving higher phenolic concentration, stronger antioxidant activity and a good harvest.

  15. Interleukin-6 Reduces β-Cell Oxidative Stress by Linking Autophagy With the Antioxidant Response.

    Science.gov (United States)

    Marasco, Michelle R; Conteh, Abass M; Reissaus, Christopher A; Cupit V, John E; Appleman, Evan M; Mirmira, Raghavendra G; Linnemann, Amelia K

    2018-05-21

    Production of reactive oxygen species (ROS) is a key instigator of β-cell dysfunction in diabetes. The pleiotropic cytokine IL-6 has previously been linked to β-cell autophagy but has not been studied in the context of β-cell antioxidant response. We used a combination of animal models of diabetes and analysis of cultured human islets and rodent β-cells to study how IL-6 influences antioxidant response. We show that IL-6 couples autophagy to antioxidant response to reduce β-cell and human islet ROS. β cell-specific loss of IL-6 signaling in vivo renders mice more susceptible to oxidative damage and cell death by the selective β-cell toxins streptozotocin and alloxan. IL-6-driven ROS reduction is associated with an increase in the master antioxidant factor NRF2, which rapidly translocates to the mitochondria to decrease mitochondrial activity and stimulate mitophagy. IL-6 also initiates a robust transient drop in cellular cAMP, likely contributing to the stimulation of mitophagy for ROS mitigation. Our findings suggest that coupling autophagy to antioxidant response in the β cell leads to stress adaptation that can reduce cellular apoptosis. These findings have implications for β-cell survival under diabetogenic conditions and present novel targets for therapeutic intervention. © 2018 by the American Diabetes Association.

  16. Antioxidant responses to an acute ultra-endurance exercise: impact on DNA stability and indications for an increased need for nutritive antioxidants in the early recovery phase.

    Science.gov (United States)

    Neubauer, Oliver; Reichhold, Stefanie; Nics, Lukas; Hoelzl, Christine; Valentini, Judit; Stadlmayr, Barbara; Knasmüller, Siegfried; Wagner, Karl-Heinz

    2010-10-01

    Antioxidant requirements have neither been defined for endurance nor been defined for ultra-endurance athletes. To verify whether an acute bout of ultra-endurance exercise modifies the need for nutritive antioxidants, we aimed (1) to investigate the changes of endogenous and exogenous antioxidants in response to an Ironman triathlon; (2) to particularise the relevance of antioxidant responses to the indices of oxidatively damaged blood lipids, blood cell compounds and lymphocyte DNA and (3) to examine whether potential time-points of increased susceptibility to oxidative damage are associated with alterations in the antioxidant status. Blood that was collected from forty-two well-trained male athletes 2 d pre-race, immediately post-race, and 1, 5 and 19 d later was sampled. The key findings of the present study are as follows: (1) Immediately post-race, vitamin C, α-tocopherol, and levels of the Trolox equivalent antioxidant capacity, the ferric reducing ability of plasma and the oxygen radical absorbance capacity (ORAC) assays increased significantly. Exercise-induced changes in the plasma antioxidant capacity were associated with changes in uric acid, bilirubin and vitamin C. (2) Significant inverse correlations between ORAC levels and indices of oxidatively damaged DNA immediately and 1 d post-race suggest a protective role of the acute antioxidant responses in DNA stability. (3) Significant decreases in carotenoids and γ-tocopherol 1 d post-race indicate that the antioxidant intake during the first 24 h of recovery following an acute ultra-endurance exercise requires specific attention. Furthermore, the present study illustrates the importance of a diversified and well-balanced diet to maintain a physiological antioxidant status in ultra-endurance athletes in reference to recommendations.

  17. Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio.

    Science.gov (United States)

    Hemalatha, Devan; Amala, Antony; Rangasamy, Basuvannan; Nataraj, Bojan; Ramesh, Mathan

    2016-11-01

    Extensive use of quinalphos, an organophosphorus pesticide, is likely to reach the aquatic environment and thereby posing a health concern for aquatic organisms. Oxidative stress and antioxidant responses may be good indicators of pesticide contamination in aquatic organisms. The data on quinalphos induced oxidative stress and antioxidant responses in carps are scanty. This study is aimed to assess the two sublethal concentrations of quinalphos (1.09 and 2.18 μL L -1 ) on oxidative stress and antioxidant responses of Cyprinus carpio for a period of 20 days. In liver, the malondialdehyde level was found to be significantly increased in both the concentrations. The results of the antioxidant parameters obtained show a significant increase in superoxide dismutase, catalase, and glutathione-S-transferase activity in liver of fish. These results demonstrate that environmentally relevant levels of the insecticide quinalphos can cause oxidative damage and increase the antioxidant scavenging capacity in C. carpio. This may reflect the potential role of these parameters as useful biomarkers for the assessment of pesticide contamination. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1399-1406, 2016. © 2015 Wiley Periodicals, Inc.

  18. Ultraviolet Radiation: Cellular Antioxidant Response and the Role of Ocular Aldehyde Dehydrogenase Enzymes

    Science.gov (United States)

    Marchitti, Satori A.; Chen, Ying; Thompson, David C.; Vasiliou, Vasilis

    2011-01-01

    Solar ultraviolet radiation (UVR) exposes the human eye to near constant oxidative stress. Evidence suggests that UVR is the most important environmental insult leading to the development of a variety of ophthalmoheliosis disorders. UVR-induced reactive oxygen species are highly reactive with DNA, proteins and cellular membranes, resulting in cellular and tissue damage. Antioxidant defense systems present in ocular tissues function to combat reactive oxygen species and protect the eye from oxidative damage. Important enzymatic antioxidants are the superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase and members of the aldehyde dehydrogenase (ALDH) superfamily. Glutathione, ascorbic and uric acids, α-tocopherol, NADPH and ferritin serve as small molecule, nonenzymatic antioxidants. Ocular tissues have high levels of these antioxidants which are essential for the maintenance of redox homeostasis in the eye and protection against oxidative damage. ALDH1A1 and ALDH3A1, present abundantly in the cornea and lens, have been shown to have unique roles in the defense against UVR and the downstream effects of oxidative stress. This review presents the properties and functions of ocular antioxidants that play critical roles in the cellular response to UVR exposure, including a focused discussion of the unique roles that the ALDH1A1 and ALDH3A1 enzymes have as multi-functional ocular antioxidants. PMID:21670692

  19. Lipidomic and Antioxidant Response to Grape Seed, Corn and Coconut Oils in Healthy Wistar Rats

    Directory of Open Access Journals (Sweden)

    Abraham Wall-Medrano

    2017-01-01

    Full Text Available Specialty oils differ in fatty acid, phytosterol and antioxidant content, impacting their benefits for cardiovascular health. The lipid (fatty acid, phytosterol and antioxidant (total phenolics, radical scavenging capacity profiles of grapeseed (GSO, corn (CO and coconut (CNO oils and their physiological (triacylglycerides, total and HDL-cholesterol and antioxidant capacity (FRAP in serum and fatty acid and phytosterol hepatic deposition and genomic (HL, LCAT, ApoA-1 and SR-BP1 mRNA hepatic levels responses after their sub-chronic intake (10% diet for 28 days was examined in healthy albino rats. Fatty acid, phytosterol and antioxidant profiles differed between oils (p ≤ 0.01. Serum and hepatic triacylglycerides and total cholesterol increased (p ≤ 0.01; serum HDL-Cholesterol decreased (p < 0.05; but serum FRAP did not differ (p > 0.05 in CNO-fed rats as compared to CO or GSO groups. Hepatic phytosterol deposition was higher (+2.2 mg/g; p ≤ 0.001 in CO- than GSO-fed rats, but their fatty acid deposition was similar. All but ApoA-1 mRNA level increased in GSO-fed rats as compared to other groups (p ≤ 0.01. Hepatic fatty acid handling, but not antioxidant response, nor hepatic phytosterol deposition, could be related to a more efficient reverse-cholesterol transport in GSO-fed rats as compared to CO or CNO.

  20. Antioxidant responses to heat and light stress differ with habitat in a common reef coral

    Science.gov (United States)

    Hawkins, Thomas D.; Krueger, Thomas; Wilkinson, Shaun P.; Fisher, Paul L.; Davy, Simon K.

    2015-12-01

    Coral bleaching—the stress-induced collapse of the coral- Symbiodinium symbiosis—is a significant driver of worldwide coral reef degradation. Yet, not all corals are equally susceptible to bleaching, and we lack a clear understanding of the mechanisms underpinning their differential susceptibilities. Here, we focus on cellular redox regulation as a potential determinant of bleaching susceptibility in the reef coral Stylophora pistillata. Using slow heating (1 °C d-1) and altered irradiance, we induced bleaching in S. pistillata colonies sampled from two depths [5-8 m (shallow) and 15-18 m (deep)]. There was significant depth-dependent variability in the timing and extent of bleaching (loss of symbiont cells), as well as in host enzymatic antioxidant activity [specifically, superoxide dismutase and catalase (CAT)]. However, among the coral fragments that bleached, most did so without displaying any evidence of a host enzymatic antioxidant response. For example, both deep and shallow corals suffered significant symbiont loss at elevated temperature, but only deep colonies exposed to high temperature and high light displayed any up-regulation of host antioxidant enzyme activity (CAT). Surprisingly, this preceded the equivalent antioxidant responses of the symbiont, which raises questions about the source(s) of hydrogen peroxide in the symbiosis. Overall, changes in enzymatic antioxidant activity in the symbionts were driven primarily by irradiance rather than temperature, and responses were similar across depth groups. Taken together, our results suggest that in the absence of light stress, heating of 1 °C d-1 to 4 °C above ambient is not sufficient to induce a substantial oxidative challenge in S. pistillata. We provide some of the first evidence that regulation of coral enzymatic antioxidants can vary significantly depending on habitat, and, in terms of determining bleaching susceptibility, our results suggest a significant role for the host's differential

  1. Cadmium exposure route affects antioxidant responses in the mayfly Centroptilum triangulifer

    Energy Technology Data Exchange (ETDEWEB)

    Xie Lingtian [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States); Buchwalter, David B., E-mail: david_buchwalter@ncsu.edu [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-10-15

    Highlights: Black-Right-Pointing-Pointer In the mayfly Centroptilum triangulifer, antioxidant enzymes catalase and superoxide dismutase were suppressed by dietary cadmium (Cd) exposures, but not dissolved exposures. Black-Right-Pointing-Pointer Dietary Cd reduced concentrations of active glutathione in whole insect homogenates. Black-Right-Pointing-Pointer These findings suggest that diet derived Cd is potentially more toxic than aqueous derived Cd in this mayfly, and may help explain the disconnection between laboratory and field data for aquatic insect responses to trace metal pollution. - Abstract: Aquatic organisms accumulate metals directly from water and from their diets. Exposure to metals is known to generate oxidative stress in living organisms and this stress may be ameliorated via activation of antioxidant enzymes and non-enzymatic antioxidants. To determine if antioxidant physiology is dependent on Cd exposure route in the mayfly Centroptilum triangulifer, we exposed larvae to environmentally relevant concentrations of Cd from isolated dissolved or dietary exposure routes to achieve comparable tissue concentrations. Dissolved Cd had no effect on the antioxidant enzymes examined. However, dietary Cd significantly suppressed catalase and superoxide dismutase activities, and decreased concentrations of the reduced (active) form of glutathione in C. triangulifer larvae. These findings suggest that dietary Cd is potentially more toxic than aqueously derived Cd in this mayfly. We further examined the effect of dietary Cd tissue loading rates on antioxidant enzyme suppression and found that absolute tissue load appeared more important than loading rate. These results may help explain why insects are routinely unresponsive to dissolved metal exposures in the laboratory, yet highly responsive to metal pollution in nature.

  2. Measurement of the total antioxidant response in preeclampsia with a novel automated method.

    Science.gov (United States)

    Harma, Mehmet; Harma, Muge; Erel, Ozcan

    2005-01-10

    Preeclampsia is one of the most serious complications of pregnancy. Free radical damage has been implicated in the pathophysiology of this condition. In this study, we aimed to measure the antioxidant capacity in plasma samples from normotensive and preeclamptic pregnant women to evaluate their antioxidant status using a more recently developed automated measurement method. Our study group contained 42 women, 24 of whom had preeclampsia, while 18 had normotensive pregnancies. We measured the total plasma antioxidant capacity for all patients, as well as the levels of four major individual plasma antioxidant components; albumin, uric acid, ascorbic acid and bilirubin, and as a reciprocal measure, their total plasma peroxide levels. Statistically significant differences (determined using Student's t-test) were noted between the normotensive and the preeclamptic groups for their total antioxidant responses and their vitamin C levels (1.31 +/- 0.12 mmol versus 1.06 +/- 0.41 mmol Trolox eq./L; 30.2 +/- 17.83 micromol/L versus 18.1 +/- 11.37 micromol/L, respectively), which were both considerably reduced in the preeclamptic patients. In contrast, the total plasma peroxide levels were significantly elevated in this group (49.8 +/- 14.3 micromol/L versus 38.8 +/- 9.6 micromol/L). We found a decreased total antioxidant response in preeclamptic patients using a simple, rapid and reliable automated colorimetric assay, which may suitable for use in any routine clinical biochemistry laboratory, and considerably facilitates the assessment of this useful clinical parameter. We suggest that this novel method may be used as a routine test to evaluate and follow up of the levels of oxidative stress in preeclampsia.

  3. Cadmium exposure route affects antioxidant responses in the mayfly Centroptilum triangulifer

    International Nuclear Information System (INIS)

    Xie Lingtian; Buchwalter, David B.

    2011-01-01

    Highlights: ► In the mayfly Centroptilum triangulifer, antioxidant enzymes catalase and superoxide dismutase were suppressed by dietary cadmium (Cd) exposures, but not dissolved exposures. ► Dietary Cd reduced concentrations of active glutathione in whole insect homogenates. ► These findings suggest that diet derived Cd is potentially more toxic than aqueous derived Cd in this mayfly, and may help explain the disconnection between laboratory and field data for aquatic insect responses to trace metal pollution. - Abstract: Aquatic organisms accumulate metals directly from water and from their diets. Exposure to metals is known to generate oxidative stress in living organisms and this stress may be ameliorated via activation of antioxidant enzymes and non-enzymatic antioxidants. To determine if antioxidant physiology is dependent on Cd exposure route in the mayfly Centroptilum triangulifer, we exposed larvae to environmentally relevant concentrations of Cd from isolated dissolved or dietary exposure routes to achieve comparable tissue concentrations. Dissolved Cd had no effect on the antioxidant enzymes examined. However, dietary Cd significantly suppressed catalase and superoxide dismutase activities, and decreased concentrations of the reduced (active) form of glutathione in C. triangulifer larvae. These findings suggest that dietary Cd is potentially more toxic than aqueously derived Cd in this mayfly. We further examined the effect of dietary Cd tissue loading rates on antioxidant enzyme suppression and found that absolute tissue load appeared more important than loading rate. These results may help explain why insects are routinely unresponsive to dissolved metal exposures in the laboratory, yet highly responsive to metal pollution in nature.

  4. 4-Hydroxyestradiol induces mammary epithelial cell transformation through Nrf2-mediated heme oxygenase-1 overexpression

    OpenAIRE

    Park, Sin-Aye; Lee, Mee-Hyun; Na, Hye-Kyung; Surh, Young-Joon

    2016-01-01

    Estrogen (17?-estradiol, E2) undergoes oxidative metabolism by CYP1B1 to form 4-hydroxyestradiol (4-OHE2), a putative carcinogenic metabolite of estrogen. Our previous study showed that 4-OHE2-induced production of reactive oxygen species contributed to neoplastic transformation of human breast epithelial (MCF-10A) cells. In this study, 4-OHE2, but not E2, increased the expression of heme oxygenase-1 (HO-1), a sensor and regulator of oxidative stress, in MCF-10A cells. Silencing the HO-1 gene...

  5. Nrf2 mediates redox adaptation in NOX4-overexpressed non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qipeng; Yao, Bei; Li, Ning; Ma, Lei; Deng, Yanchao; Yang, Yang; Zeng, Cheng; Yang, Zhicheng [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Liu, Bing, E-mail: liubing520@gdpu.edu.cn [Department of Clinical Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006 (China)

    2017-03-15

    The redox adaptation mechanisms in cancer cells are very complex and remain largely unclear. Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and confers apoptosis resistance on NSCLC cells. However, the comprehensive mechanisms for NOX4-mediated oxidative resistance of cancer cells remain still undentified. The present study found that NOX4-derived H{sub 2}O{sub 2} enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) stability via disruption of redox-dependent proteasomal degradation and stimulated its activity through activation of PI3K signaling. Specifically, the results showed that ectopic NOX4 expression did not induce apoptosis of A549 cells; however, inhibition of Nrf2 resulted in obvious apoptotic death of NOX4-overexpressed A549 cells, accompanied by a significant increase in H{sub 2}O{sub 2} level and decrease in GSH content. Besides, inhibition of Nrf2 could suppress cell growth and efficiently reverse the enhancement effect of NOX4 on cell growth. The in vivo data confirmed that inhibition of Nrf2 could interfere apoptosis resistance in NOX4-overexpressed A549 tumors and led to cell growth inhibition. In conclusion, these results reveal that Nrf2 is critically involved in redox adaptation regulation in NOX4-overexpressed NSCLC cells. Therefore, NOX4 and Nrf2 may be promising combination targets against malignant progression of NSCLC. - Highlights: • NOX4-derived H{sub 2}O{sub 2} upregulates Nrf2 expression and activity in NSCLC. • Nrf2 confers apoptosis resistance in NOX4-overexpressed NSCLC cells. • Inhibition of Nrf2 reverses the enhancement effect of NOX4 on cell growth.

  6. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    Science.gov (United States)

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  7. Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings.

    Science.gov (United States)

    Yadav, Poonam; Kaur, Ravdeep; Kanwar, Mukesh Kumar; Sharma, Anket; Verma, Vinod; Sirhindi, Geetika; Bhardwaj, Renu

    2018-01-01

    The aim of the present study was to explore the effect of exogenous application of castasterone (CS) on physiologic and biochemical responses in Brassica juncea seedlings under copper (Cu) stress. Seeds were pre-soaked in different concentrations of CS and grown for 7 days under various levels of Cu. The exposure of B. juncea to higher levels of Cu led to decrease of morphologic parameters, with partial recovery of length and fresh weight in the CS pre-treated seedlings. Metal content was high in both roots and shoots under Cu exposure while the CS pre-treatment reduced the metal uptake. Accumulation of hydrogen peroxide (H 2 O 2 ) and superoxide anion radical (O 2 - ) were chosen as stress biomarker and higher levels of H 2 O 2 (88.89%) and O 2 - (62.11%) showed the oxidative stress in metal treated B. juncea seedlings, however, CS pre-treatment reduced ROS accumulation in Cu-exposed seedlings. The Cu exposures lead to enhance the plant's enzymatic and non-enzymatic antioxidant system. It was observed that enzymatic activities of ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), glutathione perxoidase (GPOX) and gultrathione-s-transferase increased while activity of monodehydroascorbate reductase (MDHAR) decreased under Cu stress. The pre-treatment with CS positively affected the activities of enzymes. RT-PCR analysis showed that mRNA transcript levels were correlated with total enzymatic activity of DHAR, GR, GST and GSH. Increase in the gene expression of DHAR (1.85 folds), GR (3.24 folds), GST-1 (2.00 folds) and GSH-S (3.18 folds) was noticed with CS pre-treatment. Overall, the present study shows that Cu exposure induced severe oxidative stress in B. juncea plants and exogenous application of CS improved antioxidative defense system by modulating the ascorbate-glutathione cycle and amino acid metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology.

    Science.gov (United States)

    Tabaraki, Reza; Nateghi, Ashraf

    2011-11-01

    Ultrasonic technology was applied for extraction of polyphenols and antioxidants from the rice bran using ethanol as a food grade solvent. Response surface methodology (RSM) was used to optimize experimental conditions for extraction of polyphenols and antioxidants. Three independent variables such as solvent percentage (%), temperature (°C) and time (min) were studied. Effect of ethanol concentration was found to be significant on all responses. Total phenolic content (TPC) varied from 2.37 to 6.35mg gallic acid equivalent/g of dry sample. Antioxidant activity of the extracts was determined by the ferric reducing antioxidant power (FRAP) assay and scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. FRAP and DPPH values varied from 31.74 to 57.23μmol Fe(2+)/g of dry sample and 16.88% to 55.61% inhibition, respectively. Extraction yields ranged from 11 to 20.2%. Optimal ultrasonic-assisted extraction (UAE) conditions were identified as 65-67% ethanol, 51-54°C, 40-45min. The experimental values agreed with those predicted by SRM models, thus indicating suitability of the model employed and the success of RSM in optimizing the extraction conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Cao Xinde; Ma, Lena Q.; Tu Cong

    2004-01-01

    This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg -1 (Na 2 HAsO 4 ) for 12 weeks in a greenhouse. Soil As concentrations at ≤20 mg kg -1 enhanced plant growth, with 12-71% biomass increase compared to the control. Such beneficial effects were not observed at >20 mg As kg -1 . Plant As concentrations increased with soil As concentrations, with more As being accumulated in the fronds (aboveground biomass) than in the roots and with maximum frond As concentration being 4675 mg kg -1 . Arsenic uptake by Chinese brake enhanced uptake of nutrient elements K, P, Fe, Mn, and Zn except Ca and Mg, whose concentrations mostly decreased. The contents of non-enzymatic antioxidants (glutathione, acid-soluble thiol) followed similar trends as plant As concentrations, increasing with soil As concentrations, with greater contents in the fronds than in the roots especially when exposed to high As concentrations (>50 mg kg -1 ). The activities of enzymatic antioxidants (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase) in Chinese brake followed the same trends as plant biomass, increasing with soil As up to 20 mg kg -1 and then decreased. The results indicated though both enzymatic and non-enzymatic antioxidants played significant roles in As detoxification and hyperaccumulation in Chinese brake, the former is more important at low As exposure (≤20 mg kg -1 ), whereas the latter is more critical at high As exposure (50-200 mg kg -1 ). - At low levels of arsenic exposure, enzymatic antioxidants are important for arsenic detoxification and accumulation in Chinese brake fern, while non-enzymatic antioxidants were more important at high arsenic exposure

  10. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    Science.gov (United States)

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart

  11. Effect of brewing conditions on antioxidant properties of rosehip tea beverage: study by response surface methodology.

    Science.gov (United States)

    İlyasoğlu, Huri; Arpa, Tuba Eda

    2017-10-01

    The aim of this study was to investigate the effects of brewing conditions (infusion time and temperature) on the antioxidant properties of rosehip tea beverage. The ascorbic acid content, total phenolic content (TPC), and ferric reducing antioxidant power (FRAP) of rosehip tea beverage were analysed. A two-factor and three-level central composite design was applied to evaluate the effects of the variables on the responses. The best quadratic models were obtained for all responses. The generated models were validated under the optimal conditions. At the optimal conditions, the rosehip tea beverage had 3.15 mg 100 mL -1 of ascorbic acid, 61.44 mg 100 mL -1 of TPC, and 2591 µmol of FRAP. The best brewing conditions for the rosehip tea beverage were found to be an infusion time of 6-8 min at temperatures of 84-86 °C.

  12. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    Science.gov (United States)

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.

  13. The oxidative stress and antioxidant responses of Litopenaeus vannamei to low temperature and air exposure.

    Science.gov (United States)

    Xu, Zihan; Regenstein, Joe M; Xie, Dandan; Lu, Wenjing; Ren, Xingchen; Yuan, Jiajia; Mao, Linchun

    2018-01-01

    Low temperature and air exposure were the key attributes for waterless transportation of fish and shrimp. In order to investigate the oxidative stress and antioxidant responses of the live shrimp Litopenaeus vannamei in the mimic waterless transportation, live shrimp were cooled at 13 °C for 3 min, stored in oxygen at 15 °C for 12 h, and then revived in water at 25 °C. The survival rate of shrimp under this waterless transportation system was over 86.67%. The ultrastructure of hepatopancreas cells were observed while activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GSH-Px), antisuperoxide anion free radicals (ASAFR), total antioxidant capacity (TAOC), reactive oxygen species (ROS) production, content of malondialdehyde (MDA) and relative mRNA expressions of CAT and GSH-Px in the hemolymph and hepatopancreas were determined. Slight distortions of some organelles in hepatopancreas cells was reversible upon the shrimp revived from the cold shock. The activities of SOD, POD, CAT, GSH-Px, TAOC, ROS production and relative mRNA expressions of CAT and GSH-Px increased following the cold shock and reached peak levels after 3 or 6 h of storage, and then decreased gradually. There was no significant difference between the fresh and the revived shrimp in SOD, POD, GSH-Px, TAOC, ROS, MDA and relative mRNA expressions of CAT and GSH-Px. The oxidative stress and antioxidant responses were tissue-specific because hepatopancreas seemed to have a greater ability to defend against organelle damage and was more sensitive to stress than hemolymph based on the results of SOD activity, MDA content and GSH-Px mRNA expression. These results revealed that low temperature and air exposure caused significant oxidative and antioxidant responses, but did not lead to irreversible damages in this waterless system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of "6"0Co-induced gamma radiation exposure and Jasmonic acid on antioxidant responses in Cowpea varieties

    International Nuclear Information System (INIS)

    Shukla, Pradeep Kumar; Bhagoji, Ravi; Ramteke, P.W.; Misra, Pragati; Maurice, Navodita

    2017-01-01

    Cowpea used to be the first crop harvested before the cereal crops are ready and therefore is referred to as 'hungry-season crop'. The gamma irradiation is known to increase nutritional values of food sources and also enhance and accelerate growth of certain vegetables Antioxidants are the metabolites, produced by the plant in response to different stress conditions e.g. radiation stress etc. Seeds of four cowpea varieties were treated with different doses of gamma radiation and effect of jasmonic acid (JA) on antioxidant response of cowpea was studied. The results showed that there was no linear correlation between application of JA and different antioxidant contents. (author)

  15. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer.

    Directory of Open Access Journals (Sweden)

    Laxmidhar Das

    Full Text Available Inhibition of carcinogenesis may be a consequence of attenuation of oxidative stress via activation of antioxidant defence system, restoration and stabilization of tumour suppressor proteins along with modulation of inflammatory mediators. Previously we have delineated significant role of curcumin during its long term effect in regulation of glycolytic pathway and angiogenesis, which in turn results in prevention of cancer via modulation of stress activated genes. Present study was designed to investigate long term effect of curcumin in regulation of Nrf2 mediated phase-II antioxidant enzymes, tumour suppressor p53 and inflammation under oxidative tumour microenvironment in liver of T-cell lymphoma bearing mice. Inhibition of Nrf2 signalling observed during lymphoma progression, resulted in down regulation of phase II antioxidant enzymes, p53 as well as activation of inflammatory signals. Curcumin potentiated significant increase in Nrf2 activation. It restored activity of phase-II antioxidant enzymes like GST, GR, NQO1, and tumour suppressor p53 level. In addition, curcumin modulated inflammation via upregulation of TGF-β and reciprocal regulation of iNOS and COX2. The study suggests that during long term effect, curcumin leads to prevention of cancer by inducing phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour suppressor p53 and modulation of inflammatory mediators like iNOS and COX2 in liver of lymphoma bearing mice.

  16. Extraction and antioxidation of polysaccharide from porphyra haitanensis using response surface method

    International Nuclear Information System (INIS)

    Cai, C.; Yang, Y.; Zhao, M.; Jia, R.; He, P.

    2017-01-01

    This paper deals with the preparation and antioxidation of polysaccharide from Porphyra haitanensis. The ratio of water to raw material, extraction temperature and extraction time were taken in sequence as independent variables in single factor test, and polysaccharide yield as response value. Using Box-Benhnken central combination experimental design principles and response surface methodology, interactions of variables and their influence on polysaccharide yield of P. haitanensis were studied and the prediction model of quadratic polynomial regression equation was inferred by simulation, in which the optimum parameters for preparing polysaccharide from P. haitanensis were 88.4°C of extraction temperature, 1.97 h of extraction time and 40:1 (ml/g) of ratio of water to raw material, and polysaccharide of 15.19 % in yield from P. haitanensis was verified after two parallel test. Furthermore, the polysaccharide of P. haitanensis showed good antioxidant capacity which could be used as potential natural antioxidant products in food additives industries. (author)

  17. Molecular mechanisms of plant response to ionising radiation. Exploration of the glucosinolate role in the anti-oxidative response

    International Nuclear Information System (INIS)

    Gicquel, M.

    2012-01-01

    Terrestrial organisms are exposed to low doses of ionising radiation from natural or anthropogenic sources. The major effects of the radiations are due to DNA deterioration and water radiolysis which generates an oxidative stress by free radical production. Plants constitute good models to study the effects of ionising radiations and the search of antioxidant molecules because of their important secondary metabolism. Thus this thesis, funded by the Brittany region, characterized the physiological and molecular response of the model plant Arabidopsis thaliana to low (10 Gy) and moderate (40 Gy) doses of ionising radiation, and was therefore interested in glucosinolates, characteristic compounds of the Brassicaceae family. The global proteomic and transcriptomic studies carried out on this model revealed (1) a common response for both doses dealing with the activation of DNA repair mechanisms, cell cycle regulation and protection of cellular structures; (2) an adjustment of the energetic metabolism and an activation of secondary compounds biosynthesis (i.e. glucosinolates and flavonoids) after the 10 Gy dose; (3) an induction of enzymatic control of ROS, the regulation of cellular components recycling and of programmed cell death after the 40 Gy dose. The potential anti-oxidative role of glucosinolates was then explored. The in vitro anti-oxidative power of some glucosinolates and their derivative products were demonstrated. Their modulating effects against irradiation-induced damages were then tested in vivo by simple experimental approaches. The importance of the glucosinolate level to give a positive or negative effect was demonstrated. (author)

  18. Optimisation of Ultrasound-Assisted Extraction Conditions for Phenolic Content and Antioxidant Capacity from Euphorbia tirucalli Using Response Surface Methodology

    Science.gov (United States)

    Vuong, Quan V.; Goldsmith, Chloe D.; Dang, Trung Thanh; Nguyen, Van Tang; Bhuyan, Deep Jyoti; Sadeqzadeh, Elham; Scarlett, Christopher J.; Bowyer, Michael C.

    2014-01-01

    Euphorbia tirucalli (E. tirucalli) is now widely distributed around the world and is well known as a source of traditional medicine in many countries. This study aimed to utilise response surface methodology (RSM) to optimise ultrasonic-assisted extraction (UAE) conditions for total phenolic compounds (TPC) and antioxidant capacity from E. tirucalli leaf. The results showed that ultrasonic temperature, time and power effected TPC and antioxidant capacity; however, the effects varied. Ultrasonic power had the strongest influence on TPC; whereas ultrasonic temperature had the greatest impact on antioxidant capacity. Ultrasonic time had the least impact on both TPC and antioxidant capacity. The optimum UAE conditions were determined to be 50 °C, 90 min. and 200 W. Under these conditions, the E. tirucalli leaf extract yielded 2.93 mg GAE/g FW of TPC and exhibited potent antioxidant capacity. These conditions can be utilised for further isolation and purification of phenolic compounds from E. tirucalli leaf. PMID:26785074

  19. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R.; Zhang, Hao; Schwarz, Toni; Leung, Daisy W.; Basler, Christopher F.; Gross, Michael L.; Amarasinghe, Gaya K.

    2016-08-04

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections.

  20. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    Science.gov (United States)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  1. Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus.

    Science.gov (United States)

    Hamed, Seham M; Zinta, Gaurav; Klöck, Gerd; Asard, Han; Selim, Samy; AbdElgawad, Hamada

    2017-06-01

    Algae are frequently exposed to toxic metals, and zinc (Zn) is one of the major toxicants present. We exposed two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, to sub-lethal concentrations (1.0 and 0.6mM) of Zn for seven days. Algal responses were analysed at the level of growth, oxidative stress, and antioxidants. Growth parameters such as cell culture yield and pigment content were less affected by Zn in C. sorokiniana, despite the fact that this alga accumulated more zinc than S. acuminatus. Also, C. sorokiniana, but not S. acuminatus, was able to acclimatize during long-term exposure to toxic concentrations of the test metals (specific growth rate (µ) was 0.041/day and total chlorophyll was 14.6mg/mL). Although, Zn induced oxidative stress in both species, C. sorokiniana experienced less stress than S. acuminatus. This could be explained by a higher accumulation of antioxidants in C. sorokiniana, where flavonoids, polyphenols, tocopherols, glutathione (GSH) and ascorbate (ASC) content increased. Moreover, antioxidant enzymes glutathione S transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), showed increased activities in C. sorokiniana. In addition to, and probably also underlying, the higher Zn tolerance in C. sorokiniana, this alga also showed higher Zn biosorption capacity. Use of C. sorokiniana as a bio-remediator, could be considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    International Nuclear Information System (INIS)

    Sun Lu; Yan Xiulan; Liao Xiaoyong; Wen Yi; Chong Zhongyi; Liang Tao

    2011-01-01

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level (≥10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: → Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. → P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. → Phenanthrene suppresses arsenic translocation from roots to fronds. → Phenanthrene causes As(III) elevation in roots while reduction in fronds. → Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  3. Feed supplementation with arginine and zinc on antioxidant status and inflammatory response in challenged weanling piglets

    Directory of Open Access Journals (Sweden)

    Nadia Bergeron

    2017-09-01

    Full Text Available Although supplementing the diet with zinc oxide and arginine is known to improve growth in weanling piglets, the mechanism of action is not well understood. We measured the antioxidant status and inflammatory response in 48 weanling castrated male piglets fed diets supplemented with or without zinc oxide (2,500 mg Zn oxide per kg and arginine (1% starting at the age of 20 days. The animals were injected with lipopolysaccharide (100 μg/kg on day 5. Half of them received another injection on day 12. Blood samples were taken just before and 6, 24 and 48 h after injection and the mucosa lining the ileum was recovered following euthanizing on days 7 and 14. Zinc supplementation increased reduced and total glutathione (GSH (reduced and total during days 5 to 7 and arginine decreased oxidized GSH measured on days 5 and 12 and the ratio of total antioxidant capacity to total oxidative status during days 12 to 14. Zinc decreased plasma malondialdehyde measured on days 5 and 12 and serum haptoglobin measured on day 12 and increased both metallothionein-1 expression and total antioxidant capacity measured in the ileal mucosa on day 14. Tumour necrosis factor α concentration decreased from days 5 to 12 (all effects were significant at P < 0.05. This study shows that the zinc supplement reduced lipid oxidation and lipopolysaccharide-induced inflammation during the post-weaning period, while the arginine supplementation had only a limited effect.

  4. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Yan Xiulan [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Liao Xiaoyong, E-mail: liaoxy@igsnrr.ac.cn [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Wen Yi; Chong Zhongyi; Liang Tao [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China)

    2011-12-15

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level ({>=}10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: > Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. > P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. > Phenanthrene suppresses arsenic translocation from roots to fronds. > Phenanthrene causes As(III) elevation in roots while reduction in fronds. > Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  5. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Directory of Open Access Journals (Sweden)

    Anna Wyrwicka

    Full Text Available The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot, while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx, catalase (CAT and guaiacol peroxidase (POx, were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST. Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  6. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Science.gov (United States)

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  7. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice

    Directory of Open Access Journals (Sweden)

    J. Olakunle Onaolapo

    2016-07-01

    Conclusion: Repeated caffeine consumption and/or acute sleep-deprivation led to significant changes in pattern of open-field behaviour and stress/antioxidant response in mice. Responses seen in the study are probably due to modulatory effects of caffeine on the total body response to stressful stimuli.

  8. Antioxidative stress responses in the floating macrophyte Lemna minor L. with cylindrospermopsin exposure.

    Science.gov (United States)

    Flores-Rojas, Nelida Cecilia; Esterhuizen-Londt, Maranda; Pflugmacher, Stephan

    2015-12-01

    Cylindrospermopsin toxicity and oxidative stress have been examined in aquatic animals, however, only a few studies with aquatic plants have been conducted focusing on the potential for bioaccumulation of cylindrospermopsin. The oxidative stress effects caused by cylindrospermopsin on macrophytes have not yet been specifically studied. The oxidative stress response of Lemna minor L. with exposure to cylindrospermopsin, was therefore tested in this study. The hydrogen peroxide concentration together with the activities of the antioxidant enzymes (catalase, peroxidase, glutathione reductase and glutathione S-transferase) were determined after 24h (hours) of exposure to varying concentrations (0.025, 0.25, 2.5 and 25μg/L) of cylindrospermopsin. Responses with longer exposure periods (48, 96, 168h) were tested only with exposure to 2.5 and 25μg/L cylindrospermopsin. Additionally, the content of the carotenoids was determined as a possible non-enzymatic antioxidant defence mechanism against cylindrospermopsin. The levels of hydrogen peroxide increased after 24h even at the lowest cylindrospermopsin exposure concentrations. Catalase showed the most representative antioxidant response observed after 24h and maintained its activity throughout the experiment. Catalase activity corresponded with the contents of hydrogen peroxide at 2.5 and 25μg/L cylindrospermopsin. The data suggest that glutathione S-transferase, glutathione reductase and the carotenoid content act together with catalase but are more sensitive to higher concentrations of cylindrospermopsin and after a longer exposure period (168h). The results indicate that cylindrospermopsin promotes oxidative stress in L. minor at concentrations of 2.5 and 25μg/L. However, L. minor has sufficient defence mechanisms in place against this cyanobacterial toxin. Even though L. minor exhibits the potential to managing and control cylindrospermopsin contamination in aquatic systems, further studies in tolerance limits to

  9. Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta.

    Science.gov (United States)

    Lu, Xikun; Brennan, Margaret A; Serventi, Luca; Liu, Jianfu; Guan, Wenqiang; Brennan, Charles S

    2018-10-30

    This study reports the effects of addition of mushroom powder on the nutritional properties, predictive in vitro glycaemic response and antioxidant potential of durum wheat pasta. Addition of the mushroom powder enriched the pasta as a source of protein, and soluble and insoluble dietary fibre compared with durum wheat semolina. Incorporation of mushroom powder significantly decreased the extent of starch degradation and the area under the curve (AUC) of reducing sugars released during digestion, while the total phenolic content and antioxidant capacities of samples increased. A mutual inhibition system between the degree of starch gelatinisation and antioxidant capacity of the pasta samples was observed. These results suggest that mushroom powder could be incorporated into fresh semolina pasta, conferring healthier characteristics, namely lowering the potential glycaemic response and improving antioxidant capacity of the pasta. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.

    Science.gov (United States)

    Obermeier, Michael; Schröder, Christian A; Helmreich, Brigitte; Schröder, Peter

    2015-12-01

    Lemna minor L., a widely used model plant for toxicity tests has raised interest for its application to phytoremediation due to its rapid growth and ubiquitous occurrence. In rural areas, the pollution of water bodies with heavy metals and agrochemicals poses a problem to surface water quality. Among problematic compounds, heavy metals (copper) and pesticides are frequently found in water bodies. To establish duckweed as a potential plant for phytoremediation, enzymatic and antioxidative stress responses of Lemna minor during exposure to copper and a chloroacetamide herbicide were investigated in laboratory studies. The present study aimed at evaluating growth and the antioxidative and glutathione-dependent enzyme activity of Lemna plants and its performance in a scenario for phytoremediation of copper and a chloroacetamide herbicide. Lemna minor was grown in Steinberg medium under controlled conditions. Plants were treated with CuSO4 (ion conc. 50 and 100 μg/L) and pethoxamide (1.25 and 2.5 μg/L). Measurements following published methods focused on plant growth, oxidative stress, and basic detoxification enzymes. Duckweed proved to survive treatment with the respective concentrations of both pollutants very well. Its growth was inhibited scarcely, and no visible symptoms occurred. On the cellular basis, accumulation of O2(-) and H2O2 were detected, as well as stress reactions of antioxidative enzymes. Duckweed detoxification potential for organic pollutants was high and increased significantly with incubation. Pethoxamide was found to be conjugated with glutathione. Copper was accumulated in the fronds at high levels, and transient oxidative defense reactions were triggered. This work confirms the significance of L. minor for the removal of copper from water and the conjugation of the selective herbicide pethoxamide. Both organic and inorganic xenobiotics induced different trends of enzymatic and antioxidative stress response. The strong increase of stress

  11. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.

    Science.gov (United States)

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2018-01-01

    Phytoremediation is a low cost technology based on the use of plants to remove a wide range of pollutants from the environment, including the insecticide DDT. However, some pollutants are known to enhance generation of reactive oxygen species (ROS), which can generate toxic effects on plants affecting the phytoremediation efficiency. This study aims to analyze the potential use of antioxidant responses as a measure of tolerance to select plants for phytoremediation purposes. Tomato and zucchini plants were grown for 15 days in soils contaminated with DDTs (DDT + DDE + DDD). Protein content, glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were measured in plant tissues. Exposure to DDTs did not affect protein content or CAT activity in any of the species. GST, GR and GPx activity showed different responses in exposed and control tomato plants. After DDTs exposure, tomato showed increased GR and GPX activity in stems and leaves, respectively, and a decrease in the GST activity in roots. As no effects were observed in zucchini, results suggest different susceptibility and/or defense mechanisms involved after pesticide exposure. Finally, both species differed also in terms of DDTs uptake and translocation. The knowledge about antioxidant responses induced by pesticides exposure could be helpful for planning phytoremediation strategies and for the selection of tolerant species according to particular scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Responses of Phospholipase D and Antioxidant System to Mechanical Wounding in Postharvest Banana Fruits

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-01-01

    Full Text Available Banana fruits are susceptible to mechanical damage. The present study was to investigate the responses of phospholipase D (PLD and antioxidant system to mechanical wounding in postharvest banana fruits. During 16 d storage at 25°C and 90% relative humidity, PLD activity in wounded fruits was significantly higher than that in control (without artificial wounding fruits. The higher value of PLD mRNA was found in wounded fruits than in control. PLD mRNA expression reached the highest peak on day 4 in both groups, but it was 2.67 times in wounded fruits compared to control at that time, indicating that PLD gene expression was activated in response to wounding stress. In response to wounding stress, the higher lipoxygenase (LOX activity was observed and malondialdehyde (MDA production was accelerated. The activities of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, peroxidase (POD, and ascorbate peroxidase (APX in wounded fruits were significantly higher than those in control. The concentrations of reactive oxygen species (ROS such as superoxide anion (O2•- and hydrogen peroxide (H2O2 in fruits increased under mechanical wounding. The above results provided a basis for further investigating the mechanism of postharvest banana fruits adapting to environmental stress.

  13. Comparison of an antioxidant system in tolerant and susceptible wheat seedlings in response to salt stress

    Energy Technology Data Exchange (ETDEWEB)

    Feki, K.; Tounsi, S.; Brini, F.

    2017-07-01

    It has been demonstrated previously that the physiological and molecular analysis of seedlings of the tolerant (Om Rabia3) and susceptible (Mahmoudi) Tunisian wheat genotypes were different at short and long-term response to salinity. In this study, we examined the antioxidant defence system in seedlings of these two cultivars at short-term response to different NaCl concentrations. The findings showed that high salinity tolerance of cv. Om Rabia3, as manifested by lower decrease in its dry biomass, was associated with lower malondialdehyde and hydrogen peroxide contents, lower accumulation of the superoxide (O2⎯) in the roots and the shoots, and also lower decrease in ascorbate content than those in cv. Mahmoudi. Moreover, the expression of some genes coding for antioxidant enzymes such as the catalase, the superoxide dismutase and the peroxidase were enhanced by NaCl stress especially in the salt-tolerant cultivar. In parallel, their activities were increased in response to the same condition of stress and especially in the cv. Om Rabia3. Taken together, these data suggested that the capacity to limit oxidative damage is important for NaCl tolerance of durum wheat.

  14. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice

    OpenAIRE

    Onaolapo, J. Olakunle; Onaolapo, Y. Adejoke; Akanmu, A. Moses; Olayiwola, Gbola

    2016-01-01

    Objectives: Effects of daily caffeine consumption on open-field behaviours, serum corticosterone and brain antioxidant levels were investigated after six hours of total sleep-deprivation in prepubertal mice. We tested the hypothesis that daily caffeine consumption may significantly alter behaviour, stress and antioxidative response of prepubertal mice to an acute episode of total sleep-deprivation. Methods: Prepubertal Swiss mice of both sexes were assigned to two main groups of 120 each (...

  15. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria.

    Directory of Open Access Journals (Sweden)

    Leila Priscila Peters

    Full Text Available The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS. This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR and glutathione S-transferase (GST activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD, catalase (CAT and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems.

  16. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    International Nuclear Information System (INIS)

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis

  17. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  18. Differential Responses of the Antioxidant System of Ametryn and Clomazone Tolerant Bacteria

    Science.gov (United States)

    Peters, Leila Priscila; Carvalho, Giselle; Martins, Paula Fabiane; Dourado, Manuella Nóbrega; Vilhena, Milca Bartz; Pileggi, Marcos; Azevedo, Ricardo Antunes

    2014-01-01

    The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems. PMID:25380132

  19. Modulation of the antioxidative response of Spartina densiflora against iron exposure.

    Science.gov (United States)

    Martínez Domínguez, David; Torronteras Santiago, Rafael; Córdoba García, Francisco

    2009-06-01

    Spartina densiflora, an invader cordgrass living in polluted salt marshes of the Odiel estuary (SW Spain), was collected and cultured under controlled laboratory conditions. After acclimation to non-polluted soils for 28 days, both metabolites and enzymes activities used as indicators of oxidative stress were reduced significantly. Then, plants were exposed to 500 and 1000 ppm Fe-ethylenediamine-N,N'-2-hydroxyphenyl acetic acid (EDDHA) for 28 days. Our data demonstrate that iron content in leaves was enhanced by iron exposure. This iron increase caused an enhancement in the concentration of H2O2, hydroperoxides and lipid peroxidation, and a decrease in chlorophyll levels. Thus, iron exposure led to oxidative stress conditions. However, oxidative indicators stabilised after first 2 weeks of exposure, although the highest iron levels in leaves were reached at the end of treatments. Iron exposure induced an enhancement of catalase, ascorbate peroxidase and guaiacol peroxidase activities, together with an increase in total and oxidised ascorbate. This response may be defensive against oxidative stress and thus help to explain why cell oxidative damages were stabilised. Thus, by using a sensitive long-time protocol, iron-dependent oxidative damages may be controlled and even reverted successfully by the activation of the antioxidative defences of S. densiflora. This efficient antioxidative system, rapidly modulated in response to excess iron and other environmental stressors, may account for S. densiflora's successful adaptation to stress conditions in its habitat.

  20. Growth, photosynthesis, and antioxidant responses of Vigna unguiculata L. treated with hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Syed Aiman Hasan

    2016-12-01

    Full Text Available Cowpea (Vigna unguiculata L. is an important legume well grown in semiarid and arid environment. Hydrogen peroxide solutions (0.1, 0.5, 1.0, and 1.5 mM have been used to optimize growth and photosynthetic performance of cowpea plant at two growth stages [30 and 45 DAS (days of sowing]. Foliar application of H2O2 at 0.5 > 1.0 mM solution at 29 DAS optimally promoted the photosynthetic attributes [leaf chlorophyll content, net photosynthetic rate (PN, water use efficiency, and maximum quantum yield of PSII (Fv/Fm] and growth performance [root and shoot length; fresh and dry weight] of plants where the responses were more significant at the later growth stage. It was favored by activity of enzymes as carbonic anhydrase [CA; E.C. 4.2.1.1] and nitrate reductase [NR, E.C. 1.6.6.1] and those of antioxidant enzymes viz. peroxidase [POX; EC 1.11.1.7], catalase [CAT; EC 1.11.1.6], and superoxide dismutase [SOD; EC 1.15.1.1] and leaf proline content. Strengthened root system and antioxidant activity, particularly leaf proline level appeared to be the key factor for efficient photosynthesis and growth responses.

  1. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python.

    Science.gov (United States)

    Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A

    2017-05-02

    Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.

  2. Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus).

    Science.gov (United States)

    Rey, Benjamin; Dégletagne, Cyril; Bodennec, Jacques; Monternier, Pierre-Axel; Mortz, Mathieu; Roussel, Damien; Romestaing, Caroline; Rouanet, Jean-Louis; Tornos, Jeremy; Duchamp, Claude

    2016-08-01

    Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure

  3. Response of antioxidant system to drought stress and re-watering in Alfalfa during branching

    Science.gov (United States)

    Tina, R. R.; Shan, X. R.; Wang, Y.; Guo, S. Y.; Mao, B.; Wang, W.; Wu, H. Y.; Zhao, T. H.

    2017-11-01

    This paper aimed to reveal the response mechanism of active oxygen metabolism and antioxidant enzyme activities in Alfalfa under drought stress and re-watering, and the pot experiment was used, to explore the changes of H2O2, O2·-, electrolyte leakage conductivity and MDA, SOD, POD, CAT activity in Golden Empress (tolerant cultivar) and Sanditi (non-tolerant cultivar) under drought stress and re-watering during branching stage. Three water gradients were set up: CK (Maximum field capacity of 75%±5%), T1 (Maximum field capacity of 45%±5%), T2 (Maximum field capacity of 35%±5%) to compare, and the drought rehydration was also studied. Results: the results indicated that H2O2 content, O2·-production rate, relative conductivity and MDA content were higher than the control, and the increase extent of Golden Empress was higher than the Sanditi under drought stress and after re-watering the recovery capability of Golden Empress was also higher than the Sanditi. After 7 days of re-watering, all indexes were restored to the control level, indicating that the re-watering have compensation effect after drought. After drought stress, to weaken the damage of active oxygen Golden Empress was mainly by increasing the activity of POD and SOD, but Sanditi was mainly through the POD and CAT activity increased to effectively remove ROS. Under drought stress, active oxygen in leaves of Alfalfa increased, and thus the membrane system was damaged which lead to the increase of MDA content and relative electric conductivity. Plants play a defensive role by increasing the activity of antioxidant enzymes and scavenging reactive oxygen species. After re-watering, the stress effect was reduced, and the physiological indexes of plants were restored to the control level. In general, tolerant cultivar has stronger antioxidant properties under drought and re-watering.

  4. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings.

    Science.gov (United States)

    Srivastava, Rajneesh Kumar; Pandey, Poonam; Rajpoot, Ritika; Rani, Anjana; Dubey, R S

    2014-09-01

    Interactive effects of two heavy metal pollutants Cd and Pb in the growth medium were examined on their uptake, production of reactive oxygen species (ROS), induction of oxidative stress and antioxidative defence responses in Indica rice (Oryza sativa L.) seedlings. When rice seedlings in sand culture were exposed to 150 μM Cd (NO3)2 or 600 μM Pb (CH3COO)2 individually or in combination for 8-16 days, a significant reduction in root/shoot length, fresh weight, relative water content, photosynthetic pigments and increased production of ROS (O2˙- and H2O2) was observed. Both Cd and Pb were readily taken up by rice roots and localisation of absorbed metals was greater in roots than in shoots. When present together in the growth medium, uptake of both the metals Cd and Pb declined by 25-40%. Scanning electron microscope (SEM) imaging of leaf stomata revealed that Pb caused more distortion in the shape of guard cells than Cd. Dithizone staining of roots showed localisation of absorbed Cd on root hairs and epidermal cells. Both Cd and Pb caused increased lipid peroxidation, protein carbonylation, decline in protein thiol and increase in non-protein thiol. The level of reduced forms of non-enzymic antioxidants glutathione (GSH) and ascorbate (AsA) and their redox ratios (GSH/AsA) declined, whereas the activities of antioxidative enzymes superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased in metal treated seedlings compared to controls. In-gel activity staining also revealed increased intensities of SOD and GPX isoforms with metal treatments. Catalase (CAT) activity increased during early days (8 days) of metal exposure and declined by 16 days. Results suggest that oxidative stress is an important component in expression of Cd and Pb toxicities in rice, though uptake of both metals gets reduced considerably when present together in the medium.

  5. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants.

    Science.gov (United States)

    Gratão, Priscila Lupino; Monteiro, Carolina Cristina; Tezotto, Tiago; Carvalho, Rogério Falleiros; Alves, Letícia Rodrigues; Peters, Leila Priscila; Azevedo, Ricardo Antunes

    2015-10-01

    Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism.

  6. Antioxidant and Vasodilator Activity of Ugni molinae Turcz. (Murtilla and Its Modulatory Mechanism in Hypotensive Response

    Directory of Open Access Journals (Sweden)

    Ignacio Jofré

    2016-01-01

    Full Text Available Hypertension is a systemic condition with high morbidity and mortality rates worldwide, which poses an increased risk for cardiovascular diseases. In this study, we demonstrated the antioxidant and vasodilator activity of Ugni molinae Turcz. (Murtilla fruit, a berry native to Chile and proposed models to explain its modulatory mechanism in hypotensive response. Murtilla fruits were cultivated in a germplasm bank and submitted to chemical and biological analyses. The phenolic compounds gallic acid, Catechin, Quercetin-3-β-D-glucoside, Myricetin, Quercetin, and Kaempferol were identified. Murtilla extract did not generate toxic effects on human endothelial cells and had significant antioxidant activity against ROS production, lipid peroxidation, and superoxide anion production. Furthermore, it showed dose-dependent vasodilator activity in aortic rings in the presence of endothelium, whose hypotensive mechanism is partially mediated by nitric oxide synthase/guanylate cyclase and large-conductance calcium-dependent potassium channels. Murtilla fruits might potentially have beneficial effects on the management of cardiovascular diseases.

  7. Clinical Effects of a Dietary Antioxidant Silicate Supplement, Microhydrin((R)), on Cardiovascular Responses to Exercise.

    Science.gov (United States)

    Purdy Lloyd, Kimberly L.; Wasmund, Wendy; Smith, Leonard; Raven, Peter B.

    2001-01-01

    Amorphous silicate minerals, often described as rock flour, were once common in natural water sources and abundant in glacial stream waters. Not only do the silica mineral particles bond water and other elements for transport; they also can be adsorbed with reduced hydrogen, which releases electrons, providing antioxidant or reducing potential to surrounding fluids. The purpose of this investigation was to examine the cardiovascular responses during exercise after consumption of a dietary silicate mineral antioxidant supplement, Microhydrin((R)) (Royal BodyCare, Inc., Irving, TX). A clinical trial incorporating a double-blind, placebo-controlled, crossover experimental design was employed. Subjects received either active agent or placebo, four capsules per day, for 7 days before the trial. The trial evaluated six exercise bicycle-trained subjects performing a 40-km bicycling time trial. Ratings of perceived exertion and measurements of oxygen uptake, heart rate, performance workload, and preexercise and postexercise blood lactate concentrations were obtained. Although there were no differences (P >/=.05) in work performed, heart rate, oxygen uptake, and ratings of perceived exertion during the time trial, the postexercise blood lactate concentrations were significantly lower (P

  8. Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio).

    Science.gov (United States)

    Zhang, Chun-Nuan; Zhang, Ji-Liang; Ren, Hong-Tao; Zhou, Bian-Hua; Wu, Qiu-Jue; Sun, Ping

    2017-04-01

    Tributyltin (TBT) is a toxic compound released into aquatic ecosystems through antifouling paints. This study was designed to examine the effects of TBT on antioxidant ability and immune responses of zebrafish (Danio rerio). Three hundred sixty healthy zebrafish were randomly grouped into four groups and exposed to different doses of TBT (0, 1, 10 and 100ngL -1 ). At the end of 8 weeks, the fish were sampled, and antioxidant capability, immune parameters and immune-related genes were assessed. The results showed that with an increase in TBT dose, the concentration of malonaldehyde in the liver was significantly increased (p<0.05), whereas the activities of total superoxide dismutase, catalase and glutathione peroxidase were significantly decreased (p<0.05) compared to the control. The activity and expression of lysozyme and the content of immunoglobulin M were significantly decreased compared to those of the fish exposed to 0ngL -1 TBT (p<0.05). However, the expression of the HSP70, HSP90, tumor necrosis factor-α(TNF-α), interleukins (IL-1β, IL-6), and nuclear factor-kappa B p65 (NF-κ B p65) genes were all enhanced with an increase in TBT dose. The results indicated that TBT induced oxidative stress and had immunotoxic effects on zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure.

    Science.gov (United States)

    Xing, Wei; Li, Dunhai; Liu, Guihua

    2010-01-01

    Antioxidative responses of Elodea nuttallii (Planch.) H. St. John to short-term iron exposure were investigated in the study. Results showed that iron accumulation in E. nuttallii was concentration dependent. Growth of E. nuttallii was promoted by low iron concentration (1-10 mg L(-1) [Fe(3+)]), but growth inhibition was observed when iron concentration beyond 10 mg L(-1). The synthesis of protein and pigments increased within 1-10 mg L(-1) [Fe(3+)] range. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-S-transferase (GST) were up to maximal values at 10 mg L(-1) [Fe(3+)]. High iron concentration inhibited the synthesis of protein and pigments as well as activities of antioxidative enzymes, and accelerated degradation of pigment and production of ROS. Low iron concentration had no significant influences on PSII maximal quantum yield, activity of PSII and relative electron transport rate though PSII. Malondialdehyde (MDA) and proline concentrations were highest at 100 and 1 mg L(-1) [Fe(3+)], respectively. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  10. Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil.

    Science.gov (United States)

    Smolinska, Beata; Szczodrowska, Agnieszka

    2017-09-25

    In this study, Lepidium sativum L. was used in repeated phytoextraction processes to remove Hg from contaminated soil, assisted by combined use of compost and iodide (KI). L. sativum L. is sensitive to changes in environmental conditions and has been used in environmental tests. Its short vegetation period and ability to accumulate heavy metals make it suitable for use in repeated phytoextraction. The antioxidant enzymatic system of the plant (catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and glutathione S-transferase (GST)) was analysed, to understand the effects of increasing Hg accumulation and translocation. Phytoextraction was repeated six times to decrease Hg contamination in soil, and the efficiency of each step was assessed. The results indicate that L. sativum L. is able to take up and accumulate Hg from contaminated soil. A corresponding increase in enzymatic antioxidants shows that the plant defence system is activated in response to Hg stress. Using compost and KI increases total Hg accumulation and translocation to the above-ground parts of L. sativum L. Repeating the process decreases Hg contamination in pot experiments in all variants of the process. The combined use of compost and KI during repeated phytoextraction increases the efficiency of Hg removal from contaminated soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria.

    Science.gov (United States)

    Ishizawa, Hidehiro; Kuroda, Masashi; Morikawa, Masaaki; Ike, Michihiko

    2017-09-01

    Bacteria colonizing the plant rhizosphere are believed to positively or negatively affect the host plant productivity. This feature has inspired researchers to engineer such interactions to enhance crop production. However, it remains to be elucidated whether rhizobacteria influences plant oxidative stress vis-a-vis other environmental stressors, and whether such influence is associated with their growth promoting/inhibiting ability. In this study, two plant growth-promoting bacteria (PGPB) and two plant growth-inhibiting bacteria (PGIB) were separately inoculated into axenic duckweed (Lemna minor) culture under laboratory conditions for 4 and 8 days in order to investigate their effects on plant oxidative stress and antioxidant activities. As previously characterized, the inoculation of PGPB and PGIB strains accelerated and reduced the growth of L. minor, respectively. After 4 and 8 days of cultivation, compared to the PGPB strains, the PGIB strains induced larger amounts of O 2 •- , H 2 O 2 , and malondialdehyde (MDA) in duckweed, although all bacterial strains consistently increased O 2 •- content by two times more than that in the aseptic control plants. Activities of five antioxidant enzymes were also elevated by the inoculation of PGIB, confirming the severe oxidative stress condition in plants. These results suggest that the surface attached bacteria affect differently on host oxidative stress and its response, which degree correlates negatively to their effects on plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress.

    Science.gov (United States)

    Yadav, Santosh Kumar; Dhote, Monika; Kumar, Phani; Sharma, Jitendra; Chakrabarti, Tapan; Juwarkar, Asha A

    2010-08-15

    Chromium (Cr) tolerant and accumulation capability of Jatropha curcas L. was tested in Cr spiked soil amended with biosludge and biofertilizer. Plants were cultivated in soils containing 0, 25, 50, 100 and 250 mg kg(-1) of Cr for one year with and without amendment. Plant tissue analysis showed that combined application of biosludge and biofertilizer could significantly reduce Cr uptake and boost the plant biomass, whereas biofertilizer alone did not affect the uptake and plant growth. Antioxidative responses of catalase (CAT), ascorbate peroxidase (APX) and glutathione S-transferase (GST) were increased with increasing Cr concentration in plant. Hyperactivity of the CAT and GST indicated that antioxidant enzymes played an important role in protecting the plant from Cr toxicity. However, APX took a little part in detoxification of H(2)O(2) due to its sensitivity to Cr. Therefore, reduced APX activity was recorded. Reduced glutathione (GSH) activity was recorded in plant grown on/above 100 mg kg(-1) of Cr in soil. The study concludes that J. curcas could grow under chromium stress. Furthermore, the results encouraged that J. curcas is a suitable candidate for the restoration of Cr contaminated soils with the concomitant application of biosludge and biofertilizer. Copyright 2010 Elsevier B.V. All rights reserved.

  13. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Sílvia S. Chambel

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH, which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 is a positive regulator of the expression of a battery of genes involved in the protection against oxidative/electrophilic stress. In rodents, Nrf2 is also known to participate in hepatic fatty acid metabolism, as a negative regulator of genes that promote hepatosteatosis. We review relevant evidence in the literature that these two mechanisms may contribute to the protective role of Nrf2 in the development of hepatic steatosis and in the progression to steatohepatitis, particularly in young animals. We propose that age may be a key to explain contradictory findings in the literature. In summary, Nrf2 mediates the crosstalk between lipid metabolism and antioxidant defense mechanisms in experimental models of NAFLD, and the nutritional or pharmacological induction of Nrf2 represents a promising potential new strategy for its prevention and treatment.

  14. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method

    Science.gov (United States)

    Fan, Sanhong; Hu, Yanan; Li, Chen; Liu, Yanrong

    2014-01-01

    Protein isolates of pumpkin (Cucurbita pepo L) seeds were hydrolyzed by acid protease to prepare antioxidative peptides. The hydrolysis conditions were optimized through Box-Behnken experimental design combined with response surface method (RSM). The second-order model, developed for the DPPH radical scavenging activity of pumpkin seed hydrolysates, showed good fit with the experiment data with a high value of coefficient of determination (0.9918). The optimal hydrolysis conditions were determined as follows: hydrolyzing temperature 50°C, pH 2.5, enzyme amount 6000 U/g, substrate concentration 0.05 g/ml and hydrolyzing time 5 h. Under the above conditions, the scavenging activity of DPPH radical was as high as 92.82%. PMID:24637721

  15. Is there a role for antioxidant carotenoids in limiting self-harming immune response in invertebrates?

    Science.gov (United States)

    Cornet, Stéphane; Biard, Clotilde; Moret, Yannick

    2007-06-22

    Innate immunity relies on effectors, which produce cytotoxic molecules that have not only the advantage of killing pathogens but also the disadvantage of harming host tissues and organs. Although the role of dietary antioxidants in invertebrate immunity is still unknown, it has been shown in vertebrates that carotenoids scavenge cytotoxic radicals generated during the immune response. Carotenoids may consequently decrease the self-harming cost of immunity. A positive relationship between the levels of innate immune defence and circulating carotenoid might therefore be expected. Consistent with this hypothesis, we show that the maintenance and use of the prophenoloxidase system strongly correlate with carotenoid concentration in haemolymph within and among natural populations of the crustacean Gammarus pulex.

  16. Flavonoids Extraction from Taraxacum officinale (Dandelion: Optimisation Using Response Surface Methodology and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Zongxi Sun

    2014-01-01

    Full Text Available The Box-Behnken design combined with response surface method was employed to optimize ultrasonic-assisted extraction of flavonoids from Taraxacum officinale. The optimized results showed that the highest extraction yield with ultrasonic-assisted extraction could reach 2.62% using 39.6% (v/v ethanol and 59.5 : 1 (mL/g liquid-solid ratio for 43.8 min. The crude extract was then purified by HPD-100 macroporous adsorption resin, and the flavonoids content in the purified extract increased to 54.7%. The antioxidant activity of the purified flavonoids was evaluated in vitro by scavenging capacity of ABTS or DPPH, β-carotene bleaching, and FTC test. The knowledge obtained from this study should be useful to further develop and apply this plant resource.

  17. Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response.

    Science.gov (United States)

    Chen, Menghao; Li, Xiaojing; Fan, Ruifeng; Cao, Changyu; Yao, Haidong; Xu, Shiwen

    2017-11-01

    The nuclear transcription factor NF-E2-related factor 2 (Nrf2) binds to antioxidant response elements (AREs) and is involved in the regulation of genes participated in defending cells against oxidative damage, which have been confirmed in animal models. Selenium (Se), known as an important element in the regulation of antioxidant activity, can antagonize Cadmium (Cd) toxicity in birds. However, the role of Nrf2 in selenium-cadmium interaction has not been reported in birds. To further explore the mechanism of selenium attenuating spleen toxicity induced by cadmium in chickens, cadmium chloride (CdCl 2 , 150mg/kg) and sodium selenite (Na 2 SeO 3 , 2mg/kg) were co-administrated or individually administered in the diet of chickens for 90 days. The results showed that Cd exposure increased the level of hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) and decreased the antioxidant enzyme activities, including superoxide dismutase (SOD), glutathione peroxidase (Gpx), total antioxidative capacity (T-AOC), catalase (CAT). Cd exposure increased obviously nuclear accumulation of Nrf2, and the expression of Nrf2 downstream heme oxygenase-1 (HO-1) and NAD(P)H: quinine oxidoreductase 1 (NQO1), reduced the expression of Kelch-like ECH-associated protein (keap1), Gpx-1 and thioredoxin reductase-1 (TrxR1). In addition, Cd induced the increase of bak, caspase9, p53, Cyt c mRNA levels, increased bax/bcl-2 ratio, increased caspase3 mRNA and protein levels. Selenium treatment reduced the accumulation of Cd in the spleen, attenuates Cd-induced Nrf2 nuclear accumulation, enhanced antioxidant enzyme activities, ameliorated Cd-induced oxidative stress and apoptosis in the spleen. In summary, our results demonstrate that Se ameliorated spleen toxicity induced by cadmium by modulating the antioxidant system, independently of Nrf2-regulated antioxidant response pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Perturbations in carotenoid and porphyrin status result in differential photooxidative stress signaling and antioxidant responses.

    Science.gov (United States)

    Park, Joon-Heum; Jung, Sunyo

    2018-02-12

    We examined differential photooxidative stress signaling and antioxidant responses in rice plants treated with norflurazon (NF) and oxyfluorfen (OF), which are inhibitors of carotenoid and porphyrin biosynthesis, respectively. Plants treated with OF markedly increased levels of cellular leakage and malondialdehyde, compared with NF-treated plants, showing that OF plants suffered greater oxidative damage with respect to membrane integrity. The enhanced production of H 2 O 2 in response to OF, but not NF, indicates the important role of H 2 O 2 in activation of photooxidative stress signaling in OF plants. In response to NF and OF, the increased levels of free salicylic acid as well as maintenance of the redox ratio of ascorbate and glutathione pools to a certain level are considered to be crucial factors in the protection against photooxidation. Plants treated with OF greatly up-regulated catalase (CAT) activity and Cat transcript levels, compared with NF-treated plants. Interestingly, NF plants showed no noticeable increase in oxidative metabolism, although they did show considerable increases in ascorbate peroxidase (APX) and peroxidase activities and transcript levels of APX, as in OF plants. Our results suggest that perturbations in carotenoid and porphyrin status by NF and OF can be sensed by differential photooxidative stress signaling, such as that involving H 2 O 2 , redox state of ascorbate and glutathione, and salicylic acid, which may be responsible for at least part of the induction of ROS-scavenging enzymes. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The Seed Repair Response during Germination: Disclosing Correlations between DNA Repair, Antioxidant Response, and Chromatin Remodeling in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Andrea Pagano

    2017-11-01

    Full Text Available This work provides novel insights into the effects caused by the histone deacetylase inhibitor trichostatin A (TSA during Medicago truncatula seed germination, with emphasis on the seed repair response. Seeds treated with H2O and TSA (10 and 20 μM were collected during imbibition (8 h and at the radicle protrusion phase. Biometric data showed delayed germination and impaired seedling growth in TSA-treated samples. Comet assay, performed on radicles at the protrusion phase and 4-days old M. truncatula seedlings, revealed accumulation of DNA strand breaks upon exposure to TSA. Activation of DNA repair toward TSA-mediated genotoxic damage was evidenced by the up-regulation of MtOGG1(8-OXOGUANINE GLYCOSYLASE/LYASE gene involved in the removal of oxidative DNA lesions, MtLIGIV(LIGASE IV gene, a key determinant of seed quality, required for the rejoining of DNA double strand breaks and TDP(TYROSYL-DNA PHOSPHODIESTERASE genes encoding the multipurpose DNA repair enzymes tyrosyl-DNA phosphodiesterases. Since radical scavenging can prevent DNA damage, the specific antioxidant activity (SAA was measured by DPPH (1,1-diphenyl-2-picrylhydrazyl and Folin-Ciocalteu reagent assays. Fluctuations of SAA were observed in TSA-treated seeds/seedlings concomitant with the up-regulation of antioxidant genes MtSOD(SUPEROXIDE DISMUTASE, MtAPX(ASCORBATE PEROXIDASE and MtMT2(TYPE 2 METALLOTHIONEIN. Chromatin remodeling, required to facilitate the access of DNA repair enzymes at the damaged sites, is also part of the multifaceted seed repair response. To address this aspect, still poorly explored in plants, the MtTRRAP(TRANSFORMATION/TRANSACTIVATION DOMAIN-ASSOCIATED PROTEIN gene was analyzed. TRRAP is a transcriptional adaptor, so far characterized only in human cells where it is needed for the recruitment of histone acetyltransferase complexes to chromatin during DNA repair. The MtTRRAP gene and the predicted interacting partners MtHAM2 (HISTONE ACETYLTRANSFERASE OF

  20. LACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPS) IN RATS

    Science.gov (United States)

    2003 AAR PM MeetingParticulate Matter: Atmospheric Sciences,Exposure and the Fourth Colloquium on PM and Human HealthLACK OF EFFECT OF AGE AND ANTIOXIDANT DEPLETION ON RESPIRATORY RESPONSES TO CONCENTRATED AMBIENT PARTICULATES (CAPs) IN RATS. JA Dye, LC Walsh, C...

  1. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  2. Optimization of Solid-Liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zoran Zeković

    2012-01-01

    Full Text Available The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The aim of this study is to examine the influence of solvent concentration (ethanol/water 40–80 %, by volume, temperature (40–80 °C and solvent/raw material ratio (10–30 mL/g on the extraction yield of phenolic compounds, flavonoids and antioxidant activity from black mulberry (Morus nigra L. leaves. Experimental values of total phenolic content were in the range from 18.6 to 48.7 mg of chlorogenic acid equivalents per g of dried leaves and total flavonoids in the range from 6.0 to 21.4 mg of rutin eqivalents per g of dried leaves. Antioxidant activity expressed as the inhibition concentration at 50 % (IC50 value was in the range from 0.019 to 0.078 mg of mulberry extract per mL. Response surface methodology (RSM was used to determine the optimum extraction conditions and to investigate the effect of different variables on the observed properties of mulberry leaf extracts. The results show a good fit to the proposed model (R˄2>0.90. The optimal conditions for obtaining the highest extraction yield of phenolics and flavonoids were within the experimental range. The experimental values agreed with those predicted, thus indicating suitability of the used model and the success of RSM in optimizing the investigated extraction conditions.

  3. Antioxidant responses following active and passive smoking of tobacco and electronic cigarettes.

    Science.gov (United States)

    Poulianiti, Konstantina; Karatzaferi, Christina; Flouris, Andreas D; Fatouros, Ioannis G; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2016-07-01

    It has been indicated that acute active and passive tobacco cigarette smoking may cause changes on redox status balance that may result in significant pathologies. However, no study has evaluated the effects of active and passive e-cigarette smoking on redox status of consumers. To examine the acute effects of active and passive e-cigarette and tobacco cigarette smoking on selected redox status markers. Using a randomized single-blind crossover design, 30 participants (15 smokers and 15 nonsmokers) were exposed to three different experimental conditions. Smokers underwent a control session, an active tobacco cigarette smoking session (smoked 2 cigarettes within 30-min) and an active e-cigarette smoking session (smoked a pre-determined number of puffs within 30-min using a liquid with 11 ng/ml nicotine). Similarly, nonsmokers underwent a control session, a passive tobacco cigarette smoking session (exposure of 1 h to 23 ± 1 ppm of CO in a 60 m(3) environmental chamber) and a passive e-cigarette smoking session (exposure of 1 h to air enriched with pre- determined number of puffs in a 60 m(3) environmental chamber). Total antioxidant capacity (TAC), catalase activity (CAT) and reduced glutathione (GSH) were assessed in participants' blood prior to, immediately after, and 1-h post-exposure. TAC, CAT and GSH remained similar to baseline levels immediately after and 1-h-post exposure (p > 0.05) in all trials. Tobacco and e-cigarette smoking exposure do not acutely alter the response of the antioxidant system, neither under active nor passive smoking conditions. Overall, there is not distinction between tobacco and e-cigarette active and passive smoking effects on specific redox status indices.

  4. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology.

    Science.gov (United States)

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.

  5. Ultrasonic extraction of antioxidants from Chinese sumac (Rhus typhina L.) fruit using response surface methodology and their characterization.

    Science.gov (United States)

    Lai, Jixiang; Wang, Huifang; Wang, Donghui; Fang, Fang; Wang, Fengzhong; Wu, Tao

    2014-06-27

    For the first time, response surface methodology (RSM) using a Box-Behnken Design (BBD) was employed to optimize the conditions for ultrasonic assisted extraction (UAE) of antioxidants from Chinese sumac (Rhus typhina L.) fruits. Initially, influencing factors such as liquid-solid ratio, duration of ultrasonic assisted extraction, pH range, extraction temperature and ethanol concentration were identified using single-factor experiments. Then, with respect to the three most significant influencing factors, the extraction process focusing on the DPPH· scavenging capacity of antioxidants was optimized using RSM. Results showed that the optimal conditions for antioxidant extraction were 13.03:1 (mL/g) liquid-solid ratio, 16.86 min extraction time and 40.51% (v/v) ethanol, and the desirability was 0.681. The UPLC-ESI-MS analysis results revealed eleven kinds of phenolic compounds, including four major rare anthocyanins, among the antioxidants. All these results suggest that UAE is efficient at extracting antioxidants and has the potential to be used in industry for this purpose.

  6. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology.

    Science.gov (United States)

    Xu, Dong-Ping; Zhou, Yue; Zheng, Jie; Li, Sha; Li, An-Na; Li, Hua-Bin

    2015-12-24

    An ultrasound-assisted extraction (UAE) method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time) on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW), which was in accordance with the predicted value (1105.49 µmol Trolox/g DW). Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  7. Ultrasonic Extraction of Antioxidants from Chinese Sumac (Rhus typhina L. Fruit Using Response Surface Methodology and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jixiang Lai

    2014-06-01

    Full Text Available For the first time, response surface methodology (RSM using a Box-Behnken Design (BBD was employed to optimize the conditions for ultrasonic assisted extraction (UAE of antioxidants from Chinese sumac (Rhus typhina L. fruits. Initially, influencing factors such as liquid-solid ratio, duration of ultrasonic assisted extraction, pH range, extraction temperature and ethanol concentration were identified using single-factor experiments. Then, with respect to the three most significant influencing factors, the extraction process focusing on the DPPH· scavenging capacity of antioxidants was optimized using RSM. Results showed that the optimal conditions for antioxidant extraction were 13.03:1 (mL/g liquid-solid ratio, 16.86 min extraction time and 40.51% (v/v ethanol, and the desirability was 0.681. The UPLC-ESI-MS analysis results revealed eleven kinds of phenolic compounds, including four major rare anthocyanins, among the antioxidants. All these results suggest that UAE is efficient at extracting antioxidants and has the potential to be used in industry for this purpose.

  8. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Dong-Ping Xu

    2015-12-01

    Full Text Available An ultrasound-assisted extraction (UAE method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW, which was in accordance with the predicted value (1105.49 µmol Trolox/g DW. Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  9. Antioxidative and immunological responses in the haemolymph of wolf spider Xerolycosa nemoralis (Lycosidae) exposed to starvation and dimethoate

    International Nuclear Information System (INIS)

    Stalmach, Monika; Wilczek, Grażyna; Homa, Joanna; Szulinska, Elżbieta

    2015-01-01

    The aim of this study was to assess the intensity of enzymatic antioxidative parameters [catalase (CAT), glutathione peroxidase (GSTPx), glutathione reductase (GR), total antioxidant capacity (TAC)] and percentage of high granularity cells as well as low to medium granularity cells in haemolymph of wolf spiders Xerolycosa nemoralis exposed to starvation and dimethoate under laboratory conditions. Only in starved males, haemolymph included a lower percentage of high granularity cells, accompanied by high activity of CAT and GSTPx, than in the control. Exposure of males to dimethoate increased CAT activity, after single application, and significantly enhanced GR activity, after five-time application. In females, five-time contact with dimethoate elevated the percentage of high granularity cells. As in comparison to females, male X. nemoralis were more sensitive to the applied stressing factors, it may be concluded that in natural conditions both food deficiency and chemical stress may diminish the immune response of their organisms. - Highlights: • Starvation of males diminishes their immunological potential. • Females, compared with males, are less sensitive to starvation and dimethoate. • Antioxidative responses are stronger in starvation than after dimethoate intoxication. - The level of antioxidative response and quantitative changes of haemocytes in the haemolymph of wolf spider Xerolycosa nemoralis (Lycosidae) depend on the stressor and gender.

  10. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners.

    Science.gov (United States)

    Bittencourt-Oliveira, Maria do Carmo; Cordeiro-Araújo, Micheline Kézia; Chia, Mathias Ahii; Arruda-Neto, João Dias de Toledo; de Oliveira, Ênio Tiago; dos Santos, Flávio

    2016-06-01

    The use of microcystins (MCs) contaminated water to irrigate crop plants represents a human health risk due to their bioaccumulation potential. In addition, MCs cause oxidative stress and negatively influence photosynthetic activities in plants. The present study was aimed at investigating the effect of MCs on photosynthetic parameters and antioxidative response of lettuce. Furthermore, the bioaccumulation factor (BAF) of total MCs, MC-LR and MC-RR in the vegetable after irrigation with contaminated water was determined. Lettuce crops were irrigated for 15 days with water containing cyanobacterial crude extracts (Microcystis aeruginosa) with MC-LR (0.0, 0.5, 2.0, 5.0 and 10.0 µg L(-1)), MC-RR (0.0, 0.15, 0.5, 1.5 and 3.0 µg L(-1)) and total MCs (0.0, 0.65, 2.5, 6.5 and 13.0 µg L(-1)). Increased net photosynthetic rate, stomatal conductance, leaf tissue transpiration and intercellular CO2 concentration were recorded in lettuce exposed to different MCs concentrations. Antioxidant response showed that glutathione S-transferase activity was down-regulated in the presence of MCs. On the other hand, superoxide dismutase, catalase and peroxidase activities were upregulated with increasing MCs concentrations. The bioaccumulation factor (BAF) of total MCs and MC-LR was highest at 6.50 and 5.00 µg L(-1), respectively, while for MC-RR, the highest BAF was recorded at 1.50 µg L(-1) concentration. The amount of total MCs, MC-LR and MC-RR bioacumulated in lettuce was highest at the highest exposure concentrations. However, at the lowest exposure concentration, there were no detectable levels of MC-LR, MC-RR and total MCs in lettuce. Thus, the bioaccumulation of MCs in lettuce varies according to the exposure concentration. In addition, the extent of physiological response of lettuce to the toxins relies on exposure concentrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response.

    Science.gov (United States)

    Parvez, Saba; Fu, Yuan; Li, Jiayang; Long, Marcus J C; Lin, Hong-Yu; Lee, Dustin K; Hu, Gene S; Aye, Yimon

    2015-01-14

    Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.

  12. Short term supplementation of dietary antioxidants selectively regulates the inflammatory responses during early cutaneous wound healing in diabetic mice

    Directory of Open Access Journals (Sweden)

    Park Na-Young

    2011-11-01

    Full Text Available Abstract Background Diabetic foot ulcers are serious complications for diabetic patients, yet the precise mechanism that underlines the treatment of these diabetic complications remains unclear. We hypothesized that dietary antioxidant supplementation with vitamin C, combined either with vitamin E or with vitamin E and NAC, improves delayed wound healing through modulation of blood glucose levels, oxidative stress, and inflammatory response. Methods Diabetes was induced by administration of alloxan monohydrate. Mice were divided into 4 groups; CON (non-diabetic control mice fed AIN 93 G purified rodent diet, DM (diabetic mice fed AIN 93 G purified rodent diet, VCE (diabetic mice fed 0.5% vitamin C and 0.5% vitamin E supplemented diet, and Comb (diabetic mice fed 0.5% vitamin C, 0.5% vitamin E, and 2.5% NAC supplemented diet. After 10 days of dietary antioxidant supplementation, cutaneous full-thickness excisional wounds were performed, and the rate of wound closure was examined. TBARS as lipid peroxidation products and vitamin E levels were measured in the liver. Expression levels of oxidative stress and inflammatory response related proteins were measured in the cutaneous wound site. Results Dietary antioxidant supplementation improved blood glucose levels and wound closure rate and increased liver vitamin E, but not liver TBARS levels in the diabetic mice as compared to those of the CON. In addition, dietary antioxidant supplementation modulated the expression levels of pIκBα, HO-1, CuZnSOD, iNOS and COX-2 proteins in the diabetic mice. Conclusions These findings demonstrated that delayed wound healing is associated with an inflammatory response induced by hyperglycaemia, and suggests that dietary antioxidant supplementation may have beneficial effects on wound healing through selective modulation of blood glucose levels, oxidative stress, and inflammatory response.

  13. Antioxidant airway responses following experimental exposure to wood smoke in man

    Directory of Open Access Journals (Sweden)

    Sehlstedt Maria

    2010-08-01

    Full Text Available Abstract Background Biomass combustion contributes to the production of ambient particulate matter (PM in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5 concentration of 224 ± 22 μg/m3, and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results Glutathione (GSH concentrations were enhanced in bronchoalveolar lavage (BAL after wood smoke exposure vs. air (p = 0.025, together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure.

  14. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Chatterjee, Anwesha; Ronghe, Amruta M; Bhat, Nimee K; Bhat, Hari K

    2013-01-01

    Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1

  15. Early induction of NRF2 antioxidant pathway by RHBDF2 mediates rapid cutaneous wound healing.

    Science.gov (United States)

    Hosur, Vishnu; Burzenski, Lisa M; Stearns, Timothy M; Farley, Michelle L; Sundberg, John P; Wiles, Michael V; Shultz, Leonard D

    2017-04-01

    Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2 cub/cub ) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2 cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2 cub/cub and Rhbdf2 +/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2 cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice.

    Science.gov (United States)

    Onaolapo, J Olakunle; Onaolapo, Y Adejoke; Akanmu, A Moses; Olayiwola, Gbola

    2016-01-01

    Effects of daily caffeine consumption on open-field behaviours, serum corticosterone and brain antioxidant levels were investigated after six hours of total sleep-deprivation in prepubertal mice. We tested the hypothesis that daily caffeine consumption may significantly alter behaviour, stress and antioxidative response of prepubertal mice to an acute episode of total sleep-deprivation. Prepubertal Swiss mice of both sexes were assigned to two main groups of 120 each (subdivided into 6 groups of 10 each, based on sex), and administered vehicle or graded oral doses of caffeine (10, 20, 40, 80 and 120 mg/kg/day) for 14 days. On day 14, a main group was subjected to 6 h of total sleep-deprivation by 'gentle-handling'. Open-field behaviours were then assessed in both groups, after which animals were euthanized, and levels of corticosterone, superoxide dismutase and glutathione peroxidase assayed. Horizontal locomotion, rearing and grooming increased significantly, compared to control, with sleep-deprived (SD) mice showing stronger caffeine-driven responses at higher doses; and SD female mice showing sustained response to caffeine, compared to respective males. Plasma corticosterone increased with increasing doses of caffeine in both non sleep-deprived (NSD) and SD mice; although SD mice had higher corticosterone levels. Sleep-deprivation and/or higher doses of caffeine were associated with derangements in brain antioxidant levels. Repeated caffeine consumption and/or acute sleep-deprivation led to significant changes in pattern of open-field behaviour and stress/antioxidant response in mice. Responses seen in the study are probably due to modulatory effects of caffeine on the total body response to stressful stimuli.

  17. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method

    Directory of Open Access Journals (Sweden)

    Chang-Liang Jing

    2015-08-01

    Full Text Available Ultrasonic-assisted extraction (UAE was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM, based on a four-factor, five-level central composite design (CCD, was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid (ABTS and 2,2′-diphenyl-1-picrylhydrazyl (DPPH methods. The results showed good fit with the proposed models for the total flavonoid extraction (R2 = 0.9849, for the antioxidant extraction assayed by ABTS method (R2 = 0.9764, and by DPPH method (R2 = 0.9806. Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa.

  18. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method.

    Science.gov (United States)

    Jing, Chang-Liang; Dong, Xiao-Fang; Tong, Jian-Ming

    2015-08-26

    Ultrasonic-assisted extraction (UAE) was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM), based on a four-factor, five-level central composite design (CCD), was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. The results showed good fit with the proposed models for the total flavonoid extraction (R² = 0.9849), for the antioxidant extraction assayed by ABTS method (R² = 0.9764), and by DPPH method (R² = 0.9806). Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa.

  19. Antioxidant mediated response of Scoparia dulcis in noise-induced redox imbalance and immunohistochemical changes in rat brain.

    Science.gov (United States)

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rajan, Ravindran; Sheeladevi, Rathinasamy

    2017-01-19

    Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H 2 O 2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property.

  20. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    Directory of Open Access Journals (Sweden)

    H Çakır-Atabek

    2015-11-01

    Full Text Available The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8 and untrained (N=8 men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM; 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP significantly increased during the test and then decreased during the recovery in both groups (p0.05. Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50% is enough to increase LHP, whereas higher intensity (more than 80% is required to evoke protein oxidation.

  1. Responses of the antioxidative and biotransformation enzymes in the aquatic fungus Mucor hiemalis exposed to cyanotoxins.

    Science.gov (United States)

    Balsano, Evelyn; Esterhuizen-Londt, Maranda; Hoque, Enamul; Lima, Stephan Pflugmacher

    2017-08-01

    To investigate antioxidative and biotransformation enzyme responses in Mucor hiemalis towards cyanotoxins considering its use in mycoremediation applications. Catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GPx) in M. hiemalis maintained their activities at all tested microcystin-LR (MC-LR) exposure concentrations. Cytosolic glutathione S-transferase (GST) activity decreased with exposure to 100 µg MC-LR l -1 while microsomal GST remained constant. Cylindrospermopsin (CYN) at 100 µg l -1 led to an increase in CAT activity and inhibition of GR, as well as to a concentration-dependent GPx inhibition. Microsomal GST was inhibited at all concentrations tested. β-N-methylamino-L-alanine (BMAA) inhibited GR activity in a concentration-dependent manner, however, CAT, GPx, and GST remained unaffected. M. hiemalis showed enhanced oxidative stress tolerance and intact biotransformation enzyme activity towards MC-LR and BMAA in comparison to CYN, confirming its applicability in bioreactor technology in terms of viability and survival in their presence.

  2. Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants.

    Science.gov (United States)

    Filippou, Panagiota; Antoniou, Chrystalla; Fotopoulos, Vasileios

    2011-02-01

    Effects of water stress on plants have been well-documented. However, the combined responses to drought and rewatering and their underlying mechanisms are relatively unknown. The present study attempts to describe spatiotemporal alterations in the physiology and cellular status of Medicago truncatula tissues that result from and subsequently follow a period of moderate water deficit. Physiological processes and cellular damage levels were monitored in roots and leaves by determining lipid peroxidation levels, as well as nitric oxide and hydrogen peroxide content, further supported by stomatal conductance and chlorophyll fluorescence measurements in leaves. During water stress, cells in both organs displayed increased damage levels and reactive oxygen and nitrogen species content, while leaves showed reduced stomatal conductance. Furthermore, both tissues demonstrated increased proline content. Upon rewatering, plants recovered displaying readings similar to pre-stress control conditions. Furthermore, molecular analysis of antioxidant gene expression by quantitative real-time RT-PCR revealed differential spatiotemporal regulation in a number of genes examined (including catalase, cytosolic ascorbate peroxidase, copper/zinc and iron superoxide dismutase and alternative oxidase). Overall, M. truncatula plants demonstrated increased sensitivity to drought-induced oxidative damage; however, this was reversed following rewatering indicating a great elasticity in the plant's capacity to cope with free oxygen radicals. 

  3. Tributyltin toxicity in abalone (Haliotis diversicolor supertexta) assessed by antioxidant enzyme activity, metabolic response, and histopathology.

    Science.gov (United States)

    Zhou, Jin; Zhu, Xiao-shan; Cai, Zhong-hua

    2010-11-15

    A toxicity test was performed to investigate the possible harmful effects of tributyltin (TBT) on abalone (Haliotis diversicolor supertexta). Animals were exposed to TBT in a range of environmentally relevant concentrations (2, 10 and 50 ng/L) for 30 days under laboratory conditions. TBT-free conditions were used as control treatments. The activity of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD), and malondialdehyde (MDA), along with levels of haemolymph metabolites, and hepatopancreas histopathology were analyzed. The results showed that TBT decreased SOD activity, and increased POD level and MDA production in a dose-dependent way, indicating that oxidative injury was induced by TBT. Haemolymph metabolite measurements showed that TBT increased alanine and glutamate levels, and decreased glucose content, which suggested perturbation of energy metabolism. Elevated levels of acetate and pyruvate in the haemolymph indicated partial alteration of lipid metabolism. A decrease in lactate and an increase in succinate, an intermediate of the tricarboxylic acid (TCA) cycle, indicated disturbance of amino acid metabolism. Hepatopancreas tissues also exhibited inflammatory responses characterized by histopathological changes such as cell swelling, granular degeneration, and inflammation. Taken together, these results demonstrated that TBT was a potential toxin with a variety of deleterious effects on abalone. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Tissue Specificity of a Response of the Pro- and Antioxidative System After Resuscitation

    Directory of Open Access Journals (Sweden)

    A. G. Zhukova

    2005-01-01

    Full Text Available This investigation was undertaken to study the resistance of membrane structures and the level of the intracellular defense systems of the heart, brain, and liver in animals with active versus passive behavior in different periods (days 7 and 30 after resuscitation made 10 minutes following systemic circulatory arrest. All the animals in which systemic circulation had been stopped were survivors with the cession of neurological deficit. The activity of antioxidative defense enzymes, such as cata-lase and superoxide dismutase, in cardiac, cerebral, and hepatic tissues was assayed by spectrophotometry using the conventional methods. The level of stress-induced protein HSP70 was measured in the tissue cytosolic fraction by the Western blotting assay. The activity of Ca2+ transport in the myocardial sarcoplasmic reticulum was determined on an Orion EA 940 ionomer («Orion Research», USA having a Ca2+-selective electrode. The findings show a significant tissue specificity in different postresuscitative periods (days 7 and 30 and varying (protective to damaging cardiac, cerebral, and hepatic responses in active and passive animals to hypoxia.

  5. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  6. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  7. Optimization of the Extraction of Antioxidants and Caffeine from Maté (Ilex paraguariensis Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Vanessa Graciela Hartwig

    2013-04-01

    Full Text Available Optimal conditions for the industrial extraction of total polyphenols from maté (Ilex paraguariensis were determined using response surface methodology, with two independent variables: ethanol percentage of the extraction solution and liquid to solid ratio. Response variables were total polyphenol content, antioxidant capacity, concentration of total polyphenols and caffeine content. The optimal conditions found were a liquid to solid ratio from 8 - 9 w w-1 and ethanol percentage of the extraction solution from 30 -50 % w w-1. Under these conditions the main predicted values corresponding to leaf extracts were 40 μg chlorogenic acid equivalents mL-1 of original extract, 13 g chlorogenic acid equivalents per 100 g dry matter for total polyphenol content, 22 g Trolox equivalents and 15.5 g ascorbic acid equivalents per 100 g dry matter for antioxidant capacity. The total polyphenol content of twig extracts was 36% lower than that in the leaf extracts.

  8. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  9. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane.

    Science.gov (United States)

    Shi, Yajuan; Xu, Xiangbo; Chen, Juan; Liang, Ruoyu; Zheng, Xiaoqi; Shi, Yajing; Wang, Yurong

    2018-01-01

    Hexabromocyclododecane (HBCD), a ubiquitous suspected contaminant, is one of the world's most prominent brominated flame retardants (BFRs). In the present study, earthworms (Eisenia fetida) were exposed to HBCD. The expression of selected antioxidant enzyme genes was measured, and the metabolic responses were assessed using nuclear magnetic resonance (NMR) to identify the molecular mechanism of the antioxidant stress reaction and the metabolic reactions of earthworms to HBCD. A significant up-regulation (p  0.05). Principal component analysis (PCA) of the metabolic responses showed that all groups could be clearly differentiated, and the highest concentration dose group was the most distant from the control group. Except for fumarate, the measured metabolites, which included adenosine triphosphate (ATP), valine, lysine, glycine, betaine and lactate, revealed significant (p earthworm exposure studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Differential Antioxidative Responses to Water Deficit Among four Barley (Hordeum vulgare L. Genotypes

    Directory of Open Access Journals (Sweden)

    Z Amini

    2013-08-01

    Full Text Available Future climate changes are expected to increase risks of drought, which already represent the most common stress factor for stable barley (Hordeum vulgare L. production in Iran. Up to now, extensive research projects have been done to study effects of drought stress on the antioxidant enzyme activity. While there is a few works of such studies on the field condition. In order to study of water deficit effects on the antioxidant enzymes activities as a secondary stress, we evaluate the effects of mild and severe drought stress on activities of antioxidative enzymes including superoxide dismutases, ascorbate peroxidase, catalase and peroxidase, among four barley genotypes, differing in the capacity to maintain the grain yield under drought condition during beginning on anthesis, kernel watery ripe and late milk stages under field condition. Results showed that drought increased the activity of antioxidant enzymes in all genotypes. At beginning of anthesis, POX activity of Q22 was higher than it in other genotypes ( P

  11. Antioxidant responses in gills and digestive gland of oyster Crassostrea madrasensis (Preston) under lead exposure

    Digital Repository Service at National Institute of Oceanography (India)

    Shenai-Tirodkar, P.S.; Gauns, M.; Mujawar, M.W.A.; Ansari, Z.A.

    madrasensis against lead (Pb) exposure under laboratory conditions. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST) and oxidative damage parameter lipid peroxidation (LPO) were measured in the gills...

  12. Optimization of Ultrasound-Assisted Extraction of Antioxidants from Apium graveolens L. Seeds using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Şule Dinç Zor

    2017-09-01

    Full Text Available In this study, optimum conditions for ultrasound-assisted extraction (UAE of antioxidants from Apium graveolens L. seeds were investigated by Response Surface Methodology (RSM. A Box-Behnken Design (BBD was used to evaluate the effect of sonication time (5, 10, 15 min, ultrasound power (60, 120, 180 W and the ratio of extraction solvent in terms of methanol (0, 50, 100% on antioxidant capacity. The optimal UAE conditions for the parameters investigated were 11 min of sonication time, ultrasound power of 131 W and 100% methanol as an extraction solvent. Under these conditions, UAE of antioxidants from the seeds achieved a maximum of 95.08% in respect to 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging activity. Additionally, the high value of the adjusted coefficient of determination (R2adj = 0.9192 and the non-significant difference between experimental and predicted values confirmed the validity of the quadratic polynomial model. Hence, UAE is a suitable, fast, economical and practical technique for the extraction of antioxidants from Apium graveolens L. seeds.

  13. Blood antioxidant and oxidative stress biomarkers acute responses to a 1000-m kayak sprint in elite male kayakers.

    Science.gov (United States)

    Teixeira, V H; Valente, H F; Casal, S I; Marques, F P; Moreira, P A

    2013-02-01

    This study aimed to investigate the response of blood antioxidants and biomarkers of lipid peroxidation, muscle damage and inflammation to a 1000m kayak trial in elite male kayakers. Enzymatic (superoxide dismutase [SOD], glutathione reductase [Gr] and glutathione peroxidase [GPx] activities) and non-enzymatic (total antioxidant status [TAS], uric acid, α-tocopherol, α-carotene, β-carotene, lycopene and lutein and zeaxanthin) antioxidants, thiobarbituric acid reactive substances (TBARS), creatine kinase (CK), interleukin-6 (IL-6) and cortisol were determined in 15 elite male kayakers before and 15 min after a 1000-m kayak simulated race. Both enzymatic and non-enzymatic antioxidants were unaffected by exercise, with the exception of α-carotene which decreased (P=0.013). Uric acid levels were incremented following exercise (P=0.016). The acute exercise resulted in a significant decrease in TAS (P=0.001) and in an increase in CK (P=0.023), TBARS (P<0.001) and IL-6 (P=0.028). Our study suggests that a 1000-m kayak simulated race induces oxidative stress and damage in highly-trained kayakers.

  14. Optimization of ultrasonic-assisted extraction of phenolic antioxidants from Malus baccata (Linn.) Borkh. using response surface methodology.

    Science.gov (United States)

    Wang, Lu; Wang, Zhenyu; Li, Xiaoyu

    2013-05-01

    In this study, the optimum extraction conditions for maximum recovery of the content of total phenolics (TPC) and total antioxidant abilities were analyzed for Malus baccata (Linn.) Borkh. using response surface methodology. The effects of ethanol percentage (X1 ,%), ultrasonic power (X2 , W) and extraction temperature (X3 , °C) on the total phenolic content (Y1 ) and antioxidant ability (Y2 ) were evaluated. A second-order polynomial model produced a satisfactory fitting of the experimental data with regard to total phenolic content (R(2) = 0.9942, P antioxidant ability (R(2) = 0.9966, P extraction temperature of 51.1°C for TPC and 60.5%, 311.4 W, 51.6°C for antioxidant ability, the predicted values agreed well with the experimental values. Results implied that the major phenolic compounds in obtained extracts as chlorogenic acid, quercetin-3-gal/glu, quercetin-3-xyl/ara, phloretin-2-xyloside, quercetin-3- rhamnoside, and phloridzin. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus Coreanus Miq.) using response surface methodology.

    Science.gov (United States)

    Teng, Hui; Lee, Won Young; Choi, Yong Hee

    2013-09-01

    Anthocyanins (Acys), polyphenols, and antioxidants were extracted from raspberry (Rubus Coreanus Miq.) using a highly efficient microwave-assisted extraction technique. Different solvents, including methanol, ethanol, and acetone, were tested. The colors of the extracts varied from light yellow to purple red or dark red. SEM and other nutrient analyses verified that ethanol was the most favorable medium for the microwave-assisted extraction of raspberry due to its high output and low toxicity. Effects of process parameters, including microwave power, irradiation time, and solvent concentration, were investigated through response surface methodology. Canonical analysis estimated that the highest total Acys content, total polyphenols content, and antioxidant activity of raspberry were 17.93 mg cyanidin-3-O-glucoside equivalents per gram dry weight, 38.57 mg gallic acid equivalents per gram dry weight, and 81.24%, respectively. The polyphenol compositions of raspberry extract were identified by HPLC with diode array detection, and nine kinds of polyphenols were identified and quantified, revealing that chlorogenic acid, syringic acid, and rutin are the major polyphenols contained in raspberry fruits. Compared with other fruits and vegetables, raspberry contains higher Acy and polyphenol contents with stronger antioxidant activity, suggesting that raspberry fruits are a good source of natural food colorants and antioxidants. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Antioxidant response of ridgetail white prawn Exopalaemon carinicauda to harmful dinoflagellate Prorocentrum minimum exposure and its histological change

    Science.gov (United States)

    Mu, Cuimin; Ren, Xianyun; Ge, Qianqian; Wang, Jiajia; Li, Jian

    2017-04-01

    The dinoflagellate Prorocentrum minimum, one of the most widespread red tide causing species, affects marine aquaculture and ecosystems worldwide. In this study, ridgetail white prawn Exopalaemon carinicauda were exposed to P. minimum cells (5 × 104 cells mL-1) to investigate its harmful effects on the shrimp. Antioxidant activities and histological changes were used as indicators of health status of the shrimp. In 72 hours, the mortality of E. carinicauda was not affected, but its antioxidant response and histology were statistically different from those of control. Elevated superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities and depressed catalase (CAT) activity were observed in gill; while increased SOD, glutathione S-transferase (GST), CAT activities and modulated GPX activity were observed in hepatopancreas. Thus, antioxidant activities in gill and hepatopancreas seem to respond differentially to harmful alga exposure. Increased malondialdehyde (MDA) content in early a few hours indicates the damage of the antioxidant defense system. Although MDA content recovered to a low level thereafter, a series of histological abnormalities including accumulation or infiltration of hemocytes, tissue lesions and necrosis were discovered in gill and hepatopancreas. Exposure to P. minimum induced sublethal effects on E. carinicauda, including temporary oxidative damage and histological injury.

  17. Serum Oxidative Stress Markers and Lipidomic Profile to Detect NASH Patients Responsive to an Antioxidant Treatment: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Paola Stiuso

    2014-01-01

    Full Text Available Liver steatosis can evolve to steatohepatitis (NASH through a series of biochemical steps related to oxidative stress in hepatocytes. Antioxidants, such as silybin, have been proposed as a treatment of patients with nonalcoholic fatty liver disease (NAFLD and NASH. In this study, we evaluated, in patients with histologically documented NASH, the oxidant/antioxidant status and lipid “fingerprint” in the serum of NASH patients, both in basal conditions and after 12 months of treatment with silybin-based food integrator Realsil (RA. The oxidant/antioxidant status analysis showed the presence of a group of patients with higher basal severity of disease (NAS scores 4.67 ± 2.5 and a second group corresponding to borderline NASH (NAS scores = 3.8 ± 1.5. The chronic treatment with RA changed the NAS score in both groups that reached the statistical significance only in group 2, in which there was also a significant decrease of serum lipid peroxidation. The lipidomic profile showed a lipid composition similar to that of healthy subjects with a restoration of the values of free cholesterol, lysoPC, SM, and PC only in group 2 of patients after treatment with RA. Conclusion. These data suggest that lipidomic and/or oxidative status of serum from patients with NASH could be useful as prognostic markers of response to an antioxidant treatment.

  18. Ultrasonic Extraction of Antioxidants from Chinese Sumac (Rhus typhina L.) Fruit Using Response Surface Methodology and Their Characterization

    OpenAIRE

    Lai, Jixiang; Wang, Huifang; Wang, Donghui; Fang, Fang; Wang, Fengzhong; Wu, Tao

    2014-01-01

    For the first time, response surface methodology (RSM) using a Box-Behnken Design (BBD) was employed to optimize the conditions for ultrasonic assisted extraction (UAE) of antioxidants from Chinese sumac (Rhus typhina L.) fruits. Initially, influencing factors such as liquid-solid ratio, duration of ultrasonic assisted extraction, pH range, extraction temperature and ethanol concentration were identified using single-factor experiments. Then, with respect to the three most significant influen...

  19. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.

    Science.gov (United States)

    Kong, Zhaoyu; Mohamad, Osama Abdalla; Deng, Zhenshan; Liu, Xiaodong; Glick, Bernard R; Wei, Gehong

    2015-08-01

    The effects of rhizobial symbiosis on the growth, metal uptake, and antioxidant responses of Medicago lupulina in the presence of 200 mg kg(-1) Cu(2+) throughout different stages of symbiosis development were studied. The symbiosis with Sinorhizobium meliloti CCNWSX0020 induced an increase in plant growth and nitrogen content irrespective of the presence of Cu(2+). The total amount of Cu uptake of inoculated plants significantly increased by 34.0 and 120.4% in shoots and roots, respectively, compared with non-inoculated plants. However, although the rhizobial symbiosis promoted Cu accumulation both in shoots and roots, the increase in roots was much higher than in shoots, thus decreasing the translocation factor and helping Cu phytostabilization. The rate of lipid peroxidation was significantly decreased in both shoots and roots of inoculated vs. non-inoculated plants when measured either 8, 13, or 18 days post-inoculation. In comparison with non-inoculated plants, the activities of superoxide dismutase and ascorbate peroxidase of shoots of inoculated plants exposed to excess Cu were significantly elevated at different stages of symbiosis development; similar increases occurred in the activities of superoxide dismutase, catalase, and glutathione reductase of inoculated roots. The symbiosis with S. meliloti CCNWSX0020 also upregulated the corresponding genes involved in antioxidant responses in the plants treated with excess Cu. The results indicated that the rhizobial symbiosis with S. meliloti CCNWSX0020 not only enhanced plant growth and metal uptake but also improved the responses of plant antioxidant defense to excess Cu stress.

  20. The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Dursun KISA

    2017-12-01

    Full Text Available Plants maintain their life cycles under the various environmental conditions such as oxidative stress induced by heavy metals. Accumulation of metal ions in plants causes the formation of free radicals and stimulates the antioxidative defense systems. In this study, the activities of APX, POD, and SOD are investigated in the leaves and roots of tomato cultivated under the heavy metal-induced stress. The activities of APX, POD, and SOD exhibited remarkable induction with the treatment of Cd, Cu and Pb (10, 20 and 50 ppm in the leaves of tomato compared to control plants except for 50 ppm Pb. In roots, APX activity changed depending on the heavy metal types and concentrations, while Cd clearly increased it with stress conditions, but Cu decreased in tomato compared to control. The activity of POD clearly exhibited that the all doses of heavy metals reduced the enzyme activity in roots polluted with heavy metals. The treatment of Cd (10, 20 and 50 ppm significantly increased the activity of SOD, however, Cu showed the opposite effect which significantly decreased with increasing doses in roots compared to uncontaminated plants. Also, roots from plants grown on the high concentration of Pb (20 and 50 ppm induced the activity of SOD. Briefly, it is clear responses which Cd significantly raised the activities of APX and SOD in leaves and roots of tomato. The decreases caused by these metals in the activity of POD and Cu in the activities of APX and SOD in roots of tomato can be clarified by the result of heavy metal-induced the over production of free radical.

  1. Responses of Antioxidant Enzymes in Catfish Exposed to Liquid Crystals from E-Waste

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2008-06-01

    Full Text Available Liquid crystals (LCs are typically elongated organic molecules with a non-uniform distribution of electrical charges leading to a dipole. LCs are widely used in displays of computers and other electronic devices. The rapid obsolescence rate of electronics results in large amounts of liquid crystal displays (LCDs entering the environment. Data on health effects of LCs on living creatures are currently limited to some acute toxicity tests by a few major LC manufacturers. These tests concluded that the vast majority of LCs are not acutely toxic. Since the amount of LCs in electronic devices is very small, the health effects of LCs at low concentrations or doses become important. Catfish were used as the test animals in this study. Four major enzymes of the fish’s antioxidant defense system catalase (CAT, superoxide dismutase (SOD, selenium-dependent glutathione peroxidase (Se-GPx, and glutathione-Stransferase (GST were chosen as biomarkers to examine effects of LCs, which were taken from obsolete laptop personal computers made in the early 1990s. The catfish were fed with food containing different contents of LCs for 40 days. Activities of the four chosen enzymes in fish livers were assayed. The results showed that there were significant inductions of CAT, SOD, and Se-GPx activities in response to the LC doses. The plots of the enzyme activities versus LC doses suggested an occurrence of oxidative stress when the dose reached about 20 μg LC/g fish·d. It was concluded that LCs can cause pollutant-induced stress to catfish at low doses. CAT, SOD and Se-GPx are effective biomarkers to give early warning on potential health effects of LCs on some aquatic lives including catfish.

  2. Acute effect of Clitoria ternatea flower beverage on glycemic response and antioxidant capacity in healthy subjects: a randomized crossover trial.

    Science.gov (United States)

    Chusak, Charoonsri; Thilavech, Thavaree; Henry, Christiani Jeyakumar; Adisakwattana, Sirichai

    2018-01-08

    Clitoria ternatea L., a natural food-colorant containing anthocyanin, demonstrated antioxidant and antihyperglycemic activity. The aim of this study was to determine the effects of Clitoria ternatea flower extract (CTE) on postprandial plasma glycemia response and antioxidant status in healthy men. In a randomized, crossover study, 15 healthy men (ages 22.53 ± 0.30 years; with body mass index of 21.57 ± 0.54 kg/m 2 ) consumed five beverages: (1) 50 g sucrose in 400 mL water; (2) 1 g CTE in 400 mL of water; (3) 2 g CTE in 400 mL of water; (4) 50 g sucrose and 1 g CTE in 400 mL of water; and (5) 50 g sucrose and 2 g CTE in 400 mL of water. Incremental postprandial plasma glucose, insulin, uric acid, antioxidant capacities and lipid peroxidation were measured during 3 h of administration. After 30 min ingestion, the postprandial plasma glucose and insulin levels were suppressed when consuming sucrose plus 1 g and 2 g CTE. In addition, consumption of CTE alone did not alter plasma glucose and insulin concentration in the fasting state. The significant increase in plasma antioxidant capacity (ferric reducing ability of plasma (FRAP), oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC), and protein thiol) and the decrease in malondialdehyde (MDA) level were observed in the subjects who received 1 g and 2 g CTE. Furthermore, consumption of CTE protected sucrose-induced reduction in ORAC and TEAC and increase in plasma MDA. These findings suggest that an acute ingestion of CTE increases plasma antioxidant capacity without hypoglycemia in the fasting state. It also improves postprandial glucose, insulin and antioxidant status when consumed with sucrose. Thai Clinical Trials Registry: TCTR20170609003 . Registered 09 September 2017. 'retrospectively registered'.

  3. Effect of dietary mannanoligosaccharide supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs

    Directory of Open Access Journals (Sweden)

    Mahesh M. Pawar

    2017-05-01

    Full Text Available Abstract Background Use of prebiotics in companion animal nutrition is often considered advantageous over probiotics because of the ease of handling, ability to withstand processing and storage etc. While most of the studies on prebiotic use in dogs have been done with processed food as basal diet, the response in relation to homemade diet feeding is not very well explored. Methods The study was conducted to evaluate the effects of dietary mannanoligosaccharide (MOS supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs. Ten Spitz pups were divided into two groups: control (CON with no supplementation, and experimental (MOS wherein the basal diet was supplemented with MOS at 15 g/kg diet. All dogs were fed on a home-prepared diet for a period of 150 days. The study protocol included a digestion trial, periodic blood collection and analysis for lipid profile and erythrocytic antioxidants. Immune response of the animals was assessed towards the end of the feeding period. Results Results revealed no significant (P > 0.05 variations in palatability score, intake and apparent digestibility of nutrients between the groups. Faecal score, faeces voided, faecal pH, concentrations of ammonia, lactate and short-chain fatty acids were comparable (P > 0.05 between the two groups. Cell-mediated immune response, assessed as delayed-type of hypersensitivity response, was significantly higher (P  0.05 in both the groups. Supplementation of MOS lowered (P  0.05 between the two groups. Conclusions The results indicated that supplementation of MOS at the rate of 15 g/kg in the diet of dog augmented the cell-mediated immune response and serum lipid profile without any influences on digestibility of nutrients, hindgut fermentation and antioxidants indices.

  4. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring.

    Science.gov (United States)

    Marin, Douglas Popp; Bolin, Anaysa Paola; Campoio, Thais Regina; Guerra, Beatriz Alves; Otton, Rosemari

    2013-10-01

    The chronic exposure to regular exercise training seems to improve antioxidant defense systems. However, the intense physical training imposed on elite athletes may lead to overtraining associated with oxidative stress. The purpose of the present study was to investigate the effect of different training loads and competition on oxidative stress, biochemical parameters and antioxidant enzymatic defense in handball athletes during 6-months of monitoring. Ten male elite handball athletes were recruited to the study. Blood samples were collected four times every six weeks throughout the season. During most intense periods of training and competitions there were significant changes in plasma indices of oxidative stress (increased TBARS and decreased thiols). Conversely, chronic adaptations to exercise training demonstrated a significant protective effect against oxidative stress in erythrocyte (decrease in TBARs and carbonyl group levels). Erythrocyte antioxidant enzyme activities were significantly increased, suggesting a training-induced antioxidant adaptation. Biomarkers of skeletal muscle damage were significantly increased during high-intensity training period (creatine kinase, lactate dehydrogenase and aspartate aminotransferase). No significant changes were observed in plasma IL-6, TNF-α and uric acid, whereas a significant reduction was found in the IL-1β concentration and gamma-glutamyl transferase activity. Oxidative stress and antioxidant biomarkers can change throughout the season in competitive athletes, reflecting the physical stress and muscle damage that occurs as the result of competitive handball training. In addition, these biochemical measurements can be applied in the physiological follow-up of athletes. © 2013.

  5. [Responses of antioxidation system of Cynodon dactylon to recirculated landfill leachate irrigation].

    Science.gov (United States)

    Wang, Ruyi; He, Pinjing; Shao, Liming; Zhang, Bin; Li, Guojian

    2005-05-01

    With pot experiment, this paper studied the membrane lipid peroxidation and the variations of antioxidation system in Cynodon dactylon under recirculated landfill leachate irrigation. The results showed that when irrigated with low dilution ratio ( 25%), there existed an obvious negative fect on Cynodon dactylon, i.e., the chlorophyll a/b ratio decreased, while cell membrane permeability and MDA and H2O2 contents increased, which meant that the membrane lipid peroxidation was accelerated. The contents antioxidants AsA, GSH and Car also showed the similar trend, i.e., they increased with increasing leachate dilution ratio when irrigated with low dilution ratio leachate, but decreased under medium or high dilution ratio leachate irrigation. Among three test anti-oxidative enzymes, SOD and POD activities showed a similar change test antioxidants, and POD activity was more sensitive, while CAT activity was on the contrary. The contents test antioxidants and the activities of SOD and POD were negatively and significantly correlated to MDA content, indicating that they might play an important role in preventing Cynodon dactylon from cell membrane lipid peroxdation.

  6. Differential Antioxidant Responses and Perturbed Porphyrin Biosynthesis after Exposure to Oxyfluorfen and Methyl Viologen in Oryza sativa

    Directory of Open Access Journals (Sweden)

    Nhi-Thi Pham

    2015-07-01

    Full Text Available We compared antioxidant responses and regulation of porphyrin metabolism in rice plants treated with oxyfluorfen (OF or methyl viologen (MV. Plants treated with MV exhibited not only greater increases in conductivity and malondialdehyde but also a greater decline in Fv/Fm, compared to plants treated with OF. MV-treated plants had greater increases in activities of superoxide dismutase (SOD and catalase (CAT as well as transcript levels of SODA and CATA than OF-treated plants after 28 h of the treatments, whereas increases in ascorbate peroxidase (APX activity and transcript levels of APXA and APXB were greater in OF-treated plants. Both OF- and MV-treated plants resulted in not only down-regulation of most genes involved in porphyrin biosynthesis but also disappearance of Mg-porphyrins during the late stage of photooxidative stress. By contrast, up-regulation of heme oxygenase 2 (HO2 is possibly part of an efficient antioxidant response to compensate photooxidative damage in both treatments. Our data show that down-regulated biosynthesis and degradation dynamics of porphyrin intermediates have important roles in photoprotection of plants from perturbed porphyrin biosynthesis and photosynthetic electron transport. This study suggests that porphyrin scavenging as well as strong antioxidative activities are required for mitigating reactive oxygen species (ROS production under photooxidative stress caused by OF and MV.

  7. Differential Antioxidant Responses and Perturbed Porphyrin Biosynthesis after Exposure to Oxyfluorfen and Methyl Viologen in Oryza sativa.

    Science.gov (United States)

    Pham, Nhi-Thi; Kim, Jin-Gil; Jung, Sunyo

    2015-07-21

    We compared antioxidant responses and regulation of porphyrin metabolism in rice plants treated with oxyfluorfen (OF) or methyl viologen (MV). Plants treated with MV exhibited not only greater increases in conductivity and malondialdehyde but also a greater decline in Fv/Fm, compared to plants treated with OF. MV-treated plants had greater increases in activities of superoxide dismutase (SOD) and catalase (CAT) as well as transcript levels of SODA and CATA than OF-treated plants after 28 h of the treatments, whereas increases in ascorbate peroxidase (APX) activity and transcript levels of APXA and APXB were greater in OF-treated plants. Both OF- and MV-treated plants resulted in not only down-regulation of most genes involved in porphyrin biosynthesis but also disappearance of Mg-porphyrins during the late stage of photooxidative stress. By contrast, up-regulation of heme oxygenase 2 (HO2) is possibly part of an efficient antioxidant response to compensate photooxidative damage in both treatments. Our data show that down-regulated biosynthesis and degradation dynamics of porphyrin intermediates have important roles in photoprotection of plants from perturbed porphyrin biosynthesis and photosynthetic electron transport. This study suggests that porphyrin scavenging as well as strong antioxidative activities are required for mitigating reactive oxygen species (ROS) production under photooxidative stress caused by OF and MV.

  8. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    Science.gov (United States)

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  9. Metallothionein-mediated antioxidant defense system and its response to exercise training are impaired in human type 2 diabetes

    DEFF Research Database (Denmark)

    Scheede-Bergdahl, Celena; Penkowa, Milena; Hidalgo, Juan

    2005-01-01

    lower levels of MT-I+II were also detected in the plasma of type 2 diabetic subjects compared with control subjects. These results suggest that, in control subjects, the MT-I+II defense system is active and inducible within skeletal muscle tissue and plasma. In type 2 diabetes, reduced levels of MT......Oxidative stress is implicated in diabetes complications, during which endogenous antioxidant defenses have important pathophysiological consequences. To date, the significance of endogenous antioxidants such as metallothioneins I and II (MT-I+II) in type 2 diabetes remains unclear. To examine....... Immunohistochemical analysis revealed reduced MT-I+II levels in the skeletal muscle of type 2 diabetic subjects compared with control subjects. Control subjects produced a robust increase of MT-I+II in response to training; however, in type 2 diabetes, MT-I+II levels remained essentially unchanged. Significantly...

  10. Antioxidant responses and photosynthetic behaviors of Kappaphycus alvarezii and Kappaphycus striatum (Rhodophyta, Solieriaceae) during low temperature stress.

    Science.gov (United States)

    Li, Hu; Liu, Jianguo; Zhang, Litao; Pang, Tong

    2016-12-01

    Kappaphycus are farmed in tropical countries as raw material for carrageenan, which is widely used in food industry. The sea area available for farming is one limiting factor in the production of seaweeds. Though cultivation is spreading into subtropical regions, the lower seawater temperature is an important problem encountered in subtropical regions for the farming of Kappaphycus. This research of physiological response to low temperature stress will be helpful for screening Kappaphycus strains for growth in a lower temperature environment. Responses of antioxidant systems and photosystem II (PSII) behaviors in Kappaphycus alvarezii and Kappaphycus striatum were evaluated during low temperature treatments (23, 20, 17 °C). Compared with the controls at 26 °C, the H 2 O 2 concentrations increased in both species when the thalli were exposed to low temperatures (23, 20, 17 °C), but these increases were much greater in K. striatum than in K. alvarezii thalli, suggesting that K. striatum suffered more oxidative stress. The activities of some important antioxidant enzymes (e.g. superoxide dismutase and ascorbate peroxidase) and the hydroxyl free radical scavenging capacity were substantially higher at 23, 20 and 17 °C than at the control 26 °C in K. alvarezii, indicating that the antioxidant system of K. alvarezii enhanced its resistance to low temperature. However, no significant increases of antioxidant enzymes activities were observed at 20 and 17 °C in K. striatum. In addition, both the maximal efficiency of PSII photochemistry (F V /F m ) and the performance index (PI ABS ) decreased significantly in K. striatum at 23 °C, indicating that the photosynthetic apparatus was damaged at 23 °C. In contrast, no significant decreases of either F V /F m or PI ABS were observed in K. alvarezii at 23 °C. It is concluded that K. alvarezii has greater tolerance to low temperature than K. striatum.

  11. Effects of the amplitude and frequency of salinity fluctuations on antioxidant responses in juvenile tongue sole, Cynoglossus semilaevis

    Energy Technology Data Exchange (ETDEWEB)

    Khairnar, S.A.; Tian, X.; Dong, S.; Fang, Z.; Solanki, B.V.; Shanthanagouda, H.A.

    2016-11-01

    To understand the tolerance of tongue sole, Cynoglossus semilaevis, to varying salinities, the effects of the amplitude (2, 4, 6 and 8 g/L) and frequency (2, 4 and 8 days) of salinity fluctuations on the activities of antioxidant responses, including acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD) from antioxidant system in liver, muscle, gills and kidney were investigated in this study. The results showed that the antioxidant responses of tongue sole were highly tissue-specific during the varying salinity fluctuations. In all tissues, ACP and AKP activity was found to be highest at moderate salinity fluctuations compared to the control, low and high salinity treatments (p<0.05). SOD and CAT activities had significant effect due to salinity fluctuations in all tissues (p<0.05), except in hepatic and renal tissues. Variations in branchial SOD activity proved that salinity fluctuations had greater impact on tongue sole at moderate and high fluctuating salinities compared to the control and low fluctuating salinities, whereas the branchial CAT activities showed contrasting trend. Further, cortisol levels were significantly affected in lower and higher salinity fluctuations. However, plasma cortisol levels remained low in moderate salinity fluctuations and control (p<0.05). Taken together, the results indicated that salinity fluctuations could effectively stimulate and enhance the antioxidant enzyme activity in the liver, kidney, gills and muscle of the juvenile tongue sole, thus effectively eliminating the excessive reactive oxygen species and minimizing the body damage in tongue sole or could be for any other euryhaline teleosts. (Author)

  12. Immune and antioxidizing response in cancer patients to photodynamic therapy with photohem and photosens as photosensitizers

    Science.gov (United States)

    Yakubovskaya, Raisa I.; Sokolov, Victor V.; Nemtzova, H. R.; Oganezov, Victor K.; Scherbitskaya, I. Y.; Filonenko, H. V.; Aristarkhova, E. I.; Chissov, Valery I.

    1996-01-01

    Free radicals are the main basis of anticancer effect of photodynamic therapy (PDT). At the same time, they cause different complications. The goal of this study is to investigate the changes in homeostasis of cancer patients under the influence of PDT. It was shown, as a result of study of antioxidizing and immune status of these patients, that there are significant deviations in their indices even before PDT. The treatment leads to further development of disbalance in these systems which demands correction. Several remedies have been offered for correction therapy. The application of these remedies causes the reduction of overstrain in antioxidizing defence and leads to decrease in cases of complications.

  13. Zinc toxicity on antioxidative response in (Zea mays L. at two different pH

    Directory of Open Access Journals (Sweden)

    Hosseini, Zahra

    2013-02-01

    Full Text Available Zn is the second most abundant transition metal after iron (Fe. Excess Zn can have negative effects on plants. The effect of Zn at two different pH on lipid peroxidation (MDA, membrane permeability (EC, hydrogen peroxide (H2O2,non-protein thiols (NPT and the activities of major antioxidant enzymes Zea mays were investigated under controlled growth conditions. Zn-excess conditions increased the EC, MDA, H2O2 content and non-protein thiols and also activities of antioxidant enzymes were increased. Also zinc toxicity was higher in 4.5 pH than 7.5 pH.

  14. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi

    2017-01-15

    Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L{sup −1} cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.

  15. Circadian time-dependent antioxidant and inflammatory responses to acute cadmium exposure in the brain of zebrafish

    International Nuclear Information System (INIS)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming; Zhu, Ai-Yi

    2017-01-01

    Highlights: • Gene changed at mRNA, protein and activity levels between exposure time points. • ROS mediated antioxidant and inflammatory responses by Nrf2 and NF-κB. • The effect of time of day on Cd-induced toxicity should not be neglected in fish. - Abstract: Up to date, little information is available on effects of circadian rhythm on metal-induced toxicity in fish. In this study, zebrafish were acutely exposed to 0.97 mg L"−"1 cadmium for 12 h either at ZT0 (the light intensity began to reached maximum) or at ZT12 (light intensity began to reached minimum) to evaluate the temporal sensitivity of oxidative stress and inflammatory responses in the brain of zebrafish. Profiles of responses of some genes at mRNA, protein and activity levels were different between ZT0 and ZT12 in the normal water. Exposure to Cd induced contrary antioxidant responses and similar inflammatory responses between ZT0 and ZT12. However, the number of inflammatory genes which were up-regulated was significantly greater at ZT12 than at ZT0. And, the up-regulated inflammatory genes were more responsive at ZT12 than at ZT0. At ZT12, antioxidant genes were down-regulated at mRNA, protein and activity levels. Contrarily, antioxidant genes were not affected at mRNA levels but activated at the protein and/or activity levels at ZT0. Reactive oxygen species (ROS) sharply increased and remained relatively stable when fish were exposed to Cd at ZT12 and ZT0, respectively. Positive correlations between ROS levels and mRNA levels of nuclear transcription factor κB (NF-κB) and between mRNA levels of NF-κB and its target genes were observed, suggesting that ROS may play an essential role in regulating the magnitude of inflammatory responses. Taken together, oxidative stress and immunotoxicity in the brain were more serious when fish were exposed to Cd in the evening than in the morning, highlighting the importance of circadian rhythm in Cd-induced neurotoxicity in fish.

  16. Dietary antioxidants and exercise.

    Science.gov (United States)

    Powers, Scott K; DeRuisseau, Keith C; Quindry, John; Hamilton, Karyn L

    2004-01-01

    Muscular exercise promotes the production of radicals and other reactive oxygen species in the working muscle. Growing evidence indicates that reactive oxygen species are responsible for exercise-induced protein oxidation and contribute to muscle fatigue. To protect against exercise-induced oxidative injury, muscle cells contain complex endogenous cellular defence mechanisms (enzymatic and non-enzymatic antioxidants) to eliminate reactive oxygen species. Furthermore, exogenous dietary antioxidants interact with endogenous antioxidants to form a cooperative network of cellular antioxidants. Knowledge that exercise-induced oxidant formation can contribute to muscle fatigue has resulted in numerous investigations examining the effects of antioxidant supplementation on human exercise performance. To date, there is limited evidence that dietary supplementation with antioxidants will improve human performance. Furthermore, it is currently unclear whether regular vigorous exercise increases the need for dietary intake of antioxidants. Clearly, additional research that analyses the antioxidant requirements of individual athletes is needed.

  17. Different responses of tobacco antioxidant enzymes to light and chilling stress

    NARCIS (Netherlands)

    Gechev, T; Willekens, H; Van Montagu, M; Inze, D; Van Camp, W; Toneva, [No Value; Minkov, [No Value

    The effect of elevated light treatment (25 degreesC, PPFD 360 mumol m(-2) sec(-1)) or chilling temperatures combined with elevated light (5 degreesC, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein

  18. Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Nicole Lavender

    2015-09-01

    Full Text Available Background: Oxidative stress and detoxification mechanisms have been commonly studied in Prostate Cancer (PCa due to their function in the detoxification of potentially damaging reactive oxygen species (ROS and carcinogens. However, findings have been either inconsistent or inconclusive. These mixed findings may, in part, relate to failure to consider interactions among oxidative stress response related genetic variants along with pro- and antioxidant factors. Methods: We examined the effects of 33 genetic and 26 environmental oxidative stress and defense factors on PCa risk and disease aggressiveness among 2,286 men from the Cancer Genetic Markers of Susceptibility project (1,175 cases, 1,111 controls. Single and joint effects were analyzed using a comprehensive statistical approach involving logistic regression, multi-dimensionality reduction, and entropy graphs. Results: Inheritance of one CYP2C8 rs7909236 T or two SOD2 rs2758331 A alleles was linked to a 1.3- and 1.4-fold increase in risk of developing PCa, respectively (p-value = 0.006-0.013. Carriers of CYP1B1 rs1800440GG, CYP2C8 rs1058932TC and, NAT2 (rs1208GG, rs1390358CC, rs7832071TT genotypes were associated with a 1.3 to 2.2-fold increase in aggressive PCa [p-value = 0.04-0.001, FDR 0.088-0.939]. We observed a 23% reduction in aggressive disease linked to inheritance of one or more NAT2 rs4646247 A alleles (p = 0.04, FDR = 0.405. Only three NAT2 sequence variants remained significant after adjusting for multiple hypotheses testing, namely NAT2 rs1208, rs1390358, and rs7832071. Lastly, there were no significant gene-environment or gene-gene interactions associated with PCa outcomes. Conclusions: Variations in genes involved in oxidative stress and defense pathways may modify PCa. Our findings do not firmly support the role of oxidative stress genetic variants combined with lifestyle/environmental factors as modifiers of PCa and disease progression. However, additional multi

  19. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    Science.gov (United States)

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions.

    Science.gov (United States)

    Li, Xuemei; Bu, Ning; Li, Yueying; Ma, Lianju; Xin, Shigang; Zhang, Lihong

    2012-04-30

    An endophytic fungus was tested in rice (Oryza sativa L.) exposed to four levels of lead (Pb) stress (0, 50, 100 and 200 μM) to assess effects on plant growth, photosynthesis and antioxidant enzyme activity. Under Pb stress conditions, endophyte-infected seedlings had greater shoot length but lower root length compared to non-infected controls, and endophyte-infected seedlings had greater dry weight in the 50 and 100 μM Pb treatments. Under Pb stress conditions, chlorophyll and carotenoid levels were significantly higher in the endophyte-infected seedlings. Net photosynthetic rate, transpiration rate and water use efficiency were significantly higher in endophyte-infected seedlings in the 50 and 100 μM Pb treatments. In addition, chlorophyll fluorescence parameters Fv/Fm and Fv/Fo were higher in the infected seedlings compared to the non-infected seedlings under Pb stress. Malondialdehyde accumulation was induced by Pb stress, and it was present in higher concentration in non-infected seedlings under higher concentrations of Pb (100 and 200 μM). Antioxidant activity was either higher or unchanged in the infected seedlings due to responses to the different Pb concentrations. These results suggest that the endophytic fungus improved rice growth under moderate Pb levels by enhancing photosynthesis and antioxidant activity relative to non-infected rice. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress.

    Science.gov (United States)

    Sgobba, Alessandra; Paradiso, Annalisa; Dipierro, Silvio; De Gara, Laura; de Pinto, Maria Concetta

    2015-01-01

    Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance. © 2014 Scandinavian Plant Physiology Society.

  2. Bread wheat progenitors: Aegilops tauschii (DD genome) and Triticum dicoccoides (AABB genome) reveal differential antioxidative response under water stress.

    Science.gov (United States)

    Suneja, Yadhu; Gupta, Anil Kumar; Bains, Navtej Singh

    2017-01-01

    Antioxidant enzymes are known to play a significant role in scavenging reactive oxygen species and maintaining cellular homeostasis. Activity of four antioxidant enzymes viz., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) was examined in the flag leaves of nine Aegilops tauschii and three Triticum dicoccoides accessions along with two bread wheat cultivars under irrigated and rain-fed conditions. These accessions were shortlisted from a larger set on the basis of field performance for a set of morpho-physiological traits. At anthesis, significant differences were observed in enzyme activities in two environments. A 45% elevation in average GR activity was observed under rain-fed conditions. Genotypic variation was evident within each environment as well as in terms of response to stress environment. Aegilops tauschii accession 3769 (86% increase in SOD, 41% in CAT, 72% in APX, 48% in GR activity) and acc. 14096 (37% increase in SOD, 32% CAT, 25% APX, 42% GR) showed up-regulation in the activity of all the four studied antioxidant enzymes. Aegilops tauschii accessions-9809, 14189 and 14113 also seemed to have strong induction mechanism as elevated activity of at least three enzymes was observed in them under rain-fed conditions. T. dicoccoides , on the other hand, maintained active antioxidative machinery under irrigated condition with relatively lower induction under stress. A significant positive correlation (r = 0.760) was identified between change in the activity of CAT and GR under stress. Changes in plant height, spike length and grain weight were recorded under stress and non-stress conditions on the basis of which a cumulative tolerance index was deduced and accessions were ranked for drought tolerance. Overall, Ae. tauschii accession 3769, 14096, 14113 (DD-genome) and T. dicoccoides accession 7054 (AABB-genome) may be used as donors to combine beneficial stress adaptive traits of all the three sub

  3. Heterogeneous role of the glutathione antioxidant system in modulating the response of ESFT to fenretinide in normoxia and hypoxia.

    Directory of Open Access Journals (Sweden)

    Tapiwanashe Magwere

    Full Text Available Glutathione (GSH is implicated in drug resistance mechanisms of several cancers and is a key regulator of cell death pathways within cells. We studied Ewing's sarcoma family of tumours (ESFT cell lines and three mechanistically distinct anticancer agents (fenretinide, doxorubicin, and vincristine to investigate whether the GSH antioxidant system is involved in the reduced sensitivity to these chemotherapeutic agents in hypoxia. Cell viability and death were assessed by the trypan blue exclusion assay and annexin V-PI staining, respectively. Hypoxia significantly decreased the sensitivity of all ESFT cell lines to fenretinide-induced death, whereas the effect of doxorubicin or vincristine was marginal and cell-line-specific. The response of the GSH antioxidant system in ESFT cell lines to hypoxia was variable and also cell-line-specific, although the level of GSH appeared to be most dependent on de novo biosynthesis rather than recycling. RNAi-mediated knockdown of key GSH regulatory enzymes γ-glutamylcysteine synthetase or glutathione disulfide reductase partially reversed the hypoxia-induced resistance to fenretinide, and increasing GSH levels using N-acetylcysteine augmented the hypoxia-induced resistance in a cell line-specific manner. These observations are consistent with the conclusion that the role of the GSH antioxidant system in modulating the sensitivity of ESFT cells to fenretinide is heterogeneous depending on environment and cell type. This is likely to limit the value of targeting GSH as a therapeutic strategy to overcome hypoxia-induced drug resistance in ESFT. Whether targeting the GSH antioxidant system in conjunction with other therapeutics may benefit some patients with ESFT remains to be seen.

  4. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    Science.gov (United States)

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.

    Science.gov (United States)

    Zeković, Zoran; Vladić, Jelena; Vidović, Senka; Adamović, Dušan; Pavlić, Branimir

    2016-10-01

    Microwave-assisted extraction (MAE) of polyphenols from coriander seeds was optimized by simultaneous maximization of total phenolic (TP) and total flavonoid (TF) yields, as well as maximized antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl and reducing power assays. Box-Behnken experimental design with response surface methodology (RSM) was used for optimization of MAE. Extraction time (X1 , 15-35 min), ethanol concentration (X2 , 50-90% w/w) and irradiation power (X3 , 400-800 W) were investigated as independent variables. Experimentally obtained values of investigated responses were fitted to a second-order polynomial model, and multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions. The optimal MAE conditions for simultaneous maximization of polyphenol yield and increased antioxidant activity were an extraction time of 19 min, an ethanol concentration of 63% and an irradiation power of 570 W, while predicted values of TP, TF, IC50 and EC50 at optimal MAE conditions were 311.23 mg gallic acid equivalent per 100 g dry weight (DW), 213.66 mg catechin equivalent per 100 g DW, 0.0315 mg mL(-1) and 0.1311 mg mL(-1) respectively. RSM was successfully used for multi-response optimization of coriander seed polyphenols. Comparison of optimized MAE with conventional extraction techniques confirmed that MAE provides significantly higher polyphenol yields and extracts with increased antioxidant activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Phenotypes, antioxidant responses, and gene expression changes accompanying a sugar-only diet in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Chen, Er-Hu; Hou, Qiu-Li; Wei, Dan-Dan; Jiang, Hong-Bo; Wang, Jin-Jun

    2017-08-17

    Diet composition (yeast:carbohydrate ratio) is an important determinant of growth, development, and reproduction. Recent studies have shown that decreased yeast intake elicits numerous transcriptomic changes and enhances somatic maintenance and lifespan, which in turn reduces reproduction in various insects. However, our understanding of the responses leading to a decrease in yeast ratio to 0% is limited. In the present study, we investigated the effects of a sugar-only diet (SD) on the gene expression patterns of the oriental fruit fly, Bactrocera dorsalis (Hendel), one of the most economically important pests in the family Tephritidae. RNA sequencing analyses showed that flies reared on an SD induced significant changes in the expression levels of genes associated with specific metabolic as well as cell growth and death pathways. Moreover, the observed upregulated genes in energy production and downregulated genes associated with reproduction suggested that SD affects somatic maintenance and reproduction in B. dorsalis. As expected, we observed that SD altered B. dorsalis phenotypes by significantly increasing stress (starvation and desiccation) resistance, decreasing reproduction, but did not extend lifespan compared to those that received a normal diet (ND) regime. In addition, administration of an SD resulted in a reduction in antioxidant enzyme activities and an increase in MDA concentrations, thereby suggesting that antioxidants cannot keep up with the increase in oxidative damage induced by SD regime. The application of an SD diet induces changes in phenotypes, antioxidant responses, and gene expressions in B. dorsalis. Previous studies have associated extended lifespan with reduced fecundity. The current study did not observe a prolongation of lifespan in B. dorsalis, which instead incurred oxidative damage. The findings of the present study improve our understanding of the molecular, biochemical, and phenotypic response of B. dorsalis to an SD diet.

  7. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM).

    Science.gov (United States)

    Belwal, Tarun; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer Singh; Pande, Veena

    2016-09-15

    This study for the first time designed to optimize the extraction of phenolic compounds and antioxidant potential of Berberis asiatica fruits using response surface methodology (RSM). Solvent selection was done based on the preliminary experiments and a five-factors-three-level, Central Composite Design (CCD). Extraction temperature (X1), sample to solvent ratio (X3) and solvent concentration (X5) significantly affect response variables. The quadratic model well fitted for all the responses. Under optimal extraction conditions, the dried fruit sample mixed with 80% methanol having 3.0 pH in a ratio of 1:50 and the mixture was heated at 80 °C for 30 min; the measured parameters was found in accordance with the predicted values. High Performance Liquid Chromatography (HPLC) analysis at optimized condition reveals 6 phenolic compounds. The results suggest that optimization of the extraction conditions is critical for accurate quantification of phenolics and antioxidants in Berberis asiatica fruits, which may further be utilized for industrial extraction procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Alteration in antioxidant potential of spinacia oleracea in response to selected plant growth regulators

    International Nuclear Information System (INIS)

    Aslam, M.; Sultana, B.; Ali, S.; Rehman, K.U.

    2013-01-01

    The spinach (Spinacia oleracea) plants treated with certain seed priming (bio-fertilizer and Humic acid) and foliar treatments (Humic acid, Moringa leaf extract, 6-Benzyl amino purine etc.) were tested for total phenolic content and the antioxidant activity. Methanolic extracts of all spinach samples were assessed performing three different protocols including Folin-Ciocalteu, reducing power and DPPH radical scavenging assays. TPC value ranged 4.678-13.236 mg GAE/g of dry matter. Reducing power assay showed values (absorbance at lambda max=700nm) in the range of 0.351-1.874 at 10 mg/mL extract concentration. The range of IC 50 values in DPPH radical scavenging assay was 0.499-1.063 mu g/mL extract concentration. The one way ANOVA under CRD showed significant differences among treatments. Among various plant growth regulators, fresh Moringa leaf extract proved as the potent enhancer of antioxidant activity of spinach leaves. (author)

  9. Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training

    DEFF Research Database (Denmark)

    Yfanti, Christina; Nielsen, Anders R; Åkerström, Thorbjörn

    2011-01-01

    While production of reactive oxygen and nitrogen species (RONS) is associated with some of the beneficial adaptations to regular physical exercise, it is not established whether RONS play a role in the improved insulin-stimulated glucose uptake in skeletal muscle obtained by endurance training....... To assess the effect of antioxidant supplementation during endurance training on insulin-stimulated glucose uptake, twenty-one young healthy (age 29±1 y; BMI 25±3 Kg m(-2)) men were randomly assigned into either an antioxidant (AO; 500 mg vitamin C and 400 IU vitamin E (a-tocopherol) daily) or a placebo (PL......) group that both underwent a supervised intense endurance-training program, 5 times per week for 12 weeks. A 3-hour euglycemic-hyperinsulinemic clamp, a maximal oxygen consumption (VO(2max)) and maximal power output (P(max)) test, and body composition measurements (fat mass, fat-free mass) were performed...

  10. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    OpenAIRE

    H Çakır-Atabek; F Özdemir; R Çolak

    2015-01-01

    The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume) has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE) on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative str...

  11. Implications of chronic daily anti-oxidant administration on the inflammatory response to intracortical microelectrodes

    Science.gov (United States)

    Potter-Baker, Kelsey A.; Stewart, Wade G.; Tomaszewski, William H.; Wong, Chun T.; Meador, William D.; Ziats, Nicholas P.; Capadona, Jeffrey R.

    2015-08-01

    Objective. Oxidative stress events have been implicated to occur and facilitate multiple failure modes of intracortical microelectrodes. The goal of the present study was to evaluate the ability of a sustained concentration of an anti-oxidant and to reduce oxidative stress-mediated neurodegeneration for the application of intracortical microelectrodes. Approach. Non-functional microelectrodes were implanted into the cortex of male Sprague Dawley rats for up to sixteen weeks. Half of the animals received a daily intraperitoneal injection of the natural anti-oxidant resveratrol, at 30 mg kg-1. The study was designed to investigate the biodistribution of the resveratrol, and the effects on neuroinflammation/neuroprotection following device implantation. Main results. Daily maintenance of a sustained range of resveratrol throughout the implantation period resulted in fewer degenerating neurons in comparison to control animals at both two and sixteen weeks post implantation. Initial and chronic improvements in neuronal viability in resveratrol-dosed animals were correlated with significant reductions in local superoxide anion accumulation around the implanted device at two weeks after implantation. Controls, receiving only saline injections, were also found to have reduced amounts of accumulated superoxide anion locally and less neurodegeneration than controls at sixteen weeks post-implantation. Despite observed benefits, thread-like adhesions were found between the liver and diaphragm in resveratrol-dosed animals. Significance. Overall, our chronic daily anti-oxidant dosing scheme resulted in improvements in neuronal viability surrounding implanted microelectrodes, which could result in improved device performance. However, due to the discovery of thread-like adhesions, further work is still required to optimize a chronic anti-oxidant dosing regime for the application of intracortical microelectrodes.

  12. Characterization of the Nutraceutical Quality and Antioxidant Activity in Bell Pepper in Response to Grafting

    Directory of Open Access Journals (Sweden)

    Celia Chávez-Mendoza

    2013-12-01

    Full Text Available The grafting of fruits and vegetables influences fruit quality. The aim of the present work was to assess the effect of the rootstock and the scion on the antioxidant activity and the content in vitamin C, total phenols, lycopene and β-carotene of bell pepper. The cultivars Fascinato and Jeanette were used as scion and Terrano was used as rootstock. Four harvests in the production cycle of the vegetable were analyzed in a cultivation system under shading nets. The results indicate statistical differences in the content of these bioactive compounds between the varieties, between grafting and not grafting and between sampling dates (p ≤ 0.05. The vitamin C content, β-carotene, and antioxidant capacity proved significantly higher in Fascinato than in Janette. On average, grafting increased β-carotene and vitamin C concentrations and improved the antioxidant capacity, but had no influence on the total phenol or lycopene contents. It is concluded that grafting to the rootstock Terrano improves the nutritional quality of the fruit produced in both varieties of bell pepper studied.

  13. A High Antioxidant Spice Blend Attenuates Postprandial Insulin and Triglyceride Responses and Increases Some Plasma Measures of Antioxidant Activity in Healthy, Overweight Men123

    Science.gov (United States)

    Skulas-Ray, Ann C.; Kris-Etherton, Penny M.; Teeter, Danette L.; Chen, C-Y. Oliver; Vanden Heuvel, John P.; West, Sheila G.

    2011-01-01

    There is much interest in the potential of dietary antioxidants to attenuate in vivo oxidative stress, but little characterization of the time course of plasma effects exists. Culinary spices have demonstrated potent in vitro antioxidant properties. The objective of this study was to examine whether adding 14 g of a high antioxidant spice blend to a 5060-kJ (1200 kcal) meal exerted significant postprandial effects on markers of plasma antioxidant status and metabolism. Healthy overweight men (n = 6) consumed a control and spiced meal in a randomized crossover design with 1 wk between testing sessions. Blood was sampled prior to the meal and at 30-min intervals for 3.5 h (total of 8 samples). Mixed linear models demonstrated a treatment × time interaction (P spiced meal, respectively. Adding spices to the meal significantly increased the ferric reducing antioxidant power, such that postprandial increases following the spiced meal were 2-fold greater than after the control meal (P = 0.009). The hydrophilic oxygen radical absorbance capacity (ORAC) of plasma also was increased by spices (P = 0.02). There were no treatment differences in glucose, total thiols, lipophilic ORAC, or total ORAC. The incorporation of spices into the diet may help normalize postprandial insulin and TG and enhance antioxidant defenses. PMID:21697300

  14. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals.

    Science.gov (United States)

    Lyubenova, Lyudmila; Nehnevajova, Erika; Herzig, Rolf; Schröder, Peter

    2009-07-01

    Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N(2). Studies were concentrated on the antioxidative enzymes of the Halliwell-Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the

  15. The responses of antioxidant system in bitter melon, sponge gourd, and winter squash under flooding and chilling stresses

    Science.gov (United States)

    Do, Tuong Ha; Nguyen, Hoang Chinh; Lin, Kuan-Hung

    2018-04-01

    The objective of this paper was to review the responses of antioxidant system and physiological parameters of bitter melon (BM), sponge gourd (SG), and winter squash (WS) under waterlogged and low temperature conditions. The BM and SG plants were subjected to 0-72 h flooding treatments, and BM and WS plants were exposed to chilling at 12/7 °C (day/night) for 0-72 h. Different genotypes responded differently to environmental stress according to their various antioxidant system and physiological parameters. Increased ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities provided SG and WS plants with increased waterlogging and chilling stress tolerance, respectively, compared to BM plants. The APX gene from SG and the SOD gene from WS were then cloned, and the regulation of APX and SOD gene expressions under flooding and chilling stress, respectively, were also measured. Increased expression of APX and SOD genes was accompanied by the increased activity of the enzyme involved in detoxifying reactive oxygen species (ROS) in response to those stresses. Both APX and SOD activities can be used for selecting BM lines with the best tolerances to water logging and chilling stresses.

  16. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  17. Effects of dietary chitosan on growth, lipid metabolism, immune response and antioxidant-related gene expression in Misgurnus anguillicaudatus.

    Science.gov (United States)

    Yan, J; Guo, C; Dawood, M A O; Gao, J

    2017-05-30

    This study was performed to evaluate the effects of dietary chitosan supplementation on growth performance, lipid metabolism, gut microbial, antioxidant status and immune responses of juvenile loach (Misgurnus anguillicaudatus). Five experimental diets were formulated to contain graded levels of chitosan (0 (control), 0.5, 1, 2 and 5% CHI) for 50 days. Results of the present study showed that body weight gain was significantly higher in fish fed chitosan supplemented diets in dose dependent manner than control group. Increasing dietary chitosan levels reduced gut lipid content. Meanwhile the mRNA expression levels of intestine lipoprotein lipase and fatty acid binding protein 2 were significantly reduced with incremental dietary chitosan level. The percentages of total monounsaturated fatty acid decreased, while polyunsaturated fatty acid increased with dietary chitosan. The fish fed 0.5% CHI had higher mucus lysozyme activity (LZM) than those fed 0% CHI, but the LZM activity was significantly decreased with advancing chitosan supplement. The expression levels of superoxide dismutase, catalase and glutathione peroxidase revealed a similar trend, where the highest expressions were found in fish fed 5% CHI diet. In the term of intestine microbiota between 0 and 1% CHI groups, the proportion of bacteria in the phylum Bacteroidetes increased, whereas the proportion of bacteria in the phylum Firmicutes decreased as the fish supplemented chitosan. In conclusion, supplementation of chitosan improved growth performance, antioxidant status and immunological responses in loach.

  18. Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors.

    Science.gov (United States)

    Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena

    2012-05-01

    In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly.

  19. Responses of antioxidant enzymes and heat shock proteins in drosophila to treatment with a pesticide mixture

    Directory of Open Access Journals (Sweden)

    Doganlar Oguzhan

    2015-01-01

    Full Text Available The effects of a mixture of seven pesticides were examined on the expression of antioxidant enzymes, Mn superoxide dismutase (Mn-SOD, catalase (CAT, glutathione synthetase (GS, and heat shock proteins (HSP 26, 60, 70 and 83 in adult fruit flies (Drosophila melanogaster Oregon R. The flies were reared under controlled conditions on artificial diets and treated with a mixture of seven pesticides (molinate, thiobencarb, linuron, phorate, primiphos-methyl, fenvalerate and lambda-cyhalothrin commonly found in water, at concentrations of 0.1, 0.5 and 1 parts per billion (ppb for 1 and 5 days. Quantitative real-time PCR (qRT-PCR analysis of Mn-SOD, CAT and GS expression revealed that the analyzed markers responded significantly to pesticide-induced oxidative stress, in particular on the 5th day of treatment. On the 1st day of treatment, the relative expression of HSP26 and HSP60 genes increased only after exposure to the highest concentrations of pesticides, whereas HSP70 and HSP83 expression increased after exposure to 0.5 and 1 ppb. After five days of treatment, the expression of all HSP genes was increased after exposure to all pesticide concentrations. A positive correlation was determined between the relative expression levels of some HSPs (except HSP60, and antioxidant genes. The observed changes in antioxidant enzyme and HSP mRNA levels in D. melanogaster suggest that the permissible limits of pesticide concentrations for clean drinking water outlined in the regulations of several countries are potentially cytotoxic. The presented findings lend support for reevaluation of these limits.

  20. The use of antioxidant enzymes in freshwater biofilms: temporal variability vs. toxicological responses.

    Science.gov (United States)

    Bonnineau, Chloé; Tlili, Ahmed; Faggiano, Leslie; Montuelle, Bernard; Guasch, Helena

    2013-07-15

    This study aims to investigate the potential of antioxidant enzyme activities (AEA) as biomarkers of oxidative stress in freshwater biofilms. Therefore, biofilms were grown in channels for 38 days and then exposed to different concentrations (0-150 μg L(-1)) of the herbicide oxyfluorfen for 5 more weeks. Under control conditions, the AEA of biofilms were found to change throughout time with a significant increase in ascorbate peroxidase (APX) activity during the exponential growth and a more important role of catalase (CAT) and glutathione reductase (GR) activities during the slow growth phase. Chronic exposure to oxyfluorfen led to slight variations in AEA, however, the ranges of variability of AEA in controls and exposed communities were similar, highlighting the difficulty of a direct interpretation of AEA values. After 5 weeks of exposure to oxyfluorfen, no clear effects were observed on chl-a concentration or on the composition of other pigments suggesting that algal group composition was not affected. Eukaryotic communities were structured clearly by toxicant concentration and both eukaryotic and bacterial richness were reduced in communities exposed to the highest concentration. In addition, during acute exposure tests performed at the end of the chronic exposure, biofilms chronically exposed to 75 and 150 μg L(-1) oxyfluorfen showed a higher CAT activity than controls. Chronic exposure to oxyfluorfen provoked then structural changes but also functional changes in the capacity of biofilm CAT activity to respond to a sudden increase in concentration, suggesting a selection of species with higher antioxidant capacity. This study highlighted the difficulty of interpretation of AEA values due to their temporal variation and to the absence of absolute threshold value indicative of oxidative stress induced by contaminants. Nevertheless, the determination of AEA pattern throughout acute exposure test is of high interest to compare oxidative stress levels

  1. Antioxidant enzymes response induced by static magnetic field in pregnant rats

    International Nuclear Information System (INIS)

    Chater, S.; Abdelmelek, H.; Garrel, C.; Favier, A.; Sakly, M.; Rhouma, K.B.

    2005-01-01

    Some recent epidemiologic studies have suggested that static magnetic fields (MF) affect human health and, in particular, that the incidence of certain types of cancer, depression, and miscarriage might increase among individuals living or working in environments exposed to such fields. However, despite numerous studies concerning MF, the mechanism of its adverse effect still remains unknown. So, our work hypothesis was that abortion effects induced by MF exposure could be due to an over production of reactive oxygen species produced by pregnant rats. The aim of our study was to examine if MF was able to induce an oxidative stress in pregnant-rats. Pregnant female Wistar rats were exposed to MF (128 mT/1h/day) on day 6 to 19 of gestation. Animals were sacrificed three days after delivery and plasma was collected to determine malondialdehyde (MDA), an indirect oxidative stress marker, glutathion peroxidase activity (GPX), an antioxydant enzyme, and the total antioxidant status (TAS). MF exposure had no effects on MDA level (2.97 ± 0.50 μmol/l vs 2.62 ±0.19 μmol/l, p>0.05) and plasma GPX activity (6936.00 ±109.59 U/l vs 6258.00 ±111.12 U/l, p>0.05). Interestingly, MF exposure induced elevation in the total antioxidant status values (0.716 ±0.018 mmol/l vs 0.646 ±0.023 mmol/l, p<0.05). The results indicated that sub-acute exposures to magnetic field during rat pregnancy have no effects on lipid peroxidation, probably related to the protection role of antioxidant enzymes

  2. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway.

    Science.gov (United States)

    Liang, Mingcai; Wang, Zhengxuan; Li, Hui; Cai, Liang; Pan, Jianghao; He, Hongjuan; Wu, Qiong; Tang, Yinzhao; Ma, Jiapei; Yang, Lin

    2018-05-01

    Arginine is a conditionally essential amino acid. To elucidate the influence of l-arginine on the activation of endogenous antioxidant defence, male Wistar rats were orally administered daily with l-arginine at different levels of 25, 50, 100 mg/100 g body weight. After 7 and 14 days feeding, the antioxidative capacities and glutathione (GSH) contents in the plasma and in the liver were uniformly enhanced with the increasing consumption of l-arginine, whereas the oxidative stress was effectively suppressed by l-arginine treatment. After 14 days feeding, the mRNA levels and protein expressions of Keap1 and Cul3 were gradually reduced by increasing l-arginine intake, resulting that the nuclear factor Nrf2 was activated. Upon activation of Nrf2, the expressions of antioxidant responsive element (ARE)-dependent genes and proteins (GCLC, GCLM, GS, GR, GST, GPx, CAT, SOD, NQO1, HO-1) were up-regulated by l-arginine feeding, indicating an upward trend in antioxidant capacity uniformly with the increasing consumption of l-arginine. The present study demonstrates that the supplementation of l-arginine stimulates GSH synthesis and activates Nrf2 pathway, leading to the up-regulation of ARE-driven antioxidant expressions via Nrf2-Keap1 pathway. Results suggest the availability of l-arginine is a critical factor to suppress oxidative stress and induce an endogenous antioxidant response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.

    Science.gov (United States)

    Murugan, K; Harish, S R

    2007-11-01

    The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.

  4. Excess boron responsive regulations of antioxidative mechanism at physio-biochemical and molecular levels in Arabidopsis thaliana.

    Science.gov (United States)

    Kayıhan, Doğa Selin; Kayıhan, Ceyhun; Çiftçi, Yelda Özden

    2016-12-01

    This work was aimed to evaluate the effect of boron (B) toxicity on oxidative damage level, non-enzymatic antioxidant accumulation such as anthocyanin, flavonoid and proline and expression levels of antioxidant enzymes including superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) and their respective activities as well as expression levels of miR398 and miR408 in Arabidopsis thaliana. Plants were germinated and grown on MS medium containing 1 mM B (1B) and 3 mM B (3B) for 14 d. Toxic B led to a decrease of photosynthetic pigments and an increase in accumulation of total soluble and insoluble sugars in accordance with phenotypically viewed chlorosis of seedlings through increasing level of B concentration. Along with these inhibitions, a corresponding increase in contents of flavonoid, anthocyanin and proline occurred that provoked oxidative stress tolerance. 3B caused a remarkable increase in total SOD activity whereas the activities of APX, GR and CAT remained unchanged as verified by expected increase in H 2 O 2 content. In contrast to GR, the coincidence was found between the expressions of SOD and APX genes and their respective activities. 1B induced mir398 expression, whereas 3B did not cause any significant change in expression of mir408 and mir398. Expression levels of GR genes were coordinately regulated with DHAR2 expression. Moreover, the changes in expression level of MDAR2 was in accordance with changes in APX6 expression and total APX activity, indicating fine-tuned regulation of ascorbate-glutathione cycle which might trigger antioxidative responses against B toxicity in Arabidopsis thaliana. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity.

    Science.gov (United States)

    Yang, Lingguang; Yin, Peipei; Fan, Hang; Xue, Qiang; Li, Ke; Li, Xiang; Sun, Liwei; Liu, Yujun

    2017-02-04

    This study is the first to report the use of response surface methodology to improve phenolic yield and antioxidant activity of Acer truncatum leaves extracts (ATLs) obtained by ultrasonic-assisted extraction. The phenolic composition in ATLs extracted under the optimized conditions were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration ( X ₁), material-to-liquid ratio ( X ₂), ultrasonic temperature ( X ₃) and power ( X ₄) for an optimal total phenol yield ( Y ₁) and DPPH• antioxidant activity ( Y ₂). The results showed that the optimal combination was ethanol:water ( v : v ) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic bath temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent/100 g d.w. and a maximal DPPH• antioxidant activity of 74,241.61 μmol Trolox equivalent/100 g d.w. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic components in ATL. What's more, a gallotannins pathway existing in ATL from gallic acid to penta- O -galloylglucoside was proposed. All these results provide practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

  6. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    Science.gov (United States)

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641;

  7. Antioxidant status of erythrocytes and their response to oxidative challenge in humans with argemone oil poisoning

    International Nuclear Information System (INIS)

    Babu, Challagundla K.; Khanna, Subhash K.; Das, Mukul

    2008-01-01

    Oxidative damage of biomolecules and antioxidant status in erythrocytes of humans from an outbreak of argemone oil (AO) poisoning in Kannauj (India) and AO intoxicated experimental animals was investigated. Erythrocytes of the dropsy patients and AO treated rats were found to be more susceptible to 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced peroxidative stress. Significant decrease in RBC glutathione (GSH) levels (46, 63%) with concomitant enhancement in oxidized glutathione (172, 154%) levels was noticed in patients and AO intoxicated animals. Further, depletion of glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G-6-PDH) and glutathione-S-transferase (GST) (42-52%) was observed in dropsy patients. Oxidation of erythrocyte membrane lipids and proteins was increased (120-144%) in patients and AO treated animals (112-137%) along with 8-OHdG levels in whole blood (180%) of dropsy patients. A significant reduction in α-tocopherol content (68%) was noticed in erythrocytes of dropsy patients and hepatic, plasma and RBCs of AO treated rats (59-70%) thereby indicating the diminished antioxidant potential to scavenge free radicals or the limited transport of α-tocopherol from liver to RBCs leading to enhanced oxidation of lipids and proteins in erythrocytes. These studies implicate an important role of erythrocyte degradation in production of anemia and breathlessness in epidemic dropsy

  8. The antioxidant response of the liver of male Swiss mice raised on a AIN 93 or commercial diet

    OpenAIRE

    Caetano, Aline C; da Veiga, Lucimara F; Capaldi, Fl?via R; de Alencar, Severino M; Azevedo, Ricardo A; Bezerra, Rosangela MN

    2013-01-01

    Abstract Background Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxid...

  9. MnTM-4-PyP modulates endogenous antioxidant responses and protects primary cortical neurons against oxidative stress.

    Science.gov (United States)

    Cheng, Kuo-Yuan; Guo, Fei; Lu, Jia-Qi; Cao, Yuan-Zhao; Wang, Tian-Chang; Yang, Qi; Xia, Qing

    2015-05-01

    Oxidative stress is a direct cause of injury in various neural diseases. Manganese porphyrins (MnPs), a large category of superoxide dismutase (SOD) mimics, shown universally to have effects in numerous neural disease models in vivo. Given their complex intracellular redox activities, detailed mechanisms underlying the biomedical efficacies are not fully elucidated. This study sought to investigate the regulation of endogenous antioxidant systems by a MnP (MnTM-4-PyP) and its role in the protection against neural oxidative stress. Primary cortical neurons were treated with MnTM-4-PyP prior to hydrogen peroxide-induced oxidative stress. MnTM-4-PyP increased cell viability, reduced intracellular level of reactive oxygen species, inhibited mitochondrial apoptotic pathway, and ameliorated endoplasmic reticulum function. The protein levels and activities of endogenous SODs were elevated, but not those of catalase. SOD2 transcription was promoted in a transcription factor-specific manner. Additionally, we found FOXO3A and Sirt3 levels also increased. These effects were not observed with MnTM-4-PyP alone. Induction of various levels of endogenous antioxidant responses by MnTM-4-PyP has indispensable functions in its protection for cortical neurons against hydrogen peroxide-induced oxidative stress. © 2014 John Wiley & Sons Ltd.

  10. Oreochromis mossambicus diet supplementation with Psidium guajava leaf extracts enhance growth, immune, antioxidant response and resistance to Aeromonas hydrophila.

    Science.gov (United States)

    Gobi, Narayanan; Ramya, Chinnu; Vaseeharan, Baskaralingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Murugan, Kadarkarai; Benelli, Giovanni

    2016-11-01

    In this research, we focused on the efficacy of aqueous and ethanol leaf extracts of Psidium guajava L. (guava) based experimental diets on the growth, immune, antioxidant and disease resistance of tilapia, Oreochromis mossambicus following challenge with Aeromonas hydrophila. The experimental diets were prepared by mixing powdered (1, 5 and 10 mg/g) aqueous and ethanol extract of guava leaf with commercial diet. The growth (FW, FCR and SGR), non-specific cellular immune (myeloperoxidase activity, reactive oxygen activity and reactive nitrogen activity) humoral immune (complement activity, antiprotease, alkaline phosphatase activity and lysozyme activity) and antioxidant enzyme responses (SOD, GPX, and CAT) were examined after 30 days of post-feeding. A significant enhancement in the biochemical and immunological parameters of fish were observed fed with experimental diets compared to control. The dietary supplementation of P. guajava leaf extract powder for 30 days significantly reduced the mortality and increased the disease resistance of O. mossambicus following challenge with A. hydrophila at 50 μl (1 × 10 7  cells ml -1 ) compared to control after post-infection. The results suggest that the guava leaf extract could be used as a promising feed additive in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The effects of dietary soybean isoflavones on growth, innate immune responses, hepatic antioxidant abilities and disease resistance of juvenile golden pompano Trachinotus ovatus.

    Science.gov (United States)

    Zhou, Chuanpeng; Lin, Heizhao; Ge, Xianping; Niu, Jin; Wang, Jun; Wang, Yun; Chen, Lixiong; Huang, Zhong; Yu, Wei; Tan, Xiaohong

    2015-03-01

    The present study was conducted to investigate the effects of dietary soybean isoflavones (SI) supplementation on growth performance, innate immune responses, hepatic antioxidant abilities, heat shock protein 70 (HSP70) gene expression and resistance to the pathogen Vibrio harveyi in Trachinotus ovatus. A basal diet was supplemented with SI at 0, 10, 20, 40, 60, 80 mg kg(-1) feed for 8 weeks. Significantly maximum weight gain (WG) and specific growth rate (SGR) were observed in treatment with 40 mg kg(-1) SI supplement (P growth, non-specific immune responses, hepatic antioxidant abilities and HSP70 gene expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Oxidative stress and antioxidant biomarker responses after a moderate-intensity soccer training session.

    Science.gov (United States)

    Mello, Rodrigo; Mello, Ricardo; Gomes, Diego; Paz, Gabriel Andrade; Nasser, Igor; Miranda, Humberto; Salerno, Verônica P

    2017-01-01

    The present study investigated the effects of a moderate-intensity soccer training session on the production of reactive oxygen species (ROS) and the antioxidant capacity in athletes along with the biomarkers creatine kinase and transaminases for lesions in muscle and liver cells. Twenty-two male soccer players participated in this study. Blood samples were collected 5 min before and after a moderate-intensity game simulation. The results showed a decrease in the concentration of reduced glutathione (GSH) from an elevation in the production of ROS that maintained the redox homeostasis. Although the session promoted an elevated energy demand, observed by an increase in lactate and glucose levels, damage to muscle and/or liver cells was only suggested by a significant elevation in the levels of alanine transaminase (ALT). Of the two biomarkers analysed, the results suggest that measurements of the ALT levels could be adopted as a method to monitor recovery in athletes.

  13. Response of antioxidant system of tomato to water deficit stress and its interaction with ascorbic acid

    Directory of Open Access Journals (Sweden)

    Fatemeh Daneshmand

    2014-03-01

    Full Text Available Environmental stresses including water deficit stress may produce oxidants such as reactive oxygen species that damage the membrane structure in plants. Among the antioxidants, ascorbic acid has a critical role in the cell and scavenges reactive oxygen species. In this research, effects of ascorbic acid at two levels (0 and 10 mM and water deficit stress based on 3 levels of field capacity (100, 60 and 30% were studied in tomato plants. Both levels of stress increased lipid peroxidation, reduced the amount of ascorbic acid and glutathione and increased the activity of enzymes superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, guaiacol peroxidase and reduced the growth parameters. Ascorbic acid treatment, reduced lipid peroxidation, increased ascorbic acid and glutathione levels and decreased the activity of superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase and guaiacol peroxidase and positive effects of ascorbic acid treatment appeared to improve the plant growth parameters.

  14. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    International Nuclear Information System (INIS)

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T.O.; Iqbal, Muhammad

    2007-01-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max

  15. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil.

    Science.gov (United States)

    Pereira de Araújo, Romária; Furtado de Almeida, Alex-Alan; Silva Pereira, Lidiane; Mangabeira, Pedro A O; Olimpio Souza, José; Pirovani, Carlos P; Ahnert, Dário; Baligar, Virupax C

    2017-10-01

    Cadmium (Cd) is a highly toxic metal for plants, even at low concentrations in the soil. The annual production of world cocoa beans is approximately 4 million tons. Most of these fermented and dried beans are used in the manufacture of chocolate. Recent work has shown that the concentration of Cd in these beans has exceeded the critical level (0.6mgkg -1 DM). The objective of this study was to evaluate the toxicity of Cd in young plants of CCN 51 cacao genotype grown in soil with different concentrations of Cd (0, 0.05 and 0.1gkg -1 soil) through photosynthetic, antioxidative, molecular and ultrastructural changes. The increase of Cd concentration in the soil altered mineral nutrient absorption by competition or synergism, changed photosynthetic activity caused by reduction in chloroplastidic pigment content and damage to the photosynthetic machinery evidenced by the Fv/Fm ratio and expression of the psbA gene and increased GPX activity in the root and SOD in leaves. Additionally, ultrastructural alterations in roots and leaves were also evidenced with the increase of the concentration of Cd in the soil, whose toxicity caused rupture of biomembranes in root and leaf cells, reduction of the number of starch grains in foliar cells, increase of plastoglobules in chloroplasts and presence of multivesiculated bodies in root cells. It was concluded, therefore, that soil Cd toxicity caused damage to the photosynthetic machinery, antioxidative metabolism, gene expression and irreversible damage to root cells ultrastructure of CCN 51 cocoa plants, whose damage intensity depended on the exposure time to the metal. Copyright © 2017. Published by Elsevier Inc.

  16. Responses of Landoltia punctata to cobalt and nickel: Removal, growth, photosynthesis, antioxidant system and starch metabolism.

    Science.gov (United States)

    Guo, Ling; Ding, Yanqiang; Xu, Yaliang; Li, Zhidan; Jin, Yanling; He, Kaize; Fang, Yang; Zhao, Hai

    2017-09-01

    Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co 2+ and Ni 2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co 2+ and Ni 2+ (≤0.5mgL -1 ) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL -1 ), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co 2+ and Ni 2+ . In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co 2+ and Ni 2+ contents (2012.9±18.8 and 1997.7±29.2mgkg -1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co 2+ - and Ni 2+ -polluted water and high-quality biomass production. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Ting; Chen, Zueng-Sang [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China); Hong, Chwan-Yang, E-mail: cyhong@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan (China)

    2011-05-30

    The accumulation and effect of cadmium (Cd) on the growth and enzymatic activities changes of antioxidants in Tagetes patula, French marigold, were investigated to reveal the physiological mechanisms corresponding to its Cd tolerance and accumulation. Hydroponically grown T. patula plants were treated with different concentrations of Cd (0, 10, 25, 50 {mu}M CdCl{sub 2}) at various regime of times. T. patula accumulated Cd to a maximum of 450 mg Cd kg{sup -1} dry weight (DW) in shoot and 3500 mg Cd kg{sup -1} DW in root after 14 days' exposure at 10 and 50 {mu}M CdCl{sub 2}, respectively. The translocation factors of Cd were greater than 1 in plants exposed to 10 {mu}M CdCl{sub 2}. Toxic effects were gradually observed with increasing Cd concentration (25 and 50 {mu}M) accompanied with the reduction of biomass, chlorophyll content, decrease of cell viability and the increase level of lipid peroxidation. In leaves of T. patula, the activities of ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase (SOD) were induced by Cd. However, in roots, activities of APX, GR, SOD and catalase (CAT) were significantly reduced by 25 and 50 {mu}M Cd treatment but not 10 {mu}M Cd. In-gel zymography analysis revealed that Cd induced the enzymatic activities of APX, MnSOD, CuZnSOD and different isozymes of GR in leaves. These results indicate that T. patula is a novel Cd accumulator and able to tolerate with Cd-induced toxicity by activation of its antioxidative defense system.

  18. Cadmium-induced physiological response and antioxidant enzyme changes in the novel cadmium accumulator, Tagetes patula

    International Nuclear Information System (INIS)

    Liu, Yu-Ting; Chen, Zueng-Sang; Hong, Chwan-Yang

    2011-01-01

    The accumulation and effect of cadmium (Cd) on the growth and enzymatic activities changes of antioxidants in Tagetes patula, French marigold, were investigated to reveal the physiological mechanisms corresponding to its Cd tolerance and accumulation. Hydroponically grown T. patula plants were treated with different concentrations of Cd (0, 10, 25, 50 μM CdCl 2 ) at various regime of times. T. patula accumulated Cd to a maximum of 450 mg Cd kg -1 dry weight (DW) in shoot and 3500 mg Cd kg -1 DW in root after 14 days' exposure at 10 and 50 μM CdCl 2 , respectively. The translocation factors of Cd were greater than 1 in plants exposed to 10 μM CdCl 2 . Toxic effects were gradually observed with increasing Cd concentration (25 and 50 μM) accompanied with the reduction of biomass, chlorophyll content, decrease of cell viability and the increase level of lipid peroxidation. In leaves of T. patula, the activities of ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase (SOD) were induced by Cd. However, in roots, activities of APX, GR, SOD and catalase (CAT) were significantly reduced by 25 and 50 μM Cd treatment but not 10 μM Cd. In-gel zymography analysis revealed that Cd induced the enzymatic activities of APX, MnSOD, CuZnSOD and different isozymes of GR in leaves. These results indicate that T. patula is a novel Cd accumulator and able to tolerate with Cd-induced toxicity by activation of its antioxidative defense system.

  19. Four New Acylated Iridoid Glycosides from the Aerial Part of Veronicastrum sibiricum and Their Antioxidant Response Element-Inducing Activity.

    Science.gov (United States)

    Kim, Myeong Il; Kim, Chul Young

    2018-01-01

    Four new (1 - 4) and one known (5) acylated iridoid glycosides were isolated from the aerial parts of Veronicastrum sibiricum (L.) Pennell. The chemical structures of the isolated compounds were determined to be 3″,4″-dicinnamoyl-6-O-rhamnopyranosyl-10-O-bergaptol-5,7-bisdeoxycynanchoside (1), 3″,4″-dicinnamoyl-6-O-rhamnopyranosylpaulownioside (2), 2″,4″-dicinnamoyl-6-O-rhamnopyranosylcatalpol (3), 3″,4″-dicinnamoyl-6-O-rhamnopyranosylaucubin (4), and 3″,4″-dicinnamoyl-6-O-rhamnopyranosylcatalpol (5) using spectroscopic techniques. Among these compounds, compound 5 increased antioxidant response element (ARE) luciferase activity. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  20. Evaluation of pollution in Camichin estuary (Mexico): pro-oxidant and antioxidant response in oyster (Crassostrea corteziensis).

    Science.gov (United States)

    Girón-Pérez, M I; Romero-Bañuelos, C A; Toledo-Ibarra, G A; Rojas-García, A E; Medina-Diaz, I M; Robledo-Marenco, M L; Vega-López, A

    2013-08-01

    The physiological system of molluscs, particularly pro-oxidant and antioxidant mechanisms, could be altered by pollutants and induce disturbance on health status and productive parameters of aquatic organisms, such as oyster. Therefore, the aim of this study was to evaluate the chemical contamination in water (total metals and polycyclic aromatic hydrocarbons) and oxidative stress parameters in oysters (Crassostrea corteziensis) in Camichin estuary, located in Mexican Tropical Pacific. The results obtained showed the presence of arsenic, lead and zinc, as well as naphthalene, pyrene and benzo[a]pyrene in concentrations relatively higher than criteria established by local and international guidelines. Regarding the biomarkers of oxidative stress response (H2O2 and O2 concentration, catalase activity, lipid peroxidation, and hydroperoxide concentration), differences between oyster from estuary and control group were significant. These results indicate that these pollutants could be related with oxidative stress detected in oyster. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration.

    Science.gov (United States)

    Sui, Yanming; Hu, Menghong; Shang, Yueyong; Wu, Fangli; Huang, Xizhi; Dupont, Sam; Storch, Daniela; Pörtner, Hans-Otto; Li, Jiale; Lu, Weiqun; Wang, Youji

    2017-03-01

    Ocean acidification (OA) and hypoxic events are increasing worldwide problems, their interactive effects have not been well clarified, although their co-occurrence is prevalent. The East China Sea (the Yangtze River estuary area) suffers from not only coastal hypoxia but also pH fluctuation, representing an ideal study site to explore the combined effect of OA and hypoxia on marine bivalves. We experimentally evaluated the antioxidant response of the mussel Mytilus coruscus exposed to three pH levels (8.1, 7.7 and 7.3) at two dissolved oxygen (DO) levels (2.0mgL -1 and 6.0mgL -1 ) for 72h. Activities of superoxide dismutase, catalase, glutathione peroxidase, acid phosphatase, and alkaline phosphatase and levels of malondialdehyde were measured in gills and hemolymph. All enzymatic activities in hemolymph and gills followed a similar pattern throughout the experiment duration. Generally, low DO showed greater effects on enzyme activities than elevated CO 2 . Significant interactions between DO, pH and time were only observed at superoxide dismutase and catalase in both tissues. PCA revealed positive relationships between most enzyme activities in both gills and hemolymph with the exception of alkaline phosphatase activity and the level of malondialdehyde in the hemolymph. Overall, our results suggested that decreased pH and low DO induced similar antioxidant responses in the hard shelled mussel, and showed an additive effect on most enzyme activities. The evaluation of multiple environmental stressors, a more realistic scenario than single ones, is crucial to predict the effect of future global changes on coastal species and our results supply some insights on the potential combined effects of reduced pH and DO on marine bivalves. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Possible role of glutamine synthetase in the NO signaling response in root nodules by contributing to the antioxidant defenses

    Directory of Open Access Journals (Sweden)

    Liliana Santos Silva

    2013-09-01

    Full Text Available Nitric oxide (NO is emerging as an important regulatory player in the Rhizobium-legume symbiosis. The occurrence of NO during several steps of the symbiotic interaction suggests an important, but yet unknown, signaling role of this molecule for root nodule formation and functioning. The identification of the molecular targets of NO is key for the assembly of the signal transduction cascade that will ultimately help to unravel NO function. We have recently shown that the key nitrogen assimilatory enzyme Glutamine Synthetase (GS is a molecular target of NO in root nodules of Medicago truncatula, being post-translationally regulated by tyrosine nitration in relation to nitrogen fixation. In functional nodules of M. truncatula NO formation has been located in the bacteroid containing cells of the fixation zone, where the ammonium generated by bacterial nitrogenase is released to the plant cytosol and assimilated into the organic pools by plant GS. We propose that the NO-mediated GS post-translational inactivation is connected to nitrogenase inhibition induced by NO and is related to metabolite channeling to boost the nodule antioxidant defenses. Glutamate, a substrate for GS activity is also the precursor for the synthesis of glutathione (GSH, which is highly abundant in root nodules of several plant species and known to play a major role in the antioxidant defense participating in the ascorbate/GSH cycle. Existing evidence suggests that upon NO-mediated GS inhibition, glutamate could be channeled for the synthesis of GSH. According to this hypothesis, GS would be involved in the NO-signaling responses in root nodules and the NO-signaling events would meet the nodule metabolic pathways to provide an adaptive response to the inhibition of symbiotic nitrogen fixation by reactive nitrogen species (RNS.

  3. Antioxidant response and metal accumulation in tissues of Iberian green frogs (Pelophylax perezi) inhabiting a deactivated uranium mine.

    Science.gov (United States)

    Marques, Sérgio M; Antunes, Sara C; Nunes, Bruno; Gonçalves, Fernando; Pereira, Ruth

    2011-08-01

    Human mining activities tend often to generate greatly impacted areas which remain contaminated for long periods of time, giving rise to extreme habitats. Mining sites are usually characterized for the production of metal rich effluents with very low pH. In this work we analyzed physical and chemical parameters of water from a deactivated uranium mine pond (M) and a reference site (REF) as well as their metal content. Furthermore, we determined and compared metal accumulation in liver, kidney, bones, muscle and skin of Pelophylax perezi from REF with P. perezi from M. We also determined the enzymatic activities of glutathione-S-transferases (GSTs), catalase (CAT), glutathione reductase (Gred), and glutathione peroxidase (GPx; both selenium-dependent and selenium-independent) in liver, kidney, lung and heart. Additionally, lipoperoxidation (LPO) was also assessed in the same tissues via thiobarbituric acid reactive substances (TBARS) assay and lactate dehydrogenase (LDH) activity was determined in muscle. Our results revealed that the majority of metals were in higher concentrations in tissues of organisms from M. This trend was especially evident for U whose content reached a difference of 1350 fold between REF and M organisms. None of the organs tested for antioxidant defenses revealed LPO, nonetheless, with exception for liver, all organs from the M frogs presented increased total GPx activity and selenium-dependent GPx. However, this response was significant only for the lung, probably as a consequence of the significant inhibition of CAT upstream and to cope with the subsequent increase in H(2)O(2). Lungs were the organs displaying greater responsiveness of the anti-oxidant stress system in frogs from the uranium mine area.

  4. Changes of antioxidative enzymes in Impatiens walleriana L. shoots in response to genetic transformation

    Directory of Open Access Journals (Sweden)

    Milošević Snežana

    2015-01-01

    Full Text Available Impatiens walleriana L. shoots were inoculated with Agrobacterium rhizogenes A4M70GUS and the effects of genetic transformation on the catalase (CAT, superoxide dismutase (SOD and peroxidase (POX activities in wounded region of stems and unwounded leaves were evaluated 10, 24, 240 and 720 hours after inoculation. Following Agrobacterum infection activities of plant antioxidative enzymes changed in a time-dependent manner indicating that dynamic processes occurred during plant-Agrobacterium interaction, plant cell transformation and formation of hairy roots. Appearance of hairy roots on wound sites of shoots was observed ten days after inoculation with A. rhizogenes and the root induction frequency was 100%. Among selected hairy root lines significant differences in growth rate and biomass production were observed and an average 3-fold increase in biomass production was observed for the best growing hairy root line compared with the untransformed roots. PCR analysis showed presence of uidA, rolB, rolC and rolD genes in all analyzed I. walleriana L. hairy root lines, while amplification fragment of rolA gene was detected in 83.3% transformed lines. Efficient transformation protocol for I. walleriana L described in this work offer possibilities to generate hairy root cultures for in vitro propagation of plant viruses. [Projekat Ministarstva nauke Republike Srbije, br. TR-31019

  5. Antioxidant enzyme level response to prooxidant allelochemicals in larvae of the southern armyworm moth, Spodoptera eridania.

    Science.gov (United States)

    Pritsos, C A; Ahmad, S; Elliott, A J; Pardini, R S

    1990-01-01

    Larvae of the southern armyworm, Spodoptera eridania, are highly polyphagous feeders which frequently encounter and feed upon plants containing high levels of prooxidant allelochemicals. While ingestion of moderate quantities of prooxidants can be tolerated by these larvae, ingestion of larger quantities can result in toxicity. Studies were conducted to assess the role of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the protection of S. eridania against redox active prooxidant plant allelochemicals. Dietary exposure of mid-fifth-instar larvae to either quercetin (a flavonoid) or xanthotoxin (a photoactive furanocoumarin), which generate superoxide radical, and singlet oxygen, respectively, resulted in an increase in SOD levels. CAT levels increased in all groups of S. eridania including control insects. This may have been due to the sudden exposure to food following an extended fast of 18 h (to insure that larvae would not reject the diet because of the prooxidants' bitter taste) with an eventual lowering of CAT values with time. GR activities did not significantly change except for a slight inhibition at the highest prooxidant concentrations used at 12-h post-ingestion. The data from these studies suggest that SOD responds to prooxidant challenges in these insects and together with CAT and GR contributes to the insect's defense against potentially toxic prooxidant compounds.

  6. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Directory of Open Access Journals (Sweden)

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  7. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone.

    Science.gov (United States)

    Arowojolu, Omotayo A; Orlow, Seth J; Elbuluk, Nada; Manga, Prashiela

    2017-07-01

    Vitiligo, characterised by progressive melanocyte death, can be initiated by exposure to vitiligo-inducing phenols (VIPs). VIPs generate oxidative stress in melanocytes and activate the master antioxidant regulator NRF2. While NRF2-regulated antioxidants are reported to protect melanocytes from oxidative stress, the role of NRF2 in the melanocyte response to monobenzone, a clinically relevant VIP, has not been characterised. We hypothesised that activation of NRF2 may protect melanocytes from monobenzone-induced toxicity. We observed that knockdown of NRF2 or NRF2-regulated antioxidants NQO1 and PRDX6 reduced melanocyte viability, but not viability of keratinocytes and fibroblasts, suggesting that melanocytes were preferentially dependent upon NRF2 activity for growth compared to other cutaneous cells. Furthermore, melanocytes activated the NRF2 response following monobenzone exposure and constitutive NRF2 activation reduced monobenzone toxicity, supporting NRF2's role in the melanocyte stress response. In contrast, melanocytes from individuals with vitiligo (vitiligo melanocytes) did not activate the NRF2 response as efficiently. Dimethyl fumarate-mediated NRF2 activation protected normal and vitiligo melanocytes against monobenzone-induced toxicity. Given the contribution of oxidant-antioxidant imbalance in vitiligo, modulation of this pathway may be of therapeutic interest. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Co-loading and intestine-specific delivery of multiple antioxidants in pH-responsive microspheres based on TEMPO-oxidized polysaccharides

    NARCIS (Netherlands)

    Shi, Mengxuan; Bai, Jie; Zhao, Liyun; Yu, Xinrui; Liang, Jingjing; Liu, Ying; Norde, Willem; Li, Yuan

    2017-01-01

    In this study, pH-responsive microspheres loaded with multiple antioxidants were developed for intestine-specific delivery and exhibited synergistic activity. They consist of chitosan (CS)-coated microspheres made of TEMPO-oxidized Konjac glucomannan (OKGM) polymers, of which the carboxyl (COO−)

  9. Enantioselective effect of bifenthrin on antioxidant enzyme gene expression and stress protein response in PC12 cells.

    Science.gov (United States)

    Lu, Xianting

    2013-07-01

    Enantioselectivity in toxicology and the health risk of chiral xenobiotics have become frontier topics interfacing chemistry and toxicology. Our previous results showed that cis-bifenthrin (cis-BF) induced cytotoxicity and apoptosis in vitro in an enantioselective manner. However, the exact molecular mechanisms of synthetic pyrethroid-induced enantioselective apoptosis and cytotoxicity have so far received limited research attention. In the present study, the expression patterns of different genes encoding heat shock protein and antioxidant enzymes were investigated by real-time quantitative PCR in rat adrenal pheochromocytoma (PC12) cells after exposure to cis-BF and its enantiomers. The results showed that exposure to 1S-cis-BF resulted in increased transcription of HSP90, HSP70, HSP60, Cu-Zn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione-s-transferase at a concentration of 5 µm and above, while exposure to 1R-cis-BF and rac-cis-BF exhibited these effects to lesser degrees. In addition, induction of antioxidant enzyme gene expression produced by 1S-cis-BF might occur, at least in part, through activation of p38 mitogen-activated protein kinases (MAPK) and extracellular regulated kinases, while increase in stress protein response produced by 1S-cis-BF might occur through the p38 MAPK signaling pathway. The results not only suggest that enantioselectivity should be considered in evaluating the ecotoxicological effects and health risk of chiral contaminants, but also will improve the understanding of molecular mechanism for chiral chemical-induced cytotoxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Diabate, Silvia; Plaumann, Diana; Uebel, Caroline; Weiss, Carsten [Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen (Germany); Bergfeldt, Britta [Karlsruhe Institute of Technology, Institute of Technical Chemistry, Eggenstein-Leopoldshafen (Germany)

    2011-12-15

    Combustion-derived nanoparticles as constituents of ambient particulate matter have been shown to induce adverse health effects due to inhalation. However, the components inducing these effects as well as the biological mechanisms are still not fully understood. The fine fraction of fly ash particles collected from the electrostatic precipitator of a municipal solid waste incinerator was taken as an example for real particles with complex composition released into the atmosphere to study the mechanism of early biological responses of BEAS-2B human lung epithelial cells. The studies include the effects of the water-soluble and -insoluble fractions of the fly ash and the well-studied carbon black nanoparticles were used as a reference. Fly ash induced reactive oxygen species (ROS) and increased the total cellular glutathione (tGSH) content. Carbon black also induced ROS generation; however, in contrast to the fly ash, it decreased the intracellular tGSH. The fly ash-induced oxidative stress was correlated with induction of the anti-oxidant enzyme heme oxygenase-1 and increase of the redox-sensitive transcription factor Nrf2. Carbon black was not able to induce HO-1. ROS generation, tGSH increase and HO-1 induction were only induced by the insoluble fraction of the fly ash, not by the water-soluble fraction. ROS generation and HO-1 induction were markedly inhibited by pre-incubation of the cells with the anti-oxidant N-acetyl cysteine which confirmed the involvement of oxidative stress. Both effects were also reduced by the metal chelator deferoxamine indicating a contribution of bioavailable transition metals. In summary, both fly ash and carbon black induce ROS but only fly ash induced an increase of intracellular tGSH and HO-1 production. Bioavailable transition metals in the solid water-insoluble matrix of the fly ash mostly contribute to the effects. (orig.)

  11. Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity.

    Science.gov (United States)

    Alvarez Echazú, María Inés; Olivetti, Christian Ezequiel; Peralta, Ignacio; Alonso, Maria Rosario; Anesini, Claudia; Perez, Claudio Javier; Alvarez, Gisela Solange; Desimone, Martin Federico

    2018-05-07

    A detailed study of biomaterials is mandatory to comprehend their feasible biomedical applications in terms of drug delivery and tissue regeneration. Particularly, mucoadhesive biopolymers such as chitosan (chi) and carboxymethylcellulose (CMC) have become interesting biomaterials regards to their biocompatibility and non-toxicity for oral mucosal drug delivery. In this work, pH-responsive biopolymer-silica composites (Chi-SiO 2 , Chi-CMC-SiO 2 ) were developed. These two types of composites presented a different swelling behavior due to the environmental pH. Moreover, the nanocomposites were loaded with aqueous Larrea divaricata Cav. extract (Ld), a South American plant which presents antioxidant properties suitable for the treatment of gingivoperiodontal diseases. Chi-CMC-SiO 2 composites showed the highest incorporation and reached the 100% of extract release in almost 4 days while they preserved their antioxidant properties. In this study, thermal and swelling behavior were pointed out to show the distinct water-composite interaction and therefore to evaluate their mucoadhesivity. Furthermore, a cytotoxicity test with 3T3 fibroblasts was assessed, showing that in both composites the addition of Larrea divaricata Cav. extract increased fibroblast proliferation. Lastly, preliminary in vitro studies were performed with simulated body fluids. Indeed, SEM-EDS analysis indicated that only chi-SiO 2 composite may provide an environment for possible biomineralization while the addition of CMC to the composites discouraged calcium accumulation. In conclusion, the development of bioactive composites could promote the regeneration of periodontal tissue damaged throughout periodontal disease and the presence of silica nanoparticles could provide an environment for biomineralization. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effects of Piper sarmentosum extract on the growth performance, antioxidant capability and immune response in weaned piglets.

    Science.gov (United States)

    Wang, D F; Zhou, L L; Zhou, H L; Hou, G Y; Zhou, X; Li, W

    2017-02-01

    The biological properties of Piper sarmentosum render it a potential substitute for antibiotics in livestock feed. This study evaluated the effects of P. sarmentosum extract (PSE) on the growth performance, antioxidant capability and immune response of weaned piglets. Eighty 21-d-old weaned piglets were selected and randomly allocated to one of four dietary treatments with five replicates of four pigs each. The dietary treatments consisted of a basal diet supplemented with 0 (T0), 50 (T50), 100 (T100) or 200 (T200) mg/kg PSE. The feeding trial lasted 4 weeks. The results revealed that the T50 group had the highest average daily gain (ADG) and average daily feed intake (ADFI) throughout the feeding trial (p < 0.05). Additionally, the T50 group had higher (p < 0.05) serum glutathione peroxidase activity (GSH-Px) and lower (p < 0.05) serum malondialdehyde (MDA) levels than the T0 group at 4 weeks post-weaning (p < 0.05). Serum levels of interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) decreased, while serum levels of interleukin-4 (IL-4), interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) increased by PSE supplementation at 4 weeks post-weaning (p < 0.05). PSE supplementation upregulated the mRNA expression of IL-4, IL-10 and TGF-β and downregulated the mRNA expression of TNF-α, IL-1β and interleukin-6 (IL-6) in the ileal mucosal layer of piglets (p < 0.05). In summary, our study findings revealed that PSE supplementation improved the antioxidant capability, and reduced inflammation, which may be beneficial to weaned piglet health. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  13. Responses of growth inhibition and antioxidant gene expression in earthworms (Eisenia fetida) exposed to tetrabromobisphenol A, hexabromocyclododecane and decabromodiphenyl ether.

    Science.gov (United States)

    Shi, Ya-juan; Xu, Xiang-bo; Zheng, Xiao-qi; Lu, Yong-long

    2015-01-01

    Tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCD) and decabromodiphenyl ether (BDE 209), suspected ubiquitous contaminants, account for the largest volume of brominated flame retardants (BFRs) since penta-BDE and octa-BDE have been phased out globally. In this paper, the growth inhibition and gene transcript levels of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)) and the stress-response gene involved in the prevention of oxidative stress (Hsp70) of earthworms (Eisenia fetida) exposed to TBBPA, HBCD and BDE 209 were measured to identify the toxicity effects of selected BFRs on earthworms. The growth of earthworms treated by TBBPA at 200 and 400 mg/kg dw were inhibited at rate of 13.7% and 22.0% respectively, while there was no significant growth inhibition by HBCD and BDE 209. A significant (Pearthworms exposed to TBBPA at 50 mg/kg dw (1.77-fold) and to HBCD at 400 mg/kg dw (2.06-fold). The transcript level of Hsp70 gene was significantly up-regulated (Pearthworms exposed to TBBPA at concentration of 50-200 mg/kg (2.16-2.19-fold) and HBCD at 400 mg/kg (2.61-fold). No significant variation of CAT gene expression in all the BFRs treatments was observed, neither does all the target gene expression level exposed to BDE 209. Assessed by growth inhibition and the changes at mRNA levels of encoding genes in earthworms, TBBPA showed the greatest toxicity, followed by HBCD and BDE 209, consistent with trends in molecular properties. The results help to understand the molecular mechanism of antioxidant defense. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review.

    Science.gov (United States)

    Bernard, F; Brulle, F; Dumez, S; Lemiere, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2015-04-01

    Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates

  15. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia.

    Science.gov (United States)

    Hu, Menghong; Wu, Fangli; Yuan, Mingzhe; Li, Qiongzhen; Gu, Yedan; Wang, Youji; Liu, Qigen

    2015-11-01

    Bloom forming algae and hypoxia are considered to be two main co-occurred stressors associated with eutrophication. The aim of this study was to evaluate the interactive effects of harmful algae Microcystis aeruginosa and hypoxia on an ecologically important mussel species inhabiting lakes and reservoirs, the triangle sail mussel Hyriopsis cumingii, which is generally considered as a bio-management tool for eutrophication. A set of antioxidant enzymes involved in immune defence mechanisms and detoxification processes, i.e. glutathione-S-transferases (GST), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), lysozyme (LZM) in mussel haemolymph were analyzed during 14days exposure along with 7days depuration duration period. GST, GSH, SOD, GPX and LZM were elevated by toxic M. aeruginosa exposure, while CAT activities were inhibited by such exposure. Hypoxia influenced the immune mechanisms through the activation of GSH and GPX, and the inhibition of SOD, CAT, and LZM activities. Meanwhile, some interactive effects of M. aeruginosa, hypoxia and time were observed. Independently of the presence or absence of hypoxia, toxic algal exposure generally increased the five tested enzyme activities of haemolymph, except CAT. Although half of microcystin could be eliminated after 7days depuration, toxic M. aeruginosa or hypoxia exposure history showed some latent effects on most parameters. These results revealed that toxic algae play an important role on haemolymph parameters alterations and its toxic effects could be affected by hypoxia. Although the microcystin depuration rate of H. cumingii is quick, toxic M. aeruginosa and/or hypoxia exposure history influenced its immunological mechanism recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Application of response surface methodology to optimize pressurized liquid extraction of antioxidant compounds from sage (Salvia officinalis L.), basil (Ocimum basilicum L.) and thyme (Thymus vulgaris L.).

    Science.gov (United States)

    Hossain, M B; Brunton, N P; Martin-Diana, A B; Barry-Ryan, C

    2010-12-01

    The present study optimized pressurized liquid extraction (PLE) conditions using Dionex ASE® 200, USA to maximize the antioxidant activity [Ferric ion Reducing Antioxidant Power (FRAP)] and total polyphenol content (TP) of the extracts from three spices of Lamiaceae family (sage, basil and thyme). Optimal conditions with regard to extraction temperature (66-129 °C) and solvent concentration (32-88% methanol) were identified using response surface methodology (RSM). For all three spices, results showed that 129 °C was the optimum temperature with regard to antioxidant activity. Optimal methanol concentrations with respect to the antioxidant activity of sage and basil extracts were 58% and 60% respectively. Thyme showed a different trend with regard to methanol concentration and was optimally extracted at 33%. Antioxidant activity yields of the optimal PLE were significantly (p < 0.05) higher than solid/liquid extracts. Predicted models were highly significant (p < 0.05) for both total phenol (TP) and FRAP values in all the spices with high regression coefficients (R(2)) ranging from 0.651 to 0.999.

  17. Multi-criteria optimization for ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae using response surface methodology, an activity-based approach.

    Science.gov (United States)

    Zeng, Shanshan; Wang, Lu; Zhang, Lei; Qu, Haibin; Gong, Xingchu

    2013-06-01

    An activity-based approach to optimize the ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition-activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic-assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second-order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Response surface optimisation of extraction of antioxidants from strawberry fruit, and lipid peroxidation inhibitory potential of the fruit extract in cooked chicken patties.

    Science.gov (United States)

    Saha, Jayati; Debnath, Moumita; Saha, Arnab; Ghosh, Tanaya; Sarkar, Prabir K

    2011-08-15

    Strawberries contain high levels of antioxidants and have beneficial effects against oxidative stress-mediated diseases, such as cancer. They contain multiple phenolic compounds, which contribute to their biological properties. Hence, a study was carried out to optimise the extraction of antioxidants and evaluate the antioxidant potential of strawberry fruit extract (SE) in cooked chicken patties during refrigerated storage. The activity of SE was compared with that of butylhydroxytoluene (BHT). The effect of solvent type (MeOH and EtOH), concentration (0-70%) of EtOH in the system, temperature (30-60 °C), and time (30-150 min) on DPPH•-scavenging activity of SE was investigated. Response surface methodology was used to estimate the optimum extraction conditions for each parameter. The maximum predicted DPPH• scavenging under the optimised conditions (100% MeOH, 30 °C, 150 min) was 43% at 1 mg SE mL⁻¹. Freshly prepared chicken patties were treated with 5% and 10% SE and 2% BHT, and stored aerobically at 4 °C for 6 days. SE had no influence (P extraction of compounds from strawberry that had the scavenging activity. The study shows that the extraction of natural antioxidants from strawberry can be improved by optimising several key extraction parameters. SE also acted as an effective antioxidant and suppressed lipid peroxidation in cooked chicken patties. Copyright © 2011 Society of Chemical Industry.

  19. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during Porphyromonas gingivalis infection.

    Directory of Open Access Journals (Sweden)

    Piotr Mydel

    2006-07-01

    Full Text Available The efficient clearance of microbes by neutrophils requires the concerted action of reactive oxygen species and microbicidal components within leukocyte secretory granules. Rubrerythrin (Rbr is a nonheme iron protein that protects many air-sensitive bacteria against oxidative stress. Using oxidative burst-knockout (NADPH oxidase-null mice and an rbr gene knockout bacterial strain, we investigated the interplay between the phagocytic oxidative burst of the host and the oxidative stress response of the anaerobic periodontal pathogen Porphyromonas gingivalis. Rbr ensured the proliferation of P. gingivalis in mice that possessed a fully functional oxidative burst response, but not in NADPH oxidase-null mice. Furthermore, the in vivo protection afforded by Rbr was not associated with the oxidative burst responses of isolated neutrophils in vitro. Although the phagocyte-derived oxidative burst response was largely ineffective against P. gingivalis infection, the corresponding oxidative response to the Rbr-positive microbe contributed to host-induced pathology via potent mobilization and systemic activation of neutrophils. It appeared that Rbr also provided protection against reactive nitrogen species, thereby ensuring the survival of P. gingivalis in the infected host. The presence of the rbr gene in P. gingivalis also led to greater oral bone loss upon infection. Collectively, these results indicate that the host oxidative burst paradoxically enhances the survival of P. gingivalis by exacerbating local and systemic inflammation, thereby contributing to the morbidity and mortality associated with infection.

  20. Response of selected antioxidants and pigments in tissues of Rosa hybrida and Fuchsia hybrida to supplemental UV-A exposure

    NARCIS (Netherlands)

    Helsper, J.P.F.G.; Vos, de C.H.; Maas, F.M.; Jonker, H.H.; Broeck, van den H.C.; Jordi, W.; Pot, C.S.; Keizer, L.C.P.; Schapendonk, A.H.C.M.

    2003-01-01

    The effect of supplemental UV-A (320-400 nm) radiation on tissue absorption at 355 nm, levels of various antioxidants (ascorbate, glutathione, carotenoids and flavonoids) and of antioxidant scavenging capacity were investigated with leaves and petals of Rosa hybrida, cv. Honesty and with leaves,

  1. Hyperactivity of the Ero1α Oxidase Elicits Endoplasmic Reticulum Stress but No Broad Antioxidant Response

    DEFF Research Database (Denmark)

    Hansen, Henning Gram; Schmidt, Jonas Damgard; Soltoft, Cecilie Lutzen

    2012-01-01

    and induces expression of two established unfolded protein response (UPR) targets, BiP (immunoglobulin-binding protein) and HERP (homocysteine-induced ER protein). These effects could be reverted or aggravated by N-acetylcysteine and buthionine sulfoximine, respectively. Because both agents manipulate...

  2. Analysis of the effects of iron and vitamin C co-supplementation on oxidative damage, antioxidant response and inflammation in THP-1 macrophages.

    Science.gov (United States)

    Marcil, V; Lavoie, J C; Emonnot, L; Seidman, E; Levy, E

    2011-07-01

    The aims of the study were to test the susceptibility of THP-1 macrophages to develop oxidative stress and to deploy antioxidant defense mechanisms that insure the balance between the pro- and antioxidant molecules. Differentiated THP-1 were incubated in the presence or absence of iron-ascorbate (Fe/As) (100/1000μM) and the antioxidants Trolox, BHT, α-Tocopherol and NAC. Fe/As promoted the production of lipid peroxidation as reflected by the formation of malondialdehyde and H(2)O(2) along with reduced PUFA levels and elevated glutathione disulfide/total glutathione ratio, a reliable index of cellular redox status. THP-1 macrophages developed an increase in cytoplasmic SOD activity due in part to high cytoplasmic SOD1. On the other hand, a decline was noted in mRNA and protein of extra-cellular SOD3, as well as the activity of GSH-peroxidase, GSH-transferase and ATOX-1 expression. Macrophages activated under conditions of oxidative stress do not adequately deploy a powerful endogenous antioxidant response, a situation that can lead to an enhanced inflammatory response. Copyright © 2011 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology.

    Science.gov (United States)

    Chen, Shasha; Zeng, Zhi; Hu, Na; Bai, Bo; Wang, Honglun; Suo, Yourui

    2018-03-01

    Lycium ruthenicum Murr. (LR) is a functional food that plays an important role in anti-oxidation due to its high level of phenolic compounds. This study aims to optimize ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activities of obtained extracts from LR using response surface methodology (RSM). A four-factor-three-level Box-Behnken design (BBD) was employed to discuss the following extracting parameters: extraction time (X 1 ), ultrasonic power (X 2 ), solvent to sample ratio (X 3 ) and solvent concentration (X 4 ). The analysis of variance (ANOVA) results revealed that the solvent to sample ratio had a significant influence on all responses, while the extraction time had no statistically significant effect on phenolic compounds. The optimum values of the combination of phenolic compounds and antioxidant activities were obtained for X 1 =30min, X 2 =100W, X 3 =40mL/g, and X 4 =33% (v/v). Five phenolic acids, including chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid, were analyzed by HPLC. Our results indicated that optimization extraction is vital for the quantification of phenolic compounds and antioxidant activity in LR, which may be contributed to large-scale industrial applications and future pharmacological activities research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology

    Directory of Open Access Journals (Sweden)

    Hui-Zhen LI

    Full Text Available Abstract Response surface methodology (RSM was used to optimize ultrasound-assisted extraction (UAE of functional components from perilla leaves. The factors investigated were ethanol concentration, extraction temperature, and extraction time. The results revealed that ethanol concentration had significant effects on all extraction parameters. Based on the RSM results, the optimal conditions were an ethanol concentration of 56%, a UAE temperature of 54 °C, and a UAE time of 55 min. Under these conditions, the experimental TPC (total phenolic content, RA (rosmarinic acid, FRAP (ferric reducing antioxidant power and DPPH (1,1-diphenyl-2-picrylhydrazyl values were 48.85 mg GAE/g DW (mg gallic acid equivalent /g of dry weight, 31.02 mg/g DW, 85.55 μmol Fe2+/g DW and 73.35%, respectively. The experimental values were in agreement with those predicted by RSM models, confirming suitability of the model employed and the success of RSM for optimization of the extraction conditions.

  5. Platelet-released growth factors can accelerate tenocyte proliferation and activate the anti-oxidant response element.

    Science.gov (United States)

    Tohidnezhad, M; Varoga, D; Wruck, C J; Brandenburg, L O; Seekamp, A; Shakibaei, M; Sönmez, T T; Pufe, Thomas; Lippross, S

    2011-05-01

    Little is know about the pathophysiology of acute and degenerative tendon injuries. Although most lesions are uncomplicated, treatment is long and unsatisfactory in a considerable number of cases. Besides the common growth factors that were shown to be relevant for tendon integrity more recently protection against oxidative stress was shown to promote tendon healing. To improve tendon regeneration, many have advocated the use of platelet-rich plasma (PRP), a thrombocyte concentrate that can serve as an autologous source of growth factors. In this study, we investigated the effect of platelet-released growth factors (PRGF) on tenocytes. Tenocytes were isolated from the Achilles tendon of postnatal rats. Tenocyte cell cultures were stimulated with PRGF. We used a CyQuant assay and WST assay to analyse tendon cell growth and viability in different concentrations of PRGF. Migration and proliferation of cells grown in PRGF were assessed by a scratch test. A dual-luciferase assay was used to demonstrate the activation of the anti-oxidant response element (ARE) in tenocytes. A positive effect of PRGF could be shown on tendon cell growth and migratory capacity. PRGF activated the Nrf2-ARE pathway in a dose-dependent manner. Here, we provide evidence of a biological effect of PRGF on tenocytes by the promotion of tenocyte growth and activation of the Nrf2-ARE pathway. This is a novel aspect of the action of platelet concentrates on tendon growth.

  6. Antioxidant Systems from Pepper (Capsicum annuum L.): Involvement in the Response to Temperature Changes in Ripe Fruits

    Science.gov (United States)

    Mateos, Rosa M.; Jiménez, Ana; Román, Paloma; Romojaro, Félix; Bacarizo, Sierra; Leterrier, Marina; Gómez, Manuel; Sevilla, Francisca; del Río, Luis A.; Corpas, Francisco J.; Palma, José M.

    2013-01-01

    Sweet pepper is susceptible to changes in the environmental conditions, especially temperatures below 15 °C. In this work, two sets of pepper fruits (Capsicum annuum L.) which underwent distinct temperature profiles in planta were investigated. Accordingly, two harvesting times corresponding to each set were established: Harvest 1, whose fruits developed and ripened at 14.9 °C as average temperature; and Harvest 2, with average temperature of 12.4 °C. The oxidative metabolism was analyzed in all fruits. Although total ascorbate content did not vary between Harvests, a shift from the reduced to the oxidized form (dehydroascorbate), accompanied by a higher ascorbate peroxidase activity, was observed in Harvest 2 with respect to Harvest 1. Moreover, a decrease of the ascorbate-generating enzymatic system, the γ-galactono-lactone dehydrogenase, was found at Harvest 2. The activity values of the NADP-dependent dehydrogenases analyzed seem to indicate that a lower NADPH synthesis may occur in fruits which underwent lower temperature conditions. In spite of the important changes observed in the oxidative metabolism in fruits subjected to lower temperature, no oxidative stress appears to occur, as indicated by the lipid peroxidation and protein oxidation profiles. Thus, the antioxidative systems of pepper fruits seem to be involved in the response against temperature changes. PMID:23644886

  7. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B.

    Science.gov (United States)

    Chen, Yi-Ping

    2009-07-01

    To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m(-2)) for 8 h day(-1) for 8 days (PAR, 220 micromol m(-2) s(-1)) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm(-2); beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings.

  8. Comparison of responses of salivary antioxidant markers to exhaustive aerobic exercise in smoker and non-smoker young girls.

    Science.gov (United States)

    Arazi, Hamid; Simaei, Esmat; Taati, Behzad

    2016-10-01

    Smoking is known as a serious global public health problem, and is also an important risk factor for oral diseases and cause of oxidative stress and cellular damage. Saliva is the first biological medium encountered during inhalation of cigarette smoke. Additionally, previous studies demonstrated that exhaustive aerobic exercise could increase oxidative stress and cellular damage. Therefore, the main aim of this study was to compare the response of salivary antioxidants (peroxides (POX), uric acid (UA), 1-1dipheny l-2-picrylhydrazyl hydrate (DPPH) of exhaustive aerobic exercise between healthy smoker and non-smoker young girls. Ten smokers and 10 non-smokers were enrolled for this study. Subjects performed a progressive cycle ergometer with an initial load of 50 W that was increased 50Wevery 3 minutes at the speed of 60rpm, until exhaustion. Un-stimulated saliva samples were collected before, immediately and 1 hour after exercise. The results showed that POX activity and UA concentration significantly increased immediately after exercise in both groups when compared to the pre exercise values (Pexercise (PAerobic exercise caused a decrease in salivary DPPH activity immediately and 1 h after exercise in both groups (Pexercise (Paerobic exercise was induced oxidative stress in both groups but oxidative stress in smoking females was greater.

  9. Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment.

    Science.gov (United States)

    Léchaudel, Mathieu; Lopez-Lauri, Félicie; Vidal, Véronique; Sallanon, Huguette; Joas, Jacques

    2013-04-15

    Depending on the position of the fruit in the tree, mango fruit may be exposed to high temperature and intense light conditions that may lead to metabolic and physiological disorders and affect yield and quality. The present study aimed to determine how mango fruit adapted its functioning in terms of fruit water relations, epicarp characteristics and the antioxidant defence system in peel, to environmental conditions. The effect of contrasted temperature and light conditions was evaluated under natural solar radiation and temperature by comparing well-exposed and shaded fruit at three stages of fruit development. The sun-exposed and shaded peels of the two sides of the well-exposed fruit were also compared. Depending on fruit position within the canopy and on the side of a well-exposed fruit, the temperature gradient over a day affected fruit characteristics such as transpiration, as revealed by the water potential gradient as a function of the treatments, and led to a significant decrease in water conductance for well-exposed fruits compared to fruits within the canopy. Changes in cuticle thickness according to fruit position were consistent with those of fruit water conductance. Osmotic potential was also affected by climatic environment and harvest stage. Environmental conditions that induced water stress and greater light exposure, like on the sunny side of well-exposed fruit, increased the hydrogen peroxide, malondialdehyde and total and reduced ascorbate contents, as well as SOD, APX and MDHAR activities, regardless of the maturity stage. The lowest values were measured in the peel of the shaded fruit, that of the shaded side of well-exposed fruit being intermediate. Mango fruits exposed to water-stress-induced conditions during growth adapt their functioning by reducing their transpiration. Moreover, oxidative stress was limited as a consequence of the increase in antioxidant content and enzyme activities. This adaptive response of mango fruit to its

  10. Nrf2-inducing anti-oxidation stress response in the rat liver--new beneficial effect of lansoprazole.

    Science.gov (United States)

    Yamashita, Yasunobu; Ueyama, Takashi; Nishi, Toshio; Yamamoto, Yuta; Kawakoshi, Akatsuki; Sunami, Shogo; Iguchi, Mikitaka; Tamai, Hideyuki; Ueda, Kazuki; Ito, Takao; Tsuruo, Yoshihiro; Ichinose, Masao

    2014-01-01

    Lansoprazole is a potent anti-gastric ulcer drug that inhibits gastric proton pump activity. We identified a novel function for lansoprazole, as an inducer of anti-oxidative stress responses in the liver. Gastric administration of lansoprazole (10-100 mg/kg) to male Wistar rats produced a dose-dependent increase in hepatic mRNA levels of nuclear factor, erythroid-derived 2, -like 2 (Nrf2), a redox-sensitive transcription factor, at 3 h and Nrf2 immunoreactivity (IR) in whole hepatic lysates at 6 h. Conversely, the levels of Kelch-like ECH-associated protein (Keap1), which sequesters Nrf2 in the cytoplasm under un-stimulated conditions, were unchanged. Translocation of Nrf2 into the nuclei of hepatocytes was observed using western blotting and immunohistochemistry. Expression of mRNAs for Nrf2-dependent antioxidant and phase II enzymes, such as heme oxygenase 1 (HO-1), NAD (P) H dehydrogenase, quinone 1 (Nqo1), glutathione S-transferase A2 (Gsta2), UDP glucuronosyltransferase 1 family polypeptide A6 (Ugt1a6), were dose-dependently up-regulated at 3 h. Furthermore, the levels of HO-1 IR were dose-dependently increased in hepatocytes at 6 h. Subcutaneous administration of lansoprazole (30 mg/kg/day) for 7 successive days resulted in up-regulation and nuclear translocation of Nrf2 IR in hepatocytes and up-regulation of HO-1 IR in the liver. Pretreatment with lansoprazole attenuated thioacetamide (500 mg/kg)-induced acute hepatic damage via both HO-1-dependent and -independent pathways. Up-stream networks related to Nrf2 expression were investigated using microarray analysis, followed by data mining with Ingenuity Pathway Analysis. Up-regulation of the aryl hydrocarbon receptor (AhR)-cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1) pathway was associated with up-regulation of Nrf2 mRNA. In conclusion, lansoprazole might have an alternative indication in the prevention and treatment of oxidative hepatic damage through the induction of both phase I and phase

  11. Nrf2-Inducing Anti-Oxidation Stress Response in the Rat Liver - New Beneficial Effect of Lansoprazole

    Science.gov (United States)

    Yamashita, Yasunobu; Ueyama, Takashi; Nishi, Toshio; Yamamoto, Yuta; Kawakoshi, Akatsuki; Sunami, Shogo; Iguchi, Mikitaka; Tamai, Hideyuki; Ueda, Kazuki; Ito, Takao; Tsuruo, Yoshihiro; Ichinose, Masao

    2014-01-01

    Lansoprazole is a potent anti-gastric ulcer drug that inhibits gastric proton pump activity. We identified a novel function for lansoprazole, as an inducer of anti-oxidative stress responses in the liver. Gastric administration of lansoprazole (10–100 mg/kg) to male Wistar rats produced a dose-dependent increase in hepatic mRNA levels of nuclear factor, erythroid-derived 2, -like 2 (Nrf2), a redox-sensitive transcription factor, at 3 h and Nrf2 immunoreactivity (IR) in whole hepatic lysates at 6 h. Conversely, the levels of Kelch-like ECH-associated protein (Keap1), which sequesters Nrf2 in the cytoplasm under un-stimulated conditions, were unchanged. Translocation of Nrf2 into the nuclei of hepatocytes was observed using western blotting and immunohistochemistry. Expression of mRNAs for Nrf2-dependent antioxidant and phase II enzymes, such as heme oxygenase 1 (HO-1), NAD (P) H dehydrogenase, quinone 1 (Nqo1), glutathione S-transferase A2 (Gsta2), UDP glucuronosyltransferase 1 family polypeptide A6 (Ugt1a6), were dose-dependently up-regulated at 3 h. Furthermore, the levels of HO-1 IR were dose-dependently increased in hepatocytes at 6 h. Subcutaneous administration of lansoprazole (30 mg/kg/day) for 7 successive days resulted in up-regulation and nuclear translocation of Nrf2 IR in hepatocytes and up-regulation of HO-1 IR in the liver. Pretreatment with lansoprazole attenuated thioacetamide (500 mg/kg)-induced acute hepatic damage via both HO-1-dependent and -independent pathways. Up-stream networks related to Nrf2 expression were investigated using microarray analysis, followed by data mining with Ingenuity Pathway Analysis. Up-regulation of the aryl hydrocarbon receptor (AhR)-cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1) pathway was associated with up-regulation of Nrf2 mRNA. In conclusion, lansoprazole might have an alternative indication in the prevention and treatment of oxidative hepatic damage through the induction of both phase I and

  12. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction.

    Science.gov (United States)

    Méndez-Gómez, Manuel; Castro-Mercado, Elda; Alexandre, Gladys; García-Pineda, Ernesto

    2016-03-01

    Azospirillum is a plant growth-promoting rhizobacteria (PGPR) able to enhance the growth of wheat. The aim of this study was to test the effect of Azospirillum brasilense cell wall components on superoxide (O2·(-)) production in wheat roots and the effect of oxidative stress on A. brasilense viability. We found that inoculation with A. brasilense reduced O2·(-) levels by approx. 30 % in wheat roots. Inoculation of wheat with papain-treated A. brasilense, a Cys protease, notably increased O2·(-) production in all root tissues, as was observed by the nitro blue tetrazolium (NBT) reduction. However, a 24-h treatment with rhizobacteria lipopolysaccharides (50 and 100 μg/mL) alone did not affect the pattern of O2·(-) production. Analysis of the effect of plant cell wall components on A. brasilense oxidative enzyme activity showed no changes in catalase activity but a decrease in superoxide dismutase activity in response to polygalacturonic acid treatment. Furthermore, A. brasilense growth was only affected by high concentrations of H2O2 or paraquat, but not by sodium nitroprusside. Our results suggest that rhizobacterial cell wall components play an important role in controlling plant cell responses and developing tolerance of A. brasilense to oxidative stress produced by the plant.

  13. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

  14. Hepatic Transcriptome Responses of Domesticated and Wild Turkey Embryos to Aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Melissa S. Monson

    2016-01-01

    Full Text Available The mycotoxin, aflatoxin B1 (AFB1 is a hepatotoxic, immunotoxic, and mutagenic contaminant of food and animal feeds. In poultry, AFB1 can be maternally transferred to embryonated eggs, affecting development, viability and performance after hatch. Domesticated turkeys (Meleagris gallopavo are especially sensitive to aflatoxicosis, while Eastern wild turkeys (M. g. silvestris are likely more resistant. In ovo exposure provided a controlled AFB1 challenge and comparison of domesticated and wild turkeys. Gene expression responses to AFB1 in the embryonic hepatic transcriptome were examined using RNA-sequencing (RNA-seq. Eggs were injected with AFB1 (1 μg or sham control and dissected for liver tissue after 1 day or 5 days of exposure. Libraries from domesticated turkey (n = 24 and wild turkey (n = 15 produced 89.2 Gb of sequence. Approximately 670 M reads were mapped to a turkey gene set. Differential expression analysis identified 1535 significant genes with |log2 fold change| ≥ 1.0 in at least one pair-wise comparison. AFB1 effects were dependent on exposure time and turkey type, occurred more rapidly in domesticated turkeys, and led to notable up-regulation in cell cycle regulators, NRF2-mediated response genes and coagulation factors. Further investigation of NRF2-response genes may identify targets to improve poultry resistance.

  15. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    International Nuclear Information System (INIS)

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun; Yang, Chung S.; Zhang, Jinsong

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  16. Green tea polyphenol (−)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxu; Wang, Yijun; Wan, Xiaochun [Key Laboratory of Tea Biochemistry & Biotechnology, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036 (China); Yang, Chung S. [Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [Key Laboratory of Tea Biochemistry & Biotechnology, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036 (China)

    2015-02-15

    (−)-Epigallocatechin-3-gallate (EGCG), a constituent of green tea, has been suggested to have numerous health-promoting effects. On the other hand, high-dose EGCG is able to evoke hepatotoxicity. In the present study, we elucidated the responses of hepatic major antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2) rescue pathway to high-dose levels of EGCG in Kunming mice. At a non-lethal toxic dose (75 mg/kg, i.p.), repeated EGCG treatments markedly decreased the levels of superoxide dismutase, catalase, and glutathione peroxidase. As a rescue response, the nuclear distribution of Nrf2 was significantly increased; a battery of Nrf2-target genes, including heme oxygenase 1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and those involved in glutathione and thioredoxin systems, were all up-regulated. At the maximum tolerated dose (45 mg/kg, i.p.), repeated EGCG treatments did not disturb the major antioxidant defense. Among the above-mentioned genes, only HO1, NQO1, and GST genes were significantly but modestly up-regulated, suggesting a comprehensive and extensive activation of Nrf2-target genes principally occurs at toxic levels of EGCG. At a lethal dose (200 mg/kg, i.p.), a single EGCG treatment dramatically decreased not only the major antioxidant defense but also the Nrf2-target genes, demonstrating that toxic levels of EGCG are able to cause a biphasic response of Nrf2. Overall, the mechanism of EGCG-triggered hepatotoxicity involves suppression of major antioxidant enzymes, and the Nrf2 rescue pathway plays a vital role for counteracting EGCG toxicity. - Highlights: • EGCG at maximum tolerated dose does not disturb hepatic major antioxidant defense. • EGCG at maximum tolerated dose modestly upregulates hepatic Nrf2 target genes. • EGCG at toxic dose suppresses hepatic major antioxidant enzymes. • EGCG at non-lethal toxic dose pronouncedly activates hepatic Nrf2 rescue response. • EGCG at

  17. Supplementation with Sodium Selenite and Selenium-Enriched Microalgae Biomass Show Varying Effects on Blood Enzymes Activities, Antioxidant Response, and Accumulation in Common Barbel (Barbus barbus)

    Czech Academy of Sciences Publication Activity Database

    Kouba, A.; Velíšek, J.; Stará, A.; Masojídek, Jiří; Kozák, P.

    2014-01-01

    Roč. 2014, Article ID 408270 (2014) ISSN 2314-6141 R&D Projects: GA ČR GA521/09/0656; GA MŠk ED2.1.00/03.0110; GA MŠk LO1205; GA MŠk ED2.1.00/01.0024 Grant - others:GA JU(CZ) 087/2013/Z Institutional support: RVO:61388971 Keywords : selenite * selenium * antioxidant response Subject RIV: EE - Microbiology, Virology

  18. Antioxidant response of three Tillandsia species transplanted to urban, agricultural, and industrial areas.

    Science.gov (United States)

    Bermudez, Gonzalo M A; Pignata, María Luisa

    2011-10-01

    To evaluate the physiological response of Tillandsia capillaris Ruiz & Pav. f. capillaris, T. recurvata L., and T. tricholepis Baker to different air pollution sources, epiphyte samples were collected from a noncontaminated area in the province of Córdoba (Argentina) and transplanted to a control site as well as three areas categorized according to the presence of agricultural, urban, and industrial (metallurgical and metal-mechanical) emission sources. A foliar damage index (FDI) was calculated with the physiological parameters chlorophyll a, chlorophyll b, malondialdehyde (MDA), hydroperoxyconjugated dienes, sulfur (S) content, and dry weight-to-fresh weight ratio. In addition, electrical conductivity (E-cond), relative water content (RWC), dehydration kinetics (Kin-H(2)O), total phenols (T-phen), soluble proteins (S-prot), and activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase were determined. The parameters E-cond, FDI, SOD, RWC, and Kin-H(2)O can serve as suitable indicators of agricultural air pollution for T. tricholepis and T. capillaris, and CAT, Kin-H(2)O, and SOD can do the same for T. recurvata. In addition, MDA, T-phen, and S-prot proved to be appropriate indicators of urban pollution for T. recurvata. Moreover, FDI, E-cond, and SOD for T. recurvata and MDA for T. tricholepis, respectively, could be used to detect deleterious effects of industrial air pollution. © Springer Science+Business Media, LLC 2011

  19. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace

    Science.gov (United States)

    Hosseini-Vashan, S. J.; Golian, A.; Yaghobfar, A.

    2016-08-01

    A study was conducted to investigate the effects of supplementation of dried tomato pomace (DTP) on growth performance, relative weights of viscera, serum biological parameters, antioxidant status, immune response, and bone composition of broilers exposed to a high ambient temperature. A total of 352 one-day-old male broiler chickens were randomly divided into four groups consisting of four replicates with 22 birds each. One group was reared under the thermoneutral zone and fed a corn-soybean meal basal diet. The other three groups were subjected to a cyclic heat stress from 29 to 42 days of age (34 ± 1 °C, 55 % RH, 5 h/day). These birds were fed corn-soybean meal basal diet or the same diet supplemented with 3 % DTP (420 mg lycopene/kg diet) or 5 % (708 mg lycopene/kg diet) of DTP. Blood samples were collected on days 28 and 42, and the birds were slaughtered at the same times. Supplementation of 5 % of DTP increased body weight and production index and decreased feed conversion ratio during 1-28 days of age. On day 28, the broilers supplemented with 5 % DTP had lower serum triglycerides and higher high-density lipoprotein (HDL) cholesterol concentration than those on the other dietary treatments. The activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD) were higher and the concentration of malondialdehyde (MDA) was lower in the broilers fed 5 % TP than those of the broilers fed other diets at 28 days of age. The effects of heat stress (HS) were impaired body weight, enhanced serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lipase, and MDA concentration while reducing the activities of GPx and SOD. Dried tomato pomace supplementation did not influence growth performance under HS but ameliorated the negative effects of HS on the serum enzyme activities, GPx activity, and lipid peroxidation. Heat stress did not change the relative weights of the lymphoid organs but reduced the total and IgG titers

  20. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants.

    Science.gov (United States)

    Ikbal, Fatima Ezzohra; Hernández, José Antonio; Barba-Espín, Gregorio; Koussa, Tayeb; Aziz, Aziz; Faize, Mohamed; Diaz-Vivancos, Pedro

    2014-06-15

    The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)].

    Science.gov (United States)

    Lata, Charu; Jha, Sarita; Dixit, Vivek; Sreenivasulu, Nese; Prasad, Manoj

    2011-10-01

    Foxtail millet (Setaria italica L.) known as a relatively drought-tolerant crop across the world is grown in arid and semi-arid regions. To the best of our knowledge, no systematic study on drought tolerance screening of foxtail millet germplasm being a drought-tolerant crop has been reported so far. To explore genetic diversity of drought-induced oxidative stress tolerance in foxtail millet, we employed lipid peroxidation measure to assess membrane integrity under stress as biochemical marker to screen 107 cultivars and classified the genotypes as highly tolerant, tolerant, sensitive, and highly sensitive. From this comprehensive screening, four cultivars showing differential response to dehydration tolerance were selected to understand the physiological and biochemical basis of tolerance mechanisms. The dehydration-tolerant cultivars (IC-403579 and Prasad) showed considerably lower levels of lipid peroxidation and electrolyte leakage as compared with dehydration-sensitive cultivars (IC-480117 and Lepakshi), indicating better cell membrane integrity in tolerant cultivars. Correspondingly, tolerant genotypes maintained higher activity of catalase (EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), and glutathione reductase (GR; EC 1.6.4.2) across different time-course period of polyethylene glycol (PEG) treatments in comparison to sensitive ones. The above biochemical results were further validated through quantitative real-time PCR analysis of APX and GR, whose transcripts were substantially induced by PEG treatments in tolerant cultivars. These results suggest that tolerant cultivars possess wider array of antioxidant machinery with efficient ascorbate-glutathione pathway to cope with drought-induced oxidative stress.

  2. Comparisons of amino acids, body constituents and antioxidative response between long-time HD and normal HD.

    Science.gov (United States)

    Torigoe, Akira; Sato, Emiko; Mori, Takefumi; Ieiri, Norio; Takahashi, Chika; Ishida, Yoko; Hotta, Osamu; Ito, Sadayoshi

    2016-10-01

    Introduction Oxidative stress is one of the main mediators of progression of chronic kidney diseases (CKD). Nuclear factor E2-related factor 2 (Nrf2) is the transcription factor of antioxidant and detoxifying enzymes and related proteins which play an important role in cellular defense. Long-time hemodialysis (HD) therapy (8 hours) has been considered to be more beneficial compared to normal HD therapy (4 hours). We investigated oxidative response related to Nrf2 in peripheral blood mononuclear cells (PBMCs) of long-time HD and normal HD patients. Methods Eight adult long-time HD therapy patients (44.5 ± 3.0 years) and 10 normal HD therapy patients (68.1 ± 2.7 years) were enrolled. PBMCs were isolated and processed for expression of Nrf2 and its related genes by qRT-PCR. Plasma indoxyl sulfate, amino acids, and body constituents were measured. Findings Plasma indoxyl sulfate was significantly low after long-time HD therapy compare to that of normal HD therapy. Although, skeletal muscle mass, lean body mass, mineral and protein were significantly decreased 2 months in normal HD patients, those in long-time HD patients were significantly increased after 2 months. Almost of amino acids were significantly decreased after HD therapy in both HD therapies. Plasma amino acids were significantly low in long-time HD patients compared to normal HD patients. In PBMCs, the expression of Nrf2 was significantly decreased and hemooxygenase-1 expression was significantly increased in long-time HD compared to normal HD. Conclusion These observations indicate the beneficial effects of in long-time HD in improving oxidative stress in patients. © 2016 International Society for Hemodialysis.

  3. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging.

    Science.gov (United States)

    Briganti, Stefania; Wlaschek, Meinhard; Hinrichs, Christina; Bellei, Barbara; Flori, Enrica; Treiber, Nicolai; Iben, Sebastian; Picardo, Mauro; Scharffetter-Kochanek, Karin

    2008-09-01

    Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.

  4. Effects of Puerariae Radix extract on the activity of antioxidant

    OpenAIRE

    Young-Joon Eun; Ki Rok Kwon; Tae Jin Rhim; Yun-Kyung Song; Hyung-Ho Lim

    2007-01-01

    Objective : The objective of this study was to investigate the antioxidative effects of Puerariae Radix extract. Method : Total antioxidant capacity (TAC), Total antioxidant response (TAR), Total phenolic content, Reactive oxygen species (ROS), 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities, lipid peroxidation were examined. Result : Total antioxidant status was examined by total antioxidant capacity(TAC) and total antioxidant response(TAR) against potent free r...

  5. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats.

    Science.gov (United States)

    Singh, Jyotsna; Kakkar, Poonam

    2013-12-01

    A decoction of stem bark of Oroxylum indicum Vent. (OI) is taken (2-3 times/day) by the tribal people of Sikkim, India to treat diabetes but scientific validation of its overall potential is lacking. Present study was aimed to assess in vitro antihyperglycemic activity of standardized OI extract using inhibition of α-glucosidase, BSA glycation and enhancement of insulin sensitivity. Antidiabetic and antioxidant modulatory effects of OI extract along with the blood biomarkers of toxic response were studied in streptozotocin (STZ) induced diabetic rats. In vitro analysis showed strong antioxidant capacity of OI -and potential to inhibit BSA glycation and α-glucosidase activity which was comparable to standard counterparts. Extract also improved insulin sensitivity in mature 3T3-L1 adipocytes. In vivo effects of OI extract (oral 250 mg/kg b.wt.) on STZ induced type II diabetic rats normalized the antioxidant status (p≤0.01). Analysis of blood biomarkers of toxic response indicated its safety. Lowering of total cholesterol and HDL levels (p≤0.05) and restoration of glycated Hb (p≤0.01) were also found in OI treated diabetic rats. HOMA-IR, QUICKI analysis along with area under the curve analysis showed the capacity of OI extract to enhance the insulin sensitivity significantly (p≤0.01) which was confirmed by increased GLUT-4 translocation in skeletal muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Hepatic expression of heme oxygenase-1 and antioxidant response element-mediated genes following administration of ethinyl estradiol to rats

    International Nuclear Information System (INIS)

    Morio, Lisa A.; Leone, Angelique; Sawant, Sharmilee P.; Nie, Alex Y.; Brandon Parker, J.; Taggart, Peter; Barron, Alfred M.; McMillian, Michael K.; Lord, Peter

    2006-01-01

    Heme oxygenase-1 (HO-1) is one of several enzymes induced by hepatotoxicants, and is thought to have an important protective role against cellular stress during liver inflammation and injury. The objective of the present study was to evaluate the role of HO-1 in estradiol-induced liver injury. A single dose of ethinyl estradiol (500 mg/kg, po) resulted in mild liver injury. Repeated administration of ethinyl estradiol (500 mg/kg/day for 4 days, po) resulted in no detectable liver injury or dysfunction. Using RT-PCR analysis, we demonstrate that HO-1 gene expression in whole liver tissue is elevated (> 20-fold) after the single dose of ethinyl estradiol. The number and intensity of HO-1 immunoreactive macrophages were increased after the single dose of ethinyl estradiol. HO-1 expression was undetectable in hepatic parenchymal cells from rats receiving Methocel control or a single dose of ethinyl estradiol, however cytosolic HO-1 immunoreactivity in these cells after repeated dosing of ethinyl estradiol was pronounced. The increases in HO-1 mRNA and HO-1 immunoreactivity following administration of a single dose of ethinyl estradiol suggested that this enzyme might be responsible for the observed protection of the liver during repeated dosing. To investigate the effect of HO-1 expression on ethinyl estradiol-induced hepatotoxicity, rats were pretreated with hemin (50 μmol/kg, ip, a substrate and inducer of HO-1), with tin protoporphyrin IX (60 μmol/kg, ip, an HO-1 inhibitor), or with gadolinium chloride (10 mg/kg, iv, an inhibitor/toxin of Kupffer cells) 24 h before ethinyl estradiol treatment. Pretreatment with modulators of HO-1 expression and activity had generally minimal effects on ethinyl estradiol-induced liver injury. These data suggest that HO-1 plays a limited role in antioxidant defense against ethinyl estradiol-induced oxidative stress and hepatotoxicity, and suggests that other coordinately induced enzymes are responsible for protection observed with

  7. Dose-Response Effect of Tualang Honey on Postprandial Antioxidant Activity and Oxidative Stress in Female Athletes: A Pilot Study.

    Science.gov (United States)

    Ahmad, Nur Syamsina; Abdul Aziz, Azlina; Kong, Kin Weng; Hamid, Mohamad Shariff A; Cheong, Jadeera Phaik Geok; Hamzah, Sareena Hanim

    2017-12-01

    Tualang honey (TH) contains antioxidants such as ascorbic acid, phenolic acids, and flavonoids that may be protective against oxidative stress of exercise. The aim of this study was to examine the postprandial antioxidant activity and oxidative stress after ingestion of high and low dosages of TH in female athletes. Twenty female athletes (aged 21.3 [2.1] years; body weight [BW] 54.1 [5.7] kg) were randomly assigned into two groups and consumed either 1.5 g/kg BW TH (high honey; HH; n = 10) or 0.75 g/kg BW TH (low honey; LH; n = 10). Blood sample was collected at fasting and at 0.5, 1, 2, and 3 h after TH consumption. Plasma was analyzed for total phenolic content (TPC), antioxidant activity (ferric reducing antioxidant power [FRAP]), and oxidative stress biomarkers (malondialdehyde [MDA] and reactive oxygen species [ROS]). The 3-h area under the curve (AUC) for MDA was significantly lower in the LH group compared with HH group, suggesting less oxidative stress in the LH group. However, the AUCs for TPC, FRAP, and ROS were not affected by the dosages. The concentrations of TPC and FRAP increased from baseline to 2 and 1 h after TH consumption, respectively, and concentrations returned toward baseline at 3 h in both LH and HH groups. MDA concentration significantly decreased (p antioxidant activity and suppressing oxidative stress in female athletes. The time-course effect of TH that provides optimal antioxidant activity and oxidative stress protection was between 1 and 2 h after its consumption.

  8. Comparison of gamma- and beta radiation stress responses on anti-oxidative defense system and DNA modifications in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, Arne [SCK.CEN, Boeretang 200 2400 Mol (Belgium); University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Horemans, Nele; Van Hees, May; Nauts, Robin; Vandenhove, Hildegarde [SCK.CEN, Boeretang 200 2400 Mol (Belgium); Knapen, Dries; Blust, Ronny [University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2014-07-01

    frond have been implemented in a dosimetric model derived from ERICA tool. This enabled a reliable comparison of dose-dependent endpoints between gamma- and beta radiation. Dose rates varied from 15 and 1500 mGy/hr, and 19 from 19000 μGy/hr for gamma- and beta radiation respectively. The classic growth related endpoints, like biomass and frond area, were measured and compared with biochemical and molecular endpoints. Therefore, DNA modifications were analyzed to evaluate biological DNA damage and ROS accumulation in plants together with activities of anti-oxidative enzymes to evaluate oxidative stress response. A dose-response curve with 60 percent growth inhibition was determined for gamma radiation and morphological growth effects in root system were observed for beta radiation. Preliminary results showed similar responses in peroxidase activities between both radiation types. These results and ongoing investigations will help to unravel the differences and similarities in response mechanisms for various radiation types in plant systems. As multiple levels in biological organisation of the organism were considered, and also different dose rates taken into account, this approach allows a better understanding the toxic mode of action of radiation stress in higher plants. This research was supported by the European Commission Contract Fission-2010-3.5.1-269672 to Strategy for Allied Radioecology (www.star-radioecology.org) and a project of the Fund for Scientific Research (FWO-Vlaanderen, G.A040.11N) (authors)

  9. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S. T.; Daneshvar, B.

    2000-01-01

    to be affected by prior. lycopene exposure. The level of PhIP-DNA adducts in the liver or colon was likewise not affected by lycopene at any dose. Overall, the present study provides evidence that lycopene administered in the diet of young female rats exerts minor modifying effects toward antioxidant and drug......-metabolizing enzymes involved in the protection against oxidative stress and cancer. The fact that these enzymatic activities are induced at all of these very low plasma levels, could be taken to suggest that modulation of antioxidant and drug-metabolizing enzymes map indeed be relevant to humans, which in general...

  10. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2015-07-30

    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods. Response surface methodology was applied for optimizing reflux extraction conditions for achieving high 6-gingerol and 6-shogaol contents, and high antioxidant activity in Zingiber officinale var. rubrum Theilade . The two-factor central composite design was employed to determine the effects of two independent variables, namely extraction temperature (X1: 50-80 °C) and time (X2: 2-4 h), on the properties of the extracts. The 6-gingerol and 6-shogaol contents were measured using ultra-performance liquid chromatography. The antioxidant activity of the rhizome extracts was determined by means of the 1,1-diphenyl-2-picrylhydrazyl assay. Anticancer activity of optimized extracts against HeLa cancer cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Increasing the extraction temperature and time induced significant response of the variables. The optimum extraction condition for all responses was at 76.9 °C for 3.4 h. Under the optimum condition, the corresponding predicted response values for 6-gingerol, 6-shogaol, and the antioxidant activity were 2.89 mg/g DW, 1.85 mg/g DW, and 84.3%, respectively. 6-gingerol and 6-shogaol were extracted under optimized condition to check the viability of the models. The values were 2.92 and 1.88 mg/g DW, and 84.0% for 6-gingerol, 6-shogaol, and the antioxidant activity respectively. The experimental values agreed with those predicted, thus indicating suitability of the models employed and the success of RSM in optimizing the extraction condition. With optimizing of reflux extraction

  11. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response

    Directory of Open Access Journals (Sweden)

    Hira eZafar

    2016-04-01

    Full Text Available Nanoparticles (NPs have diverse properties in comparison to respective chemicals due to structure, surface area ratio, morphology, and reactivity. Toxicological effects of metallic NPs to organisms including plants have been reported. However, to the authors’ knowledge there is no report on the effect of NPs on in vitro culture of plant explants. In this study, ZnO NPs at 500-1500 mg/L badly affected Brassica nigra seed germination and seedling growth and raised antioxidative activities and antioxidants concentrations. On the other hand, culturing the stem explants of B. nigra on Murashige and Skoog (MS medium in presence of low concentration of ZnO NPs (1-20 mg/L produced white thin roots with thick root hairs. At 10 mg/L ZnO NPs shoots emergence was also observed. The developed calli/roots showed 79% DPPH (2,2-diphenyl-1-picryl hydrazyl radical scavenging activity at 10 mg/L. While total antioxidant and reducing power potential were also significantly different in presence of ZnO NPs. Non enzymatic antioxidative molecules, phenolics (up to 0.15 µg GAE/mg FW and flavonoids (up to 0.22 µg QE/mg FW, also raised and found NPs concentration dependent. We state that ZnO NPs may induce roots from explants cultured on appropriate medium and can be cultured for production of valuable secondary metabolites.

  12. Adipokinetic hormone-induced enhancement of antioxidant capacity of Pyrrhocoris apterus hemolymph in response to oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Večeřa, J.; Krishnan, Natraj; Alquicer, Glenda; Kodrík, Dalibor; Socha, Radomír

    2007-01-01

    Roč. 146, - (2007), s. 336-342 ISSN 1532-0456 R&D Projects: GA ČR GA522/07/0788 Institutional research plan: CEZ:AV0Z50070508 Keywords : adipokinetic hormone * antioxidant activity * oxidative stress Subject RIV: ED - Physiology Impact factor: 2.345, year: 2007

  13. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Ariann E. Mendoza-Martínez

    2017-03-01

    Full Text Available The redox-regulated transcription factors (TFs of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show

  14. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress.

    Science.gov (United States)

    Bhatnagar-Mathur, Pooja; Devi, M Jyostna; Vadez, Vincent; Sharma, Kiran K

    2009-07-15

    To counter the effects of environmental stresses, the plants must undergo detoxification that is crucial to avoid the accumulation of damaging free oxygen radicals (ROI). Here, we detail the oxidative damage, the antioxidant composition, and the osmoprotection achieved in transgenic plants of peanut overexpressing the AtDREB1A transgene, driven by a stress-inducible promoter (Atrd29A) when exposed to progressive water stress conditions. This study explored the biochemical mechanisms where (i) the antioxidants such as superoxide dismutase (SOD), ascorbate peroxidase (APOX), and glutathione reductase (GR) accumulated in the transgenic plants at comparably higher levels than their untransformed counterparts under dry soil conditions, (ii) a significant increase in the proline levels in the transgenic plants was observed in dry soils, and (iii) a dramatic increase in the lipid peroxidation in the untransformed controls in drier soils. Most of the biochemical parameters related to the antioxidative machinery in the tested peanut transgenics were triggered by the overexpression of AtDREB1A that appeared to differ from the untransformed controls. The antioxidants showed a negative correlation with the fraction of transpirable soil water (FTSW) thresholds, where the normalized transpiration rate (NTR) started decreasing in the tested plants. However, no significant relationship was observed between any of these biochemical indicators and the higher transpiration efficiency (TE) values found in the transgenic events. Our results show that changes in the antioxidative machinery in these transgenic peanut plants (overexpressing the AtDREB1A transcription factor) under water-limiting conditions played no causative role in improved TE.

  15. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts

    DEFF Research Database (Denmark)

    Ou, Zong-Quan; Schmierer, David M; Rades, Thomas

    2013-01-01

    To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity.......To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity....

  16. Effects of dietary fructooligosaccharide levels and feeding modes on growth, immune responses, antioxidant capability and disease resistance of blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Zhang, Chun-Nuan; Li, Xiang-Fei; Jiang, Guang-Zhen; Zhang, Ding-Dong; Tian, Hong-Yan; Li, Jun-Yi; Liu, Wen-Bin

    2014-12-01

    This study aimed to determine the effects of fructooligosaccharide (FOS) levels and its feeding modes on growth, immune response, antioxidant capability and disease resistance of blunt snout bream (Megalobrama amblycephala). Fish (12.5 ± 0.5 g) were subjected to three FOS levels (0, 0.4% and 0.8%) and two feeding modes (supplementing FOS continuously and supplementing FOS two days interval 5 days) according to a 3 × 2 factorial design. At the end of 8-week feeding trial, fish were challenged by Aeromonas hydrophila with concentration of 1 × 10(5) CFU mL(-1) and mortality was recorded for the next 96 h. Fish fed 0.4% FOS continuously (D2) and fish fed the basal diet for 5 days followed by 0.8% FOS for 2 days (D5) showed admirable growth performance. The highest plasma lysozyme, acid phosphatase and myeloperoxidase activities as well as complement component 3, total protein and immunoglobulin M (IgM) levels were all observed in fish fed D5. They were significantly higher (P 0.05) with that of fish fed D2. A similar trend was also observed in antioxidant capability as well as the expression of Leap-I and Leap-Ⅱ. Mortality showed an opposite trend with the immune response with the lowest rate observed in fish fed D5. The results indicated that diet supplementing FOS in appropriate levels and feeding modes could improve the growth, immune response and antioxidant capability of fish, as might consequently lead to enhanced disease resistance. It can be speculated that the basal diet for 5 days followed by 0.8% FOS for 2 days was most suitable for blunt snout bream. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Integrated response of antioxidant biomarkers in the liver and white muscle of European hake (Merluccius merluccius L. females from the Adriatic sea with respect to environmental influences

    Directory of Open Access Journals (Sweden)

    Pavlović Slađan Z.

    2018-01-01

    Full Text Available We investigated the integrated response of antioxidant defense enzymes (total superoxide dismutase (TotSOD, manganese-containing superoxide dismutase (MnSOD, copper-zinc-containing superoxide dismutase (CuZnSOD, catalase (CAT, glutathione peroxidase (GSH-Px, glutathione reductase (GR and phase II biotransformation enzyme, glutathione- S-transferase (GST in the liver and white muscle of females of European hake (Merluccius merluccius L. from the Adriatic Sea (Montenegro in winter and spring. The activity of GSH-Px in the liver was significantly increased, while GST activity was decreased in spring compared to the winter. In white muscle, the activities of TotSOD and CuZnSOD were increased, while the activities of MnSOD, CAT, GSH-Px, GR and GST were decreased in spring when compared to the matching values in winter. The activities of TotSOD and CuZnSOD in winter were markedly lower in the muscle than in the liver, while the activity of MnSOD in the muscle was higher when compared to the liver. Principal component analysis (PCA revealed clear separation of the investigated antioxidant biomarkers between tissues and seasons, while the integrated biomarker response (IBR showed that the most intensive antioxidant biomarker response was in the liver in spring. Star plots of IBR showed a dominant contribution of glutathione-dependent biomarkers (GSH-Px, GR and GST and CAT in both tissues and seasons with respect to SOD isoenzymes. All enzyme activities (except MnSOD were greater in the liver in comparison to the white muscle. Our results show that the liver possesses a greater capacity to establish and maintain homeostasis under changing environmental conditions in winter and spring. At the same time, seasonal effects are more pronounced in muscle tissue. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173041

  18. GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus.

    Science.gov (United States)

    Gobi, Narayanan; Malaikozhundan, Balasubramanian; Sekar, Vijayakumar; Shanthi, Sathappan; Vaseeharan, Baskaralingam; Jayakumar, Rengarajan; Khudus Nazar, Abdul

    2016-05-01

    In this study, the pathogenicity of GFP tagged Vibrio parahaemolyticus Dahv2 and the protective effect of the probiotic strain, Bacillus licheniformis Dahb1 was studied on the Asian catfish, Pangasius hypophthalmus. The experiment was carried out for 24 days with three groups and one group served as the control (without treatment). In the first group, P. hypophthalmus was orally infected with 1 mL of GFP tagged V. parahaemolyticus Dahv2 at two different doses (10(5) and 10(7) cfu mL(-1)). In the second group, P. hypophthalmus was orally administrated with 1 ml of the probiotic B. licheniformis Dahb1 at two different doses (10(5) and 10(7) cfu mL(-1)). In the third group, P. hypophthalmus was orally infected first with 1 mL of GFP tagged V. parahaemolyticus Dahv2 followed by the administration of 1 mL of B. licheniformis Dahb1 (combined treatment) at two different doses (10(5) and 10(7) cfu mL(-1)). The growth, immune (myeloperoxidase, respiratory burst, natural complement haemolytic and lysozyme activity) and antioxidant (glutathione-S-transferase, reduced glutathione and total glutathione) responses of P. hypophthalmus were reduced after post infection of GFP tagged V. parahaemolyticus Dahv2 compared to control. However, after administration with the probiotic B. licheniformis Dahb1 at 10(5) cfu mL(-1), P. hypophthalmus showed significant increase in the growth, immune and antioxidant responses compared to 10(7) cfu mL(-1). On the otherhand, the growth, immune and antioxidant responses of P. hypophthalmus infected and administrated with combined GFP tagged Vibrio + Bacillus at 10(5) cfu mL(-1) were relatively higher than that of GFP tagged V. parahaemolyticus Dahv2 and control groups but lower than that of probiotic B. licheniformis Dahb1 groups. The results of the present study conclude that the probiotic B. licheniformis Dahb1 at 10(5) cfu mL(-1) has the potential to protect the P. hypophthalmus against V. parahaemolyticus Dahv2 infection by enhancing the growth

  19. Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components.

    Science.gov (United States)

    Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber

    2017-01-01

    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.

  20. Poor antioxidant status exacerbates oxidative stress and inflammatory response to Pseudomonas aeruginosa lung infection in Guinea Pigs

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Lykkesfeldt, Jens; Bjarnsholt, Thomas

    2012-01-01

    , which is the main cause of morbidity and mortality in CF. Guinea pigs are unable to synthesize ascorbate (ASC) or vitamin C, a major antioxidant of the lung, and thus like human beings rely on its presence in the diet. On this basis, guinea pigs receiving ASC-deficient diet have been used as a model...... of oxidative stress. The aim of our study was to investigate the consequences of a 7-day biofilm-grown P. aeruginosa lung infection in 3-month-old guinea pigs receiving either ASC-sufficient or ASC-deficient diet for at least 2 months. The animals receiving ASC-deficient diet showed significantly higher......Considerable evidence supports the presence of oxidative stress in cystic fibrosis (CF). The disease has long been associated with both increased production of reactive oxygen species and impaired antioxidant status, in particular during the chronic pulmonary infection with Pseudomonas aeruginosa...

  1. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  2. Strain-Related Differences on Response of Liver and Kidney Antioxidant Defense System in Two Rat Strains Following Diazinon Exposure

    Directory of Open Access Journals (Sweden)

    Maryam Salehi

    2016-02-01

    Full Text Available Background Diazinon (DZN is one of the most organophosphates that widely used in agriculture and ectoparasiticide formulations. Its extensive use as an effective pesticide was associated with the environmental deleterious effects on biological systems. Objectives The aim of this study was to investigate the potency of DZN to affect serum biochemical parameters and the antioxidant defense system in the liver and kidney of two rat strains. Materials and Methods In this experimental study, 30 female Wistar and 30 female Norway rats were randomly divided into control and DZN groups. DZN group was divided into four subgroups: 25, 50, 100 and 200 mg/kg of DZN administered groups by i.p. injection. The parameters were evaluated after 24 hours. Results At higher doses of DZN, superoxide dismutase, catalase, glutathione S-transferase and lactate dehydrogenase activities and glutathione (GSH and malondialdehyde levels in liver and kidney of Wistar rats were higher than Norway rats. At these concentrations, DZN increased some serum biochemical indices such as liver enzymes activities and levels of urea, uric acid and creatinine in Wistar rat. Conclusions DZN at higher doses alters the oxidant-antioxidant balance in liver and kidney of both rat strains and induces oxidative stress, which is associated with a depletion of GSH and increased lipid peroxidation. However, Wistar rats are found to be more sensitive to the toxicity of DZN compared to Norway rats. In addition, the effect of DZN on liver antioxidant system was more than kidney.

  3. Physiology response of fourth generation saline resistant soybean (Glycine max (L.) Merrill) with application of several types of antioxidants

    Science.gov (United States)

    Manurung, I. R.; Rosmayati; Rahmawati, N.

    2018-02-01

    Antioxidant applications are expected to reduce the adverse effects of soil saline. This research was conducted in plastic house, Plant Tissue Laboratory Faculty of Agriculture and Plant Physiology Laboratory Faculty of Mathematic and Natural Science, Universitas Sumatera Utara, Medan also in Research Centers and Industry Standardization, Medan from July-December 2016. The objective of the research was to know the effect of various antioxidant treatments with different concentrations (control, ascorbic acid 250, 500 and 750 ppm; salicylic acid 250, 500 and 750 ppm; α-tocopherol 250, 500 and 750 ppm) on fourth generation soybean physiology in saline condition (Electric Conductivity 5-6 dS/m). The results of this research showed that the antioxidant type and concentration affected not significantly to physiology of fourth generation soybean. Descriptively the highest average of superoxide dismutase and peroxide dismutase was showed on ascorbic acid 250 ppm. The highest average of ascorbate peroxidase was showed on α-tocopherol 750 ppm. The highest average of carotenoid content was showed on ascorbic acid 500 ppm. The highest average of chlorophyll content was showed on α-tocopherol 250 ppm. The highest average of ratio of K/Na was showed on salicylic acid 250 ppm.

  4. Antioxidant responses in the polar marine sea-ice amphipod Gammarus wilkitzkii to natural and experimentally increased UV levels

    International Nuclear Information System (INIS)

    Krapp, Rupert H.; Bassinet, Thievery; Berge, Jorgen; Pampanin, Daniela M.; Camus, Lionel

    2009-01-01

    Polar marine surface waters are characterized by high levels of dissolved oxygen, seasonally intense UV irradiance and high levels of dissolved organic carbon. Therefore, the Arctic sea-ice habitat is regarded as a strongly pro-oxidant environment, even though its significant ice cover protects the ice-associated (=sympagic) fauna from direct irradiation to a large extent. In order to investigate the level of resistance to oxyradical stress, we sampled the sympagic amphipod species Gammarus wilkitzkii during both winter and summer conditions, as well as exposed specimens to simulated levels of near-natural and elevated levels of UV irradiation. Results showed that this amphipod species possessed a much stronger antioxidant capacity during summer than during winter. Also, the experimental UV exposure showed a depletion in antioxidant defences, indicating a negative effect of UV exposure on the total oxyradical scavenging capacity. Another sympagic organism, Onisimus nanseni, was sampled during summer conditions. When compared to G. wilkitzkii, the species showed even higher antioxidant scavenging capacity.

  5. The Amelioration of N-Acetyl-p-Benzoquinone Imine Toxicity by Ginsenoside Rg3: The Role of Nrf2-Mediated Detoxification and Mrp1/Mrp3 Transports

    Directory of Open Access Journals (Sweden)

    Sang Il Gum

    2013-01-01

    Full Text Available Previously, we found that Korean red ginseng suppressed acetaminophen (APAP-induced hepatotoxicity via alteration of its metabolic profile involving GSTA2 induction and that ginsenoside Rg3 was a major component of this gene induction. In the present study, therefore, we assessed the protective effect of Rg3 against N-acetyl-p-benzoquinone imine (NAPQI, a toxic metabolic intermediate of APAP. Excess NAPQI resulted in GSH depletion with increases in the ALT and AST activities in H4IIE cells. Rg3 pretreatment reversed GSH depletion by NAPQI. Rg3 resulted in increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase (GCL, the rate-limiting steps in GSH synthesis and subsequently increased GSH content. Rg3 increased levels of nuclear Nrf2, an essential transcriptional factor of these genes. The knockdown or knockout of the Nrf2 gene abrogated the inductions of mRNA and protein by Rg3. Abolishment of the reversal of GSH depletion by Rg3 against NAPQI was observed in Nrf2-deficient cells. Rg3 induced multidrug resistance-associated protein (Mrp 1 and Mrp3 mRNA levels, but not in Nrf2-deficient cells. Taken together, these results demonstrate that Rg3 is efficacious in protecting hepatocytes against NAPQI insult, due to GSH repletion and coordinated gene regulations of GSH synthesis and Mrp family genes by Nrf2.

  6. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism.

    Science.gov (United States)

    Yang, Yang; Deng, Yanchao; Chen, Xiangcui; Zhang, Jiahao; Chen, Yueming; Li, Huachao; Wu, Qipeng; Yang, Zhicheng; Zhang, Luyong; Liu, Bing

    2018-05-29

    Platelet-derived growth factor receptors (PDGFRs) are abundantly expressed by stromal cells in the non-small cell lung cancer (NSCLC) microenvironment, and in a subset of cancer cells, usually with their overexpression and/or activating mutation. However, the effect of PDGFR inhibition on lung cancer cells themselves has been largely neglected. In this study, we investigated the anticancer activity of CP-673451, a potent and selective inhibitor of PDGFRβ, on NSCLC cell lines (A549 and H358) and the potential mechanism. The results showed that inhibition of PDGFRβ by CP-673451 induced a significant increase in cell apoptosis, accompanied by ROS accumulation. However, CP-673451 exerted less cytotoxicity in normal lung epithelial cell line BEAS-2B cells determined by MTT and apoptosis assay. Elimination of ROS by NAC reversed the CP-673451-induced apoptosis in NSCLC cells. Furthermore, CP-673451 down-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) probably through inhibition of PI3K/Akt pathway. Rescue of Nrf2 activity counteracted the effects of CP-673451 on cell apoptosis and ROS accumulation. Silencing PDGFRβ expression by PDGFRβ siRNA exerted similar effects with CP-673451 in A549 cells, and when PDGFRβ was knockdowned by PDGFRβ siRNA, CP-673451 produced no additional effects on cell viability, ROS and GSH production, Nrf2 expression as well as PI3K/Akt pathway activity. Specifically, Nrf2 plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and we found that combination of CP-673451 and cisplatin produced a synergistic anticancer effect and substantial ROS production in vitro. Therefore, these results clearly demonstrate the effectiveness of inhibition of PDGFRβ against NSCLC cells and strongly suggest that CP-673451 may be a promising adjuvant chemotherapeutic drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Involvement of Nrf2-Mediated Upregulation of Heme Oxygenase-1 in Mollugin-Induced Growth Inhibition and Apoptosis in Human Oral Cancer Cells

    Directory of Open Access Journals (Sweden)

    Young-Man Lee

    2013-01-01

    Full Text Available Although previous studies have shown that mollugin, a bioactive phytochemical isolated from Rubia cordifolia L. (Rubiaceae, exhibits antitumor effects, its biological activity in oral cancer has not been reported. We thus investigated the effects and putative mechanism of apoptosis induced by mollugin in human oral squamous cell carcinoma cells (OSCCs. Results show that mollugin induces cell death in a dose-dependent manner in primary and metastatic OSCCs. Mollugin-induced cell death involved apoptosis, characterized by the appearance of nuclear shrinkage, flow cytometric analysis of sub-G1 phase arrest, and annexin V-FITC and propidium iodide staining. Western blot analysis and RT-PCR revealed that mollugin suppressed activation of NF-κB and NF-κB-dependent gene products involved in antiapoptosis (Bcl-2 and Bcl-xl, invasion (MMP-9 and ICAM-1, and angiogenesis (FGF-2 and VEGF. Furthermore, mollugin induced the activation of p38, ERK, and JNK and the expression of heme oxygenase-1 (HO-1 and nuclear factor E2–related factor 2 (Nrf2. Mollugin-induced growth inhibition and apoptosis of HO-1 were reversed by an HO-1 inhibitor and Nrf2 siRNA. Collectively, this is the first report to demonstrate the effectiveness of mollugin as a candidate for a chemotherapeutic agent in OSCCs via the upregulation of the HO-1 and Nrf2 pathways and the downregulation of NF-κB.

  8. In vitro reporter gene assays for assessment of PPAR- and Nrf2-mediated health effects of tomato and its bioactive constituents

    NARCIS (Netherlands)

    Gijsbers, L.

    2013-01-01

    The consumption of food products with health-promoting properties, such as for example margarines with plant sterols, fruit juice enriched with calcium and cereals with (soluble) fibre, has increased rapidly during the last years. The present thesis provides proof-of-principle that reporter gene

  9. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus).

    Science.gov (United States)

    Zhou, Chuanpeng; Ge, Xianping; Lin, Heizhao; Niu, Jin

    2014-12-01

    The present study was conducted to investigate the effects of dietary carbohydrate (CHO) levels on non-specific immune responses, hepatic antioxidative status and disease resistance of juvenile golden pompano. Fish were fed six isonitrogenous and isoenergetic diets containing various CHO levels for 8 weeks. After the feeding trial, fish were challenged by Vibrio harveyi and survival rate was recorded for the next 12 days. Plasma total protein and albumin content, respiratory burst activity, alkaline phosphatase, slightly increased with dietary starch level from 0% to 16.8%, but significantly decreased at dietary starch levels of 16.8%-28%. Plasma lysozyme, complement 3 and complement 4 levels increased with increasing dietary carbohydrate up to 11.2% and then declined (P 0.05) with those of the other treatments. After challenge, fish fed 11.2% and 16.8% dietary CHO showed higher survival rate than that of fish in 0% CHO group (P 0.05). The results of this study suggest that ingestion of 11.2-16.8% dietary CHO can enhance the non-specific immune responses, increase the hepatic antioxidant abilities, and improve resistance to V. harveyi infection of juvenile golden pompano. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Multi-Optimization of Ultrasonic-Assisted Enzymatic Extraction of Atratylodes macrocephala Polysaccharides and Antioxidants Using Response Surface Methodology and Desirability Function Approach.

    Science.gov (United States)

    Pu, Jin-Bao; Xia, Bo-Hou; Hu, Yi-Juan; Zhang, Hong-Jian; Chen, Jing; Zhou, Jie; Liang, Wei-Qing; Xu, Pan

    2015-12-11

    Rhizoma Atractylodes macrocephala polysaccharides (RAMP) have been reported to have a variety of important biological activities. In this study, an ultrasonic-assisted enzymatic extraction (UAEE) was employed to obtain the highest extraction yield and strongest antioxidant activity of RAMP and optimized by a multi-response optimization process. A three-level four-factor Box-Behnken design (BBD) was performed as response surface methodology (RSM) with desirability function (DF) to attain the optimal extraction parameters. The DPPH scavenging percentage was used to represent the antioxidant ability of RAMP. The maximum D value (0.328), along with the maximum yield (59.92%) and DPPH scavenging percentage (13.28%) were achieved at 90.54 min, 57.99 °C, 1.95% cellulase and 225.29 W. These values were further validated and found to be in good agreement with the predicted values. Compared to the other extraction methods, both the yield and scavenging percentage of RAMP obtained by UAEE was favorable and the method appeared to be time-saving and of high efficiency. These results demostrated that UAEE is an appropriate and effective extraction technique. Moreover, RSM with DF approach has been proved to be adequate for the design and optimization of the extraction parameters for RAMP. This work has a wide range of implications for the design and operation of polysaccharide extraction processes.

  11. Uranium ("2"3"8U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi

    International Nuclear Information System (INIS)

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi

    2017-01-01

    Highlights: • Exposure to "2"3"8U deteriorated the antioxidant defenses like SOD, CAT and LPO. • Flow cytometric analysis revealed the increase in G2/M phase and S phase. • Micronucleus frequencies increased with Increased "2"3"8U exposure and time. • Exposure to waterborne "2"3"8U induces both chemical and radiotoxicity in P. sutchi. • ROS-mediated "2"3"8U toxic mechanism and the antioxidant responses has been proposed. - Abstract: The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of "2"3"8U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC_5_0 doses of waterborne "2"3"8U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods—0 h, 24 h, 48 h, 72 h, 96 h, 7, days 14 days and 21 days—using ICP-MS to determine the toxic effects of uranium and the accumulation of "2"3"8U concentrations. The bioaccumulation of "2"3"8U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills > liver > brain > tissue, with the highest accumulation in the gills. It was observed that exposure to "2"3"8U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term "2"3"8U exposure studies in fish showed increasing micronucleus frequencies in

  12. Uranium ({sup 238}U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi, E-mail: kanthad.arunachalam@gmail.com

    2017-05-15

    Highlights: • Exposure to {sup 238}U deteriorated the antioxidant defenses like SOD, CAT and LPO. • Flow cytometric analysis revealed the increase in G2/M phase and S phase. • Micronucleus frequencies increased with Increased {sup 238}U exposure and time. • Exposure to waterborne {sup 238}U induces both chemical and radiotoxicity in P. sutchi. • ROS-mediated {sup 238}U toxic mechanism and the antioxidant responses has been proposed. - Abstract: The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of {sup 238}U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC{sub 50} doses of waterborne {sup 238}U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods—0 h, 24 h, 48 h, 72 h, 96 h, 7, days 14 days and 21 days—using ICP-MS to determine the toxic effects of uranium and the accumulation of {sup 238}U concentrations. The bioaccumulation of {sup 238}U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills > liver > brain > tissue, with the highest accumulation in the gills. It was observed that exposure to {sup 238}U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term {sup 238}U exposure studies in fish showed increasing

  13. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    Science.gov (United States)

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments. 2010 Elsevier GmbH. All rights reserved.

  14. Melatonin and schistosomal antigens ameliorate the anti-oxidative and biochemical response to Schistosoma mansoni infection in hamster

    Directory of Open Access Journals (Sweden)

    Omema SALAH

    2009-04-01

    Full Text Available The present study was designed to investigate the potential protective effect of melatonin as an antioxidant separately or in combination with antigens (cercarial; CAP or soluble worm; SWAP against Schistosoma mansoni infection in hamsters. Each hamster was sensitized with an initial immunization of 0.6 ml of the extracted antigen (30 μg protein/mL. After four days, a second injection of 0.4 mL was given (20 μg protein/mL. Then, each hamster was exposed to 260 ± 20 S.mansoni cercariae followed with melatonin treatment (3.5 mg/kg for thirty days from the 1st day of post infection. Levels of lipid peroxidation (LPO products, catalase (CAT activity, hepatic glutathione (GSH and biochemical changes in the liver and kidneys functions were investigated. The results revealed a high significant increasing of LPO and decreasing of CAT and GSH in liver of infected hamsters. Biochemical observations showed severe damage in the liver enzyme activities and increasing cholesterol level in infected animals. Melatonin co-treatment with antigen to the infected-hamster attenuated the increase of LPO and restored the activity of CAT and levels of hepatic GSH. Also, the biochemical damages in the liver and kidneys functions were reduced. The present study suggests that melatonin may be useful in combating free radical-induced damage due to infection toxicity. The immunization with previous antigens resulted in a remarkable improvement on the liver enzyme activities, which were increased after infection. Thus, vaccination of hamsters with antigens (both CAP and SWAP and melatonin treatment has more potent effect on the enhancement of antioxidant and biochemical of S. mansoni infected-hamster than each treatment separately. Immunization of the hamster with SWAP followed by melatonin was the best way among the other regime treatments to improve the biochemical and antioxidant parameters of the infected-hamsters

  15. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Directory of Open Access Journals (Sweden)

    Susana González-Reyes

    2013-01-01

    Full Text Available Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1 expression and by 5.6–14.3-fold glutathione (GSH levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS production, by 94% the reduction of GSH/glutathione disulfide (GSSG ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2-like 2 (Nrf2 translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death.

  16. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Science.gov (United States)

    González-Reyes, Susana; Guzmán-Beltrán, Silvia; Medina-Campos, Omar Noel; Pedraza-Chaverri, José

    2013-01-01

    Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs) of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1) expression and by 5.6–14.3-fold glutathione (GSH) levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS) production, by 94% the reduction of GSH/glutathione disulfide (GSSG) ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death. PMID:24454990

  17. Unraveling the mechanism responsible for the contrasting tolerance of Synechocystis and Synechococcus to Cr(VI): Enzymatic and non-enzymatic antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Alka [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Ballal, Anand, E-mail: aballal@barc.gov.in [Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 40085 (India)

    2015-07-15

    Highlights: • Cr(VI) accumulation generates higher ROS in Synechocystis than in Synechococcus. • Synechococcus exhibits better photosynthetic activity in response to Cr(VI). • Synechococcus has higher enzymatic/non-enzymatic antioxidants than Synechocystis. • Synechococcus shows better tolerance to other oxidative stresses than Synechocystis. • Differential detoxification of ROS is responsible for the contrasting tolerance to Cr(VI) - Abstract: Two unicellular cyanobacteria, Synechocystis and Synechococcus, showed contrasting tolerance to Cr(VI); with Synechococcus being 12-fold more tolerant than Synechocystis to potassium dichromate. The mechanism responsible for this differential sensitivity to Cr(VI) was explored in this study. Total content of photosynthetic pigments as well as photosynthetic activity decreased at lower concentration of Cr(VI) in Synechocystis as compared to Synechococcus. Experiments with {sup 51}Cr showed Cr to accumulate intracellularly in both the cyanobacteria. At lower concentrations, Cr(VI) caused excessive ROS generation in Synechocystis as compared to that observed in Synechococcus. Intrinsic levels of enzymatic antioxidants, i.e., superoxide dismutase, catalase and 2-Cys-peroxiredoxin were considerably higher in Synechococcus than Synechocystis. Content of total thiols (both protein as well as non-protein) and reduced glutathione (GSH) was also higher in Synechococcus as compared to Synechocystis. This correlated well with higher content of carbonylated proteins observed in Synechocystis than Synechococcus. Additionally, in contrast to Synechocystis, Synechococcus exhibited better tolerance to other oxidative stresses like high intensity light and H{sub 2}O{sub 2}. The data indicate that the disparity in the ability to detoxify ROS could be the primary mechanism responsible for the differential tolerance of these cyanobacteria to Cr(VI)

  18. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L.) Peel Using Response Surface Methodology.

    Science.gov (United States)

    Deng, Gui-Fang; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2015-11-17

    Sugar apple (Annona squamosa L.) is a popular tropical fruit and its peel is a municipal waste. An ultrasound-assisted extraction method was developed for the recovery of natural antioxidants from sugar apple peel. Central composite design was used to optimize solvent concentration (13.2%-46.8%), ultrasonic time (33.2-66.8 min), and temperature (43.2-76.8 °C) for the recovery of natural antioxidants from sugar apple peel. The second-order polynomial models demonstrated a good fit of the quadratic models with the experimental results in respect to total phenolic content (TPC, R²=0.9524, pextraction conditions were 20:1 (mL/g) of solvent-to-solid ratio, 32.68% acetone, and 67.23 °C for 42.54 min under ultrasonic irradiation. Under these conditions, the maximal yield of total phenolic content was 26.81 (mg GA/g FW). The experimental results obtained under optimal conditions agreed well with the predicted results. The application of ultrasound markedly decreased extraction time and improved the extraction efficiency, compared with the conventional methods.

  19. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L. Peel Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gui-Fang Deng

    2015-11-01

    Full Text Available Sugar apple (Annona squamosa L. is a popular tropical fruit and its peel is a municipal waste. An ultrasound-assisted extraction method was developed for the recovery of natural antioxidants from sugar apple peel. Central composite design was used to optimize solvent concentration (13.2%–46.8%, ultrasonic time (33.2–66.8 min, and temperature (43.2–76.8 °C for the recovery of natural antioxidants from sugar apple peel. The second-order polynomial models demonstrated a good fit of the quadratic models with the experimental results in respect to total phenolic content (TPC, R2 = 0.9524, p < 0.0001, FRAP (R2 = 0.9743, p < 0.0001, and TEAC (R2 = 0.9610, p < 0.0001 values. The optimal extraction conditions were 20:1 (mL/g of solvent-to-solid ratio, 32.68% acetone, and 67.23 °C for 42.54 min under ultrasonic irradiation. Under these conditions, the maximal yield of total phenolic content was 26.81 (mg GA/g FW. The experimental results obtained under optimal conditions agreed well with the predicted results. The application of ultrasound markedly decreased extraction time and improved the extraction efficiency, compared with the conventional methods.

  20. The in vitro effect of Lambda-cyhalothrin on quality and antioxidant responses of rainbow trout Oncorhynchus mykiss spermatozoa.

    Science.gov (United States)

    Kutluyer, Filiz; Erişir, Mine; Benzer, Fulya; Öğretmen, Fatih; İnanan, Burak Evren

    2015-11-01

    There is little information in the scientific literature about effect of in vitro exposure of fish spermatozoa to pesticides. In vitro effect of Lambda-cyhalothrin (LCT) on sperm quality and oxidative stress has not been fully explored yet. The effects of LCT, which is a synthetic pyrethroid insecticide, on quality and oxidative stress of spermatozoa were investigated in vitro due to extensively use to control a wide range of insect pests in agriculture, public health, and homes and gardens. To explore the potential in vitro toxicity of LCT, fish spermatozoa were incubated with different concentrations of LCT (0.6, 1.2 and 2.4 μg/L) for 2h. Reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA) in spermatozoa were analyzed for determination of oxidant and antioxidant balance. Our results indicated that the percentage and duration of sperm motility significantly decreased with exposure to LCT. Activity of GSH-Px and MDA (P<0.05) and GSH levels (P<0.05) increased in a concentration-dependent manner while CAT activity decreased (P<0.05). In conclusion, the oxidant and antioxidant status and sperm quality were affected by increasing concentrations of LCT. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of Lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var.

    Science.gov (United States)

    Zhang, Chun-Nuan; Zhang, Ji-Liang; Guan, Wen-Chao; Zhang, Xiao-Fei; Guan, Su-Hua; Zeng, Qing-Hui; Cheng, Gao-Feng; Cui, Wei

    2017-09-01

    The aim of the present study was to investigate effects of dietary Lactobacillus delbrueckii (L. delbrueckii) on immune response, disease resistance against Aeromonas hydrophila (A. hydrophila), antioxidant capability and growth performance of Cyprinus carpio Huanghe var. 450 fish (mean weight of 1.05 ± 0.03 g) were randomly distributed into five groups that fed diets containing different levels of L. delbrueckii (0, 1 × 10 5 , 1 × 10 6 , 1 × 10 7 and 1 × 10 8  CFU g -1 ) for 8 weeks. The results showed that intestinal immune parameters such as lysozyme, acid phosphatase, and myeloperoxidase activities, immunoglobulin M content, and the survival rate were improved in fish fed with 1 × 10 6 and 1 × 10 7  CFU g -1 L. delbrueckii. In addition, 1 × 10 7  CFU g -1 L. delbrueckii supplementation down-regulated mRNA levels of TNF-α, IL-8, IL-1β and NF-κBp65, and up-regulated IL-10 and TGF-β mRNA levels in the intestine. The survival rate was significantly (P < 0.05) higher (68.33%) in fish fed 1 × 10 6  CFU g -1 L. delbrueckii than the control diet-fed group (40%) after challenge by A. hydrophila. Fish fed with diet containing 1 × 10 6  CFU g -1 L. delbrueckii showed higher antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and total antioxidant capacity (T-AOC) and lower MDA concentrations than those of the control group (P < 0.05). The relative gene expression (SOD, CAT, GPX) showed the same trend with their activities. In addition, the growth performance was significantly improved in fish fed with the diet containing 1 × 10 6 and 1 × 10 7  CFU g -1 L. delbrueckii (P < 0.05). These results demonstrated that dietary optimal levels of L. delbrueckii enhanced immunity, disease resistance against A. hydrophila antioxidant capability and growth performance in Cyprinus carpio Huanghe var. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of waterborne Cu and Cd on anti-oxidative response, lipid peroxidation and heavy metals accumulation in abalone Haliotis discus hannai ino

    Science.gov (United States)

    Lei, Yanju; Zhang, Wenbing; Xu, Wei; Zhang, Yanjiao; Zhou, Huihui; Mai, Kangsen

    2015-06-01

    The aim of this study was to compare the effects of waterborne copper (Cu) and cadmium (Cd) on survival, anti-oxidative response, lipid peroxidation and metal accumulation in abalone Haliotis discus hannai. Experimental animals (initial weight: 7.49 g ± 0.01 g) were exposed to graded concentrations of waterborne Cu (0.02, 0.04, 0.06, 0.08 mg L-1) or Cd (0.025, 0.05, 0.25, 0.5 mg L-1) for 28 days, respectively. Activities of the anti-oxidative enzymes (catalase, CAT; superoxide dismutase, SOD; glutathione peroxidases, GPx; glutathione S-transferase, GST), contents of the reduced glutathione (GSH) and malondiadehyde (MDA) in the hepatopancreas, and metal accumulation in hepatopancreas and muscles were analyzed after 0, 1, 3, 6, 10, 15, 21, 28 days of metal exposure, respectively. Results showed that 0.04 mg L-1, 0.06 mg L--1 and 0.08 mg L-1 Cu caused 100% death of abalone on the 21st, 10th and 6th day, respectively. However, no dead abalone was found during the 28-day waterborne Cd exposure at all experimental concentrations. Generally, activities of SOD and GST in hepatopancreas under all Cu concentrations followed a decrease trend as the exposure time prolonged. However, these activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Activities of CAT in all Cu exposure treatments were higher than those in the control. These activities were firstly increased and then decreased to the control level and increased again during Cd exposure. Contents of MDA in hepatopancreas in all Cu treatments significantly increased first and then decreased to the control level. However, the MDA contents in hepatopancreas were not significantly changed during the 28-day Cd exposure. The metals accumulation in both hepatopancreas and muscles of abalone significantly increased with the increase of waterborne metals concentration and exposure time. These results indicated that H. discus hannai has a positive anti-oxidative defense

  3. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  4. Differential Responses to Blood Pressure and Oxidative Stress in Streptozotocin-Induced Diabetic Wistar-Kyoto Rats and Spontaneously Hypertensive Rats: Effects of Antioxidant (Honey) Treatment

    Science.gov (United States)

    Erejuwa, Omotayo O.; Sulaiman, Siti A.; Wahab, Mohd Suhaimi Ab; Sirajudeen, Kuttulebbai N. S.; Salleh, Md Salzihan Md; Gurtu, Sunil

    2011-01-01

    Oxidative stress is implicated in the pathogenesis and/or complications of hypertension and/or diabetes mellitus. A combination of these disorders increases the risk of developing cardiovascular events. This study investigated the effects of streptozotocin (60 mg/kg; ip)-induced diabetes on blood pressure, oxidative stress and effects of honey on these parameters in the kidneys of streptozotocin-induced diabetic Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Diabetic WKY and SHR were randomized into four groups and received distilled water (0.5 mL) and honey (1.0 g/kg) orally once daily for three weeks. Control SHR had reduced malondialdehyde (MDA) and increased systolic blood pressure (SBP), catalase (CAT) activity, and total antioxidant status (TAS). SBP, activities of glutathione peroxidase (GPx) and glutathione reductase (GR) were elevated while TAS was reduced in diabetic WKY. In contrast, SBP, TAS, activities of GPx and GR were reduced in diabetic SHR. Antioxidant (honey) treatment further reduced SBP in diabetic SHR but not in diabetic WKY. It also increased TAS, GSH, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, activities of GPx and GR in diabetic SHR. These data suggest that differences in types, severity, and complications of diseases as well as strains may influence responses to blood pressure and oxidative stress. PMID:21673929

  5. The proper time for antioxidant consumption.

    Science.gov (United States)

    Beaulieu, Michaël; Schaefer, H Martin

    2014-04-10

    Consuming food rich in antioxidants may help organisms to increase their antioxidant defences and avoid oxidative damage. Under the hypothesis that organisms actively consume food for its antioxidant properties, they would need to do so in view of other physiological requirements, such as energy requirements. Here, we observed that Gouldian finches (Erythrura gouldiae) consumed most seeds rich in antioxidants in the middle of the day, while their consumption of staple seeds more profitable in energy intake (and poor in antioxidants) was maximal in the morning and the evening. This consumption of seeds rich in antioxidants in the middle of the day may be explicable (1) because birds took advantage of a time window associated with relaxed energy requirements to ingest antioxidant resources, or (2) because birds consumed antioxidant resources as a response to the highest antioxidant requirements in the middle of the day. If the latter hypothesis holds true, having the possibility to ingest antioxidants should be most beneficial in terms of oxidative balance in the middle of the day. Even though feeding on seeds rich in antioxidants improved Gouldian finches' overall antioxidant capacity, we did not detect any diurnal effect of antioxidant intake on plasma oxidative markers (as measured by the d-ROM and the OXY-adsorbent tests). This indicates that the diurnal pattern of antioxidant intake that we observed was most likely constrained by the high consumption of staple food to replenish or build up body reserves in the morning and in the evening, and not primarily determined by elevated antioxidant requirements in the middle of the day. Consequently, animals appear to have the possibility to increase antioxidant defences by selecting food rich in antioxidants, only when energetic constraints are relaxed. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers

    Directory of Open Access Journals (Sweden)

    Jiaolong Li

    2015-12-01

    Full Text Available This study was carried out to investigate the effects of tributyrin (TB on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS. A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a 2×2 factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg and LPS challenge (0 or 500 μg/kg body weight [BW]. On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of 500 μg/kg BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin-1β (in the jejunum and ileum, interleukin-6 (in the duodenum and jejunum, and prostaglandin E2 (in the duodenum of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum and inducible nitric oxide synthase (in the jejunum were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers.

  7. Antioxidants and the Comet assay.

    Science.gov (United States)

    Cemeli, Eduardo; Baumgartner, Adolf; Anderson, Diana

    2009-01-01

    It is widely accepted that antioxidants, either endogenous or from the diet, play a key role in preserving health. They are able to quench radical species generated in situations of oxidative stress, either triggered by pathologies or xenobiotics, and they protect the integrity of DNA from genotoxicants. Nevertheless, there are still many compounds with unclear or unidentified prooxidant/antioxidant activities. This is of concern since there is an increase in the number of compounds synthesized or extracted from vegetables to which humans might be exposed. Despite the well-established protective effects of fruit and vegetables, the antioxidant(s) responsible have not all been clearly identified. There might also be alternative mechanisms contributing to the protective effects for which a comprehensive description is lacking. In the last two decades, the Comet assay has been extensively used for the investigation of the effects of antioxidants and many reports can be found in the literature. The Comet assay, a relatively fast, simple, and sensitive technique for the analysis of DNA damage in all cell types, has been applied for the screening of chemicals, biomonitoring and intervention studies. In the present review, several of the most well-known antioxidants are considered. These include: catalase, superoxide dismutase, glutathione peroxidase, selenium, iron chelators, melatonin, melanin, vitamins (A, B, C and E), carotenes, flavonoids, isoflavones, tea polyphenols, wine polyphenols and synthetic antioxidants. Investigations showing beneficial as well as non-beneficial properties of the antioxidants selected, either at the in vitro, ex vivo or in vivo level are discussed.

  8. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).

    Science.gov (United States)

    Sinha, Amit Kumar; AbdElgawad, Hamada; Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    Salinity fluctuation is one of the main factors affecting the overall fitness of marine fish. In addition, water borne ammonia may occur simultaneously with salinity stress. Additionally, under such stressful circumstances, fish may encounter food deprivation. The physiological and ion-osmo regulatory adaptive capacities to cope with all these stressors alone or in combination are extensively addressed in fish. To date, studies revealing the modulation of antioxidant potential as compensatory response to multiple stressors are rather lacking. Therefore, the present work evaluated the individual and combined effects of salinity challenge, ammonia toxicity and nutritional status on oxidative stress and antioxidant status in a marine teleost, European sea bass (Dicentrarchus labrax). Fish were acclimated to normal seawater (32 ppt), to brackish water (20 ppt and 10 ppt) and to hypo-saline water (2.5 ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20 mg/L representing 50% of 96h LC50 value for ammonia) for 12 h, 48 h, 84 h and 180 h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Results show that in response to decreasing salinities, oxidative stress indices such as xanthine oxidase activity, levels of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde, MDA) increased in the hepatic tissue of fasted fish but remained unaffected in fed fish. HEA exposure at normal salinity (32 ppt) and at reduced salinities (20 ppt and 10 ppt) increased ammonia accumulation significantly (84 h-180 h) in both feeding regimes which was associated with an increment of H2O2 and MDA contents. Unlike in fasted fish, H2O2 and MDA levels in fed fish were restored to control levels (84 h-180 h); with a concomitant increase in superoxide dismutase (SOD), catalase (CAT), components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and

  9. Process Optimization of Ultrasonic-Assisted Extraction of Arabinogalactan from Dihydroquercetin Extracted Residues by Response Surface Methodology and Evaluation of Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Zaizhi Liu

    2013-01-01

    Full Text Available Ultrasound was used for the extraction of larch arabinogalactan from Larix gmelinii. The optimal conditions for ultrasound extraction were determined by response surface methodology. Specifically, the Box-Behnken design was employed to evaluate the effects of three independent variables: ultrasound time, temperature, and liquid-solid ratio. The highest arabinogalactan yield (11.18% was obtained under the optimal extraction condition (extraction temperature 41.5°C, extraction time 24.3 min, and liquid-solid ratio 40 mL/g. In addition, the antioxidant activity of arabinogalactan that was extracted from dihydroquercetin extraction residues exhibited a moderate and concentration-dependent hydroxyl radical-scavenging capacity, ferric-reducing power, and reducing power. The wood material was characterized before and after processing by scanning electron microscopy and Fourier-transform infrared spectroscopy.

  10. High level of dietary soybean oil depresses the growth and anti-oxidative capacity and induces inflammatory response in large yellow croaker Larimichthys crocea.

    Science.gov (United States)

    Mu, Hua; Shen, Haohao; Liu, Jiahuan; Xie, Fangli; Zhang, Wenbing; Mai, Kangsen

    2018-06-01

    Increasing demand, uncertain availability and high price of fish oil with the expansion of aquaculture made it essential to search alternative lipid sources. Vegetable oil has been proved to be the best candidate for the replacement of fish oil in aquafeeds. However, this replacement especially in high level potentially has some negative effects on fish. The present study was conducted to investigate the growth performance, anti-oxidative and inflammatory responses of large yellow croaker to replacement of dietary fish oil by soybean oil. Three isonitrogenous (46% crude protein) and isolipidic (13% crude lipids) diets were formulated to feed fish (initial body weight: 36.80 ± 0.39 g) for 12 weeks. The control diet was designed to contain 6.5% of fish oil, and named as FO. On the basis of the control diet, the fish oil was 50% and 100% replaced by soybean oil, and these two diets were named as FS and SO, respectively. Results showed that the specific growth rate significantly decreased in the SO group. Crude lipid contents in muscle and liver of fish fed SO diet were significantly higher than those in the FO group. The ratio of n-3 poly-unsaturated fatty acids (PUFAs) to identified fatty acids in liver decreased significantly, while n-6 PUFAs increased significantly with increasing dietary soybean oil inclusion. The levels of triacylglycerol, non-esterified fatty acid and tumour necrosis factor α, and the activity of aspartate aminotransferase in serum significantly increased in SO group. The total anti-oxidative capacity and expressions of the anti-oxidation-related genes (superoxide dismutase 1 and 2, catalase, glutathion peroxidase and nuclear factor erythroid 2-related factor 2) were significantly decreased by dietary soybean inclusion. Dietary soybean oil significantly decreased the gene expressions of the anti-inflammatory cytokines (arginase I and interleukin 10), and increased the pro-inflammatory cytokines (tumour necrosis factor α and interleukin

  11. Oxidative stress in deep scattering layers: Heat shock response and antioxidant enzymes activities of myctophid fishes thriving in oxygen minimum zones

    Science.gov (United States)

    Lopes, Ana Rita; Trübenbach, Katja; Teixeira, Tatiana; Lopes, Vanessa M.; Pires, Vanessa; Baptista, Miguel; Repolho, Tiago; Calado, Ricardo; Diniz, Mário; Rosa, Rui

    2013-12-01

    Diel vertical migrators, such as myctophid fishes, are known to encounter oxygen minimum zones (OMZ) during daytime in the Eastern Pacific Ocean and, therefore, have to cope with temperature and oxidative stress that arise while ascending to warmer, normoxic surface waters at night-time. The aim of this study was to investigate the antioxidant defense strategies and heat shock response (HSR) in two myctophid species, namely Triphoturus mexicanus and Benthosema panamense, at shallow and warm surface waters (21 kPa, 20-25 °C) and at hypoxic, cold (≤1 kPa, 10 °C) mesopelagic depths. More specifically, we quantified (i) heat shock protein concentrations (HSP70/HSC70) (ii) antioxidant enzyme activities [including superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)], and (iii) lipid peroxidation [malondialdehyde (MDA) levels]. HSP70/HSC70 levels increased in both myctophid species at warmer, well-oxygenated surface waters probably to prevent cellular damage (oxidative stress) due to increased oxygen demand under elevated temperatures and reactive oxygen species (ROS) formation. On the other hand, CAT and GST activities were augmented under hypoxic conditions, probably as preparatory response to a burst of oxyradicals during the reoxygenation phase (while ascending). SOD activity decreased under hypoxia in B. panamense, but was kept unchanged in T. mexicanus. MDA levels in B. panamense did not change between the surface and deep-sea conditions, whereas T. mexicanus showed elevated MDA and HSP70/HSC70 concentrations at warmer surface waters. This indicated that T. mexicanus seems to be not so well tuned to temperature and oxidative stress associated to diel vertical migrations. The understanding of such physiological strategies that are linked to oxygen deprivation and reoxygenation phases may provide valuable information about how different species might respond to the impacts of environmental stressors (e.g. expanding mesopelagic hypoxia

  12. Activity and Transcriptional Responses of Hepatopancreatic Biotransformation and Antioxidant Enzymes in the Oriental River Prawn Macrobrachium nipponense Exposed to Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Julin Yuan

    2015-10-01

    Full Text Available Microcystins (MCs are a major group of cyanotoxins with side effects in many organisms; thus, compounds in this group are recognized as potent stressors and health hazards in aquatic ecosystems. In order to assess the toxicity of MCs and detoxification mechanism of freshwater shrimp Macrobrachium nipponense, the full-length cDNAs of the glutathione S-transferase (gst and catalase (cat genes were isolated from the hepatopancreas. The transcription level and activity changes in the biotransformation enzyme (glutathione S-transferase (GST and antioxidant enzymes (superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx in the hepatopancreas of M. nipponense exposed to MC-LR (0.2, 1, 5, and 25 μg/L for 12, 24, 72 and 96 h were analyzed. The results showed that the isolated full-length cDNAs of cat and gst genes from M. nipponense displayed a high similarity to other crustaceans, and their mRNAs were mainly expressed in the hepatopancreas. MC-LR caused significant increase of GST activity following 48–96 h (p < 0.05 and an increase in SOD activity especially in 24- and 48-h exposures. CAT activity was activated when exposed to MC-LR in 12-, 24- and 48-h exposures and then it was inhibited at 96-h exposure. There was no significant effect on GPx activity after the 12- and 24-h exposures, whereas it was significantly stimulated after the 72- and 96-h exposures (p < 0.05. The transcription was altered similarly to enzyme activity, but the transcriptional response was generally more immediate and had greater amplitude than enzymatic response, particularly for GST. All of the results suggested that MC-LR can induce antioxidative modulation variations in M. nipponense hepatopancreas in order to eliminate oxidative damage.

  13. Data on metabolic-dependent antioxidant response in the cardiovascular tissues of living zebrafish under stress conditions

    Directory of Open Access Journals (Sweden)

    Emiliano Panieri

    2017-06-01

    Full Text Available In this article we used transgenic zebrafish lines that express compartment-specific isoforms of the roGFP2-Orp1 and Grx1-roGFP2 biosensors, described in Panieri et al (2017 [1], to test the contribute of the pentose phosphate pathway and of the glutathione biosynthesis in the antioxidant capacity of myocardial and endothelial cells in vivo. The transgenic zebrafish embryos were subdued to metabolic inhibition and subsequently challenged with H2O2 or the redox-cycling agent menadione to respectively mimic acute or chronic oxidative stress. Confocal time-lapse recordings were performed to follow the compartmentalized H2O2 and EGSH changes in the cardiovascular tissues of zebrafish embryos at 48 h post fertilization. After sequential excitation at 405 nm and 488 nm the emission was collected between 500–520 nm every 2 min for an overall duration of 60 min. The 405/488 nm ratio was normalized to the initial value obtained before oxidants addition and plotted over time. The analysis and the interpretation of the data can be found in the associated article [1].

  14. Response of growth and antioxidant enzymes in Azolla plants (Azolla pinnata and Azolla filiculoides) exposed to UV-B.

    Science.gov (United States)

    Masood, Amjad; Zeeshan, M; Abraham, G

    2008-06-01

    Effect of ultravilolet-B (0.4 Wm(-2)) irradiation on growth, flavonoid content, lipid peroxidation, proline accumulation and activities of superoxide dismutase and peroxidase was comparatively analysed in Azolla pinnata and Azolla filiculoides. Growth measured as increment in dry weight reduced considerably due to all UV-B treatments. However, the reduction was found to be severe in A. filiculoides as compared to A. pinnata. The level of UV-absorbing compound flavonoids increased significantly in A. pinnata plants whereas only a slight increase in the flavonoid content was observed in A. filiculoides. UV-B exposure led to enhanced production of malondialdehyde (MDA) and electrolyte leakage in A. filiculoides than A. pinnata. Proline accumulation also showed a similar trend. Marked differences in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD) was noticed in both the plants exposed to UV-B. Our comparative studies indicate A. pinnata to be better tolerant to UV-B as compared with A. filiculoides which appears to be sensitive.

  15. Influence of environmentally relevant concentrations of vinclozolin on quality, DNA integrity, and antioxidant responses of sterlet Acipenser ruthenus spermatozoa.

    Science.gov (United States)

    Gazo, Ievgeniia; Linhartova, Pavla; Shaliutina, Anna; Hulak, Martin

    2013-04-25

    The effects of vinclozolin (VIN), an anti-androgenic fungicide, on quality, oxidative stress, DNA integrity, and ATP level of sterlet (Acipenser ruthenus) spermatozoa were investigated in vitro. Fish spermatozoa were incubated with different concentrations of vinclozolin (0.5, 2, 10, 15, 20 and 50 μg/l) for 2 h. A dose-dependent reduction in spermatozoa motility and velocity was observed at concentrations of 2-50 μg/l. A dramatic increase in DNA fragmentation was recorded at concentrations 10 μg/l and above. After 2 h exposure at higher test concentrations (10-50 μg/l), oxidative stress was apparent, as reflected by significantly higher levels of protein and lipid oxidation and significantly greater superoxide dismutase activity. Intracellular ATP content of spermatozoa decreased with increasing concentrations of VIN. The results demonstrated that VIN can induce reactive oxygen species stress in fish spermatozoa, which could impair the sperm quality, DNA integrity, ATP content, and the antioxidant defense system. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. The Potential Coordination of the Heat-Shock Proteins and Antioxidant Enzyme Genes of Aphidius gifuensis in Response to Thermal Stress

    Science.gov (United States)

    Kang, Zhi-Wei; Liu, Fang-Hua; Liu, Xiang; Yu, Wen-Bo; Tan, Xiao-Ling; Zhang, Shi-Ze; Tian, Hong-Gang; Liu, Tong-Xian

    2017-01-01

    Aphidius gifuensis is one of the most important aphid natural enemies and has been successfully used to control Myzys persicae and other aphid species. High temperature in summer is one of the key barriers for the application of A. gifuensis in the field and greenhouse. In this work, we investigated the biological performance of A. gifuensis and the response of heat-shock proteins and antioxidant enzymes under high temperature. The results showed that A. gifuensis could not survive at 40°C and female exhibited a higher survival in 35°C. Furthermore, the short term exposure to high temperature negatively affected the performance of A. gifuensis especially parasitism efficiency. Under short-term heating, the expression of AgifsHSP, Agifl(2)efl, AgifHSP70, AgifHSP70-4 and AgifHSP90 showed an increased trend, whereas AgifHSP10 initially increased and then decreased. In 35°C, the expressions of Agifl(2)efl, AgifHSP70-4 and AgifHSP90 in female were higher than those in male, whereas the expression of AgifHSP70 exhibited an opposite trend. Besides the HSPs, we also quantified the expression levels of 11 antioxidant enzyme genes: AgifPOD, AgifSOD1, AgifSOD2, AgifSOD3, AgifCAT1, AgifCAT2, AgifGST1, AgifGST2, AgifGST3, AgifGST4 and AgifGST5. We found that the sex-specific expression of AgifSOD2, AgifSOD3, AgifPOD, AgifGST1 and AgifGST3 were highly consistent with sex-specific heat shock survival rates at 35°C. Furthermore, when the temperature was above 30°C, the activities of GST, SOD, CAT and POD were significantly increased; however, there was no significant difference of the CAT activity between the male and female at 35°C. Collectively, all of these results suggested that the protection of thermal damage is coordinated by HSPs and antioxidant enzymes in A. gifuensis. Based on the heat tolerance abilities of many aphid natural enemies, we also discussed an integrated application strategy of many aphid enemies in summer. PMID:29234290

  17. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L.

    Science.gov (United States)

    Bashi, Davoud Salar; Dowom, Samaneh Attaran; Bazzaz, Bibi Sedigheh Fazly; Khanzadeh, Farhad; Soheili, Vahid; Mohammadpour, Ali

    2016-05-01

    To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L. extracts. Maceration and ultrasound-assisted extraction (UAE) (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1) methanol purity) were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay), MFCs (colony diameter), total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity) was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m.) UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1)) than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1)). Moreover, it (MGI: 2.32-100 %) revealed more anti-mold activity than maceration (MGI: <28.77 %). Explosive disruption of the cell walls, therefore, enhanced extraction yield by acoustic cavitation, was elucidated using SEM. Caffeic acid, tannic acid, quercetin, trans ferulic acid and rosmarinic acid were determined as the phenolic compounds in the optimized extract. RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds.

  18. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L.

    Directory of Open Access Journals (Sweden)

    Davoud Salarbashi

    2016-05-01

    Full Text Available Objective(s:To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L.  extracts. Materials and Methods: Maceration and ultrasound-assisted extraction (UAE (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1 methanol purity were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay, MFCs (colony diameter, total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. Results: A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m. UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1 than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1. Moreover, it (MGI: 2.32-100 % revealed more anti-mold activity than maceration (MGI: Conclusion: RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds.

  19. Effects of temperature-humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows.

    Science.gov (United States)

    Zhang, F J; Weng, X G; Wang, J F; Zhou, D; Zhang, W; Zhai, C C; Hou, Y X; Zhu, Y H

    2014-07-01

    Heat stress adversely affects the productivity and immune status of dairy cows. The temperature-humidity index (THI) is commonly used to indicate the degree of heat stress on dairy cattle. We investigated the effects of different THI and Cr supplementation on the antioxidant capacity, the levels of heat shock protein 72 (Hsp72), and cytokine responses of lactating cows. The study used a total of 24 clinically healthy uniparous midlactation Holstein cows, which were randomly divided into 2 groups (n = 12 per group), and was conducted in 3 designated THI periods: low THI period (LTHI; THI = 56.4 ± 2.5), moderate THI period (MTHI; THI = 73.9 ± 1.7), and high THI period (HTHI; THI = 80.3 ± 1.0). The 2 groups of cows were fed corn and corn silage based basal diet supplemented chromium picolinate to provide 3.5 mg of Cr/cow daily (Cr+) or basal diet with no Cr (Cr-). The experiment was a 3 × 2 factorial design. The numbers of leukocytes (P Cows supplemented with Cr had lower (P = 0.009) serum concentrations of cholesterol but greater (P cows supplemented with Cr had greater (P = 0.038) expression of the inhibitor of nuclear factor kappa B α (IκBα) in peripheral blood mononuclear cells (PBMC) compared with those without Cr supplementation in the HTHI, whereas the expression of Hsp72 in PBMC was unaltered. Data indicate that there is a decrease in glucose and increases in BUN and creatinine in the serum of midlactation cows under hot conditions during the summer and that these cows have a lowered oxidative capacity but an elevated antioxidant capacity. In addition, Cr may play an anti-inflammatory role in lactating cows by promoting the release of Hsp72, increasing the production of IL-10, and inhibiting the degradation of IκBα under hot conditions during the summer.

  20. Effects of dietary on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature

    Directory of Open Access Journals (Sweden)

    Sara Mirzaie

    2018-04-01

    Full Text Available Objective Spirulina has been recognized formerly as a filamentous spiral-shaped blue-green algae but more recently as a genus of photosynthetic bacteria (Arthrospira. This microorganism is considered as a rich source of essential nutrients for human and animals. The present study was conducted to determine potential application of Spirulina for heat-exposed broilers. Methods Two hundred and fifty Cobb 500 chicks with male to female in equal ratio with average initial weight of 615.6 g at 17 days of age were divided into 5 treatments with 5 replicates of 10 chicks. Treatment groups were as follows: positive and negative controls with 0% Spirulina supplement and three Spirulina receiving groups with 5 g/kg (0.5%, 10 g/kg (1%, and 20 g/kg (2% supplementation. Spirulina receiving groups as well as positive control were exposed to high ambient temperature at 36°C for 6 h/d from 38 to 44 days of age. Biochemical variables were measured in serum samples at 35, 38, 42, and 45 days of broiler chickens age. Results The results showed that supplementation of the diet with Spirulina decreased concentration of stress hormone and some serum lipid parameters while enhanced humoral immunity response and elevated antioxidant status whereas it didn’t meaningfully affect performance characteristics. Nevertheless, feed conversion ratio was improved numerically but not statistically in broilers fed with 1% Spirulina under high ambient temperature. Conclusion Overall, the present study suggests that alleviation of adverse impacts due to high ambient temperature at biochemical level including impaired enzymatic antioxidant system, elevated stress hormone and lipid profile can be approached in broiler chickens through supplementation of the diet with Spirulina platensis.

  1. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    Science.gov (United States)

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania

    2016-11-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A Polymorphic Antioxidant Response Element Links NRF2/sMAF Binding to Enhanced MAPT Expression and Reduced Risk of Parkinsonian Disorders

    Directory of Open Access Journals (Sweden)

    Xuting Wang

    2016-04-01

    Full Text Available The NRF2/sMAF protein complex regulates the oxidative stress response by occupying cis-acting enhancers containing an antioxidant response element (ARE. Integrating genome-wide maps of NRF2/sMAF occupancy with disease-susceptibility loci, we discovered eight polymorphic AREs linked to 14 highly ranked disease-risk SNPs in individuals of European ancestry. Among these SNPs was rs242561, located within a regulatory region of the MAPT gene (encoding microtubule-associated protein Tau. It was consistently occupied by NRF2/sMAF in multiple experiments and its strong-binding allele associated with higher mRNA levels in cell lines and human brain tissue. Induction of MAPT transcription by NRF2 was confirmed using a human neuroblastoma cell line and a Nrf2-deficient mouse model. Most importantly, rs242561 displayed complete linkage disequilibrium with a highly protective allele identified in multiple GWASs of progressive supranuclear palsy, Parkinson’s disease, and corticobasal degeneration. These observations suggest a potential role for NRF2/sMAF in tauopathies and a possible role for NRF2 pathway activators in disease prevention.

  3. Application of an online post-column derivatization HPLC-DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts.

    Science.gov (United States)

    Ou, Zong-Quan; Schmierer, David M; Rades, Thomas; Larsen, Lesley; McDowell, Arlene

    2013-02-01

    To use an online assay to identify key antioxidants in Sonchus oleraceus leaf extracts and to investigate the effect of leaf position and extraction conditions on antioxidant concentration and activity. Separation of phytochemicals and simultaneous assessment of antioxidant activity were performed online using HPLC and post-column reaction with a free-radical reagent (2, 2-diphenylpicrylhydrazyl, DPPH). Active compounds were identified using nuclear magnetic resonance spectroscopy and mass spectrometry. We applied the online HPLC-DPPH radical assay to evaluate antioxidants in leaves from different positions on the plant and to assess the effect of pre-treatment of leaves with liquid N(2) before grinding, extraction time, extraction temperature and method of concentrating extracts. Key antioxidants identified in S. oleraceus leaf extracts were caftaric acid, chlorogenic acid and chicoric acid. Middle leaves contained the highest total amount of the three key antioxidant compounds, consisting mainly of chicoric acid. Pre-treatment with liquid N(2), increasing the extraction temperature and time and freeze-drying the extract did not enhance the yield of the key antioxidants. The online HPLC-DPPH radical assay was validated as a useful screening tool for investigating individual antioxidants in leaf extracts. Optimized extraction conditions were middle leaves pre-treated with liquid N(2), extraction at 25°C for 0.5 h and solvent removal by rotary evaporation. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.

  4. Characterization of a 1-cysteine peroxiredoxin from big-belly seahorse (Hippocampus abdominalis); insights into host antioxidant defense, molecular profiling and its expressional response to septic conditions.

    Science.gov (United States)

    Godahewa, G I; Perera, N C N; Elvitigala, Don Anushka Sandaruwan; Jayasooriya, R G P T; Kim, Gi-Young; Lee, Jehee

    2016-10-01

    1-cysteine peroxiredoxin (Prx6) is an antioxidant enzyme that protects cells by detoxifying multiple peroxide species. This study aimed to describe molecular features, functional assessments and potential immune responses of Prx6 identified from the big-belly seahorse, Hippocampus abdominalis (HaPrx6). The complete ORF (666 bp) of HaPrx6 encodes a polypeptide (24 kDa) of 222 amino acids, and harbors a prominent peroxiredoxin super-family domain, a peroxidatic catalytic center, and a peroxidatic cysteine. The deduced amino acid sequence of HaPrx6 shares a relatively high amino acid sequence similarity and close evolutionary relationship with Oplegnathus fasciatus Prx6. The purified recombinant HaPrx6 protein (rHaPrx6) was shown to protect plasmid DNA in the Metal Catalyzed Oxidation (MCO) assay and, together with 1,4-Dithiothreitol (DTT), protected human leukemia THP-1 cells from extracellular H2O2-mediated cell death. In addition, quantitative real-time PCR revealed that HaPrx6 mRNA was constitutively expressed in 14 different tissues, with the highest expression observed in liver tissue. Inductive transcriptional responses were observed in liver and kidney tissues of fish after treating them with bacterial stimuli, including LPS, Edwardsiella tarda, and Streptococcus iniae. These results suggest that HaPrx6 may play an important role in the immune response of the big-belly seahorse against microbial infection. Collectively, these findings provide structural and functional insights into HaPrx6. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Extraction of Antioxidants from Borage (Borago officinalis L. Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    Francisco Segovia

    2014-05-01

    Full Text Available Borage (Borago officinalis L. is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC, antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50–90 °C, 0%–30%–60% ethanol (v/v, and 10–15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior.

  6. Sex as a response to oxidative stress: the effect of antioxidants on sexual induction in a facultatively sexual lineage.

    OpenAIRE

    Nedelcu, Aurora M; Michod, Richard E

    2003-01-01

    The evolution of sex is one of the long-standing unsolved problems in biology. Although in many lineages sex is an obligatory part of the life cycle and is associated with reproduction, in prokaryotes and many lower eukaryotes, sex is facultative, occurs in response to stress and often involves the formation of a stress-resistant dormant form. The proximate and ultimate causes of the connection between stress and sex in facultatively sexual lineages are unclear. Because most forms of stress r...

  7. Antioxidant responses and photosynthetic behaviors of Kappaphycus alvarezii and Kappaphycus striatum (Rhodophyta, Solieriaceae) during low temperature stress

    OpenAIRE

    Li, Hu; Liu, Jianguo; Zhang, Litao; Pang, Tong

    2016-01-01

    Background Kappaphycus are farmed in tropical countries as raw material for carrageenan, which is widely used in food industry. The sea area available for farming is one limiting factor in the production of seaweeds. Though cultivation is spreading into subtropical regions, the lower seawater temperature is an important problem encountered in subtropical regions for the farming of Kappaphycus. This research of physiological response to low temperature stress will be helpful for screening Kapp...

  8. Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion.

    Science.gov (United States)

    Xu, Enbo; Pan, Xiaowei; Wu, Zhengzong; Long, Jie; Li, Jingpeng; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2016-12-01

    For the purpose of investigating the effect of enzyme concentration (EC), barrel temperature (BT), moisture content (MC), and screw speed (SS) on processing parameters (product temperature, die pressure and special mechanical energy (SME)) and product responses (extent of gelatinization (GE), retention rate of total phenolic content (TPC-RR)), rice flour extruded with thermostable α-amylase was analyzed by response surface methodology. Stepwise regression models were computed to generate response surface and contour plots, revealing that both TPC-RR and GE increased as increasing MC while expressed different sensitivities to BT during enzymatic extrusion. Phenolics preservation was benefited from low SME. According to multiple-factor optimization, the conditions required to obtain the target SME (10kJ/kg), GE (100%) and TPC-RR (85%) were: EC=1.37‰, BT=93.01°C, MC=44.30%, and SS=171.66rpm, with the actual values (9.49kJ/kg, 99.96% and 87.10%, respectively) showing a good fit to the predicted values. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    Science.gov (United States)

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Phenolic-rich extracts of Eurycoma longifolia and Cylicodiscus gabunensis inhibit enzymes responsible for the development of erectile dysfunction and are antioxidants.

    Science.gov (United States)

    Oboh, Ganiyu; Adebayo, Adeniyi A; Ademosun, Ayokunle O

    2018-05-19

    Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.

  11. β-Radiation Stress Responses on Growth and Antioxidative Defense System in Plants: A Study with Strontium-90 in Lemna minor

    Directory of Open Access Journals (Sweden)

    Arne Van Hoeck

    2015-07-01

    Full Text Available In the following study, dose dependent effects on growth and oxidative stress induced by β-radiation were examined to gain better insights in the mode of action of β-radiation induced stress in plant species. Radiostrontium (90Sr was used to test for β-radiation induced responses in the freshwater macrophyte Lemna minor. The accumulation pattern of 90Sr was examined for L. minor root and fronds separately over a seven-day time period and was subsequently used in a dynamic dosimetric model to calculate β-radiation dose rates. Exposing L. minor plants for seven days to a 90Sr activity concentration of 25 up to 25,000 kBq·L−1 resulted in a dose rate between 0.084 ± 0.004 and 97 ± 8 mGy·h−1. After seven days of exposure, root fresh weight showed a dose dependent decrease starting from a dose rate of 9.4 ± 0.5 mGy·h−1. Based on these data, an EDR10 value of 1.5 ± 0.4 mGy·h−1 was estimated for root fresh weight and 52 ± 17 mGy·h−1 for frond fresh weight. Different antioxidative enzymes and metabolites were further examined to analyze if β-radiation induces oxidative stress in L. minor.

  12. β-Radiation Stress Responses on Growth and Antioxidative Defense System in Plants: A Study with Strontium-90 in Lemna minor.

    Science.gov (United States)

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-07-07

    In the following study, dose dependent effects on growth and oxidative stress induced by β-radiation were examined to gain better insights in the mode of action of β-radiation induced stress in plant species. Radiostrontium (⁹⁰Sr) was used to test for β-radiation induced responses in the freshwater macrophyte Lemna minor. The accumulation pattern of 90Sr was examined for L. minor root and fronds separately over a seven-day time period and was subsequently used in a dynamic dosimetric model to calculate β-radiation dose rates. Exposing L. minor plants for seven days to a ⁹⁰Sr activity concentration of 25 up to 25,000 kBq·L⁻¹ resulted in a dose rate between 0.084 ± 0.004 and 97 ± 8 mGy·h⁻¹. After seven days of exposure, root fresh weight showed a dose dependent decrease starting from a dose rate of 9.4 ± 0.5 mGy·h⁻¹. Based on these data, an EDR10 value of 1.5 ± 0.4 mGy·h⁻¹ was estimated for root fresh weight and 52 ± 17 mGy·h⁻¹ for frond fresh weight. Different antioxidative enzymes and metabolites were further examined to analyze if β-radiation induces oxidative stress in L. minor.

  13. Multi-Response Extraction Optimization Based on Anti-Oxidative Activity and Quality Evaluation by Main Indicator Ingredients Coupled with Chemometric Analysis on Thymus quinquecostatus Celak.

    Science.gov (United States)

    Chang, Yan-Li; Shen, Meng; Ren, Xue-Yang; He, Ting; Wang, Le; Fan, Shu-Sheng; Wang, Xiu-Huan; Li, Xiao; Wang, Xiao-Ping; Chen, Xiao-Yi; Sui, Hong; She, Gai-Mei

    2018-04-19

    Thymus quinquecostatus Celak is a species of thyme in China and it used as condiment and herbal medicine for a long time. To set up the quality evaluation of T. quinquecostatus , the response surface methodology (RSM) based on its 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was introduced to optimize the extraction condition, and the main indicator components were found through an UPLC-LTQ-Orbitrap MS n method. The ethanol concentration, solid-liquid ratio, and extraction time on optimum conditions were 42.32%, 1:17.51, and 1.8 h, respectively. 35 components having 12 phenolic acids and 23 flavonoids were unambiguously or tentatively identified both positive and negative modes to employ for the comprehensive analysis in the optimum anti-oxidative part. A simple, reliable, and sensitive HPLC method was performed for the multi-component quantitative analysis of T. quinquecostatus using six characteristic and principal phenolic acids and flavonoids as reference compounds. Furthermore, the chemometrics methods (principal components analysis (PCA) and hierarchical clustering analysis (HCA)) appraised the growing areas and harvest time of this herb closely relative to the quality-controlled. This study provided full-scale qualitative and quantitative information for the quality evaluation of T. quinquecostatus , which would be a valuable reference for further study and development of this herb and related laid the foundation of further study on its pharmacological efficacy.

  14. Effects of various feeding patterns of Bacillus coagulans on growth performance, antioxidant response and Nrf2-Keap1 signaling pathway in juvenile gibel carp (Carassius auratus gibelio).

    Science.gov (United States)

    Yu, Yebing; Wang, Changhai; Wang, Aimin; Yang, Wenping; Lv, Fu; Liu, Fei; Liu, Bo; Sun, Cunxin

    2018-02-01

    The present study was conducted to evaluate the effects of various Bacillus coagulans feeding patterns on growth, antioxidant parameter and Nrf2 pathway in juvenile gibel carp. The similar size of gibel carp (initial weight: 14.33 ± 0.15 g) were subjected to three levels of B. coagulans supplementation (0, 500, and 1000 mg/kg) and two feeding modes (supplementing B. coagulans continuously or for two days of B. coagulans after 5 days of a basal diet) according to a 3 × 2 factorial design. The fish that were continuously fed 500 mg/kg B. coagulans (P2) and those fed the first basal diet for 5 days followed by 500 mg/kg or 1000 mg/kg B.coagulans for 2 days (P4 or P5) showed higher weight gain rate and specific growth rate than the other groups. Blood respiratory burst (RB), myeloperoxidase (MPO), and anti-superoxide anion free radical (AFASER) activities in the P4 group were higher than those of the control. White blood cell count (WBC), RB activity, MPO activity, and glutathione (GSH) content in the P5 group were also higher than those of the control. A similar higher trend was observed in the gene expressions of NADPH oxidase 2 (NOX2), NFE2-related factor (Nrf2), Kelch-like-ECH-associated protein(Keap1) in the P4 and NOX2, NRF2, CNC homolog 1 (Bach1), peroxiredoxin 2 (Prx2) in the P5 group compared with the control. Additionally, we observed a significantly lower level of plasma aspartate aminotransferase (AST), lower activity of alanine aminotransferase (ALT), a higher level of MPO, higher GPX activity, and increased NRF2 and Prx2 expression were all observed in the P2 treatment group compared with the control. Furthermore, the malondialdehyde (MDA) content in the P2, P3, and P4 groups was lower than that of the control. These results indicate that a diet supplemented with appropriate levels of B.coagulans could improve the growth, immune response, and antioxidant capability of gibel carp. We concluded that the pattern of two days of 500 or 1000 mg/kg B

  15. Metallothionein induction, antioxidative responses, glycogen and growth changes in Tubifex tubifex (Oligochaete) exposed to the fungicide, fenhexamid

    International Nuclear Information System (INIS)

    Mosleh, Yahia Y.; Paris-Palacios, Severine; Couderchet, Michel; Biagianti-Risbourg, Sylvie; Vernet, Guy

    2005-01-01

    Laboratory studies were conducted to determine the effects of different concentrations of fenhexamid (0.1, 1, and 10 mg L -1 ) on growth, oxidative stress, protein, glycogen, and metallothionein (MT) contents in Tubifex tubifex after an exposure of 2, 4, and 7 days. In addition, residues of the fungicide were followed in water and in the worms. In water, fenhexamid concentration decreased slowly (maximum - 2±0.03% after 2 days for 1 mg L -1 ). In the worms, it increased after 4 days and decreased thereafter, confirming that the worms were exposed to the fungicide and not to a degradation product. LC 50 values were between 95.22±5.36 and 32.11±1.8 mg L -1 depending on exposure time. Exposure to fenhexamid had a negative effect on T. tubifex growth (maximum effect -12.2±0.8% after 7 days with 10 mg L -1 ) demonstrating the toxic effect of the pesticide. This growth rate decrease was accompanied by a reduction in protein and glycogen contents. The activity of catalase (CAT), and glutathione reductase (GR) increased in response to the fungicide demonstrating an oxidative stress in the worms. In contrast glutathion-S-transferase activity (GST) decreased. Exposure to fenhexamid also induced synthesis of MT (maximum +78±8% after 2 days for 10 mg L -1 ). The specificity of MT concentration increase in response to metals is discussed. - Exposure to the fungicide fenhexamid increased metallothionein levels in Tubifex tubifex

  16. Differential response of radish plants to supplemental ultraviolet-B radiation under varying NPK levels: chlorophyll fluorescence, gas exchange and antioxidants.

    Science.gov (United States)

    Singh, Suruchi; Kumari, Rima; Agrawal, Madhoolika; Agrawal, Shashi Bhushan

    2012-07-01

    Current and projected increases in ultraviolet-B (UV-B; 280-315 nm) radiation may alter crop growth and yield by modifying the physiological and biochemical functions. This study was conducted to assess the possibility of alleviating the negative effects of supplemental UV-B (sUV-B; 7.2 kJ m⁻² day⁻¹; 280-315 nm) on radish (Raphanus sativus var Pusa Himani) by modifying soil nitrogen (N), phosphorus (P) and potassium (K) levels. The N, P and K treatments were recommended dose of N, P and K, 1.5 times recommended dose of N, P and K, 1.5 times recommended dose of N and 1.5 times recommended dose of K. Plants showed variations in their response to UV-B radiation under varying soil NPK levels. The minimum damaging effects of sUV-B on photosynthesis rate and stomatal conductance coupled with minimum reduction in chlorophyll content were recorded for plants grown at recommended dose of NPK. Flavonoids increased under sUV-B except in plants grown at 1.5 times recommended dose of N. Lipid peroxidation (LPO) also increased in response to sUV-B at all NPK levels with maximum at 1.5 times recommended dose of K and minimum at recommended dose of NPK. This study revealed that sUV-B radiation negatively affected the radish plants by reducing the photosynthetic efficiency and increasing LPO. The plants grown at 1.5 times recommended dose of NPK/N/K could not enhance antioxidative potential to the extent as recorded at recommended dose of NPK and hence showed more sensitivity to sUV-B. Copyright © Physiologia Plantarum 2012.

  17. Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells

    Directory of Open Access Journals (Sweden)

    Gustavo. R. Velderrain-Rodríguez

    2018-03-01

    Full Text Available Mango “Ataulfo” peel is a rich source of polyphenols (PP, with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP’s antioxidant activity. The content (HPLC-DAD, antioxidant (DPPH, FRAP, ORAC, and antiproliferative activities (MTT of free (FP and chemically-released PP from mango ‘Ataulfo’ peel after alkaline (AKP and acid (AP hydrolysis, were evaluated. AKP fraction was higher (µg/g DW in gallic acid (GA; 23,816 ± 284 than AP (5610 ± 8 of FR (not detected fractions. AKP fraction and GA showed the highest antioxidant activity (DPPH/FRAP/ORAC and GA’s antioxidant activity follows a single electron transfer (SET mechanism. AKP and GA also showed the best antiproliferative activity against human colon adenocarcinoma cells (LS180; IC50 (µg/mL 138.2 ± 2.5 and 45.7 ± 5.2 and mouse connective cells (L929; 93.5 ± 7.7 and 65.3 ± 1.2; Cheminformatics confirmed the hydrophilic nature (LogP, 0.6 and a good absorption capacity (75% for GA. Data suggests that GA’s antiproliferative activity appears to be related to its antioxidant mechanism, although other mechanisms after its absorption could also be involved.

  18. The Metalloporphyrin Antioxidant, MnTE-2-PyP, Inhibits Th2 Cell Immune Responses in an Asthma Model

    Directory of Open Access Journals (Sweden)

    Paiboon Jungsuwadee

    2012-08-01

    Full Text Available MnTE-2-PyP, a superoxide dismutase mimetic, inhibited OVA-induced airway inflammation in mice suggesting an effect on Th2 responsiveness. Thus, we hypothesized that MnTE-2-PyP may alter dendritic cell-Th2 interactions. Bone marrow derived dendritic cells (DC and OVA323-339-specific Th2 cells were cultured separately in the presence or absence of MnTE-2-PyP for 3 days prior to the co-culturing of the two cell types in the presence of an OVA323-339 peptide and in some cases stimulated with CD3/CD28. MnTE-2-PyP-pretreated DC inhibited IL-4, IL-5 and IFNγ production and inhibited Th2 cell proliferation in the DC-Th2 co-culturing system in the presence of the OVA323-339 peptide. Similar results were obtained using the CD3/CD28 cell-activation system; the addition of MnTE-2-PyP inhibited Th2 cell proliferation. MnTE-2-PyP suppressed CD25 expression on OVA-specific Th2 cells, which implied that MnTE-2-PyP can inhibit the activation of Th2 cells. MnTE-2-PyP also down-regulated co-stimulatory molecules: CD40, CD80 and CD86 on immature DC. Our studies suggest that the major mechanism by which MnTE-2-PyP inhibits airway inflammation is by acting on the DC and suppressing Th2 cell proliferation and activation.

  19. Antioxidant capacity and physical exercise

    Directory of Open Access Journals (Sweden)

    A Marciniak

    2009-09-01

    Full Text Available The aim of this article is a presentation of current knowledge regarding the changes of plasma antioxidant capacity observed in response to physical exercise. Human body created the enzymatic and non-enzymatic systems, which play a protective role in the harmful impact of free radicals. Those two systems constitute what is known as the plasma total antioxidant capacity. The amount of reactive oxygen species (ROS and reactive nitrogen species (NOS in combination with oxidation processes increases in some tissues during physiological response to physical exercise. These changes are observed after single bout of exercise as well as after regular training. The response of human body to physical exercise can be analysed using various models of exercise test. Application of repeated type of exhaustion allows for characterizing the ability of human body to adjust to the increased energy loss and increased oxygen consumption. This article presents the characteristics of components of plasma antioxidant capacity, the mechanisms of free radicals production and their role in human body. It discusses also the currently used methods of detecting changes in total antioxidant capacity and its individual elements in response to single bout of exercise and regular training. It presents the review of literature about research performed in groups of both regularly training and low exercise activity individuals as well as in group of healthy subjects and patients with circulation diseases.

  20. Differential Action between Schisandrin A and Schisandrin B in Eliciting an Anti-Inflammatory Action: The Depletion of Reduced Glutathione and the Induction of an Antioxidant Response.

    Directory of Open Access Journals (Sweden)

    Pou Kuan Leong

    activating GST/ depleting cellular GSH and inducing an antioxidant response involved in their anti-inflammatory actions.

  1. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.

    Science.gov (United States)

    Eggler, Aimee L; Small, Evan; Hannink, Mark; Mesecar, Andrew D

    2009-07-29

    Nrf2 (nuclear factor erythroid 2-related factor 2) is a transcription factor that activates transcription of a battery of cytoprotective genes by binding to the ARE (antioxidant response element). Nrf2 is repressed by the cysteine-rich Keap1 (kelch-like ECH-associated protein 1) protein, which targets Nrf2 for ubiquitination and subsequent degradation by a Cul3 (cullin 3)-mediated ubiquitination complex. We find that modification of Cys(151) of human Keap1, by mutation to a tryptophan, relieves the repression by Keap1 and allows activation of the ARE by Nrf2. The Keap1 C151W substitution has a decreased affinity for Cul3, and can no longer serve to target Nrf2 for ubiquitination, though it retains its affinity for Nrf2. A series of 12 mutant Keap1 proteins, each containing a different residue at position 151, was constructed to explore the chemistry required for this effect. The series reveals that the extent to which Keap1 loses the ability to target Nrf2 for degradation, and hence the ability to repress ARE activation, correlates well with the partial molar volume of the residue. Other physico-chemical properties do not appear to contribute significantly to the effect. Based on this finding, a structural model is proposed whereby large residues at position 151 cause steric clashes that lead to alteration of the Keap1-Cul3 interaction. This model has significant implications for how electrophiles which modify Cys(151), disrupt the repressive function of Keap1.

  2. Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick Type C1-deficient murine brain.

    Directory of Open Access Journals (Sweden)

    Barry E Kennedy

    Full Text Available Niemann-Pick Type C (NPC disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 (-/- mice at pre-symptomatic, early symptomatic and late stage disease by (1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 (-/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 (-/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.

  3. Neuroprotective effect of STAZN, a novel azulenyl nitrone antioxidant, in focal cerebral ischemia in rats: dose-response and therapeutic window

    Science.gov (United States)

    Ley, James J.; Belayev, Ludmila; Saul, Isabel; Becker, David A.; Ginsberg., Myron D.

    2007-01-01

    Stilbazulenyl nitrone (STAZN) is a potent antioxidant that, in a rat model of transient focal cerebral ischemia, confers significant enduring functional and morphological neuroprotection. This study investigated the influence of dose and time of administration on the neuroprotective effects of STAZN in the intraluminal-suture model of middle cerebral artery occlusion (MCAo). Dose-Response At 2 and 4h after the onset of MCAo, animals received intravenously either STAZN (low dose=0.07 mg/kg, n=8), (medium dose=0.7 mg/kg, n=9), (high dose=3.5 mg/kg, n=9), an equivalent volume of vehicle (30% Solutol HS15 and 70% isotonic saline, 0.37 ml/kg, n=5), or saline (0.37 ml/kg, n=5). Only the medium dose improved scores (p<0.05) on a standardized neurobehavioral test at 1, 2 and 3d after MCAo. Only the medium dose reduced the total infarction (51%, p=0.014) compared to controls. These results indicate that STAZN exhibits maximal neuroprotection at the 0.7 mg/kg dose. Therapeutic Window STAZN (0.6 mg/kg) dissolved in dimethylsulfoxide was given intra-peritoneally at 2 and 4h (n=11), 3 and 5h (n=10), 4 and 6h (n=10), or 5 and 7h (n=7) after the onset of MCAo. Additional doses were given at 24 and 48h. Vehicle (dimethylsulfoxide, 2.0 ml/kg, n=6) was administered at 3, 5, 24 and 48h. STAZN treatment initiated at 2 or 3h after the onset of MCAo improved neurological scores (p<0.001) and reduced total infarction (42.2%, p<0.05) compared to controls. PMID:17945201

  4. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses

    International Nuclear Information System (INIS)

    Mazza, C.A.; Battista, D.; Zima, A.M.; Szwarcberg-Bracchitta, M.; Giordano, C.V.; Acevedo, A.; Scopel, A.L.; Ballare, C.L.

    1999-01-01

    There is limited information on the impacts of present-day solar ultraviolet-B radiation (UV-B) on biomass and grain yield of field crops and on the mechanisms that confer tolerance to UV-B radiation under field conditions. We investigated the effects of solar UV-B on aspects of the biochemistry, growth and yield of barley crops using replicated field plots and two barley strains, a catalase (CAT)-deficient mutant (RPr 79/4) and its wild-type mother line (Maris Mink). Solar UV-B reduced biomass accumulation and grain yield in both strains. The effects on crop biomass accumulation tended to be more severe in RPr 79/4 (≈ 32% reduction) than in the mother line (≈ 20% reduction). Solar UV-B caused measurable DNA damage in leaf tissue, in spite of inducing a significant increase in UV-absorbing sunscreens in the two lines. Maris Mink responded to solar UV-B with increased CAT and ascorbate peroxidase (APx) activity. No effects of UV-B on total superoxide dismutase (SOD) activity were detected. Compared with the wild type, RPr 79/4 had lower CAT activity, as expected, but higher APx activity. Neither of these activities increased in response to UV-B in RPr 79/4. These results suggest that growth inhibition by solar UV-B involves DNA damage and oxidative stress, and that constitutive and UV-B-induced antioxidant capacity may play an important role in UV-B tolerance. (author)

  5. Antioxidant Protection in Blood against Ionising Radiation

    International Nuclear Information System (INIS)

    Bognar, G.; Meszaros, G.; Koteles, G. J.

    2001-01-01

    Full text: The quantities of the antioxidants in the human blood are important indicators of health status. The routine determinations of activities/capacities of antioxidant compounds would be of great importance in assessing individual sensitivities against oxidative effects. We have investigated the sensitivities of those antioxidant elements against various doses of ionising radiation tested by the RANDOX assays. Our results show dose-dependent decreases of antioxidant activities caused by the different doses. The total antioxidant status value linearly decreased up to 1 Gy, but further increase of dose (2 Gy) did not influence the respective values although the test system still indicated their presence. It means that the human blood retains 60-70% of its total antioxidant capacity. Radiation induced alterations of the antioxidant enzymes: glutathione peroxidase and superoxide dismutase have been also investigated. The activities of glutathione peroxidase and superoxide dismutase decreased linearly upon the effects of various doses of ionising radiation till 1 Gy. Between 1 and 2 Gy only further mild decreases could be detected. In this case the human blood retained 40-60% of these two antioxidant enzymes. These observations suggest either the limited response of antioxidant system against ionising radiation, or the existence of protection system of various reactabilities. (author)

  6. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    Science.gov (United States)

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  7. Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro.

    Science.gov (United States)

    Ma, Y F; Wu, Z H; Gao, M; Loor, J J

    2018-03-21

    The experiment was conducted to determine the role of nuclear factor (erythroid-derived 2)-like factor 2 (NFE2L2, formerly Nrf2) antioxidant response element (ARE) pathway in protecting bovine mammary epithelial cells (BMEC) against H 2 O 2 -induced oxidative stress injury. An NFE2L2 small interfering RNA (siRNA) interference or a pCMV6-XL5-NFE2L2 plasmid fragment was transfected to independently downregulate or upregulate expression of NFE2L2. Isolated BMEC in triplicate were exposed to H 2 O 2 (600 μM) for 6 h to induce oxidative stress before transient transfection with scrambled siRNA, NFE2L2-siRNA, pCMV6-XL5, and pCMV6-XL5-NFE2L2. Cell proliferation, apoptosis and necrosis rates, antioxidant enzyme activities, reactive oxygen species (ROS) and malondialdehyde (MDA) production, protein and mRNA expression of NFE2L2 and downstream target genes, and fluorescence activity of ARE were measured. The results revealed that compared with the control, BMEC transfected with NFE2L2-siRNA3 had proliferation rates that were 9 or 65% lower without or with H 2 O 2 , respectively. These cells also had apoptosis and necrosis rates that were 27 and 3.5 times greater with H 2 O 2 compared with the control group, respectively. In contrast, transfected pCMV6-XL5-NFE2L2 had proliferation rates that were 64.3% greater or 17% lower without or with H 2 O 2 compared with the control group, respectively. Apoptosis rates were 1.8 times lower with H 2 O 2 compared with the control. In addition, compared with the control, production of ROS and MDA and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione-S-transferase (GST) increased markedly in cells transfected with pCMV6-XL5-NFE2L2 and without H 2 O 2 . However, compared with the control, production of ROS and MDA and activity of CAT and GSH-Px increased markedly, whereas activities of SOD and GST decreased in cells transfected with pCMV6-XL5-NFE2L2 and incubated with H 2 O 2

  8. Biochemical analysis of reactive oxygen species production and antioxidative responses in unripe avocado (Persea americana Mill var Hass) fruits in response to wounding.

    Science.gov (United States)

    Castro-Mercado, E; Martinez-Diaz, Y; Roman-Tehandon, N; Garcia-Pineda, E

    2009-03-01

    We analyzed the production of reactive oxygen species (ROS) and of detoxifying enzymes and enzymes of the ascorbate (ASC) acid cycle in avocado fruit (Pesea Americana Mill cv Hass) in response to wounding. The levels of superoxide anion (O(2-), hydroxyl radicals (OH.) and hydrogen peroxide (H(2)O(2)) increased at 15 min and 2 and 15 h post-wounding. Peroxidase (POD) activity had increased to high levels 24 h after wounding; in contrast, catalase and superoxide dismutase (SOD) levels hat decreased significantly at 24 h post-treatment. Basic POD was the major POD form induced, and the levels of at least three apoplastic POD isozymes -increased following wounding. Using specific inhibitors, we characterized one MnSOD and two CuZnSOD isozymes. CuZnSOD activities decreased notably 12 h after treatment. The activities of dehydroascorbate reductase and glutathione reductase increased dramatically following the wounding treatment, possibly as a means to compensate for the redox changes due to ROS production.

  9. African-American esophageal squamous cell carcinoma expression profile reveals dysregulation of stress response and detox networks.

    Science.gov (United States)

    Erkizan, Hayriye Verda; Johnson, Kory; Ghimbovschi, Svetlana; Karkera, Deepa; Trachiotis, Gregory; Adib, Houtan; Hoffman, Eric P; Wadleigh, Robert G

    2017-06-19

    Esophageal carcinoma is the third most common gastrointestinal malignancy worldwide and is largely unresponsive to therapy. African-Americans have an increased risk for esophageal squamous cell carcinoma (ESCC), the subtype that shows marked variation in geographic frequency. The molecular architecture of African-American ESCC is still poorly understood. It is unclear why African-American ESCC is more aggressive and the survival rate in these patients is worse than those of other ethnic groups. To begin to define genetic alterations that occur in African-American ESCC we conducted microarray expression profiling in pairs of esophageal squamous cell tumors and matched control tissues. We found significant dysregulation of genes encoding drug-metabolizing enzymes and stress response components of the NRF2- mediated oxidative damage pathway, potentially representing key genes in African-American esophageal squamous carcinogenesis. Loss of activity of drug metabolizing enzymes would confer increased sensitivity of esophageal cells to xenobiotics, such as alcohol and tobacco smoke, and may account for the high incidence and aggressiveness of ESCC in this ethnic group. To determine whether certain genes are uniquely altered in African-American ESCC we performed a meta-analysis of ESCC expression profiles in our African-American samples and those of several Asian samples. Down-regulation of TP53 pathway components represented the most common feature in ESCC of all ethnic groups. Importantly, this analysis revealed a potential distinctive molecular underpinning of African-American ESCC, that is, a widespread and prominent involvement of the NRF2 pathway. Taken together, these findings highlight the remarkable interplay of genetic and environmental factors in the pathogenesis of African-American ESCC.

  10. Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang?

    Science.gov (United States)

    Ippolito, M P; Fasciano, C; d'Aquino, L; Morgana, M; Tommasi, F

    2010-01-01

    Extensive agriculture application of rare earth elements (REEs) in Far East countries might cause spreading of these metals in aquatic and terrestrial ecosystems, thus inducing a growing concern about their environmental impact. In this work the effects of a mix of different REE nitrate (RE) and of lanthanum nitrate (LA) on catalase and antioxidant systems involved in the ascorbate-glutathione cycle were investigated in common duckweed Lemna minor L. The results indicated that L. minor shows an overall good tolerance to the presence of REEs in the media. Treatments at concentrations up to 5 mM RE and 5 mM LA did not cause either visible symptoms on plants or significant effects on reactive oxygen species (ROS) production, chlorophyll content, and lipid peroxidation. Toxic effects were observed after 5 days of exposition to 10 mM RE and 10 mM LA. A remarkable increase in glutathione content as well as in enzymatic antioxidants was observed before the appearance of the stress symptoms in treated plants. Duckweed plants pretreated with RE and LA were also exposed to chilling stress to verify whether antioxidants variations induced by RE and LA improve plant resistance to the chilling stress. In pretreated plants, a decrease in ascorbate and glutathione redox state and in chlorophyll content and an increase in lipid peroxidation and ROS production levels were observed. The use of antioxidant levels as a stress marker for monitoring REE toxicity in aquatic ecosystems by means of common duckweed is discussed.

  11. Analytical strategy coupled with response surface methodology to maximize the extraction of antioxidants from ternary mixtures of green, yellow, and red teas (Camellia sinensis var. sinensis).

    Science.gov (United States)

    Granato, Daniel; Grevink, Raymond; Zielinski, Acácio A F; Nunes, Domingos S; van Ruth, Saskia M

    2014-10-22

    This work aimed at using a simplex-centroid design to model the effects of green, yellow, and red tea mixtures (Camellia sinensis var. sinensis) on metal chelation activity, phenolic composition, antioxidant activity, and instrumental taste profile. The regression models that described the extraction of flavan-3-ols, o-diphenols, total phenolic compounds (TPC), free radical scavenging activity toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), cupric ion reducing antioxidant activity (CUPRAC), and ferric reducing antioxidant power (FRAP) were significant, and data were fit satisfactorily (R(2) > 80%). A mixture of green and red teas had a synergism in CUPRAC and TPC, whereas a mixture of yellow and red teas had a positive effect on CUPRAC and DPPH. An optimization was performed to maximize the antioxidant activity and flavan-3-ol content and to render a tea with mild bitterness, and results showed that a mixture of 14.81% green, 56.86% yellow, and 28.33% red teas would be the most suitable combination of factors.

  12. Analytical Strategy Coupled with Response Surface Methodology To Maximize the Extraction of Antioxidants from Ternary Mixtures of Green, Yellow, and Red Teas (Camillia sinensis var. Sinensis)

    NARCIS (Netherlands)

    Granato, D.; Grevink, R.; Zielinski, R.; Nunes, D.S.; Ruth, van S.M.

    2014-01-01

    This work aimed at using a simplex-centroid design to model the effects of green, yellow, and red tea mixtures (Camellia sinensis var. sinensis) on metal chelation activity, phenolic composition, antioxidant activity, and instrumental taste profile. The regression models that described the

  13. Uric acid but not apple polyphenols is responsible for the rise of plasma antioxidant activity after apple juice consumption in healthy subjects.

    Science.gov (United States)

    Godycki-Cwirko, Maciek; Krol, Maciej; Krol, Bogusław; Zwolinska, Anna; Kolodziejczyk, Krzysztof; Kasielski, Marek; Padula, Gianluca; Grebowski, Jacek; Grębocki, Jacek; Kazmierska, Paulina; Kazimierska, Paulina; Miatkowski, Marcin; Markowski, Jarosław; Nowak, Dariusz

    2010-08-01

    To determine whether (1) rapid consumption of 1 L of apple juice increases blood antioxidant capacity, measured as ferric-reducing ability of plasma (FRAP) and serum 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, and (2) apple polyphenols or fructose-induced elevation of plasma uric acid contributes to post-juice increase of blood antioxidant activity. The study involved 12 (mean age 32 ± 5 years, mean body weight 73 ± 7 kg) healthy nonsmoking subjects. Tested subjects consumed 1 L of clear apple juice and then FRAP; serum DPPH-scavenging activity, serum uric acid, and total plasma phenolics and quercetin levels were measured just before juice ingestion and 1, 2.5, and 4 hours after ingestion. This was repeated 3 times with 4-day intervals, but volunteers drank either 1 L of clear apple juice without polyphenols (placebo), or 1 L of cloudy apple juice (positive control), or 1 L of water (negative control) at the time. All juices had similar content of sugars (i.e., saccharose, glucose, and fructose) and precisely defined composition of phenolics and antioxidant activity. Consumption of all 3 juices transiently increased FRAP and serum DPPH-scavenging activity, with peak values at 1 hour post-juice ingestion. This was paralleled by the rise of serum uric acid, but no significant changes in plasma total phenolics and quercetin levels were observed after all dietary interventions. At the same time, no substantial differences were found between juices (especially between clear apple juice and clear apple juice without polyphenols) concerning the measured variables. A strong significant correlation was noted instead between serum uric acid and plasma antioxidant activity at all analyzed time points, before and after juice ingestion. Plasma total phenolics and quercetin levels were not associated with FRAP and serum DPPH radical-scavenging activity. We have demonstrated that rapid consumption of apple juice increased plasma antioxidant activity in

  14. Dietary supplementation of biofloc influences growth performance, physiological stress, antioxidant status and immune response of juvenile sea cucumber Apostichopus japonicus (Selenka).

    Science.gov (United States)

    Chen, Jinghua; Ren, Yichao; Wang, Guodong; Xia, Bin; Li, Yuquan

    2018-01-01

    Bioflocs are rich in various probiotics and bioactive compounds, which play an important role in improving growth and health status of aquatic organisms. A 60-day experiment was conducted to investigate the effects of dietary supplementation of biofloc on growth performance, digestive enzyme activity, physiological stress, antioxidant status, expression of immune-related genes and disease resistance of sea cucumber Apostichopus japonicus. Juvenile sea cucumbers were fed five experimental diets containing graded levels of biofloc from 0% to 20% (referred as B0, B5, B10, B15 and B20, respectively). The results showed that the sea cucumbers at dietary supplementation levels of 10%-15% biofloc had significantly higher specific growth rate (SGR) compared to control group (diet B0). Digestive enzyme activity increased with the increasing of dietary biofloc level, while no significant difference was found between diets B15 and B20. Dietary supplementation of biofloc also had significant influences on physiological stress parameters except for lactate. There was no significant discrepancy in total coelomocytes counts (TCC) in coelomic fluid of sea cucumber between the treatments. Phagocytosis and respiratory burst of cellular immune at 15% and 20% biofloc levels were significantly higher than those of control group. Significant increases in superoxide dismutase (SOD), total nitric oxide synthase (T-NOS), lysozyme (LSZ), acid phosphatase (ACP) and alkaline phosphatase (AKP) activities of sea cucumber were found at highest dietary supplementation level of 20% biofloc. The expression patterns of immune-related genes (i.e., Hsp90, Hsp70, p105, Rel, NOS and LSZ) in tissues of sea cucumber were analyzed between the experimental diets, and a general trend of up-regulation was observed at higher biofloc levels. Furthermore, dietary 10%-20% biofloc significantly reduced cumulative mortality of sea cucumber after being challenged with Vibrio splendidus. In conclusion, dietary

  15. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    Science.gov (United States)

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA 3 ) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  16. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes.

    Science.gov (United States)

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-10-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ, which stimulate the intracellular formation of H₂O₂ or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ, serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Diabetic nephropathy and antioxidants.

    Science.gov (United States)

    Tavafi, Majid

    2013-01-01

    Oxidative stress has crucial role in pathogenesis of diabetic nephropathy (DN). Despite satisfactory results from antioxidant therapy in rodent, antioxidant therapy showed conflicting results in combat with DN in diabetic patients. Directory of Open Access Journals (DOAJ), Google Scholar,Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Treatment of DN in human are insufficient with rennin angiotensin system (RAS) blockers, so additional agent ought to combine with this management. Meanwhile based on DN pathogenesis and evidences in experimental and human researches, the antioxidants are the best candidate. New multi-property antioxidants may be improved human DN that show high power antioxidant capacity, long half-life time, high permeability to mitochondrion, improve body antioxidants enzymes activity and anti-inflammatory effects. Based on this review and our studies on diabetic rats, rosmarinic acid a multi-property antioxidant may be useful in DN patients, but of course, needs to be proven in clinical trials studies.

  18. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    Science.gov (United States)

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (Pheat-stressed dairy cows can improve their immune function and antioxidant activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Antioxidative Defense Responses to lead-induced Oxidative Stress in Glycine max L. CV. Merrill grown in Different pH Gradient

    Directory of Open Access Journals (Sweden)

    Mishra, Pankaj Kishor

    2013-04-01

    Full Text Available Physiological and biochemical changes as well as the activities of anti-oxidative enzymes under lead (Pb2+ phytotoxicity were investigated in 20 days old soybean (Glycine max L. seedlings grown hydroponically in the laboratory under different pH conditions. The rapid uptake of Pb 2+ was observed immediately after the start of treatment. The quantity of accumulation of Pb2+ was much higher in roots than in shoots, its level rising with increasing pH from 3.0 to 8.0 . Not only that, an oxidative stress conditions were observed due to increased level of superoxide anion radical and hydrogen peroxide in shoots and root cells of 20 days old seedlings when treated with Pb(NO32 at a concentration of 0, 500, 1000 and 2000 μM. Spectrometric assays of seedlings showed increased level of activities of antioxidant enzymes like catalase, peroxidase and glutathione reductase. The presence of thiobarbituric acid reacting substances (TBARS indicates the enhanced lipid peroxidation compared to controls. The alteration in the activities of the antioxidant enzymes and the induction of lipid peroxidation reflects the presence of Pb2+, which may cause oxidative stress.

  20. Evaluation of the antioxidant capacity and preventive effects of a topical emulsion and its vehicle control on the skin response to UV exposure.

    Science.gov (United States)

    Zhai, H; Behnam, S; Villarama, C D; Arens-Corell, M; Choi, M J; Maibach, H I

    2005-01-01

    Supplying topical exogenous antioxidants to the skin may prevent or minimize free radical-induced damaging. This study determines antioxidative capacity of a topical skin care emulsion (an oil-in-water vitamin E-containing formulation) versus its vehicle on human skin that was exposed to ultraviolet radiation (UVR) by utilizing a photochemiluminescence device and biophysical methods. Ten healthy Caucasians (3 male and 7 female; mean age 47 +/- 10 years) were enrolled. In a randomized and double-blind manner, a pH-balanced vitamin E emulsion or its vehicle control was applied onto predesignated forearm prior to UVR exposure. Thirty minutes after application, these test sites were exposed to a UV light to induce the minimal erythema dose. One untreated site served as a blank control. Visual scoring and instrumental measurements were recorded at baseline and at 24 h and 48 h thereafter. At day 3, after completing instrumental measurements, each test site was stripped three times in a consecutive manner with a proprietary adhesive tape disc. These tapes were quantified for antioxidant capacity using a photochemiluminescence device. Vitamin E emulsion and vehicle control significantly (p emulsion showed significantly (p emulsion and its vehicle control significantly (p emulsion significantly (p emulsion and its vehicle control showed significant (p emulsion and its vehicle control proved effective in preventing induction of erythema and reducing inflammatory damage caused by UV exposure. The effect of vitamin E emulsion exceeded that of an 'active control'. Copyright 2005 S. Karger AG, Basel

  1. Effects of replacing soybean meal with rubber seed meal on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × O. aureus).

    Science.gov (United States)

    Deng, Junming; Mai, Kangsen; Chen, Liqiao; Mi, Haifeng; Zhang, Lu

    2015-06-01

    This study evaluated the effects of replacing soybean meal (SBM) with rubber seed meal (RSM) on growth, antioxidant capacity, non-specific immune response and resistance to Aeromonas hydrophila in tilapia (Oreochromis niloticus × Oreochromis aureus). Five experimental diets were formulated with 0 (control), 10, 20, 30, and 40% RSM replacing graded levels of SBM, respectively. Fish were fed one of the five experimental diets for eight weeks, and then challenged by A. hydrophila via intraperitoneal injection and kept for seven days. Dietary RSM inclusion level up to 30% did not affect the weight gain and daily growth coefficient, whereas these were depressed by a further inclusion. Fish fed diet with 40% RSM showed the lowest serum total antioxidant capacity, lysozyme, alternative complement pathway, respiratory burst and phagocytic activities. Dietary RSM inclusion gradually depressed the post-challenge survival rate, and that was significantly lower in fish fed diet with 40% RSM compared to fish fed the control diet. Conversely, the inclusion of RSM generally increased the serum total cholesterol level, the plasma alanine aminotransferase and aspartate aminotransferase activities, and these were significantly higher in fish fed diet with 40% RSM compared to fish fed the control diet. The results indicated that RSM can be included at level up to 30% in diet for tilapia without obvious adverse effects on the growth, antioxidant capacity, non-specific immune response and resistance to A. hydrophila infection, whereas these were depressed by a further inclusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimization of Ultrasound-Assisted Extraction of Crude Oil from Winter Melon (Benincasa hispida Seed Using Response Surface Methodology and Evaluation of Its Antioxidant Activity, Total Phenolic Content and Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2012-10-01

    Full Text Available In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM. Process variables were power level (25–75%, temperature (45–55 °C and sonication time (20–40 min. It was found that all process variables have significant (p < 0.05 effects on the response variable. A central composite design (CCD was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter. The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  3. Effects of a nutraceutical formulation based on the combination of antioxidants and ω-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders.

    Science.gov (United States)

    Pinazo-Durán, Maria D; Galbis-Estrada, Carmen; Pons-Vázquez, Sheila; Cantú-Dibildox, Jorge; Marco-Ramírez, Carla; Benítez-del-Castillo, Javier

    2013-01-01

    Women, and those older than 65 years of age, are particularly susceptible to dry eye disorders (DEDs). Inflammation is clearly involved in the pathogenesis of DEDs, and there is mounting evidence on the antioxidant and antiinflammatory properties of essential polyunsaturated fatty acids (EPUFAs). To analyze whether a combined formulation of antioxidants and long-chain EPUFAs may improve the evolution of DEDs. We used a prospective study to address the relationship between risk factors, clinical outcomes, and expression levels of inflammation and immune response (IIR) mediators in human reflex tear samples. Participants included: (1) patients diagnosed with nonsevere DEDs (DED group [DEDG]); and (2) healthy controls (control group [CG]). Participants were randomly assigned to homogeneous subgroups according to daily oral intake (+S) or not (-NS) of antioxidants and long-chain EPUFAs for 3 months. After an interview and a systematized ophthalmic examination, reflex tears were collected simultaneously from both eyes; samples were later subjected to a multiplexed particle-based flow cytometry assay. A specific set of IIR mediators was analyzed. All data were statistically processed through the SPSS 15.0 software program. Significantly higher expressions of interleukin (IL)-1β, IL6, and IL10 and significantly lower vascular endothelial growth factor expressions were found in the DEDG as compared to the CG. In the DEDG, significant negative correlations were detected between the Schirmer test and IL-1β, IL6, IL8, and vascular endothelial growth factor levels, and between the fluorescein breakup time with IL6 and IL8 levels. However, levels of IL-1β, IL6, and IL10 in tears were significantly lower in the DEDG+S versus the DEDG-NS and in the CG+S versus the CG-NS. Subjective symptoms of dry eye significantly improved in the DEDG+S versus the DEDG-NS. IIR mediators showed different expression patterns in DED patients, and these patterns changed in response to a combined

  4. Antiradical and antioxidant activities of new bio-antioxidants.

    Science.gov (United States)

    Kancheva, V D; Saso, L; Angelova, S E; Foti, M C; Slavova-Kasakova, A; Daquino, C; Enchev, V; Firuzi, O; Nechev, J

    2012-02-01

    Antioxidants could be promising agents for management of oxidative stress-related diseases. New biologically active compounds, belonging to a rare class of natural lignans with antiangiogenic, antitumoral and DNA intercalating properties, have been recently synthesized. These compounds are benzo[kl]xanthene lignans (1,2) and dihydrobenzofuran neolignans (3,4). The radical scavenging and chain-breaking antioxidant activities of compounds 1-4 were studied by applying different methods: radical scavenging activity by DPPH rapid test, chain-breaking antioxidant activity and quantum chemical calculations. All studied compounds were found to be active as DPPH scavengers but reaction time with DPPH and compounds' concentrations influenced deeply the evaluation. The highest values of radical scavenging activity (%RSAmax) and largest rate constants for reaction with DPPH were obtained for compounds 2 and 3. Comparison of %RSAmax with that of standard antioxidants DL-α-tocopherol (TOH), caffeic acid (CA) and butylated hydroxyl toluene (BHT) give the following new order of %RSA max: TOH (61.1%) > CA (58.6%) > 3 (36.3%) > 2 (28.1%) > 4 (6.7%) > 1 (3.6%) = BHT (3.6%). Chain-breaking antioxidant activities of individual compounds (0.1-1.0 mM) and of their equimolar binary mixtures (0.1 mM) with TOH were determined from the kinetic curves of lipid autoxidation at 80 °C. On the basis of a comparable kinetic analysis with standard antioxidants a new order of the antioxidant efficiency (i.e., protection factor, PF) of compounds 1-4 were obtained: 2 (7.2) ≥ TOH (7.0) ≥ CA (6.7) > 1 (3.1) > 3 (2.2) > ferulic acid FA (1.5) > 4 (0.6); and of the antioxidant reactivity (i.e. inhibition degree, ID): 2 (44.0) > TOH (18.7) > CA (9.3) > 1 (8.4) > 3 (2.8) > FA (1.0) > 4 (0.9). The important role of the catecholic structure in these compounds, which is responsible for the high chain-breaking antioxidant activity, is discussed and a reaction

  5. Oxidative and antioxidative responses in submandibular and parotid glands of rats exposed to long-term extremely low frequency magnetic field

    Directory of Open Access Journals (Sweden)

    Mehmet Akdağ

    2014-06-01

    Full Text Available Background: Some epidemiologic and laboratory studies have suggested a possible associations between exposure to extremely low frequency magnetic field (ELF-MF and cancer. However, it is not known underlying mechanisms of this interaction. The aim of the study was to investigate the possible oxidative damage induced by long-term ELF-MF exposure on submandibular and parotis glands of rats. Methods: Rats in the experimental group were exposed to 100 and 500 µT ELF-MF (2 h/day, 7 days/week, for 10 months corresponding to exposure levels that are considered safe for humans. The same experimental procedures were applied to the sham group, but the ELF generator was turned off. The levels of catalase (CAT, malondialdehyde (MDA, myeloperoxidase (MPO, total antioxidative capacity (TAC, total oxidant status (TOS, and oxidative stress index (OSI were measured in rat submandibular and parotis gland. Results: Although some oxidative and antioxidative parameters of submandibular gland were altered by ELF-100 and ELF-500 exposure groups, these changes were not statistically significant ( p >0.05. However, a decrease observed in CAT levels of parotid gland in both the ELF-100 and ELF-500 exposure groups (p0.05. Conclusions: Our results showed that long-term ELF-MF exposure did not alter oxidative, antioxidative processes and lipid peroxidation in submandibular gland of rats. However, 100 µT and 500 µT ELF-MF exposure decreased CAT activity in parotid gland. J Clin Exp Invest 2014; 5 (2: 219-225

  6. Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants.

    Directory of Open Access Journals (Sweden)

    Zarazuela Zolkipli

    Full Text Available OBJECTIVE: To elucidate the pathophysiology of SCAD deficient patients who have a unique neurological phenotype, among fatty acid oxidation disorders, with early developmental delay, CNS malformations, intractable seizures, myopathy and clinical signs suggesting oxidative stress. METHODS: We studied skin fibroblast cultures from patients homozygous for ACADS common variant c.625G>A (n = 10, compound heterozygous for c.625G>A/c.319C>T (n = 3 or homozygous for pathogenic c.319C>T (n = 2 and c.1138C>T (n = 2 mutations compared to fibroblasts from patients with carnitine palmitoyltransferase 2 (CPT2 (n = 5, mitochondrial trifunctional protein (MTP/long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD (n = 7, and medium-chain acyl-CoA dehydrogenase (MCAD deficiencies (n = 4 and normal controls (n = 9. All were exposed to 50 µM menadione at 37°C. Additional conditions included exposure to 39°C and/or hypoglycemia. Time to 100% cell death was confirmed with trypan blue dye exclusion. Experiments were repeated with antioxidants (Vitamins C and E or N-acetylcysteine, Bezafibrate or glucose and temperature rescue. RESULTS: The most significant risk factor for vulnerability to menadione-induced oxidative stress was the presence of a FAO defect. SCADD fibroblasts were the most vulnerable compared to other FAO disorders and controls, and were similarly affected, independent of genotype. Cell death was exacerbated by hyperthermia and/or hypoglycemia. Hyperthermia was a more significant independent risk factor than hypoglycemia. Rescue significantly prolonged survival. Incubation with antioxidants and Bezafibrate significantly increased viability of SCADD fibroblasts. INTERPRETATION: Vulnerability to oxidative stress likely contributes to neurotoxicity of SCADD regardless of ACADS genotype and is significantly exacerbated by hyperthermia. We recommend rigorous temperature control in SCADD patients during acute illness

  7. The Effect of Isomaltulose Together with Green Tea on Glycemic Response and Antioxidant Capacity: A Single-Blind, Crossover Study in Healthy Subjects.

    Science.gov (United States)

    Suraphad, Passakorn; Suklaew, Phim On; Ngamukote, Sathaporn; Adisakwattana, Sirichai; Mäkynen, Kittana

    2017-05-06

    Isomaltulose, a naturally-occurring isomer of sucrose, is commonly used as an alternative sweetener in foods and beverages. The goal of this study was to determine the effect of isomaltulose together with green tea on postprandial plasma glucose and insulin concentration, as well as antioxidant capacity in healthy subjects. In a randomized, single-blind, crossover study, 15 healthy subjects (eight women and seven men; ages 23.5 ± 0.7 years; with body mass index of 22.6 ± 0.4 kg/m²) consumed five beverages: (1) 50 g sucrose in 400 mL water; (2) 50 g isomaltulose in 400 mL of water; (3) 400 mL of green tea; (4) 50 g sucrose in 400 mL of green tea; and (5) 50 g isomaltulose in 400 mL of green tea. Incremental area under postprandial plasma glucose, insulin, ferric reducing ability of plasma (FRAP) and malondialdehyde (MDA) concentration were determined during 120 min of administration. Following the consumption of isomaltulose, the incremental 2-h area under the curve (AUC 0-2 h ) indicated a higher reduction of postprandial glucose (43.4%) and insulin concentration (42.0%) than the consumption of sucrose. The addition of green tea to isomaltulose produced a greater suppression of postprandial plasma glucose (20.9%) and insulin concentration (37.7%). In accordance with antioxidant capacity, consumption of sucrose (40.0%) and isomaltulose (28.7%) caused the reduction of green tea-induced postprandial increases in FRAP. A reduction in postprandial MDA after drinking green tea was attenuated when consumed with sucrose (34.7%) and isomaltulose (17.2%). In conclusion, green tea could enhance the reduction of postprandial glucose and insulin concentration when consumed with isomaltulose. In comparison with sucrose, isomaltulose demonstrated less alteration of plasma antioxidant capacity after being consumed with green tea.

  8. Antioxidants of Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Maja Kozarski

    2015-10-01

    Full Text Available Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic antioxidants can effectively improve defense mechanisms, but because of their adverse toxic effects under certain conditions, preference is given to natural compounds. Consequently, the requirements for natural, alternative sources of antioxidant foods identified in edible mushrooms, as well as the mechanistic action involved in their antioxidant properties, have increased rapidly. Chemical composition and antioxidant potential of mushrooms have been intensively studied. Edible mushrooms might be used directly in enhancement of antioxidant defenses through dietary supplementation to reduce the level of oxidative stress. Wild or cultivated, they have been related to significant antioxidant properties due to their bioactive compounds, such as polyphenols, polysaccharides, vitamins, carotenoids and minerals. Antioxidant and health benefits, observed in edible mushrooms, seem an additional reason for their traditional use as a popular delicacy food. This review discusses the consumption of edible mushrooms as a powerful instrument in maintaining health, longevity and life quality.

  9. Antioxidant activities of phenolics, flavonoids and vitamin C in two cultivars of fennel (Foeniculum vulgare Mill. in responses to organic and bio-organic fertilizers

    Directory of Open Access Journals (Sweden)

    Zeinab A. Salama

    2015-01-01

    Full Text Available Field experiment was conducted to study the effect of organic and bio-organic fertilizers on dry weight; yield, total phenolics (TPC, total flavonoids (TFC, vitamin C and on their antioxidant activities of two sweet fennel cultivars Dolce and Zefa fino. Results strongly showed that there were significant differences between sweet fennel cultivars. Generally the highest values of all parameters were obtained when fennel plants were supplemented with 50% NPK + 50% organic fertilizer and bio fertilizer when compared with control treatment. The highest values of TPC, TFC and Vit. C were recorded by Zefa fino cultivar when received 50% NPK + 50% organic treatment. The antioxidant activities of both cultivars were evaluated and Dolce cultivar showed the highest DPPH·− scavenging activity expressed as IC50 compared with Zefa fino cultivar. In addition, Dolce cultivars exhibited the highest value for Fe2+-chelating activities for organic and bio-organic fertilizers followed by Zefa fino when compared to control treatment. Dolce cultivar generally showed superiority than Zefa fino in all measured parameters.

  10. Antioxidants of edible mushrooms

    NARCIS (Netherlands)

    Kozarski, Maja; Klaus, Anita; Jakovljevic, Dragica; Todorovic, Nina; Vunduk, Jovana; Petrović, Predrag; Niksic, Miomir; Vrvic, Miroslav M.; Griensven, Van Leo

    2015-01-01

    Oxidative stress caused by an imbalanced metabolism and an excess of reactive oxygen species (ROS) lead to a range of health disorders in humans. Our endogenous antioxidant defense mechanisms and our dietary intake of antioxidants potentially regulate our oxidative homeostasis. Numerous synthetic

  11. Flesh quality loss in response to dietary isoleucine deficiency and excess in fish: a link to impaired Nrf2-dependent antioxidant defense in muscle.

    Directory of Open Access Journals (Sweden)

    Lu Gan

    Full Text Available The present study explored the impact of dietary isoleucine (Ile on fish growth and flesh quality and revealed a possible role of muscle antioxidant defense in flesh quality in relation to dietary Ile. Grass carp (weighing 256.8±3.5 g were fed diets containing six graded levels of Ile (3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg for eight weeks. The results indicated that compared with Ile deficiency (3.8 g/kg diets and excess (18.5 g/kg diets groups, 9.3-15.2 g Ile/kg diet supplementations promoted fish growth and muscle fat deposition, whereas 6.6-15.2 g Ile/kg diets supplementation enhanced muscle nutrients (protein and total EAAs deposition. Furthermore, muscle shear force, pH value, and hydroxyproline concentration were improved by 9.3-12.5, 9.3 and 9.3 g Ile/kg diet supplementations, respectively. However, muscle cooking loss, lactate content, and activities of cathepsin B and L were decreased by 6.6-15.2, 9.3-12.5, 9.3-12.5 and 9.3-15.2 g Ile/kg diet supplementations, respectively. Additionally, 6.6-15.2 and 6.6-12.5 g Ile/kg diet supplementations attenuated malondialdehyde and protein carbonyl contents, respectively. The activities of copper/zinc superoxide dismutase (Cu/Zn-SOD and glutathione peroxidase (GPx, and glutathione content were enhanced by 6.6-9.3, 6.6-12.5 and 6.6-15.2 g Ile/kg diet supplementations, respectively. Moreover, the relative mRNA expressions of antioxidant enzymes, including Cu/Zn-SOD (6.6-12.5 g/kg diets and GPx (12.5 g/kg diets, as well as antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2 (6.6-12.5 g/kg diets, target of rapamycin (6.6-12.5 g/kg diets, ribosomal S6 protein kinase 1 (9.3-12.5 g/kg diets and casein kinase 2 (6.6-12.5 g/kg diets, were up-regulated when Ile diet supplementations were administered at these levels, respectively, whereas the relative mRNA expression of Kelch-like ECH-associated protein 1 was down-regulated with 9.3 g Ile/kg diet supplementations. Collectively

  12. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Qu, Ruijuan; Wang, Xinghao; Wang, Zunyao; Wei, Zhongbo; Wang, Liansheng

    2014-01-01

    Highlights: • Cd and OH-MWCNTs have a synergistic effect on Carassius auratus. • OH-MWCNTs significantly increased Cd accumulation in liver after 12 d exposure. • Co-exposure to Cd and OH-MWCNTs evoked severe hepatic oxidative stress. - Abstract: The effects of cadmium, hydroxylated multi-walled carbon nanotubes, and their mixture on metal accumulation and antioxidant defenses were studied using the goldfish Carassius auratus as the test organism. The fish were exposed to 0.1 mg/L Cd, 0.5 mg/L OH-MWCNTs, or 0.1 mg/L Cd + 0.5 mg/L OH-MWCNTs for 3 and 12 days. Then, the Cd concentration was determined in the gill, liver and muscle. Moreover, hepatic antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), glutathione level and malondialdehyde content were also measured. A continuous accumulation of Cd was observed throughout the experimental period. Cd accumulation in tissues occurred in the following order: gill > liver > muscle at 3 days and liver > gill > muscle at 12 days. The concentrations of Cd in the livers of fish exposed to the combination of Cd + OH-MWCNTs were significantly higher than those in fish exposed to either single chemical after 12 d of exposure. Meanwhile, the mixture evoked severe oxidative stress in the exposed fish, as indicated by significant inhibition of SOD, CAT and GPx activity, a remarkable decrease in GSH level, and simultaneous elevation of MDA content. These results suggested that the effect of the combined factors on metal accumulation and oxidative stress biomarkers was more obvious than that of single factors at longer exposure durations

  13. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan.

    Science.gov (United States)

    Jabeen, Nusrat; Ahmad, Rafiq

    2013-05-01

    Salt tolerance is a complex trait which involves the coordinated action of many genes that perform a variety of functions, such as ion sequestration, metabolic adjustment, osmotic adjustment and antioxidative defence. In this article, the growth and the generation and scavenging of reactive oxygen species (ROS) under normal (ECiw [Electrical conductivity of irrigation water] = 0.5 dS m(-1)) and salt stress conditions (ECiw = 3.4, 6.1, 8.6 and 10.8 dS m(-1) ) in relation to the priming of seeds of the two important oil yielding crops, i.e. safflower and sunflower, with different concentrations of chitosan [0% (control), 0.25%, 0.50%, 0.75%] is discussed. Induced salinity stress significantly decreased germination percentage, germination rate, length and weight of root and shoot, and protein content. Proline content, malondialdehyde content (MDA), catalase (CAT) and peroxidase (POX) activity increased at 10.8 dS m(-1). Under control conditions there were no significant differences in germination percentage among different concentrations of chitosan, whereas CAT and POX activity were increased by low concentrations of chitosan. With increasing salt stress, low concentrations of chitosan increased germination percentage but decreased MDA and proline contents and CAT and POX activity. Generation of ROS seems to be unavoidable under normal conditions and the activity of antioxidant enzymes in plants varies in terms of ROS generation under salt stress. However, the data indicate that plants subjected to salt stress-induced oxidative stress and the low concentrations of chitosan exhibited positive effects on salt stress alleviation through the reduction of enzyme activity in both crops. © 2012 Society of Chemical Industry.

  14. Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ruijuan; Wang, Xinghao; Wang, Zunyao, E-mail: wangzun315cn@163.com; Wei, Zhongbo; Wang, Liansheng

    2014-06-30

    Highlights: • Cd and OH-MWCNTs have a synergistic effect on Carassius auratus. • OH-MWCNTs significantly increased Cd accumulation in liver after 12 d exposure. • Co-exposure to Cd and OH-MWCNTs evoked severe hepatic oxidative stress. - Abstract: The effects of cadmium, hydroxylated multi-walled carbon nanotubes, and their mixture on metal accumulation and antioxidant defenses were studied using the goldfish Carassius auratus as the test organism. The fish were exposed to 0.1 mg/L Cd, 0.5 mg/L OH-MWCNTs, or 0.1 mg/L Cd + 0.5 mg/L OH-MWCNTs for 3 and 12 days. Then, the Cd concentration was determined in the gill, liver and muscle. Moreover, hepatic antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase), glutathione level and malondialdehyde content were also measured. A continuous accumulation of Cd was observed throughout the experimental period. Cd accumulation in tissues occurred in the following order: gill > liver > muscle at 3 days and liver > gill > muscle at 12 days. The concentrations of Cd in the livers of fish exposed to the combination of Cd + OH-MWCNTs were significantly higher than those in fish exposed to either single chemical after 12 d of exposure. Meanwhile, the mixture evoked severe oxidative stress in the exposed fish, as indicated by significant inhibition of SOD, CAT and GPx activity, a remarkable decrease in GSH level, and simultaneous elevation of MDA content. These results suggested that the effect of the combined factors on metal accumulation and oxidative stress biomarkers was more obvious than that of single factors at longer exposure durations.

  15. Climate change (elevated CO{sub 2}, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Parra, C.; Aguirreolea, J.; Sanchez-Diaz, M.; Irigoyen, J.J.; Morales, F. (Departamento de Biologia Vegetal, Seccion Biologia Vegetal (Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logrono), Facultades de Ciencias y Farmacia, Universidad de Navarra, Pamplona (Spain))

    2012-07-01

    Photosynthetic carbon fixation (A{sub N}) and photosynthetic electron transport rate (ETR) are affected by different environmental stress factors, such as those associated with climate change. Under stress conditions, it can be generated an electron excess that cannot be consumed, which can react with O{sub 2}, producing reactive oxygen species. This work was aimed to evaluate the influence of climate change (elevated CO{sub 2}, elevated temperature and moderate drought) on the antioxidant status of grapevine (Vitis vinifera) cv. Tempranillo leaves, from veraison to ripeness. The lowest ratios between electrons generated (ETR) and consumed (A{sub N} + respiration + photorespiration) were observed in plants treated with elevated CO{sub 2} and elevated temperature. In partially irrigated plants under current ambient conditions, electrons not consumed seemed to be diverted to alternative ways. Oxidative damage to chlorophylls and carotenoids was not observed. However, these plants had increases in thiobarbituric acid reacting substances, an indication of lipid peroxidation. These increases matched well with an early rise of H{sub 2}O{sub 2} and antioxidant enzyme activities, superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6). Enzymatic activities were maintained high until ripeness. In conclusion, plants grown under current ambient conditions and moderate drought were less efficient to cope with oxidative damage than well-irrigated plants, and more interestingly, plants grown under moderate drought but treated with elevated CO{sub 2} and elevated temperature were not affected by oxidative damage, mainly because of higher rates of electrons consumed in photosynthetic carbon fixation. (Author)

  16. Regional asymmetry of metabolic and antioxidant profile in the sciaenid fish shi drum (Umbrina cirrosa white muscle. Response to starvation and refeeding

    Directory of Open Access Journals (Sweden)

    M. Carmen Hidalgo

    2017-04-01

    Full Text Available The objective of the present study is to characterize the metabolic and antioxidant profile of white muscle of shi drum in two sites of the body, anterior dorsal (AM and posterior dorsal (PM portions. In addition, it will be analyzed the possible effect of starvation and a subsequent refeeding, with two different protocols, pair feeding and ad libitum. Activities of key enzymes of intermediary metabolism and of antioxidant enzymes, as well as lipid peroxidation, as an index of oxidative stress, were evaluated. The results indicate the existence of a regional asymmetry of the metabolic capacities of the white muscle of shi drum, which is likely related to the different contribution to swimming of the body regions examined. Starvation induces a metabolic depression that is more marked in those activities that support burst swimming in PM, while those activities supporting maintenance requirements are conserved. The greatest energy demands during starvation appear to lie in AM, which showed the highest oxidative metabolism rate. The increased use of fatty acids as energy source for AM leads to oxidative stress. A period of more than four weeks of refeeding for full restoration of metabolic capacities in AM is needed, probably related to the higher muscle mass located in this region. On the contrary, all enzyme activities in PM returned to control levels in both refeeding protocols, but pair feeding seems to be advantageous since compensatory growth has been taking place without signs of oxidative stress. This work was addressed to gain knowledge on the physiology of a promising fish species in aquaculture like shi drum. The results displayed here show how the starving and further re-feeding events could generate oxidative stress situations characterized by high lipid peroxidation levels which may influence negatively on the quality of the edible part of the fish. This study opens an interesting field on this fish species which deserves being

  17. Antioxidant enzymes activities in obese Tunisian children

    Directory of Open Access Journals (Sweden)

    Sfar Sonia

    2013-01-01

    Full Text Available Abstract Background The oxidant stress, expected to increase in obese adults, has an important role in the pathogenesis of many diseases. It results when free radical formation is greatly increased or protective antioxidant mechanisms are compromised. The main objective of this study is to evaluate the antioxidant response to obesity-related stress in healthy children. Methods A hundred and six healthy children (54 obese and 52 controls, aged 6–12 years old, participated in this study. The collected data included anthropometric measures, blood pressure, fasting glucose, total cholesterol, triglycerides and enzymatic antioxidants (Superoxide dismutase: SOD, Catalase: CAT and Glutathione peroxidase: GPx. Results The first step antioxidant response, estimated by the SOD activity, was significantly higher in obese children compared with normal-weight controls (p  Conclusions The obesity-related increase of the oxidant stress can be observed even in the childhood period. In addition to the complications of an increased BMI, obesity itself can be considered as an independent risk factor of free radical production resulting in an increased antioxidant response.

  18. Anti-cancer and antioxidant properties of phenolics isolated from ...

    African Journals Online (AJOL)

    Results: The extract contained 36.02 ± 0.24 mg of gallic acid equiv/g dry ... Keywords: Toona sinensis, Phenolics, Antioxidants, HepG2 cells, Anti- ... EXPERIMENTAL .... Figure 2: Time kinetics and dose-response of hydrophilic antioxidant ...

  19. Natural antioxidants in chemoprevention

    Energy Technology Data Exchange (ETDEWEB)

    Dragsted, L.O. [Danish Veterinary and Food Administration, Soeberg (Denmark). Inst. of Toxicology

    1998-12-31

    It is well documented that diets rich in fruits and vegetables can reduce the risk of most common cancers, and that some food items from this class may be protective against heart disease. Several explanations have been offered, one of which relates to the natural presence of potent antioxidants in plant products. Destructive oxidation of lipids, proteins, DNA, and other important biomolecules, often involving radical chain reactions, affect vital cellular structures and their normal functions. Such processes are involved in the development of cancer as well as heart disease, and it seems logical to assume that antioxidants might be preventive. Large human trials with natural antioxidants have not provided a uniform support, however, for the hypothesis that antioxidation per se may prevent cancer or coronary heart disease (CHD). One reason is that other effects, unrelated to antioxidation, may compromise their preventive effects. Another reason may be that many potent antioxidants can also act as pro-oxidants under certain conditions. The interpretation of animal trials is likewise often compromised by the fact that most antioxidants have other physiological effects which might very well explain their protective action or lead to toxic side-effects. (orig.)

  20. Kinetic study of the plastoquinone pool availability correlated with H2O2 release in seawater and antioxidant responses in the red alga Kappaphycus alvarezii exposed to single or combined high light, chilling and chemical stresses.

    Science.gov (United States)

    Barros, Marcelo P; Necchi, Orlando; Colepicolo, Pio; Pedersén, Marianne

    2006-11-01

    Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H(2)O(2) into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H(2)O(2) in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H(2)O(2) release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H(2)O(2) concentration in seawater (R=0.673), total superoxide dismutase activity (R=0.689), and particularly indexes of protein (R=0.869) and lipid oxidation (R=0.864), were moderately correlated. These data suggest that the release of H(2)O(2) from plastids into seawater possibly impaired efficient and immediate responses of pivotal H(2)O(2)-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress.

  1. Phenolic content and antioxidant activities of burr parsley (Caucalis platycarpos L.).

    Science.gov (United States)

    Plazonić, Ana; Mornar, Ana; Maleš, Željan; Kujundžić, Nikola

    2013-07-22

    Since C. platycarpos contains a wide variety of antioxidants, in the present study total flavonoid and phenolic acid content as well as antioxidative activity of various C. platycarpos extracts were investigated. The results obtained show a significant polyphenol content and antioxidant activity of the investigated plant. Moreover, a positive correlation between antioxidant activity and content of flavonoids and phenolic acids was found, indicating the responsibility of these compounds for the antioxidant effectiveness of C. platycarpos extracts and making C. platycarpos a good potential source of natural antioxidants.

  2. Phenolic Content and Antioxidant Activities of Burr Parsley (Caucalis platycarpos L.

    Directory of Open Access Journals (Sweden)

    Željan Maleš

    2013-07-01

    Full Text Available Since C. platycarpos contains a wide variety of antioxidants, in the present study total flavonoid and phenolic acid content as well as antioxidative activity of various C. platycarpos extracts were investigated. The results obtained show a significant polyphenol content and antioxidant activity of the investigated plant. Moreover, a positive correlation between antioxidant activity and content of flavonoids and phenolic acids was found, indicating the responsibility of these compounds for the antioxidant effectiveness of C. platycarpos extracts and making C. platycarpos a good potential source of natural antioxidants.

  3. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H 2 O 2 , act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  4. Seasonal antioxidant responses in the sea urchin Paracentrotus lividus (Lamarck 1816) used as a bioindicator of the environmental contamination in the South-East Mediterranean.

    Science.gov (United States)

    Amri, Sandra; Samar, Mohamed-Faouzi; Sellem, Fériel; Ouali, Kheireddine

    2017-09-15

    In this study, sea urchin Paracentrotus lividus were sampled seasonally at three stations during 2012 in the coastal areas of the Gulf of Annaba (southeast Mediterranean). For all sea urchins, the gonad index was calculated to determine sea urchin reproductive status. Moreover, a set of biochemical parameters, including biomarkers and oxidative stress parameters, was measured in gonads. The pesticides and physiochemical parameters were measured and dosed in sea water. The results obtained highlighted that the levels of pesticide were generally low and below those commonly applied by environmental quality standards (EQS), indicating that no alarm state is currently present in the Gulf of Annaba. In addition to pollution, seasonal change is an important factor influencing biomarker activity, and the significant increases in biomarker levels in spring are a major observed trend. This activity may also be related to reproductive status. Seasonal variability was confirmed by the significant results of the Kruskal-Wallis test and by the high degree of divergence between seasons in PCA, with a total of 83.83% of variance explained. These results indicate that environmental factors that vary seasonally may affect the antioxidant status of the sea urchin Paracentrotus lividus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of dietary sweet potato leaf meal on the growth, non-specific immune responses, total phenols and antioxidant capacity in channel catfish (Ictalurus punctatus).

    Science.gov (United States)

    Lochmann, Rebecca T; Islam, Shahidul; Phillips, Harold; Adam, Zelalem; Everette, Jace

    2013-04-01

    Traditional energy sources in catfish diets have become costly, and economical alternatives are needed. Sweet potato leaves are underutilised agricultural by-products that provide energy and substantial amounts of phenols, which affect animal and human health. There is little information on the effects of these compounds on catfish, or the capacity of catfish to accumulate dietary phenols. Catfish enriched with phenols have marketing potential as functional foods. This study investigated the effects of diets with sweet potato leaf meal (SPLM) on growth performance, health and total phenolic compounds in catfish. SPLM was substituted for wheat middlings in three diets fed to groups of juvenile catfish for 10 weeks. Weight gain, feed conversion, survival, alternative complement activity and lysozyme activity were similar among diets. Haematocrit was lower in fish fed diets with SPLM, but within the normal range. Total phenols and antioxidant capacity in the whole body were similar among treatments. SPLM was an effective energy source for catfish up to the maximum level tested (230 g kg(-1) diet). SPLM did not enhance total phenols in catfish, but there were no apparent antinutritional effects of the meal on catfish growth, health or survival. © 2012 Society of Chemical Industry.

  6. Antioxidative properties of flavonoids

    NARCIS (Netherlands)

    Bowedes, T.C.F.; Luttikhold, J.; Stijn, van M.F.M.; Visser, M.; Norren, van K.; Vermeulen, M.A.R.; Leeuwen, P.A.M.

    2011-01-01

    Evidence accumulates that a family of plant compounds, known as flavonoids, can prevent or slow down the progression of cardiovascular diseases, cancer, inflammatory and neurodegenerative diseases. Flavonoids are considered beneficial, this is often attributed to their powerful antioxidant

  7. Atmospheric oxidation and antioxidants

    CERN Document Server

    Meurant, Gerard

    1993-01-01

    Volume I reviews current understanding of autoxidation, largely on the basis of the reactions of oxygen with characterised chemicals. From this flows the modern mechanism of antioxidant actions and their application in stabilisation technology.

  8. Antioxidants in food

    Directory of Open Access Journals (Sweden)

    Đilas Sonja M.

    2002-01-01

    Full Text Available This paper attempts to lead the reader an understanding of what free radicals are and how they can form during lipid oxidation. Also, it provides some information out natural antioxidants (tocopherols and tocotrienols flavonoids, polyphenols, tannines, melanoidihes, carotenoids, ascorbates and the echanisms of their protection from radical damage. The sources of natural antioxidants are: oil seeds, teas, vegetables, fruits, spices and herbs.

  9. Plasma antioxidants from chocolate

    OpenAIRE

    Serafini, M.; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A.

    2003-01-01

    There is some speculation that dietary flavonoids from chocolate, in particular (-)epicatechin, may promote cardiovascular health as a result of direct antioxidant effects or through antithrombotic mechanisms. Here we show that consumption of plain, dark chocolate results in an increase in both the total antioxidant capacity and the (-)epicatechin content of blood plasma, but that these effects are markedly reduced when the chocolate is consumed with milk or if milk is incorporated as milk ch...

  10. Antioxidant supplements and mortality

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Nikolova, Dimitrinka; Gluud, Christian

    2014-01-01

    Oxidative damage to cells and tissues is considered involved in the aging process and in the development of chronic diseases in humans, including cancer and cardiovascular diseases, the leading causes of death in high-income countries. This has stimulated interest in the preventive potential of a...... of antioxidant supplements. Today, more than one half of adults in high-income countries ingest antioxidant supplements hoping to improve their health, oppose unhealthy behaviors, and counteract the ravages of aging....

  11. Biomarkers of oxidative stress and of antioxidative defense: Relationship to intervention with antioxidant-rich foods

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Young, Jette Feveile; Loft, Steffen

    2001-01-01

    polyphenol intake was observed. There was an increased oxidative stress response toward plasma proteins from food items rich in polyphenols and vitamin C and a decreased response when fruits and vegetables were omitted using a controlled diet. There also was a similar trend toward increased antioxidant...

  12. Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine

    International Nuclear Information System (INIS)

    Wang, Biao; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Liu, Yang

    2015-01-01

    Highlights: • Cu exposure induced oxidative stress via disruption of antioxidant system. • Cu exposure disrupted TJ mRNA expression through regulation of cytokines in fish. • Cu induced gill apoptosis partly via intrinsic pathway but not extrinsic pathway. • Cu exposure can regulate Nrf2, NF-κB and TOR signaling molecules in fish. • Arginine can effectively prevent Cu-induced fish gill damage. - Abstract: This study explored the possible preventive effects of dietary arginine on copper (Cu)-induced tight junction mRNA expression changes, apoptosis and antioxidant responses in the gills of young grass carp (Ctenopharyngodon idella). The results indicated that exposure to 0.7 mg/L (11.01 μmol/L) Cu for 96 h induced the production of reactive oxygen species (ROS), thereby increasing protein oxidation, lipid peroxidation and DNA damage in the gills of fish. However, these oxidative effects were prevented by arginine supplementation. Arginine also prevented the toxic effects of Cu on the activities of copper/zinc superoxide dismutase (SOD1), glutathione-S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and the glutathione (GSH) content (P < 0.05). However, Cu induced an adaptive increase in the activity of catalase (CAT), and arginine supplementation further increased CAT activity (P < 0.05). Moreover, Cu induced increases in the relative mRNA expressions of SOD1, CAT, GPx, GST, caspase-3, caspase-9, NF-E2-related factor 2 (Nrf2), Kelch-like-ECH-associated protein 1a (Keap1a), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-8 (IL-8), transforming growth factor-β (TGF-β) and nuclear transcription factor-κB p65 (NF-κB p65) in the gills of grass carp (P < 0.05). In contrast, the relative mRNA expression levels of occludin, zonula occludens-1 (ZO-1), claudin b, claudin 3, claudin 12, target of rapamycin (TOR) and inhibitor factor κBα (IκBα) in the gills were decreased by Cu (P < 0.05). However, pre

  13. Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin; Jiang, Wei-Dan [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Wu, Pei [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Kuang, Sheng-Yao [Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Tang, Ling; Tang, Wu-Neng [Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, Sichuan (China); Zhang, Yong-An [Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Liu, Yang, E-mail: kyckgk@hotmail.com [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); and others

    2015-01-15

    Highlights: • Cu exposure induced oxidative stress via disruption of antioxidant system. • Cu exposure disrupted TJ mRNA expression through regulation of cytokines in fish. • Cu induced gill apoptosis partly via intrinsic pathway but not extrinsic pathway. • Cu exposure can regulate Nrf2, NF-κB and TOR signaling molecules in fish. • Arginine can effectively prevent Cu-induced fish gill damage. - Abstract: This study explored the possible preventive effects of dietary arginine on copper (Cu)-induced tight junction mRNA expression changes, apoptosis and antioxidant responses in the gills of young grass carp (Ctenopharyngodon idella). The results indicated that exposure to 0.7 mg/L (11.01 μmol/L) Cu for 96 h induced the production of reactive oxygen species (ROS), thereby increasing protein oxidation, lipid peroxidation and DNA damage in the gills of fish. However, these oxidative effects were prevented by arginine supplementation. Arginine also prevented the toxic effects of Cu on the activities of copper/zinc superoxide dismutase (SOD1), glutathione-S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and the glutathione (GSH) content (P < 0.05). However, Cu induced an adaptive increase in the activity of catalase (CAT), and arginine supplementation further increased CAT activity (P < 0.05). Moreover, Cu induced increases in the relative mRNA expressions of SOD1, CAT, GPx, GST, caspase-3, caspase-9, NF-E2-related factor 2 (Nrf2), Kelch-like-ECH-associated protein 1a (Keap1a), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-8 (IL-8), transforming growth factor-β (TGF-β) and nuclear transcription factor-κB p65 (NF-κB p65) in the gills of grass carp (P < 0.05). In contrast, the relative mRNA expression levels of occludin, zonula occludens-1 (ZO-1), claudin b, claudin 3, claudin 12, target of rapamycin (TOR) and inhibitor factor κBα (IκBα) in the gills were decreased by Cu (P < 0.05). However, pre

  14. Chromatographic characterisation, in vitro antioxidant and free ...

    African Journals Online (AJOL)

    Chromatographic fractionation and spectroscopic analysis of the ME4 fraction revealed the presence of four compounds namely garcinia biflavonoids GB1 and GB2, garcinal and garcinoic acid. These findings show that these four compounds are partly responsible for the great antioxidant potential of G. kola seeds.

  15. PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages.

    Science.gov (United States)

    Kim, Mi Jin; Kim, Dae Won; Park, Jung Hwan; Kim, Sang Jin; Lee, Chi Hern; Yong, Ji In; Ryu, Eun Ji; Cho, Su Bin; Yeo, Hyeon Ji; Hyeon, Jiye; Cho, Sung-Woo; Kim, Duk-Soo; Son, Ora; Park, Jinseu; Han, Kyu Hyung; Cho, Yoon Shin; Eum, Won Sik; Choi, Soo Young

    2013-10-01

    Sirtuin 2 (SIRT2), a member of the sirtuin family of proteins, plays an important role in cell survival. However, the biological function of SIRT2 protein is unclear with respect to inflammation and oxidative stress. In this study, we examined the protective effects of SIRT2 on inflammation and oxidative stress-induced cell damage using a cell permeative PEP-1-SIRT2 protein. Purified PEP-1-SIRT2 was transduced into RAW 264.7 cells in a time- and dose-dependent manner and protected against lipopolysaccharide- and hydrogen peroxide (H₂O₂)-induced cell death and cytotoxicity. Also, transduced PEP-1-SIRT2 significantly inhibited the expression of cytokines as well as the activation of NF-κB and mitogen-activated protein kinases (MAPKs). In addition, PEP-1-SIRT2 decreased cellular levels of reactive oxygen species (ROS) and of cleaved caspase-3, whereas it elevated the expression of antioxidant enzymes such as MnSOD, catalase, and glutathione peroxidase. Furthermore, topical application of PEP-1-SIRT2 to 12-O-tetradecanoylphorbol 13-acetate-treated mouse ears markedly inhibited expression levels of COX-2 and proinflammatory cytokines as well as the activation of NF-κB and MAPKs. These results demonstrate that PEP-1-SIRT2 inhibits inflammation and oxidative stress by reducing the levels of expression of cytokines and ROS, suggesting that PEP-1-SIRT2 may be a potential therapeutic agent for various disorders related to ROS, including skin inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Influence of animal age upon antioxidant-modified UV carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Black, H S [Photobiology Laboratory, Veterans Administration Medical Center, Houston, TX (USA); McCann, V [Baylor Univ., Houston, TX (USA). Coll. of Medicine; Thornby, J I [Biostatistics Section, Research Service, Veterans Administration Medical Center, Houston, TX (USA)

    1982-08-01

    Studies were undertaken to examine the effects of animal age on the anticarcinogenic properties of antioxidants. Female hairless mice, 2.5, 4.5 and 9.5 months of age, were subjected to daily irradiation from Westinghouse BZS-WLG lamps for 19 weeks. Experimental groups of animals were maintained on a commercial rodent meal supplemented with a 2% (w/w) antioxidant mixture. Control groups received only the meal. Tumour latency, expressed as median time to tumor development, was significantly greater for all age groups receiving antioxidants than for their similarly aged controls. However, the response to antioxidants appeared to decrease with age and the antioxidant effect was significantly less in the 9.5 month-old group than in the 2.5 month-old group. Likewise, the two youngest groups receiving antioxidants demonstrated a significantly fewer number of tumors per animal. It is concluded that animal age influences the degree of photoprotection provided by antioxidants. Whether this effect is related to dietary intake, and thus dependent upon resident antioxidant levels, is unknown. Nevertheless, dietary antioxidants provide significant protection in young animals against carcinogenesis induced by radiation of predominantly UVB wavelengths.

  17. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    International Nuclear Information System (INIS)

    Li, Bin; Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S.; Ward, Keith W.; Meyer, Colin J.; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2014-01-01

    of Nrf2 independently of Keap1 and NF-κB, suggesting a unique therapeutic potential of dh404 for specific targeting a Nrf2-mediated resolution of inflammation

  18. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: Dongqi.Tang@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2014-02-21

    of Nrf2 independently of Keap1 and NF-κB, suggesting a unique therapeutic potential of dh404 for specific targeting a Nrf2-mediated resolution of inflammation.

  19. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex ... Journal Home > Vol 10, No 50 (2011) > ... The aim of this work was to investigate some enzymatic systems response of this plant to copper stress.

  20. Ultrasound-Assisted Extraction of Total Flavonoids from Corn Silk and Their Antioxidant Activity

    OpenAIRE

    Zheng, Ling-Li; Wen, Guan; Yuan, Min-Yong; Gao, Feng

    2016-01-01

    Object. Ultrasound-assisted extraction of total flavonoids from corn silk and their antioxidant activities were studied. Methods. Response surface methodology was adopted to optimize the extraction conditions and antioxidant activities of the extracted total flavonoids were detected through ferric reducing antioxidant power (FRAP) assay. Results. Through a three-level, three-variable Box-Behnken design of response surface methodology (RSM) adopting yield as response, the optimal conditions we...

  1. Antioxidant Capacity of Beetroot: Traditional vs Novel Approaches.

    Science.gov (United States)

    Carrillo, Celia; Rey, Raquel; Hendrickx, Marc; Del Mar Cavia, María; Alonso-Torre, Sara

    2017-09-01

    Red beetroot has been ranked among the 10 most potent antioxidant vegetables, although only extraction-based methods have been used to evaluate its total antioxidant capacity. Therefore, the present study aims at comparing the traditional extraction-based method with two more recent approaches (QUENCHER -QUick, Easy, New, CHEap and Reproducible- and GAR -global antioxidant response method), in order to establish their suitability in the case of beetroot. Our results indicate that the total antioxidant capacity of beetroot would be underestimated when using extraction-based procedures, since both QUENCHER and GAR methods resulted in a higher total antioxidant capacity. The effect of a thermal treatment on the total antioxidant capacity of beetroot varies among the methods evaluated and our findings suggest different compounds responsible for the total antioxidant capacity detected in each pre-processing method. Remarkably, the present study demonstrates that the traditional extraction-based method seems useful to screen for (changes in) the "bioavailable" antioxidant potential of the root.

  2. Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.

    Science.gov (United States)

    Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y

    2015-04-01

    The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Phenolics and Flavonoids Compounds, Phenylanine Ammonia Lyase and Antioxidant Activity Responses to Elevated CO2 in Labisia pumila (Myrisinaceae

    Directory of Open Access Journals (Sweden)

    Hawa Z.E. Jaafar

    2012-05-01

    Full Text Available A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO2 (400, 800 and 1,200 µmol·mol−1 on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO2 concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO2 levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO2 (1,200 µmol·mol−1 exposure, gallic acid increased tremendously, especially in var. alata and pumila (101–111%, whilst a large quercetin increase was noted in var. lanceolata (260%, followed closely by alata (201%. Kaempferol, although detected under ambient CO2 conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100% and pumila (298~433%. Meanwhile, pyragallol and rutin were only seen in var. alata (810 µg·g−1 DW and pumila (25 µg·g−1 DW, respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO2 enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO2 levels implying the possible improvement of health-promoting quality of Malaysian L. pumila

  4. Skin and antioxidants.

    Science.gov (United States)

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  5. Antioxidant Capacity of Flavonoids in Hepatic Microsomes Is not Reflected by Antioxidant Effects In Vivo

    Directory of Open Access Journals (Sweden)

    Garry Duthie

    2012-01-01

    Full Text Available Flavonoids are polyphenolic compounds with potential antioxidant activity via multiple reduction capacities. Oxidation of cellular lipids has been implicated in many diseases. Consequently, this study has assessed the ability of several dietary flavonoid aglycones to suppress lipid peroxidation of hepatic microsomes derived from rats deficient in the major lipid soluble antioxidant, dα-tocopherol. Antioxidant effectiveness was galangin > quercetin > kaempferol > fisetin > myricetin > morin > catechin > apigenin. However, none of the flavonoids were as effective as dα-tocopherol, particularly at the lowest concentrations used. In addition, there appears to be an important distinction between the in vitro antioxidant effectiveness of flavonoids and their ability to suppress indices of oxidation in vivo. Compared with dα-tocopherol, repletion of vitamin E deficient rats with quercetin, kaempferol, or myricetin did not significantly affect indices of lipid peroxidation and tissue damage. Direct antioxidant effect of flavonoids in vivo was not apparent probably due to low bioavailability although indirect redox effects through stimulation of the antioxidant response element cannot be excluded.

  6. Antioxidant effect of green tea on polymer gel dosimeter

    International Nuclear Information System (INIS)

    Samuel, E J J; Sathiyaraj, P; Deena, T; Kumar, D S

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer

  7. From Radiation to Antioxidants

    International Nuclear Information System (INIS)

    Thongphasak, J.

    1998-01-01

    Radiation induces the formation of reactive oxygen species (ROS), which can damage cells. Antioxidants (AO) can decrease these damage. In addition to radiation, ROS is normally generated by metabolic processes in our bodies. Alteration of ROS and AO levels is related to several diseases and pathologic conditions e.g. cancer, diabetes, Alzheimer, AIDS, and aging. In addition, emotion such as stress can change ROS and AO levels. Antioxidants from nutrient and happy mind will make us healthy, decrease radiation-induced damage, reduce the medical cost, and consequently assist in the development of our economy

  8. Neuroprotective and Cognition-Enhancing Effects of Compound K Isolated from Red Ginseng.

    Science.gov (United States)

    Seo, Ji Yeon; Ju, Sung Hee; Oh, Jisun; Lee, Seung Kwon; Kim, Jong-Sang

    2016-04-13

    The present study was aimed at elucidating the effect of compound K derived from red ginseng on memory function in mouse model and glutamate-induced cytotoxicity in mouse hippocampal HT22 cells. Compound K induced antioxidant enzymes in nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated manner, and effectively attenuated cytotoxicity and mitochondrial damage induced by glutamate in HT22 cells. However, the cytoprotective effect by compound K was abolished by heme oxygenase-1 inhibitor, tin protophorphyrin IX, suggesting that neuroprotective effect of compound K was caused by its Nrf2-mediated induction of antioxidant enzymes. Further, memory deficit induced by scopolamine was restored by compound K, which did not inhibit acetylcholine esterase, in C57BL/6 mice but not in Nrf2 knockout mice as assessed by passive avoidance test, Y-maze and water maze tests, suggesting that scopolamine-induced memory impairment was overcome by the induction of Nrf2-mediated antioxidant enzymes by the compound K. Overall, our data indicate that compound K could be useful in prevention and treatment of reactive oxygen species-induced neurological disorders such as Alzheimer's disease.

  9. Effects of bisphenol A and its analogs bisphenol F and S on life parameters, antioxidant system, and response of defensome in the marine rotifer Brachionus koreanus.

    Science.gov (United States)

    Park, Jun Chul; Lee, Min-Chul; Yoon, Deok-Seo; Han, Jeonghoon; Kim, Moonkoo; Hwang, Un-Ki; Jung, Jee-Hyun; Lee, Jae-Seong

    2018-06-01

    To understand the adverse outcome in response to bisphenol A and its analogs bisphenol F and S (BPA, BPF, and BPS), we examined acute toxicity, life parameter, and defensome in the marine rotifer Brachionus koreanus. Among the bisphenol analogs, BPA showed the highest acute toxicity and then BPF and BPS, accordingly in the view of descending magnitude of toxicity. In life parameters including life span and reproduction, BPA, BPF, and BPS were found to cause adverse effect. Both intracellular ROS level and GST activity were significantly increased (P bisphenol analogs exposures. In response to bisphenol analogs, defensomes of phase I, II, and III detoxification mechanism demonstrated inverse relationship between the lipophilicity of bisphenol analogs and the expression patterns of defensomes. BPA and BPF were found to have significant modulation (P bisphenol A and its analogs F and S demonstrated specific detoxification mechanism in rotifer. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  11. Antioxidants for female subfertility.

    Science.gov (United States)

    Showell, Marian G; Mackenzie-Proctor, Rebecca; Jordan, Vanessa; Hart, Roger J

    2017-07-28

    A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. This may affect up to a quarter of all couples planning a child. It is estimated that for 40% to 50% of couples, subfertility may result from factors affecting women. Antioxidants are thought to reduce the oxidative stress brought on by these conditions. Currently, limited evidence suggests that antioxidants improve fertility, and trials have explored this area with varied results. This review assesses the evidence for the effectiveness of different antioxidants in female subfertility. To determine whether supplementary oral antioxidants compared with placebo, no treatment/standard treatment or another antioxidant improve fertility outcomes for subfertile women. We searched the following databases (from their inception to September 2016) with no language or date restriction: Cochrane Gynaecology and Fertility Group (CGFG) specialised register, the Cochrane Central Register of Studies (CENTRAL CRSO), MEDLINE, Embase, PsycINFO, CINAHL and AMED. We checked reference lists of appropriate studies and searched for ongoing trials in the clinical trials registers. We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among women attending a reproductive clinic. We excluded trials comparing antioxidants with fertility drugs alone and trials that only included fertile women attending a fertility clinic because of male partner infertility. Two review authors independently selected eligible studies, extracted the data and assessed the risk of bias of the included studies. The primary review outcome was live birth; secondary outcomes included clinical pregnancy rates and adverse events. We pooled studies using a fixed-effect model, and calculated odds ratios (ORs) with 95% confidence intervals (CIs) for the dichotomous

  12. Combination chemoprevention with grape antioxidants.

    Science.gov (United States)

    Singh, Chandra K; Siddiqui, Imtiaz A; El-Abd, Sabah; Mukhtar, Hasan; Ahmad, Nihal

    2016-06-01

    Antioxidant ingredients present in grape have been extensively investigated for their cancer chemopreventive effects. However, much of the work has been done on individual ingredients, especially focusing on resveratrol and quercetin. Phytochemically, whole grape represents a combination of numerous phytonutrients. Limited research has been done on the possible synergistic/additive/antagonistic interactions among the grape constituents. Among these phytochemical constituents of grapes, resveratrol, quercetin, kaempferol, catechin, epicatechin, and anthocyanins (cyanidin and malvidin) constitute more than 70% of the grape polyphenols. Therefore, these have been relatively well studied for their chemopreventive effects against a variety of cancers. While a wealth of information is available individually on cancer chemopreventive/anti-proliferative effects of resveratrol and quercetin, limited information is available regarding the other major constituents of grape. Studies have also suggested that multiple grape antioxidants, when used in combination, alone or with other agents/drugs show synergistic or additive anti-proliferative response. Based on strong rationale emanating from published studies, it seems probable that a combination of multiple grape ingredients alone or together with other agents could impart 'additive synergism' against cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antioxidant capacity of Macaronesian traditional medicinal plants.

    Science.gov (United States)

    Tavares, Lucélia; Carrilho, Dina; Tyagi, Meenu; Barata, David; Serra, Ana Teresa; Duarte, Catarina Maria Martins; Duarte, Rui Oliveira; Feliciano, Rodrigo Pedro; Bronze, Maria Rosário; Chicau, Paula; Espírito-Santo, Maria Dalila; Ferreira, Ricardo Boavida; dos Santos, Cláudia Nunes

    2010-04-12

    The use of many traditional medicinal plants is often hampered by the absence of a proper biochemical characterization, essential to identify the bioactive compounds present. The leaves from five species endemic to the Macaronesian islands with recognized ethnobotanical applications were analysed: Apollonias barbujana (Cav.) Bornm., Ocotea foetens (Ainton) Baill, Prunus azorica (Mouill.) Rivas-Mart., Lousã, Fern. Prieto, E. Días, J.C. Costa & C. Aguiar, Rumex maderensis Lowe and Plantago arborescens Poir. subsp. maderensis (Dcne.) A. Hans. et Kunk.. Since oxidative stress is a common feature of most diseases traditionally treated by these plants, it is important to assess their antioxidant capacity and determine the molecules responsible for this capacity. In this study, the antioxidant capacity of these plants against two of the most important reactive species in human body (hydroxyl and peroxyl radicals) was determined. To trace the antioxidant origin total phenol and flavonoid contents as well as the polyphenolic profile and the amount of trace elements were determined. There was a wide variation among the species analysed in what concerns their total leaf phenol and flavonoid contents. From the High Performance Liquid Chromatography (HPLC) electrochemically detected peaks it was possible to attribute to flavonoids the antioxidant capacity detected in A. barbujana, O. foetens, R. maderensis and P. azorica extracts. These potential reactive flavonoids were identified for A. barbujana, R. maderensis and P. azorica. For R. maderensis a high content (7 mg g-1 dry weight) of L-ascorbic acid, an already described antioxidant phytomolecule, was found. A high content in selenomethionine (414.35 microg g-1 dry weight) was obtained for P. arborescens subsp. maderensis extract. This selenocompound is already described as a hydroxyl radical scavenger is reported in this work as also possessing peroxyl radical scavenging capacity. This work is a good illustration of

  14. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  15. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus.

    Science.gov (United States)

    Lu, Yunliang; Wu, Zhihao; Song, Zongcheng; Xiao, Peng; Liu, Ying; Zhang, Peijun; You, Feng

    2016-11-01

    High temperature has direct confinement on fish survival and growth, especially under the background of global warming. Selection of fish line with heat resistance is an important means to address this problem. In the present study, we analyzed the difference in heat resistance between families of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus, two flatfish species occupying slightly different thermal niches. Then the chosen families were tested to determine their differential response to heat stress (ΔT = +8 °C and +12 °C) in blood, including anaerobic metabolism (lactate), oxidative stress (lipid peroxidation and protein carbonylation) and antioxidant enzymes. Results showed a difference in heat resistance between families of the two species. Among the chosen parameters, growth traits had a significant effect on contents of lactate and malondialdehyd (MDA), and activities of catalase (CAT) and glutathione S-transferase in flounder (P heat-sensitive family of each species, levels of all studied parameters were lower and more stable in heat-resistant families after heat stress. What's more, heat resistance of fish significantly influenced contents of lactate and MDA and activity of CAT in flounder (P heat-resistance, being potentially valuable in fish breeding. However, these markers should be applied with more caution when there is a growth discrepancy between fish families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Association between interleukin 6 -174 G/C promoter gene polymorphism and runners' responses to the dietary ingestion of antioxidant supplementation based on pequi (Caryocar brasiliense Camb. oil: a before-after study

    Directory of Open Access Journals (Sweden)

    Ana Luisa Miranda-Vilela

    Full Text Available Abstract Exercise is a double-edged sword: when practiced in moderation, it increases the expression of antioxidant enzymes, but when practiced strenuously it causes oxidative stress and cell damage. In this context, polymorphisms in the interleukin (IL-6 gene should be investigated better because they can influence performance, at least in exercise that generates oxidative stress and leads to muscular injuries with consequent inflammation. In this work, we investigated the influence of IL-6 –174 G/C polymorphism on tissue damage and inflammation markers, lipid peroxidation, hemogram and lipid profile of runners before and after ingestion of 400 mg of pequi oil in capsules supplied daily for 14 consecutive days. The IL-6 genotypes were associated with significant differences in lipid peroxidation, with the CC mutant having lower values. There were also significant differences among these genotypes in the response to supplementation with pequi oil, exercise-induced damage and C-reactive protein (CRP levels. The best protection against damage was observed with the heterozygous genotype. Although the CC genotype showed an increase in CRP levels after supplementation, the lack of a positive correlation between triglycerides and high-sensitivity CRP in this mutant genotype after supplementation indicated a protective effect of pequi. These findings deserve further investigation, particularly with regard to the quantification of circulating IL-6 concentrations.

  17. Evaluation of the effect of increasing dietary vitamin E in combination with different fat sources on performance, humoral immune responses and antioxidant status of weaned pigs

    DEFF Research Database (Denmark)

    Lauridsen, Charlotte

    2010-01-01

    involved a total of 180 pigs of 20 litters. Nine pigs of each litter were allotted to 9 dietary treatments in a 3 × 3 factorial arrangement of treatments in a randomized complete block design, which was conducted in 20 replicates. The 9 experimental groups were fed 50 g/kg diet of tallow, sunflower oil...... of mucosal samples. When compared to tallow, pigs fed sunflower oil had higher antibody response to sheep red blood cells at days 49 (P

  18. Cylindrospermopsin induced changes in growth, toxin production and antioxidant response of Acutodesmus acuminatus and Microcystis aeruginosa under differing light and nitrogen conditions.

    Science.gov (United States)

    Chia, Mathias Ahii; Cordeiro-Araújo, Micheline Kézia; Lorenzi, Adriana Sturion; Bittencourt-Oliveira, Maria do Carmo

    2017-08-01

    Growing evidence suggests that some bioactive metabolites (e.g. cyanotoxins) produced by cyanobacteria have allelopathic potential, due to their inhibitory or stimulatory effects on competing species. Although a number of studies have shown that the cyanotoxin cylindrospermopsin (CYN) has variable effects on phytoplankton species, the impact of changing physicochemical conditions on its allelopathic potential is yet to be investigated. We investigated the physiological response of Microcystis aeruginosa (Cyanobacteria) and Acutodesmus acuminatus (Chlorophyta) to CYN under varying nitrogen and light conditions. At 24h, higher microcystins content of M. aeruginosa was recorded under limited light in the presence of CYN, while at 120h the lower levels of the toxins were observed in the presence of CYN under optimum light. Total MCs concentration was significantly (pnitrogen conditions. On the other hand, there were no significant (p>0.05) changes in total MCs concentrations after exposure to CYN under high nitrogen conditions. As expected, limited light and limited nitrogen conditions resulted in lower cell density of both species, while CYN only significantly (pnitrogen condition, the presence of CYN increased internal H 2 O 2 content of both species, which resulted in significant (pnitrogen. These results showed that M. aeruginosa and A. acuminatus have variable response to CYN under changing light and nitrogen conditions, and demonstrate that need to consider changes in physicochemical conditions during ecotoxicological and ecophysiological investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  20. The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target

    Directory of Open Access Journals (Sweden)

    Si Qin

    2017-10-01

    Full Text Available Reactive oxygen species (ROS can be caused by mechanical, thermal, infectious, and chemical stimuli, and their negative effects on the health of humans and other animals are of considerable concern. The nuclear factor (erythroid-derived 2-like 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1 system plays a major role in maintaining the balance between the production and elimination of ROS via the regulation of a series of detoxifying and antioxidant enzyme gene expressions by means of the antioxidant response element (ARE. Dietary phytochemicals, which are generally found in vegetables, fruits, grains, and herbs, have been reported to have health benefits and to improve the growth performance and meat quality of farm animals through the regulation of Nrf2-mediated phase II enzymes in a variety of ways. However, the enormous quantity of somewhat chaotic data that is available on the effects of phytochemicals needs to be properly classified according to the functions or mechanisms of phytochemicals. In this review, we first introduce the antioxidant properties of phytochemicals and their relation to the Nrf2/Keap1 system. We then summarize the effects of phytochemicals on the growth performance, meat quality, and intestinal microbiota of farm animals via targeting the Nrf2/Keap1 system. These exhaustive data contribute to better illuminate the underlying biofunctional properties of phytochemicals in farm animals.

  1. Antioxidant and enzymatic responses to oxidative stress induced by pre-harvest water supply reduction and ripening on mango (Mangifera indica L. cv. 'Cogshall') in relation to carotenoid content

    OpenAIRE

    Rosalie , Rémy; Joas , Jacques; Deytieux-Belleau , Christelle; Vulcain , Emmanuelle; Payet , Bertrand; Dufossé , Laurent; Léchaudel , Mathieu

    2015-01-01

    International audience; The effects of a reduction in water supply during fruit development and postharvest fruit ripening on the oxidative status and the antioxidant defense system were studied in the mango fruit (Mangifera indica L.) cv. Cogshall. Changes in non-enzymatic (ascorbate) and enzymatic (SOD, CAT, APX, MDHAR, DHAR and GR) antioxidants, as well as oxidative parameters (H 2 O 2 and MDA) and major carotenoids, were measured in unripe and ripe fruits from well-irrigated and non-irrig...

  2. Response of streptozotocin-induced diabetes in rats under oxidative stress of intermittent radiation exposure to either antioxidant or insulin mimic treatment

    International Nuclear Information System (INIS)

    Noaman, E.; El-Tahawy, N.A.; Hedayat, I.S.; Mansour, S.Z.; Fahmy, Y.N.

    2005-01-01

    Diabetic rats were treated with 0.5% a-lipoic acid, as a diet supplement, or was administered with vanadyl sulphate in drinking water at a dose of 75 mg/kg with or without whole body gamma radiation exposure with repeated dose of 4 Gy/week for 4 weeks. Both treatments significantly improved diabetes-induced increase in glucose concentration. Treating diabetic rats with a-lipoic acid prevented the diabetes-induced increase in thiobarbituric acid reactive substances in plasma and significantly improved liver glutathione levels. On the other hand, treating diabetic rats with vanadyl sulphate not only prevented diabetes-induced changes of either of these oxidative stress markers but also normalized glucose concentration and ameliorated the increase in body weight gain. Diabetes with or without radiation exposure induced increase in liver conjugated diene levels and such elevation was improved by the treatment with either a-lipoic acid or vanadyl sulphate. Treating diabetic rats with a-lipoic acid and vanadyl sulphate partially improved liver No*VlC-ATPase activity and sorbitol and myo-inositol contents. The increase in liver sorbitol levels in diabetic rats was ameliorated by either treatment. These studies suggest that diabetes-induced oxidative stress may be partially responsible for the development of diabetic complications and the treatment with vanadyl sulphate was more advantageous than a-lipoic acid in handling these complications

  3. Organoleptic quality and antioxidant status of radiation processed food commodities

    International Nuclear Information System (INIS)

    Chatterjee, S.; Sharma, J.; Arul, A.K.; Variyar, P.S.; Sharma, A.

    2009-01-01

    Effect of radiation processing on the organoleptic qualities such as aroma, taste and colour as well as antioxidant status of various food classes such as beverages (monsooned coffee), spices (nutmeg), fruits (pomegranate), oil seeds (soybean) and vegetables (guar beans) was investigated. The factors responsible for these attributes were shown to be liberated from their glycosidic precursors during radiation processing, thus resulted in an enhancement of organoleptic quality and antioxidant status. (author)

  4. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  5. Time in Redox Adaptation Processes: From Evolution to Hormesis

    Directory of Open Access Journals (Sweden)

    Mireille M. J. P. E. Sthijns

    2016-09-01

    Full Text Available Life on Earth has to adapt to the ever changing environment. For example, due to introduction of oxygen in the atmosphere, an antioxidant network evolved to cope with the exposure to oxygen. The adaptive mechanisms of the antioxidant network, specifically the glutathione (GSH system, are reviewed with a special focus on the time. The quickest adaptive response to oxidative stress is direct enzyme modification, increasing the GSH levels or activating the GSH-dependent protective enzymes. After several hours, a hormetic response is seen at the transcriptional level by up-regulating Nrf2-mediated expression of enzymes involved in GSH synthesis. In the long run, adaptations occur at the epigenetic and genomic level; for example, the ability to synthesize GSH by phototrophic bacteria. Apparently, in an adaptive hormetic response not only the dose or the compound, but also time, should be considered. This is essential for targeted interventions aimed to prevent diseases by successfully coping with changes in the environment e.g., oxidative stress.

  6. Total